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1 Abstract

In this paper we will take a look at sphere packings and we will try to find the highest density
binary lattice packings in the 2-dimensional space R2. First we start with defining the properties
of lattice packings of different convex bodies. Then we transform the problem into an optimization
problem, which turns out to be a Non-Convex Quadratic Constrained Quadratic Program that
can not be solved normally. Therefore a couple of relaxation techniques are used in order to find
an upper bound on the highest density. Eventually only the option with two spheres in a unit tile
have been examined for which also a lower bound for the highest density is given. Though the
upper bounds and the lower bounds are equal, they are still lower bounds for the actual highest
density of binary lattice packings.
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2 Introduction

The mathematical view on sphere packings dates from the 16th century when cannonballs took
up space in ships. Stacking the cannonballs efficiently would save up space. This problem got the
attention of Johannes Keppler to take a look at sphere packings, where one tries to leave the least
possible space between the spheres. It was in 1611 that Keppler’s stated his hypothesis that the
highest density would be achieved by a face-centered cubic lattice packing, the arrangement used
by grocers for stacking oranges, see figure 1(a). It was in the 19th century when Carl Friedrich
Gauss proved that this was true for all lattice packings. The prove for all packings, so including
non-lattice packings, took some more time. Fejes Tóth reduced the problem to a finite number of
calculations and finally in 1998 it was Thomas Callister Hales who got the prove with the help of
computers. So the face-centered cubic lattice packing is the packing with the highest density, in
this case the density is π

3
√

2
≈ 0.74.

The 2-dimensional analog of the problem, in which case the sphere are discs was first proven by
Axel Thue in 1890. He showed that the hexagonal lattice packing, as shown in figure 6(b), is the
densest of all possible disc packings. His proof was considered by some to be incomplete. And it
was Laśzló Fejes Tóth in 1940 who gave the first rigorous proof. The density achieved with the
hexagonal packing is π

2
√

3
[1]. So far the packings consisted of spheres of equal size, but there has

also been some research in unequal sphere packing, especially binary sphere packings. In the case
of binary sphere packings there are only two different radii among the spheres.
In this report we will take a look at binary sphere packings but we reduce the problem to a
2-dimensional case and we only consider lattice packings.

(a) Face-Centered Cubic Packing (b) Hexagonal Packing

Figure 1: Optimal packings in the 3-dimensional and 2-dimensional space
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3 What are the highest density binary lattice packings in
2-dimensions or ratio 1:1

Within the subject of sphere packings there are a lot of problems that can be solved. In this
paper we take a look at densest sphere packings. We start with packings in general and lattice
packings. Then we define define lattice packings of sphere’s with different radii. Next we will
reduce the problem to a 2-dimensional lattice packing problem of spheres with two different radii,
also called a binary lattice packing. To be able to find the highest density packings, the problem
will be translated to a Non-Convex Quadratic Constraint Quadratic Program, that can be solved
by relaxation of the problem with Relaxation-Linearization Techniques and Semi-Definite Pro-
gramming into a solvable Linear Program. This will give us upper bounds on the highest density,
so to be able to know that it actually is the highest density we need to find packings that have a
density equal to the density found.

3.1 Sphere Packings

To eventually give a definition of a binary lattice packing we will start with some basic definitions.
Let K denote a convex body in n-dimensional Euclidean space En. K is a compact subset of En

such that

λx + (1− λ)y ∈ K,

whenever both x and y belong to K and 0 < λ < 1. As usual, the interior, volume and diameter
of K are denoted by int(K ), v(K ), d(K ), respectively. An example of a convex body is the
n-dimensional unit sphere

Sn = {(x1, x2, . . . , xn)|
n∑
i=1

(xi)
2 ≤ 1}

If ai = (ai1, ai2, . . . , ain), i = 1, 2, . . . ,n, are n linearly independent vectors in En, then the set

