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Abstract

To allow all participants in a network to communicate in a secure way, a differ-
ent secret key may be assigned to all pairs. This method is not very efficient
since for n participants n(n− 1)/2 different keys are needed. In this report we
assume that there are at most t adversaries in the network. In many cases it is
possible to assign t + 1 keys to every participant and maintain secure commu-
nication between all participants.
Desmedt e.o. has shown that Harary graphs are very useful for this problem
[1]. However if there is an odd number of participants n and an even number of
adversaries t there are complications. In this report it is shown that for an odd
number of participants there are only two cases for which the Harary graphs
are still useful, this is for t = 2 and t = n− 3. If t is even and in between those
two cases it is proven that the Harary graphs can not be used.
For the special cases where n is odd and t = n − 5 or t = n − 7 an algorithm
is given to construct a secure communication scheme where t + 1 different keys
are assigned to each participant.
For n odd and t = n− 9 or t = 4 a number of graphs are given in the appendix.
No closed formula for these series were found. The graphs in the appendix were
checked with a JAVA program written for this project.
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1 Introduction

This report concerns secure communication in a connected network.
For example if two persons in a group want to gossip about the others, they
whisper to make sure the others will not hear the content. If no other person is
able to hear the conversation the method of whispering was secure. But a third
person may eavesdrop and be able to find out the contents of the conversation.
To make sure the third person is not able to find out the contents, the two
gossipers encrypt the message with a certain key only known to them.
In a network with n participants, the participants are denoted by 0 to n− 1. If
two participants i and j share a secret key ki,j they are able to communicate
safely if the encryption method is secure. In this report we will assume a secure
encryption method is being used.
If every two participants share a secret key, they are all able to communicate in
a secure way. The network with n participants then needs (n

2 ) = n(n−1)
2 different

keys. This is not a very efficient method.
If we make the assumption that there are at most t adversaries among the n

participants, who may work together to intercept and decrypt the message, it is
possible to use less keys and still allow all participants to communicate safely.
This report describes networks where only b 12n(t + 1)c different keys are used
and all participants are able to communicate safely.

First some definitions are given in the next section of this chapter.
Chapter 2 introduces Harary graphs, which give a safe communication scheme
if either the number of participants is even or the number of adversaries is odd.
In Chapter 3 non-Harary solutions are given for some problems were the number
of participants is odd and the number of adversaries is even.
To test network graphs for some properties we have written a JAVA program,
an explanation of this program can be found in Chapter 4.
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1.1 Definitions

The network consists of n participants, not every couple will share a secret key,
but all couples should be able to communicate in secure way. Each participant
is able to intercept every message. All messages are encrypted with a secure
method, thus an intercepted message can only be read if one has the key to
decrypt the message. In this report we assume that:

• At most t of the n participants are trying to acces messages that are not
intended for them

• Each intermediate1 will forward the message

• None of the intermediates will change the message such that the receiver
will not obtain the original message

Safe Communication Scheme

Given the network in Figure 1 with 5 participants and up to 2 adversaries.

Figure 1: Communication between A and B

It is trivial that A has a secure path to e, f and g since each pair shares a
secret key. Also B has a secure path to e, f and g.
Now assume that A wants to send a message M to B. Since they do not share
a secret key they have to use intermediates.
There are at most 2 adversaries, which may work together. If A sends three
different parts to e, f and g and they send their part to B, the adversaries will
possess at most two decrypted parts. So A has to make sure that no two parts
will give any information on the original message.
We assume that the message consists of bits. Then A can split the message
M into different parts, which give no information on the original message, us-
ing bitwise addition modulo 2. First A chooses two random words of the same
length as M , say m1 and m2. Now A computes m3: m3 = M ⊕m1⊕m2 where
“⊕” is the bitwise addition modulo 2. Only if one participant has all three parts,

1An intermediate is a participant on the path from the sender to the receiver
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it is able to find the original message M (again by bitwise addition modulo 2).
Now A encrypts m1 with the key KA,e, m2 with KA,f and m3 with KA,g and
sends the encrypted parts to respectively e, f and g. Now e, f and g can decrypt
the part they received from A but no two of them will have enough information
to gain M . Now e, f and g encrypt their part with the key they share with B
and send the encrypted part to B. B is able to encrypt the three parts and
recover the original message M from M = m1 ⊕m2 ⊕m3.

Two participants are able to communicate safely if they share a secret key. If
all participants in a group have to be able to communicate safely, we may assign
a secret key to every couple.
In order to make this scheme more efficient we want to minimize the number
of keys per participant. If now two persons want to communicate and they do
not share a key, they have to send their message via intermediates as described
above.
If there are t adversaries among the n persons, then every person has to have at
least t+1 keys to be able to communicate safely with all others, since otherwise
the t adversaries may be able to intercept and decrypt all parts and find the
original message.
Now we are able to define a safe communication scheme.

Definition 1.1. A communication scheme is a set S of combinations (i, j),
where i and j are participants and (i, j) ∈ S if i and j share a secret key.
A communication scheme among n participants of which t are adversaries is
said to be safe if for every i, j, i 6= j among the n participants at least one of
the following holds:

1. i and j share a secret key

2. there are t + 1 disjunct paths from i to j such that no t participants are
able to intercept and decrypt all message parts

For a safe communication scheme on a network among n participants and
at most t adversaries, at least n(t + 1)/2 keys are needed (as every participant
has at least t + 1 keys and shares each key with at least one other participant).
If n is odd and t is even, n(t + 1)/2 is not an integer.
During this project we tried to find graphs which represent a safe communication
scheme for odd n and even t. The total number of keys is less or equal b 12n(t+1)c
and the number of keys is minimized per participant.
Further on we will represent the key that two participants a and b share as (a, b).
We will use graphs to represent the network. In those graphs two participants
are connected if they share a key.
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2 Harary graphs

2.1 Properties of a Harary graph

Harary [4] concentrated on solving a problem given by Claude Berge: ‘What
is the maximum connectivity2 of a graph with n vertices and m lines’. The
answer is 2 · m/n. Harary proved this by showing that the connectivity of a
graph cannot exceed this number and showing that there exists a graph with n
vertices, m lines and connectivity 2 ·m/n. These graphs satisfy Definition 2.1
and are nowadays called Harary graphs.

