
 Eindhoven University of Technology

MASTER

Integrating enhanced slot-shifting in μC/OS-II

Ramachandran, Gowri Sankar

Award date:
2011

Awarding institution:
Mälardalen University

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/64c06048-4e07-44d5-9a4f-6b5cd6940366

Integrating enhanced slot-shifting in
µC/OS-II

Gowri Sankar Ramachandran
grn09001@student.mdh.se

School of Innovation, Design and Engineering
Malardalen University

Sweden

In cooperation with:
Chair of System Architecture and Networking

Department of Mathematics and Computer Science
Eindhoven University of Technology

The Netherlands

Supervisor:
Dr. Damir Isovic
damir.isovic@mdh.se

Remote Supervisor:
Prof. Dr. Johan J. Lukkien

j.j.lukkien@tue.nl

Tutor:
Ir. Martijn van den Heuvel
m.m.h.p.v.d.heuvel@tue.nl

August 25, 2011

Acknowledgement

This work would not have been possible without the support of kind people around me. I
have worked with great people during this work. I have learned a lot from each and every
individual. It is a pleasure to convey my gratitude to all those who helped and influenced me
during this work.

I am grateful to my supervisor at MDH, Dr. Damir Isovic for sending me to TU/e and for
supervising my work from Sweden. Thanks for all your support, encouragement and the
useful discussions during my entire study period in MDH (Sweden) and as well as in TU/e
(Netherlands).

A special thanks to my supervisor at TU/e, Prof. Dr. Johan J. Lukkien for giving me this
opportunity to work in TU/e. Without your valuable advises, encouragements and the useful
discussions, this work could not have been achieved.

I thank my daily supervisor at TU/e, Ir. Martijn van den Heuvel, for all his support, en-
couragement and valuable suggestions. A special gratitude for taking your time to review my
thesis. I wish you all the very best for your doctoral studies.

I would also extend my gratitude to Dr. Reinder J. Bril for his valuable suggestions at the
initial stages of this work. I am grateful to Ir. Mike Holenderski for helping me out with
Grasp visualization tool and for his useful inputs during the various stages of this work. I
thank everyone in SAN group for creating a good working environment and an enjoyable time.

Last but not least, a special thanks to my family and friends for supporting me during my
entire study period.

1

Abstract

The growing complexity of embedded applications poses new challenges in the application
development phase. The time-critical nature of the embedded applications leads to the use
of an Real-Time Operating System (RTOS). Typically in a RTOS, applications are divided
into a small number of concurrent functional units called tasks. The execution of tasks is
accomplished through the scheduler of a RTOS. The job of the scheduler is to pick a task for
execution using a scheduling mechanism. The existing scheduling mechanisms handles tasks
with only a specific set of constraints such as period and deadline.

However, applications may have a set of more complex constraints such as precedence relations
between tasks and non-uniform arrival patterns of tasks. Although time-triggered schedulers
can solve all these constraints off-line and scheduling decisions are also made off-line, the
disadvantage of this approach is that it requires a complete knowledge of tasks and their con-
straints. Event-triggered schedulers partially require knowledge of tasks and their constraints,
but these can handle dynamically arriving tasks with run-time mechanisms and the scheduling
decisions are made online. The combination of time-triggered and event-triggered scheduler
is suitable for dealing with tasks with complex constraints. Complex task constraints can
be resolved during the off-line preparation phase. During run-time, those resources that are
unused by the off-line guaranteed tasks can be used for the execution of dynamically arriving
tasks.

The slot-shifting [11, 15] scheduling technique handles mixed task sets with complex con-
straints by exploiting the advantages of the time-triggered and the event-triggered scheduling
paradigms. In the year 1995, Fohler [11] proposed slot-shifting scheduler to deal with pe-
riodic and sporadic tasks. Subsequently, in the year 2009, Isovic and Fohler [15] extended
slot-shifting scheduling algorithm to deal with periodic, aperiodic and sporadic tasks. In
this work, we consider the implementation of the enhanced slot-shifting scheduling algorithm
presented in [15].

We integrated slot-shifting scheduling in a off-the-self RTOS, µC/OS-II [18]. The run-time
mechanisms are derived from case-studies and subsequently a design of the run-time mecha-
nisms targeted at small micro-kernels is presented, i.e. interval tracking, task management,
WCET monitoring and (online) admission control. The static properties of a slot-shifted
scheduler are extracted from [15] and used in the design phase to regulate the run-time be-
havior of slot-shifting.

The slot-shifting scheduling algorithm uses Earliest-Deadline-First (EDF) [21] scheduling of
tasks. We implemented an EDF scheduler in µC/OS-II, on top of the default fixed-priority
scheduler of µC/OS-II RTOS. The performance of the EDF scheduler is compared with the
default scheduler of µC/OS-II, Fixed-Priority Scheduler (FPS). The event-handling overhead

2

of the EDF scheduler is approximately 15% higher than the FPS, assuming the distributed
arrivals of tasks (one task arrival per slot). Next, we added support for background scheduling
in interval-based schedulers, resulting in a full run-time system with support for slot-shifting.

The slot-shifting scheduling algorithm is evaluated and its results are discussed. We used
OpenRISC 1000 hardware platform to test our implementation. Furthermore, the slot-shifting
scheduling algorithm is evaluated with the FPS scheduler [10] and the results are compared
with the slot-shifting with the EDF scheduler [11, 15]. The result indicate that the run-time
overhead of slot-shifting is approximately 26% high compared to a standard fixed-priority
scheduler, assuming a distributed arrivals of tasks. The memory overhead of the slot-shifting
scheduler increases with the number of jobs in the hyper-period of periodic tasks.

The slot-shifting scheduling algorithm is suitable for embedded systems with the complex task
constraints. With an improvement in a guarantee test for aperiodic tasks, the predictability
and performance of the slot-shifting scheduler can be enhanced. However, we consider such
improvements as a future work. Finally, the work is concluded with suggestions for future
improvements and extensions.

3

Table of Contents

Abstract . 2

Table of contents . 4

Glossary . 8

1 Introduction 9

1.1 Context and background . 9

1.2 Motivation . 11

1.3 Problem description . 12

1.4 Approach . 12

1.5 Contributions . 12

1.6 Overview . 13

2 Related Work 14

2.1 Time-triggered versus event-triggered scheduling 14

2.1.1 Time triggered systems . 14

2.1.2 Event-triggered systems . 15

2.2 Time-triggered schedulers . 15

2.3 Event-triggered schedulers . 16

2.4 Hybrid schedulers . 16

2.5 Slot-shifting: EDF versus FPS . 16

2.6 Summary . 17

3 System model 18

3.1 Assumptions and boundary conditions . 18

3.2 Time model . 18

3.3 Task model . 18

3.4 Static system properties . 19

3.5 Interval invariants . 22

4

3.6 Summary . 22

4 Slot-shifting revisited 23

4.1 Evolution of Slot-shifting . 23

4.2 Slot-shifting - case study . 24

4.2.1 Off-line preparation . 24

4.2.2 Online scheduling . 25

4.3 Resource reclaiming . 27

4.4 Borrowing and lending of the spare capacity 27

4.5 Run-time mechanisms for Slot-shifting . 27

4.5.1 Tracking intervals . 27

4.5.2 WCET monitoring . 28

4.5.3 Task attributes . 28

4.5.4 Spare capacity monitoring . 28

4.5.5 Guarantee algorithm . 28

4.5.6 Scheduling . 28

4.6 Summary . 29

5 The µC/OS-II and OpenRISC 1000 30

5.1 Task management . 30

5.2 Timer management . 30

5.3 Scheduling . 31

5.4 Proprietary support for relative timed-events 31

5.5 OpenRISC 1000 port . 32

5.6 Profiling . 32

5.7 Grasp extension . 32

5.8 Summary . 32

6 Design and implementation considerations for Slot-shifting 33

6.1 Tracking intervals . 33

6.2 Task attributes . 37

6.3 Mixed task support . 37

6.3.1 Periodic task handling . 38

6.3.2 Aperiodic task handling . 39

6.3.3 Soft aperiodic task handling . 39

6.3.4 Sporadic task handling . 40

5

6.4 WCET Monitoring . 40

6.5 Spare capacity monitoring . 41

6.6 Scheduling . 41

6.7 Online guarantee algorithm . 42

6.8 Event Handlers . 42

6.8.1 Interval arrival event . 43

6.8.2 Interval end event . 45

6.8.3 Task arrival event . 45

6.8.4 Task completion event . 46

6.9 API support for slot-shifting in µC/OS-II . 46

6.10 Summary . 47

7 Results and evaluations 49

7.1 Grasp visualization . 49

7.2 Slot-shifted scheduling of periodic tasks . 50

7.2.1 Slot-shifting without resource reclaiming and borrowing mechanisms . 50

7.2.2 Slot-shifting with resource reclaiming mechanism 51

7.2.3 Slot-shifting with borrowing and lending mechanism 53

7.2.4 Slot-shifting with periodic tasks with multiple instances within a hyper-
period . 55

7.3 Slot shifted scheduling of periodic and sporadic tasks 57

7.4 Experimental setup . 59

7.5 Performance measurement: EDF versus FPS 60

7.5.1 Tick ISR execution time . 61

7.5.2 Scheduling overhead . 63

7.6 Implementation complexity of Slot-shifting 64

7.6.1 Run-time complexity . 64

7.6.2 Memory complexity . 68

7.6.3 Memory complexity of EDF . 69

7.7 Discussions . 69

7.7.1 On the complexity of online acceptance test 69

7.7.2 On the absence of critical slots during run-time 70

7.7.3 On the management of misbehaving tasks 70

7.8 Summary . 71

8 Conclusions and future Work 72

6

8.1 Conclusions . 72

8.2 Future work . 73

8.2.1 Increasing the RTOS predictability . 73

8.2.2 Performance enhancement of RELTEQ 74

8.2.3 Resource sharing between aperiodic and sporadic tasks 74

8.2.4 Slot-shifting on distributed nodes . 74

References 77

A A case study : slot-shifting with periodic tasks 78

B RELTEQ Revisited 85

B.1 How to create a new RELTEQ queue? . 85

B.2 How to activate/deactivate a new RELTEQ queue? 86

B.3 How to create a new RELTEQ event? . 86

B.4 How to insert and delete an event from a queue? 86

B.5 RelteqTimeTick function . 87

B.6 Discussions . 87

C Slot-shifting cook book 88

C.1 Programming API . 88

C.1.1 EDF scheduler . 88

C.1.2 Slot-shifting scheduler . 88

C.2 Configuration details . 90

C.2.1 Configuration of EDF scheduler . 90

C.2.2 Configuration of slot-shifting scheduler 90

D Software Versions 91

7

Glossary

Notation Description Page
List

ANSI American National Standards Institute 30
API Application Programming Interface 30

CAN Controller Area Network 16
COTS Commercial Off-The-Shelf 12

EDF Earliest-Deadline-First 2

FPS Fixed-Priority Scheduler 2

GNU GNU’s Not Unix 32

ICB Interval Control Block 33
ISR Interrupt Service Routine 31

RAM Random Access Memory 68
RELTEQ RELative Timed-Event Queues 15
RISC Reduced Instruction Set Computing 32
RM Rate-Monotonic 61
ROM Read-Only Memory 68
RTOS Real-Time Operating System 2

TCB Task Control Block 28

WCET Worst-Case Execution Time 21

8

Chapter 1

Introduction

The time-sensitive nature of embedded applications requires a RTOS to guarantee a timely
predictable execution. RTOSes are widely used in many application domains, for example:
avionics, automotive, consumer applications etc. These applications are divided into con-
current functional units, called tasks. The purpose of the real-time operating system is to
ensure both the logical and temporal correctness of operation between concurrent tasks. In
this thesis, we focus on the scheduling of tasks using the slot-shifting scheduling algorithm
in µC/OS-II RTOS, a real-time operating system for embedded systems. µC/OS-II RTOS is
used as a research vehicle in System Architecture and Networking(SAN) group of Eindhoven
University of Technology.

In this section, we start with a brief introduction to the slot-shifting scheduling algorithm
and we motivate its role in context of the real-time operating systems. Next, we describe the
problem of integrating slot-shifting in a commercial RTOS and we present a sequence of steps
to be carried out to achieve this goal. Finally, we present the contributions of this work and
conclude this chapter with an overview of the thesis.

1.1 Context and background

In real-time operating systems, the selection of a task for execution is carried out by a schedul-
ing strategy. Most of the real-time scheduling strategies are targeted at a specific set of task
constraints. Time triggered scheduling provides a method in which activities are initiated at
predefined points in time. All the complex constraints are typically assumed to be resolved
off-line and during the off-line scheduling phase a schedule is produced in the form of a dis-
patching table. During run-time, the schedule represented in the table is followed. Based on
the system time and the information available at the look-up table, tasks are dispatched for
execution during run-time. This form of scheduling is also referred to as the static scheduling,
the off-line scheduling or the table-driven scheduling. Time-triggered scheduling is predictable
with low run-time overheads, since all the system activities are planned upfront. The down-
side of this scheduling algorithm is its low resource utilization due to the over-dimensioning
of resources to accommodate for worst-case arrivals of sporadic activities. Furthermore, in-
cluding of a new task after deployment of the system requires a new design of the dispatching
table.

9

In case of the event triggered scheduling, activities are initiated by the occurrence of a par-
ticular event. The scheduling decisions are made during run-time. Scheduling is performed
based on the priority of a task or the deadline of a task. This type of scheduling is also referred
to as online scheduling or dynamic scheduling. Event-triggered scheduling is flexible, but it
requires a strict task model with known periodic workloads mapped onto tasks which are
relatively independent. Based on the task attributes, priorities are assigned to tasks, e.g. the
priority of the task is chosen based on its period with the Rate-monotonic-scheduling [19], or
its deadline with Deadline-monotonic-scheduling [20]. Although the down-side of this schedul-
ing algorithm is its run-time overhead compared to table-driven scheduling as the schedule
is generated dynamically during run-time, fixed priority scheduling of tasks is the de-facto
standard in industry.

Slot shifting proposes a method to schedule mixed task sets by combining time-triggered
scheduling and event-triggered scheduling [15, 11]. In other words, the slot-shifting schedul-
ing strategy exploits the advantages of time-triggered and event-triggered scheduling. After
preparing a task set during the off-line scheduling phase for inclusion in a priority-based
setting, we can distinguish tasks as periodic, aperiodic and sporadic.

Typically, these tasks are classified into three categories based on their arrival patterns. A
task which arrives with strictly regular time periods are called periodic tasks. Figure 1.1
shows the periodic task with the time-line. In this example, the periodic task is having a
period of 50 time units. Hence, it arrives once every 50 time units.

0 50 100 150 200

Figure 1.1: Periodic task.

A task which arrives with irregular time intervals is defined as an aperiodic task. An aperiodic
task can be activated by a external event. Such tasks are activated at random instances. An
example of an aperiodic task is depicted in Figure 1.2. The arrival pattern of the aperiodic
task is irregular.

0 50 100 150 200

Figure 1.2: Aperiodic task.

Unlike periodic tasks, a sporadic task can arrive at any moment in time, but consecutive
instances are separated by a known minimum inter-arrival time. Figure 1.3 presents a sporadic
task with a minimum inter-arrival time of 50 time units. There should be at least 50 time
unit interval between each sporadic request. It has been shown in literature that in the worst

10

case these tasks exhibit a periodic behavior [6].

0 50 100 150 200

Figure 1.3: Sporadic task.

In complex distributed systems, these tasks are distributed over multiple nodes. Due to the
dependencies between tasks running on various nodes, dynamic (online) scheduling of tasks
becomes challenging. The slot-shifting technique addresses scheduling of tasks in a distributed
setting. In such a distributed setting, the dependencies between tasks running on multiple
nodes are resolved off-line in a distributed setting. The focus of this work is the run-time
support for a single-node, which is eventually part of a distributed system.

1.2 Motivation

As we discussed in the previous section, embedded applications constitute a mixed set of tasks
with various constraints. On the one hand, standard timing constraints such as periods and
deadlines must be preserved as part of the functional requirements. On the other hand, non-
temporal constraints such as reliability, performance are important factors in the realization of
such systems. Handling of such complex task sets therefore becomes challenging on platforms
with limited run-time support.

Existing scheduling techniques are targeted towards specific application constraints. For in-
stance, time triggered schedulers are suitable for scheduling (strictly) periodic tasks, e.g audio
and video sampling, periodic monitoring of the temperature etc. Since the schedule is gener-
ated off-line, only tasks with known attributes such as period, deadline and execution time
can be scheduled. However, in many embedded systems, one or more of these attributes
may be unknown upfront. The event-triggered scheduling algorithms are capable of handling
tasks with known attributes, along with the dynamically arriving tasks, after an online ad-
mission test. The dynamic events can also be handled in time triggered schedulers by the
polling approach, at the expense of inefficient use of system resources, since polling requires
periodic checking for the arrival of events with at least double the speed of the sampling
frequency. Event-triggered scheduling with interrupts is therefore more efficient as compared
to the time-triggered scheduling with polling for handling dynamic events.

The introduction of the slot-shifting scheduling strategy in a real-time operating system allows
efficient handling of mixed task sets, by exploiting the benefits of both the time triggered
scheduling and the event triggered scheduling techniques. Periodic and sporadic tasks are
guaranteed off-line and the slack time in the system can be used to admit dynamic load
during run-time.

The slot-shifting scheduling strategy makes use of the EDF scheduling algorithm. EDF is
known for the better resource utilization compared to fixed priority scheduling algorithms.
The use of EDF scheduling in slot-shifting therefore enables a better resource utilization

11

compared to the fixed-priority scheduling.

1.3 Problem description

The complex nature of real-time embedded system leads to applications with complex task
constraints. In this assignment, we investigated the slot-shifting scheduling technique to deal
with mixed task sets. Most of the Commercial Off-The-Shelf (COTS) RTOSes only have
limited support for the scheduling of mixed task sets. COTS RTOSes support either the time
triggered scheduling or the event-triggered scheduling. Real-time operating systems such as
OSEK-OS [22] and Rubus OS [5] support both the time-triggered scheduling and the event-
triggered scheduling techniques. However, both do not allow to reallocate off-line allocated
slots to enable a more efficient handling of dynamic events. The slot-shifting scheduling
combines the time-triggered scheduling and the event-triggered scheduling. In addition, it
requires dedicated run-time mechanisms to dynamically reallocate off-line scheduled slots. To
our knowledge, there are no COTS RTOSes available in the market with the support for the
slot-shifting scheduling algorithm. Our goal is to design and implement the suitable run-time
mechanisms, for scheduling of tasks using slot-shifting, and investigate the feasibility of this
approach by evaluating its run-time overheads.

1.4 Approach

The first step is to compare the enhanced slot-shifting scheduling strategy proposed by Isovic
and Fohler [15], with other scheduling approaches. The aim is to implement the slot-shifting
scheduling strategy in the µC/OS-II RTOS. Secondly, we identify the run-time mechanisms
that are essential for the integration of slot-shifting. Thirdly, we carry out the design of
the run-time mechanisms before starting with implementation. Fourthly, the slot-shifting
scheduling strategy is implemented in the µC/OS-II. Finally, the performance of the slot-
shifting scheduling technique is evaluated.

1.5 Contributions

The contributions of this thesis are as follows:

• We identify the slot-shifting run-time entities for

1. The design and implementation of an interval tracking mechanism.

2. The design and implementation of mixed task handling mechanism.

3. The design and implementation of the EDF scheduler within µC/OS-II.

• The support for borrowing and lending of spare capacities is implemented to deal with
the early arriving periodic tasks.

• We extend the mechanisms for dynamic resource reclaiming:

12

1. Isovic and Fohler [15] present a resource-reclaiming mechanism for aperiodic tasks,
which was implemented in a simulator. We implemented their resource-reclaiming
for aperiodic tasks in a real RTOS rather than in a simulator.

2. The resource-reclaiming mechanism is extended to deal with the early completion
of other (periodic and sporadic) tasks.

3. The design and implementation of the dynamic resource-reclaiming mechanism.

• We evaluated

1. The performance of the EDF scheduler in terms of event handling overhead and
its performance is compared with a FPS.

2. The performance of the slot-shifting scheduler in terms of event handling and
memory overhead.

• We extended the Grasp [13] visualization tool with the support for the slot-shifting. This
tool is used to visualize events from instrumented code running on a micro-controller.

1.6 Overview

In this chapter, the context, the motivation and the goal of our work is briefly described. The
rest of this thesis is organized as follows:

Chapter 2 provides an high-level overview of time-triggered and event-triggered schedulers.
We give an overview of existing operating systems with the support for the time-triggered
schedulers and event-triggered schedulers. We also discuss operating systems with the support
for a combination of time-triggered and event-triggered scheduling.