Λ =

{
n∑
i=1

ziai : zi ∈ Z

}
,

is called a lattice, and we call {a1,a2, . . . ,an} a basis for Λ. As usual, the absolute value of the
determinant ‖aij‖ is called the determinant of the lattice and is denoted by det(Λ). Let X be a
set of discrete points in En. We shall call K + X a translative packing of K if

int(K + x1) ∩ int(K + x2) = ∅

whenever x1 and x2 are distinct points of X. In particular, we shall call it a lattice packing of
K when X is a lattice. Let l be a positive number and let m(K, l) be the maximum number of
translates K + x that can be packed into the cube lIn. We define

δ(K) = lim sup
l→∞

m(K, l)v(K)

v(lIn)
,

the density of the densest translative packings of K in En. Similarly, the density δ∗(K) of the
densest lattice packings of K is defined by restricting the translative vectors to those in a lattice.
In this case, it can be deduced that

δ∗(K) = sup
Λ

v(K)

det(Λ)
,

where the supremum is over all lattices Λ such that K + Λ is a packing. [5]
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3.1.1 Multiple Convex Bodies

In order to be able to say something about binary lattice packings, we need to extend these
definitions to multiple convex bodies. So in case of m convex bodies Ki ⊂ En and vectors di ∈ En
and let K =

⋃
(Ki + di) we shall call K + Λ a lattice packing if

Ki + Λ is a lattice packing for all i and

(Ki + Λ + di) ∩ (Kj + Λ + dj) = ∅

for all distinct i and j. And we define the density of the lattice packing K + Λ by

δ∗(K) = sup
Λ,di

∑m
i=1 v(Ki)

det(Λ)
(1)

where the supremum is over all is over all lattices Λ and all possible di ∈ En such that K + Λ is
a lattice packing.

3.1.2 Lattice Packings of Spheres in R2

From now on the Euclidean space will be R2 with Euclidean norm ||·|| and innerproduct (·, ·) and
the convex bodies Ki will be spheres with radius ri ∈ R and centre ci = (c1, c2) ∈ R2

Sci,ri = {(x1, x2)|
2∑
k=1

(xk − ci)2 ≤ ri} (2)

and of course the interior is given by

int(Sci,ri) = {(x1, x2)|
n∑
k=1

(xk − ck)2 < ri} (3)

the lattice Λ = 〈a,b〉 is supposed to be minimal, ||a|| ≤ ||b|| and |(a,b)| ≤ ||a||2 [6] and we will
denote the lattice spherepacking by Sn + Λ.

Lemma 3.1. Let Λ be a lattice with basis {a, b} such that 2 |(a, b)| ≤ ||a|| ≤ ||b|| and x ∈
{λa + µb|0 ≤ λ, µ ≤ 1}. Then one of 0,a, b,a + b is the lattice point closest to x, in other words
minl∈{0,a,b,a+b} ||x− l|| = minl∈Λ(||x− l||)

Figure 2: Maximum distance to lattice point is
√

2
2 ||b||

Proof. First we determine an upper bound on the distance of x to the lattice point closest to x.
The minimal distance to at least one of the lines nb + 〈a〉, is the vector orthogonal to this line,
and is at most 1

2 ||b||. And for any point x′ ∈ {nb + 〈a〉} to a lattice point is at most 1
2 ||a||, which

can clearly be seen in figure 2. By the Pythagorian theorem we get
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min
l∈Λ
||x− l|| ≤

√
1

4
||b||2 +

1

4
||a||2 ≤

√
1

4
||b||2 +

1

4
||b||2 ≤

√
2

2
||b|| (4)

