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Abstract: Organic semiconductor micro/nanocrystals (OSMCs) have attracted great attention due
to their numerous advantages such us free grain boundaries, minimal defects and traps, molecular
diversity, low cost, flexibility and solution processability. Due to all these characteristics, they are
strong candidates for the next generation of electronic and optoelectronic devices. In this review,
we present a comprehensive overview of these OSMCs, discussing molecular packing, the methods to
control crystallization and their applications to the area of organic solid-state lasers. Special emphasis
is given to OSMC lasers which self-assemble into geometrically defined optical resonators owing
to their attractive prospects for tuning/control of light emission properties through geometrical
resonator design. The most recent developments together with novel strategies for light emission
tuning and effective light extraction are presented.

Keywords: organic molecules; single crystals; molecular packing; lasers; optical resonators

1. Introduction

Since the turn of century, organic semiconductor micro/nanocrystals (OSMCs) [1–7]
have attracted continuous attention as a promising research topic with promising electronic
and optoelectronic applications, including organic field-effect transistors (OFETs) [8–11],
organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs) [12,13], photodetec-
tors (PDs) [14,15], and lasers [16–20]. A huge amount of OSMCs have been developed,
with several assets over their inorganic counterparts, such us a plethora of molecular
structures with diverse properties, low-cost device fabrication, compatibility with stretchy,
flexible, and lightweight moldable substrates, etc. [21]. Consequently, the low thickness,
light weight, foldability, and stretchability of OSMCs make them suitable, for instance,
for flexible or miniaturized organic electronics and optoelectronic applications. On the
other hand, OSMCs offer the possibility to be shaped into diverse molecular assemblies,
which are finely tuned by crystal engineering [22]. Single crystals of high quality offer long
exciton diffusion length and long lifetimes which are attractive for light-to-energy conver-
sion [23,24]. Finally, they present large compatibility with nonexpensive solution-processed
methods which can be easily scaled-up for device fabrication [25]. Different techniques
such as spin-coating, drop-casting or ink-jet printing can be used with organic single crys-
tals for the development of electronic devices. The high purity and low density of defects
in organic single crystals is crucial for the development of high-performance devices and
circuits. To optimize device performance, it is necessary to avoid grain boundaries, defects,
impurities, and dislocations.

OSMCs can be prepared into different micro/nanostructures with controlled fabrica-
tion procedures, enabling for different properties, depending on the nucleation, molecular
packing, and assembly [22]. The formation of OSMCs is determined by regular and
stretched intermolecular packing among neighboring molecules with moderately weak
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noncovalent bonds, such as Van der Waals forces, hydrogen bonds, and the π-π interac-
tions. This affords different packing modes that are decisive in the formation of organic
micro/nanocrystals which highly influence their optoelectronic properties. These inter-
molecular interactions are also easily influenced by the external conditions like the light,
solvents and the temperature.

The study of both crystal growth and engineering for the preparation of high-quality
OSMCs has been widely addressed. An in-depth analysis of the crystal engineering allows
getting a variety of different micro/nanocrystals with various physical properties. Herein,
one of the most important aspects is the chemical versatility and modular nature of organic
materials, allowing for modulation and change in the intermolecular interactions through
subtle changes in the molecular structure. Moreover, physical properties such us melting
point, sublimation temperature, or solubility are also important aspects to consider for
OSMC growth. Thus, many organic semiconductors with diverse molecular structures
have been synthesized and described.

Therefore, taking into account the dimensionality and the shape of the microstruc-
ture/nanostructure, a control of the different properties can be achieved. OSMCs can
be prepared into 1D wires, tubes, 2D-sheets, belts or discs, affording different crystals
morphologies [5,7].

Meanwhile, OSMCs development has not only restricted to achieving randomly
dispersed organic crystals, but also there have been huge efforts in developing methods for
alignment and patterning of OSMCs into ordered arrays, with the goal of obtaining much
better device performance [4,26].

There is an important relation between the molecular structures, packing modes,
crystal morphologies, and optoelectronic properties (Scheme 1), achieving the final and
complex property of the material.
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Scheme 1. Relationships in OSMCs among crystal morphology, molecular structures, packing
structures and photonic properties.

In this review, we firstly introduce the importance of molecular packing in the crystals.
The different noncovalent intermolecular interactions such as hydrogen bonding, π-π stack-
ing, van der Walls forces amongst others, govern the packing arrangement of the molecules,
aside from electronic and optoelectronic properties. Subsequently, we discuss the different
large number of organic crystal growth techniques for controlling the crystallization of
organic semiconductors to get OSMCs. Finally, we discuss the main developments in the
field of organic crystal lasers, describing briefly the photophysics and figures-of-merit of
OSMCs in terms of optical gain properties, the types of crystalline optical resonators more
commonly reported and recent relevant examples of laser cavities based on the different
types of crystal resonators.
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2. Molecular Packing in Crystals

In organic semiconductors absorption and emission of light implicates an electronic
transfer between the highest occupied molecular orbital (HOMO) and the lowest unoccu-
pied molecular orbital (LUMO) which forms and removes an exciton. Optical properties
of these semiconductors differ in solution and in the solid state (Figure 1a). In solution
organic molecules are surrounded by solvent molecules which implies no disruption in
exciton formation, whereas in solid state molecules of the semiconductor are close to each
other involving a direct overlap of the molecular orbitals (MOs) of neighboring molecules,
creating excitonic couplings. One example is the interaction of transition dipole densities,
affecting the optical and electrical properties of the material [27–31].
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Figure 1. (a) Absorption and emission of distyrylbenzene (DSB)-based materials. Reproduced with
permission from ref. [27]. Copyright 2013 RSC. (b–c) Schematic of molecular aggregation for dimers.
Reproduced with permission from ref. [32]. Copyright 2018, Wiley-VCH.

