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A B S T R A C T   

Two donor-acceptor-donor (D–A–D) and two donor-acceptor (D-A) small molecular systems involving alkyl 
bithiophene and thiophene derivatives as donor blocks and 5,5′- and 5-linked 7,7′-diazaisoindigo (DAIID) as 
acceptor blocks have been synthesized and investigated with theoretical calculations and photophysical studies. 
The incorporation of the thiophene groups led to significant changes in the UV–vis absorption spectra and 
electronic structure of the diazaisoindigo. Bithiophene and thiophene derivatives did not show fluorescence, in 
contrast to their dibrominated and brominated precursors. This fact was attributed to both a decrease of the 
radiative rate constant and an increase of the non-radiative deactivation associated to the incorporation of the 
thiophenyl groups. Additionally, picosecond transient absorption experiments revealed short time decays for the 
thiophenyl derivatives indicating a faster non-radiative deactivation associated to a rotation of the central double 
bond of 7,7′-diazaisoindigo in the excited state.   

1. Introduction 

Organic π-conjugated pigments have attracted great attention as 
semiconducting materials for organics electronics applications, such as 
organic field effect transistors (OFETs), organic light emitting diodes 
(OLEDs), organic solar cells (OSCs), and photodetectors [1–5]. A huge 
amount of studies about organic semiconductors have been reported, 
depicting the ease of synthesis, stability, low-cost, light-weight, and 
mechanical flexibility, as well as versatility, considering the advantages 
of tuning the optical and electronic properties by changing the chemical 
design. During the past few years, many classes of organic π-conjugated 
polymers and molecules, based on donor–acceptor (D–A) moieties, have 
been developed for organic electronics applications [6,7]. Well-defined 
small organic molecules show benefits compared to conjugated 

polymers, such as larger reproducibility of the synthesis, easier purifi-
cation process, well-defined chemical structure, and monodispersed 
molecular weight. The strategy of alternating D–A conjugation in the 
small molecules has afforded a huge amount of organic semiconductors 
with excellent performances in organic optoelectronic devices [8]. 
These D-A small molecules, or push-pull systems, entail an intra-
molecular charge transfer, which is useful for widening the absorption 
spectrum and reduce the optical band gap [9]. In the D-A systems, the 
most widely used donor units (p-type organic compounds) are 
thiophene-based systems, while a wide range of organic structures have 
been employed as the electron acceptors units (n-type organic com-
pounds) [10]. Among the employed acceptor units for organic elec-
tronics, it is worthy remarking moieties such as benzothiadiazole [11, 
12], diketopyrrolopyrrole (DPP) [13–15], imide and amide-based units 
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[2], and isoindigo and derivatives [16–20]. 
Isoindigo is a structural isomer of the well-known natural pigment 

indigo that can be found in plants such as isatis tinctoria [21]. Chemi-
cally, isoindigo [22] possesses acceptor unit properties, as it is formed by 
an electron-deficient symmetrical benzene-fused five-membered lactam 
rings, connected through an exocyclic double bond placed at the 3 and 3′

positions, giving rise to a completely conjugated systems. From 2010 
[23], when isoindigo was described as an ideal acceptor unit in D-A 
small molecules in organic solar cells and field effect transistors, many 
different isoindigo-based structures and derivatives have been 
described, with the goal of boosting device performance [22,24–27]. In 
fact, other new derivatives of isoindigo, such as the diazaisoindigo, have 
attracted great attention to achieve this goal, as, for example, the 
non-functionalized N,N-dialkyl diazaisoindigo [28]. In the dia-
zaisoindigo (DAIID) molecule, two C atoms have been replaced by two N 
atoms in the benzene fused to the electron-deficient symmetrical lactam 
core. These two sp2-nitrogen atoms can be located at different positions 
in the benzene ring. Several DAIID have been described, such as 7-DAIID 
[28–31] and 5-DAIID [32], where the N atoms are placed at different 
positions, affording a strong effect on their photophysical properties 
changing the LUMO level. Additionally, the diazaisoindigo unit can have 
two possible linkages (5,5′- vs 6,6’-) to design and develop versatile and 
new D-A and D-A-D materials as acceptor units [33–36]. In the last 
years, some studies on the conventional 6,6′-linked diazaisoindigo, 
prepared via the Suzuki coupling, have been reported as D-A semi-
conductors. However, the 5,5′-linked diazaisoindigo has been much less 
studied. 

