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Analyte-Driven Clustering of Bio-Conjugated Magnetic
Nanoparticles

Tilen Potisk,* Jurij Sablíc, Daniel Svenšek, Elena Sanz-de Diego, Francisco J. Teran,
and Matej Praprotnik

The dynamics of bio-conjugated magnetic nanoparticles suspended in
buffer-saline solutions containing target proteins (i.e., analytes) is
investigated numerically on a mesoscopic level. To simulate the dispersion of
magnetic nanoparticles the dissipative particle dynamics is employed, which
allows to study rather large systems, while still retaining important
microscopic nanoparticle properties. In addition, the method is coupled to the
Landau–Lifshitz–Gilbert equation, describing the dynamics of the magnetic
nanocrystals within the macrospin approximation. The binding of multivalent
analytes to the recognition ligands of the nanoparticles leads to the formation
of clusters of magnetic nanoparticles, which in turn drastically changes the
macroscopic magnetic response of the solution. Such colloidal changes are
experimentally observable, allowing to explore new approaches to quantify the
analyte amount. The ratio of the concentrations between the analytes
(biomarkers) and the recognition ligands on the nanoparticles is found to play
an important role in the formation and hydrodynamic size of the clusters. The
proposed computational framework has great potential to be integrated with
experimental efforts to advance the development of nanoparticle-based
biosensors for disease diagnostics and other biomedical applications.

1. Introduction

Early diagnosis and monitoring the progression of a disease are
crucial for its successful medical treatment. In many cases the
method of choice for the detection are immunoassays, which
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provide high accuracy and specificity. For
example, for screening of cardiac biomark-
ers an enzyme-linked immunoabsorbent
assay (ELISA) kits are commonly used.[1]

The limitation of this method is that it is
time consuming[2] as well as it is not sensi-
tive enough to very low biomarker concen-
trations. It is therefore of paramount im-
portance to design rapid and sensitive im-
munoassays.
Owing to their excellent physico-

chemical properties, magnetic nanoparti-
cles are becoming increasingly popular as
transducers in the field of nanomedicine.[3]

These so called immunomagnetic assays
are promising candidates to overcome
the above mentioned limitations of other
assay techniques. The basic idea behind
immunomagnetic assays is to attach recog-
nition ligands onto magnetic nanoparticles
to specifically bind target biomarkers.
Then nanoparticles begin to form clusters
due to the molecular recognition between
biomarkers and conjugated ligands. The
formed nanoassemblies have macroscopic

magnetic response, which differs from the one related to individ-
ual nanoparticles, allowing to display the biomarker detection.
Different experimental techniques are used to detect these

changes such as AC susceptometry[3] and magnetometry,[4]

relaxometry[5,6] or giant magneto-resistance.[7] Using
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magnetorelaxometry it was shown[5,6] that relaxation ampli-
tudes for a dispersion of biotinylated magnetic nanoparticle
increase as one increases the concentration of avidin (analyte).
Furthermore, saturation magnetization was observed to increase
as one increases the concentration of c-reactive proteins.[8]

Remanence magnetization measurements[9] have also been
performed to quantify the biomarker concentration.
In case of immunomagnetic reduction assays (IMR) the AC

susceptibility measurements[3,10–13] are performed. Due to the
clustering and the consequently increased rotational viscosity
one generally observes a decrease in the magnetic susceptibility
as one increases the concentration of the analyte. Another related
quantity that similarly decreases as one increases the concentra-
tion of the analyte is the area of the dynamic hysteresis.
While there have been many experimental studies on IMR,

numerical simulations, which could provide additional insight
into the mechanisms involved, are so far still lacking. In this pa-
per, we couple a mesoscopic particle-based simulation method
(DPD) with the spin dynamics (SD) of the nanoparticle core. SD
methods coupled to molecular dynamics (MD), have been used
in studies of coupling of spin and lattice dynamics.[14,15] See ref.
[16] for a symplectic algorithm based on Trotter–Suzuki decom-
position. A related MD–SD hybrid method has been developed
in studies of giant magnetoresistance effect of nanoparticles sus-
pended in a liquid gel,[17–19] where in contrast to our work, point-
particle approximation was used. In addition we distinguish be-
tween the dynamics of the orientation of the nanoparticle and its
magnetic moment, which is crucial in a certain range of ampli-
tudes and frequencies of the external field.[20,21]

The presented hybrid DPD–SD method serves as a first step
toward realistic IMR simulations and other biomedical appli-
cations based on magnetic nanoparticles.[22] We lay the experi-
mental groundwork by characterizing the iron oxide nanoparti-
cles (IONPs) to be used in subsequent studies, that is, we mea-
sure their size distribution and magnetic response, see Meth-
ods. In this work we establish the computational model of bio-
conjugated nanoparticles suspended in a solvent containing tar-
get proteins.We first discuss the behavior of a single nanoparticle
under nonequilibrium conditions induced by a pressure differ-
ence across the system to gain insight into its rheological proper-
ties. In the next step we study the cluster formation as a function
of the ratio of the analyte and recognition ligand concentrations.
Using the developed simulation technique, we aim to show the
connection between the amount of analyte and the change in the
structure of the nanoparticle suspension. We characterize this
change with the hydrodynamic radius, on which the magnetic
response strongly depends.

2. Results and Discussion

Wefirst discuss the rheological properties of the solvent. Thenwe
consider a single coated nanoparticle with superparamagnetic be-
havior (i.e., zero magnetization in absence of external magnetic
field) suspended in the solvent. We calculate its hydrodynamic
radius and study the dynamics of the nanoparticle under non-
equilibrium conditions. Finally, we consider a suspension ofmul-
tiple nanoparticles with complete magnetic interaction and study
the process of nanoparticle clustering.

Figure 1. A schematic of the regions in the OBMD algorithm. The simula-
tion box is open along the horizontal direction (x axis) and periodic in the
other two directions.

