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Abstract

In this project the flow induced by a (urban) heat island with background rota-
tion has been studied. This is done experimentally as well as numerically. From
the experiments it is shown that there are two regimes in the flow pattern in
the fluid characterised by the Rossby number. These regimes are Ro < 1 and
Ro > 1 with the transition point at Ro ~ 1. At small Rossby numbers there is
a cylindrical vortex, whereas at large Rossby numbers large convection cells are
formed. Around the transition point the flow pattern has a conical shape. The
numerical simulations are compared with experiments and it is concluded that
the simplifications in the simulations are unrealistic.
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Chapter 1

Preface

In modern day society we cannot ignore the influence of the production of heat
of large cities on the climate. This phenomenon, also known as the urban
heat island, has drawn the attention of many researchers. This is due to the
significance for meteorology. See for example [1, 2, 3].

This heat island is also discovered in nature itself. One of the most familiar
examples is the Tibetan Plateau. The table mountain in this region acts as
the local heat source which heats the air above, creating interesting weather
patterns in this way.

The same principle holds for large cities, which act as local heat sources.
This generates a local uplift of air above the city, which in turn causes air
to flow towards the city over the ground. Due to the rotation of the earth
this circulation of air is deflected and will create vortices. These vortices are
examined in this study. As said before it is important to map the different
types of phenomena that can occur in these situations, specifically for weather
forecasting. With the help of some simplifications it is possible to simulate
this localized heat source in a medium in a laboratory. This means that the
urban heat island is simplified to a rotating tank filled with water and a heating
disc at the bottom. Experiments are done on this model system together with
numerical simulations. With the help of the theory a prediction can be given
with regard to the different types of behaviour of the flow. This is done in
Chapter 2. In Chapter 3 the experimental setup is discussed. Another subject
of this chapter will be the discussion on the simulations done on the matter.
In Chapter 4 the results from the experiment are presented. This will be done
using snapshots from the dye visualisations. Also the outcome of the simulations
will be presented in this chapter. In Chapter 5 we draw several conclusions from
the results.



Chapter 2

Theory

In this chapter the theoretical background of this flow problem is explained.
To simplify the equations of motion the Boussinesq approximation has been ap-
plied. This procedure will be discussed in Section 2.1.1, whereas in Section 2.1.2
the influence of rotation is introduced. The dimensionless parameters that de-
scribe the flow are mentioned in Section 2.2. With the help of these parameters
it is easier to categorize different regimes of flow in the medium. There are
several phenomena that occur during the experiments that need explaination
at forehand. These phenomena are the Ekman boundary layer, the Taylor-
Proudman theorem and the Taylor column. These three items are discussed
below in Section 2.3 and in Section 2.4.

2.1 Equations of motion

2.1.1 Equations without rotation

The Navier-Stokes and heat equations for an incompressible fluid can be simpli-
fied using the Boussinesq approximation [4, 5]. This approximation states that
variations in density are negligible unless they are multiplied with the gravita-
tional acceleration g:

V.5=0, (2.1a)
% 4 (7-V)7 = —VP + gaT? + vV27, (2.1b)
%:: + (- V)T = kV>T. (2.1c)

In Equation (2.1) 7 is the velocity with cartesian components v,, v, and
v,, P is the pressure and T the temperature. Besides these variables there are
several constants like g, which is the gravitational acceleration, «, v and k.
Here, « is the coefficient of thermal expansion, v is the kinematic viscosity of
the fluid and « is the thermal diffusivity of the fluid.



