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Abstract

Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer.
Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypome-
thylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse
models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease.
However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities
or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation
bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from
human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on
the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and
epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA
methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics
of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the
conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point
toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation.
Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.
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Introduction
Aging is one of the main risk factors associated with the
development of cancer. These two processes have been ex-
tensively investigated from the epigenetic perspective and

consequently analogous epigenetic alterations have been
identified for both, providing explanations for the possible
molecular links between them (Aunan et al. 2017; Yu et al.
2020). These alterations mainly relate to local gains in DNA
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methylation at CpG-dense regions and global losses at the
genomic scale involving repetitive DNA (Baylin and Jones
2016; Sen et al. 2016). Nonetheless, the extent of these paral-
lelisms has not as yet been clearly outlined, particularly within
the hypomethylation scenario (Dmitrijeva et al. 2018; P�erez
et al. 2018). Moreover, recent whole-genome studies in
mouse have also failed to confirm hallmarks such as global
hypomethylation with aging in tissues including liver, hippo-
campus, and stem cells (Sun et al. 2014; Cole et al. 2017; Hahn
et al. 2017; Masser et al. 2017; Hadad et al. 2019; Hernando-
Herraez et al. 2019). These observations underscore two dif-
ferent, but equally important, issues: first, there is a need to
study aging- and cancer-associated epigenetic patterns in a
systematic manner to facilitate an integrated comparison be-
tween the two processes; second, it is essential to also confirm
whether aging- and cancer-associated epigenetic alterations
are equivalent in human and mouse models, as the latter are
very important experimental proxies of human biology.

Mouse models have been widely used in the characteriza-
tion of landmark epigenetic mechanisms such as transgenera-
tional inheritance and genomic imprinting (Blewitt and
Whitelaw 2013) as well as developmental epigenomic reprog-
ramming (Hanna et al. 2018), and they are often used to
characterize alterations in specific disease-associated path-
ways which sometimes have a translational correspondence
in human (Espada and Esteller 2013). To date, reports suggest
that DNA methylation patterns preserve global features such
as the presence of nonmethylated islands and gene body
methylation across mammalian species in general (Long
et al. 2013; Schroeder et al. 2015), with other parallelisms
extending across more distant vertebrate taxa (Elango and
Yi 2008). More directed comparisons involving mouse and
human have described a general conservation of their
genome-wide epigenetic patterns (Edwards et al. 2010) and
have particularly focused on the interspecies conservation of
tissue-specific methylation patterns (Kessler et al. 2016; Zhou
et al. 2017; Chen et al. 2018) and developmental processes
(Lister et al. 2013). Nonetheless, considerable epigenetic differ-
ences in proximal species such as primates have been
reported (Hernando-Herraez, Heyn, et al. 2015; Mendizabal
et al. 2016). So far there have been only limited high-
resolution studies that focus on directly assessing specific
epigenetic similarities between human and mouse in either
aging (Maegawa et al. 2017; Wang et al. 2017) or cancer
(Maegawa et al. 2014), and those that exist are often limited
by their compilation of data from different studies or the use
of different profiling technologies for each species. Some of
these issues have arisen from the lack of a large-scale DNA
methylation array technology for mouse. Overall, then, there
is a lack of back-to-back human–mouse comparisons of DNA
methylation at single-base resolution in the context of dis-
ease. Even so, this issue is particularly relevant in the study of
DNA methylation alterations found independently in both
species in order to reliably ascertain the extent to which some
of the observed similarities or differences arise from pre-
existing species-specific epigenetic traits.

In this study, we sought to perform a systematic, inte-
grated, and intercomparable analysis of the DNA methylation

dynamics associated with cancer and aging in both human
and mouse. To this end, we profiled the brain methylomes of
young and old, tumoral and nontumoral brain samples from
human and mouse by reduced representation bisulfite se-
quencing (RRBS), which provided a robust and interspecies-
comparable platform for the analysis at hand (Bock et al.
2010). We first characterized the baseline epigenomic pat-
terns of both species and subsequently focused on the
DNA methylation alterations associated with cancer and ag-
ing. Next, we described the functional genomic and epige-
nomic context associated with the alterations, and finally, we
integrated our data to study interspecies DNA methylation
levels at orthologous CpG sites. Globally, we found consider-
able differences between the genomic and epigenomic char-
acteristics of DNA methylation alterations in cancer and
aging in human and mouse. Furthermore, we describe robust
evidence for the conservation of the specific cancer-
and aging-associated epigenomic patterns in both species.
Our observations point toward the preservation of the func-
tional consequences of these alterations at multiple levels of
genomic regulation, including the locations and chromatin
context of the alterations, the genetic pathways, and tran-
scription factors (TFs) involved. Additionally, the analysis
of orthologous CpG loci allowed us to describe species-
common locations of DNA methylation variability and
species-common cancer- and aging DNA methylation alter-
ations. Finally, our analyses suggest that the genomic context
associated with many CpG sites may help explain the obser-
vation of species-discordant DNA methylation as well as can-
cer and aging-specific DNA methylation alterations.

Results and Discussion

Baseline Epigenomic Patterns Are Conserved between
Human and Mouse
To characterize the intricate, conserved epigenetic signatures
that may exist in aging and cancer, we studied the genome-
wide DNA methylation patterns of young, old, tumoral, and
nontumoral brain samples from human and mouse (n¼ 24, 3
per group, fig. 1A). We produced methylation values for an
average of 3.94 million and 1.62 million unique CpG sites per
sample for human and mouse, respectively, and retained
a final total of 1,171,918 and 585,234 CpG sites common
to all samples after filtering for coverage (see Materials and
Methods and supplementary table 1, Supplementary Material
online, for sample and alignment information). We first
sought to characterize the global aspects of DNA methylation
and its relationship with genomic function in the two species
in order to determine the baseline similarities and differences
in DNA methylation patterns in our study system. For this
initial analysis, we focused on the nontumoral samples be-
cause the tumors showed extensive deviation from the rest of
the samples using pairwise Pearson correlations (fig. 1B), and
our goal was to profile the general species-wise features of
DNA methylation in our samples.

Though significant, we did not observe noticeable differ-
ences between the species in the distribution of the overall
methylation values, with an average methylation of 0.266 for
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FIG. 1. Baseline epigenomic patterns in human and mouse. (A) Schematic of the study design. (B) Heatmaps showing the pairwise Pearson
correlations between DNA methylation levels of the profiled CpG sites across samples. (C) Violin plots of global levels of DNA methylation for the
pooled samples (red dots indicate average values; h, human; m, mouse; tumor samples are excluded). (D and E) Barplots indicating the distribution
of the profiled CpG sites in human and mouse across CpG island and gene-region locations. (F and G) Violin plots showing the DNA methylation
levels for the pooled samples with the CpG sites grouped by CpG island locations and gene-region locations (red dots indicate average values). (H)
Density plots indicating the relationship between DNA methylation values and surrounding density (2-kb bins) in CpG sites for the profiled CpGs.
(I and J) Heatmaps and bubble plots showing the significant overenrichments in log2(odds ratio) of CpG sites classified as high-, medium-, and low-
methylation in ChIP-seq peak locations of different histone marks across a panel of tissues or in the locations of repetitive DNA classes across the
human and mouse genomes.
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human and 0.272 for mouse (fig. 1C, Wilcoxon rank-sum
P ¼ 0.02). The low levels of methylation observed are to be
expected since the RRBS technology targets CpG-dense
regions, such as CpG islands, which tend to be unmethylated.
On a genome-wide scale, however, most CpG sites are meth-
ylated in mammals (Greenberg and Bourc’his 2019), and tech-
nologies such as whole-genome bisulfite sequencing (WGBS),
which also targets intergenic regions, would detect higher
levels of DNA methylation.

In order to ascertain that the RRBS was evaluating a com-
parable population of CpGs for each species, we annotated
the sites to functional genomic locations in terms of their
CpG island membership status and genetic elements. For
both species, the technology interrogated a majority of
CpG sites located at CpG islands (fig. 1D), with a slight in-
crease in open sea CpGs for mouse (Fisher’s P < 0.001,
OR ¼ 1.89). Regarding genetic elements, the distribution of
the quantified CpGs was also very similar for both species
(fig. 1E), with the largest proportion of sites being located at
promoters and gene bodies. These observations suggest that,
for human and mouse, the RRBS technology targets popula-
tions of CpG sites which have analogous genomic contexts.