2.1. Solvent

To put things into a physical context we first examine the phys-
ical properties of the DPD solvent, that is, water. We determine
the self-diffusion constant of the water beads as well as its vis-
cosity. The viscosity is an important parameter as it influences
the response of the dispersion of magnetic nanoparticles under
oscillatory magnetic fields.[20,23]

To calculate the self-diffusion constant we determined the
mean squared displacement ri(t) (MSD) of the water beads in
a simulation box with periodic boundary conditions and vol-
ume/dimensions V = 30rc × 30rc × 30rc

Dw = lim
t→∞

1
6Nwt

Nw∑
i=1

⟨[ri(t) − ri(0)]
2⟩ (1)

where Nw is the number of DPD water beads and rc is the
DPD length scale, Equation (20). We obtain Dw = (0.0507 ±
0.0002)r2c∕𝜏, with 𝜏 the DPD time scale Equation (24). This
is equal to Dw = (5.96 ± 0.02) × 10−9,m2 s−1 in physical units,
which is about 2.6 times larger than experimental self-diffusion
of water at 25◦.[24]

The dynamic viscosity 𝜂 is calculated using the open boundary
molecular dynamics (OBMD) algorithm, described in Methods.
Here we use a simulation box with dimensions 30rc × 20rc × 20rc
and buffer sizes 9rc, Figure 1. A pair of oppositely equal forces
along the y axis is introduced into the left and right buffers. In this
way, a shear flow is induced across the sample,Figure 2. As can be
seen, the velocity profile is linear in the region of interest and flat
in the buffers with relatively small error bars, except near x = 0
and x = 30rc, which is due to the low density of the particles.
We thenmeasure the shear rate in themiddle of the simulation

box at different values of the imposed shear stress, Figure 3, and
fit the numerical values corresponding to low shear stress 𝜎xy <
1.0 kBT∕r3c to the equation

𝜎xy = 𝜂�̇� (2)

where �̇� = 𝜕vy
𝜕x

is the shear rate. We obtain 𝜂 = (5.23 ±
0.04) 𝜏kBT∕r3c = (0.202 ± 0.002) mPa s, which is 4.4 times
smaller than real viscosity of water at 25◦. Such low viscosity
is consistent with the standard DPD model, which is based
on a rather soft potential.[25] Figure 3 shows a noticeable
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Figure 2. Velocity profile vy along the x axis of the simulation box at three
different values of the applied shear stress 𝜎xy. The dashed vertical lines
at x = 9rc and x = 21rc represent the edges of the left and the right buffer,
respectively.

Figure 3. Shear stress as a function of shear rate of DPD water. The nu-
merical values are fit to Equation (2).

shear-thinning above �̇� ≈ 0.2 𝜏−1. Since the clustering of the
nanoparticles is limited by diffusion, the typical velocities of
the nanoparticles are rather low. One can therefore neglect
this phenomenon.

2.2. Nanoparticle Hydrodynamic Radius

The magnetization dynamics of superparamagnetic nanoparti-
cles dispersed in solution is determined by two relaxation pro-
cesses. The first is the Néel rotation of the magnetic moments
inside the nanoparticle[26]

𝜏N = 𝜏0 exp
(
KVc

kBT

)
(3)

where 𝜏0 is typically between 10−12 and 10−8 s.[27] The second
mechanism is the Brownian rotation of the nanoparticle, de-

Figure 4. The nanoparticle (red beads) is coated by a dextran shell (yellow
beads) and PEG (blue beads). Recognition parts (pink beads) are located
at the end of the recognition ligands.

scribed by the Brownian relaxation time[28]

𝜏B =
4𝜋𝜂R3

h

kBT
(4)

which depends strongly on the hydrodynamic radius Rh of the
nanoparticle. One can change this radius by modifying the
nanoparticle surface or by clustering. In this paper, we focus on
the latter.
The hydrodynamic radius can be estimated using several dif-

ferent approaches. One of these is based on the Kirkwood for-
mula, which relates the inverse of the hydrodynamic radius to the
thermal averages of the inverse distances rij between the beads of
the particle

1
Rh

= 1
N2

∑
i≠j

⟨
1
rij

⟩
(5)

where N is the number of beads of the conjugated nanoparticle,
Figure 4. As expected, the hydrodynamic radius increases with
the nanoparticle core radius rp and the polyethylene glycol (PEG)
chain length nl, Figure 5. The influence of the latter is more
visible at lower particle radii, due to the lower total number of
nanoparticle beads for smaller nanoparticle sizes.
An alternative way of calculating the hydrodynamic radius is

through the Einstein-Stokes equation, which relates the particle
self-diffusion constant Dmd and the solvent viscosity 𝜂

Dmd = lim
t→∞

1
6Npt

Np∑
i=1

⟨[ri(t) − ri(0)]
2⟩ = kBT

6𝜋Rh𝜂
(6)

where ri(t) is the distance of the ith nanoparticle from its ini-
tial position ri(0) and Np the number of the nanoparticles.
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Figure 5. Hydrodynamic radius Rh as a function of the nanoparticle core
radius rp at three different lengths nl of the PEG chains.

Figure 6. Mean squared displacement of the nanoparticles as a function
of lag time t at three different nanoparticle core radii rp.

Equation (6) holds for infinitely large systems. For a finite size
cubic simulation box with periodic boundary conditions the cor-
rection reads[29,30]

D = Dmd +
𝜉kBT
6𝜋𝜂L

(7)

where D is the corrected self-diffusion constant, L is the box size
and 𝜉 is the analogue of the Madelung constant and is equal to
𝜉 ≈ 2.837298. For L = 60rc this correction yields 0.0005 r

2
c∕𝜏.

The dependence of MSD is shown in Figure 6. A system of
Np = 30 nanoparticles in a box with dimensions 60rc × 60rc ×
60rc was simulated for t = 1500𝜏. Averaging and error estima-
tion was performed on blocks of length 50𝜏. Due to the small
number of particles, a rather large error of the MSD curve at
high lag times is observed, see Figure 6. Using Equations (6)
and (7), we get for the hydrodynamic radii Rh = (2.92 ± 0.12) rc,
Rh = (3.96 ± 0.16) rc, Rh = (5.64 ± 0.24) rc, which are larger than
what Equation (5) gives. This could be due to the hydrodynamic
interactions between the nanoparticles. Assuming an average
box size L∕N1∕3

p for a single particle, the finite-size correction

Figure 7. Velocity field of water in the xy plane averaged in a thin slice
around the layer at z = Lz∕2. The nanoparticle core of radius rp = 2.0 rc is
depicted here as a red circle in the middle, while the dashed circle repre-
sents its hydrodynamic size Rh ≈ 2.7 rc.

becomes larger and equals 0.0015 r2c∕𝜏. The corrected hydrody-
namic radii are then a lot closer to those given by Equation (5):
Rh = (2.11 ± 0.07) rc, Rh = (2.61 ± 0.08) rc, Rh = (3.25 ± 0.10) rc.