2.1.2 Rotation

Since this experiment is performed with background rotation, it is important
to be able to predict the effects that are caused by the additional forces due
to the rotation. It is possible to deduce these extra forces mathematically but
that is not done in this report. For this deduction see [5]. The end result of this
excersise is expressed as:

d’R:_’]—QQ’XﬁR—Q‘X(Q‘XFR). (22)

There are several symbols in Equation (2.2) that need an explaination. The
vector dgr is the acceleration in the rotating frame of reference, whereas d;
is the acceleration in the inertial frame of reference. The same holds for the
velocities and positions since Ur and 7 are the velocity and position in the
rotating frame of reference, respectively and v; and 7; are the velocity and
position in the inertial frame of reference, respectively. The rotating frame of
reference is taken as a frame that rotates with an angular frequency of Q with
its z-axis along the axis of rotation. In Equation (2.2) there are two additional
terms of acceleration, these are:

Coriolis acceleration @, = 20 x ¥y, (2.3a)

Centrifugal acceleration @.; = Q x (@ x 7). (2.3b)

From this result it is possible to rewrite the centrifugal acceleration to a gradint
that can be brought into the pressure gradint. This is the modified pressure.

2.2 Dimensionless parameters

It is more convenient to work with dimensionless parameters since they make
it easier to determine the significance of the various forces. That is why the
equations of motion which were found before are simplified by characteristic
length, velocity, time, temperature and pressure scales. The definitions of these
characteristic scales and the implementation of these in the governing equations
is done in Section 2.2.1. After implementation, some dimensionless quantities
can be defined. This is done in Section 2.2.2.

2.2.1 Dimensionless equations of motion

To make the governing equations dimensionless the various quantities need to
be made dimensionless. This can be done using the following set of definitions,
in which H, U and AT are the characteristic length, velocity and temperature
scales, respectively and the quantities with bar are the dimensionless parame-
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When these definitions are substituted into Equation (2.1a) the following result

is obtained: -
V-a=0, (2.4)

If the same procedure is repeated with Equation (2.1b) this gives the following
expression:
U2ou U? U? =

E = =5 U 27
ﬁaJr—(u V)U+QQUZX’U,—*FVP+QO£ATTZ+§VV a. (2.5)

Equation (2.5) can be simplified to the following form:
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From Equation (2.6) it is possible to define a characteristic velocity scale U

because the maximum speed of a small volume of fluid above the heating disc,

with the additional requirement that there is no background rotation, is reached

when the convective term ga AT H /U? equals unity. This gives U = /gaATH.

Finally Equation (2.1c) has to be made dimensionless. This is done by the

same procedure with which the preceding two equations were handled. When
written in full, this gives the equation:

- 2QH » ATH =5
)ﬂ—‘rT ZXU=— p+gaU7T +U—HV12 (26)
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When the above equation is simplified, the following formula remains:
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2.2.2 Dimensionless quantities

With the governing equations in dimensionless form it is possible to specify the
experiment by a set of dimensionless quantities. The first that will be defined is
called the Rayleigh number, which gives the ratio of heat transport by convection
and by conduction. This can be seen by its definition:

gaATH?
VK

Ra = (2.9)



In the above equation H is the height of the fluid. With the help of the Rayleigh
number a prediction about the nature of the transportation of heat in the specific
fluid can be made. When this number is below a critical value, transport will
be mainly due to conduction. When it exceeds this critical value heat transport
is primarily in the form of convection.

Another dimensionless quantity that is of importance in this experiment is
the Rossby number. The definition of this number can be read from Equa-
tion (2.6). This definition is:

Ro= Y. (2.10)

As can be seen from the definition above, this number compares inertial and
Coriolis forces. The last dimensionless quantity that is of importance is the
Prandtl number. This number describes the diffusive properties of the fluid.
The definition of the Prandtl number is given by:

Pr

ENIAN

(2.11)

2.3 Ekman boundary layer

In this report there will be only a minor discussion about the Ekman boundary
layer [6]. Only those subjects that are of importance are mentioned. For a more
thorough discussion about this subject see [5]. Those elements of importance
ar the Ekman number and the depth of the Ekman boundary layer at different
Rossby numbers. The first is a dimensionless number that describes the ratio
of the viscous forces to Coriolis forces and is defined as:

Bk = ——. (2.12)

The depth of the Ekman boundary layer is defined as:

Spr = \/g (2.13)

From Equation (2.13) it can be concluded that the thickness of the Ekman
boundary layer does not depend on the size of the tank nor on the veocities in
the fluid. Another conclusion is that dgp\H = VEk. A remarkable feature of
the Ekman boundary layer is that when there is vorticity in the fluid above the
boundary layer this gives rise to a vertical transport of fluid depending on the
sign of the vorticity. If this is positive there will be upward transport but when
it is negative there will be a downward transport of fluid. In this experiment
the vorticity will be positive so the transport of fluid will be upward, giving rise
to a radial inward flow pattern at the bottom of the tank.