To eliminate some lattice points that are too far away to be the lattice point closest to x we
take a look at the parallel lines nb + 〈a〉. The minimum distance between two parallel lines is
the length of the vector between these parallel lines, orthogonal to these lines. This vector is

b− (a,b)

||b||2 a. We calculate the minimum length of this vector

(b− (a,b)

||b||2
a,b− (a,b)

||b||2
a) = (b,b)− 2

(a,b)2

||a||2
+

(a,b)2

||a||2

= ||b||2 − (a,b)2

||a||2

= ||b||2 − (2 |(a,b)|)2

4 ||a||2

≥ ||b||2 − ||a||
2 ||b||2

4 ||a||2

=
3

4
||b||2

So we have that

||x−ma− nb|| ≥
√

3

2
||b|| for n /∈ {0, 1}

If we combine this result with the results from (4) we have reduced the problem to showing that

min
l∈{0,a,b,a+b}

||x− l|| = min {||vectx− vectl|| ‖l = ma + nb,m ∈ Z, n ∈ {0, 1}}

To show this last step we take a look at the case n = 0 and m < 0, and we will show that

||x−ma|| ≥ ||x− 0|| = ||x||

We start with the orthogonal projection γa of x on 〈a〉,

γ =
(x,a)

||a||2
=

(x,a)

||a||2

=
(λa + µb,a)

||a||2

= λ+
µ(b,a)

||a||2

≥ λ− µ2 |(b,a)|
2 ||a||2

≥ λ− 1

2
µ ≥ −1

2
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Figure 3: Either 0,a,b,a + b is closest to x

So we get

||x−ma||2 = ||x− γa + γa−ma||2

= ||x− γa||2 + ||γa−ma||2

= ||x− γa||2 + (γ −m)2 ||a||2

≥ ||x− γa||2 + γ2 ||a||2

= ||x− γa||2 + ||γa||2

= ||x− γa + γa||2

= ||x||2

which implies that ||x−ma− nb|| ≥ ||x− 0|| for n = 0 all m < 0. Because of the symmetry of
the problem, see figure 3, a reflection can map a on 0 and (m + 1)a on −ma, without changing
the problem

||x−ma|| ≥ ||x− a|| = ||x||

holds for m > 1. The case for n = 1 can be shown by a rotation which maps ma on (1−m)a+b,
which concludes our proof.

Remark It is easy to generalize this result for x ∈ {λa + µb|lλ ≤ λ ≤ uλ, lµ ≤ µ ≤ uµ} with
lλ, uλ, lµ, uµ ∈ N. Then the closest vector is in the set {na+mb|n,m ∈ N, lλ ≤ n ≤ uλ, 1µ ≤ m ≤
uµ}

Theorem 3.2. Let Λ be a lattice with basis {a, b} such that 2 |(a, b)| ≤ ||a|| ≤ ||b||, S =
⋃
Si =⋃

Sri,ci with ri ∈ R and ci ∈ {λa + µb|0 ≤ λ, µ ≤ 1} for i = 1, . . . , n and Z = {0,a, b,a+b,a−b}.
The following statements are equivalent.

1. S + Λ is a lattice packing

2. (a) ||ci − cj − z|| ≥ ri + rj for i 6= j and all z ∈ Z
(b) ||a|| ≥ 2ri for all i

note: the set Z is reduced from Z = {0,a,−a, b,−b,a + b,−a− b,a− b,−a + b} to
Z = {0,a, b,a+b,a−b} because ||ci − cj − z|| for i 6= j also contains ||cj − ci − z|| = ||ci − cj + z||.

Proof. 1 ⇒ 2 S + Λ is a lattice packing so for i = 1, . . . , n, Si + Λ is a lattice packing,so

int(Si + x1) ∩ int(Si + x2) = ∅

for all distinct x1 and x2 in Λ. Suppose there is an i such that ||a|| < 2ri then also ||x1 − x2|| < 2ri
for some x1 and x2.