As mentioned before semiconductor molecules aggregate by noncovalent, weak in-
termolecular interactions as hydrogen bonds, π-π stacking, Van der Walls forces amongst
others. These forces are the ones that govern the molecular packing the molecule undergoes.
There are four typical packings [32] (Figure 1b,c), the first one consisting of two adjacent
molecules that are arranged completely face to face, called an ideal π stacking (Figure 1b
I), and stands to an H-aggregate in relation to their optical properties. This arrangement
gives the largest intermolecular overlap which leads to a decline in the optical properties
due to the strong π-π overlap; on the other hand, it is the packing that allows for efficient
charge transfer and high mobility alongside the stacking direction. To achieve this packing
is hindered by the high electrostatic repulsion of the neighboring molecules [33]. Generally,
a face-to-face arrangement involves a slight translation along the Y plane between the
two molecules. This situation is referred as a pitched π-stack which is defined by the
pitch (P) angle [34,35] (Figure 1b II, c I). By increasing the pitch angle by 50% or more
slipping, the H-aggregation changes to a J-aggregation and the overlapping of the orbitals
and splitting energies are reduced, providing better emission properties [36–38]. Another
way of achieving this is by moving the stack on the X plane, achieving a rolled π-stack
(Figure 1b III,c II), defined by a rolled (R) angle. When the π-π overlap is decreased, the
exciton created localizes quickly, making the intermolecular vibrations barely participative
in the emission spectra. Contrarily, when the π-π overlap increases the charge transfer (CT)
increases, promoting an intermolecular separation upon electronic de-excitation which
implies a loss of vibronic structure, red-shift and excimer emission features [17]. One
example of the pitched and rolled arrangements is 1,4-bis(R-cyano-4-diphenylaminostyryl)-
2,5-diphenylbenzene(CNDPASDB) [39–41] (Figure 2a) in which the molecules are stacked
but shifted along the X or Y plane. Another arrangement we can encounter is the her-
ringbone (Figure 1b IV,c III) in which one of the molecules is rotated along its long axis
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with an angle (H), getting an edge to face alignment. This packing decreases the π-π
stacking as in the J-aggregates allowing better emission properties. Pentacene and 1,4-
bis(4-methylstyryl)benzene (p-MSB) crystals are examples of a herringbone motif [42–44]
(Figure 2c). The last arrangement we can encounter is the X-aggregation (Figure 1b V,
c IV), when one molecule rotates around the stacking axis but retaining the molecular
planes parallel with each other. It is the arrangement that in theory should give rise to
the strongest fluorescence properties due to the least π-overlapping and large molecular
distance and high carrier mobility, depending on the rotating angle [45–47]. An example
of the X-aggregate takes place in perylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE)
depicted in Figure 2e wherein one molecule is rotated with respect of the other 70.2◦ [48].
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Figure 2. (a–d). Schematic representation of molecular packings. Reproduced with permission from
ref. 50. Copyright 2014, Wiley-VCH. (e) Schematic representation of X-aggregate of PTE molecule.
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Another aspect to bear in mind is the presence of intralayer molecular interactions
which are much weaker than the face-to-face interactions; these interactions produce a
tilting in the molecular layer which can be measured by an angle (L) between the normal
of the bottom crystal plane and the molecular long axis (Figure 2). Depending on the
interactions between the layers there can be a “zig-zag” disposition (Figure 2b,d). Figure
2b for instance displays 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene (BP2VA) molecules
having a pitch or roll packing but with a “zig zag” arrangement between layers [49,50].
In addition, p-MSB crystal has a herringbone motif but with a “zig zag” arrangement
between layers [51].

The different H-, J- and X-aggregate arrangements give raise to changes in the electrical
and optical properties depending on the exciton and splitting energy. (Figure 3). Focusing
on the optical properties, H-aggregates lead to an absorbance blue shift (hypsochromic)
respect to solution concomitant with a low radiative constant (Kr), whereas J-aggregates
absorbance exhibit a red shift (bathochromic) and a high Kr [36,52]. In the case of X-
aggregates generally the absorbance in solution and in the aggregate itself is similar.
As aforementioned H-aggregates often causes quenching in the solid state due to the strong
π-overlap, but in the case of J-aggregate or herringbone packing the π-overlap decreases,
so the optical properties improve. A strategy to achieve good mobility and emission is to
join simultaneously these two, J-aggregate and a herringbone packing, or the use of the
X-aggregates which reduces the π-overlap but maintains the planarity [53–56].
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3. The Growth Techniques for the Preparation of Organic Semiconductor
Micro-/Nanocrystals

The methods used nowadays for inorganic crystal formation are not adequate for
organic single molecules due to the harsh conditions used such as high pressure and
temperature, hard reaction conditions and numerous solvents used [57].

The preparation methods of OSMCs can be classified into three categories: solution,
melting and vapor processing. Solution processing is often used for nonthermally stable
materials whereas melting and vapor processing can be used for materials with high
thermal stability and low solubility[2].

A wide variety of different techniques for controlling the crystallization of OSMCs
have been developed during the last decades [2,3]. A precise control of the crystallization
process is key to achieve high quality crystals, therefore the growth method and conditions
are essential to the morphologies and the molecular arrangements. The morphology and
the stacking of these OSMCs depend on the different conditions in the growth methods.
A control in these growth methods should afford a better crystal quality providing better
device performance.

3.1. Solution-Processing Techniques

These are the most simple and effective approaches to grow organic crystals because
most of organic molecules are soluble in a multitude of organic solvents in a wide range
of temperatures and pressures. The concentration in solution increases upon solvent
evaporation, reaching a point of saturation where molecules self-assemble creating complex
micro/nanocrystalline structures [58–60].