Definition 2.1. The Harary graph H(n,k), n ≥ k+1, is the graph on n vertices,
numbered 0, 1, . . . , n− 1, with calculations modulo n, where two vertices i and j
(i 6= j) are connected if and only if

|j − i|mod n ≤ l if k = 2l,

|j − i|mod n ≤ l or |j − i|mod n = m if k = 2l + 1 and n = 2m,

|j − i|mod n ≤ l or j = m + 1, i ∈ {0, 1, . . . ,m} if k = 2l + 1 and n = 2m + 1

Figure 2: Harary graphs H(14,4), H(14,3) and H(13,3)

The objective is to find graphs that represent a safe communication scheme
among n persons, of which t are adversaries and at most b 12n(t + 1)c different
keys are used.
If n is even or t is odd, the Harary graph gives a safe communication scheme
with n vertices and n(t + 1)/2 = b 12n(t + 1)c keys since 2 divides n or t + 1 or
both3.
If either n is even, t is odd or both conditions hold, every vertex is connected
to t + 1 other vertices.
However if n is odd and t is even, then there is one vertex which is connected to

2Connectivity is the minimal degree of a vertex
3This is not proven in this report, but it is done in [1]
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t + 2 other vertices. The number of edges in this graph is dn(t + 1)/2e, if every
edge is assigned a different key this graph has dn(t+1)/2e keys. It is possible to
lower the number of keys by assigning the same key to two edges. In particular
if two edges that are connected to the vertex who has t + 2 connections are
chosen, this might resolve in a safe communication scheme with no more than
b 12n(t + 1)c keys and up to t adversaries.

2.2 Forbidden subgraphs

If a graph of a communication scheme among n participants and t adversaries
is constructed, such that n is odd and t is even, then there is at least one vertex
with degree t + 2. Let this vertex be denoted as 0. To keep the number of keys
less or equal to b 12n(t + 1)c we need to assign the same key to two edges ending
in 0.
If the same key k is assigned to two edges, say (0, a) and (0, b), there are some
restrictions to the paths two vertices may use to communicate.
If (0, a) is used, then b may not be used unless they lie on the same path. If
both are used and say a and 0 are trusted but b is an adversary, then b is also
able to decrypt the partial message sent over the path (0, a). Then b might be
able to construct the original message if all other paths contain an adversary
and they cooperate with b. If b lies on the same path, it is only able to find the
same partial message twice, which will not cause a problem.
This restriction leads to three subgraphs that are not allowed in a safe commu-
nication scheme. In these graphs a and b are chosen to be the vertices which
share the same key with the vertex 0.

Forbidden subgraph 1

Choose two neighbors of 0, say a and b, which are directly connected. If a wants
to send a message to a vertex u 6= 0, b and a and u do not share a secret key.
Since a has degree t + 1 and t + 1 disjunct paths are needed, it needs to send
a partial message over both (a, 0) and (a, b). Since b knows the key for both
paths, b is able to recover two partial message. If b is one of the adversaries,
the t adversaries might be able to find t + 1 partial messages and thus recover
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the original message. Thus in this case a and u are not able to communicate in
a secure way.
Thus the two vertices which will share the same key with 0 may not be directly
connected.

Forbidden subgraph 2

Choose two neighbors of 0, say a and b, which are not directly connected. Let
u be connected to b and 0 but not to a.
Now a and u do not share a key, so to communicate they need t + 1 disjunct
paths. Since both a and u are only connected to t + 1 other vertices, all these
connections need to be used. Thus both (u, 0) and (u, b) need to be used. The
vertex 0 can only be used once, thus (u, 0), (0, a) is a path. Now b can eavesdrop
on this path, thus b may not be used in another path, which is a contradiction
since (u, b) should be used too. Thus a and u can not communicate safely in
this situation.
Thus there may not be a third vertex which is connected to 0 and to only one
of the two vertices which share the same key with 0.

Forbidden subgraph 3

Choose two neighbors of 0, say a and b, which are not directly connected. Let
u be connected to both a and b and not connected to 0. Now for 0 and u to
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communicate safely they need t + 1 disjunct paths. Since u is only connected
to t + 1 vertices, all of these need to be used. Thus we need to use both (u, a)
and (u, b). Since 0 has t + 2 paths and we need to use t + 1 of those, at least
one of (0, a) or (0, b) needs to be used. If we choose the first, we may not use
the vertex b which leads to a contradiction, if we choose the latter, we may not
use vertex a which also leads to a contradiction. In this situation u and 0 are
not able to communicate safely.
Thus there may not be a third vertex connected to both the vertices which share
the same key with 0 and not to 0.

2.3 Consequences of the forbidden subgraphs

Harary graphs give solutions if either the number of participants is even, the
number of adversaries is odd or both. Otherwise the Harary graph contains
one vertex, denoted as 0, with degree one more than all others. To minimize
the number of keys, we assign the same key to two edges ending in 0. For 13
participants and 6 adversaries, Harary gives the following graph:

We need to find two vertices, were one may assign the same key to the edges
between them and zero. In this case, every possible combination of two vertices,
connected to zero, leads to a forbidden subgraph. In the table 1 you can find
to which forbidden subgraph every combination leads.
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first point second point forbidden subgraph
1 2, 3, 11, 12 1
2 3, 12
3 6, 10
6 7
7 10
10 11, 12
11 12
1 10 2 (look at vertex 2)
2 10 (1)
3 11 (12)
3 12 (11)
6 1, 2, 11, 12 (7)
7 1, 2, 11, 12 (6)
6 10 3 (look at vertex 9)
7 3 (5)

Table 1: Vertices which share the same key with 0 and the forbidden subgraphs
that they cause

We have now seen that if n is odd and t is even, the Harary graph might not
give a safe communication scheme. The three forbidden subgraphs are sufficient
to show that this graph does not give a safe communication scheme.

The following theorem is proved using the three forbidden subgraphs.

Theorem 2.2. Consider the Harary graph H(2m+1,t+1) were m ≥ 4, 4 ≤ t ≤
2m− 4 and t even. Suppose that all edges have their own unique key, except for
two edges ending in 0, which are assigned the same key. Then this graph will
not be a safe communication scheme if there are up to t adversaries.

Proof. There are several possibilities to choose the pair of vertices for which the
edge ending in zero is given the same key.
First define three subsets on the set of vertices connected to zero (not all vertices
are in these subsets since in none of these graphs 0 is connected to all other
vertices):

A = {1, 2, . . . ,
t

2
}

B = {2m, 2m− 1, . . . , 2m− (
t

2
− 1)}

C = {m, m + 1}

One can choose the pair of vertices in the following ways:

i) 2 vertices of the same subset

ii) a vertex of A and a vertex of C (which is the same as choosing one vertex
of B and one of C by symmetry)
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iii) a vertex of A and a vertex of B

All vertices within a subset are connected since every vertex is connected to t/2
neighbors on both sides and no subset contains more than t/2 vertices. Choos-
ing two edges from 0 to a pair of vertices of the same subset results in forbidden
subgraph 1. So option i) does not produce a safe communication scheme.
Now look at three cases and in every case prove that ii) and iii) lead to a for-
bidden subgraph:

Case 1: 4 ≤ t < m

Option ii)
The vertex with the highest number less then or equal to m, which is connected
to at least one of the vertices of A is t

2 + t
2 = t, which is not in {m, m + 1} since

t < m. For m + 2, m + 3, . . . m + t
2 it is trivial that they are not in {m, m + 1}.