2.3. Non-Equilibrium Conditions

To study the behavior of the nanoparticle under non-equilibrium
conditions, we impose a constant flow along the x axis. We can
achieve such a flow by applying, in addition to the ambient pres-
sure force, a uniformly distributed force on the left buffer (Fig-
ure 1) pointing toward the region of interest. Throughout this nu-
merical experiment we fix the position of the nanoparticle in the
middle of the box to prevent it from leaving the simulation box.
Experimentally one could achieve this by applying a sufficiently
strong inhomogeneous magnetic field.
The flow is approximately constant, except in the center near

the nanoparticle, Figure 7. The surfactant chains on the nanopar-
ticle surface are bent toward the flow direction, Figure 8.
From the induced flow around the nanoparticle, one can in

principle determine the hydrodynamic radius.[31] More precisely,
the tangential flow velocity as a function of distance perpendicu-
lar to the flow direction is given by[32]

vt(r) = vs + (v∞ − vs)

(
1 −

3Rh

4r
e
− rRe

Rh −
R3
h

4r3

)
, (8)

where vs is the slip velocity, v∞ is the velocity far away from
the nanoparticle and Re is the Reynolds number. Equation (8)
includes an inertial correction given by Oseen in 1910. An-
other hallmark of the finite Re is a slightly asymmetric veloc-
ity profile as can be seen in Figure 7. All these parameters can
be seen as fit parameters for the calculated tangential velocity,
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Figure 8. Shape of nanoparticle coating when exposed to flow along the x
axis. The PEG chains (blue beads) are visibly bent in the flow direction, in
contrast to dextran (yellow beads).

Figure 9. Tangential velocity vt of water as a function of the distance from
the center of the nanoparticle r in the direction perpendicular to the flow.
The velocity profiles for three different nanoparticle radii are fitted to Equa-
tion (8).

Figure 9. We used the previously determined hydrodynamic ra-
dius Equation (5) to determine the slip velocity at the surface of
the nanoparticle. As can be seen from this figure, there is a rather
thick layer around the nanoparticle with zero tangential velocity.
This corresponds to a depletion layer with a thickness of about
rc with almost zero density of water beads (not shown) around
the nanoparticle. This is caused by the relative high density of
the nanoparticle beads as well as the dextran layer. One can also
see that for our choice of model parameters the no-slip condition
is satisfied.
In passing, we comment on the question of slip or no-slip con-

dition at the boundary of the nanoparticle and its physical rele-
vance. It has been shown that the interaction between the solvent
and the nanostructures and the corresponding boundary condi-
tions play an important role on the nanoscale, such as an en-
hancement of flow in carbon nanotubes[33,34] as well as tunabil-
ity of the dielectric response of water.[35] The boundary condition
at the nanoparticle surface can strongly influence the behavior

Figure 10. Normalized concentration of free unbound biomarkers as a
function of time at three different ratios cr.

of magnetic nanoparticle suspensions under certain conditions
(e.g., frequency and amplitude of the externalmagnetic field). For
a slip-corrected solution,[36] the Brownian relaxation time Equa-
tion (4) should read

𝜏B =
4𝜋𝜂R4

h

(Rh + 3𝜆)kBT
(9)

where 𝜆 is the slip length, which can vary from 0 for no-slip flow
and up to infinity for perfect slip. For a large slip length, this
expression therefore yields a very small relaxation time. Given
that the overall relaxation dynamics of the magnetization is de-
termined by the faster process (either Brownian or Néel),[37] this
fact could be experimentally realized by, for example, modifying
the nanoparticle surface.

2.4. Nanoparticle Cluster Formation

We now consider a suspension of multiple nanoparticles with
complete magnetic interaction and magnetization dynamics
treated by the Landau–Lifshitz–Gilbert equation (details inMeth-
ods). This empowers us to study the process of nanoparticle
clustering, which is central to the detection of analyte amount
through magnetic measurements.
The key feature of the model that enables clustering is the dy-

namic binding of biomarkers to the recognition ligands. Cluster-
ing, in turn, alters the rheological properties and the response to
the external magnetic field. In this work, we set the valency of the
biomarkers to 4. This means that a single biomarker can bind to
four different recognition ligands, not necessarily from different
nanoparticles. On the other hand, a single recognition ligand can
bind to only one biomarker.
In the present study, we simulated Np = 20 coated nanoparti-

cles with nanoparticle radius rp = 1rc in a simulation box of di-
mensions 20rc × 20rc × 20rc and periodic boundary conditions.
This yields a volume concentration of about 1%.
The time dependences of the number of unbound biomark-

ers (Figure 10) and nanoparticles not bound to other nanopar-
ticles (Figure 11) show a quick decrease at small times and a
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Figure 11. Normalized concentration of singlets cs (unbound nanoparti-
cles) as a function of time at three different ratios cr.

Figure 12. Normalized concentration of singlets cs (unbound nanoparti-
cles) and doublets cd (pairs of bound nanoparticles) as a function of time
at cr = 0.73.

slow decrease at large times. The binding dynamics and the re-
sulting cluster configurations depend on the ratio cr = cbio∕clig
of the concentrations of biomarkers cbio and recognition ligands
clig. For low cr, one expects mostly singlets (unbound nanoparti-
cles) and doublets (pairs of bound nanoparticles). For larger cr,
triplets, quadruplets, … start to form and the number of doublets
decreases, Figure 12.
Moreover, we find that the concentration of singlets decreases

with increasing cr until cr ≈ 1, where there are nomore unbound
nanoparticles, Figure 13. If cr is further increased, the number of
singlets increases again. Namely, if there are too many biomark-
ers, by the time the nanoparticles have diffused to each other, the
biomarkers will have occupied all available sites. Nanoparticles
with all recognition ligands occupied cannot bind.
We studied the clustering of nanoparticles in absence of ex-

ternal magnetic fields. The simulations at two different values of
the nanoparticle magnetic moment, corresponding to dipolar in-
teraction strengths 𝜆 = 0.006 and 𝜆 = 60, Equation (34), do not
show any major differences.

Figure 13. Normalized concentration of singlets cs as a function of the
concentration ratio cr at two different values of magnetic interaction pa-
rameter 𝜆.

The characteristic time of the clustering process can be
roughly estimated by considering the times required for two
nanoparticles to approach each other (ttr) and the time for
the nanoparticles to rotate sufficiently (trot) for binding of a
biomarker, bound to one of the nanoparticles, to a free recogni-
tion ligand on another nanoparticle.
The characteristic time ttr is given by the translational diffusion

and the concentration of the nanoparticles[38]

ttr =
x26𝜋Rh𝜂

kBT
(10)

where x = ( V
Np
)1∕3. As can be seen from Equation (10), the clus-

tering is faster (i.e., tr is smaller) when using solvent with lower
viscosity 𝜂. In addition to a different magnetic response, another
physical consequence of lower viscosity is a larger translational
self-diffusion coefficient of the nanoparticles as well as that of the
biomarkers. We note that the viscosity of our DPD solvent can be
matched to the experimental viscosity of water by using an ex-
tended DPD thermostat, see ref. [39], which will be considered in
future work.
The characteristic time trot is much more difficult to estimate,

since it depends on the number of ligands per nanoparticle Nl,
the distribution of the number of bound biomarkers per nanopar-
ticle as well as the radius of the nanoparticle. In the limits crNl ≲

1 (multiple biomarker bonds per nanoparticle improbable) and
cr ≳ 1 (more than one free ligand per nanoparticle improbable)
it can be estimated from the rotational diffusion constant alone:

trot =
8𝜋𝜂R3

h

kBT
. (11)

For Rh = 2 rc we get ttr ≈ 104 𝜏 = 68 ns and trot ≈ 1050 𝜏 = 7 ns.
In this regime of small nanoparticles the clustering is therefore
determined by translational diffusion.
As expected, the hydrodynamic radius of clusters also depends

strongly on the concentration ratio cr, Figure 14. It increases
with increasing cr until about cr ≈ 1, where it begins to decrease
due to the over-saturation of biomarkers. This is a well-known
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Figure 14. Normalized hydrodynamic radius as a function of the concen-
tration ratio cr at two different values of magnetic interaction parameter
𝜆.