3.1.1. Drop-Casting

The drop-casting method is the most efficient approach to grow OSMCs by self-
assembly of organic molecules. The self-assembly process depends on the intermolecular
interactions between solvent molecules, organic molecules and organic-solvent molecules.
The growth of the crystals with this method requires control of different conditions such as
solvent, concentration, atmosphere and temperature. The growth condition is key to opti-
mize the crystal quality. The method consists of dropping a volume of organic semiconduc-
tor solution onto a substrate and let the solvent evaporate for several hours or days. Precise
control of concentration, temperature, atmosphere and substrate surface enables for the for-
mation of high-quality crystals [61–63]. One example is 9,10-bis(phenylethynyl)anthracene
(BPEA), which led to different crystal phases depending on the solvent used (chloroben-
zene or dichloromethane) because of the evaporation velocity, which is determined by
the interaction between the molecule and the solvent, and whether it is an open system
or a quasi-closed system [64]. Another example is diphenylfluorenone (DPFO): adding a
solution of this molecule in THF to a substrate leads to microfibers, whereas adding more
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solution on top caused microfiber redissolution and subsequent formation of microplates
upon solvent evaporation (Figure 4a–c)[65].
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3.1.2. Dip-Coating

This technique consists of pulling out a substrate that is immersed in a solution of
the organic molecule. This technique allows obtaining organized pattern crystals. Firstly,
molecules crystallize in the substrate due to solvent evaporation. Owing to the concentra-
tion gradient and capillary forces, more molecules from the solution will move to the contact
line depositing more material, crystallizing opposite to the pulling direction. The main
parameter to control is the dip-coating speed which strongly influences the morphologies
of the crystals formed. Nanoribbon arrays were obtained for instance from a solution
of BPEA and triisopropylsilyethynyl pentacene (TIPS-PEN) with this method. Applying
pulling speeds higher than 80 µm s−1 led to individual nanoribbons whereas lowering the
speed below 30 µm s−1 led to a conglomerate of nanoribbons (Figure 4d–f) [4,26].

3.1.3. Solvent Exchange

A commonly used method consists of making the solution saturated or hypersaturated
by adding an antisolvent. Through diffusion of the solvent and antisolvent the molecule
precipitates and self-assembles [66]. In order to implement this method, a few conditions
have to be fulfilled: (i) the organic molecule must be soluble in one solvent and insoluble
in the other; (ii) both solvents ought to be miscible with one another; and (iii) both solvents
should have different densities in order form an interface and avoid rapid mixing which
would lead to fast nucleation [67–70]. An example of this process is depicted in Figure 5a.
This method led to C60 crystals with different plate or rod morphologies by changing the
solvents and solvent ratios of CCl4, m-xylene and isopropanol [71].
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Another interesting example stands for the use of this method to obtain micro-
rings; this technique uses the solvent exchange method along with the interfacial tension
(Figure 5b). Micro-rings are achieved by adding a droplet of a solution of 1,5-diphenyl-
1,4-penta-dien-3-one (DPPDO) (a flexible compound) in ethanol/water into a substrate,
the ethanol evaporation triggers precipitation of the compound on the water droplet.
Nucleation starts preferentially at the drop edge, whereas the water tension and weak
intermolecular interactions enable the wires to bend into micro-rings. In addition, if the
concentration is increased to 10 mmol L−1, microtiles are obtained [72].

3.1.4. Solvent Vapor Diffusion (SVD)

When avoidance of solvent mixing is an obstacle or solvents have same densities,
solvent-vapor diffusion (SVD) can be used. It is a variant of the solvent exchange method
with the difference that the antisolvent is placed outside rather than inside the solution.
Slow evaporation of the antisolvent leads to its gradual diffusion inside solutions to
mix with the solvent, provoking molecular precipitation and self-assembly. This method
reduces the mixing speed of the solvents being able to achieve higher and better qual-
ity crystals [73–75]. High quality 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9′-
spirobifluorene (spiro-OMeTAD) crystals were developed with this method (Figure 6) [75].
As shown in Figure 6a, the inner vial contains the spiro-OMeTAD solution in DMSO at a con-
centration of 1 mg/mL, whereby the outer contains the nondissolving methanol. When the
diffusion of methanol vapor proceeds slowly to the inner vial at room temperature, it pro-
vokes a sustained reduction of solubility of spiro-OMeTAD in the methanol-enriching
solution, finishing in a supersaturation state that triggers its crystallization (Figure 6b,c).
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Single crystals of diperylene bisimide were also grown through this strategy. In this
case the inner vial contains the solution of the bisimide in toluene and the outer vial
contains methanol as the antisolvent [76].

3.2. Melting Processed Crystals

The melt crystal growth methods, such as Bridgman and Stockbarger, Czochralski,
or floating zone methods, are often used for growing large crystals of inorganic semicon-
ductors, however these methods have also been used for organic single crystal growth
(Figure 7) [77]. Normally, these methods are known as zone refining, zone melting or
zone freezing technique. They have been less employed for growing organic crystals due
to the high vapor pressure and chemical stability of organic molecules around melting
temperatures.
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Figure 7. (a) Bridgman and (b) zone melting method utilized for organic single crystals growth.

This method, however, has some constraints: (i) molecules must have a well-defined
melting point; (ii) large thermal stability at fusion temperature is required; (iii) molecules
must have low chemical activity; and (iv) they must be extremely pure because this
technique is highly sensitive to impurities [57].

Among these requirements, the main challenge concerns with the thermal stability
of the organic compound. In addition, these methods require a large amount of material,
and relatively expensive apparatus. A way to circumvent this problem consists of growing
the crystals between two glass or quartz slides [78]. Thiophene-phenyl-pyrrole (TPP) crys-
tals were grown by this method upon placing the material between two quartz substrates
in a hot stage, obtaining flat crystals that show waveguiding properties (Figure 8a) [79].
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3.3. Vapor Processed Crystals

As mentioned above this method is used primarily for molecules with low solubility
and high thermal stability. It involves phase transitions between solid, liquid and vapor
phases.

3.3.1. Physical Vapor Transport (PVT)

The most common technique is physical vapor transport (PVT). First proposed by Kloc
and Laudise et al. [80,81] became one of the most popular methods for growing organic
crystals. It consists of heating the material, most of the cases under vacuum so that the
boiling point of the material lowers. The sublimated material is then transported to a
lower temperature zone by an inert gas where it crystallizes. By this method impurities
also crystallize in front or behind the crystallization zone. The control parameters in this
technique are carrier gas flow, temperature gradient, and vacuum level (Figure 8b) [82–84].
Doped crystals of BSB-Me with tetracene and pentacene were grown with PVT using just
the doped powder, to obtain crystals thicknesses of less than 400 nm and length of several
millimetres (Figure 8c) [85].
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(c) Doped crystals of BSB-Me with tetracene and pentacene grown by PVT. Reproduced with permis-
sion from ref. [85]. Copyright 2017, Wiley-VCH.