The same holds for B by symmetry.
Thus in this case none of the vertices in A or B is connected to a vertex in C.
Every pair in the same subset forms a triangle with 0. Now say we choose a ∈ A
and c ∈ C. Then there is an a′ ∈ A such that a and a′ are connected, a, a′ and
c are connected to 0 and a′ is not connected to c. Now we have found forbidden
subgraph 2. Thus one cannot assign the same key to the edges from 0 to a vertex
of A and a vertex of C. So option ii) does not produce a safe communication
scheme in this case.

Figure 3: H(13,5)

Option iii)
Let a ∈ A and b ∈ B not be connected.
If there is an a∗ connected to a and not to b
we find forbidden subgraph 2. Assume there
is no a∗, then b is connected to all ai ∈ A ex-
cept a, to all bi ∈ B and to 0. The definition
of Harary Graphs gives that b is connected
to t

2 consecutive vertices on his right and on
his left. Now there are t

2−1+ t
2−1+1 = t−2

vertices defined to which b is connected, since
b should be in the middle of these, b = −1.
In Figure 3 if we choose b = 11, then b is not
connected to 1 and 2, thus b = 12.
Since b is not connected to a, a = t

2 . Now
the vertex −2 is not connected to a, but it is connected to b and 0. Thus now
we have found a b∗ which is connected to b and 0 and not to a, which leads to
forbidden subgraph 2.

Now assume that there is no b∗, by the same reasons as above we find a = 1
and b = − t

2 . Now 2 is connected to a and 0 and not to b thus we have found
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an a∗ which leads to forbidden subgraph 2.
Thus at least one of the following holds:

• either there is a vertex a∗ ∈ A, connected to a and not to b, and one finds
forbidden subgraph 2

• or there is a vertex b∗ ∈ A, connected to b and not to a, and one finds
forbidden subgraph 2.

It is not possible to assign the same key to two edges and not achieving a
forbidden subgraph in this case. Thus none of the options i), ii) and iii) lead
to a safe communication scheme for 4 ≤ t < m, t even.

Case 2: 4 < t = m

Option ii)
In this case precisely one vertex in A, namely t

2 and one vertex in B, namely
2m− t

2 is connected to m respectively m + 1.

Figure 4: Harary graphs H(9,5) and H(13,7)

We may not assign the same key to (0, t/2) and (0, m) since they are con-
nected. Now let a ∈ A and c ∈ C not be connected. If t ≥ 6 then A contains at
least three vertices which are all connected and only one of them is connected
to a vertex in C. Thus then there will be a vertex in A not equal to a, which is
connected to a and 0 but not connected to c. This leads to forbidden subgraph
2. If t = 5 there will not always be such vertex (take a1 and c1 in H(9,5)), but
b1 is connected to a1 and 0 and not to c1 by definition, thus here we also find
forbidden subgraph 2. By symmetry the same holds if a vertex of B and one of
C are chosen.
Thus option ii) does not produce a safe communication scheme in this case.
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Option iii) and t = m = 4
Let a ∈ A and b ∈ B not be connected.
If there is either an a∗ or a b∗ as before4 then one finds forbidden subgraph 2.
Assume there is no such a∗ and no such b∗. First look at t = 4 and m = 4 (left
graph in Figure 4). If the edges (a1, 0) and (b2, 0) are assigned the same key,
then there is no a∗ nor a b∗. But now we find forbidden subgraph 3 since both
a1 and b2 are connected to the vertex between b2 and c2. For a2 and b1 we find
forbidden subgraph 3 by taking the vertex between a2 and c1. And since a1

is connected to b1 and a2 is connected to b2 (both forbidden subgraph 1) it is
not possible to find an a ∈ A and a b ∈ B for which we may assign the same
key to both edges (0, a) and (0, b). Thus option iii) does not produce a safe
communication scheme for t = m = 4.

Option iii) and t = m > 4
For bigger m we will always find an a∗ or a b∗ by the same reasoning as in the
case 4 ≤ t < m.
Assume there is no a∗. Then b is connected to all ai ∈ A except a. Also b is
connected to all bi ∈ B except itself. Thus we find t

2 + t
2 = t vertices which

share an edge with b. By the definition of Harary graphs we know that b is
connected to t

2 consecutive vertices on the left and t
2 consecutive vertices on the

right. This implies that b = b1 and a = at/2. But now a is not connected to b2,
thus we find a b∗.
In the same way, if we assume there is no b∗, we find a = a1 and b = bt/2 and
a2 = a∗.
Thus option iii) does not produce a safe communication scheme for 4 ≤ t = m.

None of the options i), ii) and iii) lead to a safe communication scheme for
4 ≤ t = m, t even.

Case 3: m < t < 2m− 3

Option ii)
Let a ∈ A and c ∈ C not be connected. It is known that a is connected
to vertex t/2 + 1, which is not connected to 0. Since c is connected to t/2
consecutive vertices, it is connected to m − 1, m − 2, . . . ,m − t

2 + 1. Now
m − t

2 + 1 < t − t
2 + 1 = t

2 + 1 ≤ m − 1, thus t/2 + 1 is connected to c. Now
t/2 + 1 is connected to a and c and not to 0. This leads to forbidden subgraph
3. By symmetry the same holds if we choose b ∈ B and c ∈ C.
Thus option ii) leads to forbidden subgraph 3.

4Thus a∗ is connected to a and 0, but not to b and b∗ is connected to b and 0, but not to a
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Figure 5: Harary graphs H(13,9) and H(15,9)

Option iii)
Let a ∈ A and b ∈ B not be connected.
Again if there is either an a∗ or a b∗ as before5 then one finds forbidden sub-
graph 2.
Assume there is no a∗. Then b is connected to all ai ∈ A except a. Also b is
connected to all bi ∈ B except itself. Thus we find t

2 + t
2 = t vertices which

share an edge with b. By the definition of Harary graphs we know that b is
connected to t

2 consecutive vertices on the left and t
2 consecutive vertices on the

right. All vertices in B\b1 are not connected to at least two vertices in A. Only
b1 is connected to all a ∈ A except one. This implies that b = b1 and a = at/2.
But now a is not connected to b2, thus we find a b∗.
In the same way, if we assume there is no b∗, we find a = a1 and b = bt/2 and
a2 = a∗.
Thus in the case m < t < 2m− 3 one cannot find two vertices a and b for which
we may assign the same key to the edges (a, 0) and (b, 0). Thus option iii) does
not produce a safe communication scheme for m < t < 2m− 3.
None of the options i), ii) and iii) lead to a safe communication scheme for
m < t < 2m− 3, t even.

