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 ABSTRACT 
 
In this research, we developed a decision support model for Remote Monitoring Engineers (RME). 
Failure prediction models generate predictions for upcoming equipment failures. RMEs receive these 
predictions and aim to initiate proactive maintenance actions to prevent failures. However, the 
predictions are not always good. Predictions can be false or the prediction models can miss failures. The 
decision support model covers the decision to initiate actions on such predictions accounting for the 
imperfectness. Furthermore, the model supports in the timing decision of the maintenance actions. 
 
The imperfectness of a prediction is measured by the probability that this prediction is true. We 
developed a newsvendor solution to find an optimal probability threshold to act on a prediction or not.  
 

Keywords: Proactive Maintenance, Failure Predictions, Capital Goods, Decision-Making, Imperfect 

Information, Mathematical Modelling, Newsvendor model, Value of Information 
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MANAGEMENT SUMMARY 
In this report, we present the results of our research on maintenance decision-making based on imperfect 

predictions conducted at Philips. Philips develops advanced equipment for the diagnosis and treatment 

of patients in hospitals. Philips wants to keep the equipment up and running as much as possible by 

employing a proactive maintenance policy. Such policy aims to conduct maintenance only when necessary 

to prevent the equipment to fail. 

Problem statement 

Philips developed failure prediction models to predict future failures of the customer’s equipment. These 

models analyze data generated by the software running on the equipment. Based on this data, the 

predictive models can generate an alert if it is likely that a failure will occur in the near future. Remote 

Monitoring (RM) needs to judge these alert and make the decision to take proactive actions to prevent 

the failures. However, the information generated by predictive models is not perfect. The models can 

generate false alerts and they can miss failures. It is not fully understood how RM can account for this 

information in their decision-making. This motivated us to define the following main research question: 

How can Philips optimize the proactive maintenance decision-making by Remote Monitoring, accounting 

for the imperfectness of information on machine conditions? 

Analysis of the current situation 

We conducted an analysis on the current situation to gain knowledge on current practices and 

characteristics of the maintenance policy. The results of the analysis are used as an input for the design 

phase of the project. We identified which service requirements are relevant for the proactive decision-

making by Remote Monitoring Engineers (RME). It is important that RMEs consider these requirements in 

their decision-making to make sure customers are treated according to their service contract. 

 In order to understand the imperfectness of the predictive models, we did some research on the 

development process of predictive models and identified why the models are imperfect. Understanding 

this imperfectness provides a starting point from which the predictive models can be improved.  

Maintenance costs are very important in a maintenance policy. We conducted an analysis on the costs in 

the current maintenance policy. An important aspect is the analysis of the costs of imperfectness of the 

predictive models.  Figure 1 shows the comparison of proactive maintenance versus reactive maintenance 

in terms of hours spend. In proactive maintenance, RM initiated maintenance actions that prevented the 

failure. In reactive maintenance, a failure occurred that was not predicted by predictive models or RM did 

not initiate proactive maintenance actions for a valid alert. We showed in Figure 1 that the costs of 

reactive maintenance are more than twice as high as the costs of proactive maintenance. Therefore, it is 

not desirable that the predictive models miss many failures. The costs of false alerts were found to be 

significantly lower. 
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Figure 1: Costs comparison of proactive maintenance and reactive maintenance 

Decision-support model 

A mathematical model has been developed to provide RMEs with support in their maintenance decisions. 

It provides information on the short-term consequences in terms of expected costs and expected 

downtimes of possible actions they can take. The model supports in the decision to initiate maintenance 

actions or not, and when the maintenance actions should be performed. Some customer contracts include 

an uptime guarantee. We recommend for these contracts to make the decision to minimize the expected 

downtime. For customers with other contracts, we recommend to make the decision that minimize the 

expected costs. We developed a newsvendor solution on how credible an alert should be to take actions 

on it. We tested this solution under several circumstances and it is found to be an optimal probability 

threshold. The results are visualized in Figure 2. This figure shows that for more credible alerts (i.e. a 

higher value for 𝑃), it is beneficial to initiate maintenance actions.  

 

Figure 2: Influence of P on expected costs 

With a case study on the Flat Detector, we tested the decision support model for customers with different 

characteristics regarding their service contract. The decision support model provides customer specific 

support to RMEs.  

Value of information 

We conducted research on the value of information generated by predictive models. This value can be 

accessed by calculating the difference in expected costs or downtime of having information available or 

not. It provides a guideline on how much Philips can pay to receive such information. We calculated the 

Average Hours per Case

Cases preceded by
Alert

Cases without Alert
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value of information under different levels of imperfectness. Even unreliable information about a future 

failure can be valuable in terms of both expected costs and downtime savings. Predictions with a certainty 

of just 20% are already valuable and can bring savings in expected costs and downtime. The value of 

information can differ among customers with different service contracts. These differences are shown in 

Figure 3. 

 

Figure 3: Value of information in terms of costs and downtime 

This figure shows for different customers how valuable an alert with different probabilities that it is true 

is. It provides insights in how much Philips can pay to make such information available. 
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1 INTRODUCTION 
“The beginning is the most important part of the work.” – Plato  

This report presents a research on maintenance decision-making based on imperfect predictions 

conducted at Royal Philips. Royal Philips develops medical systems (e.g. MRI scanner or CT scanners) that 

are used in hospitals for diagnostic and treatment purposes of patients. Maintenance costs are usually a 

big part of the total lifecycle costs of such high tech systems. Therefore, companies try to find strategies 

to keep these costs as low as possible while keeping the systems up and running as much as possible. 

Unexpected downtime often leads to excessive costs, loss of revenues, or for Royal Philips’ customers, 

delayed treatments of the patients. 

Over the years, these maintenance strategies evolved from run-to-failure strategies to strategies that 

monitor the ‘health’ or condition of the system and try to conduct maintenance only if the system is 

expected to fail in the near future. Such strategies are often referred to as Condition-Based Maintenance 

(CBM) strategies. In such strategies, the condition of the system can be accessed in various ways. This can 

be done by periodic inspections or by continuously monitoring certain characteristics of the behavior of 

the system (e.g. vibrations or acoustics). Continuously monitoring requires special equipment to be 

installed on the system that measures such characteristics with sensors. 

Nowadays, these systems are operated by software allowing the systems to generate data of its usage, 

and its (malfunctioning) behavior. Such data is stored in log files, processed and used to predict failures 

in the near future with state-of-the-art data science techniques. However, such failure predictions are 

subject to imperfectness due to various reasons. The predictions need to be evaluated and judged and 

maintenance decisions should be made upon them.  

1.1 COMPANY INFORMATION 
Royal Philips (commonly referred to as Philips) was founded in 1891 by Gerald Philips and his father 

Frederik Philips in Eindhoven. It started as a company manufacturing incandescent lamps and other 

electro-technical products. Later, Philips became one of the biggest light bulb producing companies in the 

world. Today, Philips is headquartered in Amsterdam, The Netherlands, and has evolved into a technology 



 

2 
 

multinational, offering a variety of products. In 2015, the comparable sales grew to EUR 24.2 billion and 

the net income to EUR 659 million. Philips employs approximately 113.000 employees and provides sales 

and services in approximately 100 countries in the world. Philips’ mission is to improve people’s life 

through meaningful innovation. The company serves both professional and consumer markets throughout 

the world in areas of health systems, personal health and lighting solutions. Recently, Philips split into two 

stand-alone companies, Royal Philips, active in health technology and Philips Lighting, active in lighting 

solutions. This research takes place in Royal Philips. For the rest of this thesis, we refer to the company as 

Philips. 

1.2 PROBLEM SOLVING METHODOLOGY 
This chapter discusses the research methodology used to solve the research questions. During the project, 

the regulative cycle discussed in van Aken, Berends, and van der Bij (2007) will be followed. This cycle is a 

method that is often used in business problem solving. The cycle is given in Figure 4. 

 

Figure 4: Reflective cycle including the regulative cycle (van Aken, Berends, & van der Bij, 2007) 

Following this cycle, the first step is to select a type of problem. The type of problem in this project is 

optimization of maintenance activities based on imperfect information. The literature research revealed 

that this is a more or less undiscovered research area which makes it an interesting topic. The case 

selected for this research is the case of maintenance decision-making within Philips. The next step in the 

reflective cycle is to enter the regulative cycle. Maintenance decision-making is still a very broad problem 

so the topic of the thesis should be narrowed.  
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The specific problem chosen for this research is ‘the accounting for imperfect predictions in decision 

making by RMEs’. It is expected that solving this problem will eliminate a large set of sub problems. This 

maintenance decision making is done by RMEs and the imperfect information is received from predictive 

and proactive models discussed before. 

This problem will be further analyzed and diagnosed in the next step. Once the problem is analyzed and 

diagnosed, a design should be made to solve the problem. For this project, the design should optimize 

maintenance decision making for RMEs accounting for imperfectness of information. 

The next step is to implement, the design in the organization. We will apply the decision support model 

in a case study. The actual implementation is not part of this thesis.  

Once the design is implemented and employed in the organization for some time, the implemented design 

should be evaluated. This reveals existing problems with the design and its implementation such that they 

can be solved.  

1.3 PREDICTIVE MAINTENANCE 
According to Sharma, Yadava, Deshmukh (2011), maintenance can be categorized in the following three 

classes: 

1. Preventive maintenance – The maintenance actions are carried out on a planned and periodic 

schedule. 

2. Corrective maintenance – Unscheduled or repair maintenance actions. These are often carried 

out in case of a machine failure 

3. Predictive maintenance – Maintenance actions are conducted based on information from modern 

measurement and signal processing methods to predict and diagnose the condition of machines. 

Predictive maintenance is also often referred to as Condition-Based Maintenance (CBM) and it aims to 

conduct maintenance just before a failure arises such that failures are prevented and the equipment is 

used as long as possible to prevent unnecessary maintenance. This literature study will focus on the use 

of data on machine condition prognostics in related maintenance decisions.  

In a CBM policy, these decisions are made based on the observed health or condition of the machine. The 

main goal of CBM is to assess equipment real-time in order to make maintenance decisions that reduce 

unnecessary maintenance and related costs (Gupta & Lawsirirat, 2006). It attempts to monitor this health 

based on condition measurements without interrupting the operation of machines (Heng, Zhang, Tan, & 

Mathew, 2009). CBM consists of the following three steps: 1) Data acquisition, 2) Data processing and 3) 

Maintenance decision-making (Jardine, Lin, & Banjevic, 2006). Step 1) and 2) will lead to a better 

understanding of the current condition of the machine and it is important input for the decision making 

(Lewandowski & Oelker, 2014). 

Machine fault diagnostics and prognostics are important topics in CBM (Jardine, Lin, & Banjevic, 2006). 

Fault diagnostics is related to the detection, isolation, identification of the machine fault. Fault detection 

means to indicate whether something is wrong, isolation to locate the faulty component and the fault 

identification means the determination of the nature of the detected fault. This fault identification is also 

often referred to as the determination of the failure mode. Each failure mode can have different triggers 

and a different deterioration pattern (Siborska, Hodkiewicz, & Ma, 2011).  Prognostics deals with the 
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prediction of machine faults. It tries to determine if a fault is impending and it tries to estimate when and 

how likely it is that a fault will occur (Jardine, Lin, & Banjevic, 2006). This can be worth the effort because 

99% of the machine failures are preceded with by some malfunction signs or other indications that a 

failure is impending to occur (Bloch & Geitner, 1983). A fault occurrence triggers the fault diagnostics, 

while prognostics is done in advance of the occurrence of a fault.  

The use of Intelligent Maintenance Systems (IMS) has been suggested to enable a proactive maintenance 

management strategy, which determines when maintenance should take place based on different 

condition indicators. IMS are embedded diagnostic and prognostic systems that try to forecast failures 

aiming to improve the related maintenance processes (Djurdjanovic, Lee, & Ni, 2003). The goal of IMS is 

to monitor the degradation status of a machine or components by sensors and embedded devices. Future 

failures are predicted based on this information and by using algorithms for health estimations (Frazzon, 

Israel, Albrecht, Pereira, & Hellingrath, 2014).  

Salfner and Malek (2007) provide a method for effective online failure prediction. The focus of online 

failure prediction is to perform short-term failure predictions based on the current runtime state of the 

equipment. The time relations in online failure prediction are shown in Figure 5. 

 

Figure 5: Time relations in online failure prediction 

𝑡 represents the present time. Δ𝑡𝑑  represents the data window size from which historical data is taken. 

Δ𝑡𝑤 represents the warning time which is determined by the time needed to perform proactive action. 

Δ𝑡𝑙 is the total lead time from the prediction to the moment the problem is solved and Δ𝑡𝑝 represents the 

prediction which describes the length of the time interval for which the prediction holds. This terminology 

can be used to characterize the predictive models used in Philips. 

The authors use hidden semi-Markov models (HSMM) and demonstrate the effectiveness based on field 

data. The basic assumption for the use of HSMM is that failure-prone behavior can be identified by 

patterns of errors. The authors show by an experiment that such an approach is very effective with respect 

to online failure prediction. Different methods are assessed and compared in terms of precision, recall, F-

measure, false-positive rate, and computing time. 

One type of online failure prediction uses log files from the advanced systems that are discussed earlier. 

When these log files are stored on a central database that can be accessed online, the information can be 

used to predict failures. Sipos et al. (2014) present a data-driven approach based on multiple-instance 

learning for predicting equipment failures by employing data mining techniques on the event logs. They 

use state-of-the-art machine learning techniques to build predictive models from log data. Their approach 

also utilizes data on service actions. The workflow of their approach is given in Figure 6. 
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Figure 6: Log-bases predictive maintenance workflow (Sipos et al., 2014) 

The predictive models generate alerts based on the log data that warn for a possible failure in a certain 

time frame. These alerts can be classified as true or false. In order to make log-based preventive 

maintenance useful and practical, Sipos et al. (2014) define the following requirements related to the 

timing of an alert: 

 Predictive interval: a pre-defined time interval before a failure in which an alert occurance gives 

enough time to act upon it. 

 Infected interval: a pre-defined time interval after a failure in which the equipment is breaking 

down or under repair. 

 Responsive duration: a pre-defined time length for a real-life action for an alert. 

The performance of these models can be evaluated by the precision and recall as defined in the next 

section. The actual maintenance strategy should be determined separately for different components with 

different models and is influenced by many factors.  

1.3.1 Imperfect failure predictions 
The previous sections discussed methods that handles a system of which the state cannot be directly 

observed resulting in imprefect estimations of the system’s condition state. Another type of research 

deals with failure prediction methods that try to predict whether or not a failure will occur within a certain 

time period. The aim of these methods is to predict as many failures that arrive while generating as few 

false alarms as possible. These false alarms are ofter refered to as False Positive (FP) predictions. True 

Positives (TP) are predictions that predict a failure right. If the model misses to predict a failure it is called 

a False Negative (FN) and if no failure occurs and no alarm is given, the prediction is a True Negative (TN). 

Any failure prediction belongs to one of these four cases which are covered in a confusion matrix as given 

in Table 1 (Salfner, Lenk, & Malek, 2010). 
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Table 1: Confusion matrix failure predictions 

 
Predicted 

Failure No Failure 

Actual 

Failure 
True Positive (TP) 
(correct warning) 

False Negative (FN) 
(missing warning) 

No 
Failure 

False Positive (FP) 
(false warning) 

True Negative (TN) 
(correctly no 
warning) 

 

Metrics like the precision and recall can be calculated with this confusion matrix. Precision is the ratio of 

correctly identified failures to the number of all predicted failures so that: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The recall is often defined as the ratio of correctly predicted failures to the number of true failures so that: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

There are also many other metrics that can be calculated with numbers from the confusion matrix. 

According to Salfner, Lenk, and Malek (2010) often the trade-off has to be made between the FN rate and 

the FP rate. Reducing the FP rate often results in the increase in FN rate. Using previous formulas, we can 

say that improving the precision of a prediction model often results in a worse recall.  

Candea, Kawamoto, Fujiki, Firedman, and Fox (2004) examined the trade-off between confidence in the 

correction of failure prediction and the costs of acting on the prediction in case of software failure 

management. The authors show that short reboot times (low cost of action) allow for higher false positive 

rates than slower restarts (higher cost of action). Although their research was focused on software 

failures, their findings might also be valid in other failure management areas. 

1.3.2 Proactive decision-making 
The aim of predictive maintenance strategies is to prevent failures by taking proactive actions. The 

decisions to take proactive actions are covered in a proactive decision making process. The decisions in 

such processes require output from prognostic and diagnostic models. A proactive decision support 

framework is provided by Bousdekis, Magoutas, Apostolou, & Mentzas (2015). This framework is shown 

in Figure 7. 
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Figure 7: Proactive decision-making framework (Bousdekis, Magoutas, Apostolou, & Mentzas, 2015) 

The information space in the framework consists of diagnostic and prognostic models. Information from 

both models is required in the decision space, which consists of reactive and proactive actions or 

recommendations. 

1.4 PREDICTIVE MAINTENANCE IN PHILIPS 
In Philips, the information space as defined in Bousdekis et al. (2015) consists of Failure prediction models. 

These models aim to predict component failures in the near future. The prediction interval differs among 

models, but are usually between 10 to 30 days. Chapter 4 provides more information about these 

predictive models. The predictive models analyze data sent by the software on the system, and generate 

alerts that contain failure predictions.  These alerts contain both diagnostic and prognostic information 

about an upcoming failure.  