Figure 15. Nanoparticle system at cr ≈ 1 and 𝜆 = 0.006 forms a complete
graph of connections (gelation). Due to the periodic boundary conditions
the nanoparticle on the left hand side appears to be isolated, but is actually
a part of the same cluster.

phenomenon in nanoparticle-based immunoassays and is com-
monly referred to as the hook effect[40] or the postzone (in the case
of antigen excess) and prozone effect (in the case of recognition
ligand excess). Such an effect may lead to false-negative results.
Increasing the magnetic moment does not seem to change the

simulation results significantly, which could be due to the small
number and size of the nanoparticles. The hydrodynamic radius
at cr ≈ 1 might indicate that dipolar interactions do not favor a
large cluster. More specifically, for 𝜆 = 0.006 we observe that all
20 nanoparticles in the system cluster together to form a com-
plete graph of bonds, Figure 15. This is known as gelation, a phe-
nomenon often observed in coagulation dynamics and described
by the Smoluchowski equations.[41,42] A more thorough study of

the gelation and the effects of the nanoparticle size and mag-
netic fields on the hydrodynamic radius will be discussed in our
future work. We mention that the nanoparticle radius r = 1.0 rc
used for simulating the clustering dynamics of the nanoparticles
is rather small for considering Brownian dominating nanopar-
ticles, which are typically used in immunomagnetic assay. We
used a small radius simply to increase the total number of parti-
cles involved in the clustering dynamics. The fact that there ex-
ists an optimal value of the concentration ratio of the biomarkers
and ligands for a large hydrodynamic radius, should not be af-
fected significantly by the nanoparticle size. On the other hand,
the nanoparticle size affects the timescales of the clustering dy-
namics and the behavior of the cluster in oscillatory magnetic
fields. This will be covered in our subsequent study.

3. Conclusions

In this work we have combined the dissipative particle dynam-
ics with the Landau–Lifshitz–Gilbert equation to simulate a dis-
persion of conjugated magnetic nanoparticles. To the best of our
knowledge such a hybrid DPD-SD solver that takes into account
also the orientation (easy axis) and the rigid body dynamics of
nanoparticles as well as their binding in the presence of analytes
has not been considered before.
With such a numerical set-up we were able to simulate the

nanoparticle dispersion in presence and absence of biomark-
ers. We have demonstrated that the presence of biomarkers pro-
motes the clustering of magnetic particles. For low biomarker
concentrations, increasing the concentration increases the hy-
drodynamic radius. Above a certain critical biomarker concen-
tration the hydrodynamic size starts to decrease again, which is
also known as the hook effect in immunoassay studies.
As a future prospect we have developed a coupling between

the lattice-Boltzmann method[43] (LBM) to describe the solvent,
the molecular dynamics of the nanoparticle cores and conju-
gated surface and magnetic dynamics of nanoparticle cores. The
nanoparticles are coupled to the LBM fluid through the so called
immersed boundary method (IBM).[44,45] This allows one to sim-
ulate larger spatio-temporal scales, which is essential to simu-
late dispersions of realistic 50 nm sized conjugated nanoparti-
cles. The simulation results will be compared to our experimental
measurements of the magnetic response at different analyte con-
centrations.

4. Methods

4.1. Model of Conjugated Magnetic Nanoparticles

The simulated system consisted of coated spherical magnetic
nanoparticles, suspended in water. The particles were sur-
rounded by biomarkers, which may attach to the nanoparti-
cle coating.
The construction of magnetic nanoparticles is first discussed.

To properly capture the rotational behavior, more than one cou-
pling point per nanoparticle was needed.[46] The nanoparticle
cores were constructed by placing a large number of DPD beads
at a fixed radius rp from the center. This is the so called rasp-
berry model,[47,48] which was convenient for the attachment of

Adv. Theory Simul. 2023, 2200796 2200796 (7 of 14) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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Figure 16. The nanoparticle core is constructed by placing many beads
at a fixed radius from the center. The core is magnetic and is within the
macrospin approximation represented by a magnetic momentm (blue ar-
row). The preffered orientation of the magnetic moment of an isolated
magnetic particle in absence of external fields points along the easy axis n
(orange arrow).

the nanoparticle coating and ligands. These beads were approxi-
mately homogeneously distributed on the surface of the nanopar-
ticle, see Figure 16. In addition, one bead was put at the center of
the particle, which carried the magnetic momentm of the entire
nanoparticle core. This is the so calledmacrospin approximation,
which was relevant for single-domain nanoparticles smaller than
40 nm.[49,50]

The nanoparticles were decorated with a surfactant, in the case
a shell of dextran, Figure 4. The physical advantages of such
a shell were biocompatibility with the aqueous environment,
a decreased toxicity and increased stability of the nanoparticle
dispersion.[51,52] The nanoparticles were in addition conjugated
with multiple recognition ligands. Each of these ligands con-
sisted of a longer chain of a certain polymer, in the case polyethy-
lene glycol (PEG), and a recognition part at the end.
The surfactants and the ligands were modeled by constructing

chains of beads, connected by harmonic springs

Vb(r) = Kb(r − r0)
2 (12)

where Kb is the elastic constant, r0 is the equilibrium bond dis-
tance, and r is the distance between neighboring beads within
a chain. A harmonic potential was also added between a chosen
nanoparticle bead and the chains. The nanoparticle core beads to
which the dextran chains are attached were chosen randomly at
the start of the simulation and were covering 75% of the nanopar-
ticle core surface. The same bond constants were used for all
types of beads. Note that the usual factor 1