Next, we proceeded to characterize the relationship be-
tween DNA methylation and CpG context in both human
and mouse. With respect to CpG islands, DNA methylation
was highest at open sea locations and lowest at islands for
both species, with a transition in methylation across shelves
and shores (fig. 1F). For gene elements, the relationship with
DNA methylation was also parallel between human and
mouse, with promoters and 50-UTR regions showing the low-
est values, followed by gene body exons and introns, whereas
intergenic regions were those with the highest DNA methyl-
ation (fig. 1G). The presence of DNA methylation is inversely
correlated to the density in surrounding CpG sites (Chen et al.
2018), and this may help explain some of the patterns found
at genomic locations, especially concerning CpG islands and
open sea. We therefore characterized the density in the CpG
sites associated with each locus by counting the number of
neighboring CpG sites in surrounding 2-kb windows. As
expected, in general, low methylation values were found as-
sociated with locations with higher density in CpG sites,
whereas higher methylation values were found at low-density
locations, for both species (fig. 1H). Indeed, the different ge-
nomic locations (islands and gene regions) displayed different
distributions of density in CpG sites (supplementary fig. S1A,
Supplementary Material online) and, moreover, the mean
methylation value of each element correlated almost per-
fectly with its average density in CpG sites (supplementary
fig. S1B, Supplementary Material online). Collectively, these
results confirm that the relationship between DNA methyla-
tion and functional genomic elements such as CpG islands
and gene regions is conserved between human and mouse
and is mostly explained by the density of CpG sites associated
with each element (Edwards et al. 2010).

In the regulation of gene expression, epigenetic marks such
as DNA methylation are not independent, rather, they act in
combination with interrelated marks such as histone mod-
ifications to define functional states (Du et al. 2015). Thus, to

better study the relationship of DNA methylation concerning
its genomic function in mouse and human, we integrated our
data with ENCODE and NIH Roadmap Epigenomics ChIP-seq
data profiling the histone modifications H3K4me1, H3K4me3,
H3K27ac, H3K36me3, H3K27me3, and H3K9me3. We focused
on a panel of tissues which was available for the two species,
and contained several brain tissue tracks, analyzing a com-
bined total of 144 data sets. We classified CpG sites as high-,
medium-, or low-methylation loci (>0.8, [0.2,0.8], and <0.2
average methylation values, respectively) and investigated the
colocalization of these sites with the histone marks by over-
enrichment analyses at FDR <0.05 (see Materials and
Methods). With this procedure, we observed practically iden-
tical chromatin signatures of methylation status in human
and mouse (fig. 1I and supplementary table 2, Supplementary
Material online): high methylation sites were associated with
active gene-body H3K36me3 and repressive H3K9me3 marks,
intermediate methylation also appeared to be related to
enhancer/promoter-associated H3Kme1 and low methyla-
tion sites were strongly associated with the active promoter
and enhancer H3K4me3 and H3K27ac marks. These observa-
tions confirm that the relationship between DNA methyla-
tion and genomic function is conserved in both species
(Roadmap Epigenomics Consortium et al. 2015; Gorkin
et al. 2020).

One of the genomic elements to which DNA methylation
has been most functionally linked is repetitive DNA (Beisel
and Paro 2011). Hence, we mapped the classified CpG sites to
RepeatMasker repetitive elements and looked for overenrich-
ment in specific repeat classes. Looking at the most common
repeats, we observed, for both human and mouse, that high-
methylation loci were associated with SINE, LINE, LTR, and
DNA repeats, whereas low-methylation was linked to simple
and low-complexity repeats (fig. 1J and supplementary table
3, Supplementary Material online). Expanding the analyses to
repetitive element families also revealed parallel patterns in
the two species (supplementary fig. S2, Supplementary
Material online). These results are also in consonance with
existing literature both for mouse and human (Edwards et al.
2010).

Dynamics of DNA Methylation Alterations in Human
Aging and Cancer
Once we had confirmed the analogous human and mouse
baseline epigenomic patterns in our study system, we pro-
ceeded to determine the DNA methylation alterations asso-
ciated with aging and with cancer for each species
independently. Starting with human, we found no general
DNA methylation differences associated with cancer or aging
by looking at all the sites analyzed by the RRBS, although
tumor samples tended to have higher methylation values
(fig. 2A). Moreover, PCA clustering suggested differences be-
tween the experimental groups as they segregated across the
most meaningful dimensions (fig. 2B). We performed a dif-
ferential methylation analysis with a stringent threshold (FDR
<0.05, average change in methylation >0.2) to define differ-
entially methylated CpGs (dmCpGs) in aging and cancer. We
identified widespread alterations in both processes, counting
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154,770 dmCpGs associated with cancer and 66,838 with ag-
ing (lists of dmCpGs are available as extended data sets), with
hypermethylation dominating the cancer scenario particu-
larly (accounting for 72% of changes, fig. 2C and D).
Furthermore, performing the cancer differential methylation

comparison using all nine nontumoral samples (nontumor,
young, and old groups) as the control group yielded compa-
rable results and numbers of dmCpGs (supplementary fig.
S3A, Supplementary Material online), indicating that the
cancer-associated alterations observed are robust and are

A

D E F G

H

B C

FIG. 2. Cancer and aging DNA methylation alterations in human. (A) Violin plots of global levels of DNA methylation of all CpGs across the profiled
samples (N, nontumor; T, tumor; Y, young; O, old). (B) PCA plots showing the distribution of the samples across the first two principal
components, with the percentage of variance each explains. (C) Heatmaps showing the methylation values of the top 1,000 dmCpGs found in
the aging and cancer comparisons. (D) Barplots indicating the relative numbers of hyper- and hypo-dmCpGs (differentially methylated CpGs) in
aging and cancer. (E and F) Barplots indicating the distribution of the dmCpGs across CpG island and gene-region locations, including the
distribution of the universe of CpGs profiled by the RRBS (“all”). (G) Lollipop plots comparing the number of dmCpGs mapped to genes (left
vertical axis, black dots) with the number of different genes that the dmCpGs mapped to (right vertical axis, orange dots). (H) UpSet plot describing
the dmCpG sets and their intersections, indicating the size of the sets and the fold-enrichment (FE) of the intersections based on their expected
overlaps.
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independent of the samples used. When mapping the
dmCpGs to CpG island locations (fig. 2E), we observed that
hypermethylation occurred for cancer preferentially at CpG
islands, with a distribution akin to that of the RRBS back-
ground of analyzed sites, whereas hypomethylation and
aging-associated changes were, in general, enriched at open
sea locations (Fisher’s P < 0.001, ORs ¼ 8.9, 3.3, and 4.0,
respectively). Regarding gene locations, cancer hypomethyla-
tion and aging hyper- and hypomethylation were particularly
increased at intergenic- and intronic sequences (Fisher’s
P < 0.001, intergenic ORs ¼ 4.5, 2.0, and 2.0, intronic
ORs ¼ 1.8, 1.7, and 2.0). In line with this observation, cancer
hypermethylation occurred more frequently at CpG-denser
regions than the rest of the changes (supplementary fig. S3B,
Supplementary Material online) and, additionally, it consisted
of the strongest changes (supplementary fig. S3C,
Supplementary Material online). These results suggest that
there are important differences in the breadth and distribu-
tion of hyper- and hypomethylation alterations in cancer,
whereas aging-associated alterations appear to be located at
similar genomic locations regardless of the direction of
change, these locations being comparable to those targeted
by cancer-associated hypomethylation.

expand on the possible functional consequences of the
DNA methylation alterations observed, we mapped the
dmCpGs to genes and performed pathway enrichment anal-
yses. First, as shown in figure 2F, the largest proportion of
dmCpGs mapping to genes was found for cancer hyperme-
thylation. However, of the CpGs that mapped to genes, can-
cer hypo-dmCpGs and aging dmCpGs, although less
numerous, were distributed across similar numbers of genes
as cancer hyper-dmCpGs (fig. 2G, v2 P < 0.001), indicating
that the former were more spread-out across different genes.
We performed pathway enrichment analyses against several
databases which included Gene Ontology, KEGG and
Reactome pathways, and the CGP database from MSigDB,
which describes empirical pathways mined from biomedical
literature. Only cancer hyper-dmCpGs revealed significant
enrichment in biological functions, and these were related
to Polycomb-target genes, G-protein coupled receptor
(GPCR) pathways—with neuropeptide receptors in particu-
lar—and cellular development pathways, especially neuronal
(supplementary fig. S4, Supplementary Material online, full
results are available as extended data sets). Thus, cancer-
associated DNA methylation deregulation, particularly hyper-
methylation, appears to have a more coherent functional
impact than aging-associated changes.