Chapter 3 presents the task and the time model used in this work. We derive the static
system properties from the slot-shifting technique proposed in [15].

Chapter 4 discusses the slot-shifting scheduling technique in detail. The principle of slot-
shifting is presented with an example task set. The required run-time mechanisms are iden-
tified for the integration of slot-shifting in COTS RTOS.

Chapter 5 provides information about µC/OS-II RTOS and the OpenRISC platform. We
briefly introduce the tooling and some of the extensions to µC/OS-II developed in the SAN
group.

Chapter 6 presents the design considerations for the run-time mechanisms discussed in Chap-
ter 4. We propose various design alternatives for the integration of slot-shifting in a COTS
RTOS.

Chapter 7 discusses the results of the slot-shifting scheduler. Slot-shifting uses EDF for the
scheduling of tasks. We present an evaluation based on measured results for our implemen-
tation of EDF and a de-facto FPS evaluation is presented. The implementation complexity
of the slot-shifting is also discussed in detail.

Chapter 8 concludes this thesis and outlines directions for future work.

13

Chapter 2

Related Work

The integration of slot-shifting in the µC/OS-II requires support for both the time-triggered
scheduler and the event-triggered scheduler. The comparison between time-triggered and
event-triggered schedulers are presented in Section 2.1. Section 2.2 presents RTOSes with
support for time-triggered scheduling. RTOSes with support for the event-triggered schedul-
ing are discussed in Section 2.3. In the slot-shifting algorithm, a time-triggered scheduler and
a event-triggered scheduler are combined to result in a hybrid scheduler. Section 2.4 presents
the RTOSes with the support for a hybrid scheduler. Section 2.5 discusses slot-shifting with
FPS and EDF.

2.1 Time-triggered versus event-triggered scheduling

The factor influencing the decision on the time-triggered or event-triggered scheduling can be
viewed in terms of the non-functional factors such as analyzability, predictability, testability,
extensibility, fault tolerance and resource utilization. These factors are discussed extensively
in [16] and further analyzed in [27].

2.1.1 Time triggered systems

Time-triggered systems are those that react to passage of time, i.e., all activities are initiated
at predetermined points in time. Real-time systems of this kind are time triggered in the
sense that their overall behavior is globally controlled by a recurring clock tick [14].

The time-triggered scheduler can be viewed as follows with the factors described above:

• Analyzability: Off-line analysis results in a statically computed schedule based on the
given temporal constraints.

• Predictability: Follows the statically computed schedule, so the current state of the
system can be predicted at the given time.

• Testability: Assuming the worst-case behavior of tasks, formal techniques can be used
to ensure correct behavior.

14

• Extensibility: Addition of a new task requires complete recalculation of the static
schedule.

• Fault tolerance: State synchronization with redundant nodes is easily achievable.

• Resource utilization: With aperiodic and sporadic events, the polling for events
utilizes additional resource.

2.1.2 Event-triggered systems

In event-trigged systems all activities are carried out in response to relevant events external
to the system, e.g., a sensor generates an interrupt which triggers a certain task. Tempo-
ral control is enforced from the environment onto the system in an unpredictable manner
(interrupts) [14].

The event-triggered scheduler can be viewed as follows:

• Analyzability: Response time analysis is performed to
ensure proper behavior during run-time.

• Predictability: Lack predictability as the scheduling decisions are made during run-
time, and the occurrence of sporadic and aperiodic events affects the predictability.

• Testability: Assuming the worst-case behavior of tasks, formal techniques can be used
to ensure correct behavior.

• Extensibility: Response time analysis must be performed.

• Fault tolerance: Hard to synchronize with redundant nodes and may require addi-
tional communication between nodes.

• Resource utilization: Sporadic and aperiodic events can be handled with better
resource utilization.

The choice of the scheduler for the application can be decided based on the factors presented
above. Scheler and Schroeder-Preikschat [27] discuss more about time-triggered and event-
triggered schedulers and they present methods to migrate between each other. However, in
this work, we focus on the combination of the time-triggered and the event-triggered scheduler
to schedule mixed task sets.

2.2 Time-triggered schedulers

Real-time operating systems such as MARS [9], OSEKTime [23] supports the time-triggered
scheduling. All these operating systems support the time-triggered scheduling by following
a schedule presented in the form of a table. During run-time, the dispatcher is invoked to
execute the tasks.

In this work, we are looking at two alternative approaches for the implementation of a time-
triggered scheduler. One approach is to use the RELative Timed-Event Queues (RELTEQ)

15

[12] extension to schedule the time-triggered tasks. An other approach is to integrate a
time-triggered scheduler with a dispatcher and a representation of an off-line schedule.

2.3 Event-triggered schedulers

In a event-triggered system, multiple interrupts are handled during run-time [24]. In these
kind of systems, interrupts can come from a timer or an other hardware device, e.g. receiving
messages from a Controller Area Network (CAN) and other external peripherals. A system
with an event-triggered scheduler can handle dynamically arriving events. These kind of
systems typically implement a priority-based scheduler, i.e. FPS or EDF.

The VxWorks [1] is one of the real-time operating systems with the support for event-triggered
scheduling. This type of operating systems typically makes its scheduling decisions during
run-time based on task priorities. Most COTS RTOSes support FPS. The integration of slot-
shifting requires an EDF scheduler, however. In our work, we focus on the EDF scheduler for
scheduling of tasks based on their deadline.

2.4 Hybrid schedulers

Hybrid schedulers are the combination of time-triggered and event-triggered schedulers. These
schedulers are known for their better resource (processor) utilization. Typically, a time-
triggered scheduler is responsible for handling the off-line guaranteed tasks. The job of an
event-driven scheduler is to allocate the idle slots of the time-triggered scheduler to schedule
dynamically arriving tasks.

Real-time operating systems such as OSEKos [22],Rubus OS [5] support this hybrid schedul-
ing approach. The integration of slot-shifting in the µC/OS-II requires hybrid scheduling
mechanism. The difference between traditional hybrid scheduling and slot-shifting is that
slot-shifting allows to shift the execution of the time-triggered tasks within an interval start-
ing from the activation of a task until its deadline. In other words, slot-shifting allows
guaranteed tasks to be shifted in a pre-defined off-line calculated interval whereas more tra-
ditional hybrid approaches do not allow a change in slot allocations of any off-line guaranteed
tasks. The support for slot-shifting is not present in any of the COTS RTOS. In this work,
the slot-shifting scheduling strategy is integrated in µC/OS-II.

2.5 Slot-shifting: EDF versus FPS

In [10], the idea of combining the off-line scheduling method with the fixed priority scheduling
(FPS) is presented. Non-periodic events are handled with the help of servers. The advan-
tage of servers is that it prevents temporal faults in a-periodic tasks to propagate to off-line
guaranteed tasks. In combination with slot-shifting, we leave such mechanisms for overload
prevention as a future work. In our work, the combination of off-line and EDF scheduling is
used to schedule mixed task sets without the use of servers.

16

2.6 Summary

The RTOSes with the support for the time-triggered, the event-triggered and the hybrid
scheduling were presented, but the integration of slot-shifting requires the combination of
the time-triggered and the event-triggered scheduler. In other words, an enhanced version
of the hybrid scheduler is required to perform the slot-shifting. To our knowledge, RTOSes
available in market today does not support the slot-shifting scheduling technique. In this
work, we integrate the slot-shifting scheduling technique in µC/OS-II RTOS.

17

Chapter 3

System model

In this chapter, the system model of the slot-shifting is presented. In Section 3.1, we present
the assumptions and boundary conditions of this work. Section 3.2 present the time model.
Section 3.3 presents the task model. Section 3.4 presents the static system properties of
slot-shifted schedules. Section 3.5 describes the interval invariants.

3.1 Assumptions and boundary conditions

In line with [15], we have the following assumptions:

A1. All tasks in the system have a deadline.

A2. Tasks are independent.

A3. Arrival times of aperiodic requests are unknown.

3.2 Time model

The granularity of the timer tick is assumed to be the slot length. Slots are numbered from
0 to ∞. Task characteristics are captured by the intervals. The deadline of a task marks the
end of an interval. The start of an interval is either the arrival-time of a task or the end of
the previous interval. Task parameters must be multiples of the slot length. The time model
we use here is the same as the one proposed in [15].

3.3 Task model

The periodic task set, τp, contains a set of periodic tasks P1, P2, P3 ...,Pnp , where np is the
number of periodic tasks. A periodic task Pi is characterized by a quartet < T pi , Cpi , Rpi ,
Dp
i >, where T pi denotes its period, Cpi denotes its worst-case execution time , Rpi denotes

its release time and Dp
i is its relative deadline. The deadline of a task, Dp

i , is less than or

18

equal to the period, T pi
1. The kth invocation of the periodic task Pi is denoted as Pi,k and is

characterized by its earliest start time estpi,k, finishing time ftpi,k and absolute deadline dpi,k,

where dpi,k = Rpi+(k-1)T pi +Dp
i , k ∈ N+.

The aperiodic task set, τa, contains a set of aperiodic tasks A1, A2, A3 ..., Ana , where na is
the number of aperiodic tasks. The aperiodic task Ai is characterized by a pair < Cai , Da

i >,
where Cai is its worst case execution time and Da

i is its deadline. On arrival of an aperiodic
task, it will have a known arrival time arai , and the absolute deadline dai = arai + Da

i . The
soft aperiodic task is considered as a special type of aperiodic task with an infinite deadline,
see Section 6.3.3.

The sporadic task set, τs, contains a set of sporadic tasks S1, S2, S3 ..., Sns , where ns is the
number of sporadic tasks. The sporadic task Si is characterized by a tuple < Csi , Ds

i , λ
s
i >,

where Csi is its worst-case execution time, Ds
i is its relative deadline and λsi is its minimum

inter-arrival time. At each sporadic invocation, it will have a known arrival time arsi,k and

an absolute deadline dsi,k = ars + Ds
i . The arrival time of (k + 1)th invocation, arsi,k+1, is

arsi,k+1 ≥ arsi,k + λsi .

The joint set of aperiodic and sporadic tasks, i.e. τs ∪ τa, are called dynamically arriving
tasks. The total number of tasks in the system is defined by n = np + na + ns. The task
model presented in this section is similar to the one proposed in [15].

3.4 Static system properties

Since all periodic task executions are captured in an off-line generated table which periodically
repeats, all notions of time are modulo the hyper period of the periodic tasks. The hyper-
period of intervals, HI , is the least common multiple (LCM) of the periods of the periodic
task set, τp, i.e.

HI = LCM(T pi), where i = 1, 2, .., np. (3.1)

A system Sys contains a set I of N intervals I0, I1, I2,, IN−1. Each interval, Im ∈ I, has
a start time (stm), an end time (em), a spare capacity (scm) and a set of periodic tasks with
guaranteed time-slots (τm). It is represented as,

I = {Im(stm, em, scm, τm),m = 0, 1, 2,, N − 1}. (3.2)

The start time, st0, of the first interval, I0, is always zero, while the end of the preceding
interval is considered as the start-time of the intervals:

stm =

{
0 if m = 0

em−1 if m > 0.
(3.3)

For all intervals, Im, there exists a periodic task Pi, for which the end of an interval, em equals
the deadline, dpi,k of a job of a periodic task, Pi,k, . The deadline of this job, Pi,k, marks the

1This eases the bookkeeping for monitoring of execution times. In general, we only support one activation
of a task at a time, so in case of larger deadlines (deadlines larger than periods) we assume that jobs are
mapped onto different tasks.

19

end of an interval, i.e.
∀Im : ∃ Pi,k ∈ τm : dpi,k = em. (3.4)

Definition An interval is uniquely defined by the start time and the end time denoted by
Equation (3.3) and (3.4) respectively. Furthermore, an interval denotes disjoint time windows
to track the spare capacity. Note that the intervals are not execution windows. The difference
between an execution window and an interval is that jobs can execute in intervals prior to
the ones they are assigned to [15].

The task-set belonging to an interval, τm, is defined as,

τm = {Pi,k| dpi,k = em}. (3.5)

A job of a periodic task belongs to an interval, if and only if the deadline of a job equals the
end of an interval.

The spare capacity of an interval, scm, equals the length of interval Im minus the sum of
the activities assigned to it. A job, Pi,k, may start its execution earlier than the interval
coinciding with its deadline, resulting in a negative spare capacity for an interval. The third
part, min, takes into consideration the execution of tasks belonging to other (forthcoming)
intervals [15]. The off-line derived spare capacity of an interval based on [15] is:

∀Im : j = (m+ 1) mod N : scm = em − stm −
∑
Pi∈τm

Cpi +min(scj , 0). (3.6)

Note that the spare capacity is also defined for the final interval since per definition holds
that sc0 ≥ 0.

According to [15], the number representing a spare capacity of an interval can be negative,
while the amount of unused resources in that interval cannot be less than zero. The negative
representation of spare capacity ensures that the tasks which are executed outside their inter-
vals will not claim the same resources in their own intervals. During run-time, the negative
spare capacity turns into positive, because of the borrowing mechanism proposed in [15].
The borrowing and lending mechanisms are described later.

The critical slot, tc of an interval Im is the time slot in Im, such that if a dynamically arrived
task arrives at tc, its execution will be maximally delayed compared to all other slots in Im
due to the execution of the off-line scheduled tasks [15]. The critical slot is the slot after
consumption of all spare capacity, so that the off-line guaranteed tasks must execute in order
to make their deadline, i.e.:

tc(Im) = stm +max(scm, 0). (3.7)

The length of an interval, Im, is,

Length(Im) = em − stm. (3.8)

20

The pending work (PW) for a periodic task Pi at time t is represented as 2,

PW (Pi, t) = Cpi − C
p,completed
i (t) (3.9)

where, Cpi is the Worst-Case Execution Time (WCET) of a task and Cp,completedi (t) denotes
the amount of work already completed for a task Pi at time t.

Periodic and sporadic tasks are immediately placed in the ready queue upon arrival. Aperiodic
tasks are only placed in the ready queue after passing an acceptance test, implemented by a
guarantee algorithm. All tasks in the ready queue are sorted by their absolute deadline. The
ready queue, Q, contains the following jobs at a time t:

Q(t) = {Pi,k|arpi,k ≤ t ≤ d
p
i,k} ∪ {Si,k|ar

s
i,k ≤ t ≤ dsi,k} ∪ {Ai|arai ≤ t ≤ dai } (3.10)

At the start of an interval, the reserved capacity, Cmres(stm), for the periodic tasks equals the
computation demand of periodic tasks belonging to the interval, Im.

∀Im : Cmres(stm) =
∑
Pi∈τm

Ci −
∑
Pi∈τm
esti /∈Im

Cp,completedi (stm). (3.11)

Where, Cp,completedi (stm) denotes the amount of work already completed for a periodic task
Pi in the previous intervals.

Within an interval, Im, the reserved capacity at time t, Cmres(t), for the periodic tasks equals
the computational demand of periodic tasks belonging to the interval, Im.

∀Im : stm ≤ t ≤ em : Cmres(t) =
∑
Pi∈τm

Ci −
∑
Pi∈Im

Cp,completedi (t). (3.12)

Equation 3.6 calculates the spare capacity of an interval with a slightly modified Equa-
tion (3.13)), which takes into consideration the amount of work already performed for periodic
tasks belonging to an interval. The calculation of reserved capacity in Equation (3.12) takes
into consideration the amount of work already performed for the task belonging to an interval.

The spare capacity of an interval, scm, is the remainder of the reserved capacity Cmres plus
the execution of early-arriving tasks belonging to the preceding interval(s).

∀Im : j = (m+ 1) mod N : scm = Length(Im)− Cmres(stm) +min(scj , 0). (3.13)

Note that the spare capacity is also defined for the final interval since per definition holds that
sc0 ≥ 0. The min term considers the negative spare capacity of the preceding interval and
reserve resources in the current interval for the execution of task(s) belonging to the preceding
interval. If the spare capacity of the preceding interval is negative, then tasks belonging to
the preceding interval will use the resources available in the current interval. This behavior is

2Since we assume implicit deadlines for periodic tasks, only a single job per task can be active so that we
leave the job numbering implicit in the remainder of this document.

21

due to the early-arrival of a task. The run-time mechanisms of this phenomenon are called as
the borrowing and lending mechanism. The borrowing and lending mechanism is described
in 4.4.

Static versus dynamic spare capacity: The spare capacity is computed off-line using
Equation (3.6), but during run-time (online) we use Equation (3.13) to compute the spare
capacity before the start of an interval. During run-time, we take into account the amount
of work already completed for a periodic task belongs to an interval. We therefore reallocate
unused resources by periodic tasks to execute dynamically arriving tasks during run-time by
using Equation (3.13).

Note: The static system properties presented in this section are applied to a case study, see
Appendix A.

3.5 Interval invariants

With the properties described in Section 3.4, we define the invariants for the intervals in this
section.

• The absolute start time of the interval should be greater than or equal to the end
of previous interval. However, the start of the first interval is zero as indicated in
Equation (3.3).

∀Im : stm ≥ em−1 (3.14)

• The spare capacity at the start of interval must be non-negative, i.e. all tasks should
have sufficiently reduced their pending work:

∀Im : scm(stm) ≥ 0 (3.15)

• The spare capacity at the end of interval must be zero.

∀Im : scm(em) = 0 (3.16)

3.6 Summary

The assumptions and boundary conditions of our work is presented. The time model employed
in the slot-shifting scheduling strategy is discussed. The mixed task set support of the slot-
shifting scheduling requires dealing with tasks of different types. We presented the task model
followed by the slot-shifting scheduling algorithm. Static system properties, which are derived
from [15], are presented to formally understand the behavior of slot-shifting. We derived the
run-time requirements from the static system properties. Invariants are also extracted from
the static system properties.

22

Chapter 4

Slot-shifting revisited

In this chapter, the slot-shifting scheduling strategy is described in detail. In Section 4.1, the
evolution of the slot-shifting scheduling strategy is discussed. In Section 4.2, the slot-shifting
scheduling algorithm is explained with a case study. In Section 4.3, the resource reclaiming
mechanism is presented with an example. In Section 4.4, the borrowing and the lending
mechanisms of slot-shifting are explained. Section 4.5 presents the run-time mechanisms for
the slot-shifting. Finally, this chapter ends with a summary in Section 4.6.

4.1 Evolution of Slot-shifting

The idea of combining off-line and online scheduling algorithms was proposed by Fohler [11]
in 1995. The algorithm was designed to handle periodic and aperiodic tasks deployed on
distributed nodes. The original idea provided rules to create intervals based on the deadline
and the arrival time of the periodic tasks. The unused resources in each of these intervals are
called spare capacities. By the end of his off-line scheduling part, the periodic task parameters
leads to a set of intervals with spare capacities. During run-time, aperiodic tasks, tasks with
unknown arrival patterns, are accepted based on the available resources. An aperiodic task
can only be accepted, if it can make its deadline in the presence of off-line scheduled periodic
tasks. Otherwise, an aperiodic task is not accepted. In this way, the original slot-shifting,
proposed by Fohler [11] handled periodic and aperiodic tasks.

Later on, in the year 2009, Isovic and Fohler [15] extended the slot-shifting algorithm with the
support for handling sporadic tasks along with periodic and aperiodic tasks. The enhanced
slot-shifting algorithm guarantees periodic tasks in the same way as the original algorithm in
[11]. In addition, sporadic tasks are guaranteed off-line by considering their worst-case arrival
behavior at critical slots. In the worst-case, the sporadic tasks behaves similar to the periodic
tasks, and therefore arrives periodically with period equals to its minimum inter-arrival time.
By the end of of off-line scheduling part, the periodic task parameters yields information
about intervals and spare capacities, while the sporadic tasks are guaranteed based on their
worst-case arrival behavior. During run-time, the aperiodic tasks are guaranteed if and only if
an aperiodic task can be accepted together with all the previously guaranteed periodic tasks,
sporadic tasks and aperiodic tasks. If an aperiodic task cannot be accepted, then a flexible
rejection strategy can be applied to reject either the newly arrived aperiodic task or (one or

23

more of) the previously guaranteed aperiodic task(s).

Unlike, the original slot-shifting algorithm, the enhanced slot-shifting algorithm reclaims un-
used resources during run-time for aperiodic tasks. Although, with the original approach,
accepting an aperiodic task requires the creation of new intervals and spare capacities based
on the deadline of a task, the enhanced slot-shifting approach allows handling of aperiodic task
without creating new intervals during run-time. With the enhanced slot-shifting approach,
resources are not explicitly reserved for an aperiodic task upon guarantee, as compared to
the original approach proposed by Fohler. This leads to a flexible rejection strategy, as the
task(s) can be rejected without affecting the number of intervals.

