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� We assessed the effects of single-session transcranial static magnetic field stimulation (tSMS) over left dorsolateral prefrontal cortex (DLPFC) on
randomness.

� Randomness index on a random number generation task increased few minutes after tSMS application.
� tSMS over left DLPFC of healthy subjects can interfere with normal brain function.
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Objective: Focal application of transcranial static magnetic field stimulation (tSMS) is a neuromodulation
technique, with predominantly inhibitory effects when applied to the motor, somatosensory or visual
cortex. Whether this approach can also transiently interact with dorsolateral prefrontal cortex (DLPFC)
function remains unclear. The suppression of habitual or competitive responses is one of the core exec-
utive functions linked to DLPFC function. This study aimed to assess the impact of tSMS on the prefrontal
contributions to inhibitory control and response selection by means of a RNG task.
Methods: We applied 20 min of tSMS over the left DLPFC of healthy subjects, using a real/sham cross-over
design, during performance of a RNG task. We used an index of randomness calculated with the measures
of entropy and correlation to assess the impact of stimulation on DLPFC function.
Results: The randomness index of the sequences generated during the tSMS intervention was signifi-
cantly higher compared to those produced in the sham condition.
Conclusions: Our results indicate that application of tSMS transiently modulates specific functional brain
networks in DLPFC, which indicate a potential use of tSMS for treatment of neuropsychiatric disorders.
Significance: This study provides evidence for the capacity of tSMS for modulating DLPFC function.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Transcranial static magnetic field stimulation (tSMS) is a novel
non-invasive brain stimulation (NIBS) technique capable to modu-
late cortical excitability, cortical oscillations, and influence motor
and cognitive functions. tSMS is based on the transcranial applica-
tion of a static magnetic field (120–200 mT at 2–3 cm from the
magnet surface) (Rivadulla et al., 2014) over the skull. Recently, a
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number of studies applying tSMS over different cortical areas (e.g.,
visual, motor, supplementary motor and somatosensory cortices)
have demonstrated neurophysiological and/or behavioral effects
in healthy subjects and patients (Arias et al., 2017; Carrasco-
López et al., 2017; Dileone et al., 2018; Gonzalez-Rosa et al.,
2015; Kirimoto et al., 2020, 2018, 2014; Lacroix et al., 2019;
Lozano-Soto et al., 2018; Nakagawa et al., 2019; Nakagawa and
Nakazawa, 2018; Nojima et al., 2019, 2016; Oliviero et al., 2011;
Sheffield et al., 2019; Shibata et al., 2021; Silbert et al., 2013;
Soto-León et al., 2022). These studies support the main idea that
tSMS has general inhibitory effects by a reduction in the neuronal
excitability, and one of the proposed mechanisms for this to hap-
pen is a mechanical mechanism (Hernando et al., 2020).

On the other hand, the main functions of the dorsolateral pre-
frontal cortex (DLPFC) are inhibition, coordination modulation of
behavior, search, retrieval and always updating of relevant infor-
mation, planning, preparation and anticipation through temporal
signals, cognitive and emotional regulation and control, flexibility
to change attention and behavior as conditions change (Stuss and
Knight, 2002; Tirapu Ustárroz et al., 2012). Previous work has
shown that other non-invasive modulation techniques such as
transcranial magnetic stimulation (TMS) (Jahanshahi et al., 1998)
or transcranial direct current stimulation (tDCS) (Capone et al.,
2014) can modulate DLPFC function by evaluating this modulation
on random number generation (RNG).

One attraction of RNG tasks is their apparent simplicity that
involves several executive mental processes. RNG requires estab-
lishing the appropriate strategy, based on the selection of suitable
responses and the elimination of those that seem to break the con-
cept of subject randomness, the monitoring of the responses, hold-
ing information ‘on line’ and the possible modification of the
strategy generation (Jahanshahi et al., 1998). In particular, RNG is
strongly related to specific executive functions, such as updating
and monitoring of information, and inhibition of prepotent
responses of counting or cycling through the set of numbers
(Miyake et al., 2000). The function of the left DLPFC is the selection
of responses through the suppression of habitual or competitive
responses (Jahanshahi et al., 2000, 1998; Jahanshahi and
Dirnberger, 1999). However, DLPFC is also involved in the genera-
tion of random responses and more specifically, the left DLPFC
plays a critical role in this network by exerting an inhibitory influ-
ence over temporal–parietal cortex, in order to suppress natural
counting (Jahanshahi et al., 2000).