In order to investigate common axes of DNA methylation
deregulation in both cancer and aging, we intersected the
dmCpGs found, observing common CpG sets across all pro-
cesses (fig. 2H and supplementary table 4, Supplementary
Material online). These intersections were all significantly
overenriched (SuperExactTest all P < 0.001), with common
cancer- and aging hypo-dmCpGs displaying the highest fold
enrichment, whereas common cancer hyper- and aging hypo-
dmCpGs showed the lowest. These findings indicate that,
regardless of their direction of change, DNA methylation
alterations are readily found at disease-common loci. We

performed pathway enrichments on these intersections and
only observed enrichments in common CpGs between can-
cer hypermethylation and aging hyper- and hypomethylation
(full results are available as extended data sets). These results
suggest that the functional commonalities between DNA
methylation deregulation in human cancer and aging mainly
pertain to Polycomb-target gene hypermethylation in cancer,
whereas these pathways manifest both hyper- and hypome-
thylation in aging.

Dynamics of DNA Methylation Alterations in Mouse
Aging and Cancer
Next, we profiled the DNA methylation alterations associated
with aging and cancer in mouse. First, regarding the general
levels of DNA methylation, we found, in line with the previous
observations in human, an even clearer trend of increased
DNA methylation in cancer (fig. 3A). The PCA hinted at some
differences between the phenotypes in that a slight separa-
tion was observed between the groups when looking at the
top two dimensions (fig. 3B). The differential methylation
analysis (FDR < 0.05, average change in methylation >0.2)
uncovered extensive alterations, with 181,027 dmCpGs
detected in cancer and 22,564 in aging (lists of dmCpGs are
available as extended data sets). When all of the nine non-
tumoral samples (nontumor, young, and old groups) were
used as the control group in the cancer differential methyla-
tion comparison, results and numbers of dmCpGs were sim-
ilar (supplementary fig. S5A, Supplementary Material online),
suggesting that the cancer-associated alterations observed are
readily detected irrespective of the samples used. Regarding
the direction of the alterations, hypermethylation was the
predominant phenomenon in both processes (accounting
for 68% and 62% of changes, respectively, fig. 3C and D).
The genomic-location distributions of the dmCpGs were
analogous to those observed in the human system (fig. 3E):
cancer hypermethylation occurred at CpG island-associated
sites whereas cancer hypomethylation and aging hyper- and
hypomethylation changes were much more enriched at open
sea locations (Fisher’s P < 0.001, ORs ¼ 24.7, 6.7, and 10.3).
Similarly, with respect to gene locations, these latter altera-
tions were once more enriched at intergenic and intronic
sequences (fig. 3F, Fisher’s P < 0.001, intergenic ORs ¼ 7.5,
2.4, and 3.0, intronic ORs ¼ 1.6, 2.3, and 2.1, respectively).
Again, cancer hypermethylation was directly associated with
higher CpG-density (supplementary fig. S5B, Supplementary
Material online) and accounted for the largest alterations
(supplementary fig. S5C, Supplementary Material online). In
general, the patterns of disease-associated DNA methylation
changes, and especially the contrast between cancer and ag-
ing alterations, followed the same trends as those seen for
human tissue.

examine if the parallelisms observed extended to the func-
tional pathways involved, we mapped the dmCpGs to genes
and carried out pathway enrichment analyses. Once more,
within the dmCpGs mapping to genes, despite cancer hyper-
dmCpGs being by far the most numerous, they were concen-
trated across fewer genes than expected when compared
with hypo-dmCpGs and aging changes (fig. 3G, v2
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P < 0.001). In this case, the pathway enrichment analyses
revealed significant results for all sets of dmCpGs (supplemen-
tary fig. S6, Supplementary Material online, full results are

available as extended data sets). Cancer hyper-dmCpGs, as
with human, were enriched in Polycomb-target genes, GPCRs
(Wnt-activated in particular), and cellular development

A
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FIG. 3. Cancer and aging DNA methylation alterations in mouse. (A) Violin plots of global levels of DNA methylation of all CpGs across the profiled
samples (N, nontumor; T, tumor; Y, young; O, old). (B) PCA plots showing the distribution of the samples across the first two principal
components, with the percentage of variance each explains. (C) Heatmaps showing the methylation values of the top 1,000 dmCpGs found in
the aging and cancer comparisons. (D) Barplots indicating the relative numbers of hyper- and hypo-dmCpGs (differentially methylated CpGs) in
aging and cancer. (E and F) Barplots indicating the distribution of the dmCpGs across CpG island and gene-region locations, including the
distribution of the universe of CpGs profiled by the RRBS (“all”). (G) Lollipop plots comparing the number of dmCpGs mapped to genes (left axis,
black dots) with the number of different genes that the dmCpGs mapped to (right axis, orange dots). (H) UpSet plot describing the dmCpG sets
and their intersections, indicating the size of the sets and the fold-enrichment (FE) of the intersections based on their expected overlaps.
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pathways, including neuronal ones. On the other hand, hypo-
dmCpGs were enriched in generic cancer pathways, cell-
signaling pathways (including GPCRs), and inflammation
terms. Aging hypermethylation was enriched in cell-
interaction terms, and hypomethylation in cell-signaling
pathways. These results indicate that, in contrast to human
processes, aging-associated DNA methylation alterations in
mouse may have more directed functional consequences at
the gene level.

We integrated the cancer- and aging-associated dmCpGs
and found significant overenrichment for all the common
sets (fig. 3H and supplementary table 4, Supplementary
Material online, SuperExactTest all P < 0.001). As occurred
with human tissue, whereas all the intersections displayed
overenrichment, common cancer-, and aging hypo-
dmCpGs displayed the highest fold enrichment and cancer
hyper- along with aging hypo-dmCpGs the lowest. Next, we
performed pathway enrichment analyses of the intersections.
This time, we observed no significant enrichments for those
containing cancer hyper-dmCpGs, but modest enrichments
for inflammation terms did appear, especially for cancer
hypo- and aging hyper-dmCpGs (full results are available as
extended data sets). Taken together, these results suggest
that, in the case of mouse and, in contrast to the human
results, the Polycomb-target, developmental gene hyperme-
thylation observed in cancer is not as evident in aging.

The Interspecies Genomic Context of Cancer and
Aging DNA Methylation Alterations
In light of the parallelisms observed, we sought to extend
the analyses to additional levels of epigenomic regulation
by integrating the methylomic data with the previously
mentioned histone modification data—involving the
histone modifications H3K4me1, H3K4me3, H3K27ac,
H3K36me3, H3K27me3, and H3K9me3—across a panel
of common healthy tissues in human and mouse (see
Materials and Methods). We performed overenrichment
analyses (FDR < 0.05) to test the association of the cancer-
and aging-related dmCpGs discovered in the two species with
the different histone modifications, in order to define chro-
matin signatures linked to the DNA methylation changes.
Using this procedure, we were able to find robust and well-
defined similarities between the two species (fig. 4A and sup-
plementary table 5, Supplementary Material online).
As regards cancer-associated changes, we observed an asso-
ciation of DNA hypermethylation with the repressive
H3K27me3 modification and the more active enhancer/
promoter-associated H3K4me1. In the case of human, cancer
hypermethylation was also strongly enriched at H3K9me3
locations, which are linked to heterochromatic and repressive
states. On the other hand, cancer hypomethylated dmCpGs
were mainly enriched in the H3K9me3 mark for both species.
These cancer-associated signatures have been described
across multiple tissues for human (P�erez et al. 2018) whereas
the literature for mouse is scant.

en looking at aging-related signatures, we again found
comparable patterns between human and mouse.
Moreover, for both species, these patterns were markedly

different to those found for cancer. We observed enrichments
at locations marked with gene-body H3K36me3, heterochro-
matin H3K9me3, and enhancer/promoter H3K4me1. In this
case, even though we observed an increase in H3K4m1 asso-
ciation at aging hypomethylated loci when compared with
aging hypermethylation—a finding reported for human in
several tissues (Fern�andez et al. 2015; P�erez et al. 2018)—
the global patterns of enrichment found for aging dmCpGs
differed moderately from those described in the literature, a
result which could have been influenced by the fact that the
“classical” chromatin signatures have been mostly derived by
using array technology, which targets similar but not identical
genomic contexts (supplementary fig. S7, Supplementary
Material online). In further support of this idea, a recent study
comparing aging-associated DNA methylation changes in
liver between human and mouse—using array and RRBS
data for each species respectively—reported a high enrich-
ment in H3K36me3-associated loci specifically for mouse ag-
ing changes as compared with human (Wang et al. 2017).

Because the histone modification results exposed epige-
nomic similarities between human and mouse for the meth-
ylation changes associated with cancer and aging, we
extended our analyses to discover and study chromatin
states, which are defined by spatial combinations of the his-
tone marks and reflect functional genomic states (Ernst and
Kellis 2010). We trained 18-state models using the six core
histone modifications for our selected panel of data sets by
using multivariate Hidden Markov Models (see Materials and
Methods). The nature of the human states defined was sim-
ilar to that previously described (Roadmap Epigenomics
Consortium et al. 2015) in terms of their histone mark com-
position and co-occurrence with other genomic elements
(supplementary fig. S8A, Supplementary Material online).
The states found for mouse were, in turn, notably similar to
human (supplementary fig. S8B, Supplementary Material on-
line), with the exception of some specific ones, such as the
one assigned as “EnhG2” (genic enhancer 2). These observa-
tions suggest that multilevel epigenomic regulation is func-
tionally parallel between the two species.

