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Abstract

The active field of computer vision- and imaging for mobile platforms requires
energy efficient high performance applications. These applications typically fea-
ture task- and data parallelism. This can be exploited in an energy efficient
manner by using specialized hardware instead of general purpose processors. Al-
though most mobile platforms contain such accelerators, this hardware is often
not directly targetable by application developers and applications are typically
not created with only one platform in mind, e.g. Android applications.

There are several industry standards, for example OpenCL, OpenCV and
OpenVX, that enable usage of specialized hardware. In this thesis a platform
template of a programmable image signal processor, consisting of multiple VLIW
cores, a shared DMA and a scalar processor (SP) for control, is targeted by an
application specified as an OpenVX graph. The advantage of OpenVX is that
knowledge of the aggregation of functions into a graph also enables system-level
optimizations.

A novel configuration time scheduling heuristic is proposed that exploits
inter-processor communication (IPC) aggregation and kernel pipelining, yielding
a fast, compact schedule. A control program is generated from this schedule,
which will run on the SP. It takes care of loading the kernels and executing
the schedule. Evaluation and comparison to alternative approaches shows that
significant speedups can be achieved for very limited scheduling time budgets,
i.e. without degrading the user experience.
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Chapter 1

Introduction

In the field of computer vision- and imaging for mobile platforms, the com-
bination of low power and high performance is very important. One of the
main goals in embedded systems of today is to improve performance without
increasing energy consumption. This can be done by exploiting parallelism and
dividing execution over multiple cores, possibly running at a lower frequency
through voltage-frequency scaling. Another common method is to use special-
ized hardware instead of general purpose processors, which can perform specific
computations more efficiently, e.g. vector operations.

In computer vision, computational photography and imaging applications,
the algorithms typically use stencil operations. These algorithms often allow for
tiling the input data. Processing these tiles in parallel can be done to increase
performance. By using programmable Image Signal Processors (ISPs), in the
form of VLIWSs with issue slots featuring vector operations, performance and
energy efficiency are also increased. Imaging applications also often consist of a
sequence of standard functions, such as color space conversion, filtering, scaling,
bitwise operations or edge detection, that can potentially be executed in parallel
or allow for pipelining. This task parallelism can also be exploited in case there
are multiple processing elements (PEs).

To efficiently use specialized hardware, manual porting is required. This
requires thorough knowledge of the platform. Even if this is possible, it makes
porting applications to specialized hardware a cumbersome process. With the
growing number of available platforms, e.g. Android apps target a variety of
architectures and product generations, this is no longer practically feasible.

Another solution is to define a standard that provides a generic API for the
developer for the construction of imaging applications. The hardware vendor
can then create a library that implements the functionality of the API. Since the
hardware vendor has thorough knowledge of the platform, he can optimize the
implementation for the specific platform. This allows the application developer
to utilize specialized hardware on all devices that support the standard. A well-
known example of such a standard, that is adopted by the industry, is OpenCL.

OpenVX is a more recent standard that allows the application developer
to specify a computer vision application as a graph of imaging functions, also
referred to as kernels, from a predefined set. This application specifies the
relation between input and output, but leaves the execution completely up to the
OpenVX runtime. The OpenVX runtime can exploit kernel- and system-level
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Figure 1.1: An example of an OpenVX graph [1] in which the intermediate data objects
are omitted. The nodes represent an image function that is performed on the data and the
arrows denote data dependencies.

optimizations, by targeting specialized hardware and applying optimizations,
such as pipelining kernels and aggregating data transfers. These optimizations
are not possible with other standards, like OpenCL and OpenCV, since kernels
are executed on an individual basis.

An example of an application graph can be seen in figure 1.1. It consists
of eight nodes, representing kernels. Node N1 takes one input image and N8
outputs the resulting image of the graph. In case these kernels are to be executed
on specialized hardware, they need to be compiled online. This is normally
not possible for platforms with multiple VLIW cores, because a compiler is
typically not available and the compilation time would be unacceptably long.
This means that the kernels should be available as precompiled binaries. Kernel-
level optimizations at runtime are therefore not possible.

If there are multiple cores available it is obvious that kernels N5 and N6
of figure 1.1 can be executed in parallel. The advantage of knowing the whole
graph before execution is that more parallelism can be exploited. For example,
if N5 and N6 do not require the complete output of N4 to be ready, N4, N5 and
N6 can be executed in a pipelined manner.

Besides enabling parallel execution, pipelining enables another important
optimization; interprocess communication (IPC) aggregation. Since full images
are typically too large to fit in local ISP memories, kernels read their inputs
from external memory and write their output back to external memory. When
executing in a pipelined fashion, the tiles of the images can fit in the local mem-
ories. This allows to avoid the roundtrip to external memory by writing from
local- to local memory. First of all local memories have smaller latencies and a
higher bandwidth (a factor 40 according to [2]), which results in faster transfers.
A second advantage is that roughly a factor 40 is saved in energy consumption,
according to the numbers for SRAM and DRAM accesses in [3]. Other opti-
mizations and more detailed explanations of the possible optimizations are given
in section 2.2.1.

When data transfers are processed by a shared DMA, performance depends
on the ordering of transfers and kernel executions, i.e. the schedule. Also,
the amount of transfers is dependent on the mapping of the nodes with a data
dependency at a specific moment in time:

e When kernels are loaded at the same time on the same PE, the data can

be kept in local memory, so no transfers are required.

e When kernels are loaded at the same time on different PEs, the data can

be transferred from local to local memory.

e When kernels are not loaded at the same time, the intermediate data that

is communicated between these kernels does not fit in the local memory.
Therefore it must be written to external memory. Later, when the kernel



that requires this data as input is loaded, the intermediate data must be
transferred from external memory to local memory again.

The goal of this thesis is to determine a schedule for a graph-based imaging
application on a homogeneous multi-core accelerator with a shared DMA and
limited local memory sizes. The quality of the schedule is measured by the
makespan of the schedule of the complete execution of the graph. Since the
platform (and sometimes the final application graph) are not known at compile
time, mapping and scheduling can only be done at configuration time. Configu-
ration time is the phase of execution of an application, in which the final graph
is known but executing the graph has not yet started. For this reason the user
is directly impacted by waiting times. To avoid degrading the user experience
the scheduler must always find a valid schedule and transform this into actual
execution of the graph, given a tight scheduling time budget.

The remainder of this section lists the contributions of this work and explains
the structure of this thesis.

1.1 Contributions

The contributions of this thesis are:

e Design and implementation of a configuration time scheduling heuristic for
generating a compact schedule for an acyclic imaging graph on a homo-
geneous multiprocessor platform with shared resources and limited local
memories, optimizing for minimal makespan.

e A generic method for exploiting parallelism in graph-based applications,
by using pipelining of sequential kernels, inter-process communication
(IPC) aggregation and node (in)dependencies.

e Allowing application developers to target specialized hardware for their
graph-based imaging applications, without requiring manual implementa-
tions for specific hardware.

e A proof of concept for the complete application-graph-to-control-program
flow by simulation.

e Evaluation of the performance of the scheduling heuristic, compared to
a naive list-scheduling approach and an approach similar to the state-of-
the-art solution suggested in [4], which is based on tiling.

e A Satisfiability Modulo Theories (SMT) problem formulation for obtaining
the optimal solution of the same solution space as the heuristic.

1.2 Structure of the report

This thesis starts with an explanation of the required background knowledge
in chapter 2. This includes a description of the platform, graph-based imaging
applications with OpenVX, theory and concepts of cyclo-static- and synchronous
dataflow and scheduling. In chapter 3, a formalization of the problem is given
together with the formal problem statement. Chapter 4 gives an overview of
the related work.

The approach to this problem, in the form of a heuristic, is explained and
motivated in chapter 5. The results of the heuristic are evaluated in chapter
6, where it is compared to alternative approaches. Also the design parameters



of the heuristic are evaluated here. In chapter 7 a conclusion is drawn and the
future work is specified.



Chapter 2

Background

This section provides background information and theory for formulating the
problem and solution. First the platform template, for which a schedule and
mapping must be determined, is described. After that the concept of graph-
based imaging applications, including an introduction to OpenVX, is given.

The required background knowledge on scheduling is summarized in section
2.3. Synchronous dataflow (SDF) will be used for modeling the graphs. In
section 2.4 the semantics and useful properties of SDF are described, including
a motivation for its usage and how OpenVX graphs and kernels can be modelled
using dataflow.

In section 2.5 information on acceptable response times for end users is given
and section 2.6 describes the big O notation that is used for describing algorithm
complexity.

2.1 Platform template

The platform is based on the template shown in figure 2.1. It consists of:

# DataBus<vec width>

|
T

—

T ConfigurationBus<32>
|-

v HostBus<32> MemoryBus<vec_width>

v

Figure 2.1: Platform template consisting of the host processor, external memory and the
ISP. The ISP consists of multiple equivalent processing elements (PEs), a scalar processor
(SP) for control and a DMA controller.



e A host processor with external memory. This external memory is large
enough to store the buffers for inputs and outputs, but accessing it is 40x
[2] slower and cost approximately 40 times more energy [3] than for the
local PE memories.

e An Image Signal Processor (ISP) consisting of:

— Multiple processing elements (PEs). These are VLIW cores that
support vector operations and are used to process the image data.
These PEs are identical, meaning that the execution time of a kernel
is independent of the PE it is run on. Every PE features its own
local vector memory (VMEM), in which input and output data are
stored, and program memory (PMEM).

— A single scalar processor (SP). This processor is capable of running
a control program; a program that starts and synchronizes execution
of kernels on the PEs and initiates and synchronizes data transfers
between local memories and external memories. The scalar processor
itself has a local data- and program memory.

— A Direct Memory Access controller (DMA), which allows to perform
the data transfers without involving a processor. The DMA is used
for transferring input and output data, loading kernel binaries into
the PE’s program memory (PMEM) and can be configured over the
configuration bus.

The connections between busses of different widths are made using bridges

that transform streams of 32-bit data to vector width and vice versa.

2.2 Application graphs

Often applications can be specified as a graph of kernels, which are connected by
data dependencies. A simple example of an imaging application that is specified
as a graph, taken from the OpenVX launch presentation [5], is shown in figure
2.2. The rectangular blocks represent image processing functions and the edges
denote the data dependencies. This section discusses the basics of OpenVX and
the optimization opportunities it enables.

2.2.1 OpenVX

At the end of 2014 the open standard OpenVX has been released by the Khronos
Group. The Khronos Group is a consortium that specifies open standards for
accelerating various kinds of media processing. It is funded by its members
from industry, which are for example NVIDIA, Apple, Samsung and Intel. Well
known examples of standards developed by Khronos Group that have been
widely adopted are OpenCL and OpenGL.

In the new standard, OpenVX, the main concept is the graph. An OpenVX
graph is a directed acyclic graph (DAG) in which the nodes are instances of
computer vision functions, called kernels. These kernels are either taken from
a predefined set, of which the implementation is mandated by the standard
(the base kernels), or are user kernels. Examples of base kernels are histogram
computation, Canny edge detection, image pyramid computation as well as more
basic kernels, such as color space conversion, color channel extraction, filters,
integer arithmetic (multiplication, absolute difference) and bitwise operations.
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Figure 2.2: An example imaging graph for stereo machine vision. [5]

User kernels are part of the OpenVX framework to allow for more flexibility
in application design. The developer has to deliver the implementation of the
kernel, besides functions such as input and output validators. The user kernel
tiling extension' allows users to specifiy the data dependencies of an output
pixel. This can be used to determine if the user kernel can be tiled. However,
since online compilation for the specialized hardware requires a compiler on the
mobile device, running user kernels on the specialized hardware is excluded.
OpenVX does not mandate anything about the targets of user kernels, but says
they ”will typically be loaded and executed on High Level OS/CPU compatible
targets, not on remote processors or other accelerators”. Nevertheless, if the
developer implements the user kernel using for example OpenCL, it can still be
accelerated.

The nodes are connected by intermediate data objects (not displayed in
figure 2.2). OpenVX features three types of data objects; normal, virtual and
delay. Normal objects should be present and accessible outside the graph scope.
Therefore these data objects typically correspond to graph in- and outputs. In
contrast, virtual data objects are opaque and cannot be accessed. Intermediate
results that are not used outside the graph scope should be specified as virtual
objects. This way they are susceptible for optimizations, such as tiling. Delay
objects are data objects that are dependent on previous execution(s) of the
graph.

The application developer has to follow three steps, for which functions are
implemented in the OpenVX API; construct the graph, verify the graph and
execute it. At the verification step the graph is not only verified, e.g. checking
for matching kernel in and outputs, but also any preparation for execution,
such as mapping and scheduling, takes place here. After verification, the graph
becomes immutable. This means that if a change to the graph is made it needs
to be reverified, before it can be executed again.

An important aspect of the OpenVX standard is that it does not specify any
methodology or techniques that an implementation of the runtime must conform
to, except for the functionality. This means that anything that can execute the
kernel as specified can be a target, including fixed function hardware, ISPs,
GPUs and OpenCL kernels. The OpenVX implementation, which is supplied
by the hardware vendor, can process the data in any desired way as long as the

Thttps://www.khronos.org/registry /vx/specs/1.0/html/d0/d84/page_design.html#sub_node_tiling_ext,
accessed at April 8th 2016



output is equal to the input processed by the specified kernels in the specified
order.

Optimization opportunities

When kernels are executed individually, only kernel-level optimizations are en-
abled. Examples of this are running the kernel on an accelerator or replacing
it by a highly-optimized version. OpenCV? is an example of a standard that
enables individual execution of optimized versions of computer vision functions.
By specifying an application as a graph, also system-level optimizations are
enabled. An overview of potential optimizations that OpenVX enables is given
in [1]. An interesting subset is listed here to give an idea of the possibilities:

e Aggregate function replacement: If an efficient implementation exists
for a subgraph of the OpenVX graph then multiple kernels can be replaced
by a single, more efficient, kernel.

e IPC aggregation: Interprocess(or) communication can be reduced in
many different ways. One of the main optimizations applied in this thesis
is avoiding unnecessary transfers (e.g. roundtrips to external memory) by
smart mapping decisions, that allow to keep data in local memory.

e Compilation strategies: In case online compilation is possible, compiler
strategies such as loop unrolling and inlining can be applied for combina-
tions of kernels.

¢ Executing independent nodes in parallel: Nodes for which there is no
data dependency can be executed in parallel.

e Tile processing: When a specific part of the output only depends on a
specific part of the input, the data can be divided into smaller tiles that
can be processed by different PEs.

e Pipelining: Data can be passed through a pipeline of different functions
if the data is tilable. Pipelining multiple invocations of a graph is currently
not supported in OpenVX version 1.0.

2.3 Scheduling

This section starts with a concise description of different types of scheduling
strategies in section 2.3.1. Since a compact, but high performance, schedule is
desired, pipelined scheduling will be introduced here too, in section 2.3.2. Also
an introduction to list scheduling is given here in section 2.3.3.

2.3.1 Scheduling strategies

Scheduling strategies range from fully-static to fully-dynamic scheduling. Fully-
static scheduling is only possible if good estimates of execution times are avail-
able. This way a schedule can be determined before starting any execution. The
advantage is that run-time overhead is reduced to a minimum.

The opposite of static scheduling is fully-dynamic scheduling in which all
decisions are made at run-time. This results in high run-time overhead and

20penCV contains a library of more than 2500 optimized algorithms and its usage is
widespread [6]. More information can be found on opencv.org.



implementation complexity, but is more flexible and therefore more generally
applicable.

There are multiple strategies between fully-static and fully-dynamic. In the
self-timed strategy only the processor assignment and ordering of executions on
the same processor are fixed. Typically, first a fully-static schedule is deter-
mined, with the known execution time estimates, after which the exact start
and end times of tasks are discarded.

A more detailed and extensive overview can be found in chapter 5 of [7].

2.3.2 Pipelined scheduling

In pipelined scheduling execution is divided into stages. Resources are assigned
and schedules are derived for these stages. In the schedule these stages of
different iterations can then overlap. An example of this can be seen in figure
2.3. In this figure a task consisting of three stages is executed in a pipelined
manner.

Preamble Loop (iter. 0) | Loop (iter. 1) Postamble

Iterations

Stage 2 Stage 3
Stage 2 ‘ ‘ Stage 3

Stage 1
Time —»

Figure 2.3: Example of pipelined execution. The preamble, postamble and two iterations
of the repetitive loop body are shown here. Pipelining allows for overlapping the processing
stages of different iterations.

It can be seen that all three stages of the different iterations can be executed
in parallel. The point in the schedule where all three stages are executed in
parallel can be continued with new iterations of the same task. This is part
of the schedule is called the loop body. It is also sometimes referred to as
the kernel, but this name is already used for OpenVX functions and therefore
avoided in this work. The length of the loop body is referred to as the initiation
interval or period and is equal to the length of the longest stage.

The parallelism achieved in the loop body cannot be achieved from the start.
As can be seen in figure 2.3, it is required to execute stage 1 and 2 of the first
task iteration and stage 1 for the second, to satisfy all dependencies of the loop
body. This part of the schedule is referred to as the preamble, also known as
the prolog.

Similarly to the preamble, the pipeline needs to be cleared after all iterations
have been performed. In this example only stage 1 of the last iteration has
been performed and only stage 1 and 2 of the second last iteration have been
performed. Finishing the remaining stages is done in the preamble, or epilog.

The total execution time t;yq; is given by:

tiotal = tpre + (Z - (8 - 1)) . tloop + tpost (21)

In which t,,e, tioop and tpes: are the execution times of the preamble, loop body
and postamble, i is the number of iterations of the task and s is the number of



pipeline stages. With this equation the average time per task can be calculated:

tpre tpos —-1)-t 00,
tpre + tpost | troop — (5= 1) - tioop (2.2)

tiotal /1 =
/ 1 1

What can be seen from this is that when the number of iterations of the task
grows, the duration of the preamble and postamble become less important
(hmz—M)o ttotal/i = 7floop)-

When the stages share resources, for example a DMA for data transfers, par-
allel execution becomes more complex, since the length of the loop body can be
dependent on the ordering of accesses. A well-known approach for determining
pipelined schedules that can take this into account is modulo scheduling.