2
is already included in

the bond constant Kb. The number of beads used for each chain
depended on their length. In the case the dextran shell consisted
of chains with two beads, while the ligands consisted of seven
beads of PEG and one bead corresponding to the recognition part.
In all of the simulations six such recognition ligands were used
per nanoparticle, which were distributed on the sphere accord-
ing to the Thomson problem of point charges[53] to prevent any
effects of inhomogeneous distribution of ligands. Furthermore, a
bending potentialV𝜃 is added between neighboring bonds within

the chain

V𝜃(𝜃) = K𝜃(𝜃 − 𝜃0)
2 (13)

where 𝜃 is the bond angle and 𝜃0 is the equilibrium bond an-
gle. The equilibrium shape of the chain was determined by the
complicated interplay of the interactions between the rest of the
particles in the systems, especially the interaction between the
ligands and the solvent. For PEG, the bond parameters were
Kb = 8500 kJ mol−1 nm−2, K𝜃 = 42.5 kJ mol−1, r0 = 3.30 Å, and
𝜃0 = 130◦, which are taken from the MARTINI coarse-grained
model.[54] In the DPD model, three monomer units of PEG are
represented as one bead (HO–[CH2CH2O]3–H). This was to en-
sure that different types of beads (water, dextran, and PEG) have
a similar bead volume. A similar model for PEG as a surfactant
has also been used in DPD simulations of endocytosis of PE-
Gylated nanoparticles.[55] For dextran, the so called M3B coarse
grained model was often used, where each monomer unit of dex-
tran was represented by three beads.[56] Since the dextran chains
were rather small compared to the ligands and were mainly there
to prevent overlap of nanoparticles and to some extent to prevent
water leaking inside nanoparticles, the same bond parameters
Kb, K𝜃 , r0 and 𝜃0 were taken as for PEG.

4.2. Dissipative Particle Dynamics

The simulations were performed using DPDmethod,[57,58] which
was amesoscopicmethod often used for simulating polymers,[25]

biological systems such as cell membranes[59,60] and colloids.[61]

It was recently also used in modeling of ultrasound propagation
in water.[62]

The system was represented by DPD beads, which interacted
with each other via a soft repulsive potential, also called a conser-
vative forceFCij , where i and j are the indices of the ith and jth bead,
respectively. The force, which acted on a given bead consisted also
of a dissipative force FDij and a random force FRij , which acted to-
gether effectively as a thermostat for the system. DPD thermostat
conserved linear and angularmomentum, which was suitable for
modeling hydrodynamic systems. The total non-bonded force on
the ith particle, Fi, is thus a sum of these three forces

Fi =
∑
i≠j

FCij + FDij + FRij (14)

where

FCij = aij𝜔(rij)‚rij (15)

FDij = −𝛾𝜔D(rij)(‚rij ⋅ vij)‚rij (16)

FRij = 𝜎𝜔R(rij)Θij
‚rij (17)

where aij is the interaction parameter between beads i and j, 𝛾
is the friction parameter, 𝜎 is the noise strength, 𝜔R and 𝜔D
are weight functions, ‚rij denotes the normalized vector of the
inter-particle axis rij = ri − rj, vij = vi − vj is the relative velocity of
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the beads and Θij = Θji is a Gaussian random variable with zero
mean, ⟨Θij(t)⟩ = 0, and the following second moment

⟨Θij(t)Θkl(t
′)⟩ = (𝛿ik𝛿jl + 𝛿il𝛿jk)𝛿(t − t′) (18)

From the fluctuation–dissipation theorem one obtained the rela-
tion 𝜔D(r) = 𝜔2

R(r) and 𝜎2 = 2kBT𝛾 . Typically, 𝜔R(rij) is chosen to
be equal to 𝜔(rij)

𝜔2(rij) = 𝜔D(rij) = 𝜔2
R(rij) =

{
(1 − rij

rc
)2, rij < rc

0, rij ≥ rc
(19)

DPD is a mesoscopic method, which involved representing mul-
tiple atoms or molecules as a single bead. To find the length scale
of the system one matched the mass densities of a DPD coarse
grained description and the real density of water 𝜌w

[59]

rc = (vm𝜌DPDNm)
1∕3 ≈ 3.107 (𝜌DPDNm)

1∕3[Å] (20)

where vm = Mw

𝜌wNA
≈ 30 Å3 is the molecular volume of water with

Mw ≈ 18 g mol−1 the molar mass of water, NA is the Avogadro
constant, 𝜌w = 997 kg m−3 is the mass density of water at 25 ◦C
and 1 atm. In Equation (20) the mapping number Nm represents
the number of molecules per DPD bead while 𝜌DPD is the num-
ber density of the DPD beads. It was noted that the mass of a
single bead ism = NmmH2O

, wheremH2O
≈ 18 Da. The mass of a

single water bead was taken as unit mass in this work. Beads rep-
resenting PEG and dextran had masses m = 0.92 and m = 1.25,
respectively. Equation (20) can also be derived by matching the
volume occupied by one DPD bead

VDPD =
r3c

𝜌DPD
= Nmvm (21)

The DPD number density of beads 𝜌DPD as well as the mapping
Nm were free parameters that determine the length scale rc. It
should be mentioned that one can start the other way around by
first setting the scale rc and then deriving the mapping number
Nm. The density was set to 𝜌DPD = 3.0 r−3c throughout the work.
For densities above 𝜌DPD = 2 r−3c , the following equation of state
is valid[25]

p = 𝜌DPDkBT + 𝛼 aWW𝜌
2
DPD (22)

where 𝛼 = (0.101 ± 0.001) r4c is a numerical factor and aWW is the
interaction parameter for the beads of the solvent (e.g., water).
To determine the interaction parameter aWW one typically

matched the dimensionless isothermal compressibility 𝜅 to the
experimental one for water (𝜅−1 ≈ 16). Using Equation (22) and
𝜅−1 = 1

kBT
( 𝜕p
𝜕n
)exp =

1
NmkBT

( 𝜕p

𝜕𝜌DPD
)sim, with n the number density of

water molecules, one can solve for aii

aWW =
Nm𝜅

−1 − 1
2𝛼𝜌DPD

kBT (23)

The time scale is then

𝜏 = rc

√
m
kBT

(24)

Table 1. Table of interaction parameters aij (units
kBT
rc
). Acronyms: W =

water, Mag= nanoparticle beads, Dex= dextran, Lig= ligand, Ab = recog-
nition parts, Bio = biomarker.

W Mag Dex Lig Ab Bio

W 210 105 240 320 320 320

Mag 210 105 105 105 210

Dex 210 230 230 230

Lig 210 210 210

Ab 210 210

Bio 210

Table 2. Solubility parameters and bead volumes.

Bead type 𝛿 [(J cm−3)1∕2] Bead volume [Å3]

Water[69] 47.5 ± 0.4 240.0

PEG[69] 23.7 ± 0.3 221.3

Dextran[70] 34.8 200.0

For the dissipative parameter 𝛾 , 𝛾 = 4.5
√
mikBT∕rc =

4.5 𝜏kBT∕r2c = 4.5 was chosen, which gave 𝜎2 = 9 𝜏(kBT)
2∕r2c = 9.