We evaluated the overenrichment of the dmCpGs in the
different chromatin states (fig. 4B and supplementary table 6,
Supplementary Material online). Cancer hypermethylation
was strongly enriched in bivalent transcription start sites
and Polycomb-repressed sites (states 14, 16), and somewhat
enriched in transcription start sites and enhancer sites in
general (states 2–4, 7–11) for both species. Additionally,
and as suggested by the stronger enrichment in H3K9me3
for human as compared with mouse (fig. 4A), the chromatin-
state analysis revealed that cancer hypermethylation also oc-
curred, specifically for human, both at heterochromatic
regions and at zinc-finger (ZNF) genes/repeats (states 12,
13). Indeed, ZNF genes, which are characterized by the high
presence of H3K9me3 (Blahnik et al. 2011), displayed the
highest overenrichment of all the chromatin states in human
cancer hypermethylation. Interestingly, this family shows a
great evolutionary expansion in human as compared with
other species, including mouse, and its members are posited
to play roles in novel transcriptional repression activity
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(Emerson and Thomas 2009). Thus, the DNA methylation
deregulation observed in human cancer could be related to
the targeting of human-specific pathways. Regarding cancer

hypomethylation, for both species, most of the affected chro-
matin states (13, 15, 17, 18) involved repressive functions,
such as heterochromatin or Polycomb-associated sites, with

A B

C D

FIG. 4. Chromatin landscape of aging and cancer DNA methylation alterations in human and mouse. (A and B) Heatmaps showing the significant
overenrichments in log2(odds ratio) of hyper- and hypo-dmCpGs in the cancer and aging comparisons, for human and mouse in ChIP-seq peak
locations of different histone marks across a panel of tissues or in chromatin states built across the same panel of tissues. (C) Bubble plots showing
the significant overenrichments in log2(odds ratio) of hyper- and hypo-dmCpGs in the cancer and aging comparisons in the locations of repetitive
DNA classes across the genome for human and mouse. (D) Barplots indicating the relative numbers of transcription factors, classified by their
domains, whose motifs were found to be significantly enriched (HOMER analysis, FDR<0.05) at the genomic locations of the different dmCpG sets,
compared with the numbers of all of the transcription factors tested (“all”). Only the top 50 most enriched, significant factors for each set were
selected.
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some enrichment also being observed in various enhancer
associated states. In the case of aging-associated dmCpGs,
and much like with the histone signatures, the enrichments
were spread out across similar states for hyper- and hypome-
thylation, and involved gene-body transcription states (5, 6),
enhancer states (7–11), and repressive states (15–18).
Especially in the case of human, a particular increase in en-
richment in enhancer states was observed for aging hypome-
thylation. The human and mouse profiles were globally
similar, with some differences, such as in EnhG2 (state 8)
probably being explained by the pre-existing differences in
the chromatin models built (supplementary fig. S8,
Supplementary Material online). Collectively, our results
show that the chromatin context of DNA methylation
changes in cancer and aging is considerably different, and
that the specific features of each process are robustly recapit-
ulated in human and mouse.

We also looked at the association between DNA methyl-
ation alterations and repetitive DNA elements (fig. 4C and
supplementary table 7, Supplementary Material online; see
supplementary fig. S9, Supplementary Material online, for the
analysis expanded to repetitive DNA classes). First, regarding
cancer, repetitive loci were mainly associated with hypome-
thylation across the same large classes of repeats (SINE, LINE,
LTR, DNA), as has been well-described previously (Ross et al.
2010), with the main species difference being that satellite
repeats showed no changes in DNA methylation for mouse
(fig. 4C). In the case of SINE repeats, both the primate-specific
Alu family in human and the related B elements (B1, B2, B4) in
mouse were targeted by DNA hypomethylation (supplemen-
tary fig. S9, Supplementary Material online). Interestingly, we
also observed in human the hypermethylation of ribosome-
associated elements (rRNA, srpRNA), a finding which has
been reported for some types of cancers (Srivastava et al.
2016), although literature on the subject is scarce. Secondly,
in the case of aging, both hyper- and hypomethylation were
associated with repetitive DNA, with the patterns observed
being similar to those of cancer hypomethylation. Although
RRBS is mostly limited to examining single-copy sequences,
the bidirectionality of the changes found here for aging may
help explain observations in the literature that fail to describe
any noticeable trend of loss of methylation during aging in
the genome-wide levels of brain methylation both in mouse
(Hadad et al. 2019) and human (Lister et al. 2013; McKinney
et al. 2019). No associations whatsoever were found with
simple or low-complexity repeats, which were the main clas-
ses which we had previously linked to low levels of basal
methylation in nontumoral tissue (fig. 1J). Taken together,
these observations suggest that repetitive DNA elements
are subject to similar DNA methylation alterations in cancer
and aging for both species, with the exception of satellite
repeats, which appear to be more affected by these processes
in human as compared with mouse.

We next sought to study the possible effects of the DNA
methylation changes found at TF-binding sites, because TFs
are downstream genomic regulators directly in contact with
the genomic structure. To this end, we performed a HOMER
analysis to find enrichment in TF motifs associated with

dmCpG sites, selecting the top 50 significant (FDR < 0.05)
motifs with the highest enrichments found for each compar-
ison (see supplementary table 8, Supplementary Material on-
line, for extended results). First, to obtain a general overview
of the types of TFs affected by the DNA methylation changes,
we classified our results into TF domain-families (fig. 4D).
With this approach, we found both similarities and differ-
ences between the processes as well as between species.
Cancer hypermethylation dmCpGs were associated with
Homeobox TFs for both species (Fisher’s P < 0.01,
ORs ¼ 2.7 and 2.7 for human and mouse, respectively), but
also associated with NRs in human (Fisher’s P < 0.05,
OR ¼ 2.8) and bHLH-domain TFs (Fisher’s P < 0.001,
OR ¼ 7.8) in mouse. Regarding cancer hypomethylation, it
was particularly enriched at bHLH- and HMG-domain TF
motifs in human (Fisher’s P < 0.001, ORs ¼ 11.4 and 8.8,
respectively). On the other hand, the patterns of TF sites
targeted by aging hyper- and hypomethylation were similar
in both species. Aging hypermethylation particularly affected
ETS-domain TF motifs (Fisher’s P < 0.001, ORs ¼ 48.5 and
26.9 for human and mouse, respectively) whereas hypome-
thylation involved bHLH- and HMG-domain TF sites (Fisher’s
P < 0.001, ORs ¼ 6.9, 12.0, 7.8, and 16.6 for human bHLH,
HMG and mouse bHLH, HMG, respectively).

Subsequently, we focused on the specific TFs involved in
the previous observations, by looking at the main sets of
shared or unique TFs affected in each comparison (supple-
mentary fig. S10, Supplementary Material online). As sug-
gested by the previous results, the patterns of species-
common alterations at TF motifs were especially noticeable
for aging-related changes. Aging-associated hypermethylation
of ETS-domain TFs, a family strongly linked to oncogenic
processes (Sizemore et al. 2017), was the main common epi-
genetic phenomenon between mouse and human. Several
Sox TFs (HMG domains) were commonly targeted by
aging hypomethylation in both species, such as Sox2, whose
expression has been shown to be deregulated with aging
in both human and mouse brain (Carrasco-Garcia 2018).
Interestingly, Sox TFs also appeared affected by cancer hypo-
methylation in human, suggesting possible links between the
regulation of aging and of cancer, as has been shown for Sox4
in other tumors (Foronda et al. 2014). In addition, the dereg-
ulation of methylation patterns at bHLH-domain TF sites
appeared to be a general trend in both cancer and aging
processes, appearing at loci related to specific neuronal de-
velopment and differentiation, including TFs such as
NeuroG2, NeuroD1, Olig2, or Atoh1 (Dennis et al. 2019)
and also involving Homeobox TFs such as DLX1/2.

To sum up, the analysis of the links between DNA meth-
ylation alterations and TF-binding sites revealed that clear
functional parallelisms between human and mouse exist in
the aging scenario. This is in contrast to our earlier gene
pathway enrichment analyses, which showed that most of
the affected genetic pathways common in human and mouse
involved cancer hypermethylation (of Polycomb-targets and
developmental genes). This discrepancy could be explained
by aging-associated methylation changes being more func-
tionally important when occurring at genomic sites not
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directly associated with gene locations (such as many TF-
binding sites). Moreover, as shown in earlier stages of this
study (figs. 2F and 3F), aging changes concentrate more at
nongenic sites than cancer changes. Thus, the identification of
functional targets implicated in DNA methylation alterations
in aging may be more effective when focusing on TF-binding
site alterations.