Modulo scheduling

Modulo scheduling is a framework that specifies a set of constraints that must
be satisfied in order to obtain a modulo schedule [8]. In modulo scheduling the
goal is to find schedule that can be repeated at regular intervals. This regular
interval is called the initiation intervals (II) and corresponds to the period in
pipelined scheduling. This means that the operations that are executed at ¢; and
other operations executed at to cannot use the same resource if t;modII equals
tomodII. The name "modulo scheduling” comes from this property. What this
also means is that a valid modulo schedule is found if a schedule for a single 11
is found, such that all intra- and inter-iteration dependencies are satisfied.

This framework was originally intended for deriving instruction-level soft-
ware pipelined schedules. The main difficulty in modulo scheduling is to de-
rive a schedule for the repeating pattern. Since this problem is NP-hard ([7])
heuristics are normally used. In [8] a heuristic is presented, called Iterative
Modulo Scheduling. It was designed for scheduling instructions given resource
constraints.

Using modulo scheduling for task-level pipelined scheduling of SDF graphs
on multiprocessors is done before ([9]). It identifies the requirement for explicitly
scheduling data transfers and compares the speedup by a greedy heuristic to the
exact solution of the SMT formulation. Task-level pipelining is often referred
to as coarse-grained modulo scheduling.

2.3.3 List scheduling

In list scheduling a resource and start and end times are assigned to tasks as
soon as they are ready. Ready means that all preceding tasks have an end time
smaller than or equal to the start time of current task. If multiple tasks are
ready, then a decision is made based on a priority. In list scheduling this priority
list is a static ordering of all actors in the graph. In ready-list scheduling this
static priority list is omitted and determined dynamically. The most well-known
prioritization methods (discussed in chapter 6 of [7]) are the highest-level first
with estimated times (HLFET), earliest task first (ETF) and the dynamic level
scheduling (DLS) algorithm.

In HLFET [10] the tasks are sorted by their level in the graph. The level
of a node is defined as the longest path, weighted by node execution times, to
a sink node. In the ETF algorithm [11] the task that is scheduled at every
step is the task that can start at the earliest point in time. This earliest start

10



time is influenced by multiple factors, which are the end time of preceding tasks
and communication delays (mapping can be determined during scheduling).
The DLS algorithm [12] also does not make any assumptions on mappings and
reevaluates the priorities after every scheduling step. This dynamic ordering
is based on the identification of the fact that the quality of the schedule also
depends on the current scheduling state (besides the longest paths).

List scheduling can be combined with a predetermined processor assignment,
i.e. mapping. This imposes limitations or completely omits processor assign-
ment during start and end time assignment.

2.4 Synchronous dataflow

Synchronous Dataflow (SDF) is a concept introduced by Lee and Messerschmitt
[13]. It is a model of computation that abstracts from functionality and is
often used for analyzing and scheduling digital signal processing applications.
A description of the fundamental knowledge for understanding the remainder
of this thesis is given here. A formalization can be found in chapter 3.

An SDF graph consists of actors, often called nodes, and edges. An actor
typically represents a computation and an edge models a FIFO channel. Tokens
represent data objects and are produced and consumed by actors from and to
edges. An actor can fire, i.e. execute, if there are enough tokens available on
all of its incoming edges. When processing is done, tokens are produced on all
of its outgoing edges. If actors have an execution time associated with them,
timed SDF is considered. Timed SDF will be used throughout this thesis. The
amount of tokens on an edge that is consumed and produced, depends on the
consumption and production rates, associated with that edge. These rates are
denoted by a number near the source or sink of an edge. If no rate is present,
it is implicitly defined as one. If all rates are equal to one, the graph is called a
Homogeneous Dataflow Graph (HDFG).

The behavior of OpenVX kernels, and the data dependencies when combined
into imaging graphs (section 2.2), match the semantics of SDF. In its simplest
form a kernel can be modelled as a single node, as in figure 2.4a. In this figure, X
denotes the number of tokens. A token can represent a full input image, which
means that X equals one. Executing node K then represents executing the full
kernel (including data transfers), outputting a full processed output image.

o-T,

(a) Basic dataflow model of  (b) Line-based kernel model with DMA trans-
a kernel. fers

Figure 2.4: Modeling kernels in synchronous dataflow. X is the number of input tokens.

The model of figure 2.4a can also be used differently; node K can represent
processing a line of input data and therefore a token represents a line of input
data. In this case X equals the number of lines of the input image. Node K must
be executed the same amount of times as there are input tokens, to produce the
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full output image. This has the advantage of potentially enabling pipelined
execution of multiple adjacent nodes or parallel execution of different iterations
of the same node.

This model can be refined to the model of figure 2.4b, where the data trans-
fers are no longer part of the kernel node, but modeled as separate tasks. The
advantage of making this refinement in the model is that it explicitly allows to
fire the actors (transfers and execution) in parallel. This also allows scheduling
the individual data transfers, that might use a shared DMA and can therefore
impact performance. Buffers are also modelled in this figure. This is done by
adding backedges with an amount of tokens (B and By on it equal to the buffer
size.

Cylco-static dataflow

SDF requires rates to be constant throughout execution. Sometimes this re-
striction precludes modeling the practical behavior. In that case cyclo-static
dataflow (CSDF) can be used, which does not require rates to be constant.
Instead of denoting the amount of produced or consumed tokens by a single
rate near the sink or source of an edge, the rate is denoted by a sequence of
rates between square brackets. As an example, [2, 0] at the sink of an edge
means that the first execution of the sink node consumes two tokens and the
second execution zero. After that it repeats, so the third execution consumes
two tokens again.

Now consider a 3x3 filter. This can be implemented in a line-based manner;
based on three input lines, lin i—1, lin,i and l;, i1, one output line, Iy, i, can
be calculated. For calculating the next output line, oy 41, the kernel requires
input lines lin s, lini+1 and li, j42. As can be seen there is an overlap of two
lines, line l;, ; and l;y, ;41, which do not require to be transferred into an input
buffer again. Effectively one new input line is required, and one input buffer
can be released, which means that it can be modeled with an input rate of 1.

The problem is that this rate is not correct for the first and last iteration.
For the first execution, where output line Iy o is calculated, input lines l;, o
and ;1 need to be loaded into input buffers, indicating a rate of two. This is
were CSDF is required. Figure 2.5 shows the cyclo-static dataflow model, which
takes into account the following too:

e The last iteration of a node equals its input height minus one. For produc-
ing line loyt,n—1, where h is the image height, no additional input buffers
are required, since l;, p—2 and l;, ,—1 were already loaded for calculating
output line loys p—2.

e Since the two input lines that are used for producing the first output line
are also required for the second output line, no buffers are released on the
backedge after the first iteration. After the last execution, the two input
lines that were used for calculating it are released.

Since OpenVX graphs are acyclic, the number of executions of each node is
finite and can easily be determined. The ellipsis, i.e. the three dots, in the
rate indicate a constant value for the rate, equal to the value preceding and
following it. This means that the first consumption rate of node K at the
non-buffer edge equals two and the last execution consumes zero tokens. All
executions in between consume one token.

12



21,..10] | K

Figure 2.5: Modeling a filter kernel using CSDF. The number of rates in the rate sequence
equals the total number of executions of the node. The ellipsis indicates a constant rate, equal
to the values preceding and following it. Only the first and last iteration of node K have a
different rate than one.

2.4.1 Repetition vector

An SDFG can be represented by its topology matrix I" [13]. Every column
corresponds to a different actor and every row corresponds to a different edge.
In the topology matrix, every entry (i, ) corresponds to the number of tokens
produced by actor j on edge i. If tokens are consumed by an actor, this value
is negative. The topology matrix of an SDFG that has consistent sample
rates has rank(I') = |V| — 1, where |V| denotes the cardinality of the set of
vertices (nodes). If this holds, the repetition vector ¢ can be found by solving
the equation I' - ¢ = 0. The proof for this can be found in [13].

Following definition 3.1 of [7], a repetition vector ¢ is defined as a column
vector of size |V, such that there is one entry for each actor. It has the property
that if every actor ¢ is fired ¢(¢) times, the number of tokens on every edge
remains unchanged. Also the repetition vector is the smallest integer vector for
which this holds.

Since OpenVX graphs are allowed to consist of multiple connected compo-
nents (for the definition see section 3.1.1), the requirement rank(I') = |V] —1
must hold separately for every connected component in the graph.

2.4.2 Retiming

One technique applied for obtaining high throughput schedules is called retim-
ing. It is a technique that was originally used to optimize the throughput of
cyclic HDFGs [14]. It does this by reducing the longest (in terms of node execu-
tion times) zero delay paths. The retiming relation is formalized in equation 3.1
in section 3.1.2. The retiming specifies an amount of executions for every node
and relates this to the number of tokens on each edge. By applying a retiming,
tokens are redistributed in the model. A good retiming results in a shorter pe-
riod in which every node is executed ¢(n) times, where ¢ is the reptition vector
of section 2.4.1.

In this thesis it is used with a similar goal, but since an OpenVX graph
is acyclic it redistributes the tokens of the graph’s input edges to the other
edges. This can only be done when kernels process tiles, since the retiming
cannot exceed the total number of executions of a node. Using the number of
executions in the repetition vector, a loop body with a shorter period can be
achieved by applying a retiming first. This means that the retiming can be
interpreted as the number of executions of nodes in the preamble.

The advantage of using retiming for the preamble is that the number of
tokens on every edge after the preamble, can be determined without actually
deriving start and end times for the nodes’ executions. A disadvantage is that

13



the schedule is limited to yield a strictly periodic schedule. This means that
executions cannot overlap between different iterations of the loop body, i.e. they
start and end in the same iteration.

2.4.3 Buffer sizing

Determining the required buffer sizes, to guarantee deadlock-freedom, is an-
other aspect that can be analyzed using dataflow. Buffer size minimization is
important, when there are limited local memories available for buffers. In [15]
a polynomial time algorithm is described that minimizes buffer constraints for
maximal throughput, which claims optimality. Later, in [16], it is shown that
the algorithm does not guarantee optimality, by providing a counterexample. In
fact, [16] proves that the problem is NP-complete. For this reason, an efficient
algorithm that guarantees optimality does not exist. In [16] also the error of [15]
is quantified. The overestimation of the buffer sizes is typically small, but the
paper also claims that the exact solution is efficient in practice, most solutions
found in a few hundred milliseconds.

2.4.4 Motivation

The SDF (and CSDF) semantics match the processes described in OpenVX
graphs and are commonly used in signal processing applications. Execution of
a kernel intuitively maps to an actor, edges are the input and output buffers
and tokens represent the image data. Kernels can start execution only when
sufficient input data and output buffers are available. Also, the processing is not
data dependent. This makes (C)SDFGs suitable for modeling the behavior and
interesting properties of imaging graphs for scheduling, as described in figures
2.4 and 2.5.

Deriving schedules for SDF graphs is a thoroughly researched topic. It makes
use of the property of dataflow that execution is deterministic, modeling buffer
capacities is straight-forward using backedges and deriving bounds on through-
put can be done analytically. Over time many techniques have been presented
such as graph unfolding and the usage of repetition vectors and retiming.

Limitations

By selecting (C)SDF as a model of computation also some restrictions are in-
troduced. The main limitations are that execution times are fixed. This means
that, if no good approximations can be made for execution times of nodes,
schedule quality is decreased.

Another assumption that was made in this section is that kernels can be
implemented as a (multi)line-based kernel, when adding transfers as in figure
2.4b. When looking at the list of the OpenVX kernels of specification v1.0 it
seems to hold for all kernels, except for histogram equalization, (Lukas-Kanade)
optical flow computation, remapping and warping. For the statistical functions
(mean, standard deviation, min-max locations) only the input can be pipelined,
since their outputs are scalar values.

14



2.5 User experience

A topic that is not exact, but which is important in this thesis, is the theory of
end user acceptance of response times. [17] states that 10 seconds is the amount
of time that the user’s attention is kept. When considering a mobile application
implementing an OpenVX graph, this means that the amount of time available
for scheduling is in the order of a few seconds.

There are cases where a graph is fixed and once a schedule is found it can
be stored on the mobile device and reloaded the next time the application is
loaded. However, this is not always the case. Especially in cases where the
end users can adapt the graphs, for example by having variable input sizes or
options that alter kernel parameters, the time required for scheduling becomes
important. Remember that every time an OpenVX graph is altered it must be
reverified and therefore potentially rescheduled.

2.6 Big O notation

When designing algorithms an interesting property is the growth rate of the
algorithm. It relates the size of the input to the execution time of the algorithm
and allows for classifying and comparing algorithms. This classification is typ-
ically formulated using the big O notation. The growth rate is also called the
order of a function and for this reason the symbol O is used.

The big O notation has the following meaning; f(z) = O(g(z)) means that
there exists a constant value C and a value for z¢, such that forall z € [z¢, 0] it
holds that |f(z)] < C x |g(z)|. In other words this means that g(z) is an upper
bound to the growth rate of f(z).

Of course it is desired to keep the growth rate as small as possible. Some
time complexity names, increasing in complexity, are constant time (O(1)),
logarithmic time (O(log(n))), linear time (O(n)), polynomial time (O(n*) for
any non-negative integer value of k) and exponential time (O(2P°¥(™)), where
poly(n) is a polynomial function of n).

Some properties, which can be easily proven given the definition above, for
simplifying expressions using the big O notation are:

e In case the function is a sum of other functions the growth rate equals the

largest growth rate of these functions; 22 + 100z = O(2?).

e O(k-g(x)) = O(g(x)) for every non-zero value of k, follows directly from

the definition.

e The product rule for the big O notation yields f(x) = O(g1(x)) A h(z) =

O(g2(x)) = f(x)h(z) = O(g1(x)g2(x)).
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Chapter 3

Problem formulation

This chapter gives a formal description of the used concepts and constraints of
the problem in section 3.1. An overview of the problem and the goal of this
work is given afterwards in section 3.2.

3.1 Formalization

This section gives an overview of the concepts that are used to describe the
problem and formalizes them. In the remainder of this section N is the set of
non-negative integers.

3.1.1 Directed graphs

A directed graph is a tuple (V, E) where V is a set of vertices, often referred
to as nodes, and F is a set of directed edges. An edge is a tuple (u,v) with
u,v € V, which indicates an edge from source node u to sink node v. For an
edge e = (u,v), the source and sink vertices are denoted by respectively src(e)
and snk(e). Furthermore, e is called an input edge of vertex v if snk(e) = v
and it is called an output edge of v if src(e) = v. If there exists an edge (u,v)
then vertex u and v are adjacent. When edges do not have a source node they
are referred to as source edges and similarly sink edges are defined as edge
that do not have a sink node. These are the model input and output buffers.
All edges that are not sink or source edges are called internal edges.

A subgraph G’ = (V' E’) is a directed graph such that V/ C V and every
e € E for which src(e) € V'V snk(e) € V' holds is in E’. A subgraph can be
denoted by its subset of vertices as subgraph(V).

A path in a directed graph is a finite sequence of edges e € E, such that
sre(e;) = snk(e;—1) for all e; in (e, ea,...,e,) and 1 <i < n. A cycle is a path
(€4, ...,en) where src(e;) = snk(en). A graph is a directed acyclic graph
(DAG) if it is a directed graph in which there exist no cycles. We say that a
vertex u precedes vertex v if there exists a path from u to v.

A chain is a sequence of vertices (v1,...,v,), where every vertex v; and its
subsequent vertex v;4+1 in the sequence are adjacent. A graph is connected if
there exists a chain between every vertex pair u,v € V. A connected com-
ponent of graph G = (V| E) is a subgraph G’ = subgraph(V’) in which subset
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V’ C V, such that there does not exist a chain between any vertices u € V’ and
ve VAV

3.1.2 Synchronous Dataflow

Synchronous dataflow has been formalized often before (e.g. in chapters 3 and
4 of [7]). In timed SDF a notion of time is added in the form of execution times.
A timed SDFG can be defined as a tuple (V, E,p, ¢,d, t) where:

e 1 is the set of vertices, which in SDF are referred to as nodes or actors.

e FF CV xV the set of directed edges.

e The valuation p : E — N, where p(e) represents the number of tokens
produced by the source node of an edge e.

The valuation ¢ : E — N, where ¢(e) denotes the number of tokens con-
sumed by the sink node of edge e.
e The valuation d : E — N represents the number of initial tokens on edge
e, which are called delays.

e The valuation ¢ : V — N gives the actors execution time of actor v.

An execution of an actor is called a firing. An actor n can fire if on all
its input edges e; there are c(e;) tokens available. The actor consumes these
tokens when firing, i.e. the tokens are removed from the input edges. After ¢(n)
time units, execution is done and p(e,) tokens are produced on all of the actor’s
output edges e,.

The retiming of an SDF graph [14] is also a column vector of size |V, which
specifies the number of executions for each node. This gives a relation for the
number of delays on each edge e:

d(e) = do(e) + p(e)r(src(e)) — c(e)r(snk(e)) (3.1)

In which dp(e) denotes the initial tokens at ¢ = 0.

Cyclo-Static Dataflow

In cyclo-static dataflow (CSDF) rates do not have to be constant, but can be
dependent on the firing iteration as described in section 2.4. If for a node a
sequence of three rates r = [r1,73, 73] is specified, then it means that iteration
¢ of that node consumes/produces r[i mod |r|] tokens, where |r| denotes the
number of rates in sequence r. We denote the number of consumed or produced
tokens for iteration ¢ of the corresponding node as c(e, i) and p(e, 7), respectively.

For reasons of conciseness p(e) is used in the remainder of this chapter. If
there are differences between SDF and CSDF, then this is explicitly noted. An
example where this is the case is in the retiming relation of equation 3.1. This
now becomes:

r(src(e))—1 r(snk(e))—1
d(e) = dp(e) + ple, i) — Z cle, 1) (3.2)
=0 =0

3.1.3 Communication unaware kernel graph

A communication unaware kernel graph (CUKG) is the input for the problem.
It is a (C)SDF graph with an extra valuation type : V' — kernel, which denotes
which kernel it implements. An edge in a CUKG has two valuations, p;, : £ — N
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and poy: 1 £ — N, that denote the input and output port of respectively the sink
and source node to which the edge is connected. It has some restrictions, based
on the properties as specified in the OpenVX graph formalization . The CUKG
contains no actors representing communication, only actors for processing the
imaging kernels.
For a CUKG to be valid it must hold that:
e It is a directed acyclic graph.
e All its connected components are consistent.
e Every node v is of a specific kernel type type(v). The following properties
have a value that is dictated by the kernel type:
— Number of input edges and their corresponding input rates.
— The output rates. Output edges do not have to be present for all
outputs of a kernel, since they might not be used.
— Execution time.
— Kernel size. The amount of program memory the binary would oc-
cupy.
e Only one edge can be connected to the same input port.