4.2 Slot-shifting - case study

Having discussed the evolution of the slot-shifting scheduling algorithm, in this section, the
slot-shifting scheduling algorithm is described using a case study. We focus on the enhanced
slot-shifting scheduling algorithm to handle with periodic, aperiodic and sporadic tasks. To
better understand the behavior of the algorithm, the off-line and the online scheduling parts
are presented separately1.

4.2.1 Off-line preparation

The periodic task-set is the basis for the slot-shifting scheduling algorithm, as it provides
information about the intervals and the unused resources in each of these intervals. The
off-line scheduling part of the slot-shifting starts with the periodic task set. Let us consider
the periodic task-set presented in the Table 4.1.

Tasks Release Time Period Comp. Time Deadline

P1 0 20 1 3

P2 4 20 1 8

P3 8 20 1 10

P4 10 20 1 14

P5 10 20 2 20

Table 4.1: An example periodic task-set.

The task parameters provided in the Table 4.1 are essential to create intervals and spare
capacities. The rules for the creation of intervals based on the periodic task-set is provided
below:

• The start-time of an interval is the end of the previous interval. However, the start time
of the first interval is always zero.

1This case-study describes the behavior of slot-shifting with a simple task-set. We refer the interested
reader to Appendix A for a case-study with the borrowing and lending mechanisms.

24

• The end-time of an interval is identified by the deadline of a task. Hence, if a task
is said to be belongs to an interval, then its deadline marks the end of that interval.
Multiple tasks with the same deadline can belong to the same interval.

• The spare capacity of an interval is computed by calculating the amount of unused
resources in that interval (see Section 3.4). This value can be negative to indicate that
one or more tasks belonging to that particular interval must start their execution in the
previous interval.

Based on the rule described above, the periodic task-set is used to create set of intervals.
Table 4.2 presents the intervals for the periodic task-set presented in Table 4.1.

Interval Start End Spare Capacity Task set

I0 0 3 2 {P1}
I1 3 8 4 {P2}
I2 8 10 1 {P3}
I3 10 14 3 {P4}
I4 14 20 4 {P5}

Table 4.2: Intervals for the task-set presented in Table 4.1.

As we discussed earlier in Section 4.1, the sporadic task-sets are guaranteed off-line on top
of the periodic tasks. Let us consider the sporadic task-set presented in Table 4.3. The
sporadic task-set is guaranteed off-line based on the worst-case behavior as presented earlier
in Section 4.1. In [15], the off-line guarantee algorithm for the sporadic task-set is presented.
For the off-line guarantee, the sporadic tasks are assumed to be arriving at the critical
slot of an interval. The critical slot of an interval is the slot where the execution of the
dynamically arriving tasks are delayed due to the execution of off-line guaranteed periodic
task. If a sporadic task-set can be scheduled at the critical slot of an interval, then it can be
scheduled at any slot within the interval (for the detailed proof, see [15]).

Tasks Minimum Inter-arrival time Comp. Time Deadline

S1 20 1 9

S2 20 1 16

Table 4.3: An example sporadic task-set.

Assuming the worst-case behavior, the sporadic task-set is accepted only if all tasks can make
their deadline. If a sporadic task-set is failed, then either the sporadic task-set is changed
or the entire system is redesigned by changing the periodic task-set to allow provision for a
sporadic task handling. The off-line preparation details of sporadic tasks is explained in [15].

4.2.2 Online scheduling

The off-line preparation results in set of intervals and spare capacities, as illustrated in the
previous section. Scheduling of tasks is performed based on the earliest-deadline-first (EDF)

25

0 5 10 15 20

Interval 0

Idle

 P1

 S1

Interval 1

 P2

 S2

Interval 2

 P3

Interval 3

 P4

Interval 4

 P5

Figure 4.1: Case-study : Execution trace for one hyper period of the example task set for
which the characteristics are presented in Table 4.1, Table 4.2 and Table 4.3.

Arrival of a task Deadline of a task Task execution

Figure 4.2: Legend for Grasp trace presented in Figure 4.1.

strategy. Tasks are allowed to execute based on their deadlines. If a periodic task executes
in the interval to which it belongs, then the spare capacity of the interval is not affected. If
the dynamically arriving tasks (sporadic and aperiodic) or periodic tasks which do not belong
to the current interval execute, then the spare capacity of the interval is decremented. The
execution of a periodic task can be shifted according to the EDF strategy any where within
an interval, starting from its activation until its deadline (spanning all intermediate intervals),
to allow leeway for the execution of dynamically arriving tasks.

However, the dynamically arriving aperiodic task cannot be accepted straightaway for the
scheduling. An aperiodic task must undergo an guarantee test before it becomes ready for
the scheduling. The purpose of the guarantee test is to verify the availability of the system
resource for the execution of an aperiodic task. The result of the admission test depends on
the availability of the system resource from the arrival of an aperiodic task until its deadline.
If an aperiodic task can be accepted along with the off-line guaranteed periodic tasks, sporadic
tasks and previously guaranteed aperiodic task(s), then the aperiodic task becomes ready for
the scheduling. Otherwise, the newly arrived aperiodic task or the previously guaranteed
aperiodic task(s) are rejected.

Figure 4.1 shows the execution trace of the task-sets presented in Table 4.1 and 4.3. The
execution trace indicates the scheduling of tasks based on the deadline. Tasks are executed

26

within their intervals as presented in Table 4.2. The execution of tasks can be shifted
anywhere within its interval to allow for the execution of dynamically arriving tasks. The
off-line guaranteed sporadic tasks are executed with spare capacities of intervals.

4.3 Resource reclaiming

In the previous section, the scheduling of an example task set using the slot-shifting schedul-
ing algorithm was presented. The off-line preparation part of the slot-shifting algorithm uses
information about the worst-case execution time of the tasks. During the run-time, the task
may consume less resources than the resources assigned for the worst-case execution. Typi-
cally, pessimistic assumptions on the execution time of a task leads to an over-provisioning of
system resources. In order to utilize the unused resources for the execution of the dynamically
arriving tasks, resource reclaiming is performed during the run-time. In [15], a resource- re-
claiming mechanism is discussed with respect to the early completion of an aperiodic task. In
this work, we further extended the resource-reclaiming mechanism for periodic and sporadic
tasks, by deploying a monitoring mechanism.

4.4 Borrowing and lending of the spare capacity

In slot-shifted scheduling, the end of an interval is based on the deadline of a task and the
start of an new interval can either be the arrival time of a task or the end of the previous
interval. It is not necessary to have an interval with a start time equal to the arrival time of
a task. The start time of an interval may also be the end of the previous interval, so that a
task can arrive in an earlier interval or somewhere within the interval where it belongs to. If
a task arrives in an earlier interval, than its own interval, the task may execute outside its
own interval by consuming the spare capacity of earlier intervals. This phenomenon is called
borrowing and the lending of the spare capacity.

4.5 Run-time mechanisms for Slot-shifting

In this section, we present the run-time mechanisms for slot-shifting. Subsection 4.5.1 dis-
cusses about the tracking of intervals. WCET monitoring is discussed in Subsection 4.5.2.
Subsection 4.5.5 presents the run-time support for the guarantee algorithm. Scheduling of
tasks is discussed in Subsection 4.5.6.

4.5.1 Tracking intervals

The slot-shifting scheduling strategy requires tracking of intervals. The periodic task set is
transformed into a set of intervals. The basic idea for the creation of intervals based on the
characteristics task set is already presented in Section 4.2. During run-time, task executions
monitored to calculate the reserved and the spare capacities within an interval. To keep track
of the spare capacity for handling dynamically arriving tasks, the interval tracking feature
is desired.

27

4.5.2 WCET monitoring

The slot-shifting scheduling strategy requires information about the WCET and the deadline
of a task. The WCET of a task is essential for correct functioning of slot-shifting and even
more essential to perform the resource reclaiming.

4.5.3 Task attributes

The absolute deadline of a task is essential to perform scheduling based on the deadline, e.g.
like EDF. To deal with a mixed task set, a type attribute is needed for tasks. A type of a
task can be periodic, aperiodic and sporadic. This attribute is essential to differentiate tasks
based on their type on arrival. The WCET of a task is added in a Task Control Block (TCB)
to perform WCET monitoring. In order to keep track of a work performed for a task, an
additional attribute (WorkToBeDone) is added in a TCB. These task attributes needs to
be dynamically maintained during run-time to schedule tasks using the slot-shifting.

4.5.4 Spare capacity monitoring

The slot-shifting scheduling algorithm supports handling of mixed task sets. In the off-line
preparation phase, the notion of intervals and spare capacities are derived from the periodic
task set. During online, dynamic tasks (sporadic and aperiodic) or an idle task are executed
with the spare capacity of an interval. In addition, a periodic task execution outside its
own interval is treated similar to dynamic tasks, and the spare capacity is consumed by a
periodic task. But, when a periodic task executes in its own interval do not consume the
spare capacity of the interval, since the resources are reserved explicitly during the off-line
preparation phase.

4.5.5 Guarantee algorithm

A guarantee algorithm is executed before admitting an aperiodic task into the run-time sched-
ule. Sporadic tasks and a previously guaranteed aperiodic tasks can be affected if an aperiodic
task is accepted without a guarantee algorithm. Thus, the guarantee algorithm takes into
consideration the spare capacity of the interval at the time of the test, based on the previ-
ously guaranteed aperiodic tasks, and the current execution sporadic tasks and the arrival of
sporadic task in the future that can interfere with the execution of the aperiodic task in test.
If the aperiodic task cannot be accepted, then a rejection strategy should decide to reject
either the newly arrived aperiodic task or one of the previously guaranteed aperiodic task(s).
This guarantee algorithm is therefore essential to accept dynamically arriving tasks [15].

4.5.6 Scheduling

Within intervals, tasks are scheduled using the EDF scheduling algorithm. The EDF sched-
uler is therefore essential to schedule tasks based on the deadline. To our knowledge, the
support for the EDF scheduling is not available in most of the COTS RTOSes, which are

28

present in the market today. The integration of slot-shifting in RTOS therefore requires an
implementation of the EDF scheduler.

4.6 Summary

First, we discussed the evolution of slot-shifting, including the apparent improvements made
by Isovic and Fohler [11] to support sporadic task execution with a dynamic resource-reclaiming
mechanism. The principle of slot-shifting is presented with the help of an example task set.
To better understand the combination of the off-line and online scheduling parts, the off-line
preparation and the online scheduling were discussed separately. For efficient resource usage,
a resource reclaiming mechanism is used in the slot-shifting scheduling algorithm. The in-
formation regarding how slot-shifting reduces the pessimism during run-time by the efficient
resource reclaiming was presented: in order to deal with the early arriving tasks, a mechanism
to borrow and lend spare capacities is presented.

From case-studies, the required run-time mechanisms for the integration of slot-shifting are
identified, i.e. interval tracking, task management, WCET monitoring and (online) admission
control. Tracking of intervals is necessary to manage resources during run-time. The slot-
shifting scheduling enables handling of mixed task sets. The support for the multiple task
types needs to be provided. To deal with the resource reclaiming and the borrowing mecha-
nism, the WCET of a task is monitored during run-time. The online guarantee algorithm is
essential to schedule dynamically arriving aperiodic tasks. Most importantly, scheduling of
tasks within these intervals requires EDF scheduler. The implementation of an EDF scheduler
is required for the integration of slot-shifting. In the next section we are going to introduce the
preliminary operating system support provided by uC/OS-II, our target RTOS for including
the mechanisms presented in this section for slot-shifting.

29

Chapter 5

The µC/OS-II and OpenRISC 1000

µC/OS-II is a completely portable, ROMable, scalable, preemptive, real-time, multitasking
kernel [18]. µC/OS-II is written in the C programming language and is compliant with the
American National Standards Institute (ANSI) - called ANSI C. A small part of the kernel
is written in assembly code for compatibility with different processor architectures. This
operating system is widely used in different application domains, such as cameras, avionics,
medical instruments, and more. The source code of the µC/OS-II is approximately 5500
lines. For more information on the Application Programming Interface (API) of µC/OS-II,
see [18].

In this Chapter, the µC/OS-II RTOS is discussed briefly. Section 5.1 presents the task
management features, while the timer management features are discussed in Section 5.2. The
scheduling of tasks in the µC/OS-II is described in Section 5.3. Section 5.4, the extensions
are presented briefly. OpenRISC 1000 hardware simulator platform details are presented in
Section 5.5. Measurement details are presented in Section 5.6. Grasp visualization tool is
briefly described in Section 5.7.

5.1 Task management

In RTOS, applications are divided into a small number of concurrent functional units, called
tasks. µC/OS-II manages each individual tasks via a Task Control Block (TCB). When
a task is created, it is assigned a TCB, where during runtime, the state of that task is
recorded, e.g. its context information when it is preempted. Tasks must be created using
either the OSTaskCreate() or OSTaskCreateExt() function provided by the µC/OS-II kernel.
The OSStart() function initializes the operating system. µC/OS-II requires at least one task
to be created before calling the OSStart() function.

5.2 Timer management

A periodic timer is responsible for keeping track of the time delays and timeouts in µC/OS-
II. This timer can be configured to produce a constant number of tick per second varying
between 10 and 100 times per second. The faster the tick rate, the more overhead µC/OS-II

30

imposes on the system [18]. The OSTimeTick() function is called at each tick interrupt and
keeps track of task delays and timeouts. The tick Interrupt Service Routine (ISR) execution
time of µC/OS-II depends on the number of tasks in the application. The tick execution time
increases linearly, because in each ISR execution all tasks are traversed and their delay value
is decremented.

5.3 Scheduling

The scheduler is responsible for selecting a task for execution. µC/OS-II uses a fixed-priority
scheduler. The operating system always executes the highest priority task ready to run. The
OS Sched() function is invoked to perform scheduling at the task-level. At the ISR-level, the
OSIntExit() function is responsible for the scheduling of tasks. The dispatching overhead is
constant in µC/OS-II irrespective of the number of tasks created in an application.

5.4 Proprietary support for relative timed-events

A real-time applications may need to manage multiple real-time events, which are difficult to
realize by the basic support of a delay-statement (i.e. task self-suspension) as provided by the
µC/OS-II API. For example, implementing periodic tasks by means of delays may cause drift
due to jitter in the execution times of tasks. RELTEQ is such a timed-event management
system targeted at small embedded systems, because it has a small timer representation and
reduces the overhead for handling many timed events compared to the default µC/OS-II setup
[12]. The basic idea of RELTEQ is to store timed events - called timers - relative to each
other by expressing the arrival time of the timer relative to the expiration of the previous
timer [28]. An example of such a setup is shown in Figure 5.1.

0 3 5 2

0 3 8 10

Event time

Absolute timeNow

Figure 5.1: Time representation in RELTEQ.

When the head of the RELTEQ expires, the timer is popped from the queue and an event
handler for that specific event type is executed. This event handler may on its turn manipulate
a task ready queue or the RELTEQ timer queue itself, for example by releasing a task or
inserting a new timer to plan a new event in the future. On top of this support for timed-
events, several scheduling extensions have been presented for µC/OS-II, e.g. periodic-task
support and two-level reservation-based scheduling [8, 12]. A more detailed description of
RELTEQ and its functionalities can be found in [12]. In addition, we give a state-of-the-art
overview of the API of RELTEQ in Appendix B, including some undocumented features.

31

5.5 OpenRISC 1000 port

In this work, the OpenRISC 1000 simulator maintained by OpenCores [3] is used. It is a
completely free and open architecture [2]. The size of the registers of the OpenRISC processor
is 16 bits. The OpenRISC 1000 simulator contains an open-source Reduced Instruction Set
Computing (RISC)-based architecture and a GNU’s Not Unix (GNU) compiler tool-chain to
develop applications in the C language. The hardware simulator is cycle-accurate, and the
performance of the simulator is not affected by the load of the host operating system, which
makes it suitable to perform measurements for real-time systems. The versions of the tools
that we used for our performance analysis of µC/OS-II are available in Appendix D.

5.6 Profiling

The OpenRISC platform has a cycle-count register, which allows to profile the code at the
accuracy of a few processor cycles. µC/OS-II is extended with the support for the profiling of
the code [8]. The output of the profiler is dumped into a text file. In all our measurements,
the OpenRISC simulator was running at 10 Mhz with a tick frequency of 10 ms.

5.7 Grasp extension

Grasp is the visualization tool intended for the real-time system applications [13]. The visu-
alization feature can be added through a logging mechanism in a RTOS. The visualization
of slot-shifting requires further an extension to Grasp and the logging mechanisms, i.e. the
events specific to slot shifting are supported within Grasp as part of this work. The new
mechanisms for visualizing intervals and spare capacities can be derived from the server visu-
alization features of the Grasp. A more detailed description of the visualization tool, Grasp,
can be found in [13]. Finally, this chapter is concluded with a summary.

5.8 Summary

We described our target RTOS, µC/OS-II, briefly in this chapter. We presented the task and
timer management features. The scheduling algorithm supported by the standard µC/OS-II
is also discussed briefly. The RELTEQ extension to µC/OS-II manages timed-events. We
introduced the RELTEQ framework and gave an overview of its run-time behavior.

In this work, we use OpenRISC hardware simulator to perform measurements in µC/OS-II.
For the visualization of tasks, we use the Grasp visualization tool, which works with the
logging feature in µC/OS-II.

32

Chapter 6

Design and implementation
considerations for Slot-shifting

Having defined the run-mechanisms for the slot-shifting algorithm, we present our design of a
corresponding implementation in this chapter. An interval tracking mechanism is presented
in Section 6.1. Section 6.2 presents TCB extensions. The support for mixed type of tasks
is presented in Section 6.3. Section 6.4 discusses WCET monitoring. A spare capacity
monitoring is discussed in Section 6.5. Scheduling of tasks within intervals is presented in
Section 6.6. The implementation considerations of the online guarantee algorithm is presented
in Section 6.7.

The run-time behavior of slot-shifting requires dealing with timed events. We present the
event-handlers associated with the slot-shifting scheduling algorithm in Section 6.8. Slot-
shifting configuration details are presented in Section 6.9. Finally, this chapter is concluded
with a summary.

6.1 Tracking intervals

The off-line scheduling part of slot-shifting converts task sets into intervals with spare capaci-
ties, i.e. the task-set presented in Table 6.1 cannot be directly used online by the slot-shifting
scheduling algorithm before an off-line scheduling method is applied on the task-set to prepare
it for online scheduling. The purpose of the off-line preparation in slot-shifting is to resolve
constraints such as precedence relation between tasks and to create intervals based on the
task-set.

The result of an off-line schedule is a set of intervals with spare capacities. This set of
intervals for the task-set presented in Table 6.1 is given below in Table 6.2. Table 6.2
provides information about the beginning and the end of intervals and their spare capacities.
This information must be maintained by the operating system to schedule tasks. A new data
structure is therefore required to store these information. An Interval Control Block (ICB) is
created to store the interval-associated attributes. The start of an interval (stk), the end of
an interval (ek) ,the spare capacity of an interval (sck) , the number of tasks belongs to an
interval (n) and a task-set (contains n tasks) belong to an interval (τk) are stored in an ICB.

33

Tasks Release Time Period Comp. Time Deadline

P1 0 15 1 3

P2 4 15 1 8

P3 8 15 1 10

P4 10 15 1 15

P5 10 15 2 15

Table 6.1: An example periodic task-set.

Interval Start End Spare Capacity Task set

I0 0 3 2 {P1}
I1 3 8 4 {P2}
I2 8 10 1 {P3}
I3 10 15 2 {P4,P5}

Table 6.2: Intervals for the task set presented in Table 6.1.

int(st0, e0, sc0, n0, τ0) int(st1, e1, sc1, n1, τ1)

ICBNext ICBNext NULLOSICBList

Figure 6.1: Single linked list of interval control blocks.

The complete off-line schedule is represented by a list of ICBs. Such a list of ICBs are shown
in Figure 6.1. An ICB is similar to a TCB for tasks in µC/OS-II RTOS [18]. The use of a
NULL at the end of the list eases the iterations through the list. For instance, if m number
of intervals are in the application, then we always create m+1 intervals. An additional ICB
with the NULL pointer is used to denote the end of the ICBList. Such a NULL-node in a
tree or list data structure is called a sentinel.