2.4 Taylor-Proudman theorem and the Taylor
column

As for the Ekman boundary layer, in this section only the important facts of the
Taylor-Proudman theorem and the Taylor column will be discussed. For a more
thorough understanding see [5]. First, the Taylor-Proudman theorem will be
introduced, after which the Taylor column is explained. Finally the changes due
to the influence of the temperature are mentioned. For the Taylor-Proudman
theorem to hold, several conditions have to be satisfied. These conditions are:

e The flow must be (quasi-)steady, which means that the time derivative
is approxiamtly 0. And the rotational speed has to be high so that the
Coriolis force is large in comparison to the inertial terms, which means
that this theorem only holds in the regime Ro < 1,

e The flow must be inviscid, which means that Fk < 1. This implies
that the Taylor-Proudman theorem is not valid near noundaries, where
viscosity plays a role.

The essence of the Taylor-Proudman theorem is that vertical variations of the
velocity are absent. This means that the flow pattern becomes independent of
the vertical position. Due to viscosity this statement does not hold close to the
walls. One of the effects of this theorem is the formation of a Taylor column
[8]: an object dragged slowly through a rotating fluid transports the fluid above
along with it as though it is a single solid object. This is a column above
the heating plate in which hot fluid is transported upward due to the positive
vorticity that generates a radial inward flow at the bottom of the tank.

Since this experiment is performed with temperature changes, and the Taylor-
Proudman theorem does not incorporate temperature gradints, the influence of
the temperature has to be taken into account. The name for interaction between
a Taylor column and temperature changes is the thermal wind equilibrium [9].
The result of this effect is that vertical gradients of the horizontal velocity com-
ponents are allowed due to the temperature gradient that originates from the
cooling of the fluid. However, the vertical velocity remains independent of the
vertical coordinate. In the experiments at Ro < 1 we thus expect a columnar
vortex with positive vorticity, fed by radial inflow near the bottom, transporting
hot fluid upward.



Chapter 3

Experimental setup and
simulation procedure

In this chapter the experimental setup is discussed, as well as the numerical
simulations. In Section 3.1 the experimental setup is presented together with
additional information about the operation. In Section 3.2 the simulation pro-
cedure is explained.

3.1 Experimental setup

As been said before the setup consists of to a cylindrical tank filled with water
which is mounted on a rotating table. The water is heated using a small heating
disc at the bottom of the tank. A sketch of this is shown in Figure 3.1.

In Figure 3.1 there are several labels attached to different elements of the
setup. These will now be explained. To begin with, A is the cylindrical tank
that contains the water. This container is made out of plexiglass and is 17.5
mm thick and has a diameter of 50 cm. In the bottom plate a heating element
B is placed. This is a hollow block of copper of diameter 50 mm through
which hot water flows. Due to the high thermal conductivity of copper this
is a good material to conduct the heat from the hot water towards the large
water tank. Since plexiglass has a low thermal conductivity compared to copper,
0.2 Wm™' K~! to 401 W m~! K~!, this material is a good insulator for the
heat produced by the heating disc. The letters C' and D represent the two
cameras. Two Logitech webcams are used, one recording from above, the other
recording from the side. In this way, both vertical and horizontal motions can be
recorded. These webcams are connected to a computer which is mounted under
the rotating table F. This computer is accessible through a remote desktop
connection with a laptop that is outside the rotating frame. To visualize the
flow in the water a dye is used. This dye is injected by hand in the middle of
the tank, just above the heating disc. Before the dye is injected the table and
heating disc are turned on for some time to establish a steady state situation.