3.1.4 Transformation from a CUKG to a CAKG

To analyze the problem the CUKG is transformed into a communication aware
kernel graph (CAKG). In this transformation, actors representing DMA trans-
fers are added with their corresponding edges. The transformation from CUKG
G to CAKG G’ is formally defined as follows:

e For every node v € V of G there is a corresponding node v' € V of G', with
t(v') = t(v) and type(v') = type(v). We denote the relation between v and
v" as veor(v) = v’ and say v’ corresponds to v. We define v, (@) = 2.
We call these added nodes processing nodes, because they represent a
PE processing data, and we denote the set of processing nodes as V,.

e For every edge e € F of G a node v is added to V of G, with ¢(v') =
tr.in(type(snk(e)), pin(e)) = tiout(type(src(e)), pout(€)), where t; ., and
tt out denote the time it takes to transfer one input buffer. These added
nodes are called transfer nodes because they represent a DMA transfer.
The set of transfer nodes is denoted as V.

For this edge e € E of G, also two edges e1,es € F of G’ are added:

— e1 = (Veor(src(e)),v") with p(e;) = p(e) and c(e1) = 1.

— eg = (v, veor(snk(e))) with p(ez) =1 and ¢(e1) = c(e).
All added edges have zero initial tokens on them, i.e. do(e1) = dy(e2) =0,
except for source edges. Source edges hold the graphs input data and
therefore dg(eq) = d(e).
In case it holds that, for an edge e, both src(e) and snk(e) are mapped to
the same PE, then data can be kept in local memory and no data transfers
are needed. Hence, no transfer node is added for this edge and an edge
e1, equal to the CUKG e is added to the CAKG.

A simple example of a transformation from a CUKG to a CAKG is shown
in figure 3.1. In this situation node P2 and P3 are mapped to the same PE and
node P1 to a different PE. Therefore no transfer is present between node P2
and P3.

Lhttps://www.khronos.org/registry /vx/specs/1.0/html/d0/d84/page_design.html#sub_graphs_rules

18



**v **%’;‘*‘*‘*
(a) The CUKG (b) The corresponding CAKG

Figure 3.1: CUKG to CAKG transformation. In this case all processing nodes are mapped
to different PEs. P- and T-nodes represent processing and transfer nodes, respectively. Node
P2 and P3 are mapped to the same PE and node P1 to another PE.

3.1.5 Platform template

We formalize the platform template as a tuple (II, ®), where II is the set of
PEs and @ is the set of DMAs. Transfer nodes can only be mapped to DMAs
and processing nodes can only be mapped to PEs. The available local (vector)
memory for buffers on a PE is denoted by mempg and the available program
memory on a PE is denoted by pmempg. Similarly memgp and pmemgp
correspond to the memory sizes of the scalar processor.

3.1.6 Schedule

For defining schedules, the schedule functions start(v,k) and sync(v, k) are
used. They denote the start and synchronization time of the k" execution,
or iteration, of actor v. Following the dataflow semantics it must hold that
sync(v, k) > start(v, k) + t(v). Synchronization is blocking and therefore vari-
ations in execution time are allowed.

According to [18], a schedule is admissible if for every edge e = (u,v) € E
the following condition is satisfied:

start(v, k) > sync(u, { (3.3)

(k+1)c(e) —d(e) — p(e)w )
p(e)
Rederiving this relation for CSDF cannot be simplified to the same compact

form as equation 3.3, but yields:

ky ko
Z ple,iy) > Z c(e,iy) — d(e) = start(v, ky) > sync(u, ky) (3.4)

1y, =0 1y =0

Since the CAKG is acyclic, there is a limit to the value of k for every node
v. We denote this maximum iteration value as kjq.(v). With this limit we can
define the makespan T of the schedule as:

T= max sync(v, kmaz (v)) (3.5)

We define the mapping function o : V. — I1U ®, for which o(v) denotes the
hardware that node v is mapped to. Since there are no edges in the CAKG for
modeling a shared resource it must be explicitly noted that there is no overlap
of task executions on the same hardware:

Yui,va €V, k1 € [Oakmax(vl)]akQ € [kamax(vl)] U1 7’& v2 A U(Ul) = 0'('02) |

start(vy, k1) > sync(va, ka) V start(va, ko) > sync(vy, k1)
(3.6)
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3.1.7 Instructions

The schedule must be transformed into a list of instructions that is used for
executing the graph. An instruction is a tuple (type, v, k), with the valuation
type : I — {load, startp, syncp, starty, syncr}. These types have the following
meaning:

e Joad represents the activity of loading a kernel.

e startp represents the activity of starting the execution of a kernel.

e syncp represents the activity of waiting for a PE to become idle, i.e.

waiting for an execution to be finished if it is not already.

e starty represents the activity of starting a transfer.

e syncr represents the activity of waiting for a DMA transfer to be finished.
The valuation v : I — V indicates the node to which the instruction corresponds
and k : I — N denotes the iteration of the instruction starting at 0, so k(i) = 2
indicates that this is the third execution of this type for actor v.

The transformation from a schedule to an ordered sequence of instructions
is defined as follows:

e For every node v and every iteration k € [0, kyqz(v)] there are the instruc-

tions:
— If v is a processing node then two present instructions:
* 11, with type(i1) = startp, v(i;) = v and k(i1) = k.
* 19, with type(ia) = syncp, v(iz) = v and k(iz) = k.
— If v is a transfer node then two present instructions:
* 41, with type(i1) = startr, v(iy) = v and k(i1) = k.
* i, with type(is) = syncr, v(is) = v and k(iz) = k.
e For every processing node there is one load instruction ¢, with type(i) =
load, v(i) = v and k(i) = 0.

We denote the position of an instruction ¢ with type(i) = ¢, v(i) = v and
k(i) = k in a sequence of instructions L as pos(t, v, k). The length of instruction
list L, i.e. the highest defined value of pos(t, v, k), is denoted by length(L). The
list of instructions is valid if:

e All instructions adhere to the order of an admissible schedule:

event(vy, k1) < event(va, ka) — pos(t1,vi, k1) < pos(ty,ve,ke)  (3.7)

Where event can be replaced by any combination of startr, startp, syncy
or syncp.
e A kernel must always be loaded before it can be started:

pos(load,v,0) < pos(startg,v, k) (3.8)

3.1.8 Bulffer sizes

The required buffer size can be formalized as the maximum number of buffers
that is used on each edge during execution. Since every edge corresponds to an
input, output, or inout buffer we use the edge to identify the buffer. We denote
the number of used buffers on edge e after executing the instruction at position
1 in an instruction list as used(e, 7).

All buffers are initialized with their initial tokens, so tok(e, —1) = d(e). The
number of used buffers can be determined for all instructions that are present
in list L:
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e When starting to process or transfer data, buffer space for the output
must be available. Therefore the used buffer size equals the used buffer
size before starting the instruction plus the produced tokens.

startx (src(e), k) € L Nidx = pos(startx, src(e), k)

3.9
— used(e,idx) = used(e, idz — 1) + p(e) (3:9)

Where startx is either a startp- or startp-type instruction.

e When a PE is done processing or a DMA is done transferring data, the
processed input buffers are no longer needed. This means that, after
synchronization, the number of used input buffers is decreased by the
number of consumed tokens.

syncx (snk(e), k) € L Aidx = pos(syncx, snk(e), k)

3.10
— used(e, idx) = used(e,idz — 1) — c(e) (3.10)

Where syncy is either a syncp- or syncp-type instruction.

If none of these rules apply then tok(e, i) = tok(e,i — 1).

The required buffer sizes for every edge bs(e) can then be described by the
maximum value:

bs(e) = max tok(e, i 3.11
( ) 0<i<length(L) ( ) ( )

The total memory requirement for a PE is then the sum of all its input and
output buffers, where we denote size of a token on an edge e in bytes as size(e).
so the memory requirements for a processing element p is:

mr(p) = > bs(e) - size(e) (3.12)

{e€FE|(src(e)=vVsnk(e)=v)Ao(v)=p}

3.2 Problem statement

Given a platform P and an application in the form of a Communication Unaware
Kernel Graph G find a schedule such that:

e The schedule is admissible (equations 3.3 and 3.4).

e The buffers fit in the local memories of the processing elements:

Vp eIl | mr(p) < mempg (3.13)

e The kernels loaded at the same time on a processing element must fit in
the program memory of that processing element.
The objective is to minimize the makespan of the graph (equation 3.5). Opti-
mality can be formalized as a solution for which it holds that:

max sync(v, kmaz(v)) = rsr}elgl max sync(v, kmaz (v)) (3.14)
Where S is the set of all admissible schedules. The schedule must be transformed
into a list of instructions (as defined in section 3.1.7). Besides these constraints
on the schedule it is required that:
e The list of instructions is executed by a control program running on the
scalar processor. This means that the schedule must fit in the SP’s local
memory.
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e It is guaranteed that a solution is found. Being unable to find a schedule
means that the application cannot be executed at all and this clearly means
failure.

e The schedule is derived at configuration time. This results in a con-
straint on the execution time of the scheduler since the user has to wait for
it (see section 2.5). Since execution time of the scheduler is dependent on
the device that it is executed on, this will come in the form of a scheduling
time budget.

e Online compilation of kernels for the VLIWs is excluded. This is the
case because (i) running the compiler for the ISP of this thesis on a mobile
device is not practically feasible, and (ii) compiling takes too much time
from a user perspective (>> 10 seconds).
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Chapter 4

Related work

Besides the references in the background section of this thesis, literature has
been studied concerning the topics in this chapter. The work that is related
to the automatic scheduling of graphs, is described in section 4.1. Also, papers
concerning partitioning approaches have been studied (section 4.2).

4.1 Automatic scheduling of graphs

Already in 1989, Printz e.a. proposed methods to automatically schedule graph-
based signal processing applications on parallel architectures [19], in their case
the Warp platform. It identifies three parallel styles, which are systolic, data
partitioned and serial. Systolic corresponds to pipelined execution and serial
corresponds to executing independent kernels in parallel. Data partitioned ex-
ecution means that the input data is partitioned into tiles. These tiles are then
processed in parallel on multiple PEs.

However, the Warp platform did not have communication agents (nowadays
DMAs), and letting the (VLIW) cores handle communication was very ineffi-
cient. Therefore, the implementation only applied the data partitioned execu-
tion style (when the serial style is not mandated by the function). This resulted
in low processor utilization when the number of processors was increased [20],
because the communication bandwidth did not scale with the number of cores.

The systolic style was included later in the implementation of a FORTRAN
compiler for the iWarp platform [20]. The compiler made decisions on the
parallel style, based on user hints and compiler analysis. If the systolic style
was chosen, then communication resources were dedicated to the task to achieve
good performance.

Tiling for OpenVX graphs

In the work of [4] the data partitioned style of [19] is used for exploiting data
parallelism in OpenVX graphs on cluster-based many-core accelerators. The
OpenVX runtime is implemented using OpenCL. One of the key bottlenecks
that is identified in this work is the bandwidth of the external memory.

The platform that is used is the STHORM SoC, which has multiple clusters
(although only one cluster is used in testing) consisting of 16 Multiple Program
Multiple Data (MPMD) processing elements. Every cluster has one local (L1)
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memory and a dual-channel DMA. These clusters are connected to external
memory by an asynchronous bus.

The tile sizes are chosen such that the required buffers fit in the local mem-
ories of a cluster. The tile sizes are determined for multiple consecutively ex-
ecuted kernels. For example, for calculating a w x h output tile for a 3x3 box
filter, the input tile must have a size of w X h plus a border of one pixel around
it. Because the output tiles must together form the complete output image,
these input tiles must have overlap in case of filters. These overlapping zones
are called ghost zones. Determining the tile sizes (including ghost zones), for
multiple consecutively executed kernels, is referred to as tile size propagation.
They claim that their experiments have shown that the impact of redundantly
transferred pixels is not a problem.

Besides graphs with kernels that do not allow for pipelining (as identified in
section 2.4.4), there are graphs for which the buffer sizing algorithm fails to fit
all buffers in L1 memory. In that case the graph needs to be partitioned. How
this partitioning is performed is not explained, but intermediate data is stored
in external memory. The methodology is implemented in the ADRENALINE
framework [21].

In chapter 6 also the approach of this work is used for comparison. Although
it has been designed for a different platform, the set of constraints is roughly
the same.

4.2 Partitioning

As identified in [4], graphs sometimes need to be partitioned. Partitioning a
graph into blocks is a thoroughly researched field, but most research targets
min- and max-cut problems. The cost-function in the problem in this thesis
depends on the number of blocks and the connections between tasks of different
blocks. Besides that, the cost function also depends on the clustering/mapping
of the tasks inside a block.

This is an unconventional cost-function and no existing solutions to the
problem are known. However, this does not mean that there are no standard
approaches to min-cost partition problems [22]. Since the graph partition prob-
lem is typically an NP-hard problem, the common approach again is to use a
heuristic. A classical min-cut bipartitioning heuristic is [23], where in every
iteration a single node is moved from one block to another, based on a local
gain. Evaluation of this heuristic shows that making locally optimal decisions
can often yield (near-)optimal results.
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Chapter 5

Heuristic

This section describes and motivates the use of a novel heuristic that solves the
problem described in chapter 3. The heuristic uses a static scheduling strategy,
since all information is known before the actual execution starts and execution
times are constant for almost! all OpenVX kernels.

The heuristic divides the graph into subgraphs, called gangs, based on a cost
function that can be approximated efficiently. This is referred to as partitioning
the graph. The gangs in the partition then have to be scheduled, taking into
account the constraints as described in chapter 3.

The main design decisions concerning the heuristic are given and motivated
in section 5.1. After that the outer level algorithm, for partitioning the graph
into gangs, is described in section 5.2. The inner level algorithm, used for
scheduling the gangs, is explained in section 5.3. In both sections the complexity
of the algorithms is described using the big O notation (section 2.6). The
complexity of the complete heuristic is discussed in section 5.4. The last section
(5.5) describes how an optimal solution can be determined.

5.1 Design decisions

To meet the requirements of section 3.2 for the platform of section 2.1, certain
decisions on the form of the solution are made. The decisions are:
e The schedule is executed by a control program.
e The heuristic will generate a pipelined schedule in order to obtain a
compact schedule.
e Kernels will only be loaded once per node.
e The partitioning and scheduling phase are decoupled into a two-level
approach.
e The multi-rate graph will not be transformed to a HDFG.
e An incremental approach is chosen that starts from a situation that is
guaranteed to result in an admissible schedule.
e The heuristic will be implemented in C.
These decisions are elucidated in the remainder of this first section.

le.g. Canny edge detection has an edge tracing step. However, the ISP cannot execute
these kind of (sub)functions efficiently anyway.
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Control program

The generated schedule must be executed on the platform, enforcing the ordering
specified by the schedule. This is done by running a control program on the
scalar processor (SP). The control program is responsible for loading kernels on
PEs and starting and synchronizing data transfers and kernel executions in the
correct order. The advantages of running control on the SP are:

e Kernel code is not made unnecessarily complex, compared to kernels han-

dling all control.

e Kernels have very limited control overhead.

e A central point of synchronization reduces synchronization communica-

tion.

e The control program can be run in parallel to kernel execution.

e The SP is not interfered by other processes, which can be the case if the

host processor is used for control.

e The latency of communication, when using the SP, is smaller than for the

host processor.

The control program can be implemented as either an interpreter program that
can execute the instructions of the schedule, or the schedule can be transformed
into control program code. For the evaluation of the schedule this is not im-
portant, but the tradeoff here is simple. The advantage of a generated control
program is that it results in less overhead for the scalar processor at runtime,
but it needs to be compiled at runtime. For an interpreter program this is the
other way around.

Since a code generator for generating control programs already partly exists,
it is extended and used to transform the schedule into actual execution. Imple-
menting the interpreter and evaluating the impact of overhead is deemed future
work.

Pipelined schedule

Either a generated control program or an interpreter program is used for control.
In case of a generated control program, the control program size depends on the
schedule length, which must fit in the SP’s program memory.

In case an interpreter program is used the instructions must fit in the data
memory of the SP. A simple calculation of running a simple single-input, single-
output, line-based function on a 4K (3840 x 2160) input image with an equally
sized output, shows that it would require 2160 start and synchronization in-
structions for kernel execution, as well as for the input and output transfers.
For this single node graph this means already 2160x2x3=12960 instructions,
if the schedule would have an individual instruction for every iteration of each
task.

Both cases require that the schedule is denoted in a compact form. Gener-
ating the schedule in the form of a preamble, loop body and postamble is suffi-
ciently compact and still allows to achieve a high performance. For this reason
the theory of pipelined and modulo scheduling (see section 2.3.2) is used.

No kernel reloading

Loading kernels requires usage of the DMA. This means that no data can be
transferred to or from PEs, while a kernel is being loaded to another PE, which
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can block execution. Also a PE cannot process data during context switches.
For this reason loading kernels is kept to a minimum; one kernel load per node.
A comparison to a solution that does allow kernel reloading is made in chapter
6.

Two-level approach

Because of the assumption of no kernel reloading, the graph is naturally divided
into subgraphs, called gangs, because of two reasons. Either (i) the total size of
the kernels can be too large to fit in the program memories or (ii) the required
buffer sizes do not fit in the limited vector memory. These gangs are executed
sequentially and read and write all their input and output to external memory.
This means that these gangs can be scheduled individually.

The decisions on the partition obviously change the nodes in a gang. Com-
bined with a decision on the mapping, this also changes the required amount
and type of communication:

e When kernels are loaded at the same time on the same PE, the data can

be kept in local memory, so no transfers are required.

e When kernels are loaded at the same time on different PEs, the data can
be transferred from local- to local memory.

e When kernels are not loaded at the same time, the intermediate data is
too large to be stored in local memory. Therefore it must be written to
external memory. Later, when the kernel that requires this data is loaded,
it must be transferred from external memory to local memory again.