Remote Monitoring (RM) reviews these failure predictions. RM is a team that consists of Remote 

Monitoring Engineers (RME), which are responsible for initiating proactive maintenance actions. Proactive 

maintenance actions are actions to prevent future failures instead of acting on failures. RMEs do not 

perform the actual proactive maintenance actions on the customers’ equipment. They only send 

recommendations to the Local Service Organizations (LSO). RMEs can either reject an alert, or initiate 

proactive maintenance actions. Rejecting an alert is called SNAR, which stands for Seen No Action 

Required. If the RME wants to initiate proactive maintenance actions, he creates a case and sends this 

case the LSO. In the LSO, Remote Service Engineers (RSE) and Field Service Engineers (FSE) are responsible 

to execute the case according to the recommendations given by RMEs. The LSO is responsible for 

providing local services on customer’s equipment in a specific country or region, while RM monitors 

customer’s equipment globally. Whenever a customer experience problems with their equipment, they 

call the LSO in the specific region. 
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1.5 THESIS OUTLINE 
Chapter 2 provide the research design that is followed during this thesis. In Chapter 3, the different service 

contracts used in Philips are explained and the modeling requirements related to these contracts are 

identified. Chapter 4 discusses how predictive models are developed and why they are not generating 

perfect information. Chapter 5 contains an extensive analysis of the current situation regarding the 

proactive maintenance processes. It contains an analysis of the costs and an analysis of spare parts 

decisions in proactive maintenance cases. Furthermore, we analyzed and modelled the component’s 

expected remaining lifetime after an alert, and we modelled the time it takes until a proactive 

maintenance case is executed.  An short-term decision support model is developed  in Chapter 6, which 

is applied in a case study in Chapter 7. Chapter 8 discusses the value of information and the conclusions 

and recommendations are discussed in Chapter 9.
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2 RESEARCH STATEMENT 
“A problem well stated is a problem half solved.” – Charles Ketterling 

This chapter contains the research statement of the thesis and contains information from the full master 

thesis project proposal. Section 2.1 contains some background of the problem within Philips and Section 

2.2 contains the research questions and scope of the thesis. 

2.1 PROBLEM BACKGROUND 
Healthcare Imaging Systems are essential for the diagnosis and treatment of patients. Due to high costs 

involved, it is not feasible to implement backup systems. Therefore, the system downtime needs to be 

minimized while keeping the costs low. It is very important that the maintenance policy employed for the 

systems is reliable and cost efficient. A Condition-Based Maintenance (CBM) policy aims to conduct 

maintenance just before a failure arises. As mentioned, RM continuously monitors the condition of some 

components of equipment in the field. Data is gathered, stored, analyzed and used to predict failures in 

the systems. However, these predictions are not always perfect and not every failure is predicted. 

Different failure prediction models are used and each of them has its limitations. There is no guidance for 

RM on how to account for the imperfectness in their decision-making.  

Besides the problem of the imperfect predictions, it is not exactly clear for RM how they should account 

for the service contract of the customer in their decision-making. This is a relevant problem because it is 

important that service is delivered in accordance with the service contracts. Underperformance can result 

in a lack of customers’ trust and over-performance can make customers not see the value of having better 

service contracts. Differentiating customers based on the level of customer value implied by their service 

contract enables to make customer specific optimal decisions. 
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2.2 RESEARCH QUESTIONS 
Based on the research gaps found in the literature study and the current problems in Philips, several 

research questions can be constructed. Maintenance decisions by RMEs are now subjectively made based 

on their experience and their knowledge of the system. The maintenance decision making lacks an 

objective foundation. There is a need for some support in how RMEs can make better decisions accounting 

for the characteristics of the alerts and the service contract of the customer. 

How can Philips optimize proactive maintenance decision-making, accounting for the imperfectness of 

information on machine conditions? 

1. How should the RMEs account for the service level agreements? 

2. How can RMEs account for imperfectness in predictions? 

3. What are the relevant cost factors in the maintenance decision making by RMEs? 

2.2.1 Scope 
The scope of the project is the business-oriented maintenance decision making using the information 

provided by predictive models. We consider information generated by these predictive models as input 

for the maintenance decision-support model. The decision-support model covers two decisions. The first 

decision is to initiate proactive maintenance actions for an alert raised by a predictive model or not. The 

second decision is related to the timing of the alert. RMEs recommend when the maintenance actions 

should be performed. The decision support model should provide the RMEs with support in this decision. 

It should provide a recommendation on what is the best time to execute the proactive maintenance 

actions. Therefore, we define the decision scope of the decision support model by: 

 Initiate proactive maintenance actions for an alert or not 

 The timing of the maintenance actions 

2.2.2 Modeling scope 
The goal of the thesis is to create a decision-support model for the RMEs on how to act on alerts. Only 

actions on alerts are included in the scope of this thesis so that decision making by RSEs related to 

customer calls is initially excluded from the project scope. We expect that the decision scope of RSEs is 

very different from the decision scope of RMEs. Including both decision-making processes in the modelling 

scope is too broad. Therefore, we focus on the decision-making by RMEs. 

It is important that the parameters that should be incorporated in the model are carefully selected. The 

different parameters of the model are listed below and explained afterwards. 

 Correctness of information 

o Model reliability 

o Confidence  

 Customer contracts  

o Service Level Agreements (SLA) 

 Availability 

 Response time 

o Entitlements 

 Potential value of actions 
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 Action Characteristics 

o Costs involved with the actions 

 Working Hours 

 Traveling 

 Maintenance 

o Remote 

o On-site 

2.2.2.1 Correctness of information 

As explained earlier, the correctness of information can be assessed by two different factors. The first one 

is the model reliability, which is characterized by the models confusion matrix. These confusion matrices 

are considered as input in the model. 

In addition, the confidence gives some information on how likely it is that the alert is true. Therefore, it 

should be incorporated in the model. It is important that both the model reliability and the confidence 

are taken into account together. More research needs to be conducted on if and how these different 

aspects are related and how they should be interpreted. 

2.2.2.2 Service Level Agreements (SLA) 

One highly important requirement of the decision support model is that SLAs with the customers are 

satisfied. Philip’s customers can sign for different service contracts ranging from basic support contracts 

to premium contracts. Customers with premium contracts should be provided with better and faster 

services such that these customers experience more value from their service contract. However, there 

are no clear guidelines on how REs should make different decisions based on the customer value.  

Besides that, under-performance of the SLAs should be prevented, it is also important that there is not 

too much over-performance. Over-performing can lead to the situation that customers do not see the 

value of having premium contracts when the service is as good as for lower contracts. This should be 

prevented as much as possible since premium customers are the most valuable for Philips. 

Further research should be conducted to gain knowledge on which kind of agreements are incorporated 

in the SLAs. Possible agreements can be on the maintenance budget, response times and availability. 

2.2.2.3 Potential value of actions 

The potential value of actions should also be taken into account and should be interpreted as the 

prevention of costs in the future. It means that a certain action can prevent future downtime costs. 

Consider an example when an alert is received for a specific part. Not acting on the alert can result in a 

failure with all associated costs. The potential value of acting on the alert can be seen as the prevention 

of these failure costs. 

2.2.2.4 Action characteristics 

Every action has its own specific characteristics. An action can fail with a certain probability and there are 

also costs involved in performing a maintenance action. Each possible maintenance action can be 

characterized by a success probability and costs involved with the actions. The success probability of an 

action is the probability that, if the action is performed for a certain problem, it will actually fix the 

problem successfully. Examples of such actions are the execution of remote service actions and on-site 
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service actions. In general, on-site service actions have more chance to be successful but are costlier. In 

this thesis, the success probability of certain actions is considered as input.  

There are always costs involved in performing maintenance actions. These costs can range from the costs 

of a 15 minutes call with the customer to troubleshoot the problem, to the replacement costs of a 

component. For some actions the costs can be fixed (e.g. costs of a part) but for others the costs can be 

vary (e.g. repair times or time needed for on-site diagnostics). It can be the situation that several parts 

are ordered to fix a problem. A possible reason can be to increase the probability that the problem is fixed 

in the first visit. When just one of the parts is used, the others should be send back to the warehouse.  
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3 SERVICE REQUIREMENTS 
“Customers don’t expect you to be perfect. They do expect you to fix things when they go wrong.”  – Donald Porter 

This chapter contains the analysis of service contracts used in Philips. The goal of this chapter is to analyze 

the service requirements that should be accounted for in the maintenance decision making by RM. As 

discussed earlier, it is not clear to RMEs how they should account for these contracts. This thesis aims to 

provide decision support for RMEs that is customer specific, such that service is delivered according to the 

customer’s contract. Section 3.1 discusses the different service contracts with a short description of each 

contract. Section 3.2 provides the implications of the service contracts on the decision-making by RM. 

3.1 SERVICE CONTRACTS PHILIPS  
Customers of Philips can sign for different service contracts for the equipment they buy. Recently Philips 

made the transition from three different service contracts (Silver, Gold and Platinum) to a more customer 

oriented service contract portfolio called RightFit. Although this transition, the old contract types are still 

often used. The new contracts aim to provide a better fit with the customer’s needs by providing more 

flexibility. The different types of RightFit service contracts are discussed in an increasing order of coverage 

in the next sections. All service contracts include standard unlimited technical telephone support from 

the Customer Care Solution Center. Philips experts are on call available to provide live-assistance, 24/7 

remote monitoring and remote diagnostic services. Note that this chapter only provides the general 

entitlements of the contracts. The exact entitlements differ per key market, per country and per modality. 

In the last section of this chapter, the relevance for remote monitoring will be addressed.  

RightFit Assist 

RightFit Assist is the most basic service contract. It provides scalable coverage for customers that have in-

house support. It also includes unlimited technical telephone support from the Customer Care Solution 

Center. Besides the core offering, the customer can select a range of service options that provide coverage 

for different kind of parts and labor.  
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RightFit Support 

With the RightFit Support contract, the customer and Philips share the responsibility of maintaining the 

system. The customer’s in-house engineering teams have access to OEM parts and technical expertise 

from Philips. It includes full part coverage and unlimited second-response on-site labor along with optional 

strategic part coverage and part and labor pools. RightFit Support aims to provide the customer OEM 

expertise and support for their in-house engineers. Philips-trained engineers are working side-by-side with 

the customer’s engineers to improve the expertise of the customer’s engineers.  The customer can adjust 

the contract to match it with the staffing levels and the skills of the in-house engineers. 

RightFit Value 

RightFit Value is a contract for customers that are looking for creative ways to minimize their service 

expenses while hedging some risks. It includes some part coverage, planned maintenance, and corrective 

maintenance at a relatively low price. Corrective maintenance is covered with a bank of labor hours or a 

bank of parts if needed. Services as uptime guarantee and clinical phone support are excluded in this 

contract. 

RightFit Select 

RightFit Select is a flexible offering from the service portfolio. It offers quick response to meet agreed 

service levels at moderate costs to fit within the customer’s budget. Several coverage options are available 

to add more protection. 

RightFit Primary 

RightFit Primary is a customizable offering in the service portfolio. It gives the flexibility to customize the 

service coverage to the unique needs of the customer. It includes full parts coverage and a 98% uptime 

guarantee along with a four-hour, on-site response time. The customer can choose from a wide range of 

options to sign for more service coverage. 

RightFit Protection 

RightFit Protection aims to provide the customer with complete protection. The weekday coverage is 

extended, strategic parts coverage is provided to protect the riskiest proprietary parts and parts are 

delivered according the earliest next-day delivery policy. Philips guarantees 98% uptime to ensure that 

the system is maintained according to the highest OEM standards. It provides a strong system support 

with quick response times and strategic part coverage to optimize uptime and performance. 

RightFit Uptime 

RightFit Uptime is the premier offering within the service contract portfolio for customers for which 

downtime is not an option. This all-inclusive agreement provides the highest standard of service delivery 

and Philips guarantees 99%1 uptime of the equipment. It includes the fastest on-site response and part 

delivery to ensure that engineers and parts are on-site when required. In addition, the weekday coverage 

is extended and more flexibility to schedule maintenance activities is offered.  

                                                             
1 This number depends on the region and modality 
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Figure 8 shows the relative frequencies of the different contracts on the equipment. It gives an impression 

on which service contracts are popular and which are not.  

 

Figure 8: Contract types on equipment 

The full default entitlements for each RightFit contract can be found in Appendix I. This appendix also 

includes the different response time options for each customer contract. 

3.2 LEARNINGS 
It is important to understand the service agreements of Philips with the customers. As mentioned, every 

service contract provides 24/7 remote monitoring of the equipment.  

The customer can also choose for options that provide coverage for specific services or parts. This can be 

relevant in the decision making for the RMEs. When the customer’s contract covers certain service actions 

or parts, Phillips will pay these costs. The most important coverage option are shown in Table 2. 

The first category of coverage options is coverage for labor and parts. It includes all coverage options 

related to actions executed by RSEs or FSEs in the LSO and coverage for part replacement. The first 

attribute of this category covers labor costs and travel costs of RSEs and FSEs related to maintenance 

activities on the customer’s equipment. The second and third attribute are related to different kind of 

component of the system. All attributes in this category are relevant for both reactive and proactive 

maintenance. 

The second category is called CM Service Window. It includes a time window in which Philips provides 

services to the customer. Examples of time windows are: Monday to Friday, 8:00-17:00 and 7 days a week 

24/7. It depends on the operating hours of the customer if maintenance can be conducted outside of 

these operating hours. If maintenance activities are scheduled outside the working hours of the hospital, 

the customer incurs no loss of capacity due to proactive maintenance actions. Customers cannot treat 

their patients when the machine is under repair. Therefore, maintenance activities during working hours 

cause a loss of capacity. The entitlement for outside operating hours of the customer is noted by owh, 

Contract Types
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and is set to 1 the customer is entitled for outside working hours activities and 0 if the customer does not 

have this right. 

Table 2: Coverage options in the service contracts 

Category attribute Incurred in case of Type of option 

Parts and Labor 
Coverage 

Labor and Travel Reactive, Proactive 
maintenance 

Yes or No or 
Pool 

Normal Parts Reactive, Proactive 
maintenance 

Yes or No or 
Pool 

Strategic parts 1, 2, 
and 3 

Reactive, Proactive 
maintenance 

Yes or No or 
Pool 

CM Service 
Window 

Hours of coverage Reactive, Proactive 
maintenance 

Time window 

Downtime 
Downtime 
compensation 

Reactive 
maintenance 

Yes, No  

 

The third category is related to unscheduled downtime of the customer’s equipment. If a failure occurs, 

reactive maintenance is necessary. Unscheduled downtime of the equipment is compensated if the 

customer is entitled for this option. 

As mentioned previously, some service contracts include a guaranteed uptime of the equipment. This 

means that Philips guarantees that a single equipment is able to run for a certain percentage of time. 

Maintenance policies should account for this guarantee and make sure that this service level is met. 

However, downtime on equipment is not always predictable by predictive models. These models only 

predict specific failure modes of components of the system while the uptime guarantee applies for the 

complete system. This makes it difficult to incorporate it in the maintenance decision model where the 

focus is on making the optimal decision on an alert. 
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4 PREDICTIVE MODELS 
"Prediction is very difficult, especially if it's about the future." – Niels Bohr 

Several predictive models are created that aim to predict upcoming failures of the equipment in the near 

future. Data scientists in Philips Research create these models. Currently there are 24 predictive models 

in use for iXR and 14 predictive models for MR. There are more models created but they are not deployed 

yet. Each predictive model tries to predict failures in a specific component of the equipment. 

4.1 MODEL DEVELOPMENT 
As mentioned, Data scientists from Philips Research develop predictive models. A RME joins the model 

development process such that the RME understands the model because they will use the model.   

The model development methodology used in Philips is based on the method described in Sipos et al. 

(2014) and employs machine-learning techniques. To start the model development process, historical 

service data and daily equipment log data is collected for a target component. The log data contains so-

called error messages that can also be referred to as events. Software on the system generates these log 

files. Examples of error messages are shown below: 

 XSC: CLM flow switch opened 

 Application error: Unable to communicate with GEOIPC. SID is unknown and no movements are 

available. 

A log file can contain data on thousands of such error messages.  In the daily log file, data is stored on how 

many times an error message occurred that day. The service data that is used contains information on 

part replacements.  In addition, the date of the replacement is included in the service data. Data scientists 

make the assumption here that the part replacement is the consequence of a component failure. The 

consequences of this assumption will be discussed later. 



 

18 
 

Two data pools are created. In the ‘bad’ data pool, log files are collected that are generated on a time 

interval prior to a part replacement. In the ‘good’ data pool, log files are collected from days that are not 

in the interval. The predictive maintenance problem is to construct a binary classifier for predicting failures 

based on new equipment log data. The methodology to construct this classifier is based on a Support 

Vector Machines (SVM) algorithm. This algorithm aims to assign weights to the features in log data such 

that the training data is separated maximally. These weights represent a so-called hyperplane that tries 

to separate prior failure data from good data. A new data point is classified as prior failure when it is on 

the prior failure side of the hyperplane. Using this classification method, the model tries to predict future 

equipment failures based on equipment log data.  

The data scientists can tune the model by constructing the hyperplane. They can select a hyperplane such 

that the model for example has a higher precision or recall. There is always a trade-off between the 

precision (% of correct alerts) and recall (% of discovered failures). A higher recall leads often to more 

false alerts and thus a lower precision. According to Interview 2, Appendix II the hyperplane is currently 

constructed according to the following optimization problem: 

𝑀𝑎𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

s.t.  

𝐹𝑃 < 1% 

The parameters of the confusion matrix are calculated based on the training data. According to this 

optimization problem, the data scientists do not take into account the number of failures missed by the 

model.  

4.2 IMPERFECTNESS OF THE PREDICTIVE MODELS 
The predictive models employed are not 100% reliable. Not every alert raised by the model is true and 

the model can miss a failure. The next sections create understanding of why models are imperfect and 

how this imperfectness can be measured. 

4.2.1 Sources of unreliability 
As mentioned earlier this chapter, service data of part replacement is used and counted as a failure. 

However, it is also possible that other maintenance actions are conducted to solve a problem with the 

equipment of the customer. A frequently occurring maintenance action is calibration. When calibration is 

executed on the equipment, the log data should belong to the prior failure class. However, such 

maintenance actions are not included in the service data that is used in the development of predictive 

models. Therefore, it is possible that log data prior to a calibration action, is considered as good instead 

of prior failure data. A possible consequence of this situation is that the actual FN rate of a model is higher 

than calculated in the confusion matrix of the model. This is because this matrix is calculated based on 

test data that takes only into account the part replacements. 

There are also other reasons for imperfectness in the predictions of the predictive models. These are due 

to uncertainties of different aspects related to the development of the models by data scientists. 