∣∣∣∣ 1
2 (x1 − x2)

∣∣∣∣ < ri then
∣∣∣∣x1 − 1

2 (x1 + x2)
∣∣∣∣ < ri but also

∣∣∣∣x2 − 1
2 (x1 + x2)

∣∣∣∣ <
8



ri so 1
2 (x1 + x2) ∈ int(Si + x1) and 1

2 (x1 + x2) ∈ int(Si + x2) hence 1
2 (x1 + x2) ∈ (int(Si + x1) ∩

(int(Si + x2)), a contradiction, so ||x1 − x2|| ≥ ||a|| ≥ 2ri. Furthermore the following holds

int(Si + y1) ∩ int(Sj + y2) = ∅

for all i 6= j and y1 and y2 in Λ. Suppose that there are i, j with i 6= j and a z ∈ Z such that
||ci − cj − z|| < ri + rj but then∣∣∣∣∣∣∣∣ci − (

rj
ri + rj

ci −
ri

ri + rj
(cj + z))

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ ri
ri + rj

(ci − cj − z)

∣∣∣∣∣∣∣∣ < ri,∣∣∣∣∣∣∣∣cj − (
rj

ri + rj
ci −

ri
ri + rj

(cj + z))

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ rj
ri + rj

(ci − cj − z)

∣∣∣∣∣∣∣∣ < rj ,

hence
rj

ri+rj
ci− ri

ri+rj
(cj + z) ∈ int(Si +y1)∩ int(Sj +y2) gives a contradiction, so for all i, j with

i 6= j and all z ∈ Z holds ||ci − cj − z|| ≥ ri + rj .

2 ⇒ 1 We have ||a|| ≥ 2ri and let Si be a sphere in R2, x1,x2 ∈ Λ with x1 6= x2 and let
x ∈ int(Si + x1) so ||ci + x2 − x|| < ri then we need to proof that x /∈ int(Si + x2)

||ci + x2 − x|| = ||ci + x2 − ci − x1 + ci + x1 − x||
= ||(x2 − x1)− (x− ci − x1)||
≥

∣∣||(x2 − x1)|| − ||x− ci − x1||
∣∣

≥ ||a|| − ||x− ci − x1||
≥ 2ri − ri = ri

so for all i, Si + Λ is a lattice packing.
The last thing left to prove is that S + Λ is a lattice packing. We have that ||ci − cj − z|| ≥
ri+rj for i 6= j and all z ∈ Z now let Si and Sj be two spheres in R2 and x1,x2 ∈ Λ then we need
to show that if x ∈ int(Si+x1) implies that x /∈ int(Sj+x2). Or in other words ||ci + x1 − x|| < ri
implies ||cj + x2 − x|| ≥ ri,

||cj + x2 − x|| = ||cj + x2 − ci − x1 + ci + x1 − x||
= ||(ci − cj − x2 − x1)− (x− ci − x1)||
≥

∣∣||(ci − cj − x2 − x1)|| − ||x− ci − x1||
∣∣

Now we have to consider two cases, ±(x1 + x2) ∈ Z and ±(x1 + x2) /∈ Z. If ±(x1 + x2) ∈ Z then∣∣||(ci − cj − x2 − x1)|| − ||x− ci − x1||
∣∣ ≥ rj + ri − ri = rj

If x1 +x2 /∈ Z then we can use lemma 3.1 and its remark. Because ci, cj ∈ {λa+µb |0 ≤ λ, µ ≤ 1}
then ±ci ∓ cj ∈ {λa + µb | − 1 ≤ λ, µ ≤ 1}. So there is a z0 ∈ Z such that ||ci − cj − z0|| ≤
||ci − cj − x1 − x2|| or ||cj − ci − z0|| ≤ ||ci − cj − x1 − x2|| so we get∣∣||(ci − cj − x2 − x1)|| − ||x− ci − x1||

∣∣ ≥ ||(ci − cj − z0)|| − ||x− ci − x1||
≥ rj + ri − ri = rj
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3.2 Optimization Problem

Now we can look back at our problem, we want to optimize the density of a binary sphere packing.
So we have the following problem

minimize det(Λ)

subject to (Sr1,c1 ∪ Sr2,c2) + Λ is a lattice packing

More concretely say Λ has minimal basis {a,b} = {(a1, a2), (b1, b2)}, and
Si = Sci,ri = {x ∈ R2| ||ci − x|| ≤ ri} and Z = {0,a,b,a + b,a− b}

minimize |a1b2 − b1a2|
subject to (ci1 − cj1 − z1)2 + (ci2 − cj2 − z2)2 ≥ (ri + rj)

