
 Eindhoven University of Technology

BACHELOR

Minimizing the number of keys for secure communication in a network with colluders

Duif, N.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f0294bed-24e3-4154-9983-1e4d72f458b6

Minimizing the number of keys for secure
communication in a network with colluders

Author: Niels Duif
Supervisor: Prof. dr. ir. Henk van Tilborg

Technische Universiteit Eindhoven

November 2, 2009

Student number: 0554878
Subject code: 2J008

2

Abstract

To allow participants in a network to communicate securely, symmetric cryptography may
be used. But it is inefficient to assign a unique key to each pair of participants. Under the
assumption that some of the participants may be trusted, secure communication is possible
using fewer keys. It is assumed that at most t participants collaborate to retrieve messages

that are sent through the network. Desmedt et al. show how to minimize the number of
keys per participant under this assumption [1]. However, in some applications the total
number of keys in the network is a more important parameter. This paper focuses on

minimizing the total number of keys, while secure communication is maintained.

This paper presents an optimal construction for the case where there is at most 1 corrupt
participant, that is t = 1. It also presents constructions for t > 1 based on block designs.
The best constructions achieve a total number of keys of O(t ·

√
n) for n participants, but

only for specific values of n. Therefore, a way of combining constructions is presented. In
this way constructions for any number of participants n may be obtained. It is conjectured

that in this way the total number of keys is at most O(t2 ·
√
n).

2

Contents

1 Introduction 3
1.1 Definitions . 4
1.2 Example of a safe communication network . 4
1.3 Constructions using Harary graphs . 5
1.4 Improvement on existing constructions . 7

2 Constructions for t=1 9
2.1 Lower bound . 9
2.2 An optimal construction for t=1 . 10

3 Constructions for t>1 13
3.1 Lower bound . 13
3.2 Constructions using a 2-(v,t+1,1) design . 15
3.3 Complexity . 19

4 Constructions for general n 21
4.1 Combining constructions . 21
4.2 Combining blocks for t = 1 . 23
4.3 Combining blocks for t > 1 . 25
4.4 t proportional to n . 28

5 Conclusion and discussion 29

1

2

Chapter 1

Introduction

This paper deals with secure communication in a network. An example is a computer network
in which two of the participants want to send each other messages in such a way that no other
participant may reconstruct them. Participants will be called the nodes of the network N ,
and are denoted by N1, N2, . . . , Nn. So there are n participants in total. It is assumed that
the network is connected, so that every pair of nodes can communicate directly or indirectly.
A way to facilitate secure communication is to give each pair of nodes {Ni, Nj} a unique key
kij . This key is used for symmetric cryptography. Node Ni can then encrypt his message
M with the key kij and send it to Nj who decrypts it. No other node can reconstruct the
message, provided that the encryption method is secure. From now on, it is assumed that an
encryption method without any known weaknesses is used.

However, the described method is not very efficient. In a network with n nodes the con-
struction described above requires

(
n
2

)
= n(n−1)

2 keys in total. This report describes methods
that use fewer keys, but still allow safe communication. For this it is assumed that at least
some of the nodes are not trying to intercept and decrypt messages that are not intended
for them. In particular, at most t nodes are expected to be corrupted and possibly working
together. It is shown that with this assumption significantly fewer keys are needed.

This chapter introduces the notation for a message, a network, nodes, colluders, a key space,
key sets, and keys. Section 1.2 gives an example of safe communication in a network with
4 nodes of which at most 1 is corrupted. Section 1.4 introduces Harary graphs, which were
used by Desmedt, Van Tilborg, and Wang for secure communication [1]. It also shows an
improvement on a construction that uses such a Harary graph.

Chapter 2 gives an optimal construction for the case in which there is only one colluder,
t = 1.

Chapter 3 gives constructions for more than 1 colluder, t > 1. Section 3.1 derives a
theoretical lower bound on the total number of keys, which is not met by the constructions
described in Section 3.2. Section 3.2 does not give constructions for all values of n, but
Chapter 4 shows how multiple constructions may be combined to obtain constructions for
any number of nodes, n. The constructions presented in 3.2 were also published in [4].

Chapter 5 gives the conclusions of this paper, and some recommendations for future
research.

3

1.1 Definitions

The network N is connected and consists of n nodes. This means that n people can commu-
nicate with each other. It is assumed that the protocol of the network is such that any person
in the network may intercept all data that are transmitted. So the physical topology of the
network is not important. Many local area networks use such a protocol. This means the
sent data must be encrypted to allow private communication. The number of colluders in the
network is assumed to be no greater than t. In other words, at most t nodes are corrupted.
So at most t nodes work together in eavesdropping on some or all communication. All nodes,
including colluders, are expected to obey to the protocol.

The nodes will be labelled 1 to n and called N1, N2, . . . , Nn. Sometimes they are indicated
by capital letters starting from A instead. Each node Ni has a set of keys Ki. A key set
contains keys from the key space K. The key space has a total number of c keys that are
labelled k1, k2, . . . , kc. This means that each Ki is a subset of K. Sometimes the keys will
just be denoted by their numbers. The colluders will be called E1, E2, . . . , Et. The number of
colluders is always assumed to be t. If safe communication is possible in a network prone to
t colluders, safe communication is also possible in the presence of fewer colluders. A network
that allows safe communication in the presence of t colluders is called t-safe. The message to
be sent will be called M .

Definition 1.1.1. A key assignment that is safe in the presence of at most t colluders is
called t-safe.

This means that a t-safe key assignment is also (t− 1)-safe.
To avoid degenerate cases it is assumed that every key is shared between at least two nodes.
This is a reasonable assumption, because a key that is not shared between at least two nodes
can only be used for encryption and decryption by a single node. Such a key is useless for
communicative purposes.

1.2 Example of a safe communication network

The network in Figure 1.1 has n = 4 nodes. The key space K = {1, 2, 3, 4} has 4 keys. At
each node Ni the key set Ki is given. For example, node N1 has keys k1 and k2, which means
K1 = {1, 2}. All nodes that share one or more keys are connected by a line. The label beside
the line shows the common keys.
If N1 wants to send a message to N2, he simply uses their common key k2. Since N3 and N4

do not know k2 they cannot decrypt this communication.
If N1 wants to send a message to N3 the sender and receiver have no key in common. N1

can send his message M to N2 using key k2. N2 can then send it to N3 using k3. But this
communication is not safe since N2 can eavesdrop. So N1 decides to split up his message as
follows: M = M1

⊕
M2. Here ”

⊕
” denotes bitwise addition modulo 2, which is also known

as the XOR-function. M1 is chosen at random and M2 is computed by M2 = M
⊕
M1.