Interspecies Integration of Cancer and Aging DNA
Methylation Alterations
After establishing the parallel features of DNA methylation
alterations in human and mouse, we integrated our CpG-
specific data, to be able to directly compare methylation
values between the two species at orthologous locations, by
lifting the mouse coordinates to the human genome (see
Materials and Methods). We recovered interspecies measure-
ments for a sizeable set of 59,100 CpG sites, 35% of which had
been classified as dmCpGs at any comparison (see supple-
mentary table 9, Supplementary Material online, for the lift-
over statistics; the full list of orthologous sites is available as an
extended data set). These orthologous sites were overen-
riched in CpG island locations when compared with the orig-
inal backgrounds (Fisher’s P < 0.001, ORs ¼ 7.1 and 6.1 for
human and mouse, respectively), and largely maintained their
relationship to CpG islands in both species, suggesting that
they covered similar functional regions in both genomes
(fig. 5A). Correlation analysis of the DNA methylation values
of the interspecies lifted CpGs revealed that, excluding cancer,
the samples clustered within their species (fig. 5B). Tumors,
on the other hand, again showed widespread reconfiguration,
clustering independently and, interestingly, mouse tumor
CpGs were slightly more correlated to human tumors than
to the rest of the mouse samples. Examining only nontumoral
samples, methylation was found to be highly correlated be-
tween the two species (fig. 5C, left panel; Pearson coef. 0.84,
P< 0.001). Moreover, when we retained only CpG sites which
were lowly variable within each species (SD< 0.1 methylation
value) most of the species-discordant CpG sites disappeared
(fig. 5C, right panel; Pearson coef. 0.92, P< 0.001). Indeed, the
subsets of high-variability sites for human and mouse (CpGs
with SD �0.1 methylation value) showed much higher over-
lap than expected (fig. 5D; Fisher’s P < 0.001, OR ¼ 16.7),
suggesting that locations of methylation variability are con-
served between the two species. In order to strictly define
species-discordant CpGs (sdCpGs), we performed a differen-
tial methylation analysis (FDR < 0.05, average change
in methylation >0.2) at the 59,100 loci with interspecies
measurements (the list of sites and sdCpGs is available as
an extended data set). We identified 1,845 sdCpGs (supple-
mentary fig. S11A, Supplementary Material online), evenly
split between those presenting higher and those lower meth-
ylation in mouse as compared with human (hyper- and hypo-
sdCpGs, respectively, supplementary fig. S11B, Supplementary
Material online). Interestingly, when annotating the sdCpGs
either to human or mouse genomic contexts, we observed
considerable differences in the distribution of the sites, espe-
cially according to their CpG island status (supplementary fig.
S11C and D, Supplementary Material online). Following this

observation, we directly assessed the transitions between the
genomic contexts of the sdCpGs in the genome of each spe-
cies (fig. 5E), finding that, particularly in the case of hyper-
sdCpGs, there was a considerable difference in the genomic
association to CpG island status between the two species. In
this case, CpGs which in human-occupied CpG islands and in
mouse-occupied less-dense regions (shores, open sea) had
higher methylation levels in mouse (i.e., were classified as
hyper-sdCpGs). This is in line with our previous observations
(fig. 1F–H) of denser genomic loci being associated with lower
methylation values in both species. This finding suggests
that interspecies differences in DNA methylation levels
may be partly explained by local changes in the functional
genomic context of their respective genomes, such as CpG
island membership (Hernando-Herraez, Garcia-Perez, et al.
2015).

xt, we focused on the fraction of previously described
species-specific cancer- or aging-associated dmCpGs for
which we had interspecies measurements (see supplementary
table 9, Supplementary Material online, and extended data
sets). This allowed us to directly compare cancer- and aging
changes at specific loci between human and mouse. We
found common and statistically significant intersections be-
tween the two species for all sets (fig. 5F and supplementary
table 10, Supplementary Material online; SuperExactTest all
P < 0.001), with the biggest intersection being found for
cancer dmCpGs, although the observed size and fold enrich-
ment of the intersections was probably influenced by the
differing sizes of the various sets. Differentiating by direction
of change revealed that the biggest intersections were dom-
inated by hypermethylation changes in both species (supple-
mentary fig. S12, Supplementary Material online), especially
when involving cancer sets. Aging, on the other hand, was
limited to much smaller intersections with directionality not
playing such an apparent role. Nonetheless, the observed
intersections suggest that, added to the previously described
similarities in genomic contexts (fig. 4), when we focus on
specific orthologous loci, common sites of DNA methylation
alteration across the two diseases and the two species are
readily detected.

After the characterization of specific similarities between
human and mouse, we turned to examine the influence of
sequence conservation in the explanation of the epigenetic
patterns found. We integrated our data with UCSC conser-
vation scores for multiple alignments across vertebrate spe-
cies (see Materials and Methods). First, regarding disease-
associated alterations in general (dmCpGs), we observed
that, for both species, cancer hypermethylation occurred at
more conserved regions than did either cancer hypomethy-
lation or aging changes (fig. 5G). This finding can support the
notion that cancer hypermethylation may impact conserved
axes of gene regulation across species, something which we
had observed through the pathway enrichment analyses.
However, these trends may also be partly explained by the
genomic distribution of the alterations, because hypomethy-
lation and aging alterations occur more often at intergenic
and intronic regions (see figs. 2F and 3F), which we found
(using all the profiled CpGs) to be less conserved than other
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FIG. 5. Interspecies DNA methylation alterations in human and mouse. (A) Sankey diagram describing the distribution of changes in the CpG island
status of the 59,100 interspecies orthologous CpGs when considering either the human or the mouse genomic annotation. On either side, the
original backgrounds of all the profiled CpG sites are shown. (B) Heatmap showing the pairwise Pearson correlations of the DNA methylation levels
of the interspecies CpGs across all samples. (C) Scatter plots showing the correlation between DNA methylation levels at all the profiled
interspecies sites (left plot) or excluding intraspecies highly variable CpG sites with SD �0.1 methylation value (right plot) (tumors excluded).
(D) Venn diagram showing the intersection of interspecies lifted CpG sites classified as highly variable within each species (SD�0.1 methylation
value) for both mouse and human. (E) Sankey diagrams showing the distribution of hyper- and hypo-sdCpGs (species-discordant CpGs) across
CpG island locations, taking into account the differences in the genomic context of the human and mouse genome. (F) UpSet plot describing the
sets of cancer and aging dmCpGs with interspecies measurements, showing their sizes and intersections between human and mouse. (G) Violin
plots showing the distribution of phastCons conservation scores for the detected aging- and cancer dmCpGs in human and mouse, compared with
the profiled RRBS background (red dots indicate average values). (H) Violin plots showing the distribution of phastCons scores for the detected
interspecies sdCpGs, compared with the 59,100 lifted background, either in human or mouse-centered conservation score (red dots indicate
average values).
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genetic regions such as exons or promoters, that is, those
more impacted by cancer hypermethylation in both species
(supplementary fig. S13A and B, Supplementary Material on-
line). Second, within our 59,100 interspecies loci, we found
that sdCpGs were enriched at conserved regions (fig. 5H)
more frequently than the rest of the interspecies sites. This
observation could at first sight appear to challenge the exist-
ing literature, which describes the positive correlation be-
tween sequence conservation and epigenetic conservation
(Zhou et al. 2017), but, again, it may partly be explained
by the sdCpGs being enriched at exon locations (see supple-
mentary fig. S11D, Supplementary Material online), which are
more conserved (see supplementary fig. S13B, Supplementary
Material online). To address these issues, we applied stratified
sampling to compare the CpG sets of interest against ran-
domly sampled background sets of CpGs which had match-
ing distributions of gene locations. With this strategy, we
found that most of the trends regarding the difference in
conservation scores observed could indeed be partly
explained by the genomic context of the CpGs involved,
both for cancer- and aging dmCpGs (supplementary fig.
S14A, Supplementary Material online) and for human- and
mouse sdCpGs (supplementary fig. S14B, Supplementary
Material online). These results suggest that both disease-
and species-specific epigenetic traits are influenced by
the genomic context surrounding the specific CpG sites
involved.