Figure 3.1: Sketch of the experimental setup. Labels will are explained in the
text.

This spin-up time is based on the Ekman spin-up time that is defined as [9]:

H
TR = .
L VS

The largest spin-up time is when the angular frequency is lowest, namely 0.1 rad
s~!. Using the known values for H and v this gives a spin-up time of approxi-
mately 6 minutes. This means that the settling time used in this experiment is
taken at 20 minutes to be sure a steady state is reached inside the fluid. The
tank is aligned with the rotation axis of the table. This means that the centre
of the heating disc lies on this rotation axis.

To have a full understanding of the different flow patterns inside the fluid,
measurements have been carried out over a wide range of angular frequencies.
These frequencies are summarized in Table 3.1. For each measurement series
there are more measurements around Ro ~ 1. For temperature differences of
5, 10 and 15 K the Rayleigh numbers are 1.36x10°, 2.72x10° and 4.07x10°,
respectively.

To be able to see the temperature dependence of the flow patterns measure-
ments are done at Ra = 2.72 x 10° and at Ra = 4.07 x 10°. For Ra = 2.72 x 10°
additional measurements have been done at Ro = 1.06, Ro = 1.004 and at

(3.1)



Table 3.1: Overview of several values of the Rossby number at different angular
frequencies and different temperatures, expressed by

Q(rad s71) | Ro(Ra = 1.36 x 10°) | Ro(Ra = 2.72 x 10°) | Ro(Ra = 4.07 x 10°)
0 - - -
0.1 1.60 2.26 2.77
0.2 0.80 1.13 1.38
0.3 0.53 0.75 0.92
0.4 0.40 0.56 0.69
0.5 0.32 0.45 0.55
0.6 0.27 0.38 0.46
0.7 0.23 0.32 0.40
0.8 0.20 0.28 0.35
0.9 0.18 0.25 0.31
1.0 0.16 0.23 0.28
1.5 0.11 0.15 0.18

Ro = 0.90. For Ra = 4.07 x 10° the additional considered values are Ro = 1.11,
Ro =1.006 and Ro = 0.96.

3.2 Simulations

The experimental results are compared with numerical simulations. These sim-
ulations are done in Comsol multiphysics using the assumption that the fluid
flow is axisymmetric. This means that there are no variations in velocity in
the azimuthal direction in the rotating frame so the simulation can be done

in 2 dimensions. The equations that are used to solve this system are those

z-axis

\Y

r-axis

1 I

Figure 3.2: Schematic overview of the computational domain used in the nu-
merical simulations.
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of Equation (2.4), Equation (2.6) and Equation (2.8). Some of the terms in
these equations have to be added as volume forces in Comsol like the Coriolis
and convective force. The slice for which the numerical simulation is solved is
half a vertical cross-section with on one side the rotation axis and on the other
the sidewall. This computational domain is shown in Figure 3.2. To make the
simulation work additional boundary conditions are defined. The boundaries
on which these conditions act are stated in Figure 3.2. The axis of rotation is
indicated by I, the heating disc by II, the rest of the bottom plate by III. The
outer wall is indicated with IV and the open boundary with V. The boundary
conditions are:

e II IIT and IV are rigid, no-slip walls,
e II is given a fixed, constant temperature,
e IIT and IV are thermal insulators,

e There is a steady outward heat flux at V that depends on the temperature
difference between the surroundings and the fluid,

e V is taken to be rigid and stress-free.

To complete the description of the simulation it is necessary to define initial
values for the temperature and the velocity field at the start of the experiment.
At t = 0 s it is assumed the fluid has a constant temperature troughout its
volume. The temperature of the fluid is specified by the temperature of the sur-
roundings. The initial values for the velocity field are that all three components
of the velocity are zero.

To be able to accurately perform this simulation a fine enough mesh has to
be defined. A mesh that is too coarse leads to an unphysical solution. The
mesh is made by discretizing the computational domain. This discretizing can
be done coarse or fine. When the mesh is made finer the numerical simulation
will be more exact but the downfall is a longer calculation time.