Here, we explored the effect of tSMS over the left DLPFC on
RNG. This task is closely linked to inhibitory control, and we
hypothesize that modifying the cortical excitability of the left
DLPFC, using tSMS, will increase the ability to generate random
number sequences, by reducing the habitual suppressive
responses. Such a demonstration could pave the way for the mod-
ulation of DLPFC function in patients with executive dysfunction,
such as Parkinson’s disease (Anzak et al., 2013; Brown et al.,
1998; Dirnberger et al., 2005) or Huntington’s disease (Aron
et al., 2003; Ho et al., 2004), or disorders characterized by random
behavior (schizophrenia, borderline personality disorder, attention
deficit/hyperactivity disorder), or addictive behavior such as gam-
bling (Salatino et al., 2022; Soyata et al., 2019).
2. Materials and methods

2.1. Participants

Twenty-seven right-handed healthy adults (8 males and 19
females) participated in this study. Their mean age was 32.74 years
(SD = 9.38; range = 20–53). The sample size was calculated with
G*Power 3.1 software, with d = 0.8, a = 0.05, power = 0.95 and a
19
loss estimate of 15%. Exclusion criteria included physical, psycho-
logical, and neurological illnesses, history of substance use or being
pregnant or in lactation period. None of them had electronic
devices, metallic implants or were under medical treatment for
any condition. All participants were informed of the protocol and
signed the written informed consent before their participation in
this study. This experimental protocol was approved by the ethics
committee of the University Hospital of Toledo (No. CEIC-810) and
conducted according to the Declaration of Helsinki.
2.2. Experimental design

We performed a double-blind, sham-controlled, cross-over
experiment. A within-subject repeated measures design was used.
All participants took part in the two conditions of RNG: a no-
stimulation control (sham stimulation) and real tSMS over the left
DLPFC. Here we tested for effect of tsms, and so we used sham
rather than opposite site where effects may have been more subtle
due to known lateralization of randomness behavior
(Vanderhasselt et al., 2009). The kind of stimulation was blinded
to the participants and experimenters. To avoid carryover effects
(Carrasco-López et al., 2017; Chen et al., 2021; Gonzalez-Rosa
et al., 2015; Oliviero et al., 2011; Sheffield et al., 2019; Vila-Villar
et al., 2022), each of these stimulations was performed in two ses-
sions on different days (at least one week apart) using the same
protocol. The performance of the second RNG is unaffected by
repeated performance or practice (Jahanshahi et al., 2006). The
order of sessions (real or sham tSMS) was randomized across par-
ticipants. Fourteen subjects started the study with the sham stim-
ulation and thirteen with the real tSMS. To evaluate if subjects can
identify the kind of stimulation received, at the end of each exper-
imental session, the subjects filled out a forced-choice question
about what type of stimulation (real or sham) they believed they
had received.

In addition, to check safety, a record of possible adverse effects
or subjective discomfort was made after the session.

Participants sat in a comfortable chair in front of the micro-
phone in a sound-attenuated room and were instructed to keep
their heads straight without moving throughout the experiment.
In each session, the RNG-tSMS was performed continuously for
approximately 24 minutes. The protocol consisted of 10 consecu-
tive runs of RNG with 30 second breaks between runs. During
the first two runs, the RNG without stimulation was performed
to determine the previous baseline. After finishing the second
run, a researcher placed the real or sham tSMS. The execution of
the next 8 runs of the task continued for approximately 20 minutes
of stimulation. The sequence of events is schematically presented
in Fig. 1a.
2.3. Transcranial static magnetic field stimulation (tSMS) over the left
DLPFC

For real tSMS we used a cylindrical NdFeB neodymium magnet
with a diameter of 60 mm, a height of 30 mm, a weight of
370 grams and a nominal force of 1.177 N equivalent to 120 kg
(Model MAG60r; Neurek, Toledo, Spain). For sham stimulation
we used a non-magnetic stainless-steel cylinder with the same
size, weight, and appearance as the real magnet (model MAG60s;
Neurek, Toledo, Spain). We used the international 10–20 system
of electrode placement to determine locations of the DLPFC, with
F3 corresponding to the left DLPFC (Herwig et al., 2003; Homan
et al., 1987) (Fig. 1b). The magnet or sham device was placed on
F3 with the aid of an ergonomic helmet (MAGdpv1.1 Neurek SL,
Toledo, Spain) specifically designed to correctly maintain stimula-
tion on the left DLPFC in skulls of different sizes (Fig. 1b). A non-
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magnetic cylinder was placed on position F4 to counterbalance the
weight of the real/sham tSMS placed at F3.