This means that every decision can completely alter the scheduling problem for
every gang. However, a good approximation on the length of the schedule of a
gang can be calculated efficiently. For this reason it is intuitive and efficient to
explicitly decouple the partitioning and scheduling phase.

No HDFG transformation

There are existing solutions for parts of our scheduling problems, but they
require homogeneous dataflow graphs. There are algorithms that describe how
to transform cyclo-static and synchronous dataflow graphs into their single-rate
equivalents ([24]). The transformation is avoided for the same reasons for which
[24] avoids it for their scheduling solution.

The main reason is that, when a (C)SDF graph is transformed into its single-
rate equivalent, g(n) copies of every node n are introduced (including the trans-
fer nodes). This can cause the model size to explode. The worst case growth
rate for the size of the model in terms of nodes is exponential, but it is mainly
dependent on input and output rates of the kernels in the graph.

By avoiding the transformation to HDFG, combined with the decision to
avoid kernel reloading, all iterations of the same node are mapped to the same
PE. This reduces the solution space significantly and might therefore exclude
potentially superior schedules. However, when looking at the set of mainly
primitive OpenVX kernels and related work, it is clear that the tiling approach is
not suitable for higher numbers of cores, due to the external memory bandwidth
bottleneck. Therefore the heuristic focusses on pipelined execution, in which
communication with the external memory is minimized. The potential loss of
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performance in cases where memory bandwidth is not the bottleneck can be
compensated, by a method that is described in the future work section 7.1.

Incremental approach

Not being able to find an admissible schedule results in not being able to execute
the application. Since this means failure, finding an admissible schedule must be
guaranteed. It is assumed that the kernels can be executed at least individually.
Therefore, if the starting point of the heuristic is a solution where all kernels
are executed one by one, a valid schedule is guaranteed to be found.

By making locally optimal decisions for moving a processing node from one
gang to another, the makespan of the total schedule is strictly decreasing and
schedulability is guaranteed by rescheduling only the two gangs that are altered
by moving the node. This converging behavior is preferable over the exhaustive
search, which might not terminate before the user runs out of patience, resulting
in failure.

Heuristic

As far as known to the author there exists no scheduling heuristic that consid-
ers the combination of the constraints as described in 3 and generates pipelined
schedules. Most scheduling heuristics do not take into account limited program
memory (or program loading costs) and therefore the combination of the parti-
tioning and scheduling problem. Since a partition is only valid if the gangs are
actually schedulable, the scheduling problem has to be solved for every gang,
for every decision on a partition.

Typically, scheduling algorithms only take into account the runtime of a
single execution of the algorithm. Also static scheduling algorithms normally
do not assume time budgets of a few seconds, since they are typically executed
at compile time. For this reason other algorithms are fast enough for achieving a
high performance schedule, given the tight scheduling budget. For this reason a
new heuristic is proposed that is faster than combinations of known algorithms,
by exploiting the characteristic properties of this scheduling problem:

e The optimal period can be efficiently calculated in case the buffer size
constraints are neglected and the mapping is known. This period is used
by the cost function of the partition problem and is used as a target period
for the scheduling problem.

e The number of data transfers is dependent on the partition and mapping.
Combined with the first property, this can be used to make important
decisions in an early stage, based on efficiently calculated expectations.

e The target schedule consists of a preamble, loop body and postamble.
Since the classical iterative modulo scheduling algorithm ([8]) requires
transformation to an equivalent HDFG, this heuristic does not use it, but
works with the original SDFG. Deriving a pipelined schedule requires (i)
determining the number of executions in the preamble and (ii) finding a
schedule for one period. This greatly reduces the scheduling time, com-
pared to full graph unrolling.

The bottom line of creating a novel heuristic is that, as far as known to the

author of this thesis, there is no algorithm that takes into account all constraints
of the problem of this thesis. Based on problem characteristics and the coherency
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between the partition decisions and schedule quality, a heuristic can be designed
that uses this information. For this reason it is expected to be faster than
combining several existing methods, which is required given the tight scheduling
budget.

Programming language

The output of the scheduler will be a text file with the schedule. Scripting
languages, like Python or Ruby, are very convenient for text generation, in
contrast to a programming language like C. However, compiler optimizations
result in relatively superior performance for programs written in C/C++. Since
scheduling budget/speed of the heuristic is very important in this thesis, the
decision here is driven by performance and not by programming convenience.
For this reason C is chosen for the implementation of the scheduler.

5.2 Partitioning

In the outer level of the heuristic decisions on the partition and mapping are
made. Before describing the constraints and algorithms, an explanation of the
nomenclature and definitions, including the cost function, are given in section
5.2.1. Section 5.2.2 lists the constraints that have to be taken into account, and
a description of the algorithm itself is given in section 5.2.3.

5.2.1 Nomenclature and definitions

The graph is divided into subgraphs, which are called gangs. Every node
v resides in exactly one gang that is denoted as gang(v). For every gang a
pipelined schedule is derived and the gangs are executed sequentially. If a gang
gz is executed before gang g,, this is denoted as g, < g,.

The initial partition is changed by performing locally optimal moves. A
move is the event of removing a node from one gang and adding it to another.
The gang from which the node is removed is referred to as the source gang
and the gang to which the node is added is called the target gang.

The goal of the heuristic is to minimize the total execution time of the
graph. The exact execution time of a gang cannot be determined efficiently in
the partitioning step, since it requires the lengths of preamble, loop body and
postamble. These lengths are only known after scheduling the gang. Therefore,
an approximation of the cost of a gang is used. With the decisions made in
section 5.1, a lower bound on the length of the loop body can be determined.
Combining the information of:

e A known number of executions of the nodes (based on the repetition vector

a(n)).
e Multiple iterations of the same node are mapped to the same PE (or
DMA).

e No overlap of executions on the same hardware (for PEs and the DMA).

allows us to define the optimal cost of a gang as:

= .1
cost(g) = max > q(n)tege(n) (5.1)
nenodes|hw(n)=h
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Which says that the best achievable period, i.e. the optimal cost, equals the
maximum of the total execution time on all hardware (PE or DMA). This total
execution time on a hardware component equals the sum of ¢(n) - teze(n) for all
nodes that are mapped to the same hardware. This cost is referred to as the
optimal cost, since it equals the best period that can be achieved for the gang.
After a gang is scheduled the real period is known. The real period is referred
to as the real cost of a gang.

The cost of the whole partition is defined as the sum of the costs of all gangs.
Since the number of executions of all nodes in a period are taken from the rep-
etition vector, this sum of costs is directly proportional to the makespan of the
whole graph. For this it is implicitly assumed that the impact of the execution
times of the preamble and postamble on the average period is negligible. The
validity of this assumption can afterwards be checked with equation 2.2.

A gain is associated with every move. This gain is defined with the definition
of the cost of equation 5.1. If there are two gangs g; and g and moving a node
from g1 to go is considered, which results in the new gangs ¢f and g5, then the
gain is defined as:

gain = (cost(g1) + cost(ga)) — (cost(g}) + cost(gh)) (5.2)

If the costs of g} and g} are based on the optimal cost then the gain is referred
to as the expected gain. If the costs of ¢} and g5 are real costs then this is
called the real gain.

5.2.2 Constraints

The constraints that have to be taken into account when making a decision on
the partition are:

e The size of the kernel binaries of nodes that are in the same gang and
mapped to the same PE, should not exceed the program memory size of
a PE.

e Data dependencies should be taken into account. Since gangs are executed
sequentially it means that if a there is an edge (u,v), then node v must be
in the same gang or in a gang that is executed after the gang with node
u, because v depends on the output of u. We denote this constraint as
gang(u) < gang(v).

e Some kernels are not suitable for pipelining, due to the relation between
required input pixels for calculating the output pixels. For this reason the
kernels mentioned in section 2.4.4 are currently executed separately.

e The other kernels mentioned in section 2.4.4, for which only the input can
be pipelined (mean and histogram computation, etc.), can be moved like
the other kernels, but with one restriction: Since their output is a scalar
value that is only available after all input lines have been processed, kernels
that depend on it can only start their execution in the next gang or later.

5.2.3 Algorithm

Section 5.2.1 already explained that a partition is constructed by a sequence of
locally optimal moves. This section explains the algorithm that is used for this
in more detail and motivates the design decisions. As explained in section 5.1,
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the algorithm starts with a partition with one node per gang, to guarantee that
an admissible schedule has been found when the scheduler runs out of budget.
From this starting point, locally optimal moves are performed that reduce the
cost of the partition.

Algorithm 1 shows the pseudocode for the partitioning algorithm. First the
main structure and execution are explained. Afterwards motivations are given
for the design decisions. These decisions are marked with a number (}) in the
textual explanation, which correspond to the in-depth explanations afterwards.

order| | = determine_order(G) O(X1)
timer = init_timer() o(1)
partition = create_initial_partition() O(n)
idx=0

cur_gang = get_gang(order[idx++])

while update_timer(timer) V not_improving() do

cur_gang = get_next_gang(order, idx)

moves| | = get_possible_moves(cur_gang)

move = get_best_move(moves)

while move.gain > 0 do

new_source_gang = remove_node(get_source_gang(move))
new_target_gang = add_node(get_target_gang(move))
source_gang_cost = schedule(new_source_gang)
target_gang_cost = schedule(new_target_gang)
real_gain = calc_real_gain()

if real_gain > 0 then

xS
2

3

099990990990
LrIES

—_
~—

commit() 0(1)
break
else
| move = get_next_move(moves) 0(1)
end
end
end

Algorithm 1: Partitioning algorithm for the outer-level of the heuristic. The
symbols used for denoting the complexity are explained in section 5.2.5.

The first step is to determine an ordering of the nodes of the graph G. The
implementation currently supports three different sorting methods; topological,
level, and execution time sorting. More details on this can be found in section
5.2.4.

After that a timer is initialized, which is used for keeping track of the time
spent since starting the heuristic. Then the initial partition is created, including
the scheduling of the single node gangs. The current gang (cur_gang) is set by
getting the gang in which the first node of the ordering is present.

In the outer while loop, the target gang is updated! and the moves, with their
associated expected gains, that are possible towards this gang are determined?.
The outer while loop repeats until the scheduler runs out of budget or until it
is detected that the result will not further improve?.

In the inner while loop the move with the highest expected gain is selected.
Based on this move the source and target gang are created. These are CAKGs.
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Both of these gangs are scheduled, which returns the real costs of both. With
these real costs the real gain is calculated (see equation 5.2, calc_real gain() is
used for brevity). If this gain is greater than or equal to zero? the move is
committed. This means that the old source and target gangs are replaced by
the newly created gangs. If the real gain is smaller than zero, the move is not
applied and the move with the next best expected gain is selected.

(1) Updating the target gang

Determining which target gang is taken is done based on:

1. If a move was committed for the last target gang. If this was the case
then the target gang remains the same. This is done because new moves
can be enabled by the last move.

2. An ordering of the nodes of the graph (see section 5.2.4) and the last target
gang. If no move was committed then the next node in the ordering is
selected. This next node is the first node in the ordering that is not in
the same gang as last target gang, since this gang was already checked for
moves in the last iteration of the outer while loop.

(2) Early termination

It makes no sense to run the heuristc until the budget is exceeded, when it is
known that the cost is not going to be improved anymore (not_improving() in
the algorithm). For this reason information about the past partitioning decisions
and their corresponding gains is kept. If we define one iteration of checking
moves towards all gangs as a cycle, then after one cycle without a gain the
heuristic is terminated and the final schedule is generated.

(3) Determining the moves

The best move is determined in two steps. First the list of allowed moves towards
the current target gang is generated. This is done based on the constraints in
section 5.2.2, except for the program memory constraint. A recursive function
with complexity O(n) is used for this. After that, the expected gain is deter-
mined based on the optimal cost of the source and target gangs resulting from
the move. For this a mapping needs to be determined.

The mapping is currently determined by an exhaustive search. It selects
the mapping based on the cost. If the cost is equal for different mappings then
the mapping with the smallest transfer time is selected. This is done since it
is deemed easier for scheduling, because it means more freedom on the shared
resource (DMA). The complexity of the exhaustive mapping equals O(m|II|™),
where m equals the number of allowed moves and n is the number of processing
nodes that need to be mapped.

Exponential complexity is something you typically want to avoid. However,
n is the number of nodes in a gang, which is bounded by the program memory
size in reality. In practice this mapping function does not result in scheduling
time problems, since the implementation avoids checking symmetrical mappings
and breaks early, when the program memory constraint is violated or the best
cost found up till then is exceeded. This means that the worst-case complexity
of O(m|II|™) is not realistic. However, in case this heuristic is used for platforms
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and kernels for which it holds that the program memory size > kernel size it
might become a problem. In that case a heuristic can be used for the mapping
too, but this is deemed future work because in the situations considered in this
thesis this is not a problem.

After getting the expected gains of all moves (for which the mapping did
satisfy the program memory constraint) an ordering of the moves is determined.
Of course the node with the highest expected gain is the first node in this
ordering.

(4) Gains of zero

In case a node, for which performance is limited by data transfers, is added to a
gang of which the period is also bandwidth bounded, the expected gain is zero.
Initially it might not make sense to move nodes with a gain of zero, because
it results in occupying more program memory and requires an extra run of of
the scheduling algorithm. However, during implementation and testing of the
heuristic, it was identified that applying a move that has a zero gain enables
other moves that can have a gain higher than zero. The impact of this decision
is evaluated in section 6.3.1.

5.2.4 Design parameters

There are two design parameters that can be easily set in the implementation.
Their function is described here.

Sorting

The target gangs are selected in an order following the ordering of the processing
nodes. The implementation supports three different types of sorting;:

e Topological sorting. The nodes are sorted in topological order where a
source node has the highest priority. It is implemented using a recursive
function with complexity O(e), where e is the number of edges.

e Level sorting. Similar to topological sorting, but now the level is used.
It is equal to the definition of level in HLFET list scheduling, except for
the fact that execution time is taken equal to one for every node. The
complexity is for sorting equals O(nguk - n), where n is the number of
nodes that are sorted and ng, is the number of sink nodes. This means
that the worst-case complexity is O(n?).

e Ezecution time sorting. The nodes are sorted by ¢(n)-t_exe(n), from high
to low.

The main advantages of topological and level sorting are that as many nodes
as possible, at either a source or a sink, are grouped into a gang, not leaving
leftover nodes. Leftover nodes are nodes, which cannot be moved to another
gang due to the data dependency constraint and the PMEM constraint. The
idea behind execution time sorting is that the highest gains are achieved when
nodes with large execution times are moved to the same gang. Therefore this
type of sorting might converge faster. These three different types of sorting are
compared in section 6.3.2.
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Search depth

Another design parameter is the search depth for determining the moves. As
described in section 5.2.3, the best move is determined by checking all possible
moves and ordering them by the associated expected gains. However, to deter-
mine the best move it is also interesting to know what the gains are of moving
nodes that are enabled by applying the first move. This means that if there are
multiple nodes, the best move is not necessarily the move with highest gain for
the first move.

This same reasoning can continue for the gain after the second move and
this the number of subsequent moves that is checked is called the search depth.
Informally said a search depth of four means that the gains are calculated for
up to four consecutive moves (if possible, given the constraints).

The impact of the search depth, on both the final makespan and the schedul-
ing time, is evaluated in section 6.3.3.

5.2.5 Complexity

In the description of algorithm 1 the complexity of each line is denoted on the
right. For this the big O notation (see section 2.6) is used. In the annotations
the n represents the number of nodes of the full graph and m the number of
moves. The other letters are used for:

e S denotes the complexity of the scheduling algorithm, which is determined

in the next section.

e X, equals the complexity of sorting the nodes. Since there are multiple

options here it depends on the selected option.

e X, is the complexity of generating the list of moves including the associ-

ated mappings and gains.

The worst case complexity of the number of moves m is O(n). However, it
is very unlikely that this will be the case in practice. First of all, after a move is
committed the inner while loop breaks. Typically, the first move is committed.
Also the number of possible moves is limited by the graph structure combined
with the constraints of section 5.2.2. O(n) can only be achieved when all nodes
are separate connected components, i.e. there are no edges between any pair of
nodes. For this reason the practical complexity is O(1).

The complexity of the initialization part (before the outer while loop) has
complexity O(X;) + O(1) + O(n) + O(n) = O(X; + 1+ n+n) = O(X; + n).
Since the complexity of sorting is higher than O(n) this reduces to O(X7).

The complexity of the inner while loop similarly reduces O(m(S+n)). Since
the complexity of the scheduling algorithm is higher than O(n) (will be deter-
mined in the next section), the complexity reduces to O(m-S). The complexity
in the outer loop is therefore O(Xs +m - S) = O(m|II|"s + m - S), where n, is
the number of nodes in a gang.

The number of iterations of the outer while loop is hard to determine. In sec-
tion 5.4, where the complexity of scheduling and partitioning is combined, the
usability of the complexity analysis is discussed. An estimate on the required
number of executions of the outer while loop, after which not_improving() re-
turns true, is given there.
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5.3 Scheduling

This section describes how the gangs, resulting from the partitioning phase, are
scheduled. The gangs are modeled as acyclic (C)SDF graphs, for which the
mapping is also known from the partitioning phase. The tokens on the source
edges of the gang model are initialized as if all preceding nodes in the complete
graph have finished all their executions.

As motivated in section 5.1, a schedule consisting of a preamble, loop body
and postamble must be determined, in terms of instructions (see section 3.1.7).
How this is done is described first in section 5.3.1. After that, in section 5.3.2,
the approach to determine the retiming and buffer sizes is given. Also the list
scheduling algorithm that is used is explained there.

5.3.1 Pipelined scheduling

The schedule consists of a preamble, a repeating loop body, and a postamble.
The original modulo scheduling approach as described in [8] is not applicable,
since it requires HDFGs. The main problem is finding a schedule for the loop
body.

Some tools determine optimal throughput by list scheduling and detecting
subsequent equal states. The numbers on scheduling time for tools, such as
UPPAAL [25], are in the order of 100 ms for simple models. This is too long
given the fact that scheduling must be performed multiple times at configuration
time. On top of this, also buffer sizes have to be taken into account. Therefore
a different approach is chosen.

For the scheduling, non-preemptive execution is assumed, because when exe-
cuting simple kernels on tiles of data the costs of context switching are relatively
high.