Variable name Variable type Notation Explanation

OSICBStartTime INT16U stk Start of an interval

OSICBEndTime INT16U ek End of an interval

OSICBSpareCapacity INT16S sck Spare capacity of an interval

OSICBNumberOfTasks INT8U n Length of a task-set array

OSICBTaskSet Pointer to TCBs τk Array of tasks

OSICBNext Pointer to ICB – Pointer to next ICB

Table 6.3: Static ICB attributes.

Initialization procedure of an ICB: The ICB attributes are statically initialized as follows:

1. OSICBStartTime: The start time of an interval is defined by Equation (3.3). The start-
time of an interval is the end-time of the previous interval. The start-time of the first
interval is zero.

34

2. OSICBEndTime: The end time of an interval is defined by the deadline of a task, see
Equation (3.4).

3. OSICBSpareCapacity: The spare capacity of an interval is calculated using Equa-
tion (3.6).

4. OSICBNumberOfTasks: This variable contains the number of tasks belongs to an in-
terval.

5. OSICBTaskSet: This array contains pointers to tasks belongs to an interval. The length
of an array is defined by OSICBNumberOfTasks. Tasks with the deadline at the end of
an interval is stored in an array, see Equation (3.5).

Having defined these intervals, the scheduling of intervals is the next step. One way of
scheduling intervals is by using a timer or counter. We present a counter-based interval
scheduling method in Pseudo code 1 from line-11 to line-36. At the initialization time of the
OS, the OSICBCur variable is updated to point to the sentinel. The OSICBCur is validated
at line-23 and the pointer is updated to point to the first ICB of a list each time, when
the hyper period repeats. The slotCounter variable is increased at each time-tick1, and this
variable is used for the tracking of intervals.

As indicated in Pseudo code 1 in line-29, the slotCounter value is compared with the start
time of an interval to identify the start of an interval. At the start of each interval, the
spare capacity of the interval is calculated and the cursparecapacity variable is updated
as indicated in line-31. The spare capacity of an interval is calculated by identifying the
resource requirement of periodic tasks belonging to an interval. The resources unused by
periodic tasks, called spare capacity of an interval, are used for dynamically arriving tasks.
In Section 6.8.1, the spare capacity computation is described in detail.

Next in line-16 to line-19, the slotCounter variable is compared with the end-time of an
interval to identify the end of an interval. At the end of each interval, the OSICBCur is
updated to point to the subsequent interval. At the end of the ICB list (indicated by NULL),
the OSICBCur is updated to point to the first ICB of a list. The logStartInterval() and
logEndInterval() routines are used for the visualization of intervals using Grasp. More detailed
description of the interval start and interval end event handlers are presented in Section 6.8.

1We use terms tick and slot interchangeably to refer to a time slot.

35

Pseudo-code 1 Scheduling-Interval within the tick ISR

1: /∗ WCET monitoring begins here ∗/
2: if OSPrioCur != OS TASK IDLE PRIO then
3: OSTCBCur → OSTCBWorkToBeDone−−;
4: end if
5: /∗ WCET monitoring ends here ∗/
6:
7: /∗ Spare capacity monitoring starts here ∗/
8: if OSTCBCur → OSTCBInterval 6= OSICBCur → OSICBId or OSPrioCur == OS TASK IDLE PRIO

then
9: cursparecapacity−−;

10: end if
11: /∗ Spare capacity monitoring ends here ∗/
12:
13: /∗ Interval tracking begins here ∗/
14:
15: /∗ OSICBCur points to NULL at the system start and the Counter is initialized to 0 in the initMisc()

function before OSStart is called ∗/
16:
17: /∗ Begin: Interval end event (Handler is described in Section 6.8.2) ∗/
18: if OSICBCur 6= NULL and OSICBCur → OSICBEndTime == slotCounter then
19: logEndInterval();
20: OSICBCur = OSICBCur → OSICBNext;
21: end if
22: /∗ End: Interval end event ∗/
23:
24: /∗ Resetting counter and ICBPointer ∗/
25: if OSICBCur == NULL then
26: slotCounter = 0;
27: OSICBCur = & OSICBList[0];
28: end if
29:
30: /∗ Begin: Interval start event (Handler is described in Section 6.8.1) ∗/
31: if OSICBCur → OSICBStartTime == slotCounter then
32: logStartInterval();
33: cursparecapacity = GetSpareCapacity(OSICBCur);
34: end if
35: /∗ End: Interval end event ∗/
36:
37: slotCounter++;
38: /∗ Interval tracking ends here ∗/

36

6.2 Task attributes

The TCB of a task is extended with additional attributes for the slot-shifted scheduling
support. Table 6.4 presents the TCB extensions.

Variable name Variable type Notation Explanation

OSTCBType INT8U - Type of a task

OSTCBDeadline INT16U D Relative deadline of a task

OSTCBCompTime INT16U C WCET of a task

OSTCBWorkToBeDone INT16U PW Pending work of a task

OSTCBInterval INT8U - Interval of a task

Table 6.4: Extended TCB attributes for slot shifting.

The type of a task, the WCET of a task, and the deadline of a task are static variables, as
they do not change during run-time. The pending work of a task and the interval of a task
are dynamic variables, as they change dynamically during run-time.

Initialization procedure for TCB attributes: TCB attributes associated with slot-
shifting scheduler are initialized as follows:

1. OSTCBType: This static variable holds the type of a task. The type can be periodic,
aperiodic or sporadic.

2. OSTCBDeadline: The relative deadline of a task stored in this static variable. This
variable is used to schedule tasks based on their computed absolute deadline, see Pseudo-
code 7.

3. OSTCBCompTime: The WCET of a task is stored in this static variable. This variable
is used to monitor the execution of a task.

4. OSTCBWorkToBeDone: The OSTCBWorkToBeDone of a job is a dynamic variable.
This variable is used to keep track of the execution of a job. This variable is initialized
as follows: OSTCBWorkToBeDone = OSTCBCompTime+1, see Section 6.4 for more
details on WCET monitoring.

5. OSTCBInterval: The OSTCBInterval is a dynamic variable. This variable is used to
store the interval to which a task belongs to. This variable is updated inside the interval
arrival event handler, see Pseudo-code 8.

6.3 Mixed task support

Having created tasks with the type parameter, the task should be placed in a ready queue
upon arrival, possibly after the acceptance procedure. We use periodic timers for all the
task types. When the periodic events expire, we place tasks in the ready queue based on its
type. As shown in Figure 6.2, periodic and sporadic tasks are placed in the ready queue for
the scheduling, while, aperiodic tasks are undergoing an online admission test to guarantee

37

resources for the execution. Periodic and sporadic tasks do not need to undergo an online
admission test since, they are guaranteed resources off-line.

Task

Event arrival

Periodics Sporadics Aperiodics

Guarantee

algorithm
Reject

Legend:

- Type relation

- Maps into

Ready Queue

YES

NO

Figure 6.2: Mapping of tasks into queues on arrival.

6.3.1 Periodic task handling

On arrival of a periodic task, OSTCBWorkToBeDone variable is initialized as presented in
Section 6.2. In addition, OSTCBInterval variable is updated with a interval identifier, see
Pseudo code 5. An interval associated with a job is essential to perform resource reclaiming
at the job completion. In Pseudo-code 8, the resource reclaiming is performed only if a
completing job belongs to an active interval. This is verified with a if statement presented
in line-9 to line-11 in Pseudo-code 8.

The resource reclaiming of periodic tasks has two cases.

1. Execution outside its own interval: When a periodic task completes its execution
outside its own interval, the task is said to have borrowed spare capacity from neigh-
boring intervals. In this scenario, the reserved resources are reclaimed at the start of
its own interval to execute dynamically arriving tasks.

2. Execution within its own interval: When a periodic task executes in its own in-
terval, then the spare capacity of an interval is not affected unless the execution time
of a task equals its WCET. When the task completes earlier than its WCET, then the
unused resources by the task are reclaimed and added to the spare capacity of the cur-
rent interval to deal with dynamically arriving tasks. When the execution demand of
the task exceeds its WCET, then the application is terminated with a task misbehavior
message.

38

During run-time, our resource reclaiming mechanism is better than the approach presented
in [15], because we also reclaim unused spare capacity of early completing periodic tasks.
The remainder of the resources are used to execute dynamically arriving tasks selected by the
EDF scheduler.

6.3.2 Aperiodic task handling

An aperiodic task is typically triggered by an event that wakes up the task. One way to
develop an aperiodic task is by waiting for an semaphore or other similar events. When a
task is blocked, it can be activated by another task (or ISR), which releases the semaphore
(Sp), see Pseudo code 2 and Pseudo code 3. It is the conventional way of making an
aperiodic task. In this work, an aperiodic task can become ready only after it is accepted
by the guarantee algorithm. We add an additional semaphore Sg as shown in Pseudo code
2 and Pseudo code 3, which is released by the guarantee algorithm. If an aperiodic task
is accepted by the guarantee algorithm, then the semaphore (Sg) is released. Otherwise, an
aperiodic task is rejected.

Pseudo-code 2 An aperiodic task

1: /∗ Aperiodic task ∗/
2:
3: WaitForSemaphore(Sg);
4: Dosomething();
5:

Pseudo-code 3 An invocation of guarantee test within a task or an ISR

1: /∗ Task or ISR ∗/
2:
3: flag = Perform acceptance test();
4: if flag == True then
5: ReleaseSemaphore(Sg);
6: end if

In this work, we have not implemented a online guarantee algorithm for aperiodic tasks.
Assuming an aperiodic task is guaranteed, the run-time for support for the scheduling of
aperiodic tasks are present already. In slot-shifting scheduling, tasks are scheduled based
on the deadline, and the insertion of an aperiodic task into the ready-queue is decided by a
guarantee algorithm. The run-time support for an aperiodic task is therefore present in our
implementation of slot-shifting in µC/OS-II. Perform acceptance test() function presented in
Pseudo code 3 is not implemented in this work.

6.3.3 Soft aperiodic task handling

In this work, we have not considered soft aperiodic task handling as indicated in [15]. A soft
aperiodic task is a task without a deadline. We execute an idle task when there are no other
tasks ready to execute in the system. The idle task can be seen as a soft aperiodic task on
itself. We therefore propose an implementation of a policy in the idle task to handle soft
aperiodic requests. However, we propose such implementation as a future work.

39

6.3.4 Sporadic task handling

For a sporadic task, the combination of event arrival and the minimum inter-arrival time is
essential to identify the event as a sporadic event. The event that arrives after the minimum
inter-arrival time can only activate the sporadic task. The sporadic task can be developed
by using the similar method as presented in Pseudo code 2 and Pseudo code 3, but with an
additional minimum inter-arrival time enforcement mechanism, rather than an acceptance
test. This is an online enforcement mechanism, i.e. we enforce minimum inter-arrival time
to prevent overload in case of a task misbehavior. The online enforcement mechanism is
presented in [25] for enforcing the period of suspending periodic tasks and has been included
in RELTEQ [28]. The period enforcement presented by [25] is similar to using guards, i.e.
task arrivals that do not satisfy the minimum inter-arrival time are delayed. In this work, we
do not implement further the implementation of a sporadic tasks with the minimum inter-
arrival time enforcement. In this work, we implement sporadic tasks as periodic tasks for
test purposes, but our implementation of the resource-reclaiming mechanisms are compliant
with concepts described in [15].

6.4 WCET Monitoring

The WCET monitoring feature is essential for the functional correctness of slot-shifting, as
the spare capacity of an interval is decided by the execution demand of tasks belonging
to an interval. In addition, WCET monitoring is used to reclaim unused resources during
run-time. For WCET monitoring, we added new attributes such as OSTCBCompTime and
OSTCBWorkToBeDone in a TCB. The OSTCBCompTime stores the WCET of a task, and
it is a static variable. The OSTCBWorkToBeDone variable is used to monitor the execution
of a task. This variable is updated dynamically during the execution of a task.

The OSTCBWorkToBeDone variable is initialized with OSTCBCompTime+1 on arrival of a
job. OSTCBWorkToBeDone is decreased in the tick ISR as indicated in line-2 in Pseudo code
1, before a job uses the slot. The early completion of a job is accounted to the completing
job. The newly arriving job does not need to pay for this remainder. Based on two decisions,
(1) we prevent variable OSTCBWorkToBeDone to become negative and (2) jobs pay for a
slot before consumption, we initialize the OSTCBWorkToBeDone with the WCET of a task
plus one additional time slot. The application terminates with a task misbehavior message,
when OSTCBWorkToBeDone touches zero.

With the borrowing and lending mechanism, the earlier arriving tasks may execute outside its
own interval. In an interval, the resources are allocated for periodic tasks based on the execu-
tion demand of tasks. The OSTCBWorkToBeDone variable provides the resource requirement
for a task, as it maintains the pending work for a task (see Equation (3.11) in Section 3.4).
If the OSTCBCompTime variable is used for the computation of spare capacity at the start
of an interval, then resources may be allocated in excess. We avoid the over-provisioning of
resources for periodic tasks at the start of an interval by using OSTCBWorkToBeDone vari-
able. This mechanism is presented in the GetSpareCapacity() function described in Pseudo
code 5.

When a task completes its execution earlier than its worst-case execution demand, the unused
resources are added with a spare capacity of an interval to handle the dynamically arriving

40

tasks. When a task completes its execution, the OSTCBWorkToBeDone variable is added
to a cursparecapacity to reclaim unused resources. In Section 6.8.4, We described this
functionality in the task completion event handler.

6.5 Spare capacity monitoring

The spare capacity of an interval is affected by the execution of dynamically arriving tasks
(aperiodic and sporadic) or the execution of a periodic task outside its own interval. In the
absence of such tasks, the spare capacity of an interval is consumed by an idle task. The
spare capacity monitoring is performed in the tick ISR. In Pseudo code 1, the spare capacity
monitoring is presented in line 5 to line 9. The interval identifier is stored in a TCB to
identify the interval of a job. If the currently executing job does not belong to the current
interval or the currently executing task is an idle task, then the spare capacity of an interval
is decremented, as indicated in line 9 of Pseudo code 1.

6.6 Scheduling

The slot-shifting scheduling strategy uses an EDF scheduler to schedule tasks. The EDF
scheduling requires up-to-date information about the absolute deadline of a task to perform
the scheduling. The absolute deadline of a task is stored in a TCB. µC/OS-II only supports
scheduling based on a fixed priority for each task by means of a ready-table. For scheduling
of tasks based on their deadline, we require a new scheduling mechanism. We use a RELTEQ
based ready-queue to schedule tasks based on the absolute deadline. More information on
RELTEQ can be found in Appendix B and [12].

Tasks

Ready Queue (Sorted by absolute deadline)

Legend:
- Maps into
- Used by
- Tasks

time

... ...

Scheduler

Head

Figure 6.3: Design of the EDF scheduler.

Figure 6.3 shows the design of the EDF scheduler. Upon arrival, tasks are placed in the
ready queue. The ready queue based on the RELTEQ framework is sorted based on the

41

deadline. The feature of sorting the queue based on the absolute event-time with respect to
the current system time is provided by the RELTEQ. This feature makes the handling of
ready queue easier. Figure 6.3 depicts the insertion of tasks into the queue. Although, only
the deadline corresponding to a task is inserted in the ready queue, we make a one-to-one
mapping from active tasks to events in the ready queue. Upon task arrival, a deadline event
is created and inserted into the ready queue. Without violating the EDF-policy, tasks with
the same absolute deadline are served on a first-come-first-serve basis. Aperiodic tasks are
placed in the ready queue only after it is accepted by the guarantee algorithm. The job of
the scheduler is to pick a task from the head of the ready queue for the execution.

6.7 Online guarantee algorithm

To facilitate an implementation of the guarantee algorithm presented in [15]. we need to keep
track of the following run-time parameters:

• The spare capacity of the currently executing interval. This information stored in the
ICB of each interval.

• The previously guaranteed aperiodic tasks, which are ready to execute. These can be
accessed from the ready queue.

• The OSTCBCompTime (WCET) and OSTCBWorkToBeDone of the aperiodic and spo-
radic task. These are stored in TCB of the tasks.

• The minimum inter-arrival time of a sporadic task. It is stored in the TCB of a sporadic
task.

This guarantee algorithm can be invoked at the beginning of each slot within the tick interrupt,
after checking for the arrival of aperiodic task. However, this could potentially lead to longer
tick ISR, hence large tick interrupt overhead. Instead, we propose to reserve capacity for
guarantee algorithm by means of a sporadic task with a minimal inter-arrival time. The
down side of this is that it may reduce the granularity of the aperiodic tasks due to the
delayed acceptance test.

We have added all the attributes required to perform a guarantee test online. However, the
implementation of a online guarantee test is considered as a future work.

6.8 Event Handlers

In this section, we will describe how to maintain the scheduling properties of slot shifting
during execution by means of handling event timers. We use assertions to check the system
invariants from Section 3.5 and to guarantee correct execution of the scheduler. The assert
expression should always be true. When the expression evaluates to false, the system will
terminate with an error.

The event handlers associated with the slot-shifting scheduling strategy are presented below:

1. Interval arrival event

42

2. Interval end event

3. Task arrival event

4. Task completion event

First three event-handlers are executed in the context of tick ISR, while the task completion
event is executed in the context of a task.

The interval arrival event and the interval end event are the static properties of the slot-
shifting scheduling algorithm, as the arrival-time of these events are computed off-line. The
RELTEQ extension to µC/OS-II discussed in Section 5.3 is used to handle timed events. The
RELTEQ extension is not preferred for interval-associated events, as their run-time arrival
pattern is stored in the form of a off-line schedule in a list of ICBs. Due to the static nature of
the interval events, we followed a counter based approach to handle with the interval arrival
and the interval end events.

The dynamic nature, unknown arrival patterns of tasks, e.g. sporadics, of the task arrival
events leads to the use of RELTEQ, as the RELTEQ supports efficient timer management
with a long inter-arrival time and a low drift [12]. Moreover, the implementation of a EDF
scheduler requires a ready-queue, sorted based on the deadline of a task, which comes for free
with RELTEQ. The task completion event is executed in the context of a task.

6.8.1 Interval arrival event

At the start of an interval, an event handler is executed to update the spare capacity, in which
dynamically arriving tasks may execute within the upcoming time interval.

This event signals the start of an interval. The actions performed in this event handler are
presented in Pseudo-code 4. The spare capacity is calculated at the start of an interval
based on the up-to-date resources that are still required by the off-line guaranteed periodic
tasks. The off-line computed spare capacity is not used during run-time, as the use of off-
line computed spare capacity might lead to over-provisioning of resources during run-time.
Instead, we take into the account the amount of work already completed for periodic tasks
belonging to an interval, at the start of an interval.

The unused resources at the start of an interval is computed using the static system property
presented in Equation (3.13), i.e. the GetSpareCapacity() function computes the spare ca-
pacity of an interval by taking into consideration the amount of work already performed for
periodic tasks belonging to an interval, the early-arriving task(s) belonging to the preceding
interval and possibly the negative spare capacity of the next interval.

Pseudo-code 4 Interval arrival event
1: /∗ Invoke the GetSpareCapacity() function to update the current spare capacity ∗/
2: /∗ GetSpareCapacity() function is defined in Pseudo code 5 ∗/
3:
4: CurSpareCapacity = GetSpareCapacity();
5:
6: logStartInterval();

The GetSpareCapacity() function is defined in Pseudo code 5. As we discussed in Section
3.4, the tasks are mapped into intervals based on their deadlines. For each interval, the

43

computation of the spare capacity requires information about the amount of unused resources.
The information about the amount of resources reserved for the execution of the off-line
guaranteed periodic tasks is essential for the computation of the spare capacity. Line-4 to
Line-8 in Pseudo code 5 calculate the amount of resources needed for the execution of
off-line guaranteed periodic tasks. The OSTCBWorkToBeDone holds the amount of work
to be done for the periodic task. With the information about the reserved resources, the
spare capacity is calculated by subtracting the reserved resources from the length of the
interval. This operation is performed in line-10. The computed value is returned by the
GetSpareCapacity() function, if the subsequent interval contains sufficient resources to handle
the off-line guaranteed periodic tasks.

However, in certain cases, the resource requirement of the off-line guaranteed periodic tasks
may exceed the amount of resources available in an interval. This scenario can occur due to
the early arrival of a periodic task. For instance, a periodic task belonging to the interval In
can arrive in any of the earlier intervals, In−1, In−2 etc. The borrowing and lending mechanism
of the slot-shifting provides the possibility of dealing with the tasks which are arriving earlier
than their mapped interval. Due to the borrowing and the lending of spare capacities between
intervals, the off-line computed spare capacity of the interval may be negative before execution
within this interval actually starts. Hence, when we calculate the spare capacity of an interval,
we also need to check the spare capacity of the subsequent interval. When the spare capacity of
the subsequent interval is negative, then borrowing of resources from the subsequent interval
is taken into consideration for the spare capacity calculation. This operation is performed in
line-14 to line-16, see Equation (3.12) and (3.13) in Section 3.4.