In this work the unit of energy was measured in kBT , the unit
of mass is NmmH2O

, the length is measured in rc and the time
in 𝜏. For the case of Nm = 8 one gets: rc ≈ 0.89 nm, 𝜏 ≈ 6.8 ps
and aWW ≈ 210 kBT

rc
. The integration time step 𝛿t was chosen to

be 0.005 𝜏.
The choice of the interaction parameter for water aWW was

therefore determined by the experimental value of the isother-
mal compressibility 𝜅 and the level of coarse-graining, given by
the mapping number Nm. It should be mentioned that this map-
ping was limited to aboutNm = 10, above which one typically ob-
served solidification effects.[63] A different approach was needed
to estimate other interaction parameters, see Table 1. Following
the model of Groot and Warren, interaction parameters between
the beads of the same type were set to the same value, in this
case aii = aWW ≈ 210 kBT

rc
was taken. An alternative method esti-

mated the interaction parameters for the like-beads directly from
solubility parameters.[64]

For the nanoparticle surface one must ensure that it was im-
permeable to the solvent and the surfactants. Since the surface
number density 𝜎s was rather large 𝜎s = 4 r−2c it was found that
the value 0.5 aWW was sufficient. Using an interaction parameter
that was too large leads to large density oscillations near the rigid
walls.[65,66]

The interaction between the ligand beads and the water beads
was estimated using the Flory–Huggins parameter 𝜒ij

aij = aii + 3.497𝜒ij
kBT
rc

(25)

which was valid for the value of the bead number density used
in this work, 𝜌DPD = 3.[25,59] The Flory–Huggins parameter can
be estimated from Hildebrand solubility parameters 𝛿i,

[67,68] see
Table 2

Adv. Theory Simul. 2023, 2200796 2200796 (9 of 14) © 2023 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH

 25130390, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adts.202200796 by U

niversidad A
utonom

a D
e M

adrid, W
iley O

nline L
ibrary on [13/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advtheorysimul.com


www.advancedsciencenews.com www.advtheorysimul.com

𝜒ij =
(𝛿i − 𝛿j)

2(Vi + Vj)

2kBT
(26)

where Vi is the volume of bead i.

4.3. Open Boundary Molecular Dynamics

To study the behavior of the conjugated nanoparticle un-
der nonequilibrium conditions the OBMD method was
employed.[71–73] This was an algorithm that allowed one to
simulate grand-canonical ensembles, where the system ex-
changes energy and mass with the environment. The number
of particles in the simulation box was therefore not constant.
In this paper open boundaries were employed along the x axis,
while the simulation box had periodic boundary conditions in
the other two directions. The simulation box was split into three
regions: a region of interest in the middle surrounded by two
buffers (left and right), where the insertion and the deletion of
particles was performed, see Figure 1. At each time step the
chemical potential was maintained by adding the particles to the
buffers according to the following dynamic equation

ΔN = − 𝛿t
𝜏B
(N − 𝛼N0) (27)

where 𝜏B is the buffer relaxation time, which is typically 𝜏B ≈
100 𝛿t,[71] ΔN is the number of particles to be inserted or deleted,
N0 is the equilibrium number of particles in either of the buffers
and 𝛼 is a user-defined parameter, which was set for stability
reasons to 0.8 in this work. In short, particles were inserted if
ΔN > 0. If ΔN < 0 the algorithm was not performed, but parti-
cles were allowed to diffuse over the open boundaries and were
deleted as soon as they leave the simulation box.
The insertion was performed using USHER algorithm.[74,75]

In USHER, the particle was in the first step randomly inserted in
the chosen buffer region. Then an energy minimization was per-
formed until the total energy of the inserted particle was below
a certain threshold. Since DPD potential was rather soft an im-
plementation of adaptive resolution scheme (AdResS)[76,77] was
not necessary.
One imposed boundary conditions by adding external forces fi

to the particles in the buffer regions and were determined by the
momentum balance

JA ⋅ n =
∑
i

fi +
∑
i′

Δ(mi′vi′ )
𝛿t

(28)

where J is the momentum flux tensor, A is the surface area of
the interface between a buffer and the region of interest, n is
normal to this interface and points toward the region of inter-
est, while Δ(mi′vi′ ) represents the momentum change when the
particle was inserted or deleted from the buffer. The momentum
flux tensor was composed of the pressure contribution and the
tangential shear force

JA ⋅ n = pxxAn + 𝜎xyAt (29)

where pxx is the pressure, t points along the desired shear force
(êy) and 𝜎xy is the imposed shear stress.

4.4. Hybrid Solver

Tomodel the dynamics of themagneticmoments of the nanopar-
ticles the Landau–Lifshitz–Gilbert equation was employed. In
short, this equation described the relaxation of the magnetiza-
tion toward the local magnetic field and the precession around
it. Since the magnetic interactions were of long range, the cal-
culation of this local magnetic fields involved summation of the
fields of all the surrounding magnetic particles and their peri-
odic images. The simulations were carried out using LAMMPS
simulation package.[78]

A solver was implemented, which incorporated the translation
of the particles, their rigid body dynamics as well as the dynam-
ics of the magnetization. The equations for the positions and the
velocities of all the particles in the systemwere updated using the
well known velocity-Verlet algorithm[79]

v(k)(t + 1
2
𝛿t) = v(k)(t) + 1

2
𝛿t
f (k)(t)

m(k)
(30)

r(k)(t + 𝛿t) = r(k)(t) + 𝛿tv(k)(t + 1
2
𝛿t) (31)

v(k)(t + 𝛿t) = v(k)(t + 1
2
𝛿t) + 1

2
𝛿t
f (k)(t + 𝛿t)

m(k)
(32)

where m(k), r(k), v(k), f (k) are the mass, the position, the velocity,
and the total force acting on the kth bead in the system. In the
last step, Equation (32), the force is calculated using positions at
t + 𝛿t and velocity at t + 1

2
𝛿t, that is f (k)(t + 𝛿t) ≡ f (k)(t + 𝛿t, r(k)(t +

𝛿t), v(k)(t + 1
2
𝛿t)). It should be emphasized that themagnetic force

acting between the nanoparticles was already included in this
step in the force f (k)

f (l)m =
∑
i≠l

3𝜇0
4𝜋r5

[
(m(i) ⋅ r)m(l) + (m(l) ⋅ r)m(i)

+ (m(i) ⋅m(l))r − 5
(m(i) ⋅ r)(m(l) ⋅ r)

r2
r
]