According to Interview 2, Appendix II the quality of the data used in the model development is not always 
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of a good quality. Values can be missing or wrong due to various reasons. In addition, maintenance 

decisions are made by humans. Different decisions for similar cases can result in less reliable data. Also, 

the customers can act differently. Some customers can choose to ‘live’ with minor problems, while others 

call Philips immediately when they experience that there could be something wrong with the system. 

These differences can result in ambiguities in the data. It also happens that there is not that much useful 

data available. Using such small sample sizes makes it difficult to get reliable results in the model 

development. Larger sample sizes make it more likely that the reality is captured more adequately. 

4.2.2 Measuring imperfectness 
It is important to measure the imperfectness of the models because it can have huge impacts. False alerts 

can result in unnecessary service actions. From the other side, missing failures can result in downtime of 

system with high potential impact for the customer since patients’ treatments are delayed as result of the 

downtime of the system. The imperfectness of the predictive models is currently measured by a confusion 

matrix as described in Section 1.3.1. It shows the relation between the predicted class and the actual class.  

The matrix is computed by using the training and test data used in the model development and is not 

updated with new data after the deployment of the model. This means that possible anomalies in the 

trainings and test data can make the actual performance in the field deviate from the calculated confusion 

matrix. For example, the calculated precision in the model development can be lower in reality. Therefore, 

the aforementioned uncertainties do not only affect the reliability of the predictive models, they also 

affect the reliability of the confusion matrix. 

The imperfectness of the predictive models is partly captured by the confusion matrix. The models also 

generate an imperfectness measure for each alert called the confidence. This confidence is typically a 

number between 0.5 and 1. It represents how confident the model is that the new data point belongs the 

failure-prone class. In other words, it says something about the distance of the new data point to the 

hyperplane. The bigger the distance, the higher the confidence of the alert.  

The confusion matrix of a predictive model is currently not taken into account by RMEs. This matrix is not 

accessible for RMEs so they do not know the theoretical performance of the model.  They only know that 

the FP of the predictive model is smaller than 1%. Since the FP is very small, the alerts are very likely to 

be valid.  

RMEs also do not take into account the confidence of alerts in their decision-making. This number is visible 

for every alert, but it is not clear to them how they should interpret the number. Therefore, the RMEs do 

not use the alert confidence at all in their decision-making.  

Currently, RMEs are not using objective measures of the imperfectness of the predictions in their decision-

making. The two existing measures (confusion matrix and alert confidence) are both not used. When the 

RME needs to make a decision upon an alert, they only make a subjective judgement of how good the 

model is. Trust in the model is the leading factor in this judgement. However, the level of trust can differ 

among RMEs so some RMEs have more trust in a model than others do.  
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4.2.3 Probability of that alert is true 
It is not very easy to access if an alert is true or not. RMEs can identify if an alert is false and caused by 

various reasons by checking operational information to reject alerts. For example, sometimes an alert can 

be considered as false if the FSE is on-site. When the FSE is on-site, it his very likely that he triggered the 

predictive model. This can be considered as an operational error. Operational errors induce false alerts 

resulting from the operational status or activities. Some of these alerts are AutoSNARed but others can 

be identified by checking some parameters.  

Another type of errors that can result into false alerts are the model errors. Such errors are the result of 

the imperfectness of the predictive models, which is discussed earlier.  Such false alerts are more difficult, 

if not impossible, to identify with a success rate of 100%. Currently, RM tries to identify such false alerts 

by making a subjective judgement of 1) the predictive model, 2) previous alert occurrences and 3) the log 

files.   

The confidence of an alert is not taken into account by the RMEs because they do not know how to 

interpret this number. As mentioned earlier, the confidence is a measure of the distance of new data point 

(prediction) to the hyperplane that classifies data into good or failure prone data. The higher the distance 

the more likely it is that the classification is true. Therefore, the confidence of an alert can give valuable 

information on the probability that an alert is true. Platt (1999) provides more information on how 

probabilistic outputs for SVM can be obtained. He presents a method for extracting the probabilities 

P(class|input) from the outputs of SVM. 

The judgement of an alert requires a high level of knowledge of the predictive models and deep 

understanding of the log files. Without this understanding, it is very difficult to access the probability that 

an alert is true. Therefore, it would be valuable to develop a method that accesses this probability in a 

more objective way. The goal is to make sure that the judgement of alerts does not rely solely on the 

knowledge and experience of the RMEs.  

The required input parameters for the method that should be developed are: 

 Confusion matrix of the predictive model 

 Confidence of the alert 

 Judgement of the log file corresponding to an alert 

 Number of previous alerts 

The development of this method is, due to its complexity and time restrictions, not included in the scope 

of this thesis. We only mention which parameters can be used to access the probability that an alert is 

true. 
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5 ANALYSIS CURRENT 

MAINTENANCE POLICY 
"In God we trust, all others must bring data." – W. Edwards Deming 

This chapter contains the analysis of the current maintenance policy. The required data is extracted from 

Vertica and analyzed in order to create valuable insights on the performance of the current maintenance 

policy. Section 5.1 contains an analysis of the costs relevant in the maintenance decision making. In 

Section 5.2 data regarding spare part decisions are analyzed. We analyzed different aspects related to 

time in Section 5.3. 

5.1 COST ANALYSIS 
This section analyzes the costs of the current predictive maintenance policy. First, the relevant cost factors 

are identified from the data, then the actual values are calculated for each of the factors. This provides 

information that give valuable insights for RMEs to account for the expected maintenance costs in their 

decision making.  

5.1.1 Cost factors identified from data 
The ‘iXR_gdwhcv_jobs’ table in Vertica contains information on the service actions along with its related 

costs that are conducted to solve a case. Three relevant data fields in these table are ‘CostCm’, 

‘CostRemote’, and ‘CostTravel’. These costs factors are the result of hours worked on ‘maintenance or 

diagnostics’, ‘remote service’ and ‘traveling’ respectively. Another relevant data field is ‘CostOther’. These 

costs are the result of either ‘technical support’, ‘waiting/delay’, ‘internal travel time’, and ‘picking or 

docking of a part or tool’ and are directly derived from the hours spend on the activity. These hours are 

also stored in the same table, which allows us to calculate the costs per hour for each of these three costs 

factors. Note that these costs per hour depends on different factors like the region and modality. 
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Another important cost factor is the costs of a spare part. These costs can be found in the table 

‘iXR_gdwhcv_parts’ in Vertica. This table contains data on which and how many parts are ordered during 

a job of maintenance. Two data fields in this table relate to the costs of a spare part. One field is called 

‘CompPrice’ and the other is ‘CompCost’. ‘CompPrice’ is the price of a single spare part ordered while 

‘CompCost’ is the total costs of the ordered spare parts of a certain part. So, ‘CompCost’ and ‘CompPrice’ 

only differ when in one order two or more identical spare parts are ordered. 

The aforementioned costs are the costs that can be billed to the customer depending on the service 

contract of the customer. Table 3 shows the cost factors that are identified from the table 

‘iXR_gdwhcv_jobs’. 

Table 3: Maintenance cost factors 

Cost factor Activities Description 

CostCm 
Diagnostics Costs of diagnosing the problem of the system 

Corrective 
Maintenance 

Costs of conducting the actual maintenance on the 
machine  

CostRemote Remote Service Costs of providing remote service to the customer 
CostTravel Travel Costs of traveling 

CostOther 

Technical support 
during CM 

Costs of providing technical support during corrective 
maintenance actions (diagnostics or the maintenance 
itself 

Waiting/delay 
Cost incurred because the engineer has to wait or is 
delayed 

Internal travel 
time 

Costs of internal traveling. This includes for example 
traveling to a part pick-up point 

Picking or docking 
of a part or tool 

Cost of activities related to the picking or docking of a 
part or tool. 

CompCost Costs of ordered 
parts 

Costs of the ordered parts for maintenance actions. 
These include both used as unused parts. 

 

Whenever an FSE or RSE in the local service market spend time on one of the factors for a case, he has to 

register the hours in an information system. In addition, he has to select the factor to which the hours 

spend belong. In this way, the costs of a maintenance case are stored in the information system for each 

factor. Since, these costs are entered in the information manually, it is sensitive to varying practices used 

by engineers. For example, some FSEs enter remote service as ‘Remote Service’, while others enter it as 

‘Technical support during CM’. Only information on values for the cost factors can be found in the data 

and not on the specific activities.  

5.1.2 Analysis of costs 
A dataset is extracted from Vertica to analyze the costs of acting on an alert. All alerts are selected that 

result into a case and coupled to the case in table catmasterlist2. For 4,505 alerts, the alert action is 

defined as “case”. However, for some of these alerts, no CaseId is defined which makes it hard to couple 

it to a case. Besides that, some alerts contain a case number that is not valid (i.e. a CaseId of 9999999 or 

                                                             
2 Note that data on iXR and MR are stored in different catmasterlist tables. Data from both tables is used. 
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0000). A CaseId can be considered as valid if the first three digits are 010. From the 4,505 alerts, 3,126 

alerts contain a case number that starts with 010. 

Now all the alerts are selected with a valid CaseId, the corresponding case should be coupled to the data 

of the alerts. Cases defined in the catmasterlist contain information about the costs made for that specific 

case. Therefore, the case from catmasterlist is coupled to the alert based on identical case id’s. Note that 

the case id is called CaseId in the table with alerts and CaseID in the catmasterlist. Also, it should be taken 

into account that the CaseID in the catmasterlist is the same as the CaseId in the table with alerts without 

the first digit. Running the new SQL code, the set of 3,126 alerts reduces to a set of 1852 alerts coupled 

to a case.  Other alerts cannot be coupled to a case in the catmasterlist and thus corresponding costs 

cannot be found. A possible reason for this reduction is that Vertica is a combined database, which is not 

directly coupled to the other databases. Data needs to be transferred to Vertica but it is not exactly clear 

when this is done. This can be a reason that some data on cases is missing in the catmasterlist.  

As mentioned before, the costs are calculated by multiplying the hours spend on a cost factor with an 

hour tariff. Since this tariff differs per region, the choice is made to analyze the hours instead of the costs. 

For each model, the average hour per cost factor is calculated. Figure 9 shows these numbers for each iXR 

model and Figure 10 show these number for each MR model. The labels on the y-axis contain the names 

of the predictive models. 

 

 

Figure 9: Average hours per cost factor for each iXR model 
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Figure 10: Average hours per cost factor for each MR model 

Both figures show that the TotalCMHours is for almost every model the leading cost factor in a case. Also 

the TotalTravelHours are relatively high compared to the others.  

As mentioned, the previous averages are based on a limited number of cases. Therefore, these averages 

do not provide a valid claim on the costs of future cases. The average values over all predictive models 

are shown and compared to the FN costs in the next section. 

5.1.3 Analysis of costs of FN 
Currently, the costs of missing a failure are not known. This is one of the reasons that the rate with which 

failures are missed is not taken into account during the predictive model development. There is no 
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objective measure of the importance of this FN rate. In failure predicting, the importance of FN can be 

measured by its costs.  

5.1.3.1 Identification of FN cases by safety questions 

When the customer calls with a problem, a person in the LSO needs to ask some safety questions to the 

customer. These questions are: 

1. Was the device in clinical use at the time the issue was discovered? 

2. Was any patient or user harmed? 

3. If the device has alarm/alert capability, did it alarm/alert as it should have at the time the issue 

was discovered? 

4. Was this an out of box failure? 

The answers given by the customer are stored in larger text field with information about the maintenance 

activities conducted to solve the case. With Question 1 and 2, the LSO asks if the problem with equipment 

occurred during the treatment of the patient and if the patient was harmed due to the problem 

Question 3 checks if the problem should have been predicted by a predictive model. If the answer is yes, 

the predictive model misses the failure and the case can be considered as a FN. Analyzing the costs of 

these cases will reveal the costs of FN.  

The answers on the questions are not stored in a separate data entry in the database. The answer on 

safety question 3 can be found in a bigger text entry in the data labeled as ‘CustomerComplaint’. It 

contains among others information on all interactions of the LSO and the customer. The answer on 

question 3 needs to be extracted from this text entry in the database table. Because there are ten 

thousands of cases, it is not possible to find these cases manually. Therefore, we wrote a code in R to find 

the answer on question 3 for each case. This code can be found in Appendix III 

The code aims to isolate and capture the text between question 3 and 4. In this way, the answer on 

question 3 is extracted from the text. We execute the code on a dataset of 10000 iXR cases. For 6608 

cases, the code was able to extract the answer on question 3. The remaining cases did not contain 

information on this question, or the code was not able to identify the answer. 

In the 6608 cases, the answer on question 3 was always “N/A”. This suggests that engineers in the LSO 

never answer this question properly. This can be due to the newness of remote monitoring and engineers 

in the LSO do not know immediately, if the predictive model should have predicted the problem. 

Therefore, it gives no valuable information on which cases can be the result of a FN. 

5.1.3.2 Identification of FN cases 

The previous method of identifying FN cases was not successful because the required question is not 

answered correctly. Another way of identifying such cases is to look at cases of which the alert came too 

late. This means that the customer calls before the predictive model generates the alert. Practically, this 

means that the model missed the problem with the customer’s system. Therefore, we can consider the 

case as a FN case. If the cases are identified, the average costs of such cases can be calculated. 

Alerts that were generated too late, are SNARed by the RMEs. The RME has to select a reason for every 

alert that he SNARs manually. For late alerts, the RME selects the SNAR reason ‘Late alert’. So, late alerts 

can be identified by selecting alerts that contain ‘Late alert’ as SNAR reason.  
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Since, such alerts are SNARed, they are not coupled to a case such that the costs of the cases cannot be 

identified immediately. After a SNAR, the RME does not fill in a case id. The only way to connect a case to 

a late alert is to couple cases conducted on a system to a late alert on the same system. This results in 

instances where many cases are connected to one alert since it connects all cases ever executed on the 

system to a late alert. In order to create more accurate connections, only cases are coupled to late alerts 

that are created up to 30 days before the alert is generated. Furthermore, we only use cases classified as 

CM and which are not preceded by an alert. Although this increases the chance that the right case is 

coupled to an alert, it does not guarantee that the right case is connected to a late alert because it is not 

linked directly. The SQL query we used can be found in Appendix IV. We exported the resulting data to 

Excel. In Excel duplicate cases and/or alerts are removed from the data. We only use the alert-case 

combinations, the smallest differences in time. This results in a dataset containing 668 usable cases.  

The average hours spend per cost factor are shown together with their 95% Confidence Interval (CI) in 

Figure 11. We calculated the CI by: 

95% 𝐶𝐼 = 1.96 ∙
𝜎

√𝑁
 

With σ the standard deviation of the average hours per case and 𝑁 the size of the data. 

 

Figure 11: Costs of FN cases versus TP cases 

5.1.4 Analysis of costs of FP 
This sections deals with the costs of a false alert. We expect that it is quite hard to find cases of which the 

alert is classified as false. This classification can easily be found in the data but since the FP rate of the 

predictive models is very low (see Chapter 4), we expect just a few of such cases. We find 52 FP cases by 

running the SQL query for FP cases from Appendix IV. In 28 of those cases, there is no information about 

costs stored, which leaves us with 24 useful cases. The average costs of these FP cases are shown in 5.1.4. 
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Figure 12: Average hours per cost factor for FP cases 

In all 24 cases, the LSO only spend hours on remote services to find out that the alert and its case is false. 

The LSO never dispatched an FSE to the customer in these cases. 

5.2 ANALYSIS OF SPARE PART DECISIONS 
Currently, the decision of sending a spare part to the customer as action upon an alert is not made by RM. 

This decision is made by someone from the LSO. It depends on the region who in the LSO is responsible 

for this decision. First, it is investigated how many times spare part are send to the customer based on 

failure prediction. Second, two performance indicates are calculated related to this decision in order 

access the performance of the current way of working. These two performance indicators are the % of 

cases fixed in one visit and the number of unnecessary shipments. 

Alert data is extracted from Development.ISDA_model_output_alert. Service data for iXR and MR are 

extracted from Development.iXR_fdvsv_catmasterlist and Development.MR_fdvsv_catmasterlist 

respectively. The data is analyzed in Excel. 

5.2.1 Spare part decisions 
As mentioned in chapter 4, the predictive models are build based on data on part replacements. This 

suggests that these models try to predict when a system requires a part replacement. However, the 

maintenance case resulting from alerts often do not include a part replacement. For each predictive 

model, it is calculated how many cases include a spare part replacement. This gives insights in how 

frequently a spare part is required to solve the maintenance case. Figure 13 shows the percentages of iXR 

cases where spare parts were ordered and Figure 14 shows these percentages for MR cases. The figures 

also show how many cases are used for each predictive and proactive model. These numbers are 

represented by 𝑁. 

Average Hours per FP Case

Cases preceded by Alert
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Figure 13: Percentage of cases with parts for each iXR model 
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Figure 14: Percentage of cases with parts for each MR model 

As shown in the figures, the percentages vary from 0% to 66.67% for iXR predictive models and from 0 to 

100% for MR models. These MR models include the predictive models and the proactive models. The 

percentages give information on how likely it is for a predictive model that a part will be ordered. 

However, the percentages for each model calculated with a very small data set. The number of cases for 

each iXR predictive model range from 2 to 47. Such small dataset makes it very difficult to make good and 

valid claims about the likelihood that a part will be ordered during a case. Besides that, cases made upon 

a predictive model may require different spare parts.  

5.2.2 First visit fix 
The purpose of the analysis is to get insights in how many of the cases, the problem is not fixed in one 

visit. Such cases can have impact on the service level of the customer. One data sample contains all the 

cases and another sample contains the data of cases where parts were ordered. The percentage of cases 

that are fixed at the first visit are calculated for both samples and compared. The KPI that measures this 
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is called First Visit Fix percentage. In order to calculate these KPIs, tables are created that show the 

frequencies of numbers of visits in the data. These frequency tables can be found in Table 4.   

Table 4: Frequency table of the number of visits 

Number 
of visits 

All Cases Cases with Parts 

0 769 56 

1 307 92 

2 45 34 

3 8 8 

4 5 5 

5 2 2 

6 1 1 

7 2 2 

 

According to this data, no FSE is dispatched to the customer in 769 cases because the number of visits is 

zero for those cases. However, this is not completely true. A closer look on the data reveals that the travel 

hours are often greater than zero in those cases. This means that a FSE travelled to the customer, while 

the number of visits is zero.  