2 for i 6= j and all (z1, z2) ∈ Z
a2

1 + a2
2 ≥ 4r2

i for i = 1, . . . , n

3.2.1 Non-Convex QCQP’s

Both the objective function and the constraint functions can be written as 1
2x

TPix+ qTi x+ si so

minimize
1

2
xTP0x+ qT0 x+ s0

subject to
1

2
xTPix+ qTi x+ si ≤ 0, i = 1, . . . ,m

So we are dealing with a Quadratically Constrained Quadratic Programming problem [3]. If
all the matrices Pi are positive semidefinite, the problem would be convex and can be solved
efficiently. But in this case not all Pi are positive semidefinite, so the problem is a Non-Convex
QCQP problem, which is at least as hard as a large number of other problems that also seem to
be NP-hard. But this problem can be relaxed into a convex problem to find a lower bound on the
optimal value of the objective function [4]. There are two well known relaxation methods, one is
the Semidefinite Programming (SDP) and the other is the Reformulation-Linearization Technique
[7]. The SDP relaxation is realized by using xTPx = Tr(P (xxT )). The optimization problem can
be rewritten as

minimize Tr(XP0) + qT0 x+ s0

subject to Tr(XPi) + qTi x+ si ≤ 0, i = 1, . . . ,m,

X = xxT .

Now by replacing the equality constraint X = xxT with a positive semidefinite constraint X −
xxT � 0 we relax this problem into a convex problem. This constraint can be formulated as a
Schur complement, which gives us

minimize
1

2
Tr(XP0) + qT0 + r0

subject to
1

2
Tr(XPi) + qTi + ri ≤ 0, i = 1, ...,m,[
X x
xT 1

]
� 0

The RLT relaxation of QCQP is based on using all possible products of pairs of linear inequality
constraints, including the bound constraints. Combining these two relaxation techniques in general
gives a better result.

In order to say something about the best density we shall retrieve an upper bound and try to
get it as low as possible. We shall show this on the problem with spheres of radius r1 and r2 with
ratio 1 : 1.

10



3.3 Two Spheres with Ratio 1 : 1 in a unit tile

We reduced the problem to an optimization problem with spheres in a parallelogram. This pa-
rallelogram, that we will call the unit tile, builds up the complete space. Let Λ be a lattice in R2

with minimal basis {(a1, a2), (b1, b2)}. Without loss of generality, because of the Euclidean plane
isometries, we may assume that a2 = 0, a1 > 0, b2 > 0. This gives us the following constraints

−b2 ≤ 0

a2
1 − b21 − b22 ≤ 0

2a1b1 − a2
1 ≤ 0

−a2
1 − 2a1b1 ≤ 0

Furthermore we have two spheres S1 = S(c11,c12),r1 en S2 = S(c21,c22),r2 with r1 and r2 given. So we
can assume that r1 < r2 and also (c11, c12) = (0, 0). We will call the set {λ(a1, a2) + µ(b1, b2)|0 ≤
µ, λ ≤ 1} the unit tile. We want the centers of spheres to be in the unit tile, so we also use that
(c21, c22) ∈ {λ(0, a2) + µ(b1, b2)|0 ≤ µ, λ ≤ 1}. Then the following constraints arise

−c22 ≤ 0

c22 − b2 ≤ 0

b1c22 − b2c21 ≤ 0

b2c21 − b1c22 − a1b2 ≤ 0

Finally we need the constraints that make S + Λ a lattice packing. Because (c11, c12) = (0, 0) we
only need the following constraints

(r1 + r2)2 − c221 − c222 ≤ 0

(r1 + r2)2 − (c21 − a1)2 − c222 ≤ 0

(r1 + r2)2 − (c21 − b1)2 − (c22 − b2)2 ≤ 0

(r1 + r2)2 − (c21 − a1 − b1)2 − (c22 − b2)2 ≤ 0

2r2 − a1 ≤ 0

After using RLT and SDP to solve the problem and expanding the constraints by multiplying
the constraints of degree one with each other, the result of the lower bound of the problem was
0. In 5 the results are given for r1 = r2 = 1 which should give us the hexagonal packing with
a1 = 2, b1 = 0, b2 = 2

√
3, c21 = 1, c22 =

√
3 . The main cause for this result is the relaxation. For

example, a1 = 2.14, b2 = 0.88 but a1b2 = 0. Also because of this relaxation, only a few constraints
influence the variable a1b2. But there are several ways to improve this result.


