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Abstract. Perpendicular magnetic anisotropy ferromagnetic/superconducting
(FM/SC) bilayers with a labyrinth domain structure are used to study nucleation
of superconductivity on a fractal network, tunable through magnetic history.
As clusters of reversed domains appear in the FM layer, the SC film
shows a percolative behavior that depends on two independent processes: the
arrangement of initial reversed domains and the fractal geometry of expanding
clusters. For a full labyrinth structure, the behavior of the upper critical field is
typical of confined superconductivity on a fractal network.
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1. Introduction

Percolation phenomena are present in a wide variety of disordered systems, ranging from
random networks [1] to nanomaterials [2], granular superconductors [3, 4] or perpendicular
magnetic anisotropy (PMA) materials [5]. Theoretical understanding of these phenomena
has evolved from the classical analysis of simple regular lattices [6, 7] to more complex
situations [8]. Recently, double percolation effects have been theoretically introduced [9] in
order to describe systems such as polymer blends [10] or nanomaterials [2] in which disorder
occurs on a two-level scale characterized by two different geometrical length scales.

Hybrid ferromagnetic/superconducting (FM/SC) multilayers and nanostructures are an
interesting class of systems that are also governed by the competition between two different
length scales [11]. The interplay between these two long range phenomena results in a rich
variety of behaviors such as reentrant superconductivity [12], domain wall superconductivity
(DWS) induced by the FM exchange field [13–15], vortex guiding [16–18] or periodic vortex
pinning [19]. Magnetic domains have been used to manipulate superconductivity both in
parallel [14, 20] and perpendicular field configurations [21, 22]. In particular, stray fields created
by a magnetic layer with PMA have proved a versatile tool to tune SC vortex pinning [23]
and the SC phase diagram [21, 24], i.e. a controllable magnetic domain structure can be
created playing with the magnetic layer hysteresis that, in turn, controls the nucleation of
superconductivity. Up to now, most attention has centered on ordered domain geometries and
on samples with relatively large magnetic domains in comparison with the Ginzburg–Landau
coherence length ξGL [17, 25–27]. In these systems, due to field compensation effects, reentrant
superconductivity is observed [12, 24–27] and vortices can be nucleated on top of the magnetic
domain structure [28, 29]. On the other hand, domains in PMA materials often display a
very disordered labyrinthine structure [5, 30] and peaks in the magnetoresistance curves of
PMA FM/SC multilayers have been reported as domain structure in the FM layer changed
from an ordered to a disordered configuration indicating that the number and arrangement of
domain walls can have a significant influence on superconductivity [22]. Actually, percolation
phenomena have been found in FM/SC bilayers with a disordered domain structure in which,
for large enough domains, the SC sample fraction was directly given by the reversed domains
area [31]. However, taking into account that labyrinthine domain structures can be described
in terms of a fractal geometry [32, 33], they could be used, for small enough domain sizes,
to ‘design’ a fractal network for the nucleation of superconductivity similarly to disordered
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SC wire networks (SWN) [34] and granular superconductors [3, 35]. Remarkably, this
labyrinthine structure would allow one to tune a fractal SC behavior through the magnetic film
history.

In this work, we have studied PMA FM/SC bilayers with domain size below 100 nm, that
becomes comparable to ξGL close to the critical temperature TC. We show that nucleation of
superconductivity is controlled both by the distribution of clusters of reversed domains and
their fractal geometry resulting in a double level percolation process. Once the percolation
process is finished and the labyrinthine domain configuration extends homogenously through
the sample, the upper critical field Hc2 shows the characteristic temperature dependence of
confined superconductivity on a fractal network.

2. Experimental

FM/SC NdCo/Nb bilayers have been fabricated by sputtering on 1 cm × 1 cm Si(100)
substrates in a two step process. First, a NdCo5(t nm) amorphous layer is grown by
cosputtering [36, 37] with thickness (t) in the 40–80 nm range on a Si substrate covered by
a 10 nm thick Al buffer layer and, then, a 5 nm thick Al capping layer is grown on top. Next, the
Al/NdCo/Al sample is taken out of the chamber so that the Al capping layer becomes oxidized
and, finally, a Nb film with thickness dNb = 50 nm is grown on top by sputtering to get the
complete FM/SC bilayer structure.