Pseudo-code 5 GetSpareCapacity()

1: /∗ OSICBCur points to current interval ∗/
2: /∗ spare and res variables are initialized to 0 at the start ∗/
3:
4: for i = 0 to OSICBCur→ OSICBNumofTasks-1 do
5: res = res + OSICBCur → OSICBTaskSet[i] → ÕSICBWorkToBeDone;
6: OSICBCur → OSICBTaskSet[i] → OSTCBInterval = OSICBCur → OSICBId;
7: i = i + 1;
8: end for
9:

10: spare = (OSICBCur → OSICBEndTime - OSICBCur → OSICBStartTime) - res;
11:
12: /∗ If the spare capacity of the next interval is negative, then the resources are reserved in the current

interval considering the earliest start time of a task belonging to the next interval ∗/
13:
14: if OSICBCur→ OSICBNext 6= NULL and OSICBCur→ OSICBNext→ OSICBSpareCapacity < 0 then
15: spare = spare + OSICBCur → OSICBNext → OSICBSpareCapacity;
16: end if
17:
18: return spare;

The first interval I0 can not have a negative spare capacity at any moment in time, because
this would mean that we have an invalid startup condition, i.e. the first execution when
starting the system would have insufficient resources to complete all allocated workloads. It
is therefore safe to ignore the spare capacity beyond the boundary of the hyper period (see
the if-statement in line 14).

44

6.8.2 Interval end event

This event signals the end of an interval. The actions performed in this event handler are
presented in Pseudo-code 6.

Pseudo-code 6 Interval end event
1: /∗ The spare capacity at the interval must be zero ∗/
2: ASSERT(cursparecapacity == 0)
3:
4: logEndInterval();

At the end of an interval, the assert expression presented in line-2 should always be true.
The expression in the assert can fail due to task misbehavior or other system malfunction.
However, mechanisms for overload management are beyond the scope of this work. All re-
sources in the interval should therefore be consumed; if there is no pending workload, then it
should be idled away. This assertion is essentially a validity check for the resource-monitoring
mechanism.

6.8.3 Task arrival event

The task-arrival event handler is meant for the periodic and sporadic tasks. Aperiodic task
arrivals which requires a guarantee test, are not discussed in the Pseudo-code 7.

Pseudo-code 7 Task arrival event
1: task → OSTCBWorkToBeDone = task → OSTCBCompTime + 1;
2:
3: /∗ Create an absolute deadline event of the type kRelteqEventDeadline ∗/
4: RelteqEvent* deadline-event = RelteqEventCreate(kRelteqEventDeadline, task);
5: /∗ Insert the deadline event into the ready queue ∗/
6: RelteqQueueInsertEvent(RelteqEDFReadyQueue, deadline-event, task → OSTCBDeadline, &err);
7: ASSERT OK(err);
8: task → ReadyQueueEvent = deadline-event;

Upon task arrival, the completed work variable is updated with the worst-case computation
time of the task. The completed work variable is used to keep track of the task execution.
This variable is used for the resource reclaiming and the borrowing, lending of the spare
capacity. The slot-shifting scheduling algorithm uses EDF to schedule tasks. The RELTEQ
framework is used to implement the EDF scheduler. We extended µC/OS-II using RELTEQ
to support EDF scheduling. For this purpose, we introduce the notion of deadline events.
A deadline-event is inserted into the EDF ready-queue with an absolute deadline of a task
(see line-4). The events are sorted by absolute deadlines and inserted into a RELTEQ queue
which represents the ready-queue for the EDF scheduler. In line-6, a pointer to an event is
maintained to access the deadline event corresponding to a task. For the detailed description
of the run-time mechanisms of RELTEQ, see Appendix B.

The expiration of a deadline timer is the result of a task that misses its deadline. Although
the event handler of these deadline timers leaves space to implement a policy for overload
handling, we consider such policies and their implementation as a future work.

45

6.8.4 Task completion event

The task-completion event handler presents the operations involved upon completion of a
task. Pseudo-code 8 presents the operations performed in the task completion event handler.

Pseudo-code 8 Task completion event

1: /∗ Delete the deadline event from the ready queue ∗/
2:
3: event = task → ReadyQueueEvent;
4: RelteqQueueDeleteEvent(RelteqEDFReadyQueue, event, &err);
5: ASSERT OK(err);
6: task → ReadyQueueEvent = NULL;
7:
8: /∗ Update spare capacity (resource reclaiming) ∗/
9: if task → OSTCBInterval == OSICBCur → OSICBId then

10: cursparecapacity = cursparecapacity + task → OSTCBWorkToBeDone;
11: end if

The deadline event associated with the task is deleted from the ready queue on completion
of a task execution. In line 3 of Pseudo-code 8, the deadline-event associated with the task
is obtained by the event pointer stored in the TCB. The deadline event is deleted from the
EDF ready-queue in line 4.

Finally, the spare capacity of the interval is updated after the completion of a task. If the
actual execution time of a task is less than the worst-case execution time, any unused resources
are reclaimed and added to the spare capacity.

6.9 API support for slot-shifting in µC/OS-II

We developed APIs for setting up the application using the slot-shifting scheduling algorithm.
The static parameters associated with intervals and tasks are stored using a set of functions.

API for interval support: The following function is used to create intervals.

OSIntervalCreate(START TIME, END TIME, SPARE CAPACITY, NUMBER OF TASKS, POINTERS TO TCBs..);

We store the static interval associated attributes in a ICB using OSIntervalCreate function.

API for EDF scheduling: The following function is used to store the relative deadline of
a task into an ICB.

OSTaskSetDeadline(OSTCBPrioTbl[TASK PRIORITY], TASK DEADLINE);

After creating a task using OSTaskCreateExt function, we get a pointer to a TCB. Using this
TCB pointer in the OSTaskSetDeadline function, we store the relative deadline of a task in
its TCB.

API for mixed task support: The following function is used to store the type of a task
and the WCET of a task.

46

OSTaskSetParam(OSTCBPrioTbl[TASK PRIORITY], TASK TYPE, TASK COMP.TIME);

After creating a task using OSTaskCreateExt function, we get a pointer to a TCB. Using this
TCB pointer in the OSTaskSetParam function, we store the type of a task and the WCET
of a task in its TCB.

We refer the interested reader to Appendix C to understand the configuration of compila-
tion flags and a detailed description of the APIs associated with the slot-shifting scheduling
algorithm.

6.10 Summary

In this chapter, we presented the design of tracking intervals. In order to track intervals,
interval related attributes are stored in the operating system. We proposed a new data
structure using a linked list of Interval Control Blocks (ICBs) to maintain intervals in an
RTOS. A counter is used to count the number of slots and keep track of the current scheduling
interval. Having stored intervals, the next job is to schedule them to manage the dynamic
properties of spare capacities.

Furthermore, the slot-shifting scheduling algorithm is targeted for mixed task sets. An RTOS
should provide support for periodic, aperiodic and sporadic tasks for the integration of slot-
shifting. The task control block of a operating system is extended with additional parameters
to hold the type of a task, the WCET of a task, the completed work of a task and the deadline
of a task. A mechanism for WCET monitoring is presented to track the execution of each
individual tasks. In addition, the resource-reclaiming mechanism and the borrowing, lending
mechanisms are implemented using the WCET monitoring feature.

The spare capacity monitoring is performed to update the spare capacity of an interval based
on the execution of all tasks during that interval. The spare capacity of an interval is affected
by the execution of a dynamic (sporadic and aperiodic) tasks or the execution of a periodic
task outside its own interval. When no task is ready to execute, an idle task consumes the
spare capacity of an interval.

Upon arrival, the information regarding the type of a task is deciding the steps involved in
placing of a task in the ready-queue. Periodic and sporadic tasks are directly placed in the
ready queue upon arrival, while an aperiodic task is undergoing an online admission test to
decide on the acceptance of a task. An aperiodic task is placed in the ready-queue, if and only
if it can be scheduled together with the off-line guaranteed tasks (periodic and sporadic) and
the previously guaranteed aperiodic task(s). Otherwise, a rejection strategy is employed to
reject either the newly arrived aperiodic task or the previously guaranteed aperiodic task(s).

To design aperiodic tasks, an approach based on semaphore event is presented. We propose
two semaphores to design aperiodic tasks, one semaphore is released from other tasks or ISR’s,
while the other semaphore is released based on the result of the guarantee algorithm.

The scheduling of tasks requires an EDF scheduler. The EDF design based on the RELTEQ
framework is presented. A ready-queue sorted based on the absolute deadline of a task is
used by the scheduler. Upon arrival of the task, the deadline event is created and placed in
the ready-queue. The head of the ready-queue contains the task with the earliest deadline.
The job of the scheduler is pick the task associated with the head event for the execution.

47

The run-time behavior slot-shifting requires handling number of events. We presented the
events associated with the implementation of the slot-shifting. Each event is described with
the event handler and the actions performed in the handlers are also explained.

The slot-shifting initialization procedure is presented to schedule tasks using slot-shifting
scheduler in µC/OS-II RTOS. We presented the configuration details of flags and APIs asso-
ciated with slot-shifting scheduling algorithm in Appendix C.

48

Chapter 7

Results and evaluations

The design of slot-shifting scheduling presented in the previous chapter has been integrated
into the µC/OS-II RTOS. In this Chapter, the evaluation results are presented. Grasp visu-
alization tool is briefed in Section 7.1. In Section 7.2, the slot-shifting results are presented
with the periodic tasks. The various slot-shifting features are explained with the example
task-set in Section 7.2. In Section 7.3, we include sporadic tasks with the periodic tasks to
depict the behavior of the slot-shifting scheduling strategy.

The experimental setup of our measurements are discussed in Section 7.4. The performance
of the EDF scheduler is compared with FPS and the results are presented in Section 7.5.
The run-time complexities of slot shifting in terms of time and memory are presented in
Section 7.6. Our findings are discussed in Section 7.7. Finally, this chapter is concluded with
a summary.

7.1 Grasp visualization

The visualization of the slot-shifting scheduler requires extension to the logging mechanisms
of µC/OS-II. Grasp visualization tool 1 is extended with the new plug-in for the tracking of
intervals. In order to register the interval traces in the Grasp output, logstartinterval and
logendinterval mechanisms are added in the OS LOG.c.

Furthermore, the visualization of the spare capacity requires new logging mechanisms. Run-
time mechanisms are already present in the µC/OS-II for the visualization of servers [13]. The
server visualization features are adapted to support for the visualization of spare capacities.

In order to visualize the execution trace of tasks with the slot-shifted scheduler, the OS LOG EN
flag is enabled in OS CFG.h. We present the results of our Grasp visualizer in Section 7.2
and 7.3.

1The Grasp visualization tool can be downloaded from: http://www.win.tue.nl/~mholende/grasp/.

49

http://www.win.tue.nl/~mholende/grasp/

7.2 Slot-shifted scheduling of periodic tasks

The functional behavior of the slot-shifting scheduling strategy and its run-time features
are illustrated with an example periodic task-set. Next, we present execution traces of the
slot-shifting scheduling algorithm with resource-reclaiming and the borrowing and lending
mechanisms.

7.2.1 Slot-shifting without resource reclaiming and borrowing mechanisms

The slot-shifting scheduling strategy without the resource reclaiming and borrowing mecha-
nisms. The slot-shifting behavior is explained with the task set presented in Table 7.1. The
intervals associated with the task-set presented in Table 7.2. The trace of the execution is
presented in Figure 7.1.

Task Arrival time Deadline WCET Period

P1 0 40 22 200

P2 40 80 22 200

P3 80 140 22 200

P4 80 140 22 200

P5 140 200 22 200

Table 7.1: An example periodic task set to elucidate the behavior of slot-shifted scheduler
without the resource-reclaiming and borrowing mechanisms.

The trace in Figure 7.1 presents the execution scenario of the task-set presented in Table 7.1
for a single hyper-period. While the tasks belongs to intervals are executing, the spare capacity
of the interval remains constant. The execution of idle task consumes the spare capacities of
the intervals. The decrease in the spare capacity is identified by the slope in the Figure 7.1.
When there is no other ready task to execute, then the idle task executes. The spare capacity
of the interval is decreased during the execution of the idle task. At the end of the interval,
the spare capacity of the interval reaches zero.

Interval Start time End time Spare capacity Tasks

Interval 0 0 40 18 {P1}
Interval 1 40 80 18 {P2}
Interval 2 80 140 16 {P3, P4}
Interval 3 140 200 38 {P5}

Table 7.2: Intervals for the task set presented in Table 7.1.

50

0 50 100 150 200

0

25

50

Interval

P1

interval 0

uC/OS-II Idle

P2

interval 1

P4

P3

interval 2

P5

interval 3 interval 0

Legend: arrived deadline active

Figure 7.1: The execution trace of the task set presented in Table 7.1 with the slot-shifted
scheduler.

7.2.2 Slot-shifting with resource reclaiming mechanism

In previous section, the slot-shifting scheduling is presented for the ideal scenario. However, a
task may finish earlier then its worst-case execution time. In such cases, the unused resources
can be reclaimed and used for the execution of other tasks in the system. This resource
reclaiming phenomenon is presented with the modified task-set presented in Table 7.1.

Due to the modification in the WCET of tasks, spare capacities of intervals are modified. The
new set of intervals are created based on the modified task parameters. Table 7.4 presents
the new set of intervals for the task-set presented in Table 7.3.

Figure 7.2 presents the execution trace of the task-set presented in Table 7.3 for a single
hyper-period. The execution of the task P2 and P3 indicates the resource reclaiming feature
of the slot-shifting scheduling strategy. After the completion of the execution, the unused
resources are reclaimed. The resource reclaiming is indicated by the increase in the spare
capacity. When a task completes its execution, the execution time of a task is compared with

51

Task Arrival time Deadline WCET Period

P1 0 40 22 200

P2 40 80 25 200

P3 80 140 25 200

P4 80 140 22 200

P5 140 200 22 200

Table 7.3: An example periodic task set to depict the behavior of slot-shifted scheduler with
the resource reclaiming mechanism.

Interval Start time End time Spare capacity Tasks

Interval 0 0 40 18 {P1}
Interval 1 40 80 15 {P2}
Interval 2 80 140 13 {P3, P4}
Interval 3 140 200 38 {P5}

Table 7.4: Intervals for the task set presented in Table 7.3.

the WCET of a task. If a task completes its execution earlier, then the unused resources are
reclaimed and added with the spare capacity of the interval. With this mechanism, we use
resources efficiently to deal with the dynamically arriving tasks.

52

0 50 100 150 200

0

25

50

Interval

P1

interval 0

uC/OS-II Idle

P2

interval 1

P4

P3

interval 2

P5

interval 3 interval 0

Legend: arrived deadline active

Figure 7.2: The execution trace of the task set presented in Table 7.3 with the slot-shifted
scheduler. The resource reclaiming is taking place at the completion of tasks P2 and P3 in
intervals 1 and 2 respectively.

7.2.3 Slot-shifting with borrowing and lending mechanism

The slot-shifting scheduling strategy proposes the borrowing and lending mechanism to deal
with the early arrival of tasks. The early arrival refers to the arrival of a task outside its
interval. Tasks are mapped onto intervals based on the deadline. The start time of a interval
need not be the start time of a task. Tasks may therefore execute outside their own intervals.
The execution of an early arriving tasks are taken care of by the borrowing and the lending
mechanisms. The early arriving task executes outside its own interval by borrowing spare
capacity from other intervals. The borrowing and lending of spare capacity is explained with
the task-set presented in Table 7.5.

Table 7.6 shows the intervals for the task-set presented in Table 7.5. The negative spare
capacity in the interval 1 indicates that the task is arriving earlier and the work-load of the
task P2 is higher than the resources available in the interval. The task is therefore borrowing

53

Task Arrival time Deadline WCET Period

P1 0 40 22 200

P2 30 80 44 200

P3 80 140 22 200

P4 80 140 22 200

P5 140 200 22 200

Table 7.5: An example periodic task set to depict the behavior of slot-shifted scheduler with
the borrowing and lending mechanisms.

resources from the earlier interval, interval 0. The off-line calculation of the spare capacity
takes into consideration the early arrival of a task. During the run-time, the spare capacity
information of the interval is used to deal with the early arriving periodic tasks.

Interval Start time End time Spare capacity Tasks

Interval 0 0 40 14 {P1}
Interval 1 40 80 -4 {P2}
Interval 2 80 140 16 {P3, P4}
Interval 3 140 200 38 {P5}

Table 7.6: Intervals for the task set presented in Table 7.5.

This borrowing and lending of spare capacities are illustrated by the trace in Figure 7.3. The
off-line computed spare capacity (using Equation (3.6) is presented in Table 7.6 indicates that
the spare capacity of an interval 1 is -4. The execution demand of task P2 exceeds the amount
of resources available in interval 1. The task P2 is therefore borrowing spare capacity from
interval 0, hence the spare capacity of an interval 0 is 14 (instead of 18).

From Figure 7.3, it is evident that the arrival of task P2 is within the interval 0 and therefore it
borrows the spare capacity of the interval 0 for its execution. Furthermore, the spare capacity
at the start of interval 1 is turning into positive, as the task P2 have already executed partially
in interval 0.

54

0 50 100 150 200

0

25

50

Interval

P1

interval 0

uC/OS-II Idle

P2

interval 1

P4

P3

interval 2

P5

interval 3 interval 0

Legend: arrived deadline active

Figure 7.3: The execution trace of the task set presented in Table 7.5 with the slot-shifted
scheduler. The execution of task P2 in interval 0, which originally belongs to interval 1,
presents the borrowing and lending of spare capacity between interval 0 and interval 1.

7.2.4 Slot-shifting with periodic tasks with multiple instances within a
hyper-period

Until now, we have presented the results of slot-shifting scheduling strategy with a simple
periodic task set, where there is only one task instance arriving in a hyper-period. In this
example, we consider a task set with an arrival of multiple task instance in a hyper-period.
Let us consider the task-set presented in Table 7.7.

The hyper-period of the task-set presented in Table 7.7 is 200. In this example, the periodic
task P1 has four instances, the periodic task P2 has two instances and the periodic task
P3 has one instance executing in the hyper-period. Table 7.8 presents the set of intervals
associated with a task-set presented in Table 7.7. The deadline of a task P1 is 50 and it has
four instances in a hyper-period, hence there are four intervals in Table 7.8. The task P2

has two instances with a deadline of 100, hence it is mapped onto interval 2 and interval 4.

55

Task Arrival time Deadline WCET Period

P1 0 50 22 50

P2 25 75 22 100

P3 80 120 22 200

Table 7.7: An example periodic task set to depict the behavior of slot-shifted scheduler with
an arrival of multiple instances within a hyper-period.

The deadline of a task P3 is 200 which is equal to the hyper-period of the periodic task-set
presented in Table 7.7, hence the task P3 is mapped into interval 3.

Interval Start time End time Spare capacity Tasks

Interval 0 0 50 28 {P1}
Interval 1 50 100 6 {P1, P2}
Interval 2 100 150 12 {P1}
Interval 3 150 200 -16 {P1, P2, P4}

Table 7.8: Intervals for the task set presented in Table 7.7.

Figure 7.4 presents the execution trace of the task-set presented in Table 7.7. In this example,
we present the execution of multiple instance of a periodic task in a hyper-period. The periodic
task P1 is executing in all intervals.

Borrowing and lending of spare capacity and resource reclaiming: The periodic task
P2 belongs to interval 1 is executing in interval 0 due to the early arrival of a periodic task
P2 in interval 0. At the start of an interval 1, we do not reserve resources for the execution
of a periodic task P2, although it belongs to interval 1, since it has already completed its
execution in interval 0. In this way, we reclaim resources resources during run-time and make
sure that the resources are not allocated for a task, which has already completed its execution.
The spare capacity of an interval 1 increase from 6 to 28, since the task P2 has completed in
interval 0 itself. This run-time behavior is achieved by the WCET monitoring mechanism.

Borrowing crosses multiple intervals: Note that the spare capacity at the start of the
interval 3 turns into positive, although the off-line computed spare capacity shows a negative
value. The variation in spare capacity is due to the execution of (a second instance of) the
periodic task P2 in interval 2 and the execution of periodic task P3 in interval 1 and interval 2,
although these tasks are originally belong to interval 3. In this example, the task P3 belongs
to interval 3 starts to execute in interval 1 and completes its execution in interval 2, hence
the borrowing crosses multiple intervals. The task P3 is therefore said to have borrowed spare
capacity from interval 1 and interval 2, hence the borrowed resources will become available
in its own interval.