To test whether the results are correct or not the mesh can be refined. If the
result remains the same this means that the result was correct. If the outcome
changes, however, that means that the coarser mesh gave and outcome that was
not yet converged to the exact solution and the mesh should be refined until the
outcomes no longer differ and the resolution is fine enough. Since the laptop at
which the first simulations were made did not have enough memory to achieve
correct results, the numerical simulations are performed by dr. Kamp. The
results of his numerical simulations were provided to compare them with the
actual experimental results.

11



Chapter 4

Results and discussion

When the Rayleigh number is 2.72 x 10°, heat transport in this experimental
setup is mainly due to convection. Snapshots are made at different angular
velocities €2 to show the flow patterns that can occur. Examples are shown in
Figure 4.1. The black lines on the snapshots are guides to the eye to emphasize
the flow pattern above the heated disc. From these snapshots a transition
between regimes can be identified. Snapshots of the situation without and with
very little rotation reveals the formation of large convection cells that fill the
domain. An example is shown in Figure 4.1a. When considering the case Ro ~ 1
it can be seen that the flow pattern adopts a conical shape. Here, the dye is
being transported upwards in a conical pattern that evolves towards a cylindrical
vortex for Ro < 1. This last regime is best seen in Figure 4.1e. Snapshots from
the measurement series at Ra = 4.09 x 10° are shown in Figure 4.2. As in the
previous measurement series these snapshots illustrate the transition between
regimes as a function of the Rossby number. The conical shape can be seen in
Figure 4.2a. The snapshots at Ro = 1.11, Ro = 1.006 and Ro = 0.92 show the
transition from a cone towards a column. From these two measurement series it
was decided that additional measurements with a better contrast dye should be
made at Ro=0.90 and at Ro=0.15 for Ra=2.72x10%. For Ra = 4.09 x 10° the
additional measurements are done at Ro = 1.11 and Ro = 0.18. For comparison
with the simulations of dr. Kamp measurements are also done at Ro = 0.32 and
Ro = 0.11 for Ra = 1.36 x 10°. These additional measurements are done with a
blue dye that enhanced the contrast in the snapshots. This increased contrast
made it possible to measure the diameter of the Taylor column when Ro < 1.
Indicatory snapshots of the measurements with the blue dye are presented in
Figure 4.3.

The results of the measurements at Ra = 1.36 x 10° are not included in this
report since it was not possible to reliably interpret them. In the measurements
at both Rossby numbers no clear structures were formed. The only structures
that appeared were dipoles that are probably formed due to the retraction of the
pipette by hand. It is clear that this is one of the points that can be improved
in further investigations.

12



(a) Ro = 2.26 (b) Ro=1.13

(c) Ro=1.004 (d) Ro = 0.90

(e) Ro=0.23

Figure 4.1: Snapshots of dye visualisation at Ra = 2.72 x 10°. Various Rossby
numbers are included.

In Figure 4.3 the different flow patterns as described above can be recognized.
In Figures 4.3a and 4.3b the conical shape is present above the heating disc. The
only conclusion that can be drawn from the experiment regarding the relation
between the temperature difference and the slope of the cone is that the slope

13



(a) Ro=1.38 (b) Ro=1.11

(c) Ro = 1.006 (d) Ro = 0.92

(e) Ro=0.37 (f) Ro=0.27

Figure 4.2: Dye visualisation snapshots at Ra = 4.09 x 10°. Various Rossby
numbers are included.

appears to be steeper at higher temperature difference. About the other flow
pattern, the Taylor column of Figures 4.3c and 4.3d, quantitative statements
can be made. This is due to the fact that the diameter of this column can
be measured from the snapshots using the known diameter of the heating disc.

14



a) Ro=0.90, Ra = 2.72 x 10° b) Ro = 1.10, Ra = 4.09 x 10°
(¢) Ro=0.15,Ra = 2,72 x 10° d) Ro =0.18, Ra = 4.09 x 10°

Figure 4.3: Dye visualisation snapshots at various Rayleigh and Rossby num-
bers.