The properties of the SC layer have been characterized on a control 50 nm Nb film, grown
on a bare Si substrate under similar conditions. It presents a TC = 7.55 K, typical for Nb in
this thickness range [38] and a Ginzburg–Landau coherence length ξGL(0) = 8.95 nm, obtained
from the temperature dependence of Hc2 = 80/2πξGL(T )2 with 80 the quantum of flux. It
corresponds to a SC coherence length ξs =

2
π
ξGL(0) = 5.7 nm [39, 40].

The FM layer is made of NdCo5, an amorphous alloy with saturation magnetization
MS ≈ 103 emu cm−3. It presents a moderate room temperature (RT) PMA, that can be
characterized by an out-of-plane uniaxial anisotropy constant [41] (Kn), with values of the order
Kn ≈ 106 erg cm−3. Upon lowering the temperature, Kn increases up to Kn ≈ 107 erg cm−3 at
10 K [37], that is, the anisotropy ratio Q = Kn/2π M2

S is Q ≈ 0.1 at RT and Q ≈ 1 at 10 K.
In general, proximity effects between the FM and SC layers could be caused both by

exchange and stray fields. In the present case, for Q ≈ 1, the domain structure in the PMA
Nd–Co layer should contain significant out-of-plane magnetization components that can be used
to create relatively large stray fields in the neighboring Nb layer. On the other hand, the oxidized
AlOx layer in between Nb and NdCo layers should act as an exchange-field insulator so that
proximity effects due to the exchange field in the FM layer should be small. Also, dNb � ξs in
these films implying that exchange induced DWS should be strongly suppressed [15]. In any
case, the aim of our study is mainly the effect of geometry on the SC regions that nucleate on
top of the magnetic domains rather than on the specific proximity effect mechanism (exchange
field and/or stray field) involved to create them.

Magnetic and SC properties of the SC/FM bilayers have been studied by magnetotransport
measurements in a He cryostat equipped with a 90 kOe SC solenoid and a rotatable sample
holder that allows to vary in situ the applied field direction from in-plane to out-of-plane.
Transport measurements are performed on extended samples using a four probe dc technique in
a van der Pauw configuration [42, 43] which is often used in percolation problems [44–46] with
an applied current (IDC = 10–100 µA). Depending on whether voltage and current contacts are
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Figure 1. EHE hysteresis loop of a 52 nm NdCo/50 nm Nb bilayer at 10 K. Note
that a constant resistance offset Roffset = 1.2 � due to contact misalignment has
been subtracted to obtain RHall from raw resistance measurements.

consecutive or crossed along the sample edge either the resistance R or Hall effect RHall signals
can be obtained from exactly the same sample area [42].

First, the magnetic properties of the FM layer have been obtained from Hall effect
measurements making use of the much larger Hall effect in FM materials [47] than in ordinary
metals such as Nb. Briefly, in a FM layer with an out-of-plane magnetization component Mz

under a perpendicular field Hz, the Hall signal (RHall) is given by RHall = R0 Hz + REHE Mz,
with R0 the ordinary Hall effect coefficient, related with the deviation of charge carriers by
the Lorentz force, and REHE the extraordinary Hall effect (EHE) coefficient, related with spin
dependent scattering of conduction electrons [47]. REHE is usually much larger than R0 (about
a factor 10–100) and is particularly enhanced in rare earth-transition metal amorphous alloys
due to their large resistivities and strong spin–orbit coupling [48]. Thus, Hall effect hysteresis
loops of the FM/SC bilayers should be dominated by the EHE term REHE Mz in the Nd–Co layer
[48, 49]. This procedure allows us to characterize the FM layer magnetic properties at 10 K, just
above Tc, and, also, to control its magnetic history in situ by performing different kinds of minor
hysteresis loops. Then, once the sample has been prepared in the desired magnetic state at 10 K,
its SC properties have been characterized measuring resistance transitions (R(T ) curves) as the
temperature is lowered under a constant out-of-plane magnetic field Hz.