Herein, we have designed a family of D-A and D-A-D compounds 
bearing diazaisoindigo (DAIID) as a central acceptor moiety connected 
at the 5 or 5,5’ positions and alkyl-substituted thiophenes or bithio-
phenes as donors in order to tune the HOMO-LUMO gap. Density func-
tional calculations and transient absorption spectroscopy studies are 
deployed to shed light into the effect of donor and alkyl substitution 
position on molecular conformation, absorption spectra and excited- 
state dynamics of the resulting dyads and tryads 

2. Experimental section 

2.1. General 

All reagents for the synthesis of products were purchased from 
Merck/Sigma-Aldrich. Solvents were purchased from Scharlab. All re-
actions were monitored by silica gel thin layer chromatography using a 
UV light (254 nm). Column chromatography was carried out on silica gel 
(200–300 mesh). 1H and 13C NMR spectra were obtained on a Bruker 
AVANCE 300/200 spectrometer, 300 and 200 MHz (1H) or at 75.4 and 
50 MHz (13C) at 25 ◦C, in 5 mm tubes at room temperature with CDCl3 as 
the solvent. Chemical shifts (δ) are quoted in parts per million (ppm), 
referenced to residual solvent. Mass spectra were confirmed using Ma-
trix Assisted Laser Desorption (MALDI) mass spectrometer in positive 
ion reflector mode. 

2.2. Spectroscopy experiments 

UV–visible absorption spectra were measured on a Cary 100 Bio 
UV–visible spectrophotometer. Steady-state and time-resolved fluores-
cence measurements were performed on FLS920 Fluorimeter (Edin-
burgh Instrument Ltd, Livingston, UK). The transient spectroscopy set- 
up consisted of a femtosecond Clark MXR regenerative amplifier as 
primary source delivering 120 fs pulses at 775 nm and 1 KHz repetition 
rate. The primary beam was split into two. One part was frequency 
doubled to 387 nm in a β-BaB2O4 (BBO) crystal and used as the pump 
beam. Subsequently, it was sent into a computer controlled delay line 
before being focused onto the sample to yield 10 μJ cm− 2 excitation 
energy flux. The other beam was in turn focused into a sapphire plate to 
generate a super continuum probe and was spatially overlapped with the 

pump spot on the sample. A spectrometer equipped with a double array 
optical multichannel detector (Entwicklungsbuero Stresing) operating 
in single shot acquisition mode was employed to monitor both the 
transmitted light through the sample and a split-off fraction of the probe 
as reference. Using a reference channel allows us to record the absorp-
tion spectrum for each laser shot, thus monitoring the differences in 
absorbance upon two consecutive pump-on pump-off acquisitions. This 
approach reduces to half the number of laser pump shots to which the 
sample is exposed. 

2.3. Computational details 

All the calculations were performed with the Gaussian16 (revision 
C.01) suite of programs [37]. The ground state geometry of compounds 
1, 2, 3, 5, 6, 7 and 8 was optimized using the PBE0 functional [38,39] 
together with the 6-31G** basis set. Polarizable Continuum Model 
(PCM) methodology was employed to include solvent effects (toluene 
solvent) [40,41]. Vertical electronic transitions were computed at the 
time-dependent density functional theory level (TD-PBE0/6-31G*) 
including solvent effects [40,41]. The intramolecular charge transfer 
(ICT) character of the electronic transitions was evaluated trough the Δr 
index, a parameter proposed by Adamo and coworkers to measure 
charge transfer length during electron excitation [42]. Δr index was 
calculated employing the Multiwfn 3.8 code [43]. 