3.3.2. Microspacing Sublimation

Crystals grown from PVT are of high quality, but the growth requires high vacuum
environment, inert flowing gas, high control of the temperature and expensive apparatus.
In this sense Xutang Tao et al. reported a new method to obtain organic crystals through
sublimation based on microspacing distance, which is low cost and requires less parameter
control (Figure 9) [86]. It consists of heating the organic molecule in a hot stage deposited
in a substrate until sublimation to the upper substrate, separated around 400 µm. The evap-
orated material condenses in droplets on the upper substrate, from which crystals grow.
They obtained high quality crystals of anthracene, perylene, pentacene, pyrene among
others with sizes from 10 to 50 µm [87,88].
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4. Organic Solid Lasers

A laser consists of an optical gain medium located in an optical cavity providing
optical feedback in one, two, or three directions. Light is generated inside the medium
by electrical (electrically-pumped lasers) or optical (optically-pumped lasers) stimuli and
amplified by stimulated emission. Organic π-conjugated materials exhibit very interesting
features as active media in laser devices. They show high room-temperature photolumines-
cence quantum efficiencies (PLQE) [89,90] which translates into large stimulated emission
(SE) cross-section values and their photoluminescence (PL) spectra can be tuned through
chemical functionalization [91]. Moreover, organic lasers can be processed by cost-effective
solution-based methods [92], they have capabilities to confine and guide light due to their
elevated refractive indexes [93] and they possess unique mechanical properties (flexibility
and light weight) leading to new potential market niches for organic laser devices. From a
more intrinsic point of view, organic semiconductors are potential four-level laser systems,
(see scheme in Figure 10a). In this configuration excited states generated by an electrical or
optical perturbation relax efficiently to the lowest excited state. Depending on the nature
of the organic molecule such state can have a local excited [94,95], or intramolecular charge
transfer character [96]. In all cases, fast internal conversion and vibrational cooling leads
to fast pumping of the lowest excited state from which, radiative emission to the upper
vibrational levels of the ground state occurs. Given that these upper vibrational levels are
empty at room temperature, stimulated emission takes place without competition with
resonant ground state absorption. This lack of competition is what endorses conjugated
molecules with unique features for optical gain, thus guaranteeing laser action at low
optical pumping thresholds. Another interesting feature relies on the fact that emission
is displaced from the absorption spectral region by the so-called Stokes shift, minimizing
re-absorption. Furthermore, spectral displacement can be achieved through the realization
of co-crystals based on donor-acceptor moieties which also enable to span the lumines-
cence across the visible [97,98]. A myriad of organic crystals are found to combine high
PLQE and outstanding charge transport [85,99–101], paving the way for the realization of
electrically-pumped lasers, the first demonstration being recently reported in 2019 [102].

A basic example of an organic laser cavity is composed by and organic semiconductor
film located between two metallic or dielectric mirrors or gratings, either in external [103]
or in an integrated microcavity geometry [104]. Other types of organic laser geometries are
mirror-free surface-emitting distributed feedback (DFBs) cavities [105,106] where a grating
is imprinted on (or formed by refractive index variation of) the gain medium, producing
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feedback in one direction. In both cases waveguiding by total internal reflection due to the
difference in refractive indices at the organic layer boundaries is required to confine the
light in the direction perpendicular to the layer.

Organic crystals provide the possibility to merge optical gain and optical feedback
due to the presence of well-defined crystal faces enabling optical confinement through total
internal reflection inside the crystal cavity. Despite the vast number of reports on optical
gain from organic crystal lasers, the majority of them refer to processes which are not
supported by cavity geometrical resonances, (e.g., random lasing or amplified spontaneous
emission (ASE)). ASE does not require optical feedback because light amplification takes
place by a single pass along the optical gain medium. ASE is typical of organic waveguides
(slabs, 1D planar waveguides or optical fibers) [107–112] but can also be supported by
organic crystals [68,113,114]. The ASE output is constituted by a spectrally broader emission
linewidth (~10 nm) corresponding to the amplified waveguided mode along the crystal.
Random lasing is instead associated to multiple scattering effects given raise to closed
loops and optical feedback. This process is often observed in crystals which present
refractive index inhomogeneities including crystal dislocations, different morphology
areas or impurities. These inhomogeneities lead to multiple scattering and formation of
resonances via random walk. They often display multiple lasing modes and their emission
cannot be controlled though crystal design owing to their disorder nature [115–117].

Hereafter, we will address organic crystal lasers constituted by optical microresonators
formed by boundaries of the organic gain medium itself and whose resonances are deter-
mined by the microresonator geometry and the refractive index of the medium. Different
organic crystal microresonators with defined geometries have been reported, ranging from
wires [118,119], fibers [120], rings [121,122], polygonal cavities [123,124], slab crystals [125]
or disks [126].

4.1. 1D Fabry-Perot Resonators

Fabry–Perot (FP) cavities are typical of one-dimensional microstructures such as wires,
fibres and hollow fibres, where photons undergo total internal reflections at the cavity
walls and bounce back and forth at the cavity facets, leading to a periodical interference
pattern (Figure 10b). Light confinement becomes observable when the diameter of the
cavity approaches the wavelength of the light. Dimensions below the wavelength give
raise of strong diffraction effects lowering considerably the confinement efficiency, which is
given by the fractional mode power within the core.