1 a1 b1 b2 c21 c22

a1 a2
1 a1b1 a1b2 a1c21 a1c22

b1 a1b1 b21 b1b2 b1c21 b1c22

b2 a1b2 b1b2 b22 b2c21 b2c22

c21 a1c21 b1c21 b2c21 c221 c21c22

c22 a1c22 b1c22 b2c22 c21c22 c222

 =


1.00 2.14 0.01 0.88 −0.02 0.41
2.14 5.92 −0.00 0.00 −0.01 0.85
0.01 −0.00 1.93 0.02 −0.07 −0.02
0.88 0.00 0.02 5.73 −0.02 0.26
−0.02 −0.01 −0.07 −0.02 2.48 −0.00
0.41 0.85 −0.02 0.26 −0.00 2.63


(5)

As shown in the results before we have to improve the results. There are two commonly used
methods to do this. One of them is to suitably multiply appropriate constraints by nonnegative
bound-factors, constraints-factors, or simply variables in order to derive a higher-dimensional
lower bounding linear programming relaxation for the original problem. But the size of the
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resulting relaxation increases rapidly. Another option is branch-and-bound to find a globally
optimal solution. This is done by successively partitioning the solution space of the original
problem into smaller and smaller regions. Whenever a region is infeasible or its best-case bound
is worse than some previously obtained worst-case solution, or if the regions subproblem is solved
to optimality, we remove the region from any further consideration. Throughout the process, we
track the best-known solution.[8]

Because most of the constraints were not influencing the result of a1b2 the option of succes-
sively partitioning the space would not give us the optimal solution of the original problem, the
constraints that make sure that the result is a sphere packing would still not influence a1b2. So we
decided to increase our problem to a 4th-degree problem, by multiplying all possible combinations
of constraints to create constraints of 3rd- and 4th-degree. We started with 4 constraints of degree
1 and 9 constraints of degree 2. Combining all these results give us a total of 289 constraints. The
result for the case r1 = r2 = 1 was in this case (a1b2)2 = 12 which gives a density of over 1. So we
indeed managed to get a result closer to the actual optimum, but it is still not good enough. So
we have again two options, we can either increase the degree of the problem to 6 or we can try the
branch and bound. Because of the exponential increase in variables and constraints, increasing
the degree even further would make it impossible for us to calculate the results with the hardware
available. This leaves us to use branch and bound.

First we set bounds on all the variables such that anything outside these bounds will obviously
give a worse solution or no solution at all. The bounds used are given in table 1. The lower-
bound of a1 is given by the constraints and the upper-bound is obtained by placing all spheres
next to each other, such that they form a line. In this case it’s obvious that if a1 would become
larger than this, it will give a worse result. The same arguments hold for b2. The other bounds
come directly from the bounds for a1 and b2 and the given constraints. So we have created a
sub-space of the solution space and to be able to branch and bound, we cut this space in halve
in every dimension, so we will get 25 = 32 smaller regions, in which we are going to optimize
the problem. To get back to our previous example in which r1 = r2 = 1 the results are given
in table 2 for (a1b2)2. We already know a packing that has (a1b2)2 = 48 which means that
most of the results can be disregarded, so we don’t have to further partition those regions. Two
of the regions contain results that imply further partitioning in order to get an optimal result.
After partitioning these two regions the optimal solution was 48.00, so the upper bound for
the density is equal to the density of the packing we already have, which was in this case, the
hexagonal packing of which we already know that its the packing with the highest density. Next
to getting the optimal solution we also get an impression of the values of the variables, in this
case a2