Thus in the case 4 ≤ t < m + 1, t even, it is not possible to choose two
neighbors of 0 which share the same key with 0. The Harary graphs H(2m+1,t+1),
t even, do not give a safe communication scheme with at most b 12n(t+ 1)c keys.

There are two series of Harary graphs which are not taken into account in
the proof above. In these cases the Harary graph, with a key assigned to two
edges ending in zero, does give a safe communication scheme.

5Thus a∗ is connected to a and 0, but not to b and b∗ is connected to b and 0, but not to a
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Theorem 2.3. Consider the Harary graph H(2m+1,3) were m ≥ 4. Suppose that
all edges have their own unique key, except for two edges ending in 0. The edges
(0, 1) and (0, 2m) represent the same key. Then safe communication between
any two vertices is always possible if there are up to 2 adversaries.

Figure 6: The Harary graph H(13,3)

Proof. The vertex 0 is connected to 1, m,m + 1 and 2m. Let the edges (0, 1)
and (0, 2m) represent the same key.
Because we do not have to consider communication between two vertices that
share a unique key, we only have to find three disjunct paths for the following
couples.

0↔ 1

 0→ 1
0→ m→ m− 1→ . . .→ 1
0→ m + 1→ m + 2→ 1

0↔ 2m

 0→ 2m
0→ m + 1→ m + 2→ . . .→ 2m
0→ m→ m− 1→ 1

For i : 1 < i < m

0↔ i

 0→ 1→ . . .→ i
0→ m→ m− 1→ . . .→ i
0→ m + 1→ m + 2→ . . .→ m + 1 + i→ i

For i : m + 1 < i < 2m

0↔ i

 0→ 2m→ . . .→ i
0→ m + 1→ m + 2→ . . .→ i
0→ m→ m− 1→ . . .→ m + i→ i
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1↔ 2m

 1→ 0→ 2m
1→ 2→ 3→ . . .→ m− 1→ 2m
1→ m + 2→ m + 3→ . . .→ 2m− 1→ 2m

For i : 1 < i < m + 2

1↔ i

 1→ 2→ . . .→ i− 1→ i
1→ 0→ 2m→ . . .→ i + m + 1→ i
1→ m + 2→ m + 1→ . . .→ i + 1→ i

For i : m + 1 < i < 2m

1↔ i

 1→ 2→ . . .→ i + m→ i
1→ 0→ 2m→ . . .→ i + 1→ i
1→ m + 2→ m + 3→ . . .→ i− 1→ i

By symmetry we do not need to show 2m↔ i.
Let m(i) = m + 1 if 1 ≤ i ≤ m and m(i) = m if m + 1 ≤ i ≤ 2m.
For i, j /∈ {0, 1, 2m}, i < j and j − i < m + 1:

i↔ j

 i→ i + m(i)→ . . .→ j + 1→ j
i→ i + 1→ . . .→ j − 1→ j
i→ i− 1→ . . .→ j + m(j)→ j

For i, j /∈ {0, 1, 2m}, i < j and j − i > m:

i↔ j

 i→ i + m(i)→ . . .→ j − 1→ j
i→ i + 1→ . . .→ j + m(j)→ j
i→ i− 1→ . . .→ j + 1→ j

Thus all vertices can communicate safely with all other vertices. Harary graphs
give a safe communication scheme for this case with only b 12 · 3nc keys.

Theorem 2.4. Consider the Harary graph H(2m+1,2m−1) were m ≥ 4. Suppose
that all edges have their own unique key, except for two edges ending in 0. The
edges (0, 1) and (0, m + 1) represent the same key. Then safe communication
between any two vertices is always possible if there are up to 2m−2 adversaries.
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Figure 7: The Harary graph H(13,11)

Proof. Assign the same key to the edges (0, 1) and (0, m + 1).
Vertex 0 is connected to every other vertex, for 1 and m + 1 use the paths
0→ i→ 1 respectively m + 1 for all i except 1 and m + 1.
Now each vertex i 6= 0 is connected to all other vertices but one, say j 6= 0. Now
j is connected to all vertices except i. So the 2m− 1 vertices connected to i are
also connected to j, thus there are 2m− 1 disjunct paths from i to j.
The two paths with the same key are only used if either 1 or m + 1 is one of the
vertices that want to communicate. This is only the case if 1 and m + 1 want
to communicate (since they are not connected and every vertex is connected to
all other but one). And in this case the whole path 1→ 0→ m + 1 is used.
Thus every couple is able to communicate in a secure way.
Thus the Harary graph H(2m+1,2m−1) were m ≥ 4 where the edges (0, 1) and
(0, m + 1) represent the same key allow safe communication if there are up to
2m− 2 adversaries.

Now we have seen that there are two types of Harary graphs that give a safe
communication scheme, but in between it is not possible to assign the same key
to two edges without implying a forbidden subgraph.

The forbidden subgraphs are not allowed in a graph. For a graph to represent
a safe communication scheme were two edges represent the same key, it is a
necessary condition that is does not contain a forbidden subgraph. But this
is not sufficient, a graph without forbidden subgraphs does not automatically
represent a safe communication scheme.
Consider graph in Figure 8. This is a scheme for 13 participants and up to 6
adversaries. If we assign the same key to the edges (0, 1) and (0, 2) and a unique
key to all other edges, there is no forbidden subgraph. But not all couples are
able to communicate in a secure way.
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Figure 8: A graph with 13 vertices without forbidden subgraphs

For example communication between vertex 1 and vertex 7 may use the
paths:
1→ 10→ 7
1→ 9→ 7
1→ 5→ 7
1→ 3→ 7
1→ 0→ 7
1→ 4→ 12→ 7
Thus we find 6 disjunct paths, the last path will contain the vertex 2. But we
may not use vertex 2 since it is able to recover another partial message (the one
on path 1→ 0→ 7).

Thus 1 and 7 are not able to communicate in a secure way. Thus the absence
of the forbidden subgraphs does not imply that the communication scheme is
safe.
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3 Non-Harary solutions

So Harary graphs do not give a full solution to this problem, but another type
of graphs might work. Now we try to find graphs where:

• every vertex has t + 1 neighbors, except 0 which has t + 2

• the same key is assigned to two edges ending in 0, all other edges represent
a unique key

• every vertex can communicate safely with every other vertex

After finding a few we might be able to generalize these.
The case n, t = n − 3 is solved, the Harary graphs give a safe communication
scheme. Now we will first look at the case n = 2m + 1, t = n − 5, since the
restrictions given by the forbidden subgraphs might lead to a solution immedi-
ately.
From now on we will use the incidence matrix to represent the graphs and we
will assign the same key to the paths (0,1) and (0,2) unless stated otherwise.
The vertex with one connection more will be numbered 0 in all examples.

3.1 Case n = 2m + 1, t = n− 5

After finding some graphs for small n, one can try to generalize this form such
that it will work for all n. As the case t + 1 = 1 will not give a connected graph
as n > 2 and for the case t+1 = 3 the Harary graph gives a safe communication
scheme, we will start with t + 1 = 5.