We can conclude from these hours that the FSE visited the customer. We assume for those that the 

number of visits was one.  In the calculations of the First Visit Fix percentages, only cases where the 

number of visits box is filled are taken into account. Therefore, the First Visit Fix percentage can be defined 

as: 

𝐹𝑖𝑟𝑠𝑡 𝑉𝑖𝑠𝑖𝑡 𝐹𝑖𝑥 % =
𝐶𝑎𝑠𝑒𝑠[𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 ≤ 1]

𝐶𝑎𝑠𝑒𝑠[𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑠𝑖𝑡𝑠 ≥ 0]
∙ 100% 

The first visit fix percentages of both samples can be found in Table 5. 

Table 5: First visit fix percentages 

 
All Cases Cases with Parts 

First Visit Fix % 94% 74% 

 

We can conclude that cases that require a part replacement, face a lower first visit fix percentage than 

cases that can be solved without a part replacement. This is due to the fact that FSEs can find out during 

his first visit, that a part is required to fix the problem. Then he needs to order it, and visit the customer 

another time to replace a part. If the cases where a part needs to be replaced has one visit, the FSE brought 

the part already with him. 

5.2.3 Unnecessary Shipments 
Another interesting KPI to look at is the percentage of cases with unnecessary shipments. Such shipments 

can lead to excessive costs and thus the number of such shipments should be low. In the data, the number 

of unused parts is stored which indicates how many of the ordered parts, are not used during the 
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maintenance actions. These are send back to the warehouse and unnecessary shipment costs are 

incurred. To calculate the KPI, a sample is created with all cases that involve parts. The KPI is defined as 

the ratio of cases that contain unnecessary shipments to all cases in the sample. It turns out that 15% of 

the cases where parts are involved, contain unnecessary shipments. Note that in some cases multiple 

shipments were unnecessary. The frequency table for the number of unused parts per case is shown in 

Table 6. 

Table 6: Frequency table of unused parts per case 

Total parts unused per case Frequencies of TotalPartsUnused 

0 230 

1 31 

2 5 

3 1 

4 0 

5 1 

6 1 

7 1 

 

The percentage of cases with unnecessary shipments can be calculated by the following formula: 

% 𝑐𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑢𝑛𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠 =
𝐶𝑎𝑠𝑒𝑠[𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑟𝑡𝑠𝑈𝑛𝑢𝑠𝑒𝑑 ≥ 1]

𝐶𝑎𝑠𝑒𝑠[𝑇𝑜𝑡𝑎𝑙𝑃𝑎𝑟𝑡𝑠𝑈𝑛𝑢𝑠𝑒𝑑 ≥ 0]
 

Calculating this performance indicator using the numbers in the frequency table gives a value of 14.81%. 

So, there are unnecessary shipments in 14.81% of the cases where parts are involved. 

5.3 TIME ANALYSIS 
This section analyzes two random variables related to time aspects in the maintenance policy. The first 

variable is the time between the arrival of an alert and the actual failure. We refer to this time as the 

Remaining Useful Life (RUL). It represents the expected remaining lifetime of the component when an 

alert is generated. The second variable is the time between the creation of a case and the time of the 

actual on-site maintenance activities. Both times are important to access the probability distribution of 

the downtime and the probabilities that maintenance is conducted before the customer experienced 

problems with the equipment. These probabilities are necessary to account for different costs associated 

for being on time with the maintenance activities or too late. The RUL after an alert is analyzed in Section 

5.3.1 and the time to maintenance is analyzed in Section 5.3.2. 

5.3.1 Remaining useful life 
The predictive models typically warn for a possible failure in a certain time interval [𝜏𝑙 , 𝜏𝑢] where 𝜏𝑙  

represents the lower bound of the time interval and 𝜏𝑢 the upper bound of the time interval. The time 

between an alert arrival and a failure is called the Remaining Useful Life (RUL). However, according to RM, 

the mentioned time interval is not a reliable. They often do not expect that a failure will occur in that time 



 

32 
 

interval. Therefore, we need to conduct an analysis on the RUL. In the remainder of this subsection, we 

aim to find a probability distribution for the RUL when an alert arises. 

The time between a prediction and the predicted failure is not directly observable in the data. If a case is 

made, maintenance is often conducted before the equipment fails. The failure time is then not observable 

because the failure is prevented by conducting the maintenance. In order to find these failure times, cases 

can be selected 1) where the failure time is earlier than the time of the maintenance, or 2) where the alert 

is unfairly SNARed, or 3) where the case is SNARed due to contract or regional reasons. Each of these 

possible selections face some advantages and disadvantages. Disadvantages of the first two selections are 

that the size of the data is limited. Besides that, 1) has the difficulty that it is hard to identify in the data 

when the customer actually called. Only the date of maintenance can be accessed easily but is does not 

show if that is due to a customer call or that the maintenance was scheduled on that date. 

2) faces difficulties in identifying whether or not an alert is unfairly SNARed. It is possible to check if a 

SNARed alert is followed by a case but is hard to find out if the case is related to the SNARed alert. If a 

case is made when the customer calls, it is not connected to a related alert in the database. This problem 

is also faced by 3). Another problem faced by 3) is that an alert is SNARed immediately when it is clear 

that the customer has no contract or the region is not monitored. This is the first thing that is checked so 

those alerts can also be induced by an FSE that is on-site. In addition, there is a chance that the alert is 

false. This makes it difficult to relate a case to an alert. An advantage of 3) is that alerts that are SNARed 

due to reasons related to the customer’s contract or region can be identified easily. Whenever an RME 

SNARs an alert, he has to give the reason to SNAR it. When the RME SNARs an alert due the previously 

mentioned reasons, he has to select the reason that the customer has no contract or that the region is 

not monitored. Such alerts can be immediately identified in the data by looking at the data field ‘SNAR 

reason’. 

The decision is made to use alerts that are SNARed because that the region is not monitored. These are 

easy to identify, and the first corrective maintenance case after the arrival of the alert is used to determine 

the time between the alert and the case on a certain equipment ID. The assumption is made that this first 

case is earlier predicted by the alert. This is quite a strong assumption but it very hard to check if both are 

related. This should be done manually by an RME since they have the required knowledge to make such 

judgement. The query to extract the data from Vertica can be found in Appendix IV.  

This data is copied to Excel. In Excel we make sure that we only use the first alert in a time interval of 50 

days to prevent the use of successive alerts. We coupled this alert to the first case opened after that alert. 

In this way, we create alert-case combinations. 

The Remaining Useful Lifetime (RUL) 𝑋𝑖  for alert-case combination i is calculated by taking the difference 

between the alert arrival date and the call open date of the case. So: 

𝑋𝑖 ∶= 𝐶𝑎𝑙𝑙𝑂𝑝𝑒𝑛𝐷𝑎𝑡𝑒𝑖 − 𝐴𝑙𝑒𝑟𝑡𝑇𝑖𝑚𝑒𝑖  

To fit distributions for 𝑋, we need to estimate the parameters for such distributions. Several methods 

exist for such estimations. In this thesis, the moment estimation is used. Using the first moment 𝑀1 and 

second moment 𝑀2, parameters of different distributions can be estimated. The moments are defined as: 
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The formulas of the parameter estimations for each distribution are given in Appendix V. The actual values 

of the parameter estimators are shown in Appendix VI. 

To check which distribution fits the data best, the empirical distribution of 𝑋𝑖  is plotted against the 

theoretical distributions with the estimated parameters. This plot can be found in Figure 15. 

  

Figure 15: Plot of empirical distribution and theoretical distributions 

On the first sight, it looks that the normal and gamma distributions provide a decent fit for 𝑋.  

Kolmogorov-Smirnov (KS) tests for each distribution are conducted to compare the empirical distribution 

with the theoretical distributions with the aforementioned estimated parameters. These tests are 

performed in R. The results of these tests are shown in Table 7. 

Table 7: KS tests for RUL distribution fitting 

Distribution p-value KS test 

Normal  0.4607 
Gamma 0.3615 
Exponential 0.01652 
Lognormal 0.00311  

 

The N0 hypothesis that the empirical distribution is the same as the theoretical distributions are rejected 

for the Exponential and the Lognormal distributions. The N0 hypothesis cannot be rejected for Normal 

and the Gamma distributions, which is in line with the observations of Figure 15. 
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5.3.2 Time to on-site maintenance 
The scheduling of maintenance activities is not part of the responsibilities of RMEs. When a case is made 

by a RME, the case is send to the LSO. The LSO then, is responsible to schedule the recommended 

maintenance activities. If the RME does not recommend to combine the maintenance with already 

scheduled maintenance activities, he recommend to schedule the maintenance as soon as possible. 

Therefore, this time to on-site maintenance can be modeled as a random variable denoted by 𝑇𝑜𝑠.  

The analyze 𝑇𝑜𝑠 , alerts are taken from the database that resulted in a case. Then 𝑇𝑜𝑠  for alert-case 

combination i is determined by: 

𝑇𝑜𝑠𝑖
≔ 𝑂𝑆𝑊𝑜𝑟𝑘𝑆𝑡𝑎𝑟𝑡𝑖 − 𝐴𝑙𝑒𝑟𝑡𝑇𝑖𝑚𝑒𝑖  

The first and second moment of 𝑇𝑜𝑠 are calculated by: 

𝑀1 =
1

𝑛
∑ 𝑇𝑜𝑠𝑖

𝑛

𝑖=1

 

𝑀2 =
1

𝑛
∑ 𝑇𝑜𝑠𝑖

2

𝑛

𝑖=1

 

These moments can be used to estimate parameters to fit a distribution for 𝑇𝑜𝑠. The same parameter 

estimators are used as described in the previous section. The values of the parameter estimations can be 

found in Appendix VI. 

Like in the previous section, the empirical distribution of the 𝑇𝑜𝑠𝑖
’s is plotted against the theoretical 

distributions with the estimated parameters. This plot can be found in Figure 16. 

  

Figure 16: Plot of the empirical distribution and theoretical distributions of the Time to On-site maintenance 
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6 DECISION SUPPORT MODEL 
“We cannot solve our problems with the same thinking we used when we created them.” – Albert Einstein 

The goal of this thesis was to create a model that supports RMEs in their proactive maintenance decision 

making. The model should support the RMEs in the decisions that follow on an alert raised by predictive 

models. Whenever the RME sees an alert, he needs to decide to create a case for the LSO or to reject the 

alert. This chapter aims to provide a mathematical model that supports the RME in making this decision. 

The model aims to minimize the expected costs and downtime until the alert is resolved. Section 6.1 

discusses the assumptions made to create the model. Section 6.2 discusses the different parameters used 

in the model and Section 6.4 provides the actual mathematical model. We developed a newsvendor 

solution of the optimal probability threshold in Section 6.5. Section 6.6 includes a sensitivity analysis of 

the model on different model parameters. 

6.1 MODELING ASSUMPTIONS 
Several assumptions are made in order to create the decision support model. These assumptions are listed 

below and discussed afterwards.  

1) The costs parameters are deterministic and considered as input values. 

2) A customer call represents an equipment failure. 

3) When a case is made, it is immediately observable by the LSO. 

4) Diagnostic actions are only required when the LSO did not receive a case from RM. 

5) The response time is implied by the contract of the customer and is considered to be 

deterministic.  

6) The repair time and the diagnostic time are deterministic. 

7) The failure can be fixed during the first visit. 

8) After maintenance, the equipment is considered as as-good-as-new. 

9) Maintenance is conducted during operating hours of the customer unless the customer is entitled 

for maintenance outside operating hours. 

10) The probability that an alert is true is given. 
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Assumption 1) states that all relevant cost factors in the maintenance decision making by RMEs are 

known. The average values for these cost factors as calculated in Chapter 5 used initially. Later, the cost 

parameter values can be set such that they are customer- and predictive model-specific. Assumption 2) 

implies that a customer call is considered as an equipment failure. In reality, some customer may call the 

LSO of Philips when the performance of the equipment slightly decreased. Other may call when the system 

stopped working. For modeling purposes, the worst scenario is assumed which is that the system stopped 

working. Assumption 3) is made such that we do not have to take into account the probability that a case 

is made but the equipment fails before the LSO sees this case. Such situation can result in additional costs 

for diagnosis of the failure. This enables us to use assumption 4) which states that diagnostic actions only 

needs to be done when the LSO did not receive a case from RM.  

Assumption 5) states that the maximum on-site response time after an equipment failure, as agreed in 

the contract, equals the actual response time. Assumption 6) mentions that the time required for repair 

of the equipment and the time to diagnose the problem, are considered as input values in the model. 

Assumption 7) states that any failure predicted by the predictive models can be solved in the first visit to 

the customer. This implies that downtime can only consists of response time after a customer call, time 

for diagnostics, and time for repair. Assumptions 8) is used to prevent that we should account for future 

failures after maintenance actions. This implies that maintenance actions are considered to be perfect. 

Assumption 9) makes sure that we account for downtime because of scheduled maintenance activities. 

The customer cannot provide treatment to their patients during such maintenance activities because the 

FSE conducting maintenance on the equipment. If the customer is entitled for maintenance outside 

operating hours, this downtime is not incurred because customers do not treat patients during these 

hours. Assumption 10) assumes that the probability that an alert is true is known for each alert by the 

RMEs. Currently, RMEs receive no such probability value but they judge based on their experience and 

knowledge if an alert is true. Further research needs to be conducted to give a more objective indication 

of this probability to the RMEs. 

6.2 MODEL PARAMETERS 
This section defines the model parameters. Table 8 provide the different input parameters used in the 

model. 

Table 8: Input parameters of the decision support model 

Parameter Notation 

No FSE on site 𝑚 ∈ {0, 1} 
No open case 𝑜 ∈ {0, 1} 
Customer contract  𝑣 ∈ {0, 1, … , 6} 
Outside working hours coverage 𝑜𝑤ℎ 
Costs of downtime per unit time 𝑐𝑑 
Downtime compensation 𝑐𝑐𝑑𝑡  ∈ {0, 1} 
Customer’s region monitored by RM 𝑟 ∈ {0, 1} 
Expected costs of PdM 𝑐𝑃𝑑𝑀 
Expected costs of PdM combined with PM 𝑐𝑃𝑑𝑀

′  
Expected costs of CM 𝑐𝑐𝑚 
Expected costs of diagnostics 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠 
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SLA Response time for contract 𝐕 𝑇𝑟𝑣 
Estimated time for diagnostics 𝑡𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠 

Estimated repair time 𝑡𝑟 
Time to next Planned Maintenance 𝑡𝑠𝑚 
RUL 𝑋 
Time to on-site maintenance 𝑇𝑜𝑠 
Probability that the alert is true 𝑃 

 

6.2.1 Decision variables 
The aim of the decision support model is to provide support for RM. RMEs should make the decision to 

either SNAR the alert, or to make a case and send it to the LSO. In addition, they have to make the decision 

to combine it with an already scheduled activity or not. Therefore, there are two decision variables in the 

model. 𝑎 represents the decision to create a maintenance case and send it to the LSO and 𝑦 represents 

the decision to combine the case with an already scheduled maintenance. The decision variables are 

shown in Table 9. 

Table 9: Decision variables in the mathematical model 

Decision variable Notation 

Initiate maintenance actions 𝑎 ∈ {0, 1} 
Combine with next Maintenance activity 𝑦 ∈ {0, 1} 

6.3 SITUATIONS WITH ASSOCIATED DOWNTIME AND COSTS 
As mentioned in Section 5.3, the model has to deal with the two random variables, 𝑋 and 𝑇𝑜𝑠 . These 

variables measure the time from the alert arrival to the failure and on-site maintenance respectively. 

When the RME decides to create a case, the LSO schedules the maintenance activities to resolve the case. 

Since 𝑋 is random, we have to distinct several scenarios when a case is created and send to the LSO.  

A proactive case is scheduled on 𝑇𝑜𝑠 when 𝑎 = 1, 𝑦 = 0, and 𝑇𝑜𝑠 < 𝑡𝑠𝑚. We assume that if the realization 

of 𝑇𝑜𝑠 is greater than 𝑡𝑠𝑚, the LSO makes the decision to combine the case with the already scheduled 

maintenance case on 𝑡𝑠𝑚. It makes no sense to execute the case later than this moment because it will 

lead to an additional visit and costs. Therefore, a proactive case is scheduled on 𝑡𝑠𝑚 when 𝑎 = 1 and 𝑦 =

1 or when 𝑎 = 1, 𝑦 = 0, and 𝑇𝑜𝑠 > 𝑡𝑠𝑚. 

The equipment can fail before the case is solved. This happens if 𝑋 < 𝑇𝑜𝑠 when the case is scheduled on 

𝑇𝑜𝑠 or if 𝑋 < 𝑡𝑠𝑚 when the case is scheduled on 𝑡𝑠𝑚. The downtime is equal to the response time plus the 

repair time when the equipment fails before the case is solved. Corrective maintenance costs are incurred.  

The proactive maintenance case can also prevent a failure. This happens when 𝑋 > 𝑇𝑜𝑠 or 𝑋 > 𝑡𝑠𝑚. The 

downtime is equal to the repair time and proactive maintenance costs are incurred. Costs of  

𝑐𝑃𝑑𝑀
′  are incurred if the proactive case is combined with another case, and costs of  

𝑐𝑃𝑑𝑀  are incurred when the proactive case is not combined with another case. These scenarios are 

visualized in Figure 17. 
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Alert                                                                                          1. Failure          Maintenance          2. Failure 

 

 

 

 

Figure 17: Timeline of alerts to maintenance or failure 

When no case is made and the equipment fails, CM and diagnostic costs are incurred because the LSO did 

not receive a case. The problem needs to be diagnosed first because the problem is not known by the 

LSO, when the customer calls. In this situation, the downtime consists of response time, time for 

diagnostics and repair time. The costs, downtimes and probabilities for each scenario are shown in Table 

10. 

When the RME decides to create a case, it is always possible that the alert was false. The engineers in the 

LSO discover then that the alert was false. Costs of 𝑐𝐹𝑃 are incurred in such scenario. 