Preamble

The purpose of a preamble has already been described in section 2.3.2. In our
dataflow graph, initially there are only tokens on the gang’s input edges. All
internal non-buffer edges have no tokens on them. By executing a preamble, the
tokens are distributed onto internal edges. For describing the relation between
the executions in the preamble and the number of tokens on the internal edges,
the definition of the retiming relation (equation 3.1) is suitable.

For filter kernels this relation is extended to equation 3.2. Since only the
first and last rates of a node’s executions can differ, this can be easily taken into
account when calculating the tokens produced and consumed in the preamble
and postamble. However, to have the same situation at the beginning and at
the end of scheduling the executions in a loop body the rates must be constant.
Therefore we restrict the executions in which this deviating rates are applicable
to the preamble and postamble.

The advantage of using retiming for the preamble is that the state, i.e. the
tokens on every edge, after the preamble can be determined, without actually
deriving start and end times for the nodes’ executions. A disadvantage is that
the schedule is limited to yield a strictly periodic schedule.
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Determining schedulability

With the repetition vector ¢ it is known how many iterations of each node
are performed in one execution of the loop body. Since the length of the loop
body is directly proportional to the makespan of the gang, the optimization
problem can be reduced to minimizing the period of one loop body. Determining
schedulability now means:

e Determining a value for the retiming of every node.

e Determining a start and synchronization time for rv(n) iterations for every

node n, relative to the start of the period.

e Determining buffer sizes.
such that all platform constraints are met. As described in the partitioning
section (5.2.1), the optimal period can be determined with equation 5.1. Once
this period is achieved during the scheduling of a gang, improving is impossible
and scheduling can terminate.

5.3.2 Algorithm

Scheduling the loop body is performed in two similar phases. In the first phase
a retiming is determined with which the optimal period can be achieved. In this
first phase no backedges are present, which means that buffer sizes are infinite.
In the second phase the required number of buffer tokens is determined, given
the retiming. While doing this, the memory size available for the buffers must
be taken into account.

Both phases have the same basic structure:

1. Determine a minimal initial value (retiming or buffer sizes).

2. Perform list scheduling.

3. If the optimal period is achieved then scheduling is done. Otherwise,
make use of the information of the last schedule for updating the model
(retiming or buffer sizes) and reschedule.

Because of the repeating pattern of list scheduling and updating the model based
on the previous schedule we will refer to this method as iterative list scheduling.

Shared resources are handled by following the list scheduling approach. If

multiple nodes are ready for execution on an available hardware component, the
node with the highest priority (based on level) is executed.

List scheduling

The list scheduling algorithm that is used is algorithm 2. First, two arrays are
initialized. The order array holds the priorities and is sorted based on level.
The iter array holds the number of executed iterations of a specific node. Also
a time is kept, for all PEs, that equals the point in time at which the current
execution on it will finish.

After initialization a while loop is entered in which the time is increased
(starting at 0). In this while loop, first tokens are produced for node executions
that finished at the current point in time (apply_productions()). After that, the
following is checked for all nodes, ordered by the priorities in the order array, if:

— An execution is desired. Every node must be executed the amount speci-

fied in the repetition vector for the node.
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order| | = sort_nodes_by_level() O(Nsnk - 1
iter[ | = init_iterations() O(n)
while update_timer() do o(|1)
apply_productions() o(|11])
for p in 0..num_nodes-1 do O(n)
n = order[p]
if iter[n] < rv[n] A hw_ready(mapping[n]) then o(1)
if enough_tokens(n) then o(1)
execute(n) O(1)
iter[n] +=1
else if enough_nonbuffer_tokens(n) then O(1)
| store_blocking_buffer_info() o(1)
end
end

end

Algorithm 2: List scheduling algorithm for scheduling a graph G.

— The hardware is available (hw_ready(mapping[n])). This is checked by
looking at the time at which the PE that the node is mapped to is idle
again. This time is set when a node’s execution starts. This also means
that execution of another node with a higher priority can have started on
this hardware during this iteration of the while loop.

— If there are enough tokens on all input edges for starting execution, de-
noted by enough_tokens(n).

If all these conditions are satisfied then a node is executed. When a node is

executed the following is done:

— The time at which the PE that the node is mapped to is idle again, is set
to the current time plus the execution time of the node.

— In case the PE was idle before starting execution, i.e. the point in time at
which the PE would become idle is earlier than the current point in time,
there was slack on this PE. Information on this slack is stored as profiling
information for updating the retiming in phase one.

— A production is added to a list of productions. A production is a pair of
a time value with a node ID, indicating that the node with the node ID
will produce tokens at the specified time.

After starting execution for a node, its number of iterations is increased.

As can be seen, the check for enough tokens on the input edges is not in a
conjunction of conditions with the other two requirements for execution. This is
done to be able to determine information on blocking buffers for phase two. A
blocking buffer is a buffer that is preventing execution, so if execution is desired,
the hardware is idle and there are enough tokens on the non-buffer edges, a
blocking buffer is encountered. Information on this is stored for updating the
model in phase two.

After all nodes have been checked, the timer is updated (update_timer()) to
the first point in time at which a node’s execution finishes, because this is the
next earliest point in time at which a node can potentially be executed.

The complexity of every operation of this list scheduling algorithm is added
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in the notation of algorithm 2. In these annotations, n is the number of nodes in
the gang and |TI| the number of used PEs. The number of iterations of the while
loop in the worst case, equals the total number of firings n' = > .. q(n).
This means that the complexity of list scheduling is O(n + n/(|II| + n % 1)) =
O(n’n), because the number of used PEs never exceeds the number of nodes in
a gang.

Retiming phase

In the first phase the required retiming, for being able to achieve the optimal
period, is determined. In this phase the (C)SDF model without buffer edges is
used. This mimics infinite buffers, since execution of nodes is not prevented by
the lack of tokens on an incoming buffer edge.

The required retiming is determined in two main steps. In the first step the
amount of required preparations is determined. When a node requires one
preparation it means that, at the start of the period, there must be enough
tokens on all input edges of the node to execute once. The amount of tokens
required for an execution is given by the input rate.

This results in an array, holding the required preparations of all nodes. This
is converted into the required retiming by a recursive function. This function is
started from all sink edges and continues through all input edges of the current
node. The retiming of its source node is determined for every edge, based on the
tokens that are required. The required amount of tokens is determined by the
required preparations of the sink node and the consumed tokens, based on the
previously determined retiming of the sink node. This relation is more formally

Biven b (prep(snk(e)) + r(snk(c)))  c(¢)
- p?’ep SN (& r(sn [ * Ccle
r(src(e)) = { ) -‘

An example of this can be seen in figure 5.1. Assume that node P2 is a
bottleneck and that therefore P2 and T3 must be able to execute at the start
of the loop body, without waiting for their predecessors to finish execution.
Also assume that it turned out that T2 requires a preparation too. Then the
required preparations are as shown in table 5.1. We start at the sink edge
and continue through the input edges of T3 (the retiming of T3 equals zero,
since no requirements on the number of output tokens are present). Applying

equation 5.3 on edge (P2,T3) gives r(P2) = [%—‘ = 1. Continuing through
P2’s input edges gives r(T2) = [%—‘ =2, r(Pl) = [%W = 2 and
r(T1) = [Lﬂ?)ﬂ =2

Applying this retiming to figure 5.1a results in 5.1b. What can be seen here
is that T2, P2 and T3 now have enough tokens available to start one execution
at the start of the loop body. One token would be sufficient for node T2 on
edge (P1,72), but P1 has an output rate of 2. This is the reason for the ceiling
function in equation 5.3.

After applying the retiming, the model is scheduled using the list schedul-
ing algorithm (algorithm 2). In case the optimal period is not achieved, the
generated schedule is used to updated the required preparations and retiming.

This updating is done based on the slack, i.e. the idle time between tasks
on the same hardware. The focus is on PEs on which execution exceeds the

(5.3)
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(a) Gang model.
2

(b) Gang model after applying retiming.

Figure 5.1: Determining the retiming based on the number of preparations.

Node | Required preparations | Resulting retiming
T1 0 2
P1 0 2
T2 1 2
P2 1 1
T3 1 0

Table 5.1: Required preparations and the resulting values for the retiming corresponding to
figure 5.1.

optimal period. What slack in the schedule means, is that there is a task for
which the hardware was available, but that was not used due to a lack of tokens
for a task. By increasing the required preparations for the node that is executed
after the slack, it is assured that in the next iteration of the list scheduler the
required token(s) are available. The longest slack is checked first since the gains
are the highest there. Of course this can only be done if buffer size constraints
remain satisfied.

There is one extra condition for increasing the required preparation for a
node (except buffer size constraints). If another node, which produces the re-
quired input tokens, also encounters slack before its execution and this slack is
longer, this node’s required preparations are increased. This is checked recur-
sively. This way the maximum amount of slack is reduced with the minimum
amount of tokens.

Buffer sizing phase

In the second phase the buffer sizes must be determined. The approach is the
same as for determining the retiming:

1. Determine the initial required buffer size. This is done based on the min-
imum amount of tokens to avoid deadlocks, on the number of ”absorbed”
tokens by filter kernels, and on the final values for the required prepa-
rations and retiming determined in the previous phase. The number of
preparations is taken into account, since in the previous step it was deter-
mined that there should be enough initial tokens on these node’s inputs.
This means also enough available output buffers must be present.

2. Perform list scheduling for a schedule of the period on the model with
the backedges. If the optimal period is achieved then the buffer sizes are
sufficient. Otherwise, information gathered during the list scheduling is
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used to update the buffer sizes and reschedule.

The model is updated based on the information on blocking buffers (see the
list scheduling description). As in the updating of the retiming, here also the
slack is sorted by size, such that the maximal amount of slack is reduced with
the tokens.

Example

To illustrate this approach, a more detailed explanation of the updates on the
model after every iteration can be found in appendix B. It includes Gantt charts
and visualizations of the graphs. Also an excerpt of the control flow in the form
of a list of instructions is included there.

Complexity

Both phases increase their values until the optimal period is reached, or until
no buffer size is left for adding tokens. It is hard to analytically determine the
worst-case number of iterations for this. Intuitively it is O(1), because when
updating the model the amount of tokens added is based on the amount of time
that the optimal period is exceeded. It should therefore not dependent on the
number of nodes in a gang. However, from practice it has become clear that the
number of iterations for determining the retiming is relatively small, but values
for the number of iterations for determining the buffer sizes are larger. This
performance will be quantified in the next chapter in section 6.4.4.

The complexity of backtracking slack in the retiming phase has a worst case
complexity of O(n’-ng). Iteratively updating and list scheduling in the retiming
phase therefore equals O(i.(n'-n+n'-n)) = O(i, -n’-n), where i, is the number
of iterations after which the optimal retiming is achieved.

The complexity of the current implementation of updating the buffer size is
O(n?), but since this complexity results from sorting a list it can be implemented
more efficiently. However, similar to the retiming phase the complexity equals
O(iy(n' - n+n?)) = O(ip - n' - n), because O(n) = O(n') (but O(n) # O(n')!).
Here i; is the required number of iterations for updating the buffer sizes before
the optimal period is achieved.

The complete scheduling algorithm executes these two phases sequentially.
Therefore the scheduling complexity S equals O(i, - n' - n) + O(ip - n' - n) =
O((ir +ip)n’ - n).

5.4 Complexity

The complexity of the partitioning phase inside the outer while loop was already
determined to be O([II|"s +m - S), where ng is the number of nodes in a gang
and S is the scheduling complexity. The scheduling complexity was determined
to equal O((i, + ip)n’ - n). Combining these complexities results in O(|II|™s +
(i +ip)m - ny - ny).

As stated in the complexity analysis of section 5.2.5, the number of iterations
of the outer while loop of the partitioning phase is not yet considered. The
performance depends on the number of moves that can be performed within
thie scheduling budget, but to determine the complexity of the heuristic it must
be approximated how this required number of moves scales with model size.
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Since nodes are not moved around multiple times, intuitively the number of
moves scales linearly with the number of nodes.

Running the heuristic and measuring the number of non-zero moves, the
result of table 5.2 is obtained. From this it seems clear that, at least in practice,
the number of moves after which the final period is achieved, scales linearly with
the model size.

Graph: HDR | HDRx2 | CE | Hist | Verif. | Diff
Model size n 20 40 8 8 7 7
Moves 22 45 8 8 6 7

Table 5.2: The number of iterations of the outer while loop. The count is stopped when the
final makespan is achieved.

With this result, the complexity of the heuristic equals O(n - m - |I|™ +
(ir +dp)n-m-ngy-ng)) = O(n-m - [I[|"), so the bottleneck when scaling is
the determination of the optimal mapping. As motivated before this is not a
problem in our case, because the number of nodes in a gang n, in practice (for
our platform) is bounded by the program memory size and other partitioning

constraints.

5.5 Optimality

To determine the optimal result and to be able to verify the correctness of a
solution found by the heuristic, the problem can be specified as a Satisfiability
Modulo Theories (SMT) problem. SMT problems are decision problems where
the satisfiability of a set of constraints, expressed in first-order logic with respect
to background theories such as integers, reals or arrays, must be determined.
How to formulate the SMT problem based on a graph specification is described
in appendix A.

An implementation, which automatically generated input for SMT solvers
from a graph specification, was created and tested. Due to multiple required
changes, in the structure of the library of kernels for the scheduler and the
inclusion of filter kernels, this implementation is no longer in an executable
state.

An older, working version of the implementation showed that the solving
time becomes too long for larger graphs. The time the solver spent on proving
optimality of a partition, only based on optimal costs, of a 15-node graph, was
3 hours. When including the scheduling problem for determining the real costs
of gangs, the solver was terminated after 1 week of execution.

Therefore, the usefullness of the SMT problem formulation is questionable.
It is interesting to see if the performance can be improved by adding symmetry
breaking constraints. On the other hand it shows that using a heuristic is
required, when scheduling budgets are in the order of seconds and graphs become
larger.
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Chapter 6

Results

In this chapter the performance of the heuristic is evaluated and compared to
other solutions. The main figures of merit are the achieved makespan and the
scheduling time, i.e. the time it takes to generate the schedule.

First, the set of benchmark graphs is described in section 6.1. To prove
that a graph can be transformed into correct execution, the whole control flow
generation is performed and tested using a simulator. This is described in section
6.2. In section 6.3 the impact of different values of the design parameters is
analyzed, using the set of benchmark graphs. Based on this, a final configuration
is chosen. With this configuration, the final results of the heuristic are obtained
and these results are compared to alternative approaches. The description of
the other approaches and the comparison can be found in section 6.4.3. In this
section also the performance of the scheduler is evaluated.

The results in this section are obtained with the following environment and
variables, unless stated otherwise:

e The scheduler is executed on a platform with an Intel® Core™ i5-5200U

CPU and 4GB of RAM.

e A scheduling budget of one second is used throughout this chapter. The
limit for keeping the user’s attention is 10 seconds (section 2.5), but more
needs to be done (e.g. control program compilation) in this timespan
and the platform mentioned at the previous bullet is faster than mobile
platforms.

e The number of processing elements is four.

e The used image size is 1920x1080 (full HD resolution).

e DDR is modeled with a bandwidth that is a factor 40 smaller than the
local memories [2].

e All values on scheduling time are averaged over 10 runs.

6.1 Benchmark graphs

For evaluating the heuristic and comparing it to alternative approaches, a set
of application graphs is used that consists of the following graphs:

1. A Histogram equalization graph from [26], where histogram equalization

is split into separate histogram computation and equalization nodes. It

includes kernels with a very low arithmetic intensity, such as color channel
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extraction kernels, and non-pipelineable histogram computation kernels.
It consists of 9 nodes.

2. A Difference highlighting graph. It takes two grayscale images as input
and determines the absolute differences of pixel values. This difference is
thresholded and the resulting pixels are dilated three times and added as
black pixels to one of the original images. In total, the graph consists of
7 pipelineable nodes.

3. A Canny edge detector graph from [21], extended with color conversion.
In total it consists of 8 pipelineable nodes.

4. A High-dynamic-range (HDR) graph. It takes three input images and
combines these into one output image. It includes non-pipelineable nodes,
image pyramids and a mixture of bandwidth- and compute-limited kernels.
In total it features 20 nodes. It must be noted that not all kernels in the
graph are OpenVX kernels, but it shows the performance for a graph
consisting of more compute-bounded kernels.

5. The graph used for verification (see section 6.2), consisting of 7 nodes.

6. For checking scalability, also a graph referred to as double HDR is used,
which equals two copies of the HDR graph. What this practically means
is that, in case of HDR video, two output frames can be calculated at the
same time at the cost of additional latency.

6.2 Verification

To check the correctness of the approach in practice, a verification graph is used.
It is constructed in such a way that it contains a variety of graph properties
and node types. The schedule that is generated by the implementation of the
heuristic, is transformed into a control program by a code generator. This code
generator creates a control program by combining standard parameterized code
blocks in the order of the instructions in the schedule. This code is compiled
and executed using a simulator.

The graph can be seen in figure 6.1. It consists of filter kernels (F1 and
F2), up- and down-scaling kernels (P1 and P2), regular kernels that implement
addition (K1 and K2) and a node that is non-pipelineable and produces a scalar
output. Because linking multiple kernels into one binary is not implemented as
part of the flow, the kernel sizes are taken equal to the program memory size.
This way only one kernel per gang can be mapped to the a PE.

®-
EEE

Figure 6.1: The graph used for verification.
The kernel implementations and the input data are constructed in a way that

the availability of the correct data and the ordering of transfers and executions
can be checked by inspecting the output. Besides checking the correctness of
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the schedule and the transformation into a correct control program, this also
allows us to verify that execution times of these kernels are close to constant. A
third reason for executing this verification graph, is that it gives realistic values
on execution times and program memory usage. These values can also be used
to estimate execution times of other kernels, without implementing them.

The automatic control flow generation from graph to execution is imple-
mented and the correctness is verified for this graph. Of course this is not a
complete verification of the heuristic, but it can be seen as a proof of concept
and relates the theoretical schedule to practice with the execution times and
program memory requirements.

6.3 Design parameter evaluation

In this section, the influence of the following design parameters and decisions is
evaluated:

e Committing moves with a gain of zero.

e The sorting method for determining the target gang.

e The relation between scheduling time and makespan for different search

depths.

Based on the results of this section, the best configuration of these parameters
is determined in section 6.3.4. This configuration is used in section 6.4.3 to
compare the heuristic to other approaches.