3. Results and discussion 

The general synthetic route of the target molecules is depicted in 
Scheme 1 and S1. The synthesis by an aldol condensation between 5- 
bromo-7-azaisatin and 7-azaindolin-2-one affords a crude of a mixture 
of three diazaisoindigos (DAIID) with different substitutions (R = R’ =
Br, R = H R’ = Br and R = R’ = H), as illustrated in Scheme S1, anal-
ogously to the method described in the literature [44]. These mixture of 
three diazaisoindigos is inseparable due to the poor solubility of the 
platform. The incorporation of the alkyl groups at the nitrogen position 
enables solution processing of the DAIID. This N-alkylation was carried 
out with 1-iodododecane in the presence of K2CO3 as a base in DMF at 
100 ◦C during 2 h. The crude was purified via flash chromatography to 
afford isolation of 7,7′-DAIID-Br2 (1) [29], 7,7′-DAIID-Br (2), and 7, 
7′-DAIID (3) separately (Scheme S1). Finally, the incorporation of the 
thiophene group to afford the final donor–acceptor–donor (D–A–D) (5, 
6) (Scheme 1a) and donor–acceptor (D–A) (7,8) (Scheme 1b) 7,7′-DAIID 
has been effectively prepared by using the typical Suzuki coupling 
conditions from 7,7′-DAIID-Br2 (1) and 7,7′-DAIID-Br (2) compounds, 
respectively. 

Chemical structures of the intermediates and final compounds were 
confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectra, 
high resolution matrix-assisted laser desorption/ionization time-of- 
flight (MALDI-TOF) mass spectra, and exact mass (See Supporting In-
formation for full details on synthesis and spectroscopic 
characterization). 

Theoretical calculations were performed to investigate potential 
changes in molecular geometry and energies of the HOMO-LUMO or-
bitals upon the thiophenyl substitution. The ground state molecular 
geometry was calculated for 1 and 2 (di- and mono-bromine reference 
molecules), 5 and 6 (di-thiophenyl derivatives) and 7 and 8 (mono- 
thiophenyl derivatives) at the PBE0/6-31G* level of theory including 
solvation effects (toluene) (see some examples in Fig. 1 and S1). The 
insertion of bromine in the 5 or 5,5′ positions of the diazaisoindigo 
platform (1 and 2 molecules) does not produce any change in the 
planarity of the platform with respect to the unsubstituted 7,7′-dia-
zaisoindigo (0.0◦) while the 7 and 8 derivatives are slightly twisted with 
a dihedral angle between the two aza-oxindole moieties of 6.2◦ and 6.3◦, 
respectively (see Fig. 1A) [28,30]. Regarding the 5 and 6 derivatives, the 
calculated dihedral angles are 0.4◦. The rather small values for the 
dihedral angles that determine the planarity of the molecule might be 
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governed by the short distance between the O atom of the carbonyl 
groups and the H atom bound to the C atom at position 4 of each 
aza-oxindole moiety, between 1.97 and 1.98 Å for compounds 1, 2, 5 
and 6, smaller than the sum of their van der Waals radii [45]. This 
finding suggests that the formation of two intramolecular H-bonds must 
favor the planar structure of the 7,7′-diazaisoindigo core. The loss of 
planarity observed in mono-substituted compounds 7 and 8 could be 
explained due to a slightly larger O⋯H distances (1.99–2.00 Å). The 
incorporation of the thiophenyl groups to the diazaisoindigo platform 
has significant effects on the electronic structure. It is observed a change 
in the localization of the HOMO and LUMO orbitals in the 5–8 de-
rivatives, as well as an energy increase, especially the HOMO orbital, 
with respect to 1 and 2 accompanied by a reduced HOMO-LUMO gap 
(2.81 eV in 5, 2.75 eV in 6, 2.79 eV in 7 and 2.45 eV 8 in contrast with 
3.16 eV in 1 or 3.24 eV in 2). 