Interspecies Hotspots of Cancer- and Aging Epigenetic
Deregulation
Finally, we used the interspecies CpGs to look for common
hotspots of cancer- and aging epigenetic deregulation be-
tween human and mouse which could have downstream
functional implications. We focused on the 22 CpGs which
had been identified as dmCpGs in both species and both
processes (described in fig. 5F). Of these, nine CpG sites pre-
sented concordant changes in both species (i.e., being deregu-
lated in the same direction, in cancer and aging, for human
and mouse) and were associated with a total of six genes (see
supplementary table 12, Supplementary Material online). In
order to study the possible functional consequences of the
DNA methylation alterations, we obtained TCGA expression
data for the LGG–GBM glioma cohorts and analyzed the
expression of these candidate genes and their association
with survival across glioma patients (see Materials and
Methods). Notably, we found evidence of the strong deregu-
lation of five out of the six genes in glioma samples as com-
pared with controls (see below), indicating that our robust
approach of looking at orthologous and concordant aging-
cancer DNA methylation changes leads to the discovery of
functionally relevant targets.

We first identified the AGAP3 gene as being a target of
both cancer-associated and aging-associated deregulation in
both human and mouse. AGAP3 is a component of the neural
NMDA receptor complex and AGAP proteins regulate recep-
tor trafficking in neurons (Oku and Huganir 2013). In cancer,
this gene showed strong hypermethylation of internal CpG
sites which, in both species, colocated with CpG islands

upstream and downstream of many alternative transcripts
(fig. 6A, upper plots), whereas DNA methylation alterations
in the same direction, albeit smaller, also appeared with aging
in both species (fig. 6A, lower plots). The specific location of
the DNA methylation changes found hinted at a nonrandom
and perhaps functional role for the alterations. Thus, we an-
alyzed AGAP3 expression in the TCGA LGG-GBM and found
a strong decrease in expression in tumors (fig. 6B, Wilcoxon
rank-sum P < 0.001). Moreover, expression levels were
strongly associated with overall survival in the cohort
(fig. 6C, log-rank test P < 0.001), with the more lethal GBM
subtype having the lowest levels of expression and survival
(supplementary fig. S15A and B, Supplementary Material on-
line). Interestingly, as can be seen in figure 6A, the AGAP3
internal hypermethylation events colocated with the ending
and start of several isoforms. We therefore explored the levels
of the main AGAP3 isoforms (supplementary fig. S15C,
Supplementary Material online) and their association with
survival (supplementary fig. S15D, Supplementary Material
online), discovering that a specific isoform (uc003wjf/
ENST00000473312) was mostly explanatory of the effect (sup-
plementary fig. S15E, Supplementary Material online, Cox
Models log-rank test P < 0.001). Moreover, it corresponded
to an isoform truncated close to the internal region targeted
by the DNA methylation alterations (highlighted in fig. 6A).
Indeed, studies have described isoform variants of AGAP3
with biological functions (Oku and Huganir 2013) some of
which may have roles in oncogenic processes through alter-
ations in their mRNA expression (Shimizu et al. 2019). These
observations exemplify an interspecies DNA methylation de-
regulation process which, as shown for human, could have a
role in AGAP3 deregulation in glioma, possibly through an
effect on isoform switching, with aging-associated methyla-
tion changes preluding the cancer-associated alterations.

addition to AGAP3, five other genes were associated with
concordant interspecies dmCpGs (fig. 6D): GPRIN1, AJM1,
LHX2, CCDC177, and TPGS1. Notably, four of the genes iden-
tified, much like with AGAP3, were clearly downregulated in
tumoral samples as compared with healthy tissue (fig. 6E,
Wilcoxon rank-sum tests), with the GBM subtype often dis-
playing the strongest downregulation. We also investigated
their relationship with survival and found a strong association
between gene expression and overall survival for GPRIN1, with
a more modest effect for AJM1 and, interestingly, a trend for
an association between CCDC177 expression and survival that
was specific to the GBM subtype (supplementary fig. S16,
Supplementary Material online). LHX2 is involved in neural
development (Chou and Tole 2019), whereas GPRIN1 and
TPGS1 play a role in neural cytoskeleton dynamics (Regnard
et al. 2003; Nordman and Kabbani 2012) and AJM1 is related
to apical junctions (Köppen et al. 2001). As such, the deregu-
lated genes appear to be predominantly associated with cy-
toskeletal processes. LHX2 is known to be oncogenic in several
types of cancer (Song et al. 2019) although we have found it
to be downregulated in the case of glioma, as has been
reported previously (Cheng et al. 2019). Nonetheless, the
specific role of LHX2 and of the rest of the genes in glioma
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FIG. 6. AGAP3 is an interspecies cancer- and aging-associated target of DNA methylation alterations. (A) Plots describing the average methylation
values of tumoral, nontumoral, young, and old samples in human and mouse across the profiled CpG sites mapping to AGAP3. Sites marked in
yellow represent significant dmCpGs in the aging and cancer comparisons. Below, the transcripts and CpG islands associated with the genomic
region described are shown. (B) Boxplots showing the expression values of the AGAP3 gene in control and tumor samples from the TCGA glioma
cohort (GBM-LGG). Expression is measured in VST (variance stabilizing transformation) normalized units. High and low-expression samples
(above and below the median) are in yellow and green. (C) Survival curves showing the association of high and low AGAP3 expression groups with
overall survival across glioma patients. (D) Boxplots describing the methylation values of the interspecies dmCpGs that presented concordant
changes in cancer and aging across human and mouse and which were associated with specific genes. (E) Boxplots showing the expression values
(VST normalized units) of the genes associated with the interspecies concordant dmCpGs in control and tumoral samples from the TCGA glioma
cohort (GBM-LGG). Glioblastoma (GBM) and lower grade glioma (LGG) samples are shown separately. High- and low-expression samples (above
and below the median) are color-coded. Wilcoxon rank-sum tests: *P<0.05, **P<0.001, ***P<0.0001, “ns,” P>0.05.
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described here, or in cancer as a whole, remains largely
unexplored.

Conclusions
In this work, we have performed a systematic analysis of the
DNA methylation dynamics associated with cancer and aging
in brain tissue in human and mouse. We employed RRBS as a
platform which allowed us to profile comparable genomic
locations in both species. With this strategy, we first con-
firmed, in our study system, the parallelisms in baseline
DNA methylation patterns between human and mouse.
Subsequently, we explored the alterations associated with
cancer and aging in both species. Our analyses revealed
that there are considerable differences in the genomic and
epigenomic features of DNA methylation alterations in can-
cer and aging, and that the particular characteristics of the
alterations found for each process are globally conserved in
human and in mouse (see supplementary fig. S17,
Supplementary Material online, for a graphical outline of
the main findings). We found specific parallelisms at the level
of their genomic locations and the magnitude of the changes,
the genetic pathways involved, the chromatin context of the
alterations, the families of repetitive DNA elements affected,
and the alteration of TF regulation sites, among others.
Interestingly, we observed that aging-associated changes in
general seem to impact more specific functional gene path-
ways in mouse than in human. Nonetheless, we found that
the classical hypermethylation of developmental gene path-
ways is more shared between cancer and aging in human
than in mouse. Intriguingly, epigenetic alteration of satellite
repeats appeared to be a feature of both aging and cancer in
human, but not in mouse. Significantly, we found very clear
interspecies similarities in the aging-associated alterations oc-
curring at the TF-binding sites of specific families, suggesting
that the functional impact of aging methylation changes
could indirectly occur through TF deregulation rather than
through the direct targeting of specific genes. Finally, we de-
rived a large set of orthologous CpG sites with interspecies
measurements, which allowed us to observe that sites of
epigenetic variability are conserved between the species,
that interspecies differences between human and mouse
can be partly explained by changes in the local genomic con-
text associated with the CpG sites and that there are com-
mon interspecies loci which are altered during both aging and
cancer.

The results presented in this manuscript cover several
aspects of the epigenetic dynamics in human and mouse,
but we should also draw attention to the limitations of our
study. First, we recognize that the sample size used in our
study design is limited (n¼ 3 per group), which is principally
because of the substantial number of groups being analyzed
(four phenotypes in two species). However, the interspecies
corroboration of the results does indicate that the observed
patterns are robust. Second, we have focused on a single
tissue (brain). Although this allowed us to perform a com-
parative study in greater depth, and it is known that epige-
netic alterations that arise in cancer or in aging are similar

across tissues (Michalak et al. 2019), it will be of value to
explore the interspecies conservation of epigenetic signatures
in other tissues (Maegawa et al. 2017; Wang et al. 2017), and
also other species such as pig or rhesus. Third, we used RRBS
to profile analogous genomic locations in human and mouse,
a technology which focuses on CpG-dense locations and is
more limited when studying intergenic regions. That said, the
use of RRBS allowed us to define a large subset of interspecies
measurements (59,100 CpG sites) with adequate coverage
across all the samples.