Indeed M1
⊕
M2 = M1

⊕
M
⊕
M1 = M . M1 is sent through N2 to N3 using keys k2 and

k3. M2 is sent through N4 using k1 and k4. Now N2 can only determine M1 since he does
not have k1 or k4. Similarly N4 can only determine M2. M1 and M2 give no information
about the original message M . So to eavesdrop on this conversation N2 and N4 must work
together. This means that the network allows safe communication in the presence of at most
1 colluder, so t = 1.

4

Figure 1.1: In this network each node has two keys that are given next to the node. Nodes
are connected if they share one or more keys. The common keys are displayed next to the
connections. Safe communication is possible in the presence of at most t = 1 colluder.

The idea of splitting up a message M as the XOR of random shares, plays a crucial role
in this paper. In such a splitting all shares but one are determined at random. The last share
is such that the XOR of all shares is indeed M .

Construction 1.2.1. A message M can be split up into s shares by using the XOR function.
The XOR function is bitwise addition modulo 2, and is denoted by ”

⊕
”. The splitting of a

message into s shares is performed as follows. s−1 shares, M1,M2, . . . ,Ms−1 are determined
at random. The share Ms is computed as Ms = M

⊕
M1
⊕
M2
⊕
· · ·
⊕
Ms−1. Then the

XOR of all shares M1,M2, . . . ,MS is indeed M , because Mi
⊕
Mi = 0 holds for any bit

string. Furthermore, any set S of at most s − 1 shares gives no information on M . This is
because the XOR of M with all elements of S is the XOR of s− |S| random bit strings. This
means that, given S, all possible bit strings for M have equal probability.

1.3 Constructions using Harary graphs

An existing construction that enables safe communication in a network with n nodes and
at most t colluders, uses Harary graphs [4]. A Harary graph is defined on n nodes, having
connectivity h. The connectivity is not important in this paper, so it is not discussed.

The example in Figure 1.2 shows Harary graphs for n = 11, h = 5, n = 12, h = 5, and
n = 12, h = 6. [4] gives the following definition of a Harary graph.

Definition 1.3.1. The Harary graph Hn,h, n ≥ h + 1, is the graph on n vertices, numbered
0, 1, . . . , n− 1, with calculations modulo n, where vertices i and j, j 6= i, are connected if and

5

0

1

23

4

5

6

7

8 9

10

11

(a) n = 12, h = 6

0

1

23

4

5

6

7

8 9

10

11

(b) n = 12, h = 5

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

10

0

1

2
3

4

5

6

7

8
9

(c) n = 11, h = 5

Figure 1.2: The three different types of Harary graphs. In Figure (a) h is even, in Figure (b)
n is even and h is odd, and in Figure (c) n and h are both odd. All connected nodes share a
unique common key.

only if

|j − i|n ≤ l if h = 2l, (1.1)
|j − i|n ≤ l or |j − i|n = m if h = 2l + 1 and n = 2m, (1.2)

|j − i|n ≤ l or j = i+m+ 1, i ∈ {0, 1, . . . ,m} if h = 2l + 1 and n = 2m+ 1, (1.3)

where |j − 1|n is the shortest distance between i and j along the modular circle.

The nodes in a Harary graph are arranged in a circular pattern. The graph is transformed
into a key assignment scheme by assigning a unique key to every edge of the graph. So every
edge represents a key that is only shared by the two vertices it connects. A key with this
property will be called ’uniquely shared’. [4] shows that a key assignment that uses a Harary
graph with connectivity h, is (h − 1)-safe, so h = t + 1. The communication is secured by
splitting the message M into t+ 1 shares that are sent over t+ 1 vertex disjoint paths. The
splitting is done by Construction 1.2.1. In a Harary graph Hn,h it is always possible to find h
different vertex disjoint pahts. A proof of this claim can be found in [4]. Here only an example
is given. In Figure 1.2(b) the following 5 paths between node 0 and node 5 are vertex disjoint:
0 → 2 → 4 → 5, 0 → 1 → 3 → 5, 0 → 10 → 8 → 7 → 5, 0 → 11 → 5, and 0 → 6 → 5.
This means that an adversary of t = 4 nodes is not sufficient to determine all shares of the
message M , unless it contains node 0 or node 5.

If t + 1 is even, each node gets t + 1 keys, which are shared with the nearest nodes as
measured along the modular circle. In the other two cases, shown in Figure 1.2(b) and 1.2(c),
the ’diagonals’ or ’skew diagonals’ are added to connect the antipodal nodes. Note that if n
and t + 1 are both odd, as in Figure 1.2(c), node 0 gets t + 2 keys instead of t + 1. In all
other cases, each node gets t + 1 keys, so a total number of c = (t+1)·n

2 keys is needed. This
means that in general these constructions use at most c = d (t+1)·n

2 e keys. If n and t + 1 are
both odd, sometimes one fewer key is needed, as is shown in [4].

6

1.4 Improvement on existing constructions

In most cases a construction that uses a Harary graph minimizes the number of keys per
node. However, constructions exist that use a smaller total number of keys than Harary
graphs. The example in Figure 1.3 shows a Harary graph for n = 5 and t = 2. It is drawn
in a different way from the examples in Figure 1.2 to prevent crossing lines. It is easy to see
that the graph is 2-safe, since between any two nodes there are at least three vertex-disjoint
paths. Surprisingly, if key 8 is replaced by key 6 the graph still is 2-safe. To prove this,
it is sufficient to show that safe communication is possible from B to E and from B to D.
All other communication routes remain unchanged or are isomorphic to one of these cases.
Communication from B to E: since B and E do not share a unique key anymore, B uses the
routes B 6→ E, B 2→ C 7→ E, and B 1→ A 5→ E. Now D can determine M1, which was sent
from B to E using k6. But he cannot determine M2 or M3 since none of his keys is used
for their encryption. If D is a collaborator the communication cannot be intercepted because
M2 and M3 are sent using vertex-disjoint paths and uniquely shared keys. If D is not a
collaborator, the case is similar to the original Harary graph. Communication from B to D:
this communication uses the same routes as in the original case: B 1→ A 4→ D, B 6→ E 6→ D,
and B 2→ C 3→ D. The only part of the route that could be unsafe is B 6→ E 6→ D, because
the rest is similar to the original Harary Graph. The only node that knows k6 besides B and
D is E. E gets to know the message encrypted by k6 in the original Haray graph too, so the
security is not compromised.

Figure 1.3: The Harary Graph for n = 5 and t = 2 is 2-safe. If the key k8 that is shared
between D and E is replaced by key k6 the graph is still 2-safe.