Fig. 2 displays the normalized UV–vis absorption spectra in toluene 
along with the oscillator strengths of the vertical electronic transitions 
computed for compounds 1, 2, 5, 6, 7 and 8 at the TD-PBE0/6-31G* 
level of theory (including PCM solvation). Table 1 shows the absorp-
tion maximum wavelengths (λab

max) as well as the wavelengths computed 
for the most relevant vertical electronic transitions (λvert

calc). The absorp-
tion spectra of 1 and 2 include three absorption peaks centered around 
290, 335 and 500 nm, comparable to those observed in the non- 
functionalized N,N-dialkyl diazaisoindigo 9, 10 and 11 derivatives 
(Scheme S2) but shifted to lower energies [28]. As reported for a related 
molecule, the lowest energy band is weak and corresponds to a 
HOMO→LUMO transition [30]. The bands centered at about 335 nm are 
ascribed to HOMO-2→LUMO transitions while the bands centered 

around 290 nm are associated to electronic transitions involving mul-
tiple contributions. The charge transfer length (Δr) is very small for all 
the most relevant electronic transitions of 1 (Δr ≤ 0.010 Å) suggesting 
that all of them correspond to local state (LE) transitions. The assessment 
of the frontier molecular orbitals shows that Br atoms do not have a 
significant contribution to the virtual orbitals but participate in the 
occupied orbitals. Nevertheless, the symmetrical structure of 1 (qua-
si-C2h) suggests that the charge transfers from Br atoms to the 7,7′-dia-
zaisoindigo does not lead to a significant separation between the 
electron and hole centroids. On the contrary, the non-symmetrical 
structure of the mono-brominated 2 derivative leads to a large incre-
ment in the value of Δr (0.5–1.8 Å). The intramolecular charge transfer 
(ICT) character is predicted to be greater for the band centered at 287 
nm in 2. 

Regarding the 5 and 6 di-substituted derivatives, both spectra are 
identical revealing the limited influence of the position of the hexyl 
substitution on the optical transitions. Both spectra depict three ab-
sorption features located at 320, 380 and 550 nm, red-shifted compared 
to the brominated derivatives. Interestingly, the bands at 550 nm are 
weaker than the lowest energy absorption bands recorded for 1 and 2. 
Accordingly, the predicted oscillator strength for the HOMO→LUMO 
transition of 5 and 6 is smaller than that for the same transition in 1 and 
2. The HOMO orbital is delocalized on the whole π-conjugated system 
while LUMO orbital is located on the 7,7′-diazaisoindigo core (Fig. 1B). 
Thus, the charge transference from the thiophene rings to the 7,7′-dia-
zaisoindigo core results in an insignificant charge transfer length (Δr ≤
0.001 Å) suggesting the absence of separation between the electron and 
hole centroids. 

Scheme 1. a) Synthetic route of the 7,7′-DAIID derivatives 5, 6; b) synthetic route of the 7,7′-DAIID derivatives 7, 8 under Suzuki coupling conditions.  
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In case of the mono-substituted derivatives, 7 and 8, the absorption 
spectra also reveal the presence of three peaks but with a slightly 
different arrangement. Thus, both spectra exhibit peaks around 290 and 
480 nm, with an additional peak around 320 nm and 350 nm for 7 and 8, 
respectively. TD-DFT calculations predicted that the HOMO→LUMO 
transition is extremely weak (f = 0.003 and 0.001 for 7 and 8, respec-
tively) not being experimentally observed. Therefore, the lowest energy 
band is associated to a HOMO-1→LUMO transition for both compounds 
(λab

max = 480 nm) appearing blue-shifted with respect to the absorption 
bands of 1, 2, 5 and 6 attributed to the HOMO→LUMO transition (λab

max 

= 500–550 nm). Both HOMO-1 and LUMO are mainly located on the 
7,7′-diazaisoindigo core with a minor contribution of the thiophene 
rings in the HOMO-1 orbital. On the contrary, the HOMO→LUMO+1 
mainly occurs on the thiophene groups (and their linked aza-oxindole 
moiety). This electronic transition was associated to the high energy 
absorption band observed for 7 at around 292 nm. This band is red- 

shifted up to 352 nm in 8 due to the extension of the π-conjugation in 
the bi-thiophenyl group. In general, the highest charge transfer lengths 
were computed for compounds 7 and 8 (Δr = 0.4–2.5 Å). 