2.4. Random number generation task

On each run of the task, participants were asked to say the num-
bers 1 to 9 in random order, to the best of their ability, for 100 trials
per run. They were instructed to synchronize their responses with
a pacing beep signal presented at a rate of once every 1200 ms. The
concept of randomness was explained to the participants by the
‘‘hat” analogy used in previous studies (Jahanshahi et al., 1998).
To do this, they were told to suppose that we had written the num-
bers 1 to 9 on pieces of paper and put them in a hat. To generate a
random sequence, they would have to imagine that they took a
paper at random from the hat, said the number that appeared,
and returned it to the hat, and so on until completing the 100 trials
per run (Fig. 1c).

The equipment used to design and carry out the experiment
was a custom-made device composed of Raspberry Pi 400 con-
nected to a microphone and a breadboard that contained a buzzer.

The complete task was recorded through the device for subse-
quent analysis of the measures of randomness. All subjects were
naive to the RNG task and were not explicitly informed of the mea-
sures of randomness analyzed in the study.

2.5. Measures of randomness

A variety of measures have been used previously to quantify the
randomness of responses. Factor analysis has grouped the different
measures into three independent factors that ought to be consid-
Fig. 1. Procedure and experimental task. Each session was divided into 10 runs, each lasti
out without stimulation and the next 8 after placing the (real/sham) transcranial static ma
applied on the F3 position of the International System 10–20 of scalp electrode placeme
cylinder was placed on position F4 to counterbalance the weight of the (real/sham) tSM
auditory signal stimulus, every 1.2 seconds, the participants had to say out loud a numbe
Intertrial Interval.
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ered when relating the production of random responses to the con-
cept of randomness: repetition, cycling, and seriation (Ginsburg
and Karpiuk, 1994; Peters et al., 2007). To further corroborate
our findings, we obtained measures of each of these factors using
procedures from previous studies (Ginsburg and Karpiuk, 1994;
Jahanshahi et al., 1998). (See supplementary material).

Randomness index: entropy and correlation function
Finally, to facilitate the interpretation of the effect of the tSMS

on the DLPFC, we calculated two additional measures relating to
the generation of random sequence, the entropy (Shannon, 1948)
and the correlation function (Cf) (Barbasz et al., 2008). To this
end, we calculated a randomness index (RI) as the ratio between
entropy (H) and Cf.

The entropy, the average symbol information, of a finite
sequence x of N symbols repeatedly chosen from a set of n ele-
ments is given by H(x) = �Ri pilog2(pi), where pi is the probability
of an item i (i = 1. . .n) in the finite sequence. It takes a maximal
value when probabilities of all items are equal, converging to
Hmax = log2 (n). High entropy values could therefore indicate highly
random sequences. As in previous RNG studies using entropy
(Demir and Ergün, 2018; Gauvrit et al., 2016; Vandierendonck,
2000), this metric does not capture the structure of a sequence,
but depends on the relative frequency of the item in a sequence.
Entropy alone, therefore, is not sufficient for assessing randomness.
Cf has been put forward to overcome this inconvenience (Barbasz
et al., 2008). The Cf index measures the distance between two ele-
ments of a finite sequence, x, of N symbols that are repeatedly cho-
sen from a set of n elements. Cf is given by Cf(x) = Ri E(i)/N, where E
(i) is a number of pairs of an identical event separated by i
(i = 1. . .N-1) position at the sequence with the N number of ele-
ng 2 minutes, with 30-second rest intervals between runs. The first two were carried
gnetic field stimulation (tSMS) helmet (a). Stimulation with tSMS, real or sham, was
nt, corresponding to the left dorsolateral prefrontal cortex (DLPFC). A non-magnetic
S placed at F3 (b). Random number generation (RNG): after the appearance of the
r between 1 and 9 to generate a random sequence (of 100 numbers per run) (c). ITI:
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ments. It takes a maximal value when all items are the same and
this could indicate that it is the least random sequence. We calcu-
late the RI (ratio between H and Cf) to evaluate the performance of
the RNG to quantify the effects of the tSMS on DLPFC-dependent
performance in RNG.
2.6. Statistical analysis

The randomness measures described previously were calcu-
lated for each subject and session. More concretely, we calculated
the measurements for each of the 10 blocks (of 2 minutes) of the
task.