From an evolutionary perspective, systematic multispecies
comparisons are of great value in the understanding of the
etiology of disease. The uncovering of species-common path-
ways provides robust molecular explanations for the mecha-
nisms at play, whereas interspecies differences may help
explain the phenotypic divergences observed across the spe-
cies. For instance, our observation of the human-specific epi-
genetic deregulation of zinc-finger genes in cancer may be
related to the importance of this family in primates, which
have experienced considerable lineage-specific expansion as
compared with rodents (Huntley et al. 2006; Emerson and
Thomas 2009). The emphasis on species-specific pathways,
whereas relevant to evolutionary biology is, conversely, of less
value in clinical biology, which seeks the translation of mech-
anisms to human. In this respect, systematic, genome-wide,
multispecies integrative studies such as the one presented
here have the potential to answer questions relating to
both ends.

Taking a more clinical viewpoint, we can foresee that our
results may spark interest in different areas. The mouse is one
of the main preclinical models for human disease and, as such,
it is essential to have markers for the prediction of treatment
success in human (Day et al. 2015). In this vein, in this work,
we found that species-common epigenetic changes across
diseases were readily associated with genes showing expres-
sion alterations in glioma in human. Thus, focusing on con-
served epigenetic alterations such as those described here
may help narrow the search for functionally relevant targets
that are altered in disease. In this sense, current advances in
the development of targeted epigenetic editing tools (Liu
et al. 2016), combined with the knowledge of epigenetic con-
servation in mouse and human, may serve as a powerful tool
to explore the overall impact of both epigenetic and pathway
alterations in multiple biological scenarios.

On the other hand, the set of epigenetically conserved
DNA methylation sites could pave the way for the design
and development of novel custom high-throughput plat-
forms, either in the context of cost-effective microarray tech-
nology or through the use of more sophisticated targeted
bisulfite sequencing approaches. This may be of particular
interest within the framework of epigenetic profiling during
drug screening in preclinical models as alterations of such
conserved disease-associated loci could help predict future
treatment success in human. For example, glioma is a cancer
type with a high prevalence of isocitrate dehydrogenase
mutations which lead to important epigenetic alterations
(Han et al. 2020). The main chemotherapy treatment in gli-
oma involves temozolomide (Hirst et al. 2013), and its
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effectiveness is also associated with various DNA methylation
features beyond the well-known MGMT promoter methyla-
tion (Cheng et al. 2019). Thus, integrating epigenetic conser-
vation knowledge could aid in the identification of drug-
sensitive pathways in animal models, which in turn would
improve the current standard-of-care treatments as well as
also shed light on the mechanistic insights of novel com-
pounds or those rescued from current drug repositioning
approaches.

All in all, this work could constitute a baseline for other
future studies focusing on the systematic evaluation of
disease-associated epigenetic patterns across multiple tissues
and species from a multiomic perspective in order to inform
the search for inter- and intraspecies patterns of epigenetic
regulation.

Materials and Methods
All statistical analyses were carried out using R statistical
software (v3.6.2) unless stated otherwise. Software was
managed through Bioconda (Grüning et al. 2018). Graphs
were produced using R base functions and the ggplot2 R
package (v3.2.1) (Wickham 2016). For the illustration and
testing of multiple-set intersections, the UpSetR (v1.4.0) and
SuperExactTest (v1.0.7) R packages were used (Wang et al.
2015; Conway et al. 2017). For the illustration of gene-level
DNA methylation profiles, the ggbio R package (v1.34.0) was
used (Yin et al. 2012).

Sample Description and DNA Extraction
Regarding the aging cohorts, we collected brain cortex tissue
from three young (24, 33, 35 years; female, male, male) and
three old (65, 69, 70 years; female, male, female) human sub-
jects and three young (10 weeks; all female) and three old
(90 weeks; all female) C57BL/6HsdOla/CBA mice. Humans
and mice have different lifespans and in consequence their
ages are not equally translatable across their different life
stages. The young groups were selected to be at least sexually
mature adults, a characteristic which is attained at 10 weeks
for mice and 20 years for humans (Dutta and Sengupta 2016).
Regarding the old groups and considering an average lifespan
of 80 years and 24 months for humans and mice, respectively
(Dutta and Sengupta 2016), the 90-week-old mice would
correspond to 69-year-old humans. Consequently, the age
grouping for both species lies within a similar range.

For the cancer cohorts, we collected glioma and paired
cortex tissue from three human subjects (71, 31, 44 years;
female, female, male), and glioma and paired cortex tissue
from three mouse subjects (12–16 weeks; all female) using an
in-house murine model of glioma (see supplementary table 1,
Supplementary Material online, for additional information on
the samples). The murine glioma model consists in the ortho-
topic allograft of GL261 glioma cells into the brain of C57BL/6
mice as previously described by us (Ferrer-Font et al. 2017).

DNA was extracted by standard phenol–chloroform
procedures. Concentration and quality of the DNA were
assessed by Qubit fluorometry (Thermo Fisher Scientific)
and Fragment Analyzer capillary electrophoresis (Agilent).
Because the human cohorts were composed of both male

and female individuals, sex chromosomes were not included
in the subsequent analyses for any species (see below) in
order to avoid sex bias.

Human samples and data from patients included in this
study were provided by the following institutions: the
Biobank HUB-ICO-IDIBELL (PT17/0015/0024, integrated in
the Spanish Biobank Network), the Biobank of Galicia Sur
Health Research Institute (IISGS), and the Aragon Health
Sciences Institute in the framework of the Biobank of
Aragon. All human and mouse samples were processed fol-
lowing standard operation procedures with the appropriate
approval of the corresponding Ethical and Scientific Review
Boards: Bellvitge University Hospital Ethics Committee (code
07/19, April 11, 2019) for the human aging samples; Biobank
IISGS Ethics Committee (code 2019/238, April 28, 2019) and
Arag�on Clinical Research Ethics Committee (code 14/2019,
July 24, 2019) for the human cancer samples; Health Institute
Carlos III Ethics Committee (code CBA PA 13_2013, February
26, 2013) for the mouse aging samples; Autonomous
University of Barcelona Ethics Commission (code CEEAH-
3665, February 5, 2018) for the mouse cancer samples.

Reduced Representation Bisulfite Sequencing
For each sample, 100 ng of genomic DNA were used for li-
brary preparation with the Premium Reduced Representation
Bisulfite Sequencing Kit (Diagenode). Subsequently, samples
were pooled in groups of 6 or 8. PCR clean-up after the
final library amplification was performed using Agencourt
AMPure XP (Beckman Coulter). The quality of the pools
was assessed by Qubit fluorometry (Thermo Fisher
Scientific) and Fragment Analyzer capillary electrophoresis
(Agilent). Finally, the library pools were sequenced. Human
samples were sequenced on a NovaSeq6000 (Illumina) using
50-bp paired-end read sequencing (PE50). Mouse samples
were sequenced on a HiSeq3000 (Illumina) using 50-bp
single-read sequencing (SR50).

Reduced Representation Bisulfite Sequencing Data
Preprocessing
FASTA quality was assessed with FastQC (v0.11.8; https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/ last
accessed April 29, 2021). Reads were quality- and adapter-
trimmed with Trim galore (v0.6.4; https://www.bioinformat-
ics.babraham.ac.uk/projects/trim_galore/ last accessed April
29, 2021) with default parameters under –rrbs mode and –
2colour 20 in the case of the human data to account for
NovaSeq bias toward identifying high-quality G bases from
nonsignal basecalls. Next, the reads were aligned to prein-
dexed and bisulfite converted GRCh38/hg38 and GRCm38/
mm10 genomes (primary assemblies) with Bismark (v0.22.2)
using default parameters (Bowtie 2 alignment; see supple-
mentary table 1, Supplementary Material online, for addi-
tional information on the alignment statistics) (Krueger and
Andrews 2011). Finally, methylation counts for cytosines be-
longing to CpG sites were obtained with Bismark’s methyla-
tion extractor under default parameters, including –
no_overlap for paired-end data to avoid scoring overlapping
methylation calls twice. For each position, methylation values
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were computed as the percentage of methylated cytosines
with respect to total cytosines on a scale of 0–1.

Differential Methylation Analyses
Differential methylation analyses were performed on CpG
sites, not on individual cytosines, using the following process:
1) the counts for cytosines from both strands belonging to
the same CpG site were pooled so as to have one methylation
measurement per CpG site; 2) CpG sites mapping to sex
chromosomes and alternative haplotypes were filtered out;
3) CpG sites were filtered for low coverage (<10 counts) or
very high coverage (>99th percentile); 4) CpG sites common
to all human or mouse samples were retained for the analyses.
Next, the differential methylation analyses were carried out
with the methylKit R package (v1.14.2) (Akalin et al. 2012)
using the calculateDiffMeth function with default parameters
and multiple testing adjustment by FDR < 0.05. The
calculateDiffMeth function uses logistic regression models
to define differentially methylated CpGs between groups.
Because of the low number of samples (n¼ 3 per group), a
strict threshold of>0.2 change in methylation value was used
to define significant changes. No other covariates were in-
cluded in the models because of the limited information
available for other variables. Nonetheless, the inclusion of
sex or age variables in the human cancer and aging compar-
isons led to similar results, with 97–99% of the dmCpGs being
the same (data not shown).