Table 10: Characteristics of the different maintenance situations 

Action Alert 
Realization 

Probability 
on alert 
realization 

Scenario 
realization 

Probability on scenario 
realization 

Costs 
incurred 

Downtime 
incurred 

Case  

True 
Positive 

𝑃 

𝑋 < 𝑇𝑜𝑠, 
𝑇𝑜𝑠 < 𝑡𝑠𝑚 

𝑃 ∙ Pr(𝑋 < 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚) 𝑐𝑐𝑚 𝑇𝑟𝑣 + 𝑡𝑟 

𝑋 > 𝑇𝑜𝑠, 
𝑇𝑜𝑠 < 𝑡𝑠𝑚 

𝑃 ∙ Pr(𝑋 > 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚 ) 𝑐𝑃𝑑𝑀 𝑡𝑟 

𝑋 < 𝑡𝑠𝑚, 
𝑇𝑜𝑠 > 𝑡𝑠𝑚 

𝑃 ∙ Pr(𝑋 < 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚) 𝑐𝑐𝑚 𝑇𝑟𝑣 + 𝑡𝑟 

𝑋 > 𝑡𝑠𝑚, 
𝑇𝑜𝑠 > 𝑡𝑠𝑚 

𝑃 ∙ Pr(𝑋 > 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚) 𝑐𝑃𝑑𝑀
′  𝑡𝑟 

False 
Positive 

1 − 𝑃  1 − 𝑃 𝑐𝐹𝑃 0 

Combine 
Case 

True 
Positive 

𝑃 
𝑋 < 𝑡𝑠𝑚 𝑃 ∙ Pr(𝑋 < 𝑡𝑠𝑚) 𝑐𝑐𝑚 𝑇𝑟𝑣 + 𝑡𝑟 
𝑋 > 𝑡𝑠𝑚 𝑃 ∙ Pr(𝑋 > 𝑡𝑠𝑚) 𝑐𝑃𝑑𝑀

′  𝑡𝑟 
False 
Positive 

1 − 𝑃  1 − 𝑃 𝑐𝐹𝑃 0 

SNAR 

True 
Positive 

𝑃  𝑃 
𝑐𝑐𝑚 + 

𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠 
𝑇𝑟𝑣 + 𝑡𝑟 + 
𝑡𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠 

False 
Positive 

1 − 𝑃  1 − 𝑃 0 0 
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6.3.1 Probability expressions 
The probability expressions from Table 10 need to be defined in order to calculate the probabilities that 

different costs and downtime are incurred. Both 𝑋  and 𝑇𝑜𝑠  are random variables. The probability 

functions of several scenarios where downtime and costs are incurred need to be derived. First, we derive 

the different scenarios that can occur when the RME decides to create a case and not combine it with the 

next scheduled maintenance case. 

The first scenario that can happen if this decision is made is when 𝑋 < 𝑇𝑜𝑠 and 𝑇𝑜𝑠 < 𝑡𝑠𝑚. In this scenario, 

the case is scheduled on 𝑇𝑜𝑠 and but the failure occurs earlier. The Probability Distribution Function (pdf) 

of 𝑋 is represented by 𝑔(𝑥) and the pdf of 𝑇𝑜𝑠 is represented by 𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠). The probability that 𝑋 < 𝑇𝑜𝑠 

and 𝑇𝑜𝑠 < 𝑡𝑠𝑚, is represented by: 

Pr(𝑋 < 𝑇𝑜𝑠 , 𝑇𝑜𝑠 < 𝑡𝑠𝑚) = Pr(𝑋 < 𝑇𝑜𝑠 < 𝑡𝑠𝑚) = ∫ ∫ 𝑔(𝑥)𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠)𝑑𝑡𝑜𝑠𝑑𝑥

𝑡𝑠𝑚

𝑥

𝑡𝑠𝑚

0

 

The second scenario that can happen is that when 𝑋 > 𝑇𝑜𝑠 and 𝑇𝑜𝑠 < 𝑡𝑠𝑚. In this scenario, the case is 

scheduled on 𝑇𝑜𝑠  and the failure is prevented. We can use that Pr(𝑋 > 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚 ) + Pr(𝑋 <

𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚 ) = Pr(𝑇𝑜𝑠 < 𝑡𝑠𝑚) . Therefore, the probability that 𝑋 > 𝑇𝑜𝑠  and 𝑇𝑜𝑠 < 𝑡𝑠𝑚  is be 

represented by: 

Pr(𝑋 > 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚 ) = Pr(𝑇𝑜𝑠 < 𝑡𝑠𝑚) − Pr(𝑋 < 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚)

= ∫ 𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠)𝑑𝑡𝑜𝑠

𝑡𝑠𝑚

0

− ∫ ∫ 𝑔(𝑥)𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠)𝑑𝑡𝑜𝑠𝑑𝑥

𝑡𝑠𝑚

𝑥

𝑡𝑠𝑚

0

 

The third scenario occurs when 𝑋 < 𝑡𝑠𝑚 and 𝑇𝑜𝑠 > 𝑡𝑠𝑚. Because the realization of 𝑇𝑜𝑠 is greater than the 

time to the next scheduled maintenance, the LSO decides to combine the case on 𝑡𝑠𝑚. In this scenario, 

the failure occurs before the maintenance case is executed. The probabilities that 𝑋 < 𝑡𝑠𝑚 and 𝑇𝑜𝑠 > 𝑡𝑠𝑚 

are independent among each other. Furthermore, we can use that Pr(𝑇𝑜𝑠 > 𝑡𝑠𝑚) = 1 − Pr(𝑇𝑜𝑠 < 𝑡𝑠𝑚). 

Therefore, we can express the probability on this scenario realization by: 

Pr(𝑋 < 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚) = Pr(𝑋 < 𝑡𝑠𝑚) ∙ Pr(𝑇𝑜𝑠 > 𝑡𝑠𝑚) = ∫ 𝑔(𝑥)𝑑𝑥

𝑡𝑠𝑚

0

∙ (1 − ∫ 𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠)𝑑𝑡𝑜𝑠

𝑡𝑠𝑚

0

) 

The fourth scenario occurs when 𝑋 > 𝑡𝑠𝑚  and 𝑇𝑜𝑠 > 𝑡𝑠𝑚. The failure is successfully prevented on 𝑡𝑠𝑚. 

Again, both realizations are independent among each other. Therefore, we can express the probability on 

this scenario realization by: 

Pr(𝑋 > 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚) = Pr(𝑋 > 𝑡𝑠𝑚) ∙ Pr(𝑇𝑜𝑠 > 𝑡𝑠𝑚) = ∫ 𝑔(𝑥)𝑑𝑥

∞

𝑡𝑠𝑚

∙ (1 − ∫ 𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠)𝑑𝑡𝑜𝑠

𝑡𝑠𝑚

0

)

= (1 − ∫ 𝑔(𝑥)𝑑𝑥

𝑡𝑠𝑚

0

) (1 − ∫ 𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠)𝑑𝑡𝑜𝑠

𝑡𝑠𝑚

0

) 
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We have now defined the probabilities when the RME decides to create a case but not combine it with 

the next scheduled case. If we want to find the probabilities that these scenarios occur after the RME 

makes this decision, we need to multiply it with the probability 𝑃 that the alert was true. Otherwise, these 

scenarios will not occur. 

If the decision is made to combine the maintenance case with the next scheduled maintenance case, there 

are two possible scenarios. The first scenario is when the failure occurs before the case is executed on 

time 𝑡𝑠𝑚. The probability on this scenario is represented by: 

Pr(𝑋 < 𝑡𝑠𝑚) = ∫ 𝑔(𝑥)𝑑𝑥

𝑡𝑠𝑚

0

 

The second scenario that can occur for a true alert when the combine decision is made is that the failure 

is successfully prevented by the maintenance. In such scenario, 𝑋 is greater than 𝑡𝑠𝑚. The probability that 

𝑋 > 𝑡𝑠𝑚 is represented by: 

Pr(𝑋 > 𝑡𝑠𝑚) = ∫ 𝑔(𝑥)𝑑𝑥

∞

𝑡𝑠𝑚

= 1 − ∫ 𝑔(𝑥)𝑑𝑥

𝑡𝑠𝑚

0

 

 

The pdf of 𝑋 is given by: 

𝑔(𝑥) =
1

√2𝜎2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  

 

Since 𝑇𝑜𝑠 follows a Gamma distribution, the pdf of 𝑇𝑜𝑠 is given by: 

𝑓𝑇𝑜𝑠
(𝑡𝑜𝑠) =

𝛽𝛼

Γ(𝛼)
𝑡𝑜𝑠

𝛼−1𝑒−𝛽𝑡𝑜𝑠  

With: 

Γ(𝛼) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥

∞

0
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6.4 MATHEMATICAL MODEL FOR RM 
The objective of the model will be to minimize the expected costs and downtime until the alert is resolved. 

It is a short-term and myopic optimization problem. After an alert arrival, the RME has to make the 

decision such that the expected costs and downtime are minimized. We define two objective functions. 

One to minimize the expected costs and one to minimize the expected downtime. The objective functions 

are summations of the expected costs and downtimes of the different actions. In addition, expected 

downtime costs are added to the expected costs function. The mathematical model is shown below and 

we refer to this model as Model 1: 

Model 1 

Min  𝐸[𝐶] = 𝑎 ∙ (1 − 𝑦) ∙ 𝐸[𝐶𝑐𝑎𝑠𝑒] + 𝑦 ∙ 𝐸[𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒] + (1 − 𝑎) ∙ 𝐸[𝐶𝑆𝑁𝐴𝑅] + 𝑐𝑐𝑑𝑡 ∙ 𝐸[𝐷] ∙ 𝑐𝑑 1) 
Min 𝐸[𝐷] = 𝑎 ∙ (1 − 𝑦) ∙ 𝐸[𝐷𝑐𝑎𝑠𝑒] + 𝑦 ∙ 𝐸[𝐷𝑐𝑜𝑚𝑏𝑖𝑛𝑒] + (1 − 𝑎) ∙ 𝐸[𝐷𝑆𝑁𝐴𝑅] 2) 

s.t.   
𝑎 ≤ 𝑟, 𝑜, 𝑚, 𝑣 3) 

𝑦 ≤ 𝑎 4) 
𝑎, 𝑦 ∈ {0, 1} 5) 

 

1) represents the minimization objective of the expected costs as a result of the decisions made by the 

RME. 𝐸[𝐶𝑐𝑎𝑠𝑒] represents the expected costs of creating and sending a case to the LSO (𝑎 = 1, 𝑦 = 0). 

𝐸[𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒] represents the expected costs of creating a case and suggest to combine it with an already 

scheduled case (𝑎 = 1, 𝑦 = 1). 𝐸[𝐶𝑆𝑁𝐴𝑅] represents the expected costs of SNAR (𝑎 = 0). The expected 

downtime costs are represented by 𝑐𝑐𝑑𝑡 ∙ 𝐸[𝐷] ∙ 𝑐𝑑 and are only incurred when the customer is entitled 

for downtime compensation (𝑐𝑐𝑑𝑡 = 1).  

We can calculate the expected costs of each action by summing the multiplications of scenario 

probabilities for that action with the associated costs. The scenario probabilities and costs can be found 

in Table 10 in Section 6.3. These expected costs expressions for the different actions are given below: 

𝐸[𝐶𝑐𝑎𝑠𝑒] = 𝑃 ∙ (𝑐𝑐𝑚 ∙ (Pr(𝑋 < 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚) + Pr(𝑋 < 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚)) + 𝑐𝑃𝑑𝑀

∙ Pr(𝑋 > 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚 ) + 𝑐𝑃𝑑𝑀
′ ∙ Pr(𝑋 > 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚)) + (1 − 𝑃) ∙ 𝑐𝐹𝑃 

𝐸[𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒] = 𝑃 ∙ ((𝑇𝑟𝑣 + 𝑡𝑟) ∙ Pr(𝑋 < 𝑡𝑠𝑚) + 𝑐𝑃𝑑𝑀
′ ∙ Pr(𝑋 > 𝑡𝑠𝑚) + (1 − 𝑃) ∙ 𝑐𝐹𝑃) 

𝐸[𝐶𝑆𝑁𝐴𝑅] = 𝑃 ∙ (𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠) 

2) represents the minimization objective of the expected downtime. 𝐸[𝐷𝑐𝑎𝑠𝑒] represents the expected 

downtime of creating and sending a case to the LSO (𝑎 = 1, 𝑦 = 0). 𝐸[𝐷𝑐𝑜𝑚𝑏𝑖𝑛𝑒] represents the expected 

downtime of creating a case and suggest to combine it with an already scheduled case (𝑎 = 1, 𝑦 = 1). 

𝐸[𝐷𝑆𝑁𝐴𝑅] represents the expected downtime of SNAR (𝑎 = 0).  We can calculate the expected downtime 

of each action in the same way as the expected costs. The expected downtime expression for each action 

are given below: 

𝐸[𝐷𝑐𝑎𝑠𝑒] = 𝑃 ∙ ((𝑇𝑟𝑣 + 𝑡𝑟) ∙ (Pr(𝑋 < 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚) + Pr(𝑋 < 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚))) + 𝑡𝑟

∙ (Pr(𝑋 > 𝑇𝑜𝑠, 𝑇𝑜𝑠 < 𝑡𝑠𝑚 ) + Pr(𝑋 > 𝑡𝑠𝑚, 𝑇𝑜𝑠 > 𝑡𝑠𝑚)) 

𝐸[𝐷𝑐𝑜𝑚𝑏𝑖𝑛𝑒] = 𝑃 ∙ (𝑐𝑐𝑚 ∙ Pr(𝑋 < 𝑡𝑠𝑚)) + 𝑡𝑟 ∙ Pr(𝑋 > 𝑡𝑠𝑚) 
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𝐸[𝐷𝑆𝑁𝐴𝑅] = 𝑃 ∙ (𝑇𝑟𝑣 + 𝑡𝑟 + 𝑡𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐𝑠) 

3) makes sure that an alert is SNARed if, the customer’s region is not monitored (𝑟 = 0), the customer has 

no contract (𝑣 = 0), the FSE is already on-site (𝑚 = 0), or there is already a maintenance case opened for 

the system (𝑜 = 0). Alerts with such characteristics should be SNARed automatically.  

4) enforces that a case can only be combined with an existing case when the RME decides to create a for 

the alert. 5) ensures that 𝑎 and 𝑦 can only take binary values.  

6.4.1 Model output 
We implemented Model 1 in R. The code can be found in Appendix XI. Since we have two objective 

functions, there is not always a single solution for the optimization problem. Lower costs can result in 

higher downtimes. The RME can take three different decisions. He can SNAR the alert (𝑎 = 0), create a 

case (𝑎 = 1, 𝑦 = 0), or create a case and combine it with an already scheduled case (𝑎 = 1, 𝑦 = 0). The 

R code aims to evaluate all three options in terms of expected costs and expected downtimes. The output 

of Model 1 consists of a summary of each option with the expected costs and downtime of each option. 

This gives the RME support in their decision making because they can account for the possible 

consequences of their decisions. The expected costs versus expected downtime are also visualized in a 

plot. An example of the model output is given in Figure 18. We used the default values for input 

parameters as given in Appendix VIII. 

 

Figure 18: Example of model output 

6.5 TOWARDS A NEWSVENDOR SOLUTION 
The expected costs function can also be written in a newsvendor form. An upcoming failure can be seen 

as the demand in a classical newsvendor problem. When there is a failure upcoming, there is demand for 

maintenance actions. Let us first assume that proactive maintenance activities are always conducted 

before the failure. In addition, we assume that there are no scheduled maintenance activities in the future 

yet. Then, we can rewrite the expected costs function to the following newsvendor form: 
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𝐸[𝐶] = 𝑐𝑃𝑑𝑀 ∙ 𝑎 + 𝑐𝑐𝑚 ∙ 𝐸[max(𝐾 − 𝑎, 0)] + (𝑐𝐹𝑃 − 𝑐𝑃𝑑𝑀) ∙ 𝐸[max(𝑎 − 𝐾, 0)] 6)  
 

𝑐𝑃𝑑𝑀  are the costs incurred if maintenance is done proactively based on a true alert. 𝐾 = 1 represents 

that the predictive model that an alert generated by a predictive model is true. If 𝐾 = 0 the alert was 

false. An alert can be either true or false. As mentioned before, the probability that an alert is true (𝐾 =

1) is 𝑃.  We can say then that 𝐾~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃). 𝐸[max(𝐾 − 𝑎, 0)] is the expected value of doing too less 

maintenance. 𝐸[max(𝑎 − 𝐾, 0)] is the expected value of acting on a FP alert. By using the optimality 

condition from the classical newsvendor solution, the criticality condition in our problem is: 

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝑐𝑃𝑑𝑀

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝑐𝑃𝑑𝑀 + 𝑐𝐹𝑃
 

The optimality condition for the newsvendor problem becomes: 

𝑎∗ = 𝐹𝐾
−1 (

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝑐𝑃𝑑𝑀

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝑐𝑃𝑑𝑀 + 𝑐𝐹𝑃
) 

This implies that: 

𝐹(𝑎∗) = Pr (𝐾 ≤ 𝑎) =
𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝑐𝑃𝑑𝑀

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝑐𝑃𝑑𝑀 + 𝑐𝐹𝑃
= 𝑐 

The CDF of 𝐾 is given by: 

𝐹(𝑥) = Pr(𝐾 ≤ 𝑥) = {
0

1 − 𝑃
1

𝑥 < 0
         0 ≤ 𝑥 < 1

𝑥 ≥ 1
 

As shown before, the optimal action 𝑎∗ can be found by using the inverse of the cumulative distribution 

function of 𝐾. The inverse of this function is for a Bernoulli distributed random variable, given by: 

𝑎∗ = 𝐹𝐾
−1(𝑐) = {

0, 0 ≤ 𝑐 < 1 − 𝑃
1, 1 − 𝑃 ≤ 𝑐 < 1

 

The condition 0 ≤ 𝑐 < 1 − 𝑃 can be rewritten to 𝑃 < 1 − 𝑐 since 𝑃 always takes values between 0 and 

1. The optimal decision for the alert is to SNAR (𝑎∗ = 0) an alert if 𝑃 < 1 − 𝑐.  

The condition 1 − 𝑃 ≤ 𝑐 < 0 can be rewritten to 𝑃 ≥ 1 − 𝑐. In this condition, the optimal action is to 

create a case (𝑎∗ = 1). This means that 1 − c serves as a probability threshold for creating a case. The 

optimal decision for an alert with 𝑃 < 1 − 𝑐 is SNAR and for an alert with 𝑃 ≥ 1 − 𝑐 it is optimal to create 

a case.  