Randomness index: entropy and correlation function
The H and Cf for each of the 10 blocks of task was calculated and

normalized by the second baseline block (T2). The normalized
entropy index and normalized correlation function were used to
calculate the RI.

To analyze the effects of real or sham tSMS on the left DLPFC, RI
was analyzed in a two-way repeated measures ANOVA, with STI-
MULATION (real or sham) and TIME (9 time points, T2. . .T10) as
factors. In case of significant effects, post hoc paired t-tests were
performed using a Bonferroni correction or follow-up ANOVAs.
The Greenhouse-Geisser correction was applied when the spheric-
ity assumption was violated. Moreover, the average of the 8 inter-
vention times (T3. . .T10) was calculated in the two groups and
compared with a t-test to study the overall effect of tSMS on the RI.

As a check that the RNGmeasures are not affected by practice or
by repeated performance, RI of sham sessions were analyzed in a
mixed ANOVA with SESSION (SESSION1/SESSION2) as between
subject factor and TIME (9 time points) as repeated measures fac-
tor. In case of significant effects, the post hoc paired t-tests were
performed using a Bonferroni correction or follow-up ANOVAs.
Fig. 2. Mean values over time of Entropy (a), Correlation function (b), Randomness Index
p < 0.05 t-test. Error bars = SEM; RI: Randomness index; H: Entropy index; Cf: Correlati
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The Greenhouse-Geisser correction was applied when the spheric-
ity assumption was violated.

Finally, the sensation of the participants (real or simulated) was
evaluated using the v2 test. In addition, we tested for a difference
in reaction times between the two groups (averaged over the 8
intervention times, T3. . .T10) using a paired t-test. For the statisti-
cal analyses, the JASP version 0.16.1 software was used, and they
were performed blind to the stimulation condition of the partici-
pants. Results were considered significant at p < 0.05.
3. Results

The experimental procedure was well tolerated and none of the
subjects needed to interrupt or terminate the session due to side
effects. Subjects were blind to stimulation type received (real,
sham) and forced choice questioning at the end of session did
not show significantly correct identification of the real tSMS vs
sham sessions (v2 = 0.681, p = 0.409). More specifically, 48% of
subjects got the type of stimulation correct when using real stim-
ulation and 63% when using simulated stimulation.

3.1. Effects of tSMS on the randomness index

The evolution of the entropy and correlation function over time
was different for the real tSMS and sham tSMS groups. The entropy
in the real group was overall higher than in the sham group
(Fig. 2a). The correlation function index, Cf, also shows a clear dif-
ference between the two groups, with lower values in the sham
group, which would indicate a greater randomness for the real
group (Fig. 2b).

The effects of real and sham tSMS for the randomness index (RI)
are shown in Fig. 2 (c and d). For the RI, the two-way repeated mea-
(c), grand average over all intervention times (T3. . .T10) of Randomness Index (d). *
on function index; tSMS: transcranial static magnetic field stimulation.
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sured ANOVA showed significant effects for STIMULATION (F[1,
26] = 5.121, p = 0.032) and for the interaction STIMULATION*TIME
(F[8, 206] = 2.482, p = 0.014). Post hoc analysis revealed significant
differences between baseline and 5–7 minutes after stimulation
started (T5) for real tSMS (t = -4.181, pbonf = 0.006) (Fig. 2c). When
averaging all intervention times, we can see a significant difference
between the two groups (t test: t[26] = -2.469, p = 0.020), having a
higher RI for the intervention with real tSMS (Fig. 2d).

RI was not affected by the repetition of the task. RI of the sham
group, showed no significant differences between the first and sec-
ond session of the study (SESSION*TIME: (F[8, 200] = 0.916,
p = 0.504).

Regarding reaction time, the sham group had longer reaction
times than the real group (0.258 ms and 0.254 ms respectively)
without a significant statistical difference (t test: t[27] = 0.393,
p = 0.697).
4. Discussion

In this study, we examined the effects produced by tSMS over
the left DLPFC on randomization measures of RNG task. We report
that tSMS over the left DLPFC for 20 minutes increases the random-
ness of participants’ responses over a 20 minute period after
stimulation.