Annotation of Sites to Genomic Locations
The profiled CpG sites were annotated to hg38 or mm10 CpG
islands and gene locations using the annotatr R package
(v1.12.1) (Cavalcante and Sartor 2017). Overlapping genetic
annotations were collapsed with the following priority:
Promoter > 5UTR > 3UTR > Exon > Intron > 1–
5> Intergenic. Finally, CpG sites were mapped to genes
and their transcripts through the TxDb.Hsapiens.UCSC.
hg38.knownGene and TxDb.Mmusculus.UCSC.mm10.known
Gene R packages (v3.1.0). Annotation for the Illumina
Infinium Human Methylation 450 K Beadchip was accessed
through the IlluminaHumanMethylation450kanno.ilmn12.
hg19 R package (v0.6.0).

To determine the density in surrounding CpGs associated
with each site, each locus was expanded to a 2,000-bp win-
dow and the number of CpGs present in the surrounding
genomic sequence were counted and divided by the number
of those possible.

Gene Set Enrichment Analyses
Gene set enrichment analyses were performed with the goseq
R package (v1.38.0) (2010 P Genome Biol—Young MD). CpGs
were mapped to genes, and enrichment in biological func-
tions was carried out with genes that were exclusively hyper-
or hypomethylated, using appropriate filtered backgrounds of
assayed genes. The bias arising from there being different
number of probes per gene was taken into account in the
analyses. The GO, KEGG, Reactome, and CGP gene set data-
bases from the Molecular Signature Database (MSigDB v7.0)
(Liberzon et al. 2015) were used for the enrichment analyses

and were accessed through the msigdbr R package (v7.0.1). In
order to retain the most important enrichments, only gene
sets with FDR< 0.05, OR>2 and containing between 10 and
1,000 genes were represented as statistically significant.

Region Enrichment Analyses
Genomic enrichment analyses were performed with the
LOLA R package (v1.16.0) (Sheffield and Bock 2016) using
custom databases. Sets of CpGs were tested for overenrich-
ment in specific genomic tracks using one-sided Fisher’s exact
tests (FDR < 0.05) with appropriate filtered backgrounds of
the CpGs being used for each case. The genomic regions
analyzed included histone marks, chromatin states, and re-
petitive DNA elements. The histone and chromatin state
LOLA databases built for the enrichments are available as
extended data sets.

Histone ChIP-seq BED tracks for H3K4me1, H3K4me3,
H3K36me3, H3K27ac, H3K27me3, and H3K9me3 in 15
healthy human tissues were obtained from LOLA extended
universe (databio.org/regiondb) using NIH Roadmap
Epigenomics region data corresponding to the hg38 version
of the human genome (Roadmap Epigenomics Consortium
et al. 2015). Histone BED tracks for the aforementioned marks
in nine postnatal mouse tissues mapped to the mm10 version
of the mouse genome were obtained from ENCODE (Gorkin
et al. 2020).

Chromatin states were built using chromHMM (see
below). Consolidated data from the aforementioned six
histone tracks (BED tag.align files) and corresponding ChIP-
seq input from 15 human tissues were obtained from NIH
Roadmap Epigenomics (https://egg2.wustl.edu/roadmap/
data/byFileType/alignments/consolidated; last accessed
April 29, 2021). Data corresponding to the aforementioned
six histone ChIP-seq tracks (BAM files) and the corresponding
ChIP-seq input from nine mouse tissues were obtained from
ENCODE (https://www.encodeproject.org/; last accessed
April 29, 2021).

Repetitive regions identified by RepeatMasker in the hg38
or mm10 genomes (Smit 1996) were obtained with the UCSC
Table Browser (Karolchik 2004) and grouped by family or
class. Elements with an uncertain classification, labeled with
the “?” symbol, were filtered out.

Chromatin State Model Learning
ChromHMM (v1.18) (Ernst and Kellis 2012) was used to gen-
erate an 18-state model to predict chromatin states from 15
human and nine mouse tissues. ChIP-seq data sets corre-
sponding to six histone marks (H3K4me1, H3K4me3,
H3K36me3, H3K27ac, H3K27me3, and H3K9me3), along
with their respective input controls, were obtained from
NIH Roadmap Epigenomics and ENCODE for human and
mouse samples respectively (see supplementary table 11,
Supplementary Material online, for the description of the
files). Human BED files were converted from hg19 to hg38
coordinates via UCSC’s liftOver tool (v377) (Hinrichs 2006).
Resulting files were binarized using the binarizeBed function
with default parameters using the hg38 chromosome sizes.
A model considering 18 states was learned using the
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LearnModel function with default parameters, as previously
described elsewhere (Roadmap Epigenomics Consortium
et al. 2015). In the case of mouse data sets (mm10), BAM
files corresponding to replicated samples from different
mouse tissues were merged using SAMtools (v1.7) (Li et al.
2009), as previous studies have suggested that chromatin
state inferences either from single time series or from repli-
cated data are invariably consistent and highly reproducible.
Read duplicates were removed using the MarkDuplicates
function from Picard tools (broadinstitute.github.io/picard/
). The resulting BAM files were sorted using SAMtools and
binarized using the binarizeBam function from chromHMM.
A model considering 18 states was learned using the
LearnModel function using the same conditions as the human
chromHMM pipeline. For both human and mouse analyses,
the resulting chromatin states were reordered and renamed
to facilitate later interpretation purposes. In addition, enrich-
ment analyses of the different chromatin states in external
genomic data sets (CpG Islands, RefSeq Exons, RefSeq genes,
RefSeq transcription start sites, RefSeq transcript end sites,
and regions within 2,000 bp of a RefSeq TSS) obtained from
the UCSC genome browser (hg38 and mm10 genomes) were
performed using the OverlapEnrichment function from
chromHMM.

Motif Enrichment Analyses
Transcription factor motif enrichment analyses were per-
formed with Hypergeometric Optimization of Motif
EnRichment (HOMER) software (v4.11.1) (Heinz et al. 2010)
for cancer- and aging dmCpGs in human and mouse, using
the hg38 or mm10 genomes as reference. HOMER was run
under default settings and with the -keepOverlappingBg pa-
rameter, using as background the filtered universe of CpG
sites analyzed by the RRBS for human and mouse, respec-
tively. Significant enrichments for known TFs were first fil-
tered by FDR< 0.05, and subsequently only the top 50 results
ordered by enrichment with respect to the background were
retained for each comparison (see supplementary table 8,
Supplementary Material online, for full results).

Liftover of Orthologous CpGs
Liftover of mm10 to hg38 coordinates was performed with
UCSC’s liftOver tool (v377) (Hinrichs 2006) by using chain
files from https://hgdownload.soe.ucsc.edu/downloads.html
last accessed April 29, 2021. Lifted CpG sites which did not
reciprocally lift back from hg38 to the original mm10 coor-
dinates were discarded (� 2%).

Conservation Analyses
Base-resolution PhastCons tracks for 100-way (hg38) and 60-
way (mm10) alignments (Siepel et al. 2005) were accessed via
the GenomicScores R package (v1.1.10) (Puigdevall and
Castelo 2018).

Gene Expression Analyses
Gene and isoform-level gene expression data in the form of
RSEM counts and curated survival data were accessed via the
Broad Institute Genomic Data Analysis Center (http://gdac.

broadinstitute.org/runs/stddata__2016_01_28/data/; last
accessed April 29, 2021) and the UCSC Xena (https://xenab-
rowser.net/datapages/; last accessed April 29, 2021) for the
glioma GBMLGG (glioblastoma—lower grade glioma) cohort
from the TCGA (The Cancer Genome Atlas) consortium
(Brennan et al. 2013; Ceccarelli et al. 2016) (the list of patients
and genes analyzed is available as an extended data set). Prior
to analysis, data were normalized by the VST (variance stabi-
lizing transformation) procedure using the DESeq2 R package
(v1.26.0) (Anders and Huber 2010). This transformation sta-
bilizes the variance–mean relationship in the data and cor-
rects for differences in library size between the samples. For
the isoform analysis, the four most expressed AGAP3 isoforms
were selected. Cox models were analyzed with the survival R
package (v3.1.11) (Therneau and Grambsch 2000).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH,
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