3. Results and discussion

3.1. Magnetic properties and stray field of the Nd–Co ferromagnetic layers

Hysteresis loops in PMA films can have a variety of shapes depending on the relative strength
of PMA, exchange and disorder [50]. Figure 1 shows the EHE out-of-plane loop for a 52 nm
NdCo/Nb sample measured at 10 K, i.e. just above TC. It presents the characteristic shape
of magnetization reversal through the nucleation and expansion of clusters of stripe domains
[50, 51]: upon decreasing Hz from saturation, RHall follows a weak linear field dependence due
to ordinary Hall effect while small reversed domains begin to nucleate across the sample; then,
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Figure 2. (a) MFM image of a 45 nm NdCo film at remanence after applying an
in-plane Hy = 1 kOe (3 = 115 nm); (b) MFM image of a 80 nm NdCo film at
remanence after applying an out-of-plane Hz = 4 kOe; (c) map of the simulated
magnetization distribution of a 52 nm NdCo film at remanence: top panel, out-
of-plane mz and bottom panel, in-plane mx . Note the reduced scale for spatial
variables, z/t and x/3 (t = 52 nm and 3 = 143 nm). Color code of mx and mz

values is indicated in left scale bar. (d) Simulated H stray
z (x) created by a 52 nm

NdCo film at h = 30 nm plotted over one stripe period 3 for: Hz = 0, solid line;
Hz = 3 kOe, dashed line; Hz = 4.5 kOe, dotted line.

there is a steep decrease in RHall already at positive fields, between 3.4 > Hz > 2.1 kOe, that
marks the sudden growth of clusters of labyrinth stripe domains until they fill the whole sample
area; next, there is an almost reversible regime in which RHall decreases linearly with H due
to relative changes in the width of ‘up’ and ‘down’ domains and the film displays a very low
remanence and coercivity. Finally, as domains with the initial magnetization are annihilated,
negative saturation is reached. Upon increasing the temperature up to RT, the decrease in PMA
in the Nd–Co films results in an enhancement of the low field reversible region while high
field hysteresis almost disappears [52]. Both the remanent magnetization (MR) and coercivity
(Hcoer) stay almost constant at very low values in the whole temperature range from 10 K to RT
(MR below 0.05MS and Hcoer below 0.5 kOe) indicating that there should not be qualitative
changes between the RT and the 10 K remanent domain structure.

Figures 2(a) and (b) show the differences in the remanent domain configurations of NdCo
films depending on their previous magnetic history, obtained by magnetic force microscopy
(MFM) at RT [36]: in the first case (figure 2(a)), an in-plane field Hy = 1 kOe has been applied
to a 45 nm thick NdCo sample and, then, it has been decreased to zero creating the typical
parallel stripe domain structure oriented along Hy with stripe domain period 3 = 115 nm; in
the second case (figure 2(b)), a labyrinthine domain configuration is observed in an 80 nm thick
NdCo film after saturation with an out-of-plane Hz = 4 kOe. 3 values obtained from the RT
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MFM characterization depend on t and H , but they are in the 100–300 nm range for the studied
samples [36, 49].

The effect of the temperature dependence of Kn on the low temperature domain structure
has been studied by micromagnetic simulations [53]. First, material parameters have been
adjusted to reproduce the observed RT domain structure and, then, the temperature variations
of Kn and MS have been introduced in order to calculate the low temperature equilibrium
parallel stripes domain configuration, that is quite similar to RT but with a small increment in
3 (about 10%). Figure 2(c) shows a map of the magnetization distribution (out-of-plane mz =

Mz/Ms and in-plane mx = Mx/Ms) obtained for a 52 nm NdCo film at 10 K calculated with
anisotropy constant Kn = 5.6 × 106 erg cm−3, magnetization MS = 897 emu cm−3 and exchange
A = 106 erg cm−1 at Hz = 0. Top panel in figure 2(c) shows the typical alternating ‘up’/‘down’
domains in mz separated by Bloch walls that make up the periodic parallel stripe configuration
with 3 = 143 nm. Domain wall width δw at the film surface can be estimated from the size
of the region in which mz turns from 1 to −1. It is about 40 nm in the simulations with RT
parameters and goes down to 18 nm at low temperature. Bottom panel in figure 2(c) allows us
to observe the existence of Neel caps on top of the Bloch walls in which M becomes parallel
to the film surface. Thus, due to the moderate PMA of these films, the domain structure is quite
different from previously studied PMA FM/SC systems (Q � 1) [27]. It not only contains
parallel regions with oscillating out-of-plane magnetization component but, as well, a relatively
large flux-closure structure of Neel caps close to the film surface that significantly weakens the
stray field.