Case n = 9, t = 4

Since we know three forbidden subgraphs we can construct a graph for the case
n = 9, t + 1 = 5. It is known that the diagonal consists only of zeros. Now
use the fact that the first row contains three zeros and vertices 1 and 2 are not
connected (forbidden subgraph 1). This gives:

0 1 1 1 1 1 1 0 0
1 0 0 ∗ ∗ ∗ ∗ ∗ ∗
1 0 0 ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


If vertex 1 is connected to a point a which is also connected to vertex 0, than
a should also be connected to vertex 2 (forbidden subgraph 2). If vertex 1 is
connected to a point a which is not connected to vertex 0, than a should not
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be connected to vertex 2 (forbidden subgraph 3). These two rules and the fact
that the second and third row both contain four zeros gives:

0 1 1 1 1 1 1 0 0
1 0 0 1 1 1 0 1 0
1 0 0 1 1 1 0 0 1
1 1 1 0 ∗ ∗ ∗ ∗ ∗
1 1 1 ∗ 0 ∗ ∗ ∗ ∗
1 1 1 ∗ ∗ 0 ∗ ∗ ∗
1 0 0 ∗ ∗ ∗ 0 ∗ ∗
0 1 0 ∗ ∗ ∗ ∗ 0 ∗
0 0 1 ∗ ∗ ∗ ∗ ∗ 0


The fourth, fifth and sixth row need three more zeros to be filled in. The last
three columns only allow one more zero since all three already have three zeros.
It is then obvious that (4,5), (4,6), (5,4), (5,6), (6,4) and (6,5) should all be
zero. The last three columns get a zero in row 4, 5 or 6, thus (7,8), (7,9), (8,7),
(8,9), (9,7) and (9,8) should not be zero.

0 1 1 1 1 1 1 0 0
1 0 0 1 1 1 0 1 0
1 0 0 1 1 1 0 0 1
1 1 1 0 0 0 ∗ ∗ ∗
1 1 1 0 0 0 ∗ ∗ ∗
1 1 1 0 0 0 ∗ ∗ ∗
1 0 0 ∗ ∗ ∗ 0 1 1
0 1 0 ∗ ∗ ∗ 1 0 1
0 0 1 ∗ ∗ ∗ 1 1 0


The last eighteen places can be filled in different ways, but these all give iso-
morphic graphs. This graph is a safe communication scheme for 9 participants
and up to 4 adversaries.
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Figure 9: The graph for n = 9 and t + 1 = 5

Case n = 11, t = 6

The first three rows of the matrix can be filled the same way as in the n = 9,
t = 4 case and the diagonal only contains zeros. For the others places there
are restrictions, but not enough to define the whole matrix. Since there are not
so many options left, a correct matrix for this problem can be found easily by
trial and error. The next matrix gives a safe communication scheme for n = 11,
t = 6. 

0 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 0 1 0
1 0 0 1 1 1 1 1 0 0 1
1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0 1 1
1 1 1 1 0 1 0 0 1 1 0
1 1 1 0 1 1 0 0 1 0 1
1 0 0 1 1 0 1 1 0 1 1
0 1 0 1 1 1 1 0 1 0 1
0 0 1 1 1 1 0 1 1 1 0


Larger n

The first three rows of every matrix of this type can be filled by using the three
forbidden subgraphs and the diagonal only contains zeros. The freedom to fill
in the other places gets larger as n gets larger.
Since a graph of this type contains sum of the degrees of the vertices divided by
2 = (n · (t + 1) + 1)/2 = (n2 − 4n + 1)/2 lines, the complement graph contains
only ((n− t− 1) · (t + 1)− 1)/2 = (4n− 17)/2 lines (which is more than a factor
1
4n less as 4n− 17 < 1

4n(4n− 17) < n2 − 4n + 1).
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Figure 10: The complement graphs for n = 9 and n = 11

By changing the positions of the vertices one gets a more simple shape, as
can be seen in Figure 11

Figure 11: The complement graphs for n = 9 and n = 11

For the construction we do not use the same numbering as above. The
construction of a graph of this type consists of three steps:

1. Start with a cycle of length n−1, name the vertices 0, . . . , n−2. Connect
0 with (n− 1)/2 and i with n− 1− i for i = 1, . . . , (n− 1)/2− 1.

2. Remove the edge 2↔ n− 3, add the vertex n− 1 and connect n− 1 with
2 and n− 3.

3. Now take the complement of this graph. And assign the same key to the
edges n− 1↔ 1 and n− 1↔ n− 2.

Proof of the series n = 2m + 1, t = n− 5

We need to prove that this construction gives a safe communication scheme for
every odd n and up to n− 5 adversaries.
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Figure 12: The complement graph for n = 15 and t = 10

The same key is assigned to the edges (n− 1, 1) and (n− 1, n− 2).

Proof. The proof is a case analysis.

n− 1→ 1 Use the paths n−1→ 1, n−1→ 0→ n−3→ 1 and for 3 ≤ i ≤ n−4 use
n − 1 → i → 1, by symmetry there is also a secure communication path
between n− 1 and n− 2

n− 1→ 2 Use the paths n− 1→ 0→ 2, n− 1→ n− 2→ 2, n− 1→ 3→ n− 3→ 2
and for 4 ≤ i ≤ n − 4 use n − 1 → i → 2, by symmetry there is also a
secure communication path between n− 1 and n− 3

0→ 1 Use the paths 0→ n− 1→ 1, 0→ 2→ m→ 1 and for 3 ≤ i ≤ m− 1 and
m + 1 ≤ i ≤ n− 3 use 0→ i→ 1

0→ m Use the paths 0 → n − 1 → m, 0 → m − 1 → 1 → m, 0 → m + 1 →
n− 2→ m and for 2 ≤ i ≤ m− 22 and m + 2 ≤ i ≤ n− 3 use 0→ i→ m

1→ 2 Use the paths 1→ 3→ 0→ 2, 1→ n−1→ n−2→ 2 and for 4 ≤ i ≤ n−3
use 1→ i→ 2

2→ 3 Use the paths 2 → 4 → 1 → 3, 2 → n − 1 → 3 and for i = 0, 5 ≤ i ≤
n− 5, i = n− 3, n− 2 use 2→ i→ 3

k → k + 1 (k = 3, 4, . . . ,m−2) Use the paths k → n−1→ k+1, k → n−1−k−1→
k+1, k → k+2→ n−1−k → k+1 and for i = 0, . . . , k−2, k+3, . . . , n−
1− k − 2, n− 1− k + 1, . . . , n− 2 use k → i→ k + 1

m− 1→ m Use the paths m−1→ n−1→ m and for i = 0, . . . ,m−3, m+2, . . . , n−2
use m− 1→ i→ m

k → n− 1− k (k = 3, 4, . . . ,m−1) Use the paths k → n−1→ n−1−k, k → n−1−k−1→
k − 1 → n − 1 − k, k → n − 1 − k + 1 → k + 1 → n − 1 − k and for
i = 0, . . . , k − 2, k + 2, . . . , n − 1 − k − 2, n − 1 − k + 2, . . . , n − 2 use
k → i→ n− 1− k
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3.2 Case n = 2m + 1, t = n− 7

Again the first three rows can be filled using the forbidden subgraphs. The next
step is not as trivial as for the t = n− 5-series.