η = 1−
(

2.405 exp
[
− 1

V

])2
V−3 (1)

where V = πd/λ (n2 − n2
0)0.5, d is the wire diameter, and n and n0 stand for the refractive

index of the wire and surrounding medium (air). For n ~ 1.7, characteristic of an organic
medium, and λ = 460 nm, a confinement efficiency of > 85% is expected when r amounts
to 300 nm [127]. Spontaneous emission gives rise to a given spectral distribution I(λ), the
light outcoupled from the Fabry-Perot (FP) resonator being given by:

It = I(λ)
(1− R)2

(1− R)2 + 4Rsin2
( 2π

λ L
) (2)

where R and L stand here for the reflectance at the cavity facets and the length of the cavity
respectively. The light outcoming the FP displays characteristic periodical resonances
arising from longitudinal modes, spectrally separated by ∆ν~c/2 nL. The number of
longitudinal modes that a certain cavity can support is given by the ratio ∆νsp/∆ν, where
∆νsp stands for the spectral bandwidth of spontaneous emission.
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4.2. Whispering Gallery Mode Resonators

Whispering gallery mode (WGM) resonances are a tangible phenomenon when re-
ferred to sound waves. Many of us has surely experienced before the capability of curved
walls from arches or domes to propagate sounds as weak as whispers. Like sound, electro-
magnetic waves experience an analogous effect. In curved surfaces based on highly dense
medium, light experiences multiple total internal reflections at the medium-air interface
leading to closed loops where light interferes constructively. The result is a standing wave
pattern distributed along the curved surface (Figure 10c) [122]. WGMs are present in
spheric and hemispheric cavities and cavities with circular surfaces like cylinders, or rings.
Cavities of polygonal shape can also support WGMs. The number of loops that photons
undergo before leaving the cavity is given by the quality factor (Q). This magnitude is
defined as:

Q =
λ

∆λ
(3)

and expresses the capability of the cavity to trap light. Q factors in WGM resonators can be
as high as 1011 although in organic WGM resonators values typically range between 103

and 104 [128]. A direct consequence of a high Q-factor is the concentration of high optical
power in the resonator giving raise to strong-light matter interactions. WGM resonators
can be applied to the development of lasers with low pumping thresholds and very narrow
linewidth. In these cavities the spectrum of the confined light experiences a rippling
ascribed to the multiple confined modes. The spacing between these resonances is inversely
proportional to the cavity diameter within the geometrical approximation:

∆λ =
λ2(

n− λ dn
dλ

)
L

(4)

A direct implication of EQ.3 and EQ.4 is that the Q factor increases with increasing
the cavity diameter. An exact treatment requires the solution of the spherical or cylin-
drical vectorial electromagnetic boundary problem, i.e., Mie theory or the equivalent for
cylindrical structures. Transverse electric (TE) and transverse magnetic (TM) solutions
result from these calculations. Whereas microresonators generally support various lasing
modes within the spectral range of the gain material, it is possible to achieve single mode
lasing by coupling two such resonators of different sizes [129]. An interesting feature of
WGM cavities is that they have extremely high Q-factors, meaning that photons in these
structures undergo many round trips, which makes them interesting for low threshold
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lasing [130] and highly sensitive transduction of physical or chemical perturbations [131].
Consequently, WGM cavities have received an ever-increasing interest for biosensing
applications [132], imaging in biological media [133], and physical sensing [131].

4.3. Lasers Based on 1D Fabry-Perot Resonators

Organic molecules arranged in one-dimensional structures supported by intermolec-
ular interactions, such as hydrogen bonding, π-π or halogenated bonds display unique
photonic properties in terms of light transport and optical amplification. Structures with
highly defined flat end faces can behave as efficient FP cavities producing the required
feedback to achieve laser action (Figure 11a,b). Crystalline one-dimensional wires are one
example [134–136]. The length and width of the wire as well as the molecular orientation
determine whether the FP cavity is constituted along the wire, or between the lateral faces
of the wire. A clear indication of the resonance direction comes from analysis of wires
with different lengths (L) and the assessment of the inversely proportional relation with
mode spacing (∆λ) given by EQ.4 (Figure 11c,d). Crystalline wires with longitudinal FP
modes (i.e., those yielding from oscillations between the wire end tips) were for instance
reported by Wang et al. based on a methoxyphenyl-hydroxynaphthalen (DMHP) deriva-
tive [119]. Single crystals of this compound obtained with the solvent-exchange method
were composed of molecules arranged in orthorhombic structure with a unit cell composed
of four symmetrically equivalent molecules, growing in one direction. The resulting wires
had lengths ranging from 5 to 100 µm and widths from 50 to 250 nm with very smooth
lateral faces of few nanometers roughness which displayed red emission and PLQEs of
32%. The PL spectrum was decorated by the characteristic periodically displaced modes
attributed to FP cavities and the separation between the modes followed a linear relation
with 1/L. Multimode lasing centered at 720 nm was observed upon pumping with fluences
above the 1.4 µJ cm−2 lasing threshold.
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Figure 11. (a) Scanning electron microscope image of a BP2T-CN crystal wire. (b) Fluorescence
microscope image of same type of wire. The intense luminescence emitted at the wire tips is the result
of effective fluorescence waveguiding. Reproduced with permission from ref. [135]. Copyright 2017
Wiley-VCH. (c) Typical FP modes emitted by S-BF2 nanowires of different lengths. The effect of length
is manifested in an increase in the spacing between the FP modes. (d) Dependence of optical mode
spacing with the wire length. Reproduced with permission ref. [136]. Copyright 2017, American
Chemical Society]. (e) Multimode laser action in DMHP crystal wires. (f) Integrated emission output
and full width half maximum of the emission spectrum as a function of pump fluence showing the
lasing threshold. Reproduced with permission from ref. [119] Copyright 2017 Wiley-VCH.
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Wires with large widths can in some cases support FP cavities defined between
the lateral faces. An example is the work by Fu and co-workers on 1,4-dimethoxy-2,5-
di[4′-(methylthio)styryl]benzene (TDSB) [118]. Single crystals of TDSB arrange into H-
aggregates forming a monoclinic structure. The resulting wires have a characteristic
rectangular shape of 0.5–2 m width and variable lengths up to 100 µm. Herein, the tight
molecular co-facial packing and strong electron-phonon coupling in the TDSB crystals
enhance the oscillator strength of the H-aggregate allowed transition leading to a PLQE
of 81%. Differing from the previous example, the cavity mode spacing arising from
these wires was independent of the wire length but followed a linear inverse dependence
with the cavity width, confirming that the FP cavity is built-in between the wire lateral
faces. Restricting the dimensions of the same wires in the transversal direction can be an
effective tool to design the resonant cavity geometry. This can be achieved for instance with
capillary bridge lithography [123,137]. This method exploits de-wetting of a liquid film
deposited on a substrate by placing the solution in contact with a template of periodically
arranged ribs with their surface modified with heptadecafluorodecyltrimethoxysilane
(Figure 12a–c). Capillary forces drive the solution underneath the pillars where slow
solvent evaporation triggers molecular nucleation leading to crystal patterns which follow
the rib shape. Capillary bridge lithography was employed to obtain TDSB wires of same
crystal structure and rectangular section as those obtained through self-assembling in
solution but of lesser width (0.5 × 0.5 µm) [123]. Detailed analysis of the PL spectra and
mode spacing of wires with different length confirmed that the resonant modes arose from
longitudinal optical oscillations between the wire tips.