7

8

Chapter 2

Constructions for t=1

In this chapter it is assumed that t=1. This means that there is one corrupted node
in the network. It is assumed that n > 2. A message M is split into s pieces: M =
M1
⊕
M2
⊕
· · ·
⊕
Ms. To allow communication the receiver must be able to deccrypt all s

pieces. On the other hand a colluder must not be able to intercept all parts Mi of the message
M . So a necessary condition is:

Lemma 2.0.1. One node cannot possess all keys of another node:

∀i 6=jKi 6⊆ Kj . (2.1)

Proof. Assume Ki ⊆ Kj for some i 6= j. Then Nj possesses all key of Ni. This means that Nj

can eavesdrop on all communication from Ni. This is not allowed unless t = 0 or n ≤ 2.

2.1 Lower bound

To obtain a lower bound for the total number of keys c, it is assumed that each node Ni is
assigned the same number of keys. So |Ki| = k ∀ i. It will be shown that this is an optimal
choice. By Lemma 2.0.1 no two nodes can have the same key set. If the total number of keys
is c, this means that the number of nodes cannot exceed

(
c
k

)
. So the maximum number of

nodes n given a total number of keys c equals

n = max
k

(
c

k

)
=
(
c

b c2c

)
. (2.2)

This equality follows from the following theorem.

Theorem 2.1.1. The maximum cardinality of a collection of subsets of a t-element set T ,
none of which contains another, is the binomial coefficient

(
t
b t
2
c
)
.

This theorem was proved by Emanuel Sperner [2] in 1928. The theorem is sometimes referred
to as Sperner’s Lemma, but that name also refers to another result by Sperner on graph
colouring. Theorem 2.1.1 also shows that the choice |Ki| = k ∀ i, is indeed optimal.

9

2.2 An optimal construction for t=1

This section shows the existence of networks that meet Equation (2.2) with equality. To
achieve this, consider the key space K of size |K| = c. In this key space all subsets of size
b c2c are taken and distributed among n =

(
c
b c
2
c
)

nodes. This key assignment meets Equation
(2.2) with equality.

First, an example is given that uses such a key assignment scheme. Then it is proved that
such a key assignment can be used for secure communication in the presence of t = 1 colluder.
Table 2.1 shows a key assignment scheme with c = 4 keys. The n =

(
4
b 4
2
c
)

= 6 nodes possess
all 6 different 2-sets of the key space.

key
node 1 2 3 4
A x x
B x x
C x x
D x x
E x x
F x x

Table 2.1: This key assignment scheme uses all different 2-sets from a key space with 4 keys.

Suppose that in the case of Table 2.1 node A wants to send a message M to node F. Node A
first splits up his message M = M1

⊕
M2
⊕
M3
⊕
M4. He then determines all combinations

of A’s keys and F’s keys. These are {1,3}, {1,4}, {2,3}, and {2,4}. M1 is sent using the first
combination of keys: {1,3}. A encrypts M1 with his key k1 and sents it to the node that
knows the combination {1,3}. If c ≥ 4 such a node always exists. In this case it is node B.
Node B decrypts M1 and sends it on to F encrypted by key k3. The messages M2, M3, and
M4 are sent using the other key combinations, so they are sent through node C, D, and E
respectively.

Theorem 2.2.1. The communication graph on
(
c
b c
2
c
)

points with all possible b c2c-size key sets
is safe in the presence of 1 colluder if c ≥ 4.

Proof. The following construction will be proved safe in the presence of 1 colluder. Suppose
node A want to send a message M to node B. Let d be the number of keys that A and B
have in common. A splits the message M into two parts: M = MD

⊕
MI . MD is sent

directly to B. It is encrypted by all common keys k1, k2, . . . , kd. If the cryptographic protocol
does not support encryption by multiple keys then MD is split into d shares that are sent
separately, encrypted by k1, k2, . . . , kd respectively. This means that a colluder needs the keys
k1, k2, . . . , kd to determine MD.
A and B both have b c2c − d keys none of which are common keys. They are labelled
kAd+1

, kAd+2
, . . . , kAb c

2 c
, and kBd+1

, kBd+2
, . . . , kBb c

2 c
respectively. Now MI is split up into

(b c2c − d)2 shares: MI = Md+1,d+1
⊕
Md+1,d+2

⊕
· · ·
⊕
Mb c

2
c,b c

2
c. Now Md+1,d+1 is sent en-

crypted with kAd+1
to a node that possesses both kAd+1

and kBd+1
. This node exists because

c ≥ 4 and the key assignment uses all possible b c2c-size key sets. That node decrypts Md+1,d+1,
encrypts it with kBd+1

and sends it on to B. All other shares of MI are sent in the same way,

10

using all combinations of the keys that A and B do not have in common.
To determine MI a colluder needs all shares Md+1,d+1,Md+1,d+2, . . . ,Mb c

2
c,b c

2
c. To determine

the set of shares Md+1,d+1,Md+1,d+2, . . . ,Md+1,b c
2
c, a colluder either needs kAd+1

or the keys
kBd+1

, kBd+2
, . . . , kBb c

2 c
. The latter cannot occur, since the colluder then knows all of B’s keys

which contradicts Lemma 2.0.1. So the colluder knows kAd+1
. By the same reasoning on the

shares Md+2,d+1,Md+2,d+2, . . . ,Md+2,b c
2
c, the colluder needs to know kAd+2

. This reasoning
is continued to conclude that the colluder knows all of kAd+1

, kAd+2
, . . . , kAb c

2 c
. But then he

knows all of A’s keys, which contradicts Lemma 2.0.1. So one colluder cannot determine
M = MD

⊕
MI . So the communication graph on

(
c
b c
2
c
)

points with all possible b c2c-size key
sets is safe in the presence of 1 colluder if c ≥ 4.

The total number of keys needed for the described key assignment turns out to be very small.
Using Stirling’s approximation and some rounding for odd c, the following result is found for
the total number of keys c:

n =
(
c

b c2c

)
=

c!
(b c2c)!2

≈
√

2πc
(
c
e

)c
2π c2

(
c
2e

)c =

√
2
π
· 2c

c ≈ log2(n) + log2

(√
π

2

)
(2.3)

Unfortunately such a key assignment does not exist for any number of nodes n. Table 2.2
shows all n < 1000 for which such a key assignment exists and it lists the corresponding total
number of keys c.

Number of nodes, n 3 6 10 20 35 70 126 252 462 924
Total number of keys, c 3 4 5 6 7 8 9 10 11 12

Table 2.2: For these numbers of nodes n < 1000 an optimal key assignment exists for t=1.
This table also lists the number of keys c required for such an assignment.

Chapter 4 shows how multiple block designs may be combined to get a key assignment scheme
for any desired number of nodes.

The number of communication routes that is used, may become rather large. For com-
munication between two nodes that share p keys the number of communication routes equals
(b c2c − p)

2. So the number of routes is at most (b c2c)
2. For comparison: when each pair of

nodes {Ni, Nj} is given a unique key kij the number of communication routes is 1.