6.3.1 Zero gain

As mentioned in section 5.2.3, it was identified during tests with synthetic
graphs, that performing moves with a gain (equation 5.2) of zero could be
benificial. The reasoning behind this is that it can enable moves of other nodes
to the gang that would have a gain greater than zero.

When running the heuristic on the benchmark graphs, with and without
committing zero-gain moves, there are no significant differences in the makespans
(all < 0.1%), except for one specific case. When scheduling the verification
graph, with target gangs sorted by level, the makespan is improved by 56%
when zero-gain moves are enabled. The reason is that there is a zero-gain move,
that enables a beneficial move. The problematic situation in case zero-gain
moves are not performed, is illustrated with figure 6.2.

EE

8-

Figure 6.2: Situation where committing a zero-gain move, results in a better makespan. The
nodes that have the same color are in the same gang.

Due to level sorting, the first target gang is the gang that contains node P1.
Moving node F1 is a zero-gain move because the performance of the gang with
P1 is bandwidth-limited and F1 does not result in any reduction in transfers.
Therefore in three subsequent moves, node F2, P2 and K1 are moved towards
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the gang with P1, resulting in the situation of figure 6.2. In this figure, nodes
with the same color are in the same gang.

Since no more moves can be performed towards the target gang (one node per
PE for the verification graph), the next target gang is selected. According to the
level-sorted nodes, this is the gang with node F1. Due to data dependencies only
a move K1 is allowed. This move is a zero-gain move, because the data that is
transferred between F1 and K1, and P2 and K1 is equally sized. Performing this
zero-gain move, would enable subsequent moves resulting in a partition consist-
ing of two gangs ({P1,F2,P2},{F1,K1,K2,NP1}). If this move is not applied then
the final partition consists of three gangs; ({F1},{P1,F2,P2,K1},{K2,NP1}).
This extra gang means extra communication between local and external mem-
ories, resulting in the large increase in makespan.

Another important measure is the scheduling time. The scheduling time is
only affected by disabling zero-gain moves for the HDR and the double HDR
graph. The scheduling time is decreased by a factor of less than 1.5 for the
normal HDR graph, but the time it takes to finish the heuristic for the double
HDR graph is decreased on average by a factor 4 for all sorting types. A decrease
in scheduling time was expected, when the amount of allowed moves is limited,
but a factor 4 is higher than expected.

The main reason for this large decrease is that, when a partition with the
final makespan is achieved, the heuristic terminates faster, because no zero-gain
moves are scheduled anymore. To quantify this, the scheduling time with zero-
gain moves enabled and disabled are 28 and 8 ms, respectively, for the double
HDR graph with topological sorting. The time after which the final makespan
is achieved are 17 and 7 ms. This means that 11 ms are spent on performing
zero-gain moves until the scheduler finishes. This can also be seen in figure
6.4. For the HDR and double HDR graph the curve is horizontal after the final
makespan is achieved.

This 17 vs 7 ms is still is a significant difference, but it seems to be only
present for the double HDR graph. The reason the scheduling times of other
graphs are not (or less) impacted has to do with the presence of zero-gain moves.
Zero-gain moves are only present when there is no aggregation of IPC resulting
from the move, and the execution time of the target gang is bandwidth-limited.
Since external memory bandwidth is typically the bottleneck and most OpenVX
kernels are simple stencil operations, performance of target gangs is typically
bandwidth-limited. Since the double HDR graph consists of two connected
components, there are many moves without IPC aggregation, i.e. zero-gain
moves, possible.

In general this means that, if a graph consists of multiple connected com-
ponents, the difference in scheduling time will be relatively large. However,
disabling zero-gain moves might prevent high gain moves, which can result in
makespans that are far from optimal.

6.3.2 Sorting type

The target gangs are selected based on a sorted list of the nodes. The gang of
the node with the highest priority is selected first, and moves towards this node
are checked. In section 5.2.3, three different types of sorting were mentioned and
motivated, which are topological sorting, level sorting and sorting by execution
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time. When nodes are sorted topologically or by level, nodes near the graphs
input have the highest priority.

These three types of sorting are extended with two other types that we will
call reversed level and reversed topological sorting. They are equal to level and
topological sorting, but the ordering is reversed. The resulting makespans, for
the different types of sorting for every benchmark graph, are shown in figure
6.3. What can be seen is that the sorting type only influences the makespans
for HDR, double HDR and verification. The largest difference, is an increase of
the makespan by 18%, for the double HDR. graph.

When taking a closer look at the resulting partitions, the differences are the
result of making locally optimal decisions and not of the differences between
topological and level sorting. For example, for the verification graph of figure
6.1, reversed topological sort starts at node K2 and reversed level sort starts
at node NP1. The different makespan results from the fact that moving node
NP1, to a gang with nodes K1 and K2, has a lower gain than the other moves.
This results in node NP1 being a leftover node, while moving node K2 to a gang
with K1 and NP1 does have a higher gain. This difference in final makespan is
the result of indeterminism in the sorting methods, since both starting nodes
could have been the highest priority node for both types of sorting.

The advantage of starting near a source or a sink of the graph is to avoid
leftover nodes, but due to the graph structure and node properties, leftover
nodes can still occur. Leftover nodes are also the reason that the largest differ-
ences are present for the double HDR graph. Since it consists of two connected
components, early moves, where nodes of different connected components are
placed in the same gang, are relatively less restricted due to data dependencies.
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12 T — : . : 1 Rev. Topological
[—1Rev. Level
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Figure 6.3: The makespans for the benchmark graphs for different sorting methods, relative
to the result with topological sorting.

Another expected result is that sorting by execution time will converge faster
to the final makespan, because gains are higher when nodes with larger execution
times are moved to the same gang. Figure 6.4 shows the makespan versus the
scheduling time. In the figures, reversed level sorting is omitted, since the curves
for this type of sorting closely match the curves of reversed topological sorting
and omitting this type of sorting improves the readability.

What can be seen from this figure is that, when sorting by execution time,
the heuristic indeed has high initial gains. It must be noted that for the HDR

46



HDR Double HDR

[y
[y

Topological
:Os 1 0.8 Level
c Rev. topological
30.6 r 0.6 Execution time
3
S04t 0.4}
b=
0.2 : . 0.2 : : :
0 2 4 6 0 20 40 60 8
N Canny edge N Histogram
2208 0.8 |
S
2 0.6 [ 0.6
[%]
g
< 0.4 ¢ 04t
=
0.2 . . 0.2 . . .
0 2 4 6 0 0.2 0.4 0.6 0.8
N Verification N Difference
2208 08
: N
2. 0.6 06
(%]
(0]
<04} 04}
=
0.2 0.2
0 0.1 0.2 0.3 0.4 0 0.5
Scheduling time [ms] Scheduling time [ms]

Figure 6.4: Makespan versus scheduling time for all benchmark graphs for different sorting
methods.

graph the node with the highest execution time is at the sink of the graph. For
this reason the reversed sorting methodologies converge similar to execution
time sorting. What can be seen for the single and double HDR graph is that
topological and level sorting results in small gains initially. This is the case
because at the three inputs, there are non-pipelineable kernel nodes (histogram
computation), for which moves do not result in IPC aggregation. The reason
that topological sorting improves earlier is that the ordering of nodes is less
strict. This means that nodes that are further from the source node can be
used for determining the target gang earlier.

6.3.3 Search depth

Increasing the search depth can also result in achieving better results, by looking
at the moves that are possible after performing the current move. The down-
side is that determining the gains of moves requires mapping and this must be
performed roughly m*? times, where m is the number of possible moves and sd
is the search depth.
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The results for a search depth of up to five, relative to the makespan at a
search depth of one, are given in table 6.1. These are the results obtained with
level sorting, but the results show the same possibilities as for other types of
sorting too.

Graph SD =1 2 3 4 5
DR 1.00 (3) | 104 (5) | L.04(8) | 1.00(22) | 1.00 (86)
Double HDR | 1.00 (28) | 0.08 (41) | 0.08 (119) | 2.84 (1001) | 2.84 (1001)
Canny edge | 1.00 (4) | 1.00 (6) | 1.00 (7) | 1.00 (10) | 1.00 (13)
Histogram 1.00 (0) | 1.00 (0) 1.00 (0) 1.00 (1) 1.00 (1)
Verification 1.00 (0) | 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
Difference 1.00 (0) | 1.00 (1) | 1.00 (1) | 1.00 (1) 1.00 (2)

Table 6.1: The makespans relative to the makespan at a search depth (SD) of 1. The values
between the brackets are the corresponding scheduling times in milliseconds.

The double HDR graph shows that improvements can be achieved, when
increasing the search depth, but that the scheduling budget of 1 second is soon
exceeded. The reason that this is especially problematic for the double HDR
graph, is (i) its large number of nodes and (ii) the fact that it consists of multiple
connected components. For this reason the number of possible moves is higher
than for the other graphs and this results in exceeding the scheduling budget
for a depth of 4. Obviously, performing moves based on more information does
not outweigh performing less moves. Exceeding the scheduling budget must
therefore be avoided at all cost.

What also can be noted is that, for a single HDR graph, the makespans for
search depths of 2 and 3 are worse than for a search depth of 1. The reason for
this is that moves are still locally optimal and that a higher gain for moving a
node towards a gang can result in a worse total partition.

The reason that some graphs are not affected by it, both in terms of makespan
and scheduling time, is the size of the graphs. A search depth of 5 is only useful
if 5 subsequent moves with a zero or positive gain towards a gang are possible
and if the final partition is not going to consist of the same gangs anyway.

6.3.4 Best configuration

A combination of the parameters of the previous sections must be chosen, which
will be used for comparing the heuristic to the other approaches. Since the
heuristic is fast, design space exploration can be done exhaustively. A design
space of the five different methods of sorting, with or without zero-gain moves
enabled, for a search depth of one and two, is explored. The average difference
on normalized makespans is approximately 2.8% and the total scheduling time
ranges from 16 to 85 ms.

Since ”overfitting” of the parameters for the set of benchmarks is undesired,
when comparing to other approaches, the best result of the fast design space
exploration is not picked. Instead the choice is motivated by the findings in the
previous sections:

e Because performing zero-gain moves may enable high-gain moves, and

because the cost in terms of scheduling time is limited and only significant
for specific graphs, zero-gain moves are enabled.
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e Level sorting gives the best overall results, but as was shown in section
6.3.2, the differences are small for other types of sorting and are highly
dependent on the graph structure. To avoid overfitting and give a fair
comparison in the next section, topological sorting is selected, which cor-
responds to average performance.

e The improvements when increasing the search depth are disappointing
and can come at the cost of an exponential growth of the scheduling time.
Therefore, a search depth of one is used.

Since the graph structure is known at the start of scheduling, the parameters
can also be selected based on the graph structure. For example, the search depth
can be made a function of the number of nodes and whether or not the graph
consists of multiple connected components. However, this is considered future
work.

6.4 Comparison

This section compares the results of the heuristic to other approaches. These
approaches are:

e The sequential approach. This is the simplest approach in which all
nodes are executed individually. Processing and transfers are performed
in parallel, but all input data is read from external memory and all (inter-
mediate) output data is written back to external memory. This approach
corresponds to executing a sequence of OpenCV kernels and results are
obtained in the form of the initial partition.

e The tiling approach. The data is divided over the different PEs, to com-
pare to approaches such as [4]. How this approach is implemented is
explained in section 6.4.1.

e A naive list scheduling approach. How it determines the order of exe-
cution is described in more detail in section 6.4.2. The goal of comparing
to this approach, is to show the effect of reloading kernel binaries.

6.4.1 Tiling approach

In [4], a cluster-based many-core platform is targeted and the input is divided
into tiles. Tiles are loaded from external memory into the local memory of the
cluster, after which multiple cores process the tile. The output is written back
to external memory again and potentially reloaded in a later gang. External
memory contention was identified to be a bottleneck.

The tiling approach that is evaluated here, uses a strategy similar to [4] and
the data partitioned style of [19]. Instead of dividing pipelining stages over the
PEs, the data is divided over the PEs. The input data is divided into as many
parts as there are PEs. Every PE then executes the same sequence of kernels.

It is implemented using the heuristic. A partition and schedule are generated
for the graph for a single PE. This way some IPC can be aggregated. Processing
can be done in parallel and therefore the time spent on processing is divided by
the number of PEs. Also the amount of time spent on transferring data between
external memory and local memory is determined. Data transfers cannot be
performed in parallel, since they require shared resources. This results in the
following approximation for the makespan of the schedule:
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Where |II] is the number of PEs and tgngic(g) denotes the makespan of the
schedule of gang ¢ for a single PE. The value of tt.,+(g) equals the time spent
on transfers from and to external memory in gang g. What the equation shows,
is that the makespan of the complete schedule, t;:q;, €quals the sum of the
makespans of the individual gangs. For every gang, the makespan is the maxi-
mum of either time spent on processing or on transfers.

What can be seen from this equation is that it is only advantageous to
increase the number of PEs when the processing time exceeds the time required
for data transfers. This is in contrast with the proposed method in this thesis,
where TPC aggregation is an important method for reducing the makespan.

The value that is found with this equation is an approximation, since no
scheduling of the transfers is performed and input might not be perfectly divid-
able by the number of PEs. Also, filter kernels would require extra transfers for
the required overlap. The significance of this is expected to be small. A 5x5
filter and division over four PEs would result in an overlap of 16 lines, which is
1.5% when considering a 1080x1920 image.

6.4.2 Naive list scheduling approach

One of the main decisions for the heuristic is that a node is mapped to one
PE, which is equal for every iteration of a node. Also, a kernel is loaded only
once per node resulting in a partitioning into gangs. This is deemed better
than loading kernels multiple times, because the loading requires the use of
the DMA, which has two disadvantages. First of all, during kernel loading the
DMA is unavailable for transferring data, which can block execution of kernels
on other PEs. Second, the PE cannot be used for executing kernels during this
kernel loading.

To quantify how the chosen solution compares to a solution that does allow
this dynamic kernel loading, a naive list scheduling approach is implemented.
Different iterations of a node can be executed on different PEs. Kernels are
executed as soon as there is enough input data available. The usage of the
DMA is arbitrated by the following rules, ordered from high to low priority:

1. Transfer the input for the lowest level node, that is currently loaded to a
PE. This can only be done if the input is available in the local memory of
another PE or external memory and if there are sufficient free buffers.

2. Load the kernel of the lowest level node, for which input is available, to
an unused PE.

3. If on all PEs a kernel is loaded then check if a PE is idle. If this is the case
then replace it if all its buffers are empty. If there is data in an output
buffer then transfer that first to DDR.

4. If none of the above can be done then input tokens of an idle PE are trans-
ferred to DDR. This way loading another kernel is enabled and deadlocks
are avoided.

For the buffer sizes, the decision is made to assume triple input buffering.

This is expected to have better performance than double buffering, because it
allows for having more available input when the DMA is blocked due to context
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switching of another PE. For filter kernels the first rate, i.e. the ”absorbed”
tokens, is added to the amount of input buffers. The rest of the buffer space is
used for output buffers.

6.4.3 Results

Figure 6.5 shows the results for all benchmark graph. It shows the four different
approaches and also indicates the fraction of the makespan that is used for
external transfers. The yellow remaining parts comprehense the time spent on
local to local memory transfers and the processing that is not overlapped by
transfers to or from external memory. The scheduling times can be read from
figure 6.4 for topological sorting.

Sequential approach

In the tiling approach all intermediate data makes the roundtrip to external
memory. For this reason the time spent on external transfers is maximal. What
can be seen from figure 6.4 is that all single-node gangs for all graphs have
bandwidth-limited performance, except for some of the heavier kernels of the
HDR graph.

I Kernel loading
[ External transfers
[ Remaining

12

HDR Double Canny  Histogram Verification Difference
HDR edge

Figure 6.5: Relative makespans for all benchmark graphs. The four bars correspond, from
left to right, to the sequential, naive list scheduling, tiling and heuristic approach. The
remaining fraction consists of the processing and internal transfers that are not overlapped
by the external transfers and kernel loading.

Tiling approach

It was shown (with equation 6.1) that the tiling approach only results in better
performance, when external memory bandwidth is not the bottleneck. The
performance is improved by (i) a decrease in the makespan when scheduled for
a single PE using the heuristic and (ii) dividing the processing over multiple
cores in case single PE execution is not bandwidth-limited. The breakdown of
the achieved speedups for this approach are given in table 6.2. What can be
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seen in this table is that the speedup for the tiling approach is mainly the result
of the IPC aggregation for the single PE schedule and that none of the graphs
benefit from adding a third or fourth PE.

Graph: HDR | HDRx2 | CE | Hist | Verif. | Diff
Single PE speedup | 1.05 1.07 2.68 | 2.22 1.00 2.84
1/tteqt 1.54 1.46 1.11 | 1.00 1.00 | 1.41
| Speedup 1.6 1.6 [30] 22 ] 1.0 | 40 |

Table 6.2: Breakdown of the speedup of the tiling approach. Here tteq: is the fraction of
the makespan spent on transfers from and to external memory for the single PE schedule.

For the verification graph the tiling approach is even worse than the sequen-
tial approach. The reason for this is that there is no IPC aggregation for the
single PE schedule, due to the single kernel per PE for this graph. On top of
that, four times the loading time is incurred because of the four PEs.

The performance for the histogram equalization is equal, and for the differ-
ence highlighting graph even slightly better than the heuristic. The reason for
this is that in the case of the histogram graph, due to the non-pipelineable nodes
the partition consists of two small gangs of which all kernels fit in the program
memory of a single PE. For this reason the amount of external memory trans-
fers is equal for both approaches and since this is the bottleneck, performance
is equal.

Something similar holds for the difference highlighting graph. All kernels
fit in the program memory of a single PE, resulting in a single gang for which
the computation time exceeds the transfer time. In the tiling approach this
compute-bounded single PE schedule results in a 1.4x speedup when it is ex-
ecuted on 2 PEs or more. The heuristic performs the processing in kernels in
parallel by mapping kernels to different PEs. This result in extra transfers for
the local to local transfer, which results in a slightly larger makespan.

Naive list scheduler

The performance of the naive list scheduler is approximately equal to the perfor-
mance of the tiling approach for HDR, double HDR and the verification graph.
The reason for this is that in these graphs the kernel sizes are relatively large
and little IPC aggregation can be achieved for a single PE. Therefore the DMA
is not used excessively for kernel reloading, because the DMA can be kept busy
with transferring input and output.