When the diameter of this column is then measured several times during the
experiment, the diameter can be calculated and compared to other diameters.

The calculated diameter is based on 10 snapshots of the same experiment.
Two examples of snapshots that are used for this calculation are showed in the
Figures 4.3c and 4.3d. For the case where Ra = 2.72 x 10° and Ro = 0.15
the average diameter is 9 & 1 cm. The error band given in this result, and
in all coming results, is the standard deviation. If this result is expressed in
dimensionless form normalised by the diameter of the disc d}olumn this gives
a result of dfolumn = 1.8 £0.2. When Ra = 4.09 x 10° and Ro = 0.18 the
average diameter is 7.940.7 cm. If this value is converted to dimensionless form
the result is dfolumn = 1.6 £ 0.1 From this data there can be concluded that
the diameters vary significantly as a function of the Rayleigh number.

The simulations and experimental results are compared based on the Rossby
number. This means that the simulation with a certain Rossby number is com-
pared with an experiment with the same Rossby number. But first the sim-
ulations are mutually compared. Dr. Kamp provided simulations at Rossby
numbers of 0.32, 0.16, 0.08, 0.03 and 0.02. All these simulations are made at a

15



(a) Ro=0.30, Ra = 2.72 x 10° (b) Ro = 0.28, Ra = 4.07 x 10°

(c) Ro=0.30, Ra = 2.72 x 10° (d) Ro=0.28, Ra = 4.07 x 10°

Figure 4.4: Snapshots of the experiments to compare them to the numerical
simulations. The black lines are guides to the eye to emphasize the plumes.

Rayleigh number of 1.36 x 10° and presented in Figure 4.5. The coloured back-
ground indicates the temperature at that point and the black lines are stream-
lines for the r-z-flow inside the fluid. One half of the heating disc is displayed
on the bottom line between the left corner and the square. The temperature
range is between 293.15 K and 298.15 K in which the blue colour represents the
colder fluid and the red colour represents the hotter fluid.

From the numerical simulations it can be concluded that when the Rossby
number decreases, the number of vertical columns increases. The simulation
with the highest Rossby number, which is 0.32, has still a Rossby number that
is too low to conclude that in the regime Ro =~ 1 a conical shape appears.
Another fact is that at lower Rossby numbers, more plumes come to existence.
These plumes are axisymmetrical and hollow and hot fluid rises on the inner
side and cooler fluid sinks on the outer side of one plume.

There are only 2 simulations that can be used to compare with experiments.
These are the simulations with Ro = 0.32 and with Ro = 0.16. The experimental
results that have an approximate equal Rossby number are, at Ra = 2.72 x 10,
Ro =0.30 and Ro = 0.15. At Ra = 4.07 x 10° the experiments with Ro = 0.28

16



and o = 0.18 can be used. The snapshots of the two lowest Rossby numbers
are already provided in Figure 4.3. The snapshots of the highest two Rossby
numbers are shown in Figure 4.4

First look at Ro = 0.32. In the simulation are two plumes of streamlines.
In Figure 4.4a the plumes as can be observed are highlighted using black lines
above them. Here there are three plumes. The view from above can be seen in
Figure 4.4c. In this figure there are no complete concentric circles but there is
a shell structure visible above the heating disc. This result is identified in many
snapshots in this particular experiment. In Figure 4.4b there are no plumes to
be detected at all. There is only one plume with a region of lesser dye in the
middle. This result is confirmed by the view from above in Figure 4.4d.

Now look at Ro=0.16. The snapshots of these experiments are shown in
Figure 4.6. In the numerical simulation there are again several plumes with
decreasing height towards the edge of the heating disc. In Figure 4.6a only
two plumes are visible. This result is confirmed by the view from above in
Figure 4.6¢c where a shell structure can be identified. In the experiment with
Ro =0.18 and Ra = 4.07 x 10° no plumes can be identified.

These deviations from the numerical simulations are most likely due to sev-
eral reasons.

e The assumptions that are made with making this simulation are not real-
istic. In the experiment axial symmetry is broken,

e The simulations are calculated with a different temperature difference than
the experimental results.