56

0 50 100 150 200

0

25

50

Interval

P1

interval 0

uC/OS-II Idle

P2

interval 1

P3

interval 2 interval 3 interval 0

Legend: arrived deadline active

Figure 7.4: The execution trace of the task set presented in Table 7.7 with the slot-shifted
scheduler. The task P1 executes in all intervals, as it has four instances arriving in a hyper-
period. In addition, the task P2 belongs to interval 1 is executing in interval 0 hence, at the
start of interval 1, we reclaim resources to allow dynamically arriving tasks.

7.3 Slot shifted scheduling of periodic and sporadic tasks

In previous section, the slot-shifting scheduling strategy is presented with the periodic tasks.
In this section, the sporadic tasks are also added with the periodic tasks. The sporadic tasks
are guaranteed off-line along with the periodic tasks. In our test setup, we implement sporadic
tasks with periodic timers, because in the worst-case scenario, sporadic arrivals behave like
periodic tasks. During the run-time, sporadic tasks are allowed for the execution based on its
deadline. The execution of the sporadic task uses the spare capacity of the intervals. Let us
consider the task-set presented in Table 7.9. Table 7.10 presents the intervals for the task-set
presented in Table 7.9.

As we discussed earlier, we consider the worst-case behavior of the sporadic tasks. In the
worst-case, the sporadic tasks behaves like periodic tasks. We therefore consider the periodic

57

Task Arrival time Deadline WCET Period

P1 0 40 22 200

P2 40 80 22 200

P3 80 140 22 200

P4 80 140 22 200

P5 140 200 22 200

Table 7.9: An example periodic task set to elucidate the behavior of slot-shifted scheduler.

Interval Start time End time Spare capacity Tasks

Interval 0 0 40 18 {P1}
Interval 1 40 80 18 {P2}
Interval 2 80 140 16 {P3, P4}
Interval 3 140 200 38 {P5}

Table 7.10: Intervals for the task set presented in Table 7.9

tasks as sporadic tasks in our applications. Let us consider the sporadic task-set presented
in Table 7.3. The execution trace of the mixed tasks (periodic and sporadic) are presented in
Figure 7.5.

Task Arrival time Deadline WCET Period

S1 0 140 22 220

S2 70 200 22 220

Table 7.11: An example sporadic task set to elucidate the behavior of slot-shifted scheduler.

The sporadic task execution consumes the spare capacity of intervals. From Figure 7.5, the
spare capacity is decremented with the execution of sporadic tasks. In a way, the sporadic
task execution is similar to the idle task execution, since both consumes the spare capacity
of intervals. The execution of the sporadic task should not interfere with the execution of the
periodic tasks. The off-line preparation of tasks takes into account the unused resources to
schedule sporadic tasks. During the run-time, the execution of the sporadic task will not affect
the execution of the off-line guaranteed periodic tasks, unless there is a task misbehavior.

58

0 50 100 150 200

0

25

50

Interval

P1

S1

interval 0

P2

interval 1

uC/OS-II Idle

S2

P4

P3

interval 2

P5

interval 3 interval 0

Legend: arrived deadline active

Figure 7.5: The execution trace of the task sets presented in Table 7.9 and Table 7.3 with
the slot-shifted scheduler.

7.4 Experimental setup

In all our measurements, the OpenRISC simulator was running at 10Mhz, with a tick fre-
quency of 10ms. The profiling feature discussed in earlier in Section 5.6 is used in our mea-
surements. In OpenRISC simulator, the NOP instruction is used to perform measurements
and the cycle count is printed on the console. It is hard to match the profiling point with
the cycle counts, as the console is filled with list of cycle dumps. To ease the profiling in
µC/OS-II, a separate profiling extension is developed [8]. With the profiling extension, the
number of cycles required to execute the piece of code is dumped into a text-file. The number
of profiling points are configurable, for our measurements, we used 20000 profiling points.
In OS CFG.h, the OS PROFILING EN and OS PROFILING TICK EN flags are enabled to
measure the execution time of the tick ISR. The dispatching overhead is measured by en-

59

abling the OS PROFILING EN and OS PROFILING SCHED EN. During the performance
measurements, we have disabled the support for assertions and the logging functionality of
Grasp. We considered five samples and the data presented are the average of those five
samples.

The evaluation of our implementation is carried out with example applications in µC/OS-
II. We measure the tick ISR execution-time and the scheduling overhead. Event handlers
associated with the slot-shifting scheduler are executed in the context of tick ISR in µC/OS-
II. Pseudo-code 9 presents the tick ISR measurement setup. The measurement of the tick
ISR execution time is essential to understand the run-time complexity of the slot-shifted
scheduler.

Pseudo-code 9 Tick ISR measurement setup

1: /∗ Profiling starts here ∗/
2:
3: Save processor registers;
4: WCET monitoring
5: Spare capacity monitoring
6: Interval scheduling (Counter-based scheduling, see Pseudo-code 1)
7: OSIntEnter() or increment OSIntNesting;
8:
9: RelteqTimeTick();

10: Clear interrupting device;
11: OSIntExit();
12: Restore processor registers;
13: Execute a return from interrupt instruction;
14:
15: /∗ Profiling ends here ∗/

In addition, the scheduling overhead of µC/OS-II is measured by profiling the OSSchedNew()
function. In our measurements, the scheduling overhead refers to the time taken to select
the task for the execution. In µC/OS-II, the OSSchedNew() function is responsible for the
selection of a task for execution. With the FPS, the OSSchedNew() function finds the highest
priority ready task for the execution, while the EDF scheduler selects the task at the head of
the ready-queue for the execution.

7.5 Performance measurement: EDF versus FPS

The integration of the slot-shifting scheduling algorithm in µC/OS-II requires the design and
the implementation of the EDF scheduler. The µC/OS-II RTOS is already presented with the
priority based scheduler. With the priority based scheduler, each task is assigned a unique
priority, hence the name fixed-priority-scheduler (FPS). During the run-time, the scheduler
selects the highest priority ready task for the execution. The earliest-deadline-first (EDF)
scheduling requires scheduling of tasks based on the absolute deadline. Hence, the scheduler
must be designed to select the task with the earliest deadline for the execution. The EDF
implementation is carried on top of RELTEQ framework.

Although EDF scheduler is known for its better resource utilization, it introduces high over-
head due to the dynamic nature of deadlines during run-time. The comparison of the EDF
scheduler with the FPS would give us an indication of the performance. However, [7] presents

60

the misconceptions involved in the comparison of EDF versus Rate-Monotonic (RM) i.e. an
optimal fixed-priority assignment. The run-time overheads of FPS and EDF are decided by
numerous factors. For example, the implementation of the EDF scheduler on top of a priority-
based scheduler would introduce overhead. Buttazo [7] also indicates that the overhead caused
by EDF and FPS varies with the task-sets.

In this work, the performance of the EDF is compared with the FPS. An EDF scheduler
can be implemented on top of a fixed-priority scheduler by manipulating priorities based on
the absolute deadlines of tasks. Here, the EDF implementation is carried out on top of a
existing RELTEQ framework. In our design, a ready queue is created using the RELTEQ
mechanisms. To schedule tasks based on the deadline, the deadline events are inserted into
the ready queue. The ready-queue is sorted based on deadline of tasks. The task associated
with the head event of the ready queue is selected for the execution by the scheduler. Upon
task arrival, the deadline event is inserted in the ready queue for the scheduling. The task
arrival is handled by the timer-tick handler in µC/OS-II. Therefore, the overhead introduced
by the EDF scheduler can be obtained by measuring the execution time of the tick ISR.

7.5.1 Tick ISR execution time

With the use of RELTEQ in µC/OS-II, the overhead of the timer-tick handler depends on
the arrivals of tasks. For the better understanding of the performance, the task-set with the
same arrival time is considered for the measurement. All tasks in the system also has a same
period and a same deadline. Note that the simultaneous arrival of tasks requires dealing
with number of arrival events and we expect the event handling overhead to increase with
the increase in number of arrivals. Figure 7.6 presents the results of the EDF versus FPS
performance evaluation with simultaneously arriving tasks.

0

2

4

6

8

10

12

0 20 40 60 80 100Ti
ck

 IS
R

 e
xe

cu
ti

o
n

 t
im

e
 (

m
s)

Number of tasks

EDF versus FPS - Without Offset

EDF

FPS

Figure 7.6: Event handling overheads of EDF versus FPS with simultaneously arriving tasks.

61

Results indicates that the EDF scheduling produces more overhead compared to the FPS.
With the FPS, the task associated with a expired event is becoming ready for execution.
The built-in µC/OS-II scheduler is responsible for the scheduling of tasks in the FPS using
a ready-table. While, the EDF scheduling of tasks requires the insertion of deadline events
into the ready queue, as part of the arrival event handler, which introduces the additional
overhead. Figure 7.6 confirms the quadratic complexity of the RELTEQ event handlers. The
tick ISR execution time of 10 ms corresponds to 100% processor utilization.

To understand the relation between the arrival patterns and the tick-handler overhead, we
have considered a task-set with a different arrival times. The tasks are created with the offset
in such a way that there is no more than single arrival at any time slot.

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100

Ti
ck

 IS
R

 e
xe

cu
ti

o
n

 t
im

e
 (

m
s)

Number of tasks

EDF versus FPS with offset

EDF

FPS

Figure 7.7: Event handling overheads of EDF versus FPS with offset, where tasks have relative
activation offsets.

Figure 7.7 shows the similar trend as Figure 7.6, but the tick ISR execution time is reduced
by the large extent due to the offset. The increase in the number of tasks increases the tick
ISR execution time gradually, and the traversing of the RELTEQ to insert the event at the
appropriate position is the reason behind this gradual increase in the tick-handler execution
time, although there is only one arrival at any time slot.

From Figure 7.6 and Figure 7.7, we can conclude that the tasks with the same arrival time
leads to the worst-case execution time of tick-handler and the tasks with the offset results in
the best-case execution time of the tick-handler. The overhead is distributed over a larger
interval, leading to smaller ISR overheads. The event handling overhead of the EDF scheduler,
for distributed arrivals of tasks, is approximately 15% high as compared to de-facto FPS.
Figure 7.6 and Figure 7.7 confirms the complexity in the number of tasks for inserting a
new event. The run-time complexity of our implementation is O(n2), where n is the number
of tasks (arrivals). But, an implementation using binary trees would actually reduce it to

62

O(n ∗ log(n)). The binary tree implementation is considered as a future work.

7.5.2 Scheduling overhead

The scheduling overhead of the µC/OS-II is obtained by measuring the execution time of the
OSSchedNew() function. This function is responsible for selecting a task for the execution.
The operations performed to select a task for the scheduling is constant irrespective of the
number of tasks in the system. The scheduling overhead of the FPS and EDF schedulers are
presented in Table 7.12.

Scheduling algorithm Scheduling overhead

EDF 14.6 µs

FPS 7 µs

Table 7.12: Scheduling Overhead: EDF versus FPS.

The scheduling overhead of the EDF is higher than the FPS because of the operations involved
in choosing the task for the execution. The EDF scheduler picks the task at the head ready
queue sorted based on the deadline. With the FPS, the highest priority task is selected for
scheduling from the ready-table. The scheduling overhead indicates the time taken to identify
the task with the earliest deadline and the highest priority read task, for the EDF and the
FPS respectively.

63

7.6 Implementation complexity of Slot-shifting

In this section, we present the implementation complexity by looking at the run-time com-
plexity and the memory overhead. The slot-shifting run-time mechanisms are evaluated and
as we discussed earlier in Section 7.4, the tick ISR execution time is essential to understand
the run-time overhead. We evaluated the performance of the slot-shifted scheduler by mea-
suring the event handling overheads. The memory overhead is identified by evaluating the
memory requirement of the of the slot-shifting run-time mechanisms.

7.6.1 Run-time complexity

The slot-shifting run-time complexity is evaluated with an example application. The slot-
shifting scheduling algorithm requires the WCET monitoring, the spare capacity monitoring
and the interval-tracking mechanisms. As presented in earlier in Pseudo-code 9, all these
mechanisms are executed within the context of tick ISR. We created an example application
with a one to one mapping between tasks and intervals. In other words, the number of intervals
equals the number of tasks. For this measurement, we did not consider the borrowing, lending
and the resource-reclaiming mechanisms of slot-shifting. The arrival time of tasks is expected
to cause the worst-case overhead and it is also the reason behind the exclusion of these
slot-shifting run-time mechanisms.

We consider two different types of task sets. Firstly, a task-set is considered with simultaneous
arrival times, where all tasks in the application arrives at a single time slot. The measurement
results are presented in Figure 7.8. From Figure 7.8, it is apparent that the tick ISR execution
time increases quadratically with the increase in tasks. An event handler is invoked upon
arrival of a task. The higher the number of arrivals in a slot, the higher the tick ISR execution
time, due to the execution of arrival event handlers within the context of tick ISR.

In addition, we considered a different task set with distributed arrival times. The slot-shifting
scheduling technique proposes the notion of intervals which are decided by the arrival-time
and the deadline of a task. Typically, we expect tasks to have distributed arrival times,
although tasks with simultaneous arrival-time is not completely ruled-out by the slot-shifting
scheduling algorithm. Figure 7.8 indicates that tasks with off-set performs better then tasks
with simultaneous arrival times (with offset). At any-time slot, there is only one arrival which
results in the execution of only one arrival event-handler. The tick ISR execution time for
tasks with offsets is not a constant. Although one task is released at any slot, there is a
slight increase in the tick ISR execution time with the increase in the number of tasks in the
application, due to the traversing of a queue during the insertion of a new arrival event.

From Figure 7.9 and 7.10, it is apparent that the event handling overhead of slot-shifting is
high compared to EDF. For the EDF scheduler, the event handling overhead comes from the
execution of the task arrival event handler. But, with slot-shifting, the WCET monitoring,
the spare capacity monitoring and the interval event handlers are also executed additionally
in the context of tick ISR. The linear increase in tick ISR overhead for the slot-shifting
scheduler comes from the execution of the slot-shifting run-time mechanisms such as WCET
monitoring, Spare capacity monitoring and the interval tracking. The run-time complexity of
our slot-shifting implementation is O(N). It is the reason behind the increase in the quadratic
slope.

64

0

2

4

6

8

10

12

0 20 40 60 80

Ti
ck

 IS
R

 e
xe

cu
ti

o
n

 t
im

e
 (

m
s)

Number of tasks

Slot-shifting with and without offset

Without offset

With offset

Figure 7.8: Event handling overhead of slot-shifting with simultaneous arrival of tasks (with-
out offset) and with offsets for task arrivals.

0

2

4

6

8

10

12

0 20 40 60 80

Ti
ck

 IS
R

 E
xe

cu
ti

o
n

 t
im

e
 (

m
s)

Number of tasks

EDF versus Slot-shifting without offset

Slot-shifting

EDF

Figure 7.9: Event handling overheads of EDF versus Slot-shifting with simultaneously arriving
tasks (without offset).

The event handling overhead of slot-shifting scheduler is approximately 26% high as compared
to the de-facto FPS scheduler of µC/OS-II RTOS. For slot-shifting scheduler, overheads comes

65

from interval tracking, WCET monitoring, spare capacity monitoring and EDF scheduling of
tasks.

Furthermore, our implementation of slot-shifting in µC/OS-II allows us to use either FPS
or EDF scheduling for tasks. We evaluated the performance of slot-shifted scheduler with
FPS and EDF. Figure 7.11 and Figure 7.12 presents our results of slot-shifting with EDF
and FPS. The slot-shifted scheduler performs better with FPS as compared to EDF, since
the EDF scheduling of tasks requires creation and insertion of deadline events into the ready-
queue. While, the de-facto FPS of µC/OS-II uses a ready-table for the scheduling tasks based
on a priority.

The tick ISR execution time of a slot depends on the number of events handled, which depends
on the number of task arrivals. The number of task arrivals depends on the number of tasks
in the system.

However, the core concept of slot-shifting scheduling focuses on tasks with complex con-
straints. Having studied the behavior of operating system with simultaneously arriving tasks,
it is not advisable to allow tasks with simulations arrival times on resource-constrained plat-
forms. During the off-line preparation phase, the arrival times of tasks can also be taken into
consideration as one of the system constraint to improve the run-time behavior. Typically,
applications will have tasks with distributed arrival times and hence the run-time overhead
of the slot-shifting scheduling algorithm is minimized. Tasks with a simultaneous arrival time
is a rarity and the handling of such a task-set poses challenges independent of the scheduling
algorithm.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80Ti
ck

 IS
R

 E
xe

cu
ti

o
n

 t
im

e
(m

s)

Number of tasks

EDF versus Slot-shifting with offset

EDF

Slot-shifting

Figure 7.10: Event handling overheads of EDF versus Slot-shifting for tasks with relative
arrival offsets.

Our implementation of the slot-shifting run-time mechanisms uses the RELTEQ timer man-
agement mechanisms. The task-arrival is handled within the context of rick ISR in the existing
RELTEQ configuration. The handling of task-arrival event outside the tick ISR might im-

66

0

2

4

6

8

10

12

0 20 40 60 80Ti
ck

 IS
R

 E
xe

cu
ti

o
n

 t
im

e
(i

n
 m

s)

Tasks

EDF versus FPS - based Slot-shifting

Slot-shifting with FPS

Slot-shifting with EDF

Figure 7.11: Event handling overheads of Slot-shifting with simultaneously arriving tasks:
Slot-shifting with EDF versus Slot-shifting with FPS.

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80Ti
ck

 IS
R

 E
xe

cu
ti

o
n

 t
im

e
(m

s)

Tasks

EDF versus FPS-based Slot-shifting

Slot-shifting with FPS

Slot-shifting with EDF

Figure 7.12: Event handling overheads of Slot-shifting for tasks with relative arrival offsets:
Slot-shifting with EDF versus Slot-shifting with FPS.

prove the performance of the slot-shifting scheduling algorithm. However, we consider such
improvements as our future work.

Furthermore, the slot-shifting scheduling algorithm uses EDF for the scheduling of tasks
based on the deadline. Section 7.5 presents the scheduling overhead of EDF scheduler. The

67

scheduling overhead of slot-shifting scheduling algorithm is same as EDF, as the operations
involved in the selection of a task for the execution is same. So, we refer the reader to
Section 7.5.2 to know about the scheduling overhead of EDF scheduler.

7.6.2 Memory complexity

The slot-shifting scheduling algorithm requires new run-time mechanisms to be implemented
in µC/OS-II. New data structures are added to maintain task and interval attributes. To eval-
uate the memory complexity of our implementation, we manually evaluated our extensions.
We present the memory overhead of slot-shifting scheduling algorithm in Table 7.13.

Extensions Memory overhead (in bytes)

ICB 56

TCB 64

Table 7.13: Memory complexity of slot-shifting.

The memory overhead of the slot-shifting scheduling algorithm constitutes of ICBs and the
extensions to the TCB. Table 7.13 presents the memory requirement for a single ICB. The
memory overhead presents an ICB with a single task. The memory overhead of a ICB increases
with the increase in number of tasks in a ICB. The higher the number of intervals in the
application, the higher the memory overhead. In addition, the TCB of a task is extended
with new attributes for slot-shifting. The memory overhead of the slot-shifted scheduler
increases with the number of tasks in the application. The maximum number of ICBs is
O(N), where N denotes the number of intervals (See Section 3.4). The size of the linked list
of ICBs is therefore O(N). The TCB extensions are needed irrespective of the task type and
therefore the memory overhead is O(n), where n is the total number of tasks (See Section 3.3).
The total overhead is therefore O(N + n);

Note that the spare capacity is dynamically updated during run-time. We only need to know
the spare capacity of the current interval to be updated and this value can be saved in a single
variable stored in memory. In the ICB, however, we can make all data static, so that it can
be stored in Read-Only Memory (ROM) rather than in Random Access Memory (RAM). In
this work, we do not store the static parameters in ROM, however, such an improvement is
considered as a future work.

68

7.6.3 Memory complexity of EDF

The implementation of EDF requires deadline events, pointer to a deadline event and a
ready-queue. Each deadline event requires 16 bytes and it increases linearly with the increase
in number of tasks. In addition, we maintain a pointer to the ready-queue event with a
TCBReadyQueueEvent pointer to keep track of a ready queue event. The memory complexity
of a deadline event and a pointer to the ready-queue event increases with the increases in the
total number of tasks, hence it is O(n), where n is the total number of tasks (See Section 3.3).