(33)

where f (l) stands for the magnetic force acting on the center bead
of the lth nanoparticle withm(l) the corresponding magnetic mo-
ment, 𝜇0 is the magnetic constant 𝜇0 = 4𝜋 × 10−7 N A−2 and r =|r| is the distance between the centers of the ith and lth nanoparti-
cle, with r = r(l) − r(i). The magnetic moments were measured in

units ofm∗ =
√
4𝜋r3c kBT∕𝜇0 ≈ 5.4 × 10−21 A m2. The sum in the

expression for the dipolar force, Equation (33), extended to peri-
odic images as well. For this the particle–particle particle–mesh
method was used,[80] which split the dipolar force contributions
into short range, and long-range contributions, which were effi-
ciently calculated in the Fourier space using fast Fourier trans-
form.
It was noted that the strength of the dipolar interactions com-

pared to the thermal energy is given by

𝜆 =
𝜇0|m|2

4𝜋kBT(2r)3
(34)

where 2r is the inter-particle distance of two touching spheres.
𝜆 can be estimated from the typical saturation magnetizations
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Ms of the nanoparticle core materials, for example, for magnetite
nanoparticles Ms ≈ 400 kA m−1.[81] For a nanoparticle with ra-
dius r in DPD units, this yields |m| = 0.22 r3 in units of m∗

and 𝜆 = 0.006 r3. Dipolar effects become important when 𝜆 ≫ 1,
which is in the case of monodomain magnetite particles equiv-
alent to r ≫ 5.5 rc ≈ 5 nm. In the analysis of nanoparticle clus-
tering rather small nanoparticles with radius r = 1 rc was used,
which means 𝜆 = 0.006. To study also the effects of larger mag-
netic parameters the magnetization of the nanoparticle core was
artificially increased by a factor of 100. This is equivalent to 𝜆 =
60. The study ofmore realistic larger particle sizes will be covered
in a future work.
The nanoparticle cores were treated as rigid bodies with three

translational and three rotational degrees of freedom. The dy-
namics of a given nanoparticle was then determined by the total
force and the total torque on the center of mass, which yielded
the updated coordinates, velocities, and angular velocities. The
numerical algorithm for the angular velocity and the orientation
is similar to the velocity-Verlet algorithm

L(t + 1
2
𝛿t) = L(t) + 1

2
𝛿t𝝉(t) (35)

q(t) ←→ q(t + 𝛿t) see Equation (38) (36)

L(t + 𝛿t) = L(t + 1
2
𝛿t) + 1

2
𝛿t𝝉(t + 𝛿t) (37)

where L is the angular momentum, 𝝉 is the total torque on a
nanoparticle and q is a quaternion which conveniently describes
the orientation and evolves according to the angular velocity𝛀[82]

q̇ = 1
2
𝛀q (38)

where on the right-hand side 𝛀 is represented by a quaternion
𝛀 ≡ (0,Ωx,Ωy,Ωz).
The central particle carried in addition the magnetic moment

and an orientation, defined by the easy axis n, which determined
the direction of the magnetic moment of an isolated nanoparti-
cle in equilibrium. In general, due to the dipolar forces, external
magnetic fields and the clusteringm ∦ n.
At each step the additional orientational degree of freedom n(l)

was taken into account, by updating it according to the angular
velocities 𝛀(l) of the corresponding nanoparticle[20]

𝜕n(l)

𝜕t
+ n(l) ×𝛀(l) = 0 (39)

The rotation of the magnetic moment was determined by the
magnetic relaxation and precession processes, described by the
Landau–Lifshitz–Gilbert equation[83–85]

𝜕𝜶(l)

𝜕t
+ 𝜶

(l) ×𝛀(l) + X = 0 (40)

where 𝜶(l) = m(l)|m(l)| is the unit vector representing the direction of
the magnetic moment of the lth nanoparticle, X is the magneti-
zation current

X = 𝛾R

1 + 𝜂2
𝜶
(l) ×H + 𝜂𝛾R

1 + 𝜂2
𝜶
(l) × (𝜶(l) ×H) (41)

withHi being the localmagnetic field at the position of the central
bead of the lth nanoparticle, composed of the external field Hext

i ,

anisotropic contributionHani
i , dipole fieldHdip

i , demagnetization
fieldHdem

i and stochastic thermal contributionHth
i

Hi = Hext
i +Hani

i +Hdip
i +Hdem

i +Hth
i −

Ω(l)
i

𝛾R
(42)

In Equation (41) 𝛾R represents the Gilbert gyromagnetic ratio,
𝛾R = |𝛾e|𝜇0 ≈ 2.21 × 105 m A−1 s−1 with 𝛾e the electron gyromag-
netic ratio 𝛾e ≈ −1.76 × 1011 T−1 s−1. Expressed in DPD units, the
gyromagnetic factor equals 𝛾R = 11.42. The parameter 𝜂 was the
dimensionless Gilbert damping constant, which is set to 𝜂 = 0.01
in this work.
The anisotropic contributionHani

i can be derived from a poten-

tialHani,(l)
i = − 1

𝜇0MsVc

𝜕Eani

𝜕𝛼
(l)
i

Eani = −
∑
l

KaVc(n
(l) ⋅ 𝜶(l))2 (43)

Hani,(l)
i = 2Ka

𝜇0Ms
(n(l) ⋅ 𝜶(l))n(l) (44)

where Ka is the anisotropy constant and Vc is the volume of the
nanoparticle magnetic core. In this work Ka = 223 kJ m−3 was
used, which corresponded to cobalt ferrite nanoparticles.[86]

The dipole contribution was a summation of the magnetic
fields of all the nanoparticles and their periodic images (includ-
ing the periodic images of a given nanoparticle for which the
force was calculated)

Hdip
i (r) =

∑
j≠l

3(m(j) ⋅ r)r − r2m(j)

4𝜋r5
(45)

where r = r(l) − r(j)

Related to the dipolar contribution is the demagnetization field
of a given nanoparticle Hdem

i . In general it can be written as
Hdem

i = DijMj where Dij is the demagnetization tensor. For the
case of a sphere this tensor was isotropic, Dij = − 1

3
𝛿ij. Since the

dynamic equation conserved the magnitude of the magnetic mo-
ment, this contribution did not have an effect on the dynamics of
spherical nanoparticles.
The field Hth

i was a stochastic contribution[85,87,88] with zero
mean ⟨Hth

i ⟩ = 0 and the following second moment

⟨Hth
i (t)H

th
j (t

′)⟩ = 2𝜂kBT
𝜇0𝛾

RMsVc
𝛿ij𝛿(t − t′) (46)

It has been shown in ref. [89] that both Itô and Stratonovich in-
terpretation of the stochastic term lead to the same result when
applied to Equation (40). Therefore, forth order Runge–Kutta
method was used to solve this equation.
The last term in Equation (42) was needed to correctly account

for the conservation of the total angular momentum,[21,90] J =
L + S, where L = I𝛀 is the angular momentum of the nanoparti-
cle with I the moment of inertia tensor and S = − 𝜇0MsVc