Fig. 2A also shows the fluorescence emission spectra of 1 and 2, a 
broad band peaking at 700 nm and red-shifted compared to the non- 
functionalized N,N-dialkyl diazaisoindigo 9, 10 and 11 derivatives. 
Regarding the rest of the substituted derivatives, they did not exhibit 
any photoluminescence in line with the low photoluminescence quan-
tum yields characteristic of many isoindigos [46]. In general, the weak 
fluorescence observed in 7,7′-diazaisoindigos is attributed to the rota-
tion around the central double bond upon excitation. This change in the 
molecular structure allows to reach a conical intersection point between 
S1 and S0 states [28,30]. In this sense, dihedral angles between 12◦ and 
18◦ have been computed in the S1 state for all the studied compounds. To 
account for the absence of fluorescence signal in 5–8, a decrease in the 
radiative rate (kr) constant in 5–8 compared to 1–2 could be considered. 

Fig. 1. (A) Optimized ground state molecular geometries at the PBE0/6-31G* level of theory including PCM solvation (toluene). Some relevant molecular parameters 
(intramolecular distances and dihedral angles) are shown. (B) Energy and shape of HOMO and LUMO orbitals calculated for 1, 5 and 8. (C) Optimized excited S1 state 
molecular geometries for 1 and 5 at the TD-PBE0/6-31G* level of theory including PCM solvation. 

Fig. 2. Normalized absorbance spectra of 1 and 2 (A) and 5, 6, 7 and 8 (B) in toluene solution. Fluorescence emission spectra of 1 and 2 (λexc = 475 nm) are also 
included in (A). Vertical bars correspond to the oscillator strength (f) computed for the electronic transitions at the PBE0/6-31G* level of theory (including 
PCM solvent). 

M.B. Martin et al.                                                                                                                                                                                                                              



Dyes and Pigments 214 (2023) 111197

5

Thus, the Strickler–Berg relation establishes that kr is directly related to 
the oscillator strength, f [47,48]. The value of f significantly decreases 
for the S0→S1 transition in the thiophene substituted derivatives (for 
instance, f is 0.15 for 1, 0.06 for 5 and 0.003 for 7). Therefore, a lower kr 
should be expected for 5–8 with respect to 1 and 2. Similar results were 
reported for a series of isoindigo derivatives in which phenyl, thienyl 
and 3,4-ethylenedioxythien-2-yl groups are attached to the same posi-
tion that the thienyl groups of 5 and 6 derivatives [46]. 

The dependence of the fluorescence emission spectrum with the 
solvent polarity was studied for compounds 1 and 2. The solubility of 
these compounds is high in non-polar solvents but very low in polar 
solvents so that we have only used CCl4, toluene, anisole, CHCl3 and 
CH2Cl2 in the solvent polarity measurements. We observed a slight red- 
shift of the maximum of the fluorescence peak when increasing the 
dielectric constant of the solvent (Fig. S2). The linear relationship is 

quite good for all solvents except for CCl4 which may be attributed to a 
specific effect in this solvent. As expected, a higher slope was found for 
the Lippert-Mataga plot of 2 (2.78 × 103 cm− 1) than for 1 (1.44 × 103 

cm− 1). Accordingly, the largest change in the dipole moment upon the 
excitation (μE-μG) was calculated for compound 2 (4.4 D for 1 and 5.8 D 
for 2, considering an effective radius of Onsager cavity of 5.17 and 4.98 
Å for 1 and 2, respectively). The change in the dipole moment obtained 
for both 1 and 2 is small in comparison with the μE-μG values typically 
reported for ICT compounds such as 1,3,5-tristyryl-s-triazine (27.8 D) 
[49], 1,3,5-tristyrylbenzene (14.1 D) [49] and its carbazole and tri-
phenylamine derivatives (14.1–21.1 D) [50], 4-styryl-1,8-naphthali-
mides (20.8–23.0 D) [51], and boradiazaindacenes (12.2–12.7 D) 
[52], among others. 