6.5.1 Generalized Newsvendor solution 
We built the previous newsvendor solution upon the assumption that proactive maintenance activities 

are always scheduled before the failure. If the failure is not critical, this assumption holds. Such failure 

leads to decreased functionality, but the customer can still use the equipment. No immediate 

maintenance actions are required. However, when the failure is critical, we cannot use the previous 

newsvendor solution because it does not account for extra costs if the failure arrives before the 

maintenance activities.  
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In order to account for such situations, we need to replace the parameter 𝑐𝑃𝑑𝑀  with 

𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1]. This represents the expected costs when a case is made based on a true alert. 

In addition, the case is not combined with an already scheduled maintenance case. Its value can be found 

by setting 𝑎 = 1, 𝑦 = 0, and 𝑃 = 1 in Model 1 from Section 6.4. We set 𝑃 = 1 to make sure that we only 

have the expected costs if the alert was true. If the alert is not true, 𝑐𝐹𝑃 is incurred. Assuming that 𝑐𝑐𝑑𝑡 =

0, we can say that: 

𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1] = 𝑐𝑃𝑑𝑀 ∙ Pr (𝑋 > 𝑇𝑜𝑠) + 𝑐𝑐𝑚 ∙ Pr(𝑋 < 𝑇𝑜𝑠) 

We can now generalize expression 6) such that Model 1 is rewritten to a newsvendor expression. We can 

rewrite Model 1 under the assumption that 𝑐𝑐𝑑𝑡 = 0 as:  

𝐸[𝐶] = 𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1] ∙ 𝑎 + (𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠) ∙ 𝐸[max(𝐾 − 𝑎, 0)]

+ (𝑐𝐹𝑃 − 𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1]) ∙ 𝐸[max(𝑎 − 𝐾, 0)] 

7)  

 

The criticality condition of the newsvendor problem becomes then: 

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1]

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 + 𝑐𝐹𝑃 − 𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1]
 

We can define the optimal probability threshold 𝑝∗ as: 

𝑝∗ = 1 −
𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1]

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 + 𝑐𝐹𝑃 − 𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1]
 

We can also derive the optimal probability threshold 𝑝𝑐𝑜𝑚𝑏
∗  for the decision to combine maintenance 

activities or SNAR the alert. We only need to change 𝐸[𝐶|𝑎 = 1, 𝑦 = 0, 𝑃 = 1]  into 

𝐸[𝐶|𝑎 = 1, 𝑦 = 1, 𝑃 = 1] such that: 

𝑝𝑐𝑜𝑚𝑏
∗ = 1 −

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 − 𝐸[𝐶|𝑎 = 1, 𝑦 = 1, 𝑃 = 1]

𝑐𝑐𝑚 + 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑐𝑠 + 𝑐𝐹𝑃 − 𝐸[𝐶|𝑎 = 1, 𝑦 = 1, 𝑃 = 1]
 

The newsvendor solution is tested simultaneously with the sensitivity analysis of Model 1 on 𝑃. 

6.6 SENSITIVITY OF INPUT PARAMETERS 
The mathematical model from the previous section in implemented in R. The R program evaluates the 

expected costs and expected downtime for each of the three possible actions. This helps RMEs to see the 

impact of their decisions on the expected costs and downtime related to an alert. This section evaluates 

how sensitive Model 1 is to different values of input parameters. 

6.6.1 Influence of 𝑷 
Varying the input parameter 𝑃 can give some valuable insights in how credible an alert should be to 

initiate maintenance actions. The values for the various input parameters can be found in Appendix VIII. 

We vary 𝑃 from 0 to 1 with a step size of 0.01. The influence of 𝑃 on the expected costs can be found in 

Figure 19. We also plotted the newsvendor solutions 𝑝∗  (the green dotted line) and 𝑝𝑐𝑜𝑚𝑏
∗  (the blue 

dotted line). 
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Figure 19: Influence of P on expected costs 

In Figure 19, we observe that the expected costs are increasing in 𝑃 for every decision. Until a certain 

value of 𝑃, SNAR is the best decision for an alert. For higher values of 𝑃, creating a case is the best decision 

in terms of costs. Figure 19 shows that this turning point of 𝑃 coincides exactly with the newsvendor 

solution 𝑝∗. The newsvendor solution 𝑝𝑐𝑜𝑚𝑏
∗  coincides exactly with the intersection of expected costs of 

combining the case and SNAR. Therefore, we can conclude from this figure that the newsvendor solutions 

provide an optimal probability threshold for creating a case versus SNAR. For the given input parameters, 

it is not beneficial in terms of costs to combine the case with an existing case. 

Figure 20 shows the influence of 𝑃 on the expected downtime under the different decisions. 

 

Figure 20: Influence of P on expected downtime 

We can observe that the expected downtime is increasing in 𝑃 for all actions.  Now there are two turning 

points of the optimal solution. For the lowest values of 𝑃, SNAR is the most beneficial for the expected 
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downtime. Then there is an interval for 𝑃 where combining the case is the most valuable option. For 

higher values of 𝑃 it is not beneficial anymore to combine the case. 

6.6.2 Influence of 𝒕𝒔𝒎 
If RMEs think an alert is credible enough to make a case, they have to decide if the LSO should combine it 

with an already scheduled maintenance activity. When the RME receives an alert, he can see when the 

next activity is scheduled on the equipment. 𝑡𝑠𝑚  represents the time to this activity. For RMEs, it is 

valuable to know the maximum value of 𝑡𝑠𝑚 to combine the case with that activity. Figure 21 shows the 

influence of 𝑡𝑠𝑚 on the expected costs of each action. There is an intersection between the green and 

blue line. For values of 𝑡𝑠𝑚 lower than this intersection, it is beneficial in terms of costs to combine the 

case with the next scheduled case.  

 

Figure 21: Influence of 𝑡𝑠𝑚 on expected costs with 𝑃 = 0.8 

Figure 22 shows the influence of 𝑡𝑠𝑚  on the expected downtime. We can observe that, if we use the 

default values of parameters, it is not beneficial to combine the maintenance case with the next scheduled 

maintenance activity.  

 

Figure 22: Influence of 𝑡𝑠𝑚 on expected downtime with 𝑃 = 0.8 
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7 CASE STUDY: FLAT DETECTOR 
“Science is curiosity, testing and experimenting.” – Venkatraman Ramakrishnan 

In the previous sections, analysis is conducted on aggregated values of parameters. However, every 

component in the equipment has its own characteristics with component specific failure modes and 

associated costs. Therefore, it is valuable to conduct the analysis for components separately by a case 

study. The case selected in this research is the Flat Detector.  We only use data related to this component 

in this section. The Flat Detector is a critical component in iXR equipment. The predictive model 

‘IXR_PRED_FDXD’ monitors this component and it generates the following alert: “Possible failure of the 

FDXD within the next 20 days”. The analysis of spare part decisions is not done for this case study. The 

useful data for that analysis was too limited to create valuable insights in such decisions. 

7.1 PARAMETER SETTING 
This section aims to find the values for the input parameters in the decisions support model described in 

Chapter 6. This helps us to create output for the specific case of the flat detector. First, we analyzed the 

false negative costs of the predictive model related to the flat detector. After that, we analyzed the 

random variables as described in Chapter 5 specifically for the flat detector. The SQL queries can be found 

in Appendix IV. 

7.1.1 FN costs 
We use the same method as used in Section 5.1.3.2 to identify FN cases related to the predictive model 

‘IXR_PRED_FDXD’. We were able to identify 107 cases that we can classify as FN. However, the same errors 

as in Section 5.1.3.2 may be present in this data. In order to access the TP costs of the model, we found 

15 cases resulting from an alert generated by the predicted model for the flat detector. Figure 23 show 

the comparison of the TP costs and the FN costs. The average costs per case for each costs factor is shown 

along with the total average costs per cases.  It also contains the 95% CI of the average numbers. 



 

48 
 

 

Figure 23: Average hours spend by flat detector cases on each cost factor 

Figure 23 reveals that the average costs of missing an alert are higher than acting on an alert. This applies 

for all individual cost factors. However, the difference are not statistically significant for 

TotalRemoteHours and TotalOtherHours. The small difference in TotalRemoteHours can be explained by 

the fact that after a customer call, a FSE will go to the customer to diagnose the problem rather than the 

try to solve the problem remotely first. We can explain the differences in TotalCMHours by the prevention 

of diagnostic actions after an alert. Alerts contain already information about the failure model of the 

component. In other words, the problem to prevent is already diagnosed. This can also explain that the 

TotalTravelHours is lower after an alert. Multiple visits might be necessary for diagnostic and actual repair 

purposes.  

7.1.2 Remaining useful life 
This subsection aims to find a distribution for the RUL after an alert arrival for the flat detector. This is 

necessary because each predictive model has its own characteristics related to the prediction interval. We 

apply the method as described in Section 5.3.1 but use only data on the flat detector. First, the parameters 

for different distributions are estimated and second, the theoretical distribution is compared with the 

empirical distribution. Figure 24 show the comparison of the empirical distribution with various 

theoretical distributions.  

 

Figure 24: Distribution fitting for the RUL for FD alerts 

Average Hours per FD Case

Cases preceded by Alert

Cases without Alert
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The results of the KS tests for the different distributions are shown in Table 11. 

Table 11: KS test results for distribution fitting for the RUL of FDXD alerts 

Theoretical Distribution p-value KS test 

Normal  0.5539 
Gamma 0.1558 
Exponential 0.158 
Lognormal 0.1108 

 

The KS-tests provide significant results for all tested theoretical distributions so we cannot reject any of 

these distributions. The Normal distribution provide the highest value for the KS test and it looks visually 

to have a decent fit. This is in line with the findings in Section 5.3.1 where the normal distribution also 

provides the best fit for the RUL. Therefore, we do not need to adapt the probability distribution for X in 

the decision support model to use it for the flat detector. The values of the estimated parameters can be 

found in Appendix VII. 

7.1.3 Time to on-site Maintenance 
We now need to estimate the time between the arrival of an alert, to the time the actual maintenance 

starts. Because this time is random from an RM point of view, we try fit theoretical distributions on these 

times. We use the same method as described in Section 5.3.2 to fit these distributions on the empirical 

distribution. We found 16 alerts that resulted into a case with a known start time of the on-site 

maintenance.  Figure 25 shows the plot of the empirical distribution with the theoretical distributions with 

estimated parameters.  

 

Figure 25: Distribution fitting for the Time to OS maintenance for FDXD alerts 

The results of the KS tests for the different distributions can be found in Table 12 on the next page.  

In the decision support model described in Chapter 6, we used the Gamma distribution to model the time 

between an alert arrival and the start of the actual maintenance. Figure 25 and Table 12 indicate that this 
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distribution also provides the best fit in this case study. Therefore, we do not need to adapt the model for 

the flat detector. The values of the estimated parameters can be found in Appendix VII. 

Table 12: KS test results for distribution fitting for the Time to OS maintenance for FDXD cases 

Theoretical Distribution p-value KS test 

Normal  0.7423 
Gamma 0.9643 
Exponential 0.5859 
Lognormal 0.8168 

 

7.2 MODEL OUTPUT 
Now we modeled the random variables for the specific case of the Flat Detector, we can use it in the 

model. In this way, we can create predictive model specific output. Using the default values as given in 

Appendix IX, we retrieve the plot in Figure 26.  

With the Flat Detector specific default values, creating a case is the optimal decision to make by the RMEs. 

It outperforms the other actions in both expected costs and expected downtime. 

 

Figure 26: Model output default values for Flat Detector with 𝑃 = 0.8 

The previous plot is made for a credible alert with 𝑃 = 0.8. If we use the same input values but set 𝑃 to 

0.15, we receive the plot in Figure 27. It can be seen that there is no optimal decision to make. No action 

outperforms all others in terms of both expected downtime and expected costs. Create a case is the best 

option in terms of costs while combining the case is the best option in terms of downtime. 
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Figure 27: Model output default values for Flat Detector with P=0.15 

If we vary 𝑃 from 0 to 1 with steps of 0.01, we receive the plots in Figure 28 and Figure 29. We can see 

that the newsvendor solutions provide a probability threshold for creating a case. This is in line with the 

results in Chapter 6. 

 

Figure 28: Influence of P on expected costs in Flat Detector case 

 

 

Figure 29: Influence of P on expected downtime in Flat Detector case 
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7.3 INFLUENCE OF THE SERVICE CONTRACT 
Chapter 3 discusses the different service contracts that customers can sign for their equipment. This 

section evaluates the influence of the service contracts on the optimal decisions according to the model.  

We create three fictitious customers, which we refer to as Customer A, Customer B and Customer C. 

Customer A has a RightFit Uptime contract with the most extensive entitlements. Customer B has a 

RightFit Select contract with no coverage options. Customer C has the most basic service contract, RightFit 

Assists. The customer-specific parameters are shown in Table 13. Data from Appendix I is used to set these 

input parameters. The input values for the decision support model can be found in Appendix X. 

Table 13: Customer specific parameters 

Parameter Notation 

Customer contract  𝑣 ∈ {0, 1, … , 6} 
Outside working hours coverage 𝑜𝑤ℎ 
Downtime compensation 𝑐𝑐𝑑𝑡  ∈ {0, 1} 
SLA Response time for contract 𝐕 𝑇𝑟𝑣 

 

We vary 𝑃 to find out if different probability thresholds exist for different types for customer. Note that 

we cannot use the newsvendor threshold for customer A. The newsvendor solution does not take into 

account the downtime compensation. Figure 30 shows the influence of 𝑃 on the expected costs and 

downtime for the different customers. 
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Figure 30: Influence of P on expected costs and downtime for different customers 

We observe that the expected costs incurred for Customer A are the highest. This is due to the 

compensation of downtime he receives. The expected downtime of all actions is the lowest for Customer 

A. The reason behind this is that shorter on-site response times are offered to customers with higher 

contracts. After a customer call, the FSE is faster on-site to conduct maintenance on the failed equipment. 

In addition, the customer is entitled for maintenance outside operating hours. For Customer B and C, the 

expected costs of each action are equal. 𝑐𝑐𝑑𝑡 is the only customer-specific parameters that influences the 

expected costs.
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8 VALUE OF INFORMATION 
“Information is not knowledge.” – Albert Einstein 

This chapter describes how the value of prognostic information generated by predictive models can be 

accessed. Valuating such information creates managerial insights in how much Philips can invest in the 

development or improvement of predictive models. In addition, the value of information provides show 

customers the benefits of RM. From the other hand, the value gives Philips information in how they can 

price the extra service to the customer. We can access the value prognostic information by comparing 

costs incurred by using this information with the costs incurred when this information is not used.  

The value of information in terms of costs is noted by 𝑉𝐶. Then 𝑉𝐶 is the difference between the costs 

incurred if prognostic information is available and if it is not available. If the RME decides to SNAR an alert, 

no information is send to the LSO. There is no difference between a SNARed alert and no alert at all 

because the LSO has no information in both situations. Therefore, we can say that the costs of having no 

information available, is equal to the expected costs of rejecting of an alert.  If the expected costs of 

creating a case (either combined or separate), are higher than the expected costs of SNAR, the value of 

information is zero. We can define 𝑉𝐶 as: 

𝑉𝐶 = max(𝐸[𝐶|𝑎 = 0] − min[𝐸[𝐶|𝑎 = 1, 𝑦 = 0], 𝐸[𝐶|𝑎 = 1, 𝑦 = 1]] , 0) 

We use Model 1 from Chapter 6 and fix the values for 𝑎  and 𝑦  to calculate 𝐸[𝐶|𝑎 = 0] , 

𝐸[𝐶|𝑎 = 1, 𝑦 = 0], and 𝐸[𝐶|𝑎 = 1, 𝑦 = 1]. 𝑉𝐶  can be calculated under different values of 𝑃 allowing us 

access the value of information under different levels of imperfectness. Note that 𝑉𝐶 is the value of an 

individual alert generated by the predictive model. 

We can also access the value of information in terms of downtime noted by 𝑉𝐷. 𝑉𝐷 is the difference in 

downtime if prognostic information is available and if it is not. We can define 𝑉𝐷 as: 

𝑉𝐷 = max(𝐸[𝐷|𝑎 = 0] − min[𝐸[𝐷|𝑎 = 1, 𝑦 = 0], 𝐸[𝐷|𝑎 = 1, 𝑦 = 1]] , 0) 
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The value of downtime says how much downtime can be prevented by having prognostic information 

available. We can use Model 1 again to find the required values for this equation. 

8.1 VALUE OF INFORMATION FOR DIFFERENT CUSTOMERS 
In this section, we access the value of information for Customer A, B and C. We use the values for input 

parameters as given in Appendix IX and X. These values are valid for the flat detector. Figure 31 shows the 

value of information in terms of costs and Figure 32 shows the value of information in terms of downtime 

for the different customers. 

 

Figure 31: Value of information in terms of costs 

 

Figure 32: Value of information in terms of downtime 

We can observe from both figures that predictions that provide more certainty on a future failure is more 

valuable both in terms of costs and in downtime. The value of information in terms of costs is higher for 

customer A than customers with lower service contracts. In terms of downtime, more accurate 

information is more valuable for customer with lower service contracts. For such customer, more 

downtime can be prevented by using prognostic information despite its imperfectness.  
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9 CONCLUSIONS AND 

RECOMMENDATIONS 
“The more I learn, the more I realize I don’t know.” –Albert Einstein 

During the research, we followed the regulative cycle as given by van Aken et al. (2007). We defined our 

research problem in Chapter 2. We analyzed and diagnosed the problem in Chapter 3 to Chapter 5. In 

Chapter 6, we developed a design for the research problem which we implemented by conducting a case 

study in Chapter 7. This chapter concludes the regulative cycle by answering the research questions and 

by providing recommendations for Philips.  