0 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0
1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


With trial and error matrices for n = 11, 13, 15, 17 and 19 were found. From
these it was again possible to find a structure that seems to work for every n.

The construction of a graph of this type, for n ≥ 13 consists of the following
steps6: First draw a subgraph as in Figure 14.

Figure 13:
Subgraph 2

Figure 14: Subgraph 1

Then draw a subgraph as in Figure 13 starting from the left, repeat until
the vertices 6 and 7 are reached.
Now connect the graphs and take the complement.

Proof of the series n = 2m + 1, t = n− 7

We need to proof that this construction gives a safe communication scheme for
every odd n and up to n− 7 adversaries.

6The graph for n = 11, t = 4 can be found in appendix A
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Figure 15: The complement graph for n = 21, t = 14

For this proof the incidence matrix is used, it gives a more structural view
on this graph.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0


Proof. The proof is a case analysis. Let n > 13. For n = 11 and n = 13 the
proofs are quite similar and are left for the reader.

0→ 1 Use the paths 0 → 1, 0 → n − 5 → n − 4 → 1 and for 3 ≤ i ≤ n − 6 use
0→ i→ 1

0→ 2 Use the paths 0 → 2, 0 → n − 5 → n − 3 → 2 and for 3 ≤ i ≤ n − 6 use
0→ i→ 2

0→ n− 4 Use the paths 0→ i→ n−4 for i ∈ {1, 3, 5, . . . , n−8, n−5}, 0→ n−6→
n− 3→ n− 4, 0→ n− 7→ n− 2→ n− 4 and 0→ 4→ n− 1→ n− 4
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0→ n− 3 Use the paths 0→ i→ n−3 for i ∈ {2, 5, 6, 8, . . . , n−5}, 0→ 3→ n−4→
n− 3, 0→ 7→ n− 2→ n− 3 and 0→ 4→ n− 1→ n− 3

0→ n− 2 Use the paths 0→ i→ n− 2 for i ∈ {3, 5, 7, . . . , n− 5}, 0→ 1→ n− 4→
n− 2, 0→ 6→ n− 3→ n− 2 and 0→ 4→ n− 1→ n− 2

0→ n− 1 Use the paths 0→ i→ n−1 for i ∈ {4, 6, . . . , n−5}, 0→ 5→ n−4→ n−1,
0→ 2→ n− 3→ n− 1 and 0→ 3→ n− 2→ n− 1

1→ 2 Use the paths 1→ 0→ 2, 1→ n− 4→ n− 3→ 2 and for 3 ≤ i ≤ n− 6
use 1→ i→ 2

1→ n− 5 Use the paths 1 → i → n − 5 for i ∈ {0, 4, . . . , n − 8, n − 4}, 1 → 3 →
n−2→ n−5, 1→ n−6→ n−1→ n−5 and 1→ n−7→ n−3→ n−5

1→ n− 3 Use the paths 1 → i → n − 3 for i ∈ {5, 6, 8, . . . , n − 6, n − 4}, 1 → 0 →
2 → n − 3, 1 → 3 → n − 2 → n − 3, 1 → 4 → n − 1 → n − 3 and
1→ 7→ n− 5→ n− 3

1→ n− 2 Use the paths 1 → i → n − 2 for i ∈ {3, 5, 7, . . . , n − 6, n − 4}, 1 → 0 →
n− 5→ n− 2, 1→ 4→ n− 1→ n− 2 and 1→ 6→ n− 3→ n− 2

1→ n− 1 Use the paths 1 → i → n − 2 for i ∈ {4, 6, . . . , n − 6, n − 4}, 1 → 0 →
n− 5→ n− 1, 1→ 3→ n− 2→ n− 1 and 1→ 5→ n− 3→ n− 1

2→ n− 5 Use the paths 2 → i → n − 5 for i ∈ {0, 4, . . . , n − 8, n − 3}, 2 → 3 →
n−2→ n−5, 2→ n−6→ n−1→ n−5 and 2→ n−7→ n−4→ n−5

2→ n− 4 Use the paths 2 → i → n − 4 for i ∈ {3, 5, . . . , n − 8, n − 3}, 2 → 0 →
1 → n − 4, 2 → 4 → n − 1 → n − 4, 2 → n − 6 → n − 2 → n − 4 and
2→ n− 7→ n− 1→ n− 4

2→ n− 2 Use the paths 2 → i → n − 2 for i ∈ {3, 5, 7, . . . , n − 6, n − 3}, 2 → 0 →
n− 5→ n− 2, 2→ 4→ n− 1→ n− 2 and 2→ 6→ n− 4→ n− 2

2→ n− 1 Use the paths 2 → i → n − 2 for i ∈ {4, 6, . . . , n − 6, n − 3}, 2 → 0 →
n− 5→ n− 1, 2→ 3→ n− 2→ n− 1 and 2→ 5→ n− 4→ n− 1

3→ 4 Use the paths 3→ i→ 4 for i ∈ {0, 1, 2, 6, . . . , n−6}, 3→ n−4→ n−5→
4 and 3→ n− 2→ n− 1→ 4

3→ 5 Use the paths 3 → i → 5 for i ∈ {0, 1, 2, 8, . . . , n − 6, n − 4, n − 2},
3→ 6→ n− 3→ 5 and 3→ 7→ n− 5→ 5

3→ n− 5 Use the paths 3 → i → n − 5 for i ∈ {0, 6, . . . , n − 8, n − 4, n − 2},
3→ 1→ 4→ n− 5, 3→ 2→ 5→ n− 5, 3→ n− 6→ n− 3→ n− 5 and
3→ n− 7→ n− 1→ n− 5

3→ n− 3 Use the paths 3 → i → n − 3 for i ∈ {2, 6, 8, . . . , n − 6, n − 4, n − 2},
3→ 0→ n− 5→ n− 3, 3→ 1→ 5→ n− 3 and 3→ 7→ n− 1→ n− 3
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3→ n− 1 Use the paths 3→ i→ n− 1 for i ∈ {6, . . . , n− 6, n− 4, n− 2}, 3→ 0→
n− 5→ n− 1, 3→ 1→ 4→ n− 1 and 3→ 2→ n− 3→ n− 1