Now, we can calculate the stray field H stray
z created by the simulated parallel stripe domain

structure in the space above the FM layer. Figure 2(d) is a plot of the stray field profile at
the mid-plane of the Nb film (at a height h = 30 nm) starting from the equilibrium remanent
state (H = 0) and, then, upon applying an out-of-plane field Hz of increasing magnitude. At
remanence, H stray

z displays a symmetric profile with period 3 = 143 nm. Then, as Hz increases,
the stray field profile becomes asymmetric due to the growth of positive domains at the expense
of the negative ones and 3 becomes larger going up to 288 nm at 4.5 kOe. At the same time,
as the size of negative domains shrinks, the average negative 〈H stray

z 〉, calculated as the spatial
average of H stray

z over the negative domain region, is enhanced from −825 Oe at remanence to
−1 kOe at Hz = 4.5 kOe.

3.2. Superconducting transitions and percolation effects

Figure 3 shows the SC transitions measured on the 52 nm NdCo/Nb bilayer at a constant Hz,
following different hysteresis paths in the magnetic layer as indicated in figure 3(a). One of
them is a major hysteresis loop (ML, ◦): a large Hz = 20 kOe is applied to the sample in order
to reach an out-of-plane saturated state and, then, R(T ) curves are measured at decreasing Hz

values. The other two processes are minor hysteresis loops. In the first minor loop (mL1, H),
Hz starts at −20 kOe, i.e. with the sample at the negative out-of-plane saturated state, then it
increases up to H1 = 7.2 kOe which is the field at which irreversibility disappears in the loop
but is not large enough to ensure full out-of-plane saturation (i.e. small inverted domains could
still persist in the sample with a very small contribution to the magnetization [51]) and, finally,
R(T ) curves are measured as Hz decreases from H1. In the second minor loop (mL2, �) Hz

starts at 20 kOe, i.e. with the sample at the positive out-of-plane saturated state, then Hz is
taken down to H2 = 2.6 kOe in order to bring the sample to the initial stages of reversed domain
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Figure 3. (a) EHE loops of a 52 nm NdCo/50 nm Nb bilayer at 10 K along
three hysteresis processes: ◦, major loop (ML), measured as Hz decreases from
saturation at 20 kOe; H, minor loop 1 (mL1), measured as Hz decreases from
incomplete saturation at H1 = 7.2 kOe; �, minor loop 2 (mL2), Hz goes down
from 20 kOe to H2 = 2.6 kOe and, then, RHall is measured upon increasing Hz.
Dashed line indicates the signal level at 2.45 kOe (i.e. at the percolation threshold
in ML), used to estimate pc as indicated in the text. Sets of consecutive R(T )

curves at constant Hz, measured along (b) ML; (c) mL1 and (d) mL2. Labels
indicate Hz in kOe at each R(T ).

expansion and, then, R(T ) curves are measured as Hz increases so that the reversed area fraction
must shrink again. In all the cases there is a certain field range in which the SC transitions
develop a two-step structure, characteristic of the break up of the sample in two kinds of regions
with different T ′

Cs (TC1 and TC2). At intermediate temperatures, TC1 < T < TC2, conduction takes
place by percolation through the network of coexisting SC and normal regions within the sample
[31, 54]. It is interesting to note that the field range of occurrence of this two-step percolative
behavior is completely different between the major loop (ML) (3> Hz > 2.5 kOe) and mL1

(6.5> Hz > 2.8 kOe) in spite of the almost identical RHall(Hz) curves. This can be directly
attributed to the small reversed domains present in the FM layer due to incomplete saturation
during mL1 loop that serve as nucleation centers for superconductivity in a wider field range.
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Figure 4. Hc2 versus T defined at 0.1Rn (�) and at 0.9Rn (•) measured along
(a) ML (b) mL1 and (c) mL2. Solid lines are linear fits to Hc2 = 41.2 kOe (1 −

T/TC). Shaded areas mark field range of nucleation/expansion of inverted
domains obtained from EHE loops. Inset in (a) is a sketch of a cluster of inverted
domains. Insets in (b) and (c) are log–log plots of R/Rn at the plateaus in R(T )

versus (pc − psup).