More specifically, we evaluated the effects of the tSMS over the
left DLPFC, which has previously been implied in the generation of
random responses using transcranial magnetic stimulation
(Jahanshahi et al., 1998). For the purpose of comparison with pre-
vious work, we chose to measure the effects of tSMS on the perfor-
mance of a RNG task. The RNG task is a simple task that involves
several cognitive functions and can be evaluated from different
measures of randomness. The measures of entropy and correlation
function relate to randomness, chaos and complexity within
sequences of information, and enable quantification of the ran-
domness index through these mathematical quantities, rather than
more heuristic measures of performance in RNG tasks. Our results
suggest that tSMS has the capacity to transiently alter DLPFC func-
tion. Previous work investigating the potential of tSMS for modu-
lating DLPFC function has yielded varied results. For example,
Watanabe et al. (2021) observed that applying tSMS for 30 minutes
over the left DLPFC did not affect performance in a Go/noGO task
(Watanabe et al., 2021). On the other hand, tSMS over the left
DLPFC decreased performance in a working memory n-back task
without affecting the reaction times (Chen et al., 2021). With
respect to the RNG task, random number generation in human sub-
jects can be accompanied by lateral head turns and eye position
(Loetscher et al., 2010, 2008). As for eye movement we have no
control, the participant was allowed to move his eyes freely, with
that measure we could have discussed the modulation of the neu-
ral mechanisms that Loetscher et al. (2010) mention in the conclu-
sion of their paper.

Our main results are that the tSMS on the DLPFC has affected
the RI in such a way that the sequences generated in the tSMS
group obtained a higher RI related to a higher randomness of the
sequence. The effect of tSMS on this index was observed within a
few minutes after the start of stimulation.

Our results align with the effects on RNG of other NIBS tech-
niques applied over the DLPFC. For example, Jahanshahi et al.
(1998, 1999) studied the effect of the application of short rTMS
trains on the left DLPFC and observed a change in the pattern of
count by increasing the usual count in steps of one and decreasing
the count by two (Jahanshahi et al., 1998). Other work using tDCS
over left DLPFC observed that the counting (say numbers in order)
increases after anodal stimulation – reflecting a reduced capability
of generating random sequences - compared to cathodal stimula-
22
tion (Capone et al., 2014). Under the assumption that anodal tDCS
increases cortical excitability within the targeted brain region,
these results would be the opposite effects we observed in our
study with tSMS – which has been shown to predominantly
decrease cortical excitability (Dileone et al., 2018; Gonzalez-Rosa
et al., 2015; Lozano-Soto et al., 2018; Oliviero et al., 2011). While
direct comparison of the effects of different NIBS techniques is
fraught with complication, these results indicate that tSMS may
provide a viable alternative for modulating specific behaviors
underpinned by DLPFC function. One advantage of tSMS is its
capacity for perfect sham control (Carrasco-López et al., 2017;
Gonzalez-Rosa et al., 2015; Oliviero et al., 2011), as showcased here
by the inability of participants to identify real versus sham stimu-
lation, in our double-blind experimental design. This may be of
benefit in tasks where the sensory effects of TMS or transcranial
direct and alternating current stimulation could complicate the
interpretation of results (Bergmann and Hartwigsen, 2021; He
et al., 2020).

A deficit in inhibitory control is the main problem in several
neuropsychiatric disorders (Bénard et al., 2019; Perry and Carroll,
2008; Spillane et al., 2010; Watanabe et al., 2017, 2016). Inhibitory
control can be learned, trained and improved, just like other cogni-
tive skills (processing, sequencing, attention). In addition, inhibi-
tory control could also be improved or reduced by non-invasive
brain stimulation techniques (including tSMS). This study is a
starting point in the translation of this new, non-invasive stimula-
tion technique to clinical questions, but before reaching the end,
studies will have to be carried out to correctly establish the treat-
ment regimen (stimulation time and number of sessions).

5. Conclusion

In the present study we evaluated the effects of tSMS on the
randomness measure of a RNG task by applying tSMS over the left
DLPFC of healthy subjects. We confirmed that tSMS over the left
DLPFC has behavioral consequences in healthy humans. The tSMS
over the left DLPFC increased the capability of generating a random
sequence by increasing the randomness index. Thus, we conclude
that focal static magnetic fields can interfere with normal brain
function, offering a novel technique that is both portable and safe
to influence human brain activity and behavior.
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