4→ 5 Use the paths 4→ i→ 5 for i ∈ {0, 1, 2, 8, . . . , n−5}, 4→ 6→ n−3→ 5,
4→ 7→ n− 2→ 5 and 4→ n− 1→ n− 4→ 5

4→ n− 4 Use the paths 4 → i → n − 4 for i ∈ {1, 6, . . . , n − 8, n − 5, n − 1},
4→ 0→ n− 5→ n− 4, 4→ 2→ 3→ n− 4, 4→ n− 7→ n− 2→ n− 4
and 4→ n− 6→ n− 3→ n− 4

4→ n− 3 Use the paths 4 → i → n − 3 for i ∈ {2, 6, 8, . . . , n − 5, n − 1}, 4 → 0 →
5→ n− 3, 4→ 1→ n− 4→ n− 3 and 4→ 7→ n− 2→ n− 3

4→ n− 2 Use the paths 4→ i→ n−2 for i ∈ {7, . . . , n−5, n−1}, 4→ 0→ 5→ n−2,
4→ 1→ n− 4→ n− 2, 4→ 2→ n− 3→ n− 2 and 4→ 6→ 3→ n− 2

5→ 6 Use the paths 5 → i → 6 for i ∈ {0, 1, 2, 10, . . . , n − 3}, 5 → 8 → 3 → 6,
5→ 9→ 4→ 6 and 5→ n− 2→ n− 1→ 6

5→ 7 Use the paths 5 → i → 7 for i ∈ {0, 1, 2, 10, . . . , n − 4, n − 2}, 5 → 8 →
3→ 7, 5→ 9→ 4→ 7 and 5→ n− 3→ n− 1→ 7

5→ n− 1 Use the paths 5 → i → n− 1 for i ∈ {8, . . . , n− 2}, 5 → 0 → 4 → n− 1,
5→ 1→ 6→ n− 1 and 5→ 2→ 7→ n− 1

6→ 7 Use the paths 6 → i → 7 for i ∈ {0, . . . , 4, 10, . . . , n − 4, n − 1} and
6→ n− 3→ n− 2→ 7

6→ 8 Use the paths 6 → i → 8 for i ∈ {0, . . . , 4, 12, . . . , n− 3, n− 1}, 6 → 9→
n− 2→ 8 and 6→ 10→ 5→ 8

6→ 9 Use the paths 6 → i → 9 for i ∈ {0, . . . , 4, 12, . . . , n− 3, n− 1}, 6 → 9→
n− 2→ 9 and 6→ 10→ 5→ 9

6→ n− 2 Use the paths 6→ i→ n− 2 for i ∈ {3, 10, . . . n− 3, n− 1}, 6→ 0→ 5→
n− 2, 6→ 1→ 7→ n− 2 , 6→ 2→ 8→ n− 2 and 6→ 4→ 9→ n− 2

7→ 8 Use the paths 7 → i → 8 for i ∈ {0, . . . , 4, 12, . . . , n − 4, n − 2, n − 1},
7→ n− 11→ 5→ 8 and 7→ n− 10→ n− 3→ 8

7→ 9 Use the paths 7 → i → 9 for i ∈ {0, . . . , 4, 12, . . . , n − 4, n − 2, n − 1},
7→ n− 11→ 5→ 9 and 7→ n− 10→ n− 3→ 9

7→ n− 3 Use the paths 7 → i → n − 3 for i ∈ {2, 10, . . . n − 4, n − 2, n − 1},
7 → 0 → 5 → n − 3, 7 → 1 → 6 → n − 3 , 7 → 3 → 8 → n − 3 and
7→ 4→ 9→ n− 3

n− 5→ n− 7 Use the paths n−5→ i→ n−7 for i ∈ {0, 4, . . . , n−10, n−3, . . . , n−1},
n − 5 → n − 9 → 1 → n − 7, n − 5 → n − 8 → 2 → n − 7 and n − 5 →
n− 4→ 3→ n− 7
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n− 5→ n− 7 Use the same paths as from n− 5 to n− 7

n− 4→ n− 7 Use the paths n−4→ i→ n−7 for i ∈ {1, 3, 5, . . . , n−10, n−3, . . . , n−1},
n − 4 → n − 9 → 0 → n − 7, n − 4 → n − 8 → 2 → n − 7 and n − 4 →
n− 5→ 4→ n− 7

n− 4→ n− 6 Use the paths n−4→ i→ n−6 for i ∈ {1, 3, 5, . . . , n−10, n−3, . . . , n−1},
n − 4 → n − 9 → 0 → n − 6, n − 4 → n − 8 → 2 → n − 6 and n − 4 →
n− 5→ 4→ n− 6

Now for j = 8, . . . , n− 6, if for j → i holds i ≤ n− 6:
if j is even:

j → j + 1 Use the paths j → i→ j + 1 for i ∈ {0, . . . , j − 3, j + 4, . . . , n− 1}

j → j + 2 Use the paths j → i → j + 1 for i ∈ {0, . . . , j − 3, j + 6, . . . , n − 1},
j → j − 2→ j + 4→ j + 2 and j → j − 1→ j + 5→ j + 2

j → j + 3 Use the paths j → i → j + 1 for i ∈ {0, . . . , j − 3, j + 6, . . . , n − 1},
j → j − 2→ j + 4→ j + 3 and j → j − 1→ j + 5→ j + 3

if j is odd:

j → j + 1 Use the paths j → i → j + 1 for i ∈ {0, . . . , j − 3, j + 6, . . . , n − 1},
j → j − 2→ j + 4→ j + 1 and j → j − 1→ j + 5→ j + 1

j → j + 2 Use the paths j → i → j + 1 for i ∈ {0, . . . , j − 3, j + 6, . . . , n − 1},
j → j − 2→ j + 4→ j + 2 and j → j − 1→ j + 5→ j + 2

This proof has a lot more cases than the proof of the t = n − 5-series and
more graphs were needed to find the structure of this series. So probably every
following series will be harder to find and to prove than the one before.

3.3 Case n = 2m + 1, t = n− 9

For this series the graphs for n = 13, 15, 17, 19, 21 and 23 were found by trial
and error, but still no structure was found. Knowing these graphs, the graph
for n = 25 can not be constructed trivially. As expected for each new series
more graphs are needed to find the structure and the proof will contain more
cases as the non-trivial part of the graph gets larger.
Also there is no trivial path from the series before to the next series. Unfor-
tunately there was no more time to find a construction which would give all
graphs.

3.4 Case n = 2m + 1, t = 4

For n = 9, 11, 13 these graphs are mentioned before in this paper. Knowing
these, the graphs for n = 15, 17, 19, 21, 23 were found easily, but every one of
these has a few rows that are not resemblant. No structure was found for this
series.
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4 JAVA Program

I have written a JAVA program that checks whether safe communication is pos-
sible in a graph, where the graph has an odd number of vertices and an even
number of adversaries and the edges from 0 to 1 and 0 to 2 are assigned the
same key.