A more detailed analysis of the two step transitions is shown in figure 4 in which the
temperature dependence of the upper critical field Hc2(T ) is plotted. The phase boundary for
superconductivity is usually obtained from R(T ) curves [12, 18, 24, 55, 56] as the points
in the H–T plane in which R is a certain fraction of the normal state resistance Rn. In
this case, we have used two different resistance criteria 0.1Rn (to obtain H 0.1Rn

c2 (T )) and
0.9Rn (to get H 0.9Rn

c2 (T )), in order to characterize the two different kinds of regions present
in the sample. For the ML (figure 4(a)), both curves run essentially parallel at high and
low fields at 0.1 K distance. This is similar to the transition width of plain reference Nb
films indicating that there is essentially no field broadening of the SC transitions whenever
the FM/SC bilayer is in a homogeneous state. However, at intermediate fields they become
clearly separated as steps develop in the R(T ) curves: below 3 kOe, there is a sudden jump
in H 0.9Rn

c2 (T ) from the typical linear dependence (Hc2 = 41.2 kOe (1 − T/TC)) to a different
nonlinear temperature dependence that could be an indication of confined superconductivity
[3, 7]; H 0.1Rn

c2 (T ) follows a similar trend but it retains the linear temperature dependence down to
2.5 kOe. That is, percolation effects appear approximately in the field range corresponding to the
nucleation/expansion of clusters of reversed domains (shaded areas in figure 4). The different
temperature dependence of H 0.9Rn

c2 and H 0.1Rn
c2 for 3 > H > 2.45 kOe is a signature of qualitative

differences between the coexisting normal/SC regions during the percolation process: H 0.9Rn
c2

corresponds to confined SC regions that nucleate on top of clusters of reversed domains (see
sketch in figure 4(a)) whereas H 0.1Rn

c2 marks the transition of the surrounding extended areas
that retain the same dimensionality as the continuous film. Then, for H < 2.45 kOe, steps in
R(T )′s disappear as the confined SC areas percolate through the sample effectively shorting the
possible remaining extended normal regions. The reversed area fraction pmag at each point of
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the hysteresis loop can be estimated as pmag = 0.5(1 − M/MS). Thus, the percolation threshold
pc would correspond to pmag at 2.45 kOe, i.e. pc ≈ 0.2.

The qualitative differences between H 0.9Rn
c2 (T ) and H 0.1Rn

c2 (T ) are more evident in
figures 4(b) and (c) corresponding to minor loops mL1 and mL2. Now, due to FM film history,
reversed domains and, therefore, steps in R(T ) curves are present in a wider field range,
which allows for a more thorough analysis of the percolation process. According to classical
percolation theory in two dimension (2D) [57], the resistance of a random mixture of SC/normal
elements scales with the SC fraction psup as

R ∝ (pc − psup)
s (1)

with universal exponent s = 1.3. The percolation threshold is pc = 0.5 for square lattice models,
but it can vary significantly depending on system geometry [58]. However, the resistance values
at the ‘plateaus’ in R(T ) curves in figure 3 cannot be described by equation (1) using the
simplest assumption psup = pmag that was used in Nb/BaFeO hybrids with much larger domain
sizes [31]. This is reasonable since, the comparison between ML and mL1 data directly shows
that effective SC area is not simply proportional to the inverted domain area but depends on the
previous magnetic history (i.e. on the initial distribution of reversed domains). Also, the small
observed pc ≈ 0.2 is typical of two-level percolation [9, 10] in which two independent random
processes are at play (reversed domain nucleation and propagation in the PMA film here [30]).
In the first level, we may consider a random arrangement of initial reversed nuclei and, on the
second level with a finer length scale, the fractal expansion of each cluster of reversed domains
starting from each initial nucleus [30, 32, 33]. Thus, along the SC transition, the Nb film will
be composed of a random array of SC islands nucleated on each of these clusters of reversed
domains. For a labyrinth domain structure, we may consider that the effectively shorted area
for each SC island is that of a disk enclosing the cluster [59] (see sketch in figure 4(a)). The
radius of this circle r0 scales as pmag ∝ r Dm