Extensions Memory overhead (in bytes)

Deadline event 16

TCBReadyQueueEvent 4

EDFGlobalReadyQueue 16

Table 7.14: Memory complexity of EDF.

The EDF ready-queue is used to store deadline events and this is the basis for the scheduling
of tasks based on the deadline. The memory complexity of the EDF ready-queue depends on
the number of active events. During the simultaneous arrival of tasks, the memory complexity
of the EDF ready-queue depends on the number of arrivals, which in turn depends on the
number of tasks. The worst-case memory complexity of the EDF ready-queue is O(n).

7.7 Discussions

In this section, we present our findings during the design and implementation of slot-shifting
scheduling algorithm in µC/OS-II.

7.7.1 On the complexity of online acceptance test

In our work, we implemented the slot-shifting scheduling algorithm with the support for
handling periodic and sporadic tasks. In addition, the support for resource reclaiming and
the borrowing & lending mechanisms are integrated in µC/OS-II. The original slot-shifting
scheduling algorithm in [15] deals with periodic, aperiodic and sporadic tasks and aperiodic
tasks. Aperiodic tasks are guaranteed with a online guarantee test. A guarantee algorithm
is not implemented for the reasons discussed in Section 6.7. After passing this test, tasks are
executed in the spare capacity in the same way as sporadic tasks.

The tick ISR can be seen as a periodically arriving task at the highest priority. In EDF,
this means that the computation time is equal to its deadline, i.e. CISR = DISR. In order to
minimize the interference by ISR executions, we aim to (i) minimize the computation time;
(ii) minimize the fluctuations in the computation time, since these fluctuations may lead to
activation jitter for other tasks.

On the one hand, the execution of guarantee test in the context of tick ISR increases the
overhead and it is dangerous to perform a guarantee test within the context of tick ISR in a
resource-constrained system.

69

On the other hand, the execution of a guarantee test within the context of a task delays the
acceptance notification and requires to reserve resources explicitly during the off-line phase
to perform a guarantee test online. This limits the granularity of the deadlines of tasks
that can be serviced by a system. The online guarantee test of an aperiodic task should
therefore be improved to work efficiently in a resource-constrained systems and in turn to
improve predictability. We consider the implementation of a online guarantee algorithm as
our future work. Moreover, we opt for a reservation-based approach to limit the worst-case
ISR overheads.

However, a guarantee algorithm needs to be executed on arrival of aperiodic events. The
execution of a guarantee test within an ISR affects the predictability, as the computation
complexity of a guarantee test depends on the previously guaranteed aperiodic tasks. We
propose a approach based on a sporadic task to perform a guarantee test to improve the
predictability of a slot-shifting algorithm, while preventing aperiodic tasks from overloading
the system. A sporadic task with a minimum inter-arrival time can be used to perform a
guarantee test in the slot-shifting scheduling algorithm. The downside of this technique is
the delayed response to aperiodic events, as the guarantee (sporadic) task arrives only after
its minimum inter-arrival time has elapsed.

Furthermore, an improved guarantee algorithm can be developed with a less resource re-
quirement, to improve the performance. Isovic and Fohler [15] propose a online guarantee
algorithm, which considers the last activations of sporadic tasks. By considering the worst-
case arrival behavior of sporadic tasks, the performance of the online guarantee algorithm can
be improved. In addition, the impact of a sporadic task is needed for the acceptance of an
aperiodic task. By storing the pre-computed sporadic tasks impact in a table, the run-time
complexity of a guarantee algorithm can be minimized.

7.7.2 On the absence of critical slots during run-time

The slot-shifting scheduling algorithm introduces the notion of intervals defined by the arrival-
time and the deadline of a task. A task with a deadline at the end of the interval, has a
guaranteed resource in that interval. The critical slot of an interval is defined as the slot
where the execution of the dynamically arriving tasks are delayed due to the execution of
off-line guaranteed periodic tasks.

In our work on slot-shifting, the critical slot of an interval is not tracked during run-time, as
the guaranteed tasks will meet their deadline, in the absence of task misbehavior. Note that
such a deadline violation is detected by our WCET-monitoring mechanism, i.e. the deadline
timer expires, so that an appropriate action can be taken. Once a task is guaranteed to
execute with the slot-shifting scheduling algorithm, then it should meet its deadline. A task
misbehavior, a system malfunction or an incorrect guarantee test can only lead to a task
missing its deadline. The critical slot of an interval is therefore not tracked during run-time,
but merely used for analysis purposes during the off-line scheduling phase [15].

7.7.3 On the management of misbehaving tasks

With slot-shifting scheduling algorithm, we use the WCET of a task to track the execution
of a task during run-time. When a task completes its execution before its WCET, then the

70

unused resources are reclaimed and added with a spare capacity to deal with dynamically
arriving tasks. On the contrary, when a task executes longer than its WCET, we terminate
the application with a task misbehavior message. Although, we may allow a misbehaving
task to execute with a spare capacity of an interval, but such an extension might affect the
execution of other off-line guaranteed periodic tasks in the system. With an improvement in
the WCET and Spare capacity monitoring mechanism, we might allow misbehaving task to
execute with a spare capacity of an interval. However, such extensions are outside the scope
of this work.

7.8 Summary

The execution trace of the slot-shifted scheduler is visualized using the logging mechanisms
in µC/OS-II via Grasp visualization tool. Using this tooling, the run-time behavior of the
slot-shifted scheduler is presented with examples comprising periodic tasks and sporadic tasks.

Next, we evaluated the performance of our implementation. The performance of the EDF
scheduler is compared with the de-facto FPS scheduler of µC/OS-II. The tick ISR execution
time is measured, since the arrival-events of tasks are handled in the context of ISR. With the
increase in the number of arrivals, the tick ISR execution time increases quadratically. The
dispatching overhead of the EDF and FPS schedulers are compared, and the result indicates
a marginal increase in the scheduling overhead for EDF. The event handling overhead of EDF
scheduler is approximately 15% high compared to FPS, for distributed arrivals of tasks.

The performance of a slot-shifted scheduler is evaluated and the results are presented. From
the evaluation results, it is apparent that a task-set with distributed arrival times performs
better as compared to a task with simultaneous arrival times. The event handling overhead of
slot-shifting scheduler is approximately 26% high compared to FPS, for distributed arrivals of
tasks. A nice feature of slot-shifting is that it is likely that arrivals are distributed by design.
The findings of our work are presented in Section 7.7.

71

Chapter 8

Conclusions and future Work

8.1 Conclusions

In this work, we carried out the integration and evaluation of the slot shifting scheduling
strategy in µC/OS-II. We implemented the slot-shifting scheduling strategy with minimum
modification to the µC/OS-II kernel.

In chapter 4, we presented the run-time mechanisms required for the integration of slot-
shifting scheduling algorithm. We identified the run-time mechanisms by applying a slot-
shifting scheduling concept presented in [15], to case-studies. Furthermore, we presented
the static system properties in chapter 3. With the help of the static system properties, we
carried out the design of the slot-shifting scheduling algorithm.

The slot-shifting scheduling algorithm requires tracking of intervals and spare capacities dur-
ing run-time. We presented the interval-tracking feature in Section 4.5.1. The design of the
interval-tracking mechanism is presented in Section 6.1. The notion of an interval is used in
the slot-shifting scheduling strategy to handle dynamically arriving tasks. An interval is de-
fined by the arrival-time and the deadline of a task. Additionally, the end-time of the previous
interval is considered as the start time of an interval. The slot-shifting scheduling strategy
proposes borrowing and lending mechanisms to deal with early arriving tasks. We imple-
mented the borrowing and lending mechanisms by using a WCET monitoring mechanism
presented in Section 4.5.

In the slot-shifting scheduling algorithm, the dynamically arriving tasks are executed with
the unused resources in the intervals, also known as the spare capacity of an interval. Isovic
and Fohler [15] proposed a resource-reclaiming mechanism to reclaim the unused resources
allocated to aperiodic tasks to reclaim unused resources during run-time. In our work, we
extended the resource reclaiming mechanism to deal with the early completion of periodic and
sporadic tasks. We used the WCET monitoring feature to reclaim unused resources during
run-time. During run-time, we dynamically update the spare capacity of an interval to deal
with the dynamically arriving tasks.

Furthermore, tasks are scheduled based on their deadline in slot-shifting. Since many RTOSes,
including µC/OS-II do not implement deadline driven scheduling, i.e. EDF, we designed and
implemented an EDF scheduler, for µC/OS-II. We carried out our implementation on top of

72

the RELTEQ timer management mechanisms.

To analyze the performance of our extensions in µC/OS-II, we evaluated the performance
of the EDF scheduler and the slot-shifting scheduling algorithm. To better understand the
performance of the EDF scheduler, we compared the performance of the EDF scheduler with
the de-facto FPS of µC/OS-II. We presented the results of the EDF versus FPS comparison in
Section 7.5. In addition, we evaluated the performance of slot-shifting scheduling algorithm
and presented our results in Section 7.6. The tick ISR execution of the EDF scheduler is high
compared to FPS, due to the additional operations performed in the arrival event handler
for EDF scheduling. With FPS, a new arrival event is created and inserted into the system
queue. But, for the EDF scheduler, the deadline event is created and inserted into the ready
queue, hence the increase in tick overhead. The scheduling overhead of the EDF scheduler
is also marginally high compared to FPS. The event handling overhead of EDF scheduler is
approximately 15% high compared to FPS, for distributed arrivals of tasks.

The performance of slot-shifting is also evaluated. Typically, the slot-shifting scheduling
strategy uses task-set with a varying arrival times. Tasks with simultaneous arrival times
have shown to increase the run-time overhead, due to the execution of a burst of arrival-event
handlers. In slot-shifting, the intervals regulates a distribution of arrivals, which reduces
the run-time overhead as the arrival events are distributed over more than slot. The event
handling overhead of slot-shifting scheduler is approximately 26% high compared to FPS, for
distributed arrivals of tasks. The distributed arrivals of tasks does not reduce the absolute
overhead; it reduces the worst-case periodic interference and therefore it is more predictable.
The impact of the arrival-time of a task can therefore be considered as a system constraint,
and can be resolved off-line, to improve the run-time performance.

The slot-shifting scheduling algorithm is suitable for applications with a distributed arrival
times of tasks, as the performance of the slot-shifted scheduler with offsets behaves better than
tasks with simultaneous arrival times. With offsets, the run-time overhead of the slot-shifted
scheduler is distributed over number of time slots, which minimizes the tick ISR execution
time. On the other hand, the simultaneous arrival of tasks handles all arrival events in one
time slot, which results in large tick ISR execution time. The simultaneous arrival of tasks
are therefore bound to increase the run-time overhead irrespective of the scheduling algorithm
used, unless the efficiency of the arrival event handler is improved.

8.2 Future work

In this section, we suggest future work on integrating slot-shifting in µC/OS-II.

8.2.1 Increasing the RTOS predictability

In the slot-shifting scheduling algorithm, a guarantee algorithm is needed to accept an aperi-
odic task during run-time. Isovic and Fohler [15] proposes a guarantee algorithm, which takes
into consideration the previously guaranteed periodic, aperiodic and sporadic tasks along with
the newly arrived aperiodic task.

Typically, aperiodic tasks are activated by an external hardware interrupts. The interrupt-
driven nature of cheap hardwares creates numerous challenges in real-time systems. A faulty

73

hardware device can overload the system by activating a number of aperiodic tasks. This
could lead to the execution of a guarantee test for each of the newly arrived aperiodic tasks.
A system overload due to an interrupt burst can therefore lead to the system failure in the
worst-case.

In Section 6.3.2, we have already discussed about the enforcement of inter-arrival times for
sporadic tasks. The arrival pattern of such sporadic tasks are uniform, but the dynamic
arrival pattern of interrupt-driven aperiodic tasks requires dedicated run-time mechanisms
to prevent system overload due to the top-half execution of interrupt handler. Regehr and
Duongsaa [26] propose methods to prevent such interrupt overload problems in embedded
systems. Methods are based on temporarily disabling faulty interrupt sources, i.e. they
assume that each interrupt source can be masked individually.

The enforcement of interrupt inter-arrival times is one of the solution proposed by Regehr
and Duongsaa [26], which is similar to the minimum inter-arrival time enforcement of Ra-
jkumar [25]. Alternatively, they propose a method based on a reservation to handle bursty
interrupt sources is also presented in [26].

Finally, both approaches by Regehr and Duongsaa are considered as viable complementary
techniques to our implementation. However, an implementation is considered beyond the
scope of this work.

8.2.2 Performance enhancement of RELTEQ

With RELTEQ framework, tasks arrival events are handled within the context of tick ISR.
The tick ISR execution time increases quadratically with the increase in the number of tasks
in the system. The performance can be improved by handling arrival events outside the
context of tick ISR. An arrival event can be handled within a task. Upon arrival of a task,
the arrival time of a task can be stored. On the task completion, insert a timer for the next
activation based on the stored arrival time.

Alternatively, an implementation of RELTEQ based on the binary tree improves the perfor-
mance, as it reduces the complexity of deletions and insertions from linear to logarithmic.

8.2.3 Resource sharing between aperiodic and sporadic tasks

In the slot-shifting scheduling algorithm, all task dependencies are resolved off-line, which
leads to (relatively) independent execution of tasks during run-time. If sporadic or aperiodic
tasks are converted to periodic tasks, then the resource is over-provisioned, which leads to less
spare capacity for the execution of dynamic events. The synchronization protocol for sharing
resources between aperiodic tasks and sporadic tasks can therefore be an interesting solution
for limited form of dependencies, i.e. mutual exclusive execution of so-called critical sections.

8.2.4 Slot-shifting on distributed nodes

Slot-shifting scheduling can also be employed in distributed nodes. In this work, we pre-
sented the scheduling of tasks in a single node. The slot-shifting can be extended to support
multiple nodes, as the run-time mechanisms are same for each node in the network. In a dis-

74

tributed setting, the slot-shifted scheduler requires synchronization of time slots. The choice
of time synchronization may depend on the degree in which a design considers an autonomous
operation of nodes in the system [17].

The time synchronization between nodes can be achieved at various granularity. Based on
the application requirement, a time synchronization can be performed at slots, intervals or
hyper-periods. For the synchronization of time at slots, the timer-tick interrupt occurrence on
multiple nodes should be synchronized with a single global reference. Aoun et al. [4] describes
technique to perform tick alignment in a distributed setting. Aoun et al. tested their technique
in FreeRTOS, which is similar to our target RTOS, µC/OS-II. With an extension to perform
tick alignment on distributed nodes at suitable granularity, the slot-shifted scheduler can be
employed in a distributed setting.

75

References

[1] VxWorks Reference Manual - 5.3.1, April 1998.

[2] OpenRISC Architecture Manual, Rev 1.1, July 2004.

[3] Opencores. http://opencores.org/or1k/Main Page, 2011.

[4] Marc Aoun, Julien Catalano, and Peter Stok. Distributed task synchronization in wireless
sensor networks. In Proceedings of the 6th European Conference on Wireless Sensor
Networks, EWSN ’09, pages 150–165, 2009.

[5] Arcticus Systems. Rubus OS - Reference Manual, June 2004.

[6] Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In Proc. Real-Time Systems Symposium
(RTSS), pages 182–190, 1990.

[7] Giorgio C. Buttazzo. Rate monotonic vs. EDF: judgment day. Real-Time Syst., Volume
29, Issue 1:5–26, January 2005.

[8] Wim Cools. Extending µC/OS-II with FPDS and reservations. Master’s thesis, Eind-
hoven University of Technology, July 2010.

[9] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real-time operating system of
MARS. SIGOPS Oper. Syst. Rev., Volume 23, Issue 3:141–157, July 1989.

[10] Radu Dobrin. Combining Off-line Schedule Construction and Fixed Priority Scheduling
in Real-Time Computer Systems. PhD thesis, Mälardalen University, September 2005.

[11] Gerhard Fohler. Joint scheduling of distributed complex periodic and hard aperiodic
tasks in statically scheduled systems. In Proceedings of the 16th Real-Time Systems
Symposium, Pisa, Italy, December 1995.

[12] Mike Holenderski, Wim Cools, Reinder J. Bril, and Johan J. Lukkien. Extending an
open-source real-time operating system with hierarchical scheduling. Technical report,
Eindhoven University of Technology, October 2010.

[13] Mike Holenderski, Martijn M. H. P. van den Heuvel, Reinder J. Bril, and Johan J.
Lukkien. Grasp: Tracing, visualizing and measuring the behavior of real-time systems.
In Proc. 1st International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), pages 37–42, July 2010.

76

[14] Damir Isovic. Flexible Scheduling for Media Processing in Resource Constrained Real-
Time Systems. PhD thesis, Mälardalen University, Sweden, November 2004.

[15] Damir Isovic and Gerhard Fohler. Handling mixed task sets in combined offline and online
scheduled real-time systems. Real-Time Systems Journal, Volume 43, Issue 3:296–325,
December 2009.

[16] Hermann Kopetz. Event-triggered versus time-triggered real-time systems. In Proceed-
ings of the International Workshop on Operating Systems of the 90s and Beyond, pages
87–101, London, UK, 1991. Springer-Verlag.

[17] Hermann Kopetz and Gnther Bauer. The time-triggered architecture. In PROCEED-
INGS OF THE IEEE, pages 112–126, 2003.

[18] Jean J. Labrosse. MicroC/OS-II. R & D Books, 2nd edition, 2002.

[19] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact char-
acterization and average case behavior. In proceeding of Real Time Systems Symposium,
pages 166–171, 1989.

[20] J. Y. T Leung and J. Whitehaed. On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance Evaluation, Volume 2, Issue 4:237–250, 1982.

[21] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, January 1973.

[22] OSEK. OSEK/VDX,Operating System Manual, Version 2.2.1, February 2005.

[23] OSEK. OSEK/VDX, Time-Triggered Operating System, Version 1.0, July 2010.

[24] Michael J. Pont. Reducing the time taken to test your next embedded system. TTE
systems, 2010.

[25] Ragunathan Rajkumar. Dealing with suspending periodic tasks. IBM T.J. Watson
Research Center, 1991.

[26] John Regehr and Usit Duongsaa. Preventing interrupt overload. SIGPLAN, Volume 40,
Issue 7:50–58, June 2005.

[27] Fabian Scheler and Wolfgang Schroeder-Preikschat. Time-triggered vs. event-triggered:
A matter of configuration? Model-Based Testing, ITGA FA 6.2 Workshop on and
GI/ITG Workshop on Non-Functional Properties of Embedded Systems, 2006 13th
GI/ITG Conference -Measuring, Modelling and Evaluation of Computer and Communi-
cation (MMB Workshop), pages 1–6, March 2006.

[28] Martijn M. H. P. van den Heuvel, Mike Holenderski, Reinder J. Bril, and Johan J.
Lukkien. Constant-bandwidth supply for priority processing. In IEEE Transactions
on Consumer Electronics (TCE), volume 57, pages 873–881, May 2011.

77

Appendix A

A case study : slot-shifting with
periodic tasks

In this section, we will analyze the static system properties with an example task-set. Let us
consider a task set presented in Table A.1. This task-set is converted into set of intervals
using the static system properties presented in Section 3.4.

Task Arrival Time WCET Deadline Period

P1 0 2 4 20

P2 1 6 16 20

P3 4 2 8 20

P4 10 2 14 20

P5 15 1 20 20

Table A.1: An example task-set.

Based on Equation (3.3), (3.4) and (3.6), the task-set is divided into intervals. Intervals for
the task-set presented in Table A.1 are given below in Table A.2.

Intervals(Im) Start time (stm) End time(em) Spare capacity(scm) Task-set(τm)

I0 0 4 2 {P1}
I1 4 8 2 {P3}
I2 8 14 0 {P4}
I3 14 16 -4 {P2}
I4 16 20 3 {P5}

Table A.2: Intervals for the task set presented in Table 4.1.

The hyper-period of intervals,HI (see Equation (3.6)) is,

HI = LCM(T1, T2, T3, T4, T5) = 20 (A.1)

The length of an interval, Im, at the start of an interval stm is calculated based on Equation

78

(3.8).
Length(I0) = e0 − st0 = 4− 0 = 4 (A.2)

Length(I1) = e1 − st1 = 8− 4 = 4 (A.3)

Length(I2) = e2 − st2 = 14− 8 = 6 (A.4)

Length(I3) = e3 − st3 = 16− 14 = 2 (A.5)

Length(I4) = e4 − st4 = 20− 16 = 4 (A.6)

0 5 10 15 20

Interval 0

Idle

 P1

 P2

Interval 1

 P3

Interval 2

 P4

Interval 3

 P5

Interval 4

Figure A.1: Execution scenario of task-set presented in Table A.1. Only periodic tasks are
considered in this scenario.