Input:
A matrix M which represents a graph in which every edge is assigned a different
key except for the edges (0,1) and (0,2) which share a key.

Method
Create four new matrices to make sure that the edges (0,1) and (0,2) are not
used in two different paths:
M1 remove all edges to 0,1 and 2 (the vertices 0,1,2 are not used)
M2 remove all edges to 0, add the edge (1,2) (the path 1↔ 0↔ 2 is used)
M3 remove all edges to 1 (the vertex 1 is not used)
M3 remove all edges to 2 (the vertex 2 is not used)
Change these matrices to directed matrices as follows:

Replace each edge by five directed edges (left figure) and replace a vertex
with multiple edges coming in and multiple edges going out by two vertices
(right figure).
For every two vertices find a max flow by using Ford and Fulkersons max-flow
algorithm, Dijkstra’s shorthest path algorithm is used to find a path in every
step in the Ford and Fulkerson algorithm.

Output:
The number of disjunct paths for every two vertices which are not directly con-
nected by an edge with a non-shared key.
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A Matrices

The matrices are named (n, t + 1) where n is the number of participants and t
is the maximum number of adversaries.

A.1 Case n = 2m + 1, t = n− 5

(9,5) 

0 1 1 1 1 1 1 0 0
1 0 0 1 1 1 0 1 0
1 0 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 0
1 1 1 0 0 0 1 0 1
1 1 1 0 0 0 0 1 1
1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 1 0 1
0 0 1 0 1 1 1 1 0


(11,7) 

0 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 0 1 0
1 0 0 1 1 1 1 1 0 0 1
1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0 1 1
1 1 1 1 0 1 0 0 1 1 0
1 1 1 0 1 1 0 0 1 0 1
1 0 0 1 1 0 1 1 0 1 1
0 1 0 1 1 1 1 0 1 0 1
0 0 1 1 1 1 0 1 1 1 0


(13,9) 

0 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 1 1 0 1 0
1 0 0 1 1 1 1 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1 0 1 1 1
1 1 1 0 0 0 1 1 0 1 1 1 1
1 1 1 0 0 0 1 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 1 1 1
1 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 1 0 1 0 0 0 1 1 1 1
1 1 1 0 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 1 1 1 0 0 1 1
0 1 0 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 0 0
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(15,11) 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 1 1 1 1 0 1 0
1 0 0 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1 1 1 0 1 1 1
1 1 1 0 0 0 1 1 1 1 0 1 1 1 1
1 1 1 0 0 0 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 0 1 1 1 1
1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 1 0 1 1 1
1 1 1 1 1 0 1 0 1 0 0 1 1 1 1
1 1 1 1 0 1 0 1 1 0 0 1 1 1 1
1 1 1 0 1 1 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 1 1 1 1 1 0 0 1 1
0 1 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 0 0


(17,13) 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1
1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1
1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1
1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
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(19,15)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1
1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1
1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0


A.2 Case n = 2m + 1, t = n− 7

(11,5) 

0 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 0 1 0 0 0
1 0 0 1 1 1 0 0 1 0 0
1 1 1 0 0 0 0 1 0 1 0
1 1 1 0 0 0 1 0 0 0 1
1 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 1 1
0 1 0 1 0 0 0 0 1 1 1
0 0 1 0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0 0
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(13,7) 

0 1 1 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 1 0 1 0 0 0
1 0 0 1 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0 1 0 1
1 1 1 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 1 0 0 0 1 1 1 1
0 1 0 1 0 1 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 1 0 1 1 1 1 0 1
0 0 0 0 1 0 1 1 1 1 1 1 0


(15,9) 

0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 1 1 1 0 1 0 0 0
1 0 0 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0 1 1 1 0 1
1 1 1 1 1 0 0 0 0 0 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 0 0 0 1 1 1 1
0 1 0 1 0 1 1 1 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1 0 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 0 1
0 0 0 0 1 0 1 1 1 1 1 1 1 1 0
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(17,11) 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1
0 1 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1
0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0


(19,13)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1
0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0
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(21,15)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0


A.3 Case n = 2m + 1, t = n− 9

(13,5) 

0 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 1 0 0
1 0 0 0 1 0 0 0 1 1 1 0 0
0 1 0 0 1 1 0 0 0 0 0 1 1
0 1 0 0 0 1 1 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 1 1
0 0 0 1 0 0 0 1 1 1 1 0 0
0 0 0 1 0 0 0 1 1 1 1 0 0



35



(15,7) 

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 1 1 1 1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 0 1 0 1 0 0 0
1 1 1 0 0 0 1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 1 0 1 0 1 0
1 1 1 1 1 0 0 0 0 0 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 1 0 1
1 0 0 0 1 1 0 0 0 0 1 1 0 1 1
0 1 0 1 0 1 0 0 0 0 1 0 1 1 1
0 0 1 0 0 0 1 0 1 1 0 0 1 1 1
0 0 0 1 0 1 1 0 1 0 0 0 1 1 1
0 0 0 0 1 0 0 1 0 1 1 1 0 1 1
0 0 0 0 0 1 0 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0


(17,9) 

0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1
0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1
0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
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(19,11)

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1
1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1
0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0


(21,13)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1
0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1
0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
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(23,15)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0
1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1
0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1
0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1
0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0


A.4 Case n = 2m + 1 ≥ 15, t = 4

(15,5) 

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 1 0 0 0 0 1 1
0 0 0 1 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 0 0 0 0 1 1 1 1 0 0
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(17,5) 

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0


(19,5)

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0



39



(21,5)

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0
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(23,5)

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0
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B Program manual

Make sure you have the program in the same folder as the matrices you want to
check. The matrices should be in a .txt file and every row contains only zeros
and ones separated by spaces. The program can check whether the matrix you
loaded is symmetric and if the zero row has exactly one one more than all other
rows.
Menu items

• Check Graph After you loaded a graph you can make the program find
out whether safe communication is possible in the loaded graph, where
the edges (0,1) and (0,2) share one key.

• Load Graph This asks for the name of the .txt file which contains the
file, the input should end with “.txt”.

• Options Here you can choose whether the program should check if the
matrix is symmetric and if the vertex zero has exactly one edge more than
all others vertices. This will be executed when the option check graph is
activated.

• Output Here you can generate different outputs, the complement graph,
the adjacency matrix and the adjacency matrix of the complement graph.

Figure 16: The JAVA Program

42



The program looks as in Figure 16. The graph is drawn in the center, above
the graph is the name of the file you loaded. After you have checked the graph
the right textfield will be filled with the number of paths between every pair of
vertices.

The JAVA code can be found on the cd attached to this report. All matrices
given in appendix A and an executable jar file of the program can also be found
on the cd.
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