FP wires typically exhibit multimode lasing although single mode lasing can be
achieved in short length cavities where the mode spectral separation ∆λ is larger than the
optical gain spectral bandwidth of the organic crystal. Liao et al. reported multimode
lasing in microbelt-shaped crystals of 1,4-dimethoxy-2,5-di[4′-(cyano)styryl]benzene, an
organic compound which displays J-aggregation [138]. Microbelts supported FP resonant
modes between the lateral faces and displayed different mode spacing dependent on the
microbelt width. Some of these crystals with the smallest widths (625 nm) gave rise to
single mode lasing at 531 nm. In principle, single mode lasing is particularly interesting
because it lacks from competition between multiple modes, which a priori would lead to
lowering of the lasing thresholds. Nevertheless, the threshold achieved in these single
mode cavities were somewhat larger than similar multimode cavities, a result which could
be explained by the individual characteristics of the measured microbelt.

Regarding the laser emission characteristics of organic FP resonators, the different
works report laser lines which span from 500–750 nm depending on the compound, with
lasing thresholds which are typically in the 0.1–10 µJ cm−2 range achieved by pumping
with 100–300 fs pulses at 1 kHz repetition rate, (see Table 1 and Figure 13 for a detailed
description). The spectral position of the lasing lines is determined by the gain spectral
bandwidth, which typically corresponds to the bandwidth of the 0–1 vibronic PL peak, and
the cavity modes supported within this bandwidth. Interestingly, in some cases optical
gain from 0–1 and 0–2 can coexist leading to simultaneous lasing at two spectral regions.
Wang et al. demonstrated that short wires of DMHP exhibited multimode lasing centered
at 660 nm whereas long wires exhibited a shift of the peaks towards 720 nm, coinciding
with the 0–1 and 0–2 vibrational PL peaks of DMHP [119]. This effect was explained as due
to the long DMHP absorption tail extending down to the 0–1 PL spectral region. Under
these circumstances, losses by self-absorption at 660 nm become important and lasing can
only be achieved through stimulating the emission from the 0–2 transition, although at
expenses of a significant increase in lasing threshold. Wires of 30.7 µm length exhibited
dual laser emission centered in these two spectral regions.
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Figure 12. (a) Description of the capillary bridged lithography method. A template composed of ribs
is placed in contact with a liquid film deposited on a substrate. (b) Simulation (left) and fluorescence
image (right) of the liquid undergoing de-wetting. (c) Asymmetric wettability between the substrate
and the ribs drives the liquid underneath the ribs (left). Subsequent solidification leads to crystalline
geometrical patterns which reproduce the template (right). Reproduced with permission from
ref. [123]. Copyright 2017 Wiley-VCH. (d) Mask-assisted photolithography following five steps:
(i) physical vapor deposition of the organic film, (ii) subsequent coating with PVA and SU8, (iii)
space-selective light irradiation, (iv) reactive ion etching of SU8 nonprotected areas and v) PVA
lift-off. (e) Fluorescence image of different geometries which can be deployed with this method.
Reproduced with permission from ref. [121]. Copyright 2012 Wiley-VCH.
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Table 1. Crystallographic and photophysical emission data of organic π-conjugated materials.

Molecule Crystal Structure Type of Cavity Dimensions (W ×
L)

Lasing Threshold
(µJ cm−2) Q-factor Lasing Wavelength

(nm) PLQE (%) Ref

TDSB
H-aggregates

monoclinic, space
group of P 2 1/c

wires, slab FP 0.5–2µm (rectangular
section) × 10–30 µm 0.1 1000 500 81 [118]

DMHP orthorhombic, space
group of Pca21

wires,
FP

0.05–0.25 µm ×
5–100 µm 1.4 - 660–720 30 [119]

TDSB
H.aggregates,

monoclinic, space
group of P 2 1 / c

patterned wires,
FP

0.5 µm (square
section) × 10–30 µm 0.4 - 500 - [123]

S-BF2 monoclinic wires,
FP 2 µm × 20–100 µm 12.8 850 645 10 [136]

COPV J-aggregates,
monoclinic

microbelts, slab
FP

0.3–0.6 µm × 1–10
µm 1.09 868 525 58 [138]

DMHC Anhortic, space
group P-1

patterned wires,
FP 0.3 µm × 1 µm 9.9 2340 775 2 [137]

BP2T
(BP2T-CN)

monoclinic P21/c
(P21) microbelts, FP 1 µm × 5–100 µm 11 354 (377) 535 - [138]

HDMAC monoclinic wires FP; square
microdisks WGM*

500 x 10–30 µm; 2–10
µm, 600 nm height 1.05; 0.43 ~ 7500 in microdisks 650 30 [139]

DASB Monoclinic P21/c octahedron crystals
WGM

> 1 µm side of lateral
faces 6.9 > 1500 531 30 [124]

DSB
H-aggregates
herringbone,

orthorhombic

hexagonal
microdisks WGM 1–5 µm edge 0.79 210 440 65 [126]

BP1T, (BP2T) -
patterned

multishape
microdisks WGM

Variable circular
radii/ polygonal > 1

µm edge
88 nJ 2030 500, (525) 36, (59) [121]

HDFMAC micro-rings WGM
10–30 µm diameter,
250 nm width, 2.5

µm height
14.2 2000–4000 647 23 [122]

COPV2, (COPV3) monoclinic P21/n rhombic microdisks
quasi-WGM 4 × 35 µm Edge 18 3400 460, 490, 510 65–76 [140]
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4.4. Lasers Based on Whispering Gallery Mode Resonators