11

12

Chapter 3

Constructions for t>1

In this chapter it is assumed that t > 1. This means there are at least two colluders. When
t > 1 a construction using O(log(n)) keys is no longer possible. This chapter shows that at
least O(t · log(n)) keys are needed. It gives constructions that use O (t ·

√
n) keys.

In this chapter constructions for t > 1 are studied. To judge the asymptotic behaviour of a
construction, the total number of nodes, n, is considered to be the most important parameter.
In the next sections the number of colluders, t, is assumed constant, while the asymptotic
behaviour of the total number of keys, c, is studied for increasing n. In Section 3.1 it is
assumed that n� t2 This means that the derived bound may only be good for very large n.
However, it is shown that the predicted asymptotic behaviour of c already occurs for small
values of n, that is as soon as n > t.

3.1 Lower bound

This section derives a lower bound for the total number of keys, c, that are needed. This
number is derived for a t-safe non-degenerate key assignment, where t is constant. That the
key assignment is non-degenerate means that every key is shared between at least two nodes.
To derive a lower bound for the total number of keys needed, a simple counting argument is
used. From the n nodes, at most t are corrupted. This means that any set of a ≤ t nodes
may be an adversary. Lemma 3.1.1 shows that all possible adversaries must have different
key sets.

Lemma 3.1.1. All sets of at most t nodes must have different key sets.

Proof. Assume two sets of nodes, A1 and A2, have the same key set, and that both sets are
of size at most t. Also assume that A1 6= A2. Then at least one of these sets, say A1, contains
a node N1 that is not contained in A2. Because the key sets are the same, A2 can eavesdrop
on all communication of A1. But then A2 can also eavesdrop on N1, which contradicts the
assumption that the key assignment is t-safe.

There are
(
n
a

)
possible adversaries of size a, and all of them have a different key set. Summing

over all adversaries of size at most t, this gives the following bound:

2c ≥
t∑

a=0

(
n

a

)
. (3.1)

13

The expression on the left is the total number of possible key sets. With the assumption
n � t the right hand side may be approximated as follows. For this approximation the
binary entropy function is needed. This function is commonly used in information theory,
and denoted by H.

H(x) := −x log2 x− (1− x) log2 (1− x), 0 < x ≤ 1
2

(3.2)

[7] gives the following estimate for the right hand side of Equation (3.1), which converges to
an equality for large n:

∑
0≤a≤λn

(
n

a

)
≈ 2nH(λ). (3.3)

With λ = t
n , Equation (3.3) gives the following estimate for Equation (3.1):

2c ' 2nH(λ)

c ' n

(
− t
n

log2

t

n
−
(

1− t

n

)
log2

(
1− t

n

))
= t (log2 n− log2 t) + (n− t)

(
log2

(
1− t

n

))
≈ t (log2 n− log2 t) + (n− t) ·

(
t

n ln(2)
+ o

(
t2

n2

))
= t log2(n) + o(t log(t)). (3.4)

The third line uses the Taylor series of log2(1− t
n), and the assumption n� t2.

Even when n is not much larger than t, the number of keys c still increases approximately
logarithmically in n and linearly in t. Figure 3.1 shows c as a function of n for different values
of t. These values are found by determining the minimum values of c from Equation (3.1).

Figure 3.1: The minimum number of keys needed as a function of the number of nodes in a
network. This lower bound is calculated with Equation (3.1).

14

Figure 3.2: The affine plane over F3.

In Figure 3.1 the approximation for t = 5 uses c ≈ t (log2 n− log2 t) + t(n−t)
n ln(2) from Equation

(3.4).

3.2 Constructions using a 2-(v,t+1,1) design

In this section constructions are presented that use a 2 − (v, t + 1, 1) design. An example
of such a design is the affine plane over F3, which is a 2-(9,3,1) design. This means it has
9 elements that are divided into subsets of 3 elements such that any 2 elements belong to
a unique common subset. Figure 3.2 shows the affine plane over F3. The elements are the
vertices, which are labelled 1 to 9. The subsets of 3 elements are the lines, which contain
three points each. Some lines are curved but they always contain three points. For example,
the curve through the points 4, 2, and 9 is also a line. As stated, any two points are connected
by a unique line.
Many similar designs exist. These designs are called balanced incomplete block designs.
Since only 2-designs are important for this paper, the definition of a 2-design is given. The
full notation for such a design is a (v,b,r,k,λ) 2-design, which is denoted by B.

Definition 3.2.1. A (v,b,r,k,λ) 2-design is defined on a set X of v elements called points.
The 2-design B is a collection of b subsets of X called blocks such that every block contains
k points, every point is contained in exactly r blocks, and the number of blocks that contain
two given points x and y is always equal to λ. Since b and r are determined by the other
parameters this is also called a 2-(v,k,λ) design.

The blocks in Definition 3.2.1 will be called lines from now on. In this chapter a 2−(v, t+1, 1)
design will be used. This means there are v points divided into t + 1 subsets such that any
two points are contained in a unique line. These designs only exist [3] when

15

Figure 3.3: In a 2− (v, t+ 1, 1) design the lines represent the nodes, and the points represent
the keys. In this example the affine plane over F3 is used, which is a 2− (9, 3, 1) design. The
nodes (lines) are labelled A to L, and the keys (points) are labelled 1 to 9.

v =
{

1
t+ 1

(mod t(t+ 1)). (3.5)

This is a necessary condition and not a sufficient condition. However when t ≤ 10 few
parameters v and t that satisfy (3.5) are known for which such a design does not exist [3].
When t is prime a 2− (t2 + t+ 1, t+ 1, 1) design always exists. This is the projective plane of
dimension 2 over Ft. For now, n and t are supposed to be such that a 2− (v, t+ 1, 1) design
exists.

Now a construction is given that uses these designs. Consider the affine plane over F3

in Figure 3.3. The lines in this figure represent the nodes of the communication graph and
the points represent the keys. Note that in the communication graphs in Chapter 1 nodes
are represented by points and keys by lines! A point in Figure 3.3 represents a key that is
shared by all lines through that point. For example, key k6 is shared by node C, G, J, and L.
And, for example, node B possesses keys k1,k5, and k9. Every line passes through 3 points,
so every node possesses t+ 1 = 3 keys.
Figure 3.3 can also be represented as a communication graph. Every point in Figure 3.3
represents a key. In a communication graph a key is represented by a line. Conversely, every
line in Figure 3.3 represents a node. In a communication graph a node represented by a point.
So the communication graph is obtained by replacing points with lines and replacing lines
with points. The resulting structure is called the dual of the original structure.

The dual of Figure 3.3 that is obtained by interchanging lines and points, is given in

16

Figure 3.4: The dual of the affine plane over F3 can be used as a communication graph.