To shed light into the excited state de-activation of the studied 
molecules, femtosecond transient absorption (TA) experiments were 
performed upon excitation at 387 nm. Fig. 3A displays the TA spectra of 
1 in toluene at different time delays. The initial spectrum at 1.3 ps after 
the photoexcitation shows a positive broad band centered around 550 
nm being ascribed to excited state absorption (ESA). At increasing time 
delays, the intensity of the transient feature decreases and almost van-
ishes at 65 ps delay. The TA experiments were also performed in CHCl3 
and CH2Cl2 to investigate the influence of the solvent polarity on the 
photophysics. There is no change in the shape of the transient spectra in 
these solvents, but the kinetics are largely affected. Fig. 3B exhibits the 
decay of the ESA for 1 (λprobe = 550 nm) displaying an acceleration of 
the TA dynamics upon increasing the solvent polarity. The solvent 
dependence of the TA signals is in good agreement with that observed 
for the non-functionalized N,N-dialkyl diazaisoindigo 9, 10 and 11 de-
rivatives proving that the de-activation of the excited state of 1 should 
follow the same mechanism: a non-radiative internal conversion process 
via a conical intersection which involves rearrangement of bonds 
together with intramolecular electron transfer reactions [28,53]. 

The time profiles are fitted using mono-exponential functions giving 
time constants of 53, 21 and 12 ps in toluene, CHCl3 and CH2Cl2, 
respectively. These values resemble well the fluorescence lifetimes ob-
tained for the non-functionalized N,N-dialkyl diazaisoindigo 9, 10 and 
11 derivatives [28]. The TA spectra and kinetics of 1 and 2 are fairly 
similar (Fig. 3 and S2), confirming negligible differences in the photo-
physics of both compounds. Fig. S3A shows likewise a dominant ESA 
centered around 550 nm with a second ESA band at 375 nm. The tran-
sient decay at 550 nm of 2 in CHCl3 reveals a time constant of 23 ps 
which matches well with that value obtained for 1. 

Fig. 4A and S4A display the TA spectra of 6 and 5 in toluene upon 
excitation at λexc = 387 nm, respectively. In both cases an ESA is 
detected with a maximum around 500 nm. The shift in ESA compared to 
the brominated molecules, 1 and 2, is already a hint for a different en-
ergetic scheme. Fig. 4B and S4B show the time profiles at λprobe = 500 
nm for 6 and 5 indicating once more a fast excited state de-activation. As 
it was reported for 1, the TA dynamics decay much faster when 

Table 1 
Experimental maximum absorption wavelength (λab

max) (toluene solution). 
Wavelengths calculated for the most relevant vertical electronic transitions 
(λvert

calc) calculated at the TD-PBE0/6-31G* level of theory along with the oscillator 
strengths (f) and orbital contribution. Δr related to the charge transfer length.  

Comp. λab
max 

(nm) 
λvert

calc 

(nm) 
f Transition Main component of 

the transition 
(≥20% 
contribution) 

Δr 
(Å) 

1 500 510 0.15 S0→S1 H→L(98) 0.002  
335 336 0.54 S0→S5 H-2→L(98) 0.001  
292 266 0.68 S0→S13 H→L+1(79) 0.010 

2 491 495 0.16 S0→S1 H→L(98) 0.853  
332 329 0.53 S0→S5 H-2→L(97) 0.536  
287 258 0.51 S0→S11 H-9→L(30); H→L+2 

(26); H→L+1(21) 
1.764 

5 550a 579 0.06 S0→S1 H→L(99) 0.001  
382 393 0.36 S0→S3 H-2→L(94) 0.001  
323 312 0.78 S0→S10 H-6→L(64) 0.003 

6 550a 595 0.05 S0→S1 H→L(99) 0.001  
378 399 0.42 S0→S3 H-2→L(98) 0.001  
319 315 1.18 S0→S10 H-6→L(65) 0.005 

7 481 471 0.14 S0→S2 H-1→L(93) 1.524  
~380b 386 0.13 S0→S3 H-2→L(83) 1.971  
322 318 0.68 S0→S8 H-4→L(66); H-7→L 

(20) 
1.089  

292 300 0.36 S0→S10 H→L+1(62); H-8→L 
(20) 

0.428 

8 480 476 0.21 S0→S2 H-1→L(88) 0.954  
352 366 0.78 S0→S4 H→L+1(46); H-8→L 

(24) 
1.040  

365 0.63 S0→S5 H→L+1(48); H-8→L 
(27) 

0.920  

295 327 0.20 S0→S9 H-5→L(39); H-6→L 
(27) 

2.528  

a Very weak band. 
b Shoulder. 