𝛾R
𝜶 is the

spin momentum. This contribution is also known as the Barnett
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field,[91,92] and is related to the Barnett effect[93] wheremagnetiza-
tion is induced by rotation. The moment of inertia tensor was in
the case isotropic and equal to Iij =

3
5
𝜌mVcr

2𝛿ij for a hollow sphere
with radius r and nanoparticle core mass density 𝜌m.
Since the particles are small and single domain, the exchange

interaction term Eex ≈ A|∇M|2 withA the spin stiffness constant
was discarded.
The conservative part of the torque 𝝉cm acting on the nanoparti-

cle can be calculated by inducing an infinitesimal rotation (𝛿n =
𝛿𝝋 × n). A nonzero torque appeared due to the misalignment of
the easy axis and the magnetic moment

𝝉
c
m = 𝜖ijk

𝛿Eani

𝛿nj
nk = −2KaVc(n

(l) ⋅ 𝜶(l))𝜶(l) × n(l) (47)

To guarantee the conservation of the total angular momentum J
there is also a dissipative torque, which is oppositely equal to the
dissipative torque, second term of Equation (41)

𝝉
d
m = −

𝜂MsVc

1 + 𝜂2
𝜶
(l) × (𝜶(l) ×H) (48)

The overall rigid body dynamics of the nanoparticle core is then
given by

ẋ(l) = v(l) (49)

𝜌mVcẍ
(l) = F(l)tot (50)

I�̇�(l) = 𝝉w + 𝝉
c
m + 𝝉

d
m

= 𝝉w +
𝜇0MsVc

𝛾R
𝜕𝜶(l)

𝜕t
+ 𝜇0MsVc𝜶

(l) × (Hext +Hdip +Hth) (51)

where x(l) is the position of the lth nanoparticle, v(l) is its veloc-
ity, Ftot is the total force acting on the nanoparticle core, 𝝉w is the
total torque of the solvent and other nanoparticles, analytes, and
the surfactants acting on the nanoparticle surface. Since the sol-
vent was treated explicitly and was a source of random uncorre-
lated kicks to the nanoparticle surface beads, adding a stochastic
torque to 𝝉w in the spirit of rotational Brownian motion ref. [94,
95] was not needed.
As a side note, it was mentioned that the rotational dynamics

of the nanoparticles was characterized by low Reynolds numbers,
which meant that the angular velocity of the nanoparticle could
in principle be estimated from the balance of hydrodynamic and
magnetic anisotropy torques, yielding

𝛀(l) = −
2KaVc

𝛾n
(n(l) ⋅ 𝜶(l))𝜶(l) × n(l) (52)

with 𝛾n the rotational viscosity, which is proportional to the vis-
cosity of the solvent. In Equation (52) it was assumed that the
magnetization has already relaxed toward the direction of the
magnetic field. According to the Einstein–Stokes equations, 𝛾n =
8𝜋𝜂R3

h. Since 𝛾n depended on the hydrodynamic radius, which
was in principle not known beforehandthis approach will not be
used. Therefore, Equation (47) was used to calculate the torque

and corresponding forces on the nanoparticle, which did not re-
quire knowledge of any additional mesoscopic parameters, such
as 𝛾n.

4.5. Dynamic Binding

To model the attachment of the biomarkers to the recogni-
tion parts, which were located at the end of the recognition
ligands, the so called dynamic binding was employed. This
is a model of the binding process, with which it was already
able to be described the cluster formation of nanoparticles. In
short, if the biomarker came sufficiently close (e.g., less than
a critical distance dc) to the recognition part of the recognition
ligand, a harmonic bond Equation (12) was formed between the
biomarker and the recognition part. dc = rc was set in this work.
For the newly formed bond, the same parameters was used as for
PEG. Due to the known high affinity between the analyte and the
ligand, this bond was not allowed to break once it was formed.
A single biomarker (analyte) can bind to several recognition
ligands (e.g., 1, 2, 4, …) thereby modeling the analytes as mul-
tivalent. This last aspect was crucial for the cluster formation.
In ref. [96] multivalent binding of DNA oligonucleotide probes
attached to a surface was shown to increase the sensitivity of
bacterial genome detection.

4.6. Magnetic Nanoparticles and Colloidal Characterization

The employed magnetic nanoparticle were iron oxide nanopar-
ticles (IONPs) coated with dextran and carboxylic PEG (product
code is 104-56-701) synthesized by micromod Partikeltechnolo-
gie GmbH (Germany). The IONP crystal size was (30 ± 4) nm,
the diffusion coefficient was (8.2 × 106 ± 5.2 × 105) nm2 s−1, the
hydrodynamic diameter was 64 nm whose PDI = 0.08. IONP
size and shape of the studied IONPs were evaluated by transmis-
sion electron microscopy (TEM) (see Figure 17) in a JEM1400
Flash (Tokio, Japan) TEM operating at a 100 kV located at Ser-
vicio de Microscopía Electrónica del Centro de Biología Molec-
ular “Severo Ochoa” CSIC-UAM. TEM images were examined
through manual analysis of more than 150 particles randomly
selected in different areas of TEM micrographs using Image-J
software to obtain the mean size and size distribution. The hy-
drodynamic size (Dh) of IONPs was determined by dynamic light
scattering (DLS) with a Zetasizer Nano ZS equipment (Malvern
Instruments, USA). IONP suspensions were diluted in double
distilled water (DDW) to a final concentration of 0.05 gFe L

−1 in
a commercial cuvette. The energy source was a laser emitting at
633 nm, and the angle between sample and detector was 173◦. For
the determination of the diffusion coefficient of IONPs per unit
volume in magnetic suspensions with iron contents 1 gFe L

−1,
Nanosight NS300 (Malvern Instruments, USA) was employed.
Samples were diluted 1:5000 in DDW and injected into the in-
strument chamber using a 1 mL syringe. Camera settings were
adjusted in order to focus the objective. The video data was col-
lected for 60 s and repeated three times per sample.
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Figure 17. a) Representative TEM image of morphology IONPs. b) Inten-
sity weighted hydrodynamic size distribution of IONPs dispersed in DDW.

Figure 18. a) SQUID measurements of magnetization loops for IONPs
suspension at 1 gFe L

−1 at 4 K (red line) and 300 K (black line). b) Zoom
in low magnetic field regions.

4.7. Magnetic Characterization

SQUID measurements under quasi-static conditions were per-
formed in a range of temperature between 4 and 300 K in IONP
suspensions with a magnetic mass concentration of 1 gFe L

−1, in

a commercial SQUID model MPMS-XL from Quantum Design
at Servicio de Tecnicas Físicas en la Facultad de Físicas de la Uni-
versidad Complutense de Madrid, see Figure 18.
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