Figure 3.4. In Figure 3.4 the points represent the nodes and the lines represent the keys, as
is usual in a communication graph.
To prove that the dual of a 2-(v, t + 1, 1) design is indeed a t-safe communication graph an
important property of this dual is needed.

Lemma 3.2.2. In the dual of a 2-(v, t + 1, 1) design every two lines intersect in a unique
point.

Proof. In a 2-design every two points are connected by a unique line. This means that in the
dual every two lines intersect in a unique point.

One more property of the dual of a 2-(v, t+ 1, 1) design is needed.

Lemma 3.2.3. In the communication graph that is the dual of a 2-(v, t+ 1, 1) design, a set
of t nodes cannot possess all keys of a node, A, unless that set contains node A.

Proof. Assume the set of nodes N1, N2, . . . , Nt does not contain node A. Then each of
N1, N2, . . . , Nt possesses at most one key that A also possesses; suppose Ni possesses k1

and k2 which are also possessed by A. By Lemma 3.2.2 Ni must be the same node as A.
This contradicts the assumption that A is not in the set N1, N2, . . . , Nt. So indeed each of
N1, N2, . . . , Nt possesses at most one key that A also possesses. That means that the set
N1, N2, . . . , Nt possesses at most t keys that A also possesses. A possesses t+ 1 keys so these
are not all of A’s keys. So a set of t nodes cannot possess all keys of node A.

Now the main theorem of this section can be proved.

17

Theorem 3.2.4. The dual of a 2-(v, t+ 1, 1) design is a t-safe communication graph.

Proof. To prove this statement, suppose that A and B are nodes in the communication graph.
It is shown that safe communication is possible from A to B in the presence of at most t col-
luders. The proof splits into two cases.

Case 1: A and B have one or more keys in common
In this case A and B share exactly one key: suppose A and B have two keys in common, k1

and k2. By Lemma 3.2.2 A and B must be the same node. This contradicts the assumption
that A and B are communicating nodes.

The unique key shared between A and B is k1. This key is needed to eavesdrop on the
communication. This requires one node E in the adversary. Now node E cannot possess
another key of A or B: suppose w.l.o.g. that E possesses another of A’s keys, k2. Then E
possesses k1 and k2. By Lemma 3.2.2 the point that possesses k1 and k2 is unique. So this
point must be node A. This contradicts the assumption that E is in the adversary.

Now k1 and node E can be deleted because E does not possess any other relevant keys.
In the remaining construction A and B both have t keys and it must be shown that this
construction is (t− 1)-safe. This is similar to the proof of case 2 below.

Case 2: A and B have no common keys
Then A has keys kA1 , kA2 , ..., kAt+1 and B has keys kB1 , kB2 , ..., kBt+1 . A splits up the message
M into (t + 1)2 shares, M = M1,1

⊕
M1,2

⊕
· · ·
⊕
Mt+1,t+1. For the protection of M1,1 the

keys kA1 and KB1 will be used. By Lemma 3.2.2 there is a unique node N1,1 that possesses
both of these keys, and since A and B have no common keys this node is not A or B. A sends
M1,1 to N1,1 encrypted with kA1 . N1,1 decrypts it and sends it to B encrypted with kB1 .
B can then decrypt M1,1. All other shares Mi,j are sent in the same way. A sends Mi,j to
Ni,j encrypted with kAi , where Ni,j is the unique node that possesses both kAi and kBj . Ni,j

decrypts Mi,j with kAi , encrypts it with kBj , and sends it to B. B then decrypts it with kBj .
It is obvious that B can reconstruct the original message M = M1,1

⊕
M1,2

⊕
· · ·
⊕
Mt+1,t+1.

An adversary needs all shares M1,1,M1,2, . . . ,Mt+1,t+1 to determine M .

The only thing that remains to be shown, is that an adversary of size t or less cannot deter-
mine all shares M1,1,M1,2, . . . ,Mt+1,t+1.

To see this, consider the set of shares M1,1,M1,2, . . . ,M1,t+1. All of these shares are first
encrypted by kA1 . Then they are sent on using all different keys kB1 , kB2 , . . . , kBt+1 . That
means that to determine the shares M1,1,M1,2, . . . ,M1,t+1, an adversary either needs kA1 or
the set of keys kB1 , kB2 , . . . , kBt+1 . The latter cannot happen by Lemma 3.2.3. So the adver-
sary possesses kA1 . The same observation on the set of shares M2,1,M2,2, . . . ,M2,t+1 implies
that the adversary must possess kA2 . This argument is continued to conclude that the adver-
sary must possess all of kA1 , kA2 , . . . , kAt+1 to determine the shares M1,1,M1,2, . . . ,Mt+1,t+1.
These are all of A’s keys, which cannot happen by Lemma 3.2.3. So an adversary of size t or
less cannot determine all shares M1,1,M1,2, . . . ,Mt+1,t+1.

18

3.3 Complexity

The number of keys needed in a 2−(v, t+1, 1) design can easily be computed. The parameters
2 and 1 in this design are more generally denoted as t and λ respectively. To avoid confusion
the parameter t will not be used in this context and always represent the number of colluders.
Instead of n the letter b is commonly used and instead of t + 1 the letter k is used. This
means the design used is a 2-design with b = n, k = t + 1 and λ = 1. Basic block design
theory states that

bk = vr, (3.6)

and

λ(v − 1) = r(k − 1). (3.7)

Here v is the total number of keys and r is the number of nodes that possesses a particular
key, which is independent of which key is chosen. These equations can be rewritten with
λ = 1 as

v(v − 1) = nt(t+ 1), (3.8)
v ≈ t

√
n, (3.9)

where b = n and k = t + 1. This means that a block design uses a total of O(t
√
n) keys.

This is an improvement to using Harary graphs, which use O(t · n). A disadvantage of using
block designs is that the number of communication routes is O(t2), while it is O(t) for Harary
graphs. Table 3.1 lists all values of n < 80 for which a 2 − (n, t + 1, 1) design exists. It lists
the number of keys cb used in such a block design and it also lists the number of keys cH
that is needed when a Harary graph is used. The last line shows the maximum number of
colluders t that still allows for safe communication.

n 7 12 26 35 57 70 13 20 50 63 21 30 31 56 57 72 73
cb 7 9 13 15 19 21 13 16 25 28 21 25 31 49 57 64 73
cH 11 18 39 53 86 105 26 40 100 126 54 75 93 196 228 288 330
t 2 2 2 2 2 2 3 3 3 3 4 4 5 6 7 7 8

Table 3.1: Values of n < 80 for which a key assignment that uses a 2 − (n, t + 1, 1) block
design exists for t > 1. n is the number of nodes, cb is the total number of keys in the block
design, cH is the total number of keys in a Harary graph, and t is the maximum number of
colluders that still allows for safe communication.