Organic molecules with tendency to self-assemble along two crystal growth direc-
tions rather than one preferential direction offer the possibility to achieve 2D and 3D
crystalline geometries with capability to behave as WGM optical resonators [128]. This is
the case for instance of p-distyrylbenzene (DSB) or 1,4-dimethoxy-2,5-di[4′-dimethylamino-
styryl]benzene (DASB). DSB self-assemble into lamellar herringbone aggregates leading
to an orthorhombic lattice with perfect square symmetry, depicting sharp spots in the
selective area diffraction pattern characteristic of a single crystal [124]. The resulting crys-
tals are hexagonal microdisks with edges of 1–5 µm size and thicknesses of about 350 nm
(Figure 14a). These crystals are highly fluorescent with typical PLQEs of 65% arising from
the large oscillator strength of the transition between the upper level in the H-band and the
ground state. The PL spectrum of a single hexagonal disk appears decorated with resonant
modes, their density becoming larger as the size of the hexagon increases. Information into
the exact geometry of these resonances inside the hexagons is inferred from the single crys-
tal fluorescence images and from the refractive index group estimated from mode spacing
analysis, assuming three possible resonance geometries. The fluorescence image of a given
microdisk (Figure 14b) depicts an alternate bright-dark edge, thus confirming that a closed
loop involves only three total internal reflections (3-WGM or 3D-WGM) at alternate faces,
(Figure 14c). Among these two resonance geometries, D3-WGM is more plausible based on
the feasible group refractive index value estimated from EQ.4. The resulting hexagonal
microdisks behave as laser cavities with lasing thresholds as low as 0.79 µJcm-2 and the
possibility to transit from multimode to single mode lasing by shrinking the hexagon edges
from 5 to 1 µm (Figure 14d). More complex octahedron microcrystals were obtained from
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self-assembling of DASB which showed PLQE values of 30%, and visible WGMs in the PL
spectrum which were rationalized as closed loop formed by six total internal reflections at
six different crystal edges [126]. In line with DSB hexagonal disks, DASB octahedrons also
led to multimode lasing with the possibility of achieving single mode lasing by restricting
the cavity size. The Q-factors of these crystals ranged from 1500 to 7900. The Q-factors
of WGM resonators are typically larger than those from FP resonators. This is basically a
consequence of the WGM resonator geometry which facilitates total internal reflections
because light travels more parallel compared with close to normal incidence at the FP ends.
Following this same argument, larger Q-factors are expected from WGM resonators of
smaller curvatures (e.g., polygonal cavities of high order) or of larger sizes [121,139].
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Figure 14. (a) Scanning electron microscope image of a DSB hexagonal disk and (b) corresponding
fluorescence image. The alternate bright edges support the existence of only three reflecting edges.
(c) Possible geometric resonances that the disk can support. (d) Multimode and single mode lasing in
disks of 4.3 µm and 1.2 µm perimeter. Reproduced with permission from ref. [126]. Copyright 2014,
Wiley-VCH.

Control of light emission in these cavities has also been achieved by patterning [121,123]
and solvent-assisted methods [139]. Growth of a OH-substituted 3-[4-(dimethylamino)phenyl]-
1-(2-hy-droxyphenyl)prop-2-en-1-on (HDMAC) into 1D-wires or 2D-microdisks was achieved
through self-assembling from protic or aprotic solvents respectively [139]. The molecules
pack along the [010] and [002] crystal direction with the OH- groups piling along this plane.
Hydrogen bonding of protic solvent molecules at the OH position interferes with [002] growth
leading to 1D wires along the [010] direction. The use of aprotic solvents enables instead the
formation of rectangular microdisks with WGM resonance loops defined by four reflections at
each of the disk faces. TE and TM polarized modes characteristic of WGM resonators were
clearly visible in the PL spectrum. Large resonators of about 55 µm round trip exhibited the
largest Q-factors (~7000). The lowest laser thresholds achieved were 0.4 µJcm−2.
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Control of sizes and shapes in WGM resonators has also been achieved by lithography
methods. Capillary bridged lithography was applied by Honbing Fu and co-workers to
obtain indistinctly WGM and FP resonators [123]. They obtained micro-rings with different
number of WGMs upon tuning the diameter of the pillar template which determines the
ring diameter. Thus, 8, 12 and 16 µm diameter rings were achieved which led to 3, 5 and 7
optical modes in the PL spectra. Multimode lasing was achieved with the lowest threshold
at 0.3 µJcm−2. The validity of this method to achieve small diameter WGM resonators
capable to support single mode lasing remains nevertheless under question due to the
low mechanical resilience of organic crystals which could develop cracks when patterned
into high curvature surfaces. A different patterning method to achieve WGM resonators
of controlled size was reported by Fang et al. based on reactive-ion etching (Figure
12d) [121]. A typical realization consisted of depositing either a 5,5’-bis(4-biphenylyl)-
2,2’-thiophene (BP1T) or a 5,5”-bis(biphenyl-4-yl)-2,2′:5′,2”-bithiophene (BP2T) layer of
nanometer roughness by PVD onto a substrate and spin-coating subsequently two layers of
PVA and SU8 photoresist. The desired motifs were transferred into SU8 by UV lithography
and temperature annealing leading to coated patterns of PVA and irradiated SU8 on
top of the crystalline film. This method required applying baking temperatures below
70 ◦C to avoid organic film cracking. The interstitial film between the motifs was then
removed by reactive ion etching. Finally, the PVA/SU8 capping was lift-off using an
appropriate orthogonal solvent. This method enables the development of a wide range
of polygonal disks with triangular, square, circular, pentagonal, hexagonal or star-shape
sections and of different sizes, (Figure 12e). Although it offers an attractive way to shape
the resonator, perhaps the most interesting result in practical terms is the possibility to
control the resonator size, because the standard self-assembling methods give raise to a
wide distribution of sizes. The best performing WGM resonators were those patterned into
rings showing Q-factors of 2030 and narrower lasing modes respect to polygonal cavities.