Arrival of a task Deadline of a task Task execution

Figure A.2: Legend for Grasp trace presented in Figure A.1.

Let us assume the execution scenario without dynamic tasks, to understand the spare capacity
variation during run-time. For the execution sequence presented in Figure , the variation of
state variables for each time instance is presented below.

The following holds at the start(st0) of an interval I0:

79

• Start of an interval I0

• Q(0) = {P1,1}

• CP,completed1 (0) = 0

• PW (P1, 0) = 2 (see Equation (3.9))

• C0
res(0) = 2 (see Equation (3.11))

• sc0(0) = 2 (see Equation (3.13))

• Assume: Periodic task, P1,1, execution at time 0

Time-slot 1. At time slot 1, the following holds:

• Q(1) = {P1,1, P2,1}

• Cp,completed1 (1) = 1

• PW (P1, 1) = 1

• Cp,completed2 (1) = 0

• PW (P2, 1) = 6

• C0
res(1) = 1

• sc0(1) = 2

• Assume: Periodic task, P1,1, execution at time 1

Time-slot 2. At time slot 2, the following holds:

• Periodic task P1,1 completes its execution

• Q(2) = {P2,1}

• Cp,completed2 (2) = 0

• PW (P2, 2) = 6

• C0
res(2) = 0

• sc0(2) = 2

• Assume: Periodic task, P2,1, execution at time 2

Time-slot 3. At time slot 3, the following holds:

• Q(3) = {P2,1}

• Cp,completed2 (3) = 1

• PW (P2, 3) = 5

• C0
res(3) = 0

• sc0(3) = 1

• Assume: Periodic task, P2,1, execution at time 3

Time-slot 4. At time slot 4, the following holds:

80

• Start of an interval I1

• Q(4) = {P3,1, P2,1}

• Cp,completed3 (4) = 0

• PW (P3, 4) = 0

• Cp,completed2 (4) = 2

• PW (P2, 4) = 4

• C1
res(4) = 2

• sc0(4) = 0

• sc1(4) = 2

• Assume: Periodic task, P3,1, execution at time 4

Time-slot 5. At time slot 5, the following holds:

• Q(5) = {P3,1, P2,1}

• Cp,completed3 (5) = 1

• PW (P3, 5) = 1

• Cp,completed2 (5) = 2

• PW (P2, 5) = 4

• C1
res(5) = 1

• sc1(5) = 2

• Assume: Periodic task, P3,1, execution at time 5

Time-slot 6. At time slot 6, the following holds:

• Periodic task P3,1 completes its execution

• Q(6) = {P2,1}

• Cp,completed3 (6) = 2

• PW (P3, 6) = 0

• Cp,completed2 (6) = 2

• PW (P2, 6) = 4

• C1
res(6) = 0

• sc1(6) = 2

• Assume: Periodic task, P2,1, execution at time 6

Time-slot 7. At time slot 7, the following holds:

• Q(7) = {P2,1}

• Cp,completed2 (7) = 3

• PW (P2, 7) = 3

• C1
res(7) = 0

81

• sc1(7) = 1

• Assume: Periodic task, P2,1, execution at time 7

Time-slot 8. At time slot 8, the following holds:

• Start of an interval I2

• Q(8) = {P2,1}

• Cp,completed2 (8) = 4

• PW (P2, 8) = 2

• C2
res(8) = 4

• sc1(8) = 0

• sc2(8) = 2

• Assume: Periodic task, P2,1, execution at time 8

Time-slot 9. At time slot 9, the following holds:

• Q(9) = {P2,1}

• Cp,completed2 (9) = 5

• PW (P2, 9) = 1

• C2
res(9) = 3

• sc2(9) = 2

• Assume: Periodic task, P2,1, execution at time 9

Time-slot 10. At time slot 10, the following holds:

• Periodic task P2,1 completes its execution

• Q(10) = {P4,1}

• Cp,completed4 (10) = 0

• PW (P4, 10) = 2

• C2
res(10) = 2

• sc2(10) = 2

• Assume: Periodic task, P4,1, execution at time 10

Time-slot 11. At time slot 11, the following holds:

• Q(11) = {P4,1}

• Cp,completed4 (11) = 1

• PW (P4, 11) = 1

• C2
res(11) = 1

• sc2(11) = 2

• Assume: Periodic task, P4,1, execution at time 11

Time-slot 12. At time slot 12, the following holds:

82

• Periodic task P4,1 completes its execution

• Q(12) = {∅}
• Cp,completed4 (11) = 2

• PW (P4, 11) = 0

• C2
res(11) = 0

• sc2(12) = 2

• Assume: Idle task execution at time 12

Time-slot 13. At time slot 13, the following holds:

• Q(13) = {∅}
• C2

res(13) = 0

• sc2(13) = 1

• Assume: Idle task execution at time 13

Time-slot 14. At time slot 14, the following holds:

• Start of an interval I3

• Q(14) = {∅}
• C3

res(14) = 0

• sc3(14) = 2

• Assume: Idle task execution at time 14

Time-slot 15. At time slot 15, the following holds:

• Q(15) = {P5,1}

• Cp,completed5 (16) = 0

• PW (P5, 16) = 1

• C3
res(15) = 0

• sc3(15) = 1

• Assume: Periodic task, P5,1, execution at time 15

Time-slot 16. At time slot 16, the following holds:

• Periodic task P5,1 completes its execution

• Start of an interval I4

• Q(16) = {∅}
• Cp,completed5 (16) = 1

• PW (P5, 16) = 0

• C4
res(16) = 0

• sc4(16) = 4

• Assume: Idle task execution at time 16

83

Time-slot 17. At time slot 17, the following holds:

• Q(17) = {∅}
• C4

res(17) = 0

• sc4(17) = 3

• Assume: Idle task execution at time 17

Time-slot 18. At time slot 18, the following holds:

• Q(18) = {∅}
• C4

res(18) = 0

• sc4(18) = 2

• Assume: Idle task execution at time 18

Time-slot 19. At time slot 19, the following holds:

• Q(19) = {∅}
• C4

res(19) = 0

• sc4(19) = 1

• Assume: Idle task execution at time 19

Time-slot 20. End of hyper-period

The execution scenario above presents the variation of system parameters during run-time.
This sequence also presents how the spare capacity becomes positive from a initially negative.
Since, the periodic task P2 belongs to an interval I3, the spare capacity of an interval is
updated during run-time, when a task executes outside its own interval I3. The off-line
computed spare capacity changes during run-time, as the tasks are dynamically executing
outside their intervals. The spare capacities and the reserved capacities need to be computed
dynamically at the start of each interval.

For all intervals, the start-time, the end-time and the task-set belongs to intervals are the
static parameters. With these static parameters, the spare capacity and the reserved capacity
is calculated. In order to compute the actual reserved capacity of an interval, we need to keep
track of the pending work of a periodic task. The execution of each task must therefore be
tracked in order to obtain the reserved capacity, and derived from that, the spare capacity.
For example, see the variation in parameter from time-slot 7 to time-slot 8 in the execution
sequence presented above. At time-slot 7, the spare capacity of the interval I2, sc2 is 3. While,
at time-slot 8, at the start of an interval I2, it is computed as 2 using Equation (3.13). This
is a side-effect of the borrowing mechanism, which updates the spare capacity at the start of
each interval.

84

Appendix B

RELTEQ Revisited

RELTEQ, an efficient time representation mechanism, developed for different kinds of timed
events such as period event, deadline event and so on. RELTEQ stores the arrival times of
future events relative to each other, by expressing their time relative to their previous event.
The arrival time of the head event is relative to the current time [12], as shown in Figure
B.1.

Figure B.1: Example of the RELTEQ event queue.

A RELTEQ event is specified by the tuble (kind, time, handler). The kind represents the
event kind, e.g. a delay or the arrival of a periodic task. time is the event time. handler
points to additional data that may be required to handle the event and depends on the event
kind. For instance, a delay event will point to the task which is to be resumed after the delay
event expires.

More detailed description on RELTEQ can be found in [12]. In this appendix, the purpose
of RELTEQ mechanisms and its functionality is described briefly. This appendix can be
considered as a cook book to implement functionalities on top of RELTEQ.

B.1 How to create a new RELTEQ queue?

A RELTEQ queue is a list of RELTEQ events. When the event at the head of the queue
expires, the event handler is invoked. The event handler depends on the kind of event. For
example, a delay event will resume the delayed task. In order to create a new RELTEQ, the
following mechanisms should be considered.

85

• RelteqQueueCreate() function is used to create a new RELTEQ queue. The new
RELTEQ queue is created from the free list of queues. This function is defined in
os relteq core.c.

• In the configuration file, os cfg.h, the number of queues supported by the RELTEQ
is defined by the OS RELTEQ NUM CUSTOM QUEUES preprocessor directive. This
parameter must be properly defined to create additional RELTEQ queues. By default,
the activation of RELTEQ creates the RELTEQ system queue to deal with delay events.
The integration of new mechanism on top of RELTEQ might require dealing with dif-
ferent events and queues. In such circumstances, this parameter must be configured
properly to create new RELTEQ queues.

B.2 How to activate/deactivate a new RELTEQ queue?

A RELTEQ queue is used to store events. Each event has an expiration time associated with
it. Upon expiration, the event handler is invoked to perform actions, based on the event type.
In order to deal with a RELTEQ event and to keep track of event expirations, the RELTEQ
queue must be activated. The queue will not be updated with the deactivation of a RELTEQ
queue.

• RelteqQueueActivate() function activates the queue to keep track of event expirations.
This function is defined in os relteq core.c.

• RelteqQueueDeactivate() function deactivates the queue and the events in the queue
will not be updated, after the deactivation. This function is defined in os relteq core.c.

B.3 How to create a new RELTEQ event?

A RELTEQ event is created with the type and the handler. The type of an event can
be period, delay, deadline etc. Each event must have an handler associated with it. On the
expiration of a event, the event is handled by performing the actions described in the handler.

• RelteqEventCreate() function is used to create a RELTEQ event. The creation of a
event requires the event type and the pointer to the handler. This function is defined
in os relteq core.c.

• RelteqEventDel() function is used to delete a event. After handling the event, it is
always safe to delete the expired event. This function is often invoked in the event
handler to delete the event. This function is defined in os relteq core.c.

B.4 How to insert and delete an event from a queue?

After the creation of an event, they are inserted into the queue. Once the event becomes
part of the queue, the RELTEQ manages the event by keeping of expiration of events in the
queue. In the same way, the event can be deleted from the queue.

86

• RelteqQueueInsertEvent() function is used to insert a RELTEQ event into a RELTEQ
queue. This function takes a RELTEQ event and a RELTEQ queue as an argument.
The incorrect arguments would lead to system termination via ASSERT function. This
function is defined in os relteq core.c.

• RelteqQueueDeleteEvent() function is used to delete a RELTEQ event from a RELTEQ
queue. This function takes a RELTEQ event and a RELTEQ queue as an argument.
The event passed as an argument is deleted from the queue specified in the argument.
This function is defined is os relteq core.c.

B.5 RelteqTimeTick function

The RelteqTimeTick function is invoked from the tick handler of the µC/OS-II [18]. The
RelteqTimeTick function is responsible for handling the timed events. The head of active
RELTEQ queues are updated in each time tick. As a consequence, events may expire in
RELTEQ queues. All the expired events are handled as part of the RelteqTimeTick function.

• RelteqSyncWithCurrentTime function is responsible for updating all the active queues
in the system. In addition, the expired events are handled as part of this function. The
overhead of the RelteqTick handler comes from the execution of the RelteqSyncWith-
CurrentTime. The overhead increases with the increase in the number of active queues
and the number of expiring events in each of these active queues. This function must
be used carefully to reduce the overhead. While developing extension on top of the
RELTEQ framework, a special care must be taken to deal with the overhead caused by
the RelteqSyncWithCurrentTime function.

B.6 Discussions

The purpose of this Appendix is to provide an high-level overview of the RELTEQ framework.
For the integration of new run-time mechanisms, the function calls presented above are highly
essential. To properly understand the dependencies involved with the RELTEQ framework
implementation, the careful analysis of the os relteq core.c, os relteq port.c, os relteq port.h
and os relteq.h functions are essential.

The RELTEQ framework provides very useful mechanisms to add new rum-time features. The
proper understanding of the framework is essential to develop efficient run-time mechanisms
with less run-time overhead.

87

Appendix C

Slot-shifting cook book

In this Appendix, we present the programming APIs and the configuration details of slot-
shifting scheduling in µC/OS-II.

C.1 Programming API

We present the programming APIs for the EDF scheduler and the slot-shifting scheduling
in µC/OS-II. All parameters are of type INT8U. The OSTCBPrioTbl gives the pointer to a
TCB of a task with the help of a task priority.

C.1.1 EDF scheduler

The EDF scheduler is implemented on top of the RELTEQ framework. For scheduling of
tasks based on the absolute deadline, the deadline of a task is inserted into the ready-queue.
During run-time, deadlines of tasks must be maintained in RTOS. We introduced a new API
to store task deadline in the TCB of a task.

OSTaskSetDeadline(OSTCBPrioTbl[TASK PRIORITY], TASK DEADLINE);

The EDF scheduling in µC/OS-II works with the RELTEQ and the OS RELTEQ EDF option
enabled in OS CFG.h. In order to store the deadline of a task in its TCB, we created the
OSTaskSetDeadline function. The OSTCBPrioTbl[TASK PRIORITY] acts as the pointer
to the TCB of a task. TASK DEADLINE parameter passed as the second argument is the
relative deadline of a task.

C.1.2 Slot-shifting scheduler

For the scheduling of tasks using the slot-shifting scheduling technique, an RTOS should
maintain information regarding tasks in the system and the set of intervals associated with
the task set. We developed APIs for storing the task attributes in TCB and the inter-

88

val attributes in ICB. For these APIs to work and to enable slot-shifting in µC/OS-II,
OS SLOT SHIFTING EN should be enabled (set to 1) in OS CFG.h.

• The slot-shifting run-time mechanisms requires the information regarding the type of a
task and the WCET of a task. We developed a new API to store these informations in
a TCB.

OSTaskSetParam(OSTCBPrioTbl[TASK PRIORITY], TASK TYPE, TASK COMP.TIME);

The OSTCBPrioTbl[TASK PRIORITY] acts as the pointer to the TCB of a task. The
TASK TYPE parameter indicates the type of a task. The type can be Periodic, Ape-
riodic, or Sporadic 1. The TASK COMP.TIME parameter takes the WCET of a task.
With the help of this API, the type of a task and the WCET of a task is stored in a
TCB.

• The slot-shifting scheduling algorithm requires tracking of intervals during run-time.
The interval attributes must be maintained in RTOS to perform interval-tracking. We
created ICBs to maintain interval attributes. In order to register intervals in a ICB, we
created an API.

OSIntervalCreate(START TIME, END TIME, SPARE CAPACITY, NUMBER OF TASKS, POINTERS TO TCBs..);

The interval associated information such as start time of an interval, end time of an
interval , the spare capacity of an interval and the tasks belongs to the interval are
stored in a ICB by using the OSIntervalCreate() function. This function is the variable
argument function. Number of arguments of this function is decided by the number
of tasks belonging to an interval. We present an example below to explain the use of
OSIntervalCreate() function.

Interval Start End Spare Capacity Task set

I0 0 3 2 {TASK1, TASK2}

Table C.1: Example - Interval Creation.

Interval can be created for the interval shown in Table C.1 as shown below:

OSIntervalCreate(0, 3, 2, 2, OSTCBPrioTbl[TASK1 PRIORITY], OSTCBPrioTbl[TASK2 PRIORITY]);

The number of intervals used in the application should be defined on OS CFG.H.
OS MAX NO OF INTERVALS should be configured with the number of intervals used
in the application.

1We support only periodic and sporadic tasks currently with the slot-shifting, aperiodic tasks handling is
considered as a future work.

89

C.2 Configuration details

In this section, we present the configuration details of the EDF scheduler and the slot-shifting
scheduler. Functions presented below should be invoked for each task in the application.

C.2.1 Configuration of EDF scheduler

1. In the OS CFG.h, we added the following flags:

• The OS RELTEQ EN flag enables the RELTEQ framework.

• The OS RELTEQ PERIODIC EN is enabled to use the periodic task extension
based on the RELTEQ framework.

• The OS RELTEQ EDF EN flag enables the EDF scheduler.

2. Create tasks with the OSTaskCreate() function.

3. Invoke OSTaskSetPeriodEX() function to set the period and the offset of a task.

4. Invoke OSTaskSetDeadline() function to store the deadline of a task in the TCB.

C.2.2 Configuration of slot-shifting scheduler

1. In addition to the flags discussed in Section C.2.1 for the configuration of EDF scheduler,
the OS SLOT SHIFTING EN flag should be enabled to activate slot shifted scheduling.

2. Create tasks with the OSTaskCreate() function.

3. Invoke OSTaskSetPeriodEX() function to set the period and the offset of a task.

4. Invoke OSTaskSetDeadline() function to store the deadline of a task in the TCB.

5. Invoke OSTaskSetParam() function to store the type and the WCET of a task in the
TCB.

6. Invoke OSIntervalCreate() function to store interval associated information in an ICB.

90

Appendix D

Software Versions

In this appendix, we present the software and hardware tools used in our work.

• µC/OS-II RTOS-2.84

• GNU binutils-2.18.50

• GNU GCC-4.2.2

• GNU GDB-6.8

• or1ksim-0.3.0

• Grasp visualization tool-2011.07.13.1744

91

	Abstract
	Table of contents
	Glossary
	1. Introduction
	Context and background
	Motivation
	Problem description
	Approach
	Contributions
	Overview

	2. Related Work
	Time-triggered versus event-triggered scheduling
	Time triggered systems
	Event-triggered systems

	Time-triggered schedulers
	Event-triggered schedulers
	Hybrid schedulers
	Slot-shifting: EDF versus FPS
	Summary

	3. System model
	Assumptions and boundary conditions
	Time model
	Task model
	Static system properties
	Interval invariants
	Summary

	4. Slot-shifting revisited
	Evolution of Slot-shifting
	Slot-shifting - case study
	Off-line preparation
	Online scheduling

	Resource reclaiming
	Borrowing and lending of the spare capacity
	Run-time mechanisms for Slot-shifting
	Tracking intervals
	WCET monitoring
	Task attributes
	Spare capacity monitoring
	Guarantee algorithm
	Scheduling

	Summary

	5. The C/OS-II and OpenRISC 1000
	Task management
	Timer management
	Scheduling
	Proprietary support for relative timed-events
	OpenRISC 1000 port
	Profiling
	Grasp extension
	Summary

	6. Design and implementation considerations for Slot-shifting
	Tracking intervals
	Task attributes
	Mixed task support
	Periodic task handling
	Aperiodic task handling
	Soft aperiodic task handling
	Sporadic task handling

	WCET Monitoring
	Spare capacity monitoring
	Scheduling
	Online guarantee algorithm
	Event Handlers
	Interval arrival event
	Interval end event
	Task arrival event
	Task completion event

	API support for slot-shifting in C/OS-II
	Summary

	7. Results and evaluations
	Grasp visualization
	Slot-shifted scheduling of periodic tasks
	Slot-shifting without resource reclaiming and borrowing mechanisms
	Slot-shifting with resource reclaiming mechanism
	Slot-shifting with borrowing and lending mechanism
	Slot-shifting with periodic tasks with multiple instances within a hyper-period

	Slot shifted scheduling of periodic and sporadic tasks
	Experimental setup
	Performance measurement: EDF versus FPS
	Tick ISR execution time
	Scheduling overhead

	Implementation complexity of Slot-shifting
	Run-time complexity
	Memory complexity
	Memory complexity of EDF

	Discussions
	On the complexity of online acceptance test
	On the absence of critical slots during run-time
	On the management of misbehaving tasks

	Summary

	8. Conclusions and future Work
	Conclusions
	Future work
	Increasing the RTOS predictability
	Performance enhancement of RELTEQ
	Resource sharing between aperiodic and sporadic tasks
	Slot-shifting on distributed nodes

	References
	Appendix A
	Appendix B
	How to create a new RELTEQ queue?
	How to activate/deactivate a new RELTEQ queue?
	How to create a new RELTEQ event?
	How to insert and delete an event from a queue?
	RelteqTimeTick function
	Discussions

	Appendix C
	Programming API
	EDF scheduler
	Slot-shifting scheduler

	Configuration details
	Configuration of EDF scheduler
	Configuration of slot-shifting scheduler

	Appendix D