Block designs cannot approximate the lower bound found in Equation (3.4), which is O(t ·
log(n)).

19

20

Chapter 4

Constructions for general n

This chapter addresses the problem of finding efficient constructions for general n. To obtain
an efficient construction, existing key assignments will be combined to form a larger con-
struction. Section 4.1 shows how existing constructions may be combined to form a larger
construction. It also proves that the combined construction is still t-safe. Section 4.2 es-
timates the total number of keys, c, needed in such a combined construction when t = 1.
Section 4.3 estimates the total number of keys, c, needed in such a combined construction
when t > 1.

4.1 Combining constructions

Suppose the constructions B1 and B2 are both t-safe key assignments. Then they can be
combined using t + 1 extra keys. For example, in Figure 4.1 the blocks B1 and B2 are both
2-safe. B1 has seven nodes. It also has seven keys that are labelled 1 to 7. B2 is the same
construction as B1. Here the seven keys are labelled 8 to 14. The constructions B1 and B2

are connected using t+ 1 = 3 new keys, labelled 15, 16, and 17. These new keys are labelled
in italic.
As an example, it is shown how N1 and N2 can safely communicate. After this example it
will be shown that such a construction is t-safe in general.
Suppose that N1 wants to send a message M to N2. First he splits up the message M into 3
shares: M = MA

⊕
MB

⊕
MC . It is shown how the share MA is safely transmitted to N2.

The other shares are transmitted in a similar way.
MA is sent from N1 to A1 using the standard 2-safe protocol in B1. This means that MA is
split up into 5 shares: MA = MA1

⊕
MA5,2

⊕
MA5,3

⊕
MA6,2

⊕
MA6,3 . MA1 is sent to A1

directly with the common key 1. MA5,2 is sent to A1 through the node labelled with (2,5,7),
using keys 5 and 2. The other three shares are sent in a similar way. A1 can then recover
MA, while an adversary of size at most 2 cannot recover MA. Next, MA is sent from A1 to
A2 using the new key 15. Finally MA is sent from A2 to N2 using the 2-safe protocol in B2.
This means that MA is again split up into 5 shares, so that the transmission of MA from A2

to N2 is 2-safe. Now the only nodes that know MA are N1, A1, A2, and N2. To ensure that
the communication from N1 to N2 is 2-safe, the share MB is sent through B1 and B2, and
the share MC is sent through C1 and C2. It will now be proved that such a construction is
t-safe, even when multiple blocks are connected.

21

Figure 4.1: The constructions B1 and B2 are both 2-safe. They are connected with t+ 1 = 3
new keys that are labelled in italic. This results in a bigger construction that is still 2-safe as
is proved in the text.

Construction 4.1.1. Let B1,B2, . . . ,Bm all be t-safe key assignments that use different key
sets, with |Bi| ≥ t+ 1 ∀i. Pick t+ 1 nodes in each block, labelled N1,1, N1,2, . . . , Nm,t, Nm,t+1.
Assign a new key knew,j to the j-th node of each block. So ∀i ∈ {1, . . . ,m} ∀j ∈ {1, . . . , t+ 1}
the node Ni,j gets key knew,j.

Theorem 4.1.2. The resulting key assignment from Construction 4.1.1 is t-safe.

Proof. Suppose node A wants to send a message M to node B.

Case 1: A and B are in the same block Bi
A uses the standard protocol in Bi to send the message M to B. This protocol uses no new
keys. That means that none of the nodes in the other blocks, Bl 6=i, knows any of the keys
used in this protocol. Because Bi is t-safe this communication is also t-safe.

Case 2: A is in block Bi and B is in block Bl where i 6= l
In this case the message M is split up into t+ 1 shares: M = M1

⊕
M2
⊕
· · ·
⊕
Mt+1. The

share M1 is sent from A to Ni,1, using the t-safe protocol in Bi. Only old keys from Bi are
used so this transmission is indeed t-safe. The shares M2,M3, . . . ,Mt+1 are sent in the same
way to Ni,2, Ni,3, . . . , Ni,t+1 respectively. If A is one of the nodes Ni,1, Ni,2, . . . , Ni,t+1, no
transmission is necessary for the corresponding share.
Next, the sharesM1,M2, . . . ,Mt+1 are sent fromNi,1, Ni,2, . . . , Ni,t+1 in Bi toNl,1, Nl,2, . . . , Nl,t+1

in Bl respectively, using the keys knew,1, knew,2, . . . , knew,t+1. Finally, the sharesM1,M2, . . . ,Mt+1

are sent from Nl,1, Nl,2, . . . , Nl,t+1 to B, using the t-safe protocol in Bl. These last transmis-
sions are again t-safe, because only the old keys in Bl are used for this.
It remains to be shown that the transmission of M1,M2, . . . ,Mt+1 from Bi to Bl is t-safe.

22

First, note that any partial information on M1,M2, . . . ,Mt+1 determined from the tranmis-
sion within Bi and Bl is useless. This is because every time a message is split up, all shares
but one are determined at random. In particular, the splittings of M1,M2, . . . ,Mt+1 in Bi
are not reused in Bl.
Now consider the transmission of M1,M2, . . . ,Mt+1 from Bi to Bj . Each of the shares Mj is
encrypted by a different key, knew,j . To determine M all these shares must be known, which
means that an adversary needs all new keys, knew,1, knew,2, . . . knew,t+1, for this. From the
way these new keys were assigned, it is clear that no node possesses more than one new key.
This means that an adversary of size t or less cannot determine M . So the key assignment
obtained from this construction is indeed t-safe.

In Theorem 4.1.2 all key assignments that are combined need to have size at least t + 1.
Especially for small desired values of n, this constraint is really a restriction on the possible
values for n. Therefore another way of extending key assignments is introduced. This is
adding one node to an existing t-safe key assignment.

Theorem 4.1.3. Let B be a t-safe key assignment on n ≥ t + 1 nodes. Then this key
assignment can be extended to a t-safe key assignment on n+ 1 nodes with t+ 1 extra keys.