For graphs where the tiling approach benefits from IPC aggregation on a
single PE (the higher values for single PE speedup in table 6.2), the performance
of the naive list scheduler is clearly worse.

Heuristic

The differences between the heuristic and the tiling approach have already been
discussed. On average, the heuristic results in a schedule with a makespan that
is 33% better than the result for the tiling approach.

In general, the heuristic performs better than the tiling approach in case
the number of gangs in the final partition is smaller. This results in smaller
makespans, because the external memory bandwidth is the bottleneck, and
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these external transfers exist for gang boundaries in the graph. The number of
gangs is smaller when there is a chain of pipelineable nodes that does not fit in
the program memory of a single PE.

In case such a chain does fit in the program memory of a single PE, similar
performance can be achieved by balancing the processing on different PEs. If
the gang is compute-bounded then the makespan of the gang is reduced by
mapping nodes to different PEs. This can come at the cost of extra internal
transfers and therefore results can be slightly worse than for the tiling approach
approximation.

In case the kernels are strongly compute-bounded, the tiling approach will
perform better than the heuristic, but given the set of OpenVX kernels that
mainly consists of basic stencil operations, this is unlikely for the platform con-
sidered in this evaluation. This is supported by table 6.2, in which the speedup
due to parallelization does not exceed 1.54.

6.4.4 Scheduler evaluation

In the scheduler, the retiming and buffer size are determined by performing
multiple iterations of list scheduling and updating the retiming or buffer sizes.
This is repeated until the optimal period is achieved or until it is determined
that the optimal period cannot be achieved, given the buffer sizes. Since in the
complexity analysis of section 5.2.3 there could not be put a bound on these
numbers of iterations, it is evaluated here.

For the set of benchmark graphs it is measured how many iterations are
needed to achieve the optimal period. Also the average amount of time it takes
to execute this phase is measured for the number of iterations. The results are
shown in figure 6.6. What can be seen from this is that the retiming phase is
done after two iterations in 90% of the cases and that the buffer sizing phase is
done after 3 iterations in 71% of the cases.

The graphs for which higher amounts of iterations are required, are the
HDR and especially the double HDR graph. The number of iterations therefore
seems to be dependent on the size of the gang. This can also be seen from the
scheduling times, because the scheduling time seems to grow faster than linear
for the number of iterations. With this data the total time spent on scheduling
can be calculated. For the double HDR graph in total 12.8 ms of the 33 ms is
spent on scheduling.

Another interesting statistic is that for only 1 of the 420 gangs the optimal
period could not be achieved. For this gang it was determined after 4 iterations
in the buffer sizing stage, that the optimal period could not be achieved. When
increasing the image size to 4K resolution (3840x2160), resulting in more con-
strained buffer sizes, then in total 3 of the 435 gangs cannot achieve the optimal
period. When increasing the image size to three times the width and height
of full HD resolution, initial partitions can no longer be scheduled. What this
means is that buffer size was insufficient for scheduling nodes indivdually, due
to a lack of buffer space.
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Figure 6.6: Overview of how many iterations are required in the retiming phase (left) and
the buffer size (phase). The bottom figures show the average execution time of the phase for
that amount of iterations, corresponding the bar graphs above them.
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Chapter 7

Conclusion

This chapter recapitulates the properties of the proposed solution to the problem
of this work and summarizes the most important results. An overview of the
possibilities to continue and improve this work is given in section 7.1.

The main goal of this thesis is to enable application developers to acceler-
ate their imaging and computer vision applications, in the form of OpenVX
graphs, on a programmable ISP platform, without requiring manual porting.
By specifying the application as an OpenVX graph, system-level optimizations
are enabled.

The control flow for execution of the graph is generated. Control flow gen-
eration consists of two main steps. The first step is to generate the control flow
in the form of an ordered list of instructions, i.e. scheduling. The second step
is to transform this schedule into a control program.

The main performance bottleneck is the bandwidth of the external memory.
The reason for this is that most kernels in the OpenVX specification are simple
stencil operations, with a low compute-to-communication ratio, such as bitwise
operations, absolute difference calculation and filters. Since the ISP supports
vector operations, these computations can be performed efficiently.

Because no existing work is known that takes into account the full set of
constraints, a new heuristic is designed and implemented. Without scheduling
individual gangs, a good estimation on the reduction of IPC can be made. The
system-level optimizations that resulted in improved performance are task-level
pipelining and IPC aggregation, by making smart decisions during partitioning
and mapping of the nodes. This reduced the amount of external transfers, which
is the key to reducing the makespan of the complete graph.

The performance of the scheduling heuristic has been evaluated for dif-
ferent settings of the design parameters and showed strong dependencies on
graph structure due to the locally optimal decisions. The results, obtained with
the chosen configuration of design parameters, are compared to alternative ap-
proaches for a set of 6 benchmark graphs. One of these approaches is similar to
[4], in which the data is divided over multiple PEs that run the same kernels.

Because most of the kernels that are currently in the OpenVX specification
have a very low compute-to-communication ratio, most benchmark graphs were
limited by external memory bandwidth. This does not show the performance
for more compute-bounded OpenVX graphs that could be constructed with
new kernels in future versions of OpenVX. The HDR graph, which includes
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some heavier non-OpenVX kernels, has displayed good performance for such
graphs.

The scheduling heuristic showed an average makespan reduction of 33%,
compared to the tiling approach, and even higher reductions when compared
to the other solutions. Besides that, the scheduling time is acceptable for end
users (at most 54 ms) due to the fast iterative list scheduling approach.

What must be noted on this result is that some graphs showed equal per-
formance for the tiling approach and the heuristic. This is the case for graphs
with non-pipelineable nodes, smaller graphs and kernels with low program mem-
ory requirements. The reason for this is that the number of gangs cannot be
reduced, compared to the tiling approach. For this reason it makespan reduc-
tions are only present for graphs that do not have these properties, although
performance is not worse than any of the other approaches for such graphs.

To be able to verify the schedule and to determine optimality of the final
makespan found by the heuristic, also an SMT formulation of the problem was
described. In the end it is not used for determining optimality, because there
was no time for updating the implementation of the SMT problem generator
with some required recent changes.

To verify the correctness of the ordering of the generated control flow, the
schedule of a verification graph has been transformed into a control program.
This control program has been simulated for the platform and the correctness
of the control flow was determined. With this proof of concept, also realistic
values for kernel execution times were obtained.

A weak part of the novel heuristic is the mapping algorithm, that is currently
determined by an algorithm that has exponential complexity. Until now this
has not resulted in problems, but when the program memory-kernel size ratio
grows the number of nodes in a gang can grow and mapping might become a
bottleneck.

7.1 Future work

Although an implementation and evaluation of the heuristic have shown good
results, there are aspects that can be improved. Also other parts of this thesis
could be extended. The list of work that is deemed interesting for future research
and improvement is:

e Replacing the exponential-time mapping algorithm by a heuristic. 1t is ex-
pected to be possible to determine an effective polynomial-time algorithm
that finds this mapping, based on IPC aggregation. This way, scalability
of the heuristic is improved for platforms where more kernels fit in the
program memory.

e Combining the tiling approach of [4] with the heuristic. In its simplest
form a pipelined schedule for two cores can be generated that is loaded
on two pairs of PEs. This way the advantages of both approaches are
combined.

o Implementation and evaluation of an interpreter control program. Be-
cause a control program code generator was already partly implemented,
this was used for the proof of concept. In practice compiling the control
program at configuration time can be the bottleneck in the generation of
the control flow and therefore an interpreter program might be preferable.
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e This scheduler only targets the ISP. It is very interesting to see how this
scheduler could be used in control flow generation for executing the graph
on multiple (different) accelerators. However, the external memory band-
width bottleneck will still remain.

e The implementation of the SMT problem generator should be extended
with the described constraints for filter kernels. With this implementation
it can be checked if the gangs, for which the scheduling heuristic did
not achieve the optimal period, cannot be scheduled or if the heuristic is
failing.
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Appendix A

Satisfiability Modulo
Theories formulation

Knowledge of the optimal solution is interesting for quantifying how well the
heuristic performs relative to optimal. The optimal solution can be determined
by formulating the problem as a Satisfiability Modulo Theories (SMT) problem
and solving it. SMT problems are decision problems where the satisfiability of
a set of constraints, expressed in first-order logic with respect to background
theories such as integers, reals or arrays, must be determined. Having the SMT
formulation of the problem also allows us to verify the solution found by the
heuristic. The SMT problem formulation can then be solved by SMT solvers
that support the required background theories.

This appendix first describes how graphs are represented. Then the vari-
ables and constraints, for the combined scheduling and partitioning problem,
are given. After that it is shortly described how the two subproblems, parti-
tioning a graph and scheduling a gang, can be formulated individually and how
the optimal result can be found using existing SMT solvers.

A.1 Graph representation

Since the existence of a transfer is dependent on both the mapping and partition,
a representation that can capture this behavior must be used. For this reason
the CUKG will be expanded into a representation that consists of all nodes from
the CUKG, plus all possible transfer nodes. This is achieved by adding three
transfer nodes and the corresponding edges for every edge in the CUKG. This is
illustrated in figure A.1, where a CUKG edge (A.la) is expanded into the edges
and nodes as shown in figure A.1b. Node T1 represents the internal transfer and
T2 and T3 represent transfers between local and external memory. By making
the constraints, implied by the nodes and edges, dependent on the partitioning
and mapping, the situations as displayed in figure A.2 can be achieved:

e In case node A and B of figure A.la are in the same gang and mapped to
the same PE, the constraints on the blue edges of figure A.1b apply. This
results in the situation of figure A.2a.

e In case node A and B of figure A.la are in the same gang, but mapped to
different PEs, the constraints on the red edges and on node T1, of figure
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(a) Nodes with (b) Created nodes and
a dependency edges for the CAKG
in the CUKG

Figure A.1: Modelling the tranformation from CUKG to CAKG in the SMT problem

(a) Same gang, same PE (b) Same gang, not the same PE

(¢) Not in the same gang

Figure A.2: Resulting nodes and edges from disabling nodes and edges according to the
mapping and gang assignment

A.1b apply. This results in the situation of figure A.2b.

e In case node A and B of figure A.la are not in the same gang the con-
straints on the black edges, and on the nodes T2 and T3 of figure A.1b
apply. This results in the situation of figure A.2c. Note that in this case
the temporal ordering is captured in the fact that the gang of node A is
executed before the gang of node B.

A transfer node or edge that is present due to the mapping and partition of

A and B is called an enabled node or edge.

The properties that are used to formulate the constraints are, for every node
n and edge e, listed in tables A.1 and A.2 respectively. The values assigned to
the new transfer nodes result from the kernels that nodes A and B implement.
The execution time tq..(n) of the transfer nodes, represents the time it takes to
transfer the data that one token represents.

The repetition vector ¢(n) of the added nodes is defined according to the
definition of the repetition vector in section 2.4.1. Since transfer nodes do
not require any program memory, the program size size(n) is 0. The property
is_transfer(n) equals true for both added nodes and false for the CUKG nodes.
The properties of the added edges follow from the CUKG to CAKG transforma-
tion, as described in section 3.1.4. Also note that the gang, in which the added
nodes are executed, matches the gang of node A and B for T1, the gang of A
for T2 and the gang of B for T3, if the nodes are enabled.

Also some constants are used to describe the platform parameters:

e #PEs; the number of processing elements that the platform consists of.

o PMEM_SIZE; the size of the program memory of each PE.

o BUF _SIZE; the size of the local memory of each PE where the buffers are
allocated.
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Property Meaning

teze(n) — int Execution time of the node.

1s_transfer(n) — bool | True or false corresponding to if the node represents
a data transfer or kernel execution.

q(n) — int Corresponding value in the repetition vector.

size(n) — int Size of the program in bytes.

Table A.1: Constant node properties

Property Meaning

snk(e) — int The sink node of edge e.

sre(e) — int The source node of edge e.

p(e) — int The number of tokens produced after one execution
of the source node.

c(e) — int The number of tokens consumed by one execution of

the sink node.

1s.buf fer(e) — bool Whether or not the edge is a buffer edge or not.

tok_size(e) — int The size of a token in bytes.

pipelineable(e) — bool | Indicates whether or not this output can be pipelined.

Table A.2: Constant edge properties

A.2 Problem formulation

The input for the problem is the expanded CUKG as explained in section A.1.
The goal is to determine if a partition, mapping and values for all start and
synchronization times exist, such that all platform and dependency constraints
are met, and a given cost is achieved. First the list of variables, to which a
value must be assigned, is given. Afterwards the constraints on these variables
are listed.

A.2.1 Variables

The input of the problem consists of all nodes and edges, including backedges
that represent buffers, for which all constant properties are specified. The vari-
ables and uninterpreted functions, which are equivalent to arrays of variables,
that are used in the problem formulation are listed in table A.3. Finding a so-
lution means assigning a value to the variables in this table that do not violate
the constraints of the next section.

Note that the specified ranges are implemented as constraints on the values,
but that these constraints are not listed in the next section because they are
trivial. If no range is specified in the table it means that the range of the variable
is limited by the constraints of the next section.

Some constraints on transfer nodes and edges should only hold if the edge
or node is actually present, i.e. enabled. For example, constraints on transfer
nodes of type T1 of figure A.1, and on its input and output edges, only apply
if node A and node B are in the same gang and mapped to the same hardware.
In the constraints, whether a node or edge is enabled is denoted as en,(n) or
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Variable Meaning Range
start(n, k) — int The starting time of a iteration &k of node n, | >0
with k& € [0,¢(n) — 1].
sync(n, k) — int The synchronization time of a iteration k of | >0
a node n, with & € [0,¢(n) — 1].
d(e) — int The number of tokens on an edge e at the
start of the repeating pattern.
r(n) — int The retiming of a node n. >0
num_buf(e) = int | The number of tokens on an edge e before any | >0
task execution, i.e. the number of buffers.
req-buf(n) — int The total buffer size required for a node n. >0
hw(n) — int The hardware that the node n is mapped to.
gang(n) — int The gang in which the node n is executed.
cost(g) — int Cost of a gang g. >0
enc(e) — bool Indicates if edge e is enabled.
eny(n) — bool Indicates if node n is enabled.

Table A.3: Variables in the SMT problem.

ene(e), respectively.

A.2.2 Constraints

The logical formulas describing the problem mostly correspond to the formaliza-

tion of the problem in section 3.1. First the constraints that determine the initial

amounts of tokens are defined, followed by the constraints on the partition, map-

ping and memory requirements. Then the typical scheduling restrictions due to

data dependencies are given. After that, the constraints that relate the total

cost and the individual cost of gangs to the other constraints, are described.
For notation the following convention will be used:

VeeX:C|E

Which reads as ”for all elements x in set X, such that condition C is satisfied,
expression E” must hold. The condition C, which selects a subset of X, is
optional and could also be implemented by an implication inside expression FE.
The convention that is used in the rest of this section is that, when a condition
can be evaluated at problem generation time, e.g. a condition is_transfer(n),
it is placed at the position of C. If the condition is not known at problem
generation time it is denoted using implication in expression FE, for example
enc(e). An example of a constraint featuring both is constraint A.2.

Initial token constraints

First the constraints that define the situation at the start of the repeating
pattern are given. This mainly concerns the amount of tokens on all edges.

The number of buffer tokens is zero for every non-buffer edge by definition.
In table A.3 the range for buffer edges was already constrained to any integer
> 0, since negative amounts of tokens cannot exist in dataflow.

Ve € edges : ~is_buf fer(e) | num_buf(e) =0 (A1)
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Also disabled buffer edges are forced to have zero buffers. Although this is not
strictly necessary to check satisfiability, it makes the assignment of values match
reality, since allocating buffers for non-existing transfers (if there happens to be
free buffer space) has no function and might lead to confusion.

Ve € edges : is_buf fer(e) | mene(e) — num-buf(e) =0 (A.2)

Constraint A.1 defines the amount of tokens on edges before executing the
preamble. The amount of tokens after the preamble, d(e), can be determined
with equation 3.1, which describes the retiming relation. The constraint on d(e)
is then given by:

Ve € edges | d(e) = p(e)r(src(e)) — c(e)r(snk(e)) + num_buf(e) (A.3)

Note that num_buf = 0 for every non-buffer edge. Also note that no range
on the number of delays is given in table A.3. These should intuitively all be
greater than or equal to 0. However, in combination with constraint A.3 this
would imply unnecessary (and too restricting) constraints on the retiming of
nodes that are not enabled. Therefore the range of the delay tokens is only
enforced for enabled nodes:

Ve € edges | enc(e) — d(e) >0 (A.4)

For CSDF, constraint A.3 needs to be slightly adapted. Recall from section
2.4 that only the first and the last rates deviate from a constant rate for filter
kernels. In section 5.3.1 it was already determined that the executions with
a rate that deviates from the constant rate, are limited to execution in the
preamble and postamble. This means that the retiming of a CSDF node n has
a constraint on its range r(n) (> 1 for a 3x3 box filter), and the number of
tokens follows equation 3.2. The rates are known at the moment that the SMT
problem formulation is generated. As an example, for a non-buffer input edge
of a 3x3 filter node this results in:

Ve € edges | d(e) = p(e)(r(src(e))) — (1 + c(e)(r(snk(e)) — 1)) + num_buf(e)

Partitioning constraints

In table A.3 no range is specified for gangs. This is not done since the range
is different for transfer nodes and processing nodes. The maximum number of
gangs can be determined with the number of processing nodes #mn,,,., since in
the worst case scenario all nodes have to be executed in a separate gang.

Processing nodes will always be in a gang. Transfer nodes are in a gang
dependent on the adjacent processing nodes. Disabled nodes are in dummy
gang 0, on which no further constraints that affect the cost are applied. Disabled
nodes are forced to be in gang 0, because not constraining their gangs would
leave the possibility of assigning it to a gang in the range [1, #nproc]. This is
not a problem when trying to prove (un)satisfiability, but it could give a model
with unrequired transfer nodes when inspecting the assigned values in case of a
satisfiability.