17



(a) Ro=0.32 (b) Ro=0.16

(¢) Ro=0.08 (d) Ro=10.03

Figure 4.5: Temperature distribution(colored background) and stream-
lines(black lines) from azially symmetric numerical simulations at Ra = 1.36 X
10° and various Ro. The left-hand side of the figure coincides with the rotation
axis, the right-hand side is the sidewall.

18



(a) Ro = 0.15, Ra = 2.72 x 10° Ro = 0.18, Ra = 4.07 x 10°
(c) Ro=0.15, Ra = 2.72 x 10° Ro = 0.18, Ra = 4.07 x 10°

Figure 4.6: Snapshots of the experiments to compare them to the numerical
simulations. The black lines are guides to the eye to emphasize plumes or the
cylindrical vortex.
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Chapter 5

Conclusion

In this last chapter several conclusions will be drawn from the preceding results.
These conclusions concern the different regimes of flow in the fluid as a func-
tion of the angular frequency of the background rotation and as a function of
the temperature difference between the heating disc and the surrounding fluid.
First the different flow regimes at different angular frequencies have been con-
sidered. These regimes are governed by the Rossby number and are divided into
2 regimes. First there is the regime Ro < 1 in which the background rotation
dominates the buoyancy and tends to make the flow pattern columnar. This is
already discussed in depth in Chapter 4. The second region of interest is where
Ro > 1, in which the background rotation can be ignored and the flow pattern
is approximately equal to the situation when there is no background rotation.
The region of transition lies at Ro =~ 1 when the coriolis and buoyancy forces
are approximatly equal in magnitude. the forces due to heating.

From the series of measurements at both Ra = 2.72x10° and Ra = 4.07x 10°
the conclusion can be drawn that the transition point between two regimes is
temperature dependent. At Ra = 2.72x 10? the transition point lies at Ro =~ 0.9
and at Ra = 4.07 x 10° this point lies at Ro ~ 1.0. This conclusion is backed
by the observation that both the conical shape and the cylindrical vortex are
present in the experiments at those Rossby numbers.

Next the case of equal angular frequencies but different temperature gradi-
ent. This gives the influence of the temperature on the size of the characteristic
phenomena at each regime. It was found that at Ro = 0.15 and Ra = 2.72 x 10°
the dimensionless diameter of the columnar vortex equals 1.84+0.2. At Ro = 0.18
and Ra = 4.07 x 10° this dimensionless diameter is 1.6 & 0.1. Based on this
information it can be concluded that the size of the Taylor column depends
on the temperature difference between heating plate and surrounding fluid. If
this difference is larger, the size of the column will be smaller. The same holds
for the conical shape above the heating plate when looking at Ro ~ 1. From
the experimental results it can be stated that this cone is sharper at larger
temperature differences.

The experimental results are also compared to simulations done by dr.
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Kamp. These simulations are made at Ra = 1.36 x 10° and so these numerical
simulations are compared to situations where the Rossby numbers are equal
but the Rayleigh number in the simulations was lower than in the experiments.
Experiments at Ra = 1.36 x 10° are found to be unsuitable for dye visualisa-
tion with visual inspection due to the low flow velocities. The outcome of the
comparison between the numerical simulations and the experimental results is
that the simplifications made in the simulation are unrealistic. The numerical
simulations do, however, sometimes predict the flow pattern correctly.

To conclude this chapter it is useful to look forward to future research.
There are several options to further study this subject. It is possible to im-
prove the simulations by considering a three-dimensional flow instead of using
the unrealistic assumption of axial symmetry. Other improvements concern the
experimental setup. To better monitor the temperatures of the heating disc and
the surrounding fluid additional thermometers can be placed in the fluid and
heating disc. Another upgrade would be the use of more sophisticated measur-
ing techniques like, for example, particle image velocimetry. The last possible
improvements mentioned here are measurements at more Rayleigh numbers,
and at more Rossby numbers to further map the transition between the two
regimes.
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