Proof. Let N1, N2, . . . , Nt+1 be nodes in the t-safe key assignment B, and let Nn+1 be the
new node to be added. Assign a new key knew,j to each of the nodes N1, N2, . . . , Nt+1, so
∀j ∈ {1, . . . , t + 1} Nj gets knew,j . Also, assign all of these new keys to the new node Nn+1.
Then the obtained key assignment can be proved t-safe.
For communication between two old nodes the standard t-safe protocol in B is used. This
protocol is still t-safe, because it uses no new keys, and Nn+1 possesses no old keys.
For communication between the new node Nn+1 and another node Ni, the following protocol
is used. Nn+1 splits up the message M into t+ 1 shares, M = M1

⊕
M2
⊕
· · ·
⊕
Mt+1. Each

share, Mj , is sent to a different node Nj , encrypted by the new key knew,j . Next, each of the
Mj are split up and transmitted from Nj to Ni, using the t-safe protocol in B. If Ni is the same
node as Nj for some j, the transmission of the corresponding share is not necessary. Because
the transmission of the shares Mj within B is t-safe, the only nodes that can determine Mj

are Nn+1, Nj , and Ni. The nodes Nn+1 and Ni are not in the adversary because they are the
sender and receiver of M . An adversary needs all shares Mj to determine M . This means
that it must consist of at least t+ 1 nodes. So the new key assignment is indeed t-safe. If the
message M is sent from Ni to Nn+1 instead, the protocol is used in reverse.

4.2 Combining blocks for t = 1

With the constructions from Section 4.1 efficient 1-safe key assignments can be made for any
number of nodes n. This section estimates the total number of keys, c, needed for such a key
assignment.
The available blocks from Section 2.2 have size n =

(
c
b c
2
c
)
. The first couple of values for n are

listed in Table 2.2. It is notable that n doubles or almost doubles when c is increased by 1.
The exact behaviour of n when c increases by 1 can be derived. nc is the number of nodes
that corresponds to a block assignment with c keys:

23

nc+1

nc
=

(c+1
b c+1

2
c
)(

c
b c
2
c
) =

(c+ 1)!
(b c+1

2 c)!(d
c+1
2 e)!

(b c2c)!(d
c
2e)!

c!
=

c+ 1
d c+1

2 e
=
{

2 c is odd
2 c+1
c+2 c is even .

So nc+1

nc
≤ 2 and tends to 2 as c grows. This gives an obvious way of combining blocks, which

is not optimal, but is good for most n. It resembles the binary representation of n. A network
for n nodes is constructed as follows. First the largest c1 is determined such that

(c1
b c1

2
c
)
≤ n.

This block with c1 keys is used for the first
(c1
b c1

2
c
)

nodes. This process is repeated for the
remaining n−c1 nodes. This gives a block with c2 < c1 keys, which is combined with the first
block. Since every smaller block is at least half the size of the previous block this process is
repeated at most c1 times. Taking c1 ≈ log2 n from Equation (2.3), the total number of keys
c becomes at most:

c ≈ 2 + log2 n+ log2

n

2
+ log2

n

4
+ · · · = 2 + (log2 n) + (log2 n− 1) + . . .

≈ 2 + (log2 n)2 − log2 n

2
(log2 n+ 1) = 2 +

(log2 n)2 − log2 n

2
≈ (log2 n)2

2
,

(4.1)

where the number of terms is estimated to be log2 n, and the ”2+” is due to the two extra
keys required for combining. This means that a general construction for t = 1 exists that
uses O((log2 n)2) keys.

Table 4.1 lists the total number of keys, c, needed for a 1-safe key assignment on n nodes,
using the most efficient combinations of the designs presented in Section 2.2. The combining
is done as explained in Section 4.1.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
c 2 3 5 7 4 6 8 9 5 7 9 10 11 12 11 13 13 14 6

Table 4.1: The number of keys required for key assignments with t = 1 and n ≤ 20. c is the
number of keys required when a combination of key assignments is used.

All combinations presented in Table 4.1 are made in the way proposed in this section.
However, this is not always optimal. For example, when n = 140, it is more efficient to
combine two key assignments of size 70 than to combine key assignments of size 126, 10, 2,
and 2. The first construction uses a total of 18 keys, while the second uses 20 keys. These
numbers follow from Table 2.2 and Theorem 4.1.2. Figure 4.2 in Section 4.3 shows the number
of keys required for all n ≤ 70.

In [4] a slightly different construction for t = 1 is discussed in Chapter 3. This construction
uses one key more than the constructions presented in Chapter 2 for the values of n listed in
Table 2.2. For other values of n it uses fewer keys than the constructions presented in this
section. In general, it uses O(log2 n) keys, which is better than the O((log2 n)2) keys achieved
in this section.

24

4.3 Combining blocks for t > 1

With the constructions from Section 4.1 t-safe key assignments can be made for any number
of nodes n. These will still use fewer keys than key assignments derived from Harary graphs.
This section estimates the total number of keys, c, needed fo such a key assignment. Suppose
two block designs B1 and B2 of size n1 and n2 exist that are both t-safe. This means these
designs use at most (t + 1)

√
n1 and (t + 1)

√
n2 keys respectively, as can be derived from

Equation 3.8; the quadratic formula gives the following positive solution for the total number
of keys c = v:

c =
1 +

√
1 + 4nt(t+ 1)

2
, (4.2)

which can be estimated by

c =
1 +

√
1 + 4nt(t+ 1)

2
≤ 1 +

√
1 + 4nt(t+ 1) + 4 (n−

√
n) (t+ 1)

2

=
1 +

√
(2
√
n(t+ 1)− 1)2

2
= (t+ 1)

√
n. (4.3)

Equation (4.3) gives an actual upper bound for c, whereas Equation (3.9) is a more accurate
estimate for c. The upper bound from Equation (4.3) will be used to derive upper bound on
the number of keys needed for the constructions presented in this section.

The total number of keys needed for m connected networks is O(t
√
m · n), where in the

worst case the networks are of similar size. The number of communication routes now becomes
O(t3).

An open question remains how many block designs must be combined to obtain a network
with exactly n nodes. To make an estimate, suppose that all designs that satisfy Equation

(3.5) exist. Then v =
{

1 + kt(t+ 1)
t+ 1 + kt(t+ 1)

k ∈ N.

When Equation(3.8) is solved for n and the given values of v are used this gives the
following possibilities for the number of nodes n:

n =
{

t(t+ 1)k2 + k
t(t+ 1)k2 + (2t+ 1)k + 1

k ∈ N. (4.4)

As was shown in Theorem 4.1.3 a block of size 1 may be added at the cost of t+ 1 extra keys.
One more possibility is added, namely the complete graph on t+1 points, which is t-safe. The
two sequences in Equation (4.4) grow quadratically. Therefore, finding the number of blocks
that must be combined to obtain a communication graph on n points is related to Waring’s
problem [5]. The sequences in Equation (4.4) grow at a rate equal to the (2(t2 + t+ 1))-gonal
numbers, if only the quadratic terms are considered. By Fermat’s Polygonal Number Theorem
every natural number can be represented as the sum of at most p p-gonal numbers [6]. It is
conjectured here that a t-safe key assignment can be constructed using at most 2(t2 + t+ 1)
block designs. Note that this conjecture is stronger than assuming that every number can be
written as the sum of at most 2(t2 + t + 1) numbers from the sequences in Equation (4.4),
after the number 1 has been added to that sequence. This is because Equation (3.5) is only

25

a sufficient condition for the existence of a block design for t = 2, 3, and 4, so for t > 5 block
designs do not exist for all n that satisfy Equation (4.4).