0 with Dm the mass dimension of the cluster [30]
(Dm = 1.896 for an infinite cluster [58] and Dm ≈ 1.5–2 reported for expanding clusters of
reversed domains in amorphous rare earth-transition metal alloys [30]). Thus, the area of SC
islands should scale as psup ∝ r 2

0 ∝ (pmag)
2/Dm . Insets in figures 4(b) and (c) show the results

of the fit of R versus psup = (pmag)
2/Dm to equation (1). A linear behavior in the log–log plot

appears for Dm = 1.8, close to the mass dimension of an infinite cluster, and s = 1.32 ± 0.07,
in good agreement with the critical exponent expected from 2D percolation theory [57]. s and
Dm are similar both for mL1 and mL2 but certain differences appear in the fitted thresholds
pc(ml1) = 0.16 and pc(ml2) = 0.21, which may be attributed to the different distribution of
initial reversed nuclei in each hysteresis process.

3.3. Upper critical field dimensionality

Further confirmation on the fractal geometry of the superconductivity phase nucleated on
top of the labyrinth reversed domains may be obtained from the analysis of the temperature
dependence of Hc2, focusing in the homogeneous regime after the percolation process is finished
and steps have disappeared from the R(T ) transitions. Figure 5 shows several H 0.1Rn

c2 (T ) lines
measured along different hysteresis processes. First, there are two out-of-plane MLs both in
the descending and ascending field branches: ML1(−) with Hz decreasing from saturation at
20 kOe, ML1(+) with Hz increasing from remanence after saturation at −20 kOe, ML2(−) with
Hz decreasing from saturation at 90 kOe and ML2(+) with Hz increasing from remanence after
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Figure 5. (a) H 0.1Rn
c2 (T ) measured following different hysteresis process in the

magnetic layers. Note the crossover at H ∗
= 0.8 kOe. Inset shows H 0.1Rn

c2 (T )

upon increasing Hz after in-plane saturation (�, Ordered(+)) in comparison
with the simulated dependence with a 1D model for a FM/SC bilayer with
〈H stray

z (h = 55 nm)〉 (solid line); (b) H 0.1Rn
c2 versus 1 − T/TC. Parallel stripes

remanent state: �, Ordered(+); labyrinthine states: ◦, ML1(−); 4, ML2(−);
H, Demag1(+); �, Demag2(+); •, ML1(+); � ML2(+). Solid lines are fits to
Hc2 ∝ (1 − T/TC)n with n = 0.66. Inset shows same temperature dependence in
a log–log scale.

saturation at −90 kOe. Data are also included upon increasing Hz from different remanent states:
Demag1(+) and Demag2(+) correspond to out-of-plane demagnetized states after performing
a series of Hz circles of decreasing amplitude in order to create a disordered labyrinth domain
pattern over the whole sample and ordered(+) corresponds to an in-plane remanent state after
applying an in-plane Hy = 90 kOe in order to create an ordered parallel stripes configuration
perpendicular to the applied current direction. In the two descending field processes ML1(−)

and ML2(−), steps in the R(T ) transition disappear below 2.5 kOe, as discussed above,
indicating that the lower field region corresponds to a fully percolated labyrinthine state. On
the other hand, in all the other ascending field processes no steps have been observed in the
R(T ) transitions indicating that their initial remanent state covers the sample homogenously.
Thus, the data in figure 5 will allow us to study the characteristic dimensionality of the SC
state nucleated on top of different homogeneous domain structures. It can be seen that these
H 0.1Rn

c2 (T ) curves are strongly dependent on magnetic history but present a common crossover
at H ∗

z = 0.8 kOe: the processes with stronger Hc2 enhancement at high fields present also the
lower TC(H = 0). However, in the reduced temperature scale 1 − T/TC, H 0.1Rn

c2 data become
grouped in three distinct sets (see figure 5(b)) depending on stripe domain geometry: one of
them (Ordered(+)) corresponds to Hz increasing from remanence after in-plane saturation, i.e.
from an ordered parallel stripe remanent state, and the other two correspond to labyrinth domain
configurations either as Hz decreases below the percolation threshold (ML1(−) and ML2(−))
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or as Hz increases from remanence after out-of-plane negative saturation or demagnetization
(ML1(+), ML2(+), Demag1(+) and Demag2(+)).