1 = 4.0000, b21 = 0.0000, b22 = 12.0000, c221 = 1.0000, c222 = 3.0000. These results are exactly
the results we would expect for the hexagonal packing.

variable lower bound upper bound
a1 2 2(1 + r)
b1 -(1+r) 1+r

b2
√

3 2(1 + r)
c1 −(1 + r) 3(1 + r)
c2 0 2(1 + r)

Table 1: lower- and upper bounds for the
variables

63.95 47.98 55.71 64.00
63.95 47.98 55.68 55.71
78.18 99.21 104.84 125.34
79.04 99.21 83.60 99.21

Table 2: Results for the first bisection of
r1 = r2 = 1. Half of the regions were infea-
sible.
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Now we want to find upper bounds on density for different values of r2, but to find these values
we should first make some packings to be able to disregard any regions containing worse values.
One way to create packings is to just randomly create one, but it would be more convenient to
have a packing for every value of r2. To start, we take the hexagonal packing and place a small
sphere with radius r2 in the space between the spheres, then slowly letting it increase and pushing
the bigger spheres aside. In (6) the density, δ, is given for two radii, 1 and r, 0 ≤ r ≤ 1 for which
the graph is shown in figure 4.

δ(r) =


(1+r2)π

2
√

3
if 0 ≤ r < 2

√
3

3 − 1
(1+r2)π

2(
√

2r+r2+
4
√

2r+r2−
√

2r+r2(2r2+4r−2)

2(1+2r+r2)
)

if 2
√

3
3 − 1 ≤ r ≤

√
2− 1

(1+r2)π

4
√
r2+2r

if
√

2− 1 < r ≤ 1

(6)

Figure 4: The density δ(r) for 0 ≤ r ≤ 1

Now for every r2 we know a packing with a certain density, which we can use to produce more
results. Because getting results for a certain r2 is somewhat time consuming we only take a look
at 20 different values of r2, in order to get an impression of what

r2 = 0.15 r2 = 0.30 r2 = 0.50

Figure 5: sphere packings with optimal density
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3.4 Results

The results of the RLT and DSP of the problem are upper bounds for the densities. Table 3 show
the results for certain values of r. To be sure these are the optimal solutions of our problem, for
each of the results we need to find a sphere packing that obtains this result. For some r these
results are given in figure 5.

r density r density
0.05 0.9092 0.55 0.8638
0.10 0.9160 0.60 0.8552
0.15 0.9273 0.65 0.8513
0.20 0.8866 0.70 0.8512
0.25 0.8693 0.75 0.8545
0.30 0.8709 0.80 0.8606
0.35 0.8858 0.85 0.8692
0.40 0.9113 0.90 0.8799
0.45 0.8995 0.95 0.8926
0.50 0.8781 1.00 0.9069

Table 3: upper bounds for the density of discs with radii 1 and r of ratio 1:1 in a unit cell

In figure 6(a) the upper bounds of the densities are shown and in figure 6 also the density δ(r2)
of known packings are shown. This graph gives the impression that these packings are actually
the best packings for the problem.

(a) Upper bounds of the density for different values of
r2

(b) Upper bounds and the density of known packings

Figure 6: Upper bounds for the highest density packings
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4 Conclusion

The results found are still not the highest density possible for sphere packings with two spheres
with ratio 1:1. Because these are the results of two spheres in a unit cell, but if the number of
spheres in a unit sphere would be increased, the number of possible lattice packings increases, so
a higher density might be obtained. An example is shown in figure 7, the density can be greatly
improved by increasing the number of spheres in a unit cell, in this case this is the highest possible
density for a sphere packing with radii 1 and 0.637556 [9]. So in order to get an answer to the
problem ”What are the highest density binary lattice packings in 2-dimensions with ratio 1:1” all
possible numbers of spheres in a unit cell should be solved.

Density of 0.8518 Density of 0.9107

Figure 7: Density of different number of spheres with radii 1 and 0.637559 in the unit cell
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