With this conjecture the maximum number of keys needed, is at most the number of keys
necessary to combine 2(t2 + t+ 1) equal size blocks, since

max
n1,...,nm

{
√
n1 +

√
n2 + · · ·+

√
nm | n1 + n2 + · · ·+ nm = n} =

√
m · n. (4.5)

The total number of keys, c, is then at most

c ≤ (t+ 1)
(

1 +
√

2n(t2 + t+ 1)
)
≤ (t+ 1)2

√
2n. (4.6)

where Equation (4.3) is used to estimate the maximum number of keys in one block.
Tables 4.2, 4.3, and 4.4 give an indication of the efficiency of combining block designs.

They list the total number of keys, cb, needed for a t-safe key assignment on n nodes, using
the most efficient combinations of block designs. They also list the number of keys, kH , that
are needed in a Harary graph.

Each table starts with the value n = t+1. In practice a construction for this value does not
make much sense, since it implies that all nodes but one are corrupted. In that case at least
one of the communicating nodes is corrupted. However, when block designs are combined
these blocks are useful building elements. For example, in Table 4.2 the key assignment for
n = 16 is obtained as follows: the block design for n = 12 is combined with the block for
n = 3. This results in a key assignment for n = 15 that uses 9 + 3 + 3 = 15 keys; 9 for the
first block, 3 for the second block, and 3 for combining. Finally, one additional node is added
using 3 new keys to connect it to the existing network. This requires a total of 18 keys.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cb 3 6 9 9 7 10 12 13 16 9 12 15 15 18 21 18 19 22
cH - 6 8 9 11 12 14 15 17 18 20 21 23 24 26 27 29 30

Table 4.2: The number of keys required for key assignments with t = 2 and n ≤ 20. cb is the
number of keys required when a combination of block designs is used; cH is the number of
keys required when a Harary graph is used.

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cb 6 10 14 18 16 20 24 28 22 13 17 21 25 23 27 31 16
cH - 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Table 4.3: The number of keys required for key assignments with t = 3 and n ≤ 20. cb is the
number of keys required when a combination of block designs is used; cH is the number of
keys required when a Harary graph is used.

It is remarkable that the construction for t = 3 and n = 20 in Table 4.3 requires fewer keys
than the construction for t = 2 and n = 20 in Table 4.2. This means that in constructing
2-safe key assignments it is sometimes more efficient to use 3-safe blocks. Implementing this
improvement gives the graph in Figure 4.2. It gives the total number of keys required for
Harary graphs and for combined block designs. The graph for t = 1 is also included, but that
graph uses constructions that are asymptotically logarithmic in n. The other constructions
are asymptotically proportional to

√
n.

26

Figure 4.2: This figure shows the total number of keys, c, needed for a t-safe key assignment
on n nodes. Graphs are plotted for t = 1,2,3, and 4. The dashed lines give the number of
keys needed when a Harary graph is used. The solid lines give the number of keys needed
when a combination of block designs is used.

27

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cb 10 15 20 25 30 25 30 35 40 45 35 40 45 50 55 45
cH - 15 18 20 23 25 28 30 33 35 38 40 43 45 48 50

Table 4.4: The number of keys required for key assignments with t = 4 and n ≤ 20. cb is the
number of keys required when a combination of block designs is used; cH is the number of
keys required when a Harary graph is used.

4.4 t proportional to n

In a practical situation one would expect the number of colluders t to be proportional to the
number of nodes n. For example, in a computer network the corrupted nodes are usually
the computers that are infected by the same virus. If t is proportional to n the estimate in
Equation (4.6) is no longer valuable, because it is asymptotically worse than a construction
that uses Harary graphs, which uses O(t·n) keys. The best block designs are still more efficient
than Harary graphs by Equation (4.3), but the combining method may not be efficient for all
values of n anymore.

28

Chapter 5

Conclusion and discussion

This report presents constructions for secure communication in a network with t colluders.
For t = 1 these constructions use all b c2c size subsets of a set of size c. To obtain a general
construction, multiple constructions are combined to form larger constructions. For t > 1
the constructions use 2 − (v, t + 1, 1) block designs or a combination of multiple such block
designs.

The presented constructions are an improvement on existing constructions for the total
number of keys needed. The best constructions require a total number of O(log2 n) keys for n
nodes when the number of colluders t equals 1. These constructions are proved to be optimal.
When the number of colluders t is larger than 1, the best constructions require a total number
of O(t ·

√
n) keys for n nodes. This may not be optimal. The general case is conjectured to

require no more than (t+ 1)2 ·
√

2n keys.

Improvements may be made for t > 1; either on the lower bound in Equation (3.4) or by
finding constructions that approach this lower bound. A computer simulation may find a key
assignment that uses fewer keys than a block design.

Another possible improvement would be constructions that require a similar number of
keys as combined block designs, but use fewer communication routes than O(t3).

29

30

Bibliography

[1] Yvo Desmedt, Henk van Tilborg, and Huaxiong Wang, ”Key Distribution Schemes and
Harary Graphs”, private communication

[2] Emanuel Sperner, ”Ein Satz ber Untermengen einer endlichen Menge” , Mathematische
Zeitschrift 27, pages 544548, 1928

[3] Handbook of Combinatorial Designs, author, edition, pages, ...

[4] Yvo Desmedt, Niels Duif, Henk van Tilborg, and Huaxiong Wang, ”Bounds and con-
structions for key distribution schemes”, Advances in Mathematics of Communications,
Volume 3, Number 3, August 2009

[5] Eric W. Weisstein, ”Waring’s Problem.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/WaringsProblem.html

[6] Eric W. Weisstein, ”Fermat’s Polygonal Number Theorem.” From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/FermatsPolygonalNumberTheorem.
html

[7] J.H. van Lint, ”Introduction to coding theory”, Graduate texts in Mathematics 86,
Springer Verlag, Berlin, 1982

31

http://mathworld.wolfram.com/WaringsProblem.html
http://mathworld.wolfram.com/FermatsPolygonalNumberTheorem.html
http://mathworld.wolfram.com/FermatsPolygonalNumberTheorem.html

	Introduction
	Definitions
	Example of a safe communication network
	Constructions using Harary graphs
	Improvement on existing constructions

	Constructions for t=1
	Lower bound
	An optimal construction for t=1

	Constructions for t>1
	Lower bound
	Constructions using a 2-(v,t+1,1) design
	Complexity

	Constructions for general n
	Combining constructions
	Combining blocks for t=1
	Combining blocks for t>1
	t proportional to n

	Conclusion and discussion