9.1 RESEARCH QUESTIONS  
In Chapter 2, we defined the research questions that guided us in this research. We motivated this 

research by the observation that proactive maintenance decision-making was done subjectively by RM. 

They receive no decision-support in judging the alert and how they should make customer-specific 

decisions on alerts generated by predictive models. To solve this business problem, we formulated the 

following main research question:  

How can maintenance decision-making be optimized accounting for the imperfectness of information on 

machine conditions? 

We defined several sub questions that all covers an important component in answering the research 

question. We focused the research on business driven decisions that does not require technical 

knowledge. Such knowledge is hard to capture in a model.  

1. How should the RMEs account for the service level agreements? 

We analyzes the service contracts used in Philips in Chapter 3. This gave us some understanding of the 

service requirements for customers with different contracts. We identified several entitlements and 

coverage options that should be taken into account in the decision-making by RMEs. The most important 
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characteristics of service contract are the downtime compensation, the service window, and the uptime 

guarantee. The downtime compensation has influence on the expected costs of the decisions made by 

RMEs. The service window in the contract might provide customers services outside their operating hours, 

which leads to less expected downtime. The most valuable contracts include an uptime guarantee. If the 

customer has such contract, the decision-making should be aimed more towards downtime prevention.  

2. How can RMEs account for imperfectness in predictions? 

In Chapter 4, we aimed to answer this question. We first provided some information on the development 

of predictive models to create understanding on why models generate imperfect information. We found 

several factors that cause this imperfectness in the model. Important factors are the limitations of the 

service data that is used, different practices in different markets, and ambiguous error messages. 

Measurements for this imperfectness are the confusion matrix of the predictive model and the confidence 

level of the alerts. We were not able to develop a method to translate these measurements to a 

probability that a prediction is true. We only provide some information on how such method can be 

developed. In this thesis, we take the probability that a prediction is true as a given input. We eventually 

showed how optimal decisions could vary under different values of this probability. 

3. What are the relevant cost factors in the maintenance decision-making by RMEs? 

We identified the different cost factors relevant for maintenance decision-making in the first sections of 

Chapter 5. We compared these cost factors for proactive maintenance cases with reactive maintenance 

cases. Proactive maintenance cases are created by RM based on an alert. We referred to reactive 

maintenance cases as False Negative cases. We showed that in reactive maintenance, the costs associated 

with the case are on average more than twice as high. In addition, we analyzed the costs of cases that 

were initiated based on a false alert. We show that these costs are significantly lower. These costs are all 

relevant in the decision-making by RMEs. The analysis resulted in input values for parameters in the model 

of Chapter 6. 

In the remaining part of Chapter 5, we analyzed other relevant characteristics of the current proactive 

maintenance policy. We modeled the remaining useful life and the time to on-site maintenance after an 

alert as random variables. We estimated the parameters and fitted a distribution such that we were able 

to model these times. 

How can maintenance decision-making be optimized accounting for the imperfectness of information 

on machine conditions? 

In order to answer this main research questions, we used input from the previous sub question. We 

created a mathematical model that evaluates different decisions that RMEs can make. It evaluates each 

action in terms of expected costs and expected downtimes. The model is implemented in R to visualize 

the evaluation of each action.  

We found that there exist a probability threshold for alerts to create a case. For an alert with a higher 

probability that it is true, RM should create a case. We were able to rewrite the mathematical model to a 

Newsvendor problem. By using the standard newsvendor solution to this problem, we were able to find 

the optimal probability threshold for creating a case. We verified this optimal solution with a simulation. 

However, this Newsvendor solution only account for the different cost factors and does not take into 

account the expected downtimes. We can argue that for customers with a contract that does not include 
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an uptime guarantee, the only objective is to minimize the expected costs. For such customers, RMEs can 

use the Newsvendor solution to make the optimal decisions for alerts.  

9.2 FUTURE RESEARCH DIRECTIONS 
This section provides some directions for future research. First, we discuss some directions specifically 

Philips specifically. These are motivated by limitations of this research and we discuss how to overcome 

these limitations.  

9.2.1 Further research in Philips 
This thesis developed a decision support model for RMEs but it faces some limitations. This section states 

those limitations and define further research direction to overcome these limitations.  

Long-term optimization 

Our model only supports the decisions made by RMEs how they should act on an alert such that the 

expected costs and/or downtime for that alert are minimized. These alerts cover one aspect of the 

imperfectness of predictive models. Another aspect of the imperfectness of these models is that they can 

miss failures. The decision support model created in this research does not account for such failures 

because those are handled directly by the LSO instead of RM. However, we showed that the impact of 

missing a failure could be very high in terms of costs and downtime.  

In order to account for missing failures, the objective function of the mathematical model should include 

a time aspect. The current model is only focused on short-term optimization and excludes long-term 

effects of decisions. Both the arrivals of alerts and the arrivals of failure should be modelled such that the 

long run expected costs and/or downtime can be minimized. If the objective is to minimize the expected 

long-run costs, the objective function can look like: 

Min 𝐸[𝐶𝑅] =
𝐸[𝐶𝐶]

𝐸[𝐶𝐿]
 

𝐸[𝐶𝑅] represents the expected costs rate. 𝐸[𝐶𝐶] the expected cycle costs and 𝐸[𝐶𝐿] the expected cycle 

length. Renewal theory is required to define renewal events that end a renewal cycle. Renewal events are 

events that makes the system as-good-as-new. These events include proactive and reactive maintenance 

activities. By changing parameters related to the predictive model, the value of better predictive models 

can be accessed. In order to find a long-run probability threshold for 𝑃, more knowledge has to be gained 

on the distribution of alerts. The value of his threshold depends on how many alerts are generated for 

every value of 𝑃. It is possible to calculate long-term costs for each value of 𝑃, when this information is 

not available. Before we can find a distribution of alerts with different values of 𝑃, a method should be 

developed that determines the value of 𝑃 for an alert. 

Accessing the credibility of an alert 

In this research, we took the credibility of an alert as an input for the model and noted it by 𝑃. We 

discussed what is required to access the value of 𝑃 for an alert based on data. However, we were not able 

to develop a method that estimates the value of 𝑃 based data on the alert. It would be valuable for Philips 

if a method is developed that estimates this value of 𝑃  to provide direct and better support for the 

decisions for RM. We gave some suggestions in Section 4.2.3. Platt (1999) provides a method that 
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translates SVM output to probabilistic output. The probabilistic output in that paper represents the 

probability that the predicted class is true. This probabilistic output would be the value 𝑃 for an alert. If 

that method can be embedded in the predictive model, 𝑃 can immediately be estimated by the predictive 

model.  

Predicting spare part demand 

Another interesting research area for Philips is the prediction of a spare part demand. The predictive 

models currently employed in Philips contain a prediction of a failure. However, in many cases that results 

from an alert, a spare part is not required. Other cases can require different part replacements to prevent 

a problem at the customer. The predictive models do not provide predictions on if or which part is 

required to prevent a failure. This results in lower First Visit Fix percentages for cases that require a part 

replacement (see section 5.2.2). In addition, we observed that there were unnecessary spare part 

shipments in almost 15% of the maintenance cases that required a part replacement.  

More research needs to be conducted on how the demand for a certain spare part can be predicted for a 

predicted failure. The predictive model should be equipped with deeper diagnostic features to predict 

such demand. Whenever this demand can be predicted more accurately, the predictions can be used in 

the planning of spare part shipments. If Philips is able to predict a spare part replacement, it can be 

allocated closer to the customer before the maintenance is scheduled. This can possibly be done with 

cheaper and slower transport such that costs can be saved. This can also contribute to academic research 

because this area is explored very limited.  

  



 

60 
 

BIBLIOGRAPHY 
Bloch, H. P., & Geitner, F. K. (1983). Machinery failure analysis and troubleshooting. Houston, TX: Gulf. 

Bousdekis, A., Magoutas, B., Apostolou, D., & Mentzas, G. (2015). A proactive decision making framework 

for condition-based maintenance. Industrial Management & Data Systems, 115(7), 1225-1250. 

Candea, G., Kawamoto, S., Fujiki, Y., Firedman, G., & Fox, A. (2004). Microreboot - a technique for cheap 

recovery. Proceedings of the 6th Symposium on Operating Systems Design and Implementation, 

(pp. 31-44). 

Djurdjanovic, D., Lee, J., & Ni, J. (2003). Watchdog Agent - an infotronics-based prognostics approach for 

product performance degradation assessment and prediction. Advanced Engineering Informatics, 

17(3), 109-125. 

Frazzon, E. M., Israel, E., Albrecht, A., Pereira, C. E., & Hellingrath, B. (2014). Spare parts supply chains' 

operational planning using technical condition information from intelligent maintenance systems. 

Annual Reviews in Control, 38(1), 147-154. 

Gupta, A., & Lawsirirat, C. (2006). Strategically optimum maintenance of monitoring-enabled multi-

component systems using continuous-time jump deterioration models. Journal of Quality in 

Maintenance Engineering, 12(3), 306-329. 

Heng, A., Zhang, S., Tan, A. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, 

challenges and opportunities. Mechanical Systems and Signal Processing, 23(3), 724–739. 

Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics 

implementing condition-based maintenance. Mechanical Systems and Signal Processing, 1483-

1510. 

Lewandowski, M., & Oelker, S. (2014). Towards autonomous control in maintenance and spare part 

logistics - challenges and opportunities for preacting maintenance concepts. Procedia Technology, 

15, 333-340. 

Platt, J. C. (1999). Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized 

Likelihood Methods. Advances in large margin classifiers, 10(3), 61-74. 

Salfner, F., & Malek, M. (2007). Using hidden semi-markov models for effective online failure prediction. 

Proceedings of the IEEE 26th International Symposium on Reliable Distributed Systems.  

Salfner, F., Lenk, M., & Malek, M. (2010). A Survey of Online Failure Prediction Methods. ACM Computing 

Surveys, 42, 1-42. 

Sharma, A., Yadava, G. S., & Deshmukh, G. S. (2011). A literature review and future perspectives on 

maintenance optimization. Journal of Quality in Maintenance Engineering, 17(1), 5-25. 

Siborska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modelling options for remaining useful life 

estimation. Mechanical Systems and Signal Processing, 1803–1836. 



 

61 
 

Sipos, R., Fradkin, D., Moerchen, F., & Wang, Z. (2014). Log-based Predictive Maintenance. Proceedings of 

the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 

1867-1876). ACM. 

van Aken, J., Berends, H., & van der Bij, H. (2007). Problem Solving in Organizations: A Methodological 

Handbook for Business Students. Cambridge: Cambridge University Press. 

van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). Londen: Butterworth. 

 

  



 

62 
 

APPENDICES 
 

APPENDIX I: RIGHTFIT PORTFOLIO DEFAULT AGREEMENTS 
- Due to confidentiality reasons, this Appendix is not disclosed. 
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APPENDIX II: INTERVIEW SUMMARIES 

Interview 1: LSO 
Within Philips, the Remote Monitoring program is enrolled for 1 to 2 years now. Initially, Remote Service 

engineers received alerts from the predictive models directly. However, it turned out that many of them 

where not valid. “There was a lot of rubbish”. There was a need for a filter between the predictive models 

and Remote/Field service engineers such that only valid alerts reach the engineers. That is why Remote 

Monitoring was introduced. They serve as the filter between the predictive models and the service 

engineers and they aim to reject invalid alerts. The RSEs and FSEs are in the Local Service Organizations 

(LSO). The LSO serve one or a few countries while RM serves globally.  

A customer call can be received by a Customer Service (CS) employee or an RSE. If the customer that calls 

is not very technical, it is more difficult for the RSE to access the problem. The first suggestion made by 

the RSE to the customer is to reset the device. If that is not successful, he tries to diagnose the problem 

remotely. This is done by looking into the log files send by the system. He tries to access which component 

causes the problems. Ton estimates the success rate of the remote diagnosis with 70%. If the remote 

diagnosis is not successful, the RSE consults the T2 helpdesk. Engineers in the T2 helpdesk have more 

technical knowledge and thus a deeper understanding about the system. If this they are not able to 

diagnose the problem, the FSE has to go to the customer and conduct on-site diagnosis. 

The planner or the RSE makes a case in OneEMS when the customer calls. In the Netherlands, remote 

service/diagnostic activities are labeled as TECU in the database system.  

Some customers have in-house technicians that can execute some maintenance activities. If such 

technicians can conduct the required maintenance, the required parts are send to the customer. No RSE 

or FSE is dispatched to the customer in this case. Ton estimates that 10% of the problems can be solved 

by in-house technicians. 

RSEs can also receive cases that are made by Remote Monitoring (RM). RM acts on alerts received from 

predictive models. They make a case when they consider the alert to be valid. This case is then send to 

the relevant LSO such that the RSE receives the case. A recommendation is written by the RME in the case 

that indicates how RSE should solve the problem. According to Ton, the RSEs in the Netherlands follow 

the recommendation always up.  

Sometimes spare parts are required to solve the problem. If the problem is not completely clear, the RSE 

can decide to send multiple spare parts to ensure that the problem can be solved. Otherwise, it is possible 

that the wrong part is sent and the right part should be send with another shipment. The consequences 

of this scenario are more delays and more costs. That’s why RSE sometimes send more spare parts to the 

customer. If a part is not used, it should be returned to the warehouse. This is also a relevant costs factor. 

However, this decision is now done without using the information about possible costs. The decision is 

only based on the feeling and experience of the RSE. No costs are taken into account in the decisions.  

Another factor that is not taken into account is the service level of the customer. RSEs have limited 

knowledge of the service contract of customers. In addition, the information on the service contracts is 

quite difficult to access. The RSE considers it desirable to have some support in the cost/service trade-off.  
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Interview 2: Predictive Model Development 
There are different reasons that there is imperfectness in the predictions of the predictive models. These 

are due to uncertainties of different aspects related to the creation of the models by data scientists. 

Dimitrios mentioned the following uncertainties that affect the reliability of the models: 

 The quality of the data 

 Error messages are ambiguous  

 Human decisions 

 Sample size 

 Different customers act differently. Some chose to ‘live’ with the problem. Dimitrios made the 

suggestion to investigate differences in behavior in the different markets by splitting the data 

based on market.  

Model making 

Predictive models try to classify data points into one of the two different classifications. The first 

classification is close to failure. The other classification is working good. The data scientists collect data of 

right before a failure and put this data in the bad data pool. Data of a period that is not close to a failure 

is collected and put into the good data pool. One problem with this method is that the failures that are 

used here, are only the failures where the component is replaced. For some failures, it is possible to do 

some calibration of the component that will fix the problem. These failures are not taken into account in 

making the model. It is even possible that this calibration is done in a period of which the data is put in 

the good pool. This can make the model less reliable.  

In the development of predictive models, the goal is the maximize its precision while keeping the false 

positive rate under a certain limit. The limit depends on the model and system but often a limit of 1% is 

used. The confusion matrix is created by cross validation on historic data. They split the test data in a prior 

failure bin and a good bin. The assumption is made that error messages do not depend on the component 

or system. 

The data set they use to construct the confusion matrix contains rows that represent one day of one 

machine. Most of the columns represent error messages but some are combinations of such messages. 

Each data field represents the number of times that an error message is received on that day on that 

machine. As mentioned, the data set is split into prior failure and good state. Data on the prior failure case 

contains information on how many days before the call open date is measured.  

Based on this call open date, the data scientists can estimate how much time before a failure, a failure 

can be predicted. 
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The confidence of an alert is derived by calculating how far the prediction is from the hyperplane that 

classifies data points in one of the two categories. Support vector machines are used to construct this 

hyperplane. A prediction close to the hyperplane has a lower confidence than a prediction far from the 

hyperplane. The confidence of an alert is a number between 0 and 1. However, it is not fully understood 

what is says about the likelihood of a failure. 

Interview 3: Remote Monitoring 
When an alert arrives at RM, the RME checks for reasons to SNAR the alert immediately. These reasons 

include: 

 The customer already called 

 The engineer is already on-site 

 The alert is a one-time occurrence 

If the engineer is already on-site, the alert should be SNARed automatically by an AutoSNAR workflow 

program. However, this filter does not work 100% yet so the RME has to check it manually. Prediction 

models can be triggered by actions that are executed by FSEs. Now, only if the model is triggered during 

the visit of the FSE at the customer, the alert is AutoSNARed. However, it is better to AutoSNAR all alerts 

generated on a day that the FSE is on-site. Currently, those alerts are always SNARed. 

The decision to make a case is now based on the experience of the RME. However, there is a need for a 

more structured way of making decisions. The decisions should take various parameters into account. 

According to Jan, these should include at least the customer contract and the culture. The culture is 

important because customers in different countries have different expectations of the service. For 

example, in Germany and Japan the customers want their equipment running with full performance while 

in countries like France or Spain, the customer can live with a decreased performance. A contract and 

country specific threshold for alerts is desired.  

Some models generate to many alerts resulting in many false positives. An example is the hard disk model. 

Jan indicated that this model is too sensitive to minor changes in performance. Such alerts are considered 

as False Positives by the RMEs. Also collateral alerts can be considered as FP because they are often the 

result of a miss function of another component in the system. FP alerts can be identified by looking into 

the log files. The RMEs can identify if a problem exists and what the problem is. A thorough understanding 

of the log files is very important to make the right maintenance decisions. 

Jan showed an example what can happen if a FSE without understanding of a log file makes these 

decisions. In that example, the FSE replaced the wrong parts in six subsequent visits. Jan showed that this 

could be prevented if someone with understanding of log files made the decisions. The RMEs have this 

understanding.  

In Radar 2.0 (ISDA) RME wants the alerts together with the CAT patterns and the single lines in one single 

view.  

Reasons that an alert are AutoSNARed are:  

 Case still open 

o This happens when the RME chooses for the option ‘SNAR until date’ or ‘SNAR until case 

status closed’ 
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 Outdated alert 

 Country not monitored 

 FSE is on-site 

When the RME chooses for the option ‘SNAR until date’ or ‘SNAR until case status closed’, alerts are also 

AutoSNARed. 