Fig. 3. (A) Transient absorption spectra of 1 at different time delays after photoexcitation at λexc = 387 nm. (B) Transient absorption dynamics of 1 at λprobe = 550 
nm for three different solvents: toluene (blue circles), CH2Cl2 (green squares) and CHCl3 (red triangles). The solid lines represent the best exponential fit of the 
experimental data. 
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increasing the solvent polarity, for example 3.7, 1.66 and 1.08 ps for 5 in 
toluene, CHCl3 and CH2Cl2, respectively. 

This result strongly indicates that the same photophysical de- 
activation mechanism as in 1 and 2 operates in the 6 and 5 de-
rivatives. However, the time constants obtained from a mono- 
exponential fit of the experimental data are much shorter in 6 and 5 
compared to 1 and 2 (see Fig. 5). In fact, the fast de-activation kinetics in 
6 and 5 are comparable to those observed in isoindigo [46] despite their 
structural similarity with the non-functionalized N,N-dialkyl dia-
zaisoindigo 9, 10 and 11 derivatives. Thus, the insertion of the thio-
phenyl groups into the diazaisoindigo platform favors the ultrafast 
non-radiative internal conversion process. 

Regarding the mono substituted thiophenyl derivatives, 7 and 8, 
Figs. S5 and S6 depict the TA spectra and TA dynamics of both molecules 
in CHCl3. The transient spectra of 7 with only one thiophenyl group is 
identical to that of the other two di-substituted mono thiophenyl de-
rivatives, 5 and 6, with a ESA band in 400–700 nm visible region, and 
with maximum around 450 nm. However, the TA spectra for the 
dithiophenyl derivative, 8, display a slightly different behaviour with 
ESA peaking around 650 nm and a negative signal in the ascribed 
325–400 nm region. The latter transient feature may be assigned to the 
ground state bleach on account of spectral overlap with ground-state 
absorption. However, the TA dynamics for both mono-substituted de-
rivatives, 7 and 8, reveal similar time constants than for the di- 
substituted molecules. Fig. 5 display a comparative assessment of the 

TA dynamics and decay time constants for all molecules. On one side, 
the kinetics of 1 and 2 are similar to those of non-functionalized N,N- 
dialkyl diazaisoindigo 9, 10 and 11 derivatives when comparing the 
decay time constants of our TA measurements with those previously 
reported for time-resolved fluorescence experiments [28]. On the other 
side, the kinetics of all thiophenyl 5–8 derivatives exhibit a much faster 
excited state deactivation which could be related to an increase of the 
non-radiative rate constant. The incorporation of thiophenyl groups 
could accelerate the non-radiative deactivation through a conical 
intersection point between S1 and S0 states (the common mechanism 
attributed to diazaisoindigo derivatives). In this regard, the relative 
energy of the LUMO orbital in the isoindigo based chromophores has 
been claimed to play a key role in the efficiency of the non-radiative 
de-activation [46,54]. Thus, the increase of the LUMO energy in the 
thiophenyl derivatives can be related to a lower value of the activation 
energy of the twisting process which might explain the faster excited 
state de-activation in this family of compounds. Additionally, the 
competition between different non-radiative deactivation mechanisms 
cannot be ruled out, as proposed for isoindigo derivatives [46]. 

4. Conclusion 

In summary, we have developed different D-A-D and D-A conjugated 
triads and dyads of diazaisoindigos with thiophenyl derivatives in 5,5′- 
and 5- position of this platform. The incorporation of the electron-donor 
thiophenyl moiety in the diazaisoindigo does not lead to significant 
change of the molecular structure of the 7,7′-diazaisoindigo but the 
electronic structure is significantly altered. Important modifications 
were observed in the absorption spectra of 5–8 with respect to 1 and 2, 
attributed to the change in the energy and localization of the frontier 
orbitals. Fluorescence emission was only observed for 1 and 2, while the 
small oscillator strengths calculated for the S0→S1 transition of 5–8 
suggested that the incorporation of thiophenyl groups leads to a 
decrease of the radiative rate constant. The picosecond TA experiments 
revealed shorter time decays for the thiophenyl derivatives also indi-
cating a much faster excited state de-activation due to the twisting of the 
central double bond to reach a conical intersection between the excited 
and ground states. 
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