Hc2(T ) in the parallel stripes case can be analyzed in terms of existing stray field induced
superconductivity models for SC/FM bilayers with an ordered lateral geometry [26, 27]. In
particular, we have used a one-dimensional (1D) model in the small domain size limit [27]
complemented with the stray field values obtained from the micromagnetic calculations.
Nucleation of superconductivity is determined by field confinement effects within a length scale
L H so that the upper critical field is given by the condition ξGL(T ) ≈ L H . Taking into account
the superposition of the stray field created by the FM layer H stray

z with the applied field Hz, L H

is given by [27]

L H = (80/2π |Hz − H stray
z |)1/2. (2)

In our case, H stray
z is a function of Hz, as shown in figure 2(d), so that equation (2) allows to

estimate Hc2 through the implicit condition Hc2(T ) = H stray
z (Hc2) + 80/2πξGL(T )2. Best fit is

obtained taking H stray
z (Hz) from the micromagnetic calculations at the top surface of the Nb

film, H stray
z = 〈H stray

z (h = 55 nm)〉 (see solid line in the inset of figure 5(a)). This is reasonable
since nucleation of superconductivity should be favored at the top SC film surface in which the
SC order parameter is maximum [27]. At low fields, L H increases and, eventually, becomes
larger than domain size, so that the SC wave function extends over several domains and
any Hc2 enhancement due to the stray field disappears since it is averaged over positive and
negative domains [27]. There is still a certain TC(H = 0) reduction due to the inhomogeneity
introduced in the system by the periodic domain structure [26]. At the crossover field found in
figure 5(a), H ∗

z = 0.8 kOe, ξGL = 63 nm and L∗

H = 75 nm, which are comparable to domain size
3/2 = 71.5 nm, indicating that it can correspond to the crossover from extended to localized
superconductivity: more disordered domain structures with a stronger stray field present not
only a larger Hc2 enhancement in the high field range of localized superconductivity over
reversed domains but also a more important TC(H = 0) reduction in the low field extended
superconductivity regime.

Finally, let us focus on the two sets of H 0.1Rn
c2 data in figure 5(b) measured with labyrinth

domain configurations that present a different behavior from the simple 1D ordered parallel
stripe geometry. In spite of the differences in magnetic history (either out-of-plane saturated or
out-of-plane demagnetized initial state), all these data follow clearly a stronger temperature
dependence Hc2 ∝ (1 − T/TC)n than expected for a 2D SC film in a perpendicular field
geometry. In both cases the same Hc2 exponent n = 0.66 is found, indicating that it is an
intrinsic property of the labyrinth domain geometry. It lies in between 2D and 1D values n = 1
and 0.5, respectively, and is similar to reported values in granular superconductors [3, 35] and
disordered SWN [34]. This reduced Hc2 exponent has been attributed to the fractal nature of
the percolation networks [7], with n = 0.69 predicted for the infinite cluster, in good agreement
with the experimental results in figure 5.

4. Conclusions

In summary, the disordered labyrinth domain structure of PMA NdCo layers have been used
to ‘imprint’ a fractal geometry in the SC state of NdCo/Nb bilayers. SC transitions display a
characteristic percolative behavior with the Nb film broken up into a mixture of extended normal
regions and islands of confined superconductivity. The distribution and size of these islands
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is controlled by a two level percolation process: firstly, by the random distribution of initial
reversed nuclei determined by magnetic film history and, secondly, by the fractal expansion
of each cluster of reversed domains resulting in a larger effective SC area. The dimensionality
of Hc2(T ) lines can also be tuned by magnetic film history: when it adopts a parallel stripe
domain configuration, Hc2(T ) can be described by a simple model of field confinement with a
1D domain pattern; however, when domains adopt a labyrinth geometry, Hc2 displays a stronger
temperature dependence Hc2 ∝ (1 − T/TC)0.66 characteristic of fractal SC networks.
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