At RM, they are now working on the connection between big data models and recommendations. Now it 

is still done manually but this will be automated in the future.  

Differences in hours made on case 

From data, it can be identified that for some cases, only remote work is done to close a case. On the 

question how this is possible, Jan answered that this can be due to several reasons. For example, it is 

possible that the problem is not actually fixed. The engineer can just think that on-site maintenance is not 

necessary. Another reason could be that the on-site maintenance actions are done in another case. This 

could be the case when the actions are executed during a planned maintenance case. It can also be that 

the hospital has in-house biomed engineers that can execute the on-site maintenance actions. 

Valid Alerts 

When a case based on an alert is executed by the FSE, the cases is rated by the RSE. He checks if the case 

and thus the alert was valid. This rating can be found in the data.  

Jan estimates that 60-80% of the customer calls cannot be predicted with the log files. These are often 

problems like that the customer lost something or mechanical problems like a crack.  

Finding FNs 

It is very difficult to find what happens in case of a missed failure or a SNARed alert that was TP alert. In 

such cases, the customer calls directly to the LSO which creates a case often in the market’s language. RM 

is not notified if the customer calls with a problem that should have been predicted with a predictive 

model. 

A solution could be to do a post mortem analysis. This means to not act on alerts and wait until the 

component fails. In this way, the time between an alert and the actual failure can be analyzed as well as 

the cost of ignoring/missing an alert. 

Spare parts 

The decision to order a part for a case is made by the FSE. He can take the part along during his first visit 

to the customer or he can order it when he is at the customer. Taking the spare part in the first visit is 

beneficial when the part is needed. However, there is some uncertainty in if the part is actually required 

to fix the problem. So the consequence of this action can be that the part is not used and returned to the 

warehouse. Unnecessary shipments costs are incurred in this case. Also, the FSE might just replace the 

part even if it is not necessary. In this case unnecessary shipment and part costs are incurred.  

When the part is not taken along during the first visit, the engineer can find out that he actually need a 

part to fix the problem. He has to order the part during his first visit and has to return to the customer 

another date to replace the component. During this time, the customer can experience limited 
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functionality or even a breakdown of the system. So there is a trade-off between the costs of bringing 

parts and the implied service to the customer. RM thinks that the spare part decision should be contract 

and market specific. 

 

Interview 4: Data Science 
Last time you mentioned that only part replacements were used as service data. 

 Why is this the case? 

In the model development, there has been experimented using richer service data. However, this made the 

model development way more complicated because the data was ambiguous. Sometimes prior a 

maintenance actions, some characteristics could be found in the log files indicating that something is 

wrong. But often nothing could have been found in the logfiles which make the feature (error message) 

selection in the model difficult. Using richer service data made the models more ‘trigger happy’ resulting 

in high FP rates. The model developers experienced that, at the moment, only using component 

replacements is working better.  

 Why are the recommended actions and the actual maintenance actions resulting from alerts 

not always part replacements then? 

More information on that can be asked to RM. Reasons are for example that FSEs were more likely to 

replace a component when the customer experienced problems in cases used in model development. It 

could have been that the current actions to fix the problem (as in the recommendations given by RM) were 

not executed before replacing a component. That’s one reason why the actions on alerts are not always 

component replacements. 

 

 How many data points (component replacements) are used in the model development? 

This differs among the models. But generally about hundreds to thousands of replacements. 

 

In our last meeting you mentioned that models are developed according to the following optimization 

problem: 

𝑀𝑎𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

s.t.  

𝐹𝑃 < 0.1 

But this problem does not take into account the amount of failures that are not predicted by the model, 

the so called FN rate. In my opinion, such missing failures are most costly and have the most impact for 

the customer.  

 Why are these not taken into account? 
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The FN rate is not taken into account because it is not understood very well. A big part of the FN cases in 

trainings data does not relate to initial goal to find the appropriate number of features used in the model.  

 How much is known about the costs and impact of missing a failure? 

Nothing is known about the costs and impact of missing a failure. This makes it difficult to use in the 

development of predictive models. If you want to account for missing failures as well in the predictive 

model development, the costs but also the type of error should be taken into account. 
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APPENDIX III: R CODE FOR FINDING ANSWER ON SAFETY QUESTION 3 
 

Data1 <- read.csv("10000iXRcatmasterlist records 2016.csv", header = TRUE) 

attach(Data1) 

Data <- data.frame(Data1$CaseID, Data1$CustomerComplaint) 

for(i in 1:length(Data[,1])) { 

  AlarmYN <-  sub(".*the issue was discovered? *(.*?) *4. Was this an out of box failure.*", "\\1", Data[i,2]) 

  AlarmYN <- gsub("?\n* ","",AlarmYN, fixed = TRUE) 

  AlarmYN <- gsub("\n*","",AlarmYN, fixed = TRUE) 

  AlarmYN <- gsub("\n","",AlarmYN, fixed = TRUE) 

  AlarmYN <- gsub("?","",AlarmYN, fixed = TRUE) 

  Data[i,3] <- AlarmYN 

  Data[i,4] <- 1  

} 

write.csv(Data, file = "AlarmYN all cases.csv", na="") 

APPENDIX IV: SQL QUERIES 
 

FN cases 

Select distinct  a.SiteID, a.ModelUID, a.Confidence, a.AlertAction, a.SnarReason, a.AlertTime, 

c.CallOpenDate, DATEDIFF(day, a.AlertTime, c.CallOpenDate) as DiffDate, c.Notification, c.CaseID, 

c.ConfigId, c.CallType, c.TotalCMHours, c.TotalPMHours, c.TotalTravelHours, c.TotalRemoteHours, 

c.TotalOtherHours, c.TotalCMCosts, c.TotalPMCosts, c.TotalTravelCosts, c.TotalRemoteCosts, 

c.TotalOtherCosts, c.Type, c.CustomerComplaint 

From Development.ISDA_model_output_alert as a, Development.iXR_fdvsv_catmasterlist as c 

Where (a.SnarReason like '%Late %' OR a.SnarReason like '%Later %' OR a.SnarReason like '%late %')  

AND a.SiteID =  c.ConfigId 

and c.CallType = 'CM' 

and c.CallOpenDate < a.AlertTime 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) > '-30' 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) < '-1' 
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and NOT EXISTS(select a.CaseId from Development.ISDA_model_output_alert as a where 

right(a.CaseId,9) = c.CaseID) 

and c.TotalCMHours is not null 

and c.CaseID is not null 

 

FP Cases 

Select distinct a.*, c.PcqlSortDescription, c.CaseNumber, c.Priority, c.ServiceType, cat.CallOpenDate, 

cat.TotalCMHours, cat.TotalPMHours, cat.TotalTravelHours, cat.TotalRemoteHours, 

cat.TotalOtherHours, cat.TotalCMCosts, cat.TotalPMCosts, cat.TotalTravelCosts, cat.TotalRemoteCosts, 

cat.TotalOtherCosts, cat.CustomerComplaint, cat.ExternalEngineerText, cat.InternalEngineerText 

From Development.Teradata_oneems_case as c, Development.iXR_fdvsv_catmasterlist as cat, 

Development.ISDA_model_output_alert as a 

Where right(c.CaseNumber,9) = cat.CaseID 

and c.PcqlSortDescription = 'False alert' 

and a.CaseId = c.CaseNumber 

 

General RUL Estimation 

Select distinct a.SiteID, a.AlertDescription, a.Confidence, a.AlertTime, c.CallType, DATEDIFF(second, 

a.AlertTime, c.CallOpenDate)/86400.0000 as DiffDate, c.CallOpenDate, c.CustomerComplaint  

From Development.ISDA_model_output_alert as a, Development.iXR_fdvsv_catmasterlist as c 

Where SnarReason like '%Region not monitored%' 

and a.SiteID = c.ConfigId 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) < '50' 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) > '1' 

AND c.CallOpenDate > a.AlertTime 

AND c.CallType = 'CM' 

AND c.CaseID is not null 

 

General Time to OS maintenance 

Select distinct a.AlertTime, c.CallOpenDate, c.OSWorkStart, DATEDIFF(second, a.AlertTime, 

c.OSWorkStart)/86400.0000 as DiffDate 
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From Development.ISDA_model_output_alert as a, Development.iXR_fdvsv_catmasterlist as c 

Where right(a.CaseId,9) =  c.CaseID 

and c.OSWorkStart is not null 

and DATEDIFF(second, a.AlertTime, c.OSWorkStart) > '0' 

and a.CaseId like '010%' 

 

FN Costs of the FDXD model 

Select distinct  a.SiteID, a.ModelUID, a.Confidence, a.AlertAction, a.SnarReason, a.AlertTime, 

c.CallOpenDate, DATEDIFF(day, a.AlertTime, c.CallOpenDate) as DiffDate, c.Notification, c.CaseID, 

c.ConfigId, c.CallType, c.TotalCMHours, c.TotalPMHours, c.TotalTravelHours, c.TotalRemoteHours, 

c.TotalOtherHours, c.TotalCMCosts, c.TotalPMCosts, c.TotalTravelCosts, c.TotalRemoteCosts, 

c.TotalOtherCosts, c.Type, c.CustomerComplaint 

From Development.ISDA_model_output_alert as a, Development.iXR_fdvsv_catmasterlist as c 

Where (a.SnarReason like '%Late %' OR a.SnarReason like '%Later %' OR a.SnarReason like '%late %')  

AND a.SiteID =  c.ConfigId 

and c.CallType = 'CM' 

and c.CallOpenDate < a.AlertTime 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) > '-30' 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) < '-1' 

and NOT EXISTS(select a.CaseId from Development.ISDA_model_output_alert as a where 

right(a.CaseId,9) = c.CaseID) 

and c.TotalCMHours is not null 

and c.CaseID is not null 

and a.ModelUID = 'IXR-PRED-FDXD' 

 

RUL estimation of the FDXD model 

Select distinct a.SiteID, a.AlertDescription, a.Confidence, a.AlertTime, c.CallType, DATEDIFF(second, 

a.AlertTime, c.CallOpenDate)/86400.0000 as DiffDate, c.CallOpenDate, c.CustomerComplaint  

From Development.ISDA_model_output_alert as a, Development.iXR_fdvsv_catmasterlist as c 

Where SnarReason like '%Region not monitored%' 

and a.ModelUID = 'IXR-PRED-FDXD' 
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and a.SiteID = c.ConfigId 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) < '50' 

and DATEDIFF(day, a.AlertTime, c.CallOpenDate) > '1' 

AND c.CallOpenDate > a.AlertTime 

AND c.CallType = 'CM' 

AND c.CaseID is not null 

 

Time to OS maintenance for the FDXD model 

Select distinct a.AlertTime, c.CallOpenDate, c.OSWorkStart, DATEDIFF(second, a.AlertTime, 

c.OSWorkStart)/86400.0000 as DiffDate 

From Development.ISDA_model_output_alert as a, Development.iXR_fdvsv_catmasterlist as c 

Where right(a.CaseId,9) =  c.CaseID 

and a.MODELUID = 'IXR-PRED-FDXD' 

and c.OSWorkStart is not null 

and DATEDIFF(second, a.AlertTime, c.OSWorkStart) > '0' 

and a.CaseId like '010%' 
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APPENDIX V: FORMULAS FOR PARAMETER ESTIMATION 
The following parameter estimators are used to test the empirical distribution of any random variable 𝑌 

on different theoretical distributions. 

Normal distribution  

�̂� = 𝑀1 

�̂�2 = 𝑀2 − 𝑀1
2 

Gamma distribution 

�̂� =
𝑀1

2

𝑀2 − 𝑀1
2 

�̂� =
𝑀1

𝑀2 − 𝑀1
2 

Exponential 

�̂� =
1

𝑀1
 

 

Lognormal  

𝑀1
′ =

1

𝑛
𝑀1

′ ∑ 𝑙𝑜𝑔(𝑌𝑖)

𝑛

𝑖=1

 

𝑀2
′ =

1

𝑛
∑ 𝑙𝑜𝑔(𝑌𝑖)2

𝑛

𝑖=1

 

�̂�𝑙 = 𝑀1
′  

�̂�𝑙
2 = 𝑀2

′ − 𝑀1
′ 2
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APPENDIX VI: GENERAL MOMENT ESTIMATIONS RANDOM VARIABLES 
- Due to confidentiality reasons, this Appendix is not disclosed. 
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APPENDIX VII: MOMENT ESTIMATIONS CASE STUDY 
- Due to confidentiality reasons, this Appendix is not disclosed. 
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APPENDIX VIII: DEFAULT VALUES FOR INPUT PARAMETERS  
- Due to confidentiality reasons, this Appendix is not disclosed. 
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APPENDIX IX: DEFAULT VALUES FOR INPUT PARAMETERS IN CASE STUDY 
- Due to confidentiality reasons, this Appendix is not disclosed. 
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APPENDIX X: INPUT VALUES FOR DIFFERENT CUSTOMERS 
- Due to confidentiality reasons, this Appendix is not disclosed. 
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APPENDIX XI: IMPLEMENTATION OF DECISION SUPPORT MODEL IN R 
 
#Failure prediction parameters 
P <- 0.8 
 
sigma <-CONFIDENTIAL  
mu <- CONFIDENTIAL  
 
 
#Time to On-site Maintenance parameters 
alpha <- CONFIDENTIAL  
beta <- CONFIDENTIAL 
 
#Costs parameters 
c_pdm1 <- CONFIDENTIAL 
c_pdm2 <- CONFIDENTIAL  
c_cm   <- CONFIDENTIAL 
c_diagnostics <- CONFIDENTIAL 
c_FP <- CONFIDENTIAL 
c_d <- CONFIDENTIAL 
 
#Customer parameters 
cc_dt <- 0 
tsm <- 30 
Tr <- CONFIDENTIAL 
owh <- 0 
 
#Maintenance parameters 
trepair <- CONFIDENTIAL 
tdiagnostics <- CONFIDENTIAL 
   
#Random Variables   
g <- function(x) {dnorm(x, mu, sigma)}          #RUL 
f <- function(Tos) {dgamma(Tos, alpha, beta)}   #Time to On-site Maintenance 
 
#Probabilities 
P_Tos_lss_tsm <- integrate(f,0, tsm)$value #Tos less than tsm 
P_x_lss_tsm <- integrate(g, 0, tsm)$value  #X less than tsm 
 
#Double integral X<Tos<tsm 
g1<- function(x){integrate(function(Tos) dnorm(x, mu, sigma)*dgamma(Tos, alpha, beta), x, tsm)$value} 
g2 <-function(x) {sapply(x,g1)}  
 
#####Probability expressions for the different scenarios##### 
#Case  
C_P_Scenario1 <- integrate(g2,0,tsm)$value 
C_P_Scenario2 <- P_Tos_lss_tsm-C_P_Scenario1 
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C_P_Scenario3 <- P_x_lss_tsm*(1-P_Tos_lss_tsm) 
C_P_Scenario4 <- (1-P_x_lss_tsm)*(1-P_Tos_lss_tsm) 
 
#Combine case 
Comb_P_Scenario1 <- P_x_lss_tsm 
Comb_P_Scenario2 <- 1-P_x_lss_tsm 
 
 
#####Expected Costs and downtime calculations for each action##### 
#SNAR  
ED_SNAR <- P*(Tr+trepair+tdiagnostics)   
EC_SNAR <- P*(c_cm +c_diagnostics) +c_d*cc_dt*ED_SNAR   
 
#case not combine 
ED_case <- P*(Tr+trepair)*(C_P_Scenario1+C_P_Scenario3)+(1-
owh)*trepair*(C_P_Scenario2+C_P_Scenario4) 
EC_case <- 
P*(c_cm*(C_P_Scenario1+C_P_Scenario3)+c_pdm1*C_P_Scenario2+c_pdm2*C_P_Scenario4) 
+c_d*cc_dt*ED_case+(1-P)*c_FP 
 
#case  combine 
ED_comb_case <- P*(Tr+trepair)*Comb_P_Scenario1+(1-owh)*(trepair*Comb_P_Scenario2) #+(1-
P)*trepair 
EC_comb_case <- P*(c_pdm2*Comb_P_Scenario2 +c_cm*Comb_P_Scenario1) +c_d*cc_dt*ED_case +(1-
P)*c_FP 
 
 
#Value of information 
ValueofInfoC <- max(EC_SNAR-min(EC_case,EC_comb_case), 0) #In terms of expected costs 
ValueofInfoD <- max(ED_SNAR-min(ED_case,ED_comb_case), 0) #In terms of expected downtime 
 
Max_C <- max(EC_SNAR,EC_comb_case,EC_case) 
Max_D <- max(ED_SNAR,ED_comb_case,ED_case) 
par(mar=c(5.1, 4.1, 4.1, 11), xpd=T) 
plot(c(), c(), xlim = c(0, Max_C), ylim =c(0, Max_D), xlab="Expected Costs", ylab="Expected Downtime") 
points(EC_SNAR, ED_SNAR, col = 'red',pch=19) 
points(EC_case, ED_case, col = 'green',pch=19) 
points(EC_comb_case, ED_comb_case, col = 'blue',pch=19) 
segments(0,ED_SNAR,EC_SNAR,ED_SNAR, col='red', lty = 2,lwd = 1) 
segments(EC_SNAR,0,EC_SNAR,ED_SNAR, col='red', lty = 2,lwd = 1) 
segments(0,ED_case,EC_case,ED_case, col='green', lty = 2,lwd = 1) 
segments(EC_case,0,EC_case,ED_case, col='green', lty = 2,lwd = 1) 
segments(0,ED_comb_case,EC_comb_case,ED_comb_case, col='blue', lty = 2,lwd = 1) 
segments(EC_comb_case,0,EC_comb_case,ED_comb_case, col='blue', lty = 2,lwd = 1) 
legend("topright", inset=c(-0.4,0), c("SNAR","Case","Combine Case"), pch=19, col=c("red","green", 
"blue"), title="Action") 
 
ED_SNAR 
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EC_SNAR 
 
ED_case 
EC_case 
 
ED_comb_case 
EC_comb_case 
 
ValueofInfoC 
ValueofInfoD 
 