An important aspect of optical resonators is the development of strategies to enhance
light outcoupling. In WGM resonators this has been envisaged by means of using external
photonic structures (generally wires). The main challenge here is to avoid interference
of the outcoupling structure on the waveguiding properties of the WGM resonator. Lv
et al. demonstrated that 3-[4-(dimethylamino)phenyl]-1-(2-hydroxy-4-fluorophenyl)-2-
propen-1-one (HDFMAC) self-assembles into thin micro-rings with a width smaller than
the propagating wavelength and very high aspect ratio (250 nm width, 2.5 m height) [122].
This geometry leads to considerably leakage of the transversal electric (TE) mode, polarized
parallel to the substrate, whilst the transverse magnetic (TM) mode locates far away
from the substrate, avoiding substrate-induced propagation losses and enabling light
outcoupling to an external photonic structure.

By changing the proportion of ethanol:dichloromethane in the master solution, HDF-
MAC was observed to assemble into micro-rings tailed with microbelts (Figure 15a,b).
Microbelts outcoupled efficiently the from the resonator. The PL collected from the micro-
belt tip displayed characteristic WGMs and the lasing threshold was weakly altered by the
presence of the microbelt tail (14.2 and 15.9 µJcm−2 without and with microbelt) (Figure
15c,d). A different strategy exploited plasmon-photon coupling to create heterostruc-
tures composed of dye-doped polystyrene microspheres with 4–20 mm diameter with
tangentially connected Ag nanowires of 170 nm diameter (Figure 15e,f) [141]. The surface
plasmon polaritons (SPP) of the nanowires were efficiently launched by the optical modes
confined in the microdisk. High photon-plasmon coupling efficiency between 1 to 3.5%
were achieved as the result of WGM-SPP modes momentum match at the interface due to
the tangential connection between the resonator and the nanowire. Interestingly, the mode
distribution at the nanowire output was strongly dependent of the nanowire length, owing
to the different dampings of modes located at low and high frequencies. This strategy can
serve as a way to exploit the nanowires as frequency filters.
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Figure 15. (a) Micro-ring coupled to a microbelt. (b) Optical simulation of the electric field inside the structure showing
its distribution along the ring and the microbelt. (c) Laser emission detected from the ring and (d) from the microbelt tip.
Reproduced with permission from ref. [122]. Copyright 2019, American Chemical Society. (e) Scanning electron microscopy
images of microdisks coupled to plasmonic Ag wires (scale bar 5 mm) and (f) laser emission output detected from the
nanowire tip. Reproduced with permission from ref. [141]. Copyright 2017, American Chemical Society. (g–l) Fluorescence
image of rhombic COPV2:COPV3 co-crystals with different COPV3 content (scale bars 10 mm) and (m) tuning of laser
emission by FRET in the co-crystals. Reproduced with permission from ref. [140]. Copyright 2018, American Chemical
Society.

Reducing the surface contact of the resonator with the substrate is an interesting
way to favor light outcoupling and reduce optical losses induced by substrate leakage.
Okada et al. demonstrated how the use of silver-coated substrate can favor the formation
of edge on instead of face on crystals [140]. Enhanced optical confinement in this case
enabled to reduce the lasing threshold by a four-fold. In this work, tuning of laser emission
output was also achieved by developing WGM resonators based on rhombic co-crystals
of blue and green emitting COPVs coupled by Förster resonance energy transfer (FRET)
(Figure 15g–l). By tuning the concentration of the blue (donor) and green (acceptor)
compound in the cocrystal, the FRET rate was tuned above or below the lasing rate of
the donor, enabling for green or blue lasing. At a critical donor:acceptor concentration
simultaneous blue and green lasing was observed (Figure 15m).

5. Conclusions

Over the recent few decades, OMSCs have involved increasing attention as a promis-
ing field of knowledge and technology that involves physics, chemistry and materials
science. The chemical versatility and flexible nature of the organic materials afford different
nucleation, molecular packing and assembly between the organic compounds, allowing
a control in the crystal growth. The intrinsic properties, molecular arrangement and the
structure–property relationships of the OSMCs allow various crystal morphologies that can
possess different electronic and optoelectronic properties. The current progress of OSMCs
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includes a wide range of techniques for achieving high quality OSMCs, without grain
boundaries, defects, impurities and dislocations. The optimization of different methods
for the crystal growth such ss solution-processing techniques (drop-casting, dip-coating,
solvent exchange, solvent vapor diffusion) or vapor process crystals (PVT, microspacing
sublimation) allows a control in the crystal morphologies. Solution-based methods are
frequently utilized for organic molecules that exhibit large solubility in a wide range of or-
ganic solvents whereas PVT is the technique of choice for organic compounds that sublime
without decomposition. Consequently, a huge effort in the optimization and exploration
of single-crystals growth techniques have been developed to obtain high purity and di-
verse morphologies in the single crystals. These efforts have boosted the investigations
into light emission and light amplification properties in the recent years. The important
developments done in the field of OSMC lasers will pave the way to integrate them as
basic elements in complex photonic circuits and optical logic gates. Such objectives will
be enabled by exploiting lithography methods developed to control resonator size and
shape. In these complex circuits, light coupling between the optical resonators and other
optical elements will play a crucial role, so new strategies to boost light management
in multicomponent structures will be of interest. OSMCs will also play an important
role on the development of electrically-pumped lasers, owing to their outstanding charge
transport properties. In this respect, a major goal will be the integration of the crystal
on an LED-type sandwich structure with charge injecting electrodes without interfering
with the lasing properties of the OSMC. Exploiting OSMC resonators for low-end opti-
cal pumped lasing (i.e., pumping with cost-efficient LED laser diode sources) is another
promising milestone yet to be accomplished. This pumping scheme already demonstrated
in conjugated-polymer-based DFBs should be on reach in OMSCs given their superior
Q-factor. This result could be of interest for applications in solid state lighting as well as
in the sensing field, where WGM and FP optical resonators are already employed as high
sensitivity platforms to reveal changes in physical parameters or presence of chemical
analytes through the shift of the resonator modes. In summary, OSMCs lasers will continue
to attract attention in the next year due to their fascinating photonic and optoelectronic
properties.
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