Vn € nodes : mis_transfer_node(n) | gang(n) € [1, #nproc) (A5)

Vn € nodes : is_transfer_node(n) | —men,(n) — gang(n) =0
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Following figure A.2, all nodes of type T1 are in the same gang as node A
and B, if node A and B are in the same gang and mapped to the same hardware.
Otherwise the node is disabled.

Ve, es € edges : src(es) = snk(e1) =np C T1 Any = sre(er) Ang = snk(es) |
(gang(n1) = gang(nz) A hw(ni) # hw(nz) — gang(nr) = gang(ni))A

—(gang(n1) = gang(n2) A hw(ny) # hw(nz)) = gang(nr) = 0

(A.6)
Where T1 is the set of all nodes of type T1. Similarly for nodes of type T2 and
T3 it must hold that node A and B are not in the same gang. Otherwise the
nodes are disabled.

Ve1, e € edges : src(eg) = snk(er) = np C T2U T3 Ang = src(er) Ang = snk(ez) |

((gang(n1) # gang(na) — gang(nr) = gang(n2))A
gang(ni) = gang(ns) — gang(nr) = 0
(A.7)
Where T2 and T3 are the sets of all nodes of type T2 and T3 respectively.
The gangs are sorted chronologically, meaning that gang g precedes all gangs
with an ID > g. This means that if there is a directed edge (data dependency),
then the sink node cannot be in a gang preceding the gang in which the source
node is executed. Since intermediate transfer nodes can be in gang 0 (constraint
A.5), this constraint will only be applied to the source and sink nodes of original
edges of the CUKG edgescukg-

Ve € edgescuke | gang(src(e)) < gang(snk(e)) (A.8)

If the data is transferred over an edge that does not allow for pipelining,
then the processing nodes cannot be in the same gang. Again this constraint is
only applied to edges of the CUKG.

Ve € edgescuia : —pipelineable(e) | gang(src(e)) # gang(snk(e))  (A.9)

Mapping

It is decided that the unique hardware IDs, to which nodes are mapped, of PEs
are in the range IT = [1, #PEs].

Vn € nodes : —is_transfer_node(n) | hw(n) € II (A.10)

The ID of the DMA equals ® = #PEs + 1. All transfer nodes are mapped to
this node if they are enabled.

Vn € nodes : is_transfer_node(n) | enp(n) — hw(n) € ® (A.11)

Disabled nodes are mapped to hardware with ID 0, on which no cost affecting
constraints are applied, similar to constraint A.5.

Vn € nodes : is_transfer_node(n) | —en,(n) — hw(n) =0 (A.12)
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Enabled nodes and edges

Now that the representation of the mapping and partition is explained the con-
straints, on when an edge or node is enabled, can be given.

Checking if a transfer node is enabled is done by gang. If a node n is disabled
then gang(n) = 0 as a result of constraints A.6 and A.7. All processing nodes
are enabled by default. For the transfer nodes the gang is compared to 0.

Vn € nodes : —is_transfer(n) | en,(n) = true (A13)
Vn € nodes : is_transfer(n) | en,(n) = =(gang(n) = 0) '

For all edges where the sink or source node is a transfer node, the edge is
enabled if both the sink and source node are in the same gang. This is enough,
since either the sink or source node is a processing node, which are always
enabled. If the transfer node is in the same gang, then it must be enabled.

Ve €edges : is_transfer(src(e)) Vis_transfer(snk(e)) |

ene(e) = (gang(sre(e)) = gang(snk(e))) (A.14)

The blue edges from figure A.1b should only be enabled when both the sink
and source nodes, which are both processing nodes, are in the same gang and
mapped to the same hardware.

Ve € edges : —is_transfer(src(e)) A —is_transfer(snk(e)) |
ene(e) = (gang(src(e)) = gang(snk(e)) A hw(src(e)) = hw(snk(e)))

Memory constraints

The sum of the program binary sizes, of all nodes in a gang that are mapped to
the same hardware, must fit in the program memory.

Vg € gangs,p € 11 | PMEM_SIZE > Z size(n) (A.16)

nenodes|hw(n)=pAgang(n)=g

The total number of buffers on all in- and outgoing edges of a processing
node, multiplied by their size, gives the required buffer size for a processing
node. Note that num_buf(e) = 0 for disabled edges.

Vn € nodes :—is_transfer_node(n) |

req_buf(n) = Z num_buf(e) x tok_size(e))

e € edges|(src(e) =n V snk(e) = n)A

—(sre(e) = n A —istransfer(snk(e))
(A.17)
The sum of the required buffer sizes of all nodes in the same gang that are
mapped to the same hardware should be smaller than the available buffer size.

Vg € gangs,p € 11 | Z req_buf(n) < BUF_SIZE

nenodes|gang(n)=gAhw(n)=p

(A.18)
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Note that with the combination of constraints A.17 and A.18 the buffers on
the blue edges of figure A.1b are accounted for by both node A and node B.
This means that the expected buffer size is too large. To overcome this problem
buffer tokens on edges between two processing nodes are only accounted for by
the source node.

Data dependency constraints

The constraints that enforce the ordering of actor firings according to syn-
chronous dataflow semantics, resulting in a valid schedule, are given here.

The time between start and synchronization of a task is greater than or equal
to the execution time of the kernel or transfer:

Vn € nodes, k € [0,q(n) — 1] | sync(n, k) > start(n, k) + teze(n) (A.19)

The implemented constraint is sync(n,k) = start(n,k) + teze(n), because it
reduces the search space (and therefore the solver’s execution time) without
excluding satisfiability. The reason for this is that the time of synchronization
does not matter, as long as it is before the start of the executions that depend on
it by shared resource or produced (buffer)tokens, and after finishing the task’s
execution. Since synchronizing as early as possible is always at least as good as
synchronizing later, satisfiability is never excluded, when synchronizing as soon
as possible.

Ordering of all iterations of nodes, between which there are enabled edges,
must adhere to the dependency constraint, given by equation 3.3. This con-
straint is also applied to the buffer edges, which results in the backpressure in
the SMT formulation.

Ve € edges | (Vk € [0,q(src(e)) — 1] | ene(e) —
(k+ 1)c(e) —d(e) — p(e) (A.20)
ple) b
Again, this is slightly different for CSDF nodes. For filter nodes the relation
between the iteration of the start and the synchronization is given by equation
3.4.

There can be no overlap of executions of processing nodes in the same gang
that are mapped to the same processing element.

start(snk(e), k) > sync(src(e), [

Vni,ne €nodes : —is_transfer_node(ny) A —is_transfer_node(ns) Ang > nq |
(Vk1 € [0,q(n1) — 1], k2 € [0,q(n2) — 1] | hw(ny) = hw(nz) —
(start(ny, k1) > sync(na, ka) V start(ng, ko) > sync(ni, ki1)))
(A.21)
The same holds for transfer nodes that are in the same gang and mapped to the
DMA.
Vny,ne €nodes : is_transfer_node(ni) Ais_transfer_node(ns) Ans > nq |
(Vk1 € [0,q(n1) — 1], k2 € [0,q(n2) — 1] | hw(n1) = hw(ng) —
(start(ny, k1) > sync(ng, ka) V start(ng, k2) > sync(ni, ki1)))
(A.22)

Constraint A.21 and A.22 are not combined since the hardware IDs do not
overlap. This way, many useless constraints are avoided.
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Cost

The cost of a gang equals the best achievable period of the repeating pattern
in the gang. This can also be denoted the other way around, resulting in less
constraints; the synchronization time of the latest iteration of each node restricts
the cost of the gang that the node is in.

Vn € nodes | cost(gang(n)) > sync(n,q(n) — 1) (A.23)

The total cost is then given by the sum of the costs of all gangs.

total cost = Z cost(g) (A.24)

gEgangs

This total cost is checked against a specified value.

total_cost < OBJECTIVE_VALUE (A.25)

A.3 Solving the subproblems

Solving the combined scheduling- and partitioning problem easily becomes im-
practical when the number of nodes of a graph grows, and values for the repe-
tition vector become higher. Solving the subproblems individually can still give
useful leads to how close the result of the heuristic is to optimal. For example,
when the heuristic finds a schedule with a cost that is equal to the optimal cost
of the partitioning-only SMT problem then optimality is still proven, because
the SMT subproblem uses the lower-bound for the costs (i.e. periods) of the
gangs. Also, after finding this partition the optimal period of a gang can be
found by solving the scheduling problem separately.

This section explains how the subproblems can be constructed in an efficient
manner.

A.3.1 Scheduling

The goal of the scheduling subproblem is to find values for all start- and syn-
chronization times for one gang, such that all platform and data dependency
constraints are met. The most straightforward adaptation of the combined
problem formulation to achieve this is to add constraints that enforce that all
processing nodes are in the same gang.

Although this does the job, it can be made more efficient. For example; in
the separate scheduling problem all nodes are in the same gang by definition, the
black edges and nodes T2 and T3 of figure A.1b, and all constraints associated
with them, are no longer required and can be removed.

Also, all conditions using the gang(n)-variable can be removed even though
it is to be expected that the solvers can derive these simplifications internally,
when they are set to a fixed value.

A.3.2 Partitioning

The goal of the partitioning subproblem is to find a partitioning plus mapping,
with which a cost is associated that is less than or equal to a specified value, if
such an assignment exists given the platform constraints.
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This subproblem abstracts from the actual scheduling, meaning that the
cost is no longer the latest synchronization time of an execution in the gang.
Instead, the cost of a gang is now equal to the optimal period, which is greater
than or equal to the sum of the execution times, multiplied by the repetition
vector entry, of all nodes in the same gang mapped to the same hardware (PE
or DMA).

Vg € gangs,h € IIU @ | cost(g) > Z q(n) teze(n)
nenodes|gang(n)=gAhw(n)=h
(A.26)
Abstracting from scheduling means that constraints A.1 through A.4 and A.17
through A.23 are no longer required.

A.4 Solving the SMT problem

Now that the problem is formulated as an SMT problem it can be checked for
satisfiability. Since the problem consists of equations mostly concerning integers,
but also one equation concerning reals (constraint A.20), a solver supporting the
theories of real- and integer arithmetic is required.

Some well-known SMT solvers that support these background theories are
CVC4[27] (joint project of New York University and University of Iowa), Z3[28]
(Microsoft Research) and Yices[29, 30] (SRI International), which are all partic-
ipating in the International Satisfiability Modulo Theories Competition® (SMT-
COMP). This annual competition is part of the Conference on Computer Aided
Verification (CAV). There are more possible solvers, but an extensive compar-
ison is not the purpose of this work. Therefore, these three solvers have been
used to solve a testbench and Yices, which has been used before for solving
modulo scheduling problems before [9], was determined to be the most suitable
(fastest) for solving the problem presented here.

The output of the solvers is whether the problem is satisfiable or not. If the
problem is satisfiable then a list of the values that are assigned to the variables
is also part of the output. A result of the nature of SMT problems is that the
solvers cannot directly find the optimal value of a specific variable. However,
optimality can be proven if two consecutive objective values are found, for which
one yields unsatisfiable and the other one yields satisfiable.

Thttp://smtcomp.sourceforge.net/2015/index.shtml, Website of SMT-COMP 2015, con-
sulted on February 26th 2016
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Appendix B

Scheduling example

In this appendix an explanation of the steps that are taken in the scheduling
heuristic are shown. It is deemed most interesting to inspect the scheduling of
a gang that:

e Needs multiple iterations for determining the retiming and buffer sizes.

e Is compute-bounded. Strongly communication-bound gangs have a very
low PE utilization and often uses only one PE to maximize IPC aggrega-
tion.

e Does not consist of too many node iterations to keep it understandable.
For this reason the gang model of figure B.1 is taken from an iteration of the
HDR graph, which requires 2 iterations in the retiming phase and 5 iterations
in the buffer sizing phase. In this figure the bold numbers in the nodes are
the node IDs and the values below them are execution times. The nodes with
the more intense colors are processing nodes. The lighter color nodes are the
transfers nodes. Different colors mean that nodes are mapped to different PEs
(except for the transfers nodes), so in this case all processing nodes are mapped
to different PEs. The tokens with the ”i” in it are the number of input tokens.
This value is 1080 in this case for a full HD input image, but this does not
influence the scheduling.

: 10
! 2400

Figure B.1: Determining the retiming based on the number of preparations.
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In this gang model all rates are equal to one. For this reason the repetition
vector equals one for every node and each node is executed once in the loop
body. For this reason the bottleneck can easily be determined. The maximum
processing time on a PE is 21100 time units. The total transfer time equals
15840 time units, so 21100 time units is the optimal period.

The remainder of this section follows the steps that the scheduler takes in
chronological order. It shows the updated model after every iteration of the
retiming phase. It will not go into detail concerning the list scheduler.

B.1 Retiming phase

In the first phase the retiming with which the optimal period can be achieved is
determined. An initial required number of preparations is determined by looking
for paths that exceed the optimal period. An explanation of preparations and
converting them to retiming is given in the retiming phase description in section
5.3.2.

The first step is to get a starting point for the required preparations. Since
node 3’s execution time equals the optimal period, node 3 and 13 must be able
to execute at the start of the period to be able to achieve the optimal period.
Also nodes 4, 5 and 7 need a preparation to break the other paths with sums
of execution times that exceed the optimal period. These required preparations
are converted to the retiming and the values are shown in figure B.2a. This
results in the model of figure B.2b.

ID 01|23 |4|5|6|7[8|9|10|11 12| 13
prep |0 |00 |1]1]1]0 0010 1
ret 4131213222224 |3 |20

—
o
ja)

(a) The table showing the required preparations and corresponding retimings
for each node.

12
2400

(b) The graph after applying the retiming.

Figure B.2: The preparations and retiming (a) and the graph with the applied retiming (b)
for the first iteration of the retiming phase.

Scheduling this graph results in the Gantt chart of figure B.3. This Gantt
chart is generated with freeware called Timedoctor. This tool does not flexible
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in adapting the time labels. Therefore it has to be taken into account that 1
second in the Gantt chart corresponds to 10 time units.

To link the Gantt charts to the SDF model the colors are used. The pro-
cessing nodes, with the more intense colors are executed on ISPO to ISP3 and
the nodes with a lighter color on the DMA.

0s 500s 1000s 1500s 2000s
IsPo E—
IsP1 -

I5P2 [ |

SPS
DA T | m

Figure B.3: The Gantt chart of the schedule of the loop body after the first iteration of the
retiming phase.

What can be seen here is that all tasks finish within the optimal period of
21100 time units, except for the yellow node 2 and the pink node 9. Since the
optimal period is not achieved, the preparations are updated. Updating the
preparations is done by looking at the PEs on which task end times exceed the
optimal period. For ISP2 this is the case and the maximum slack on this PE
occurs before node 2 (because it is the only node on this PE). It then starts
backtracking the slack. It does this by checking node 5 (the short yellow task
on the DMA), which enabled the execution of node 2. No slack is present before
node 5, so a preparation for node 2 is required.

After that the DMA is checked. The only node before which there is slack is
node 9. Since it is dependent on the execution of node 2 backtracking is started
through this node. It is found out that the slack before node 2 is already removed
by adding a preparation for it. Because the slack before node 2 was higher than
the required slack reduction on the DMA, no preparation for node 9 is required.

The resulting schedule of the loop body in figure B.4 shows that the optimal
period is achieved now for the model of figure B.5. Therefore the next phase,
where the buffer sizes are determined, can be started.

[ 500s 1000s 1500s 2000s
ISPO I—
ISP O

I5P2 [ |

S |
DHA) | p

Figure B.4: The Gantt chart of the schedule of the loop body after the second iteration of
the retiming phase.
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ID 0(1|2(3|4|5|6|7|8]9|10|11 12|13
prep |O|O|(21|1|1|1(0|1]0|0] O | O0]O 1
ret 51412114 13[3|2|2|2|5|4]|3]0

(a) The table showing the required preparations and corresponding retimings
for each node.

D -(%) (@)
© '
® -z e

(b) The graph after applying the retiming of (a).

Figure B.5: The preparations and retiming (a) and the graph with the applied retiming (b)
for the second iteration of the retiming phase.

B.2 Buffer sizing phase

In this second phase the buffer sizes are determined, such that the optimal
period can be achieved. The retiming is fixed after the first phase. Similar to
the first phase, an initial minimum buffer size is determined. Afterwards, the
model is scheduled and updated, if the optimal period is not achieved.

For every non-source and non-sink edge a backedge is added. The initial
amount of tokens is first set equal to the minimum required token sizes based
on the rates at the sink and source. After this the preparations of the last
retiming iteration are used to determine if there should be added more buffers
initially. If the number of required preparations is larger than 0, this means that
at the start of the loop period enough tokens should be available for starting
the execution of the node. This also holds for the tokens on the backedges, i.e.
the free buffer space.

After this, the model is checked for deadlocks by executing each node un-
til the amount specified in the retiming plus the number of executions in the
repetition vector is reached. If there are deadlocks, tokens are added to the
buffer edges causing them. This results in the model of figure B.6 and the
corresponding Gantt chart of the first iteration of figure B.7.

As can be seen in figure B.7, the optimal period is not achieved after the
first iteration. Therefore the model is updated, which is done as follows. As
described in section 5.3.2, information on blocking buffers is gathered during
scheduling. Based on this the model is updated similarly to the retiming phase.
For all hardware it is checked if the tasks that execute on it exceed the optimal
period. If this is the case then the buffer edge, on which there is a lack of tokens,
that causes the largest slack on the PE is determined. The buffers on this edge
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Figure B.6: The graph with the initial buffer sizes.

Os s 1000s 1300s 2000s
TASKS @
IsPo I
ISP1
ISP2 [ |
ISP3
OHAD I T

Figure B.7: The Gantt chart of loop body after the first iteration fo the buffer sizing phase.

are increased if the memory constraints allow for it. Again backtracking through
tasks is performed to determine the best location to add buffers.

For the first iteration (see figure B.7) the optimal period is exceeded for
ISP1 and the DMA. On ISP1, node 1 cannot execute because there is no buffer
available on the backedge of node 7 to node 1. Since there is no slack before
node 7 (the short pink task on the DMA that is executed before the start of
node 1) a buffer is added on edge (7,1).

On the DMA the optimal period is also exceeded. The largest slack is en-
countered before the execution of node 6, which is caused by a lack of buffers on
edge (6,2). Since the enabling execution of node 2 is not preceded by slack, this
buffer size is increased. The length of the slack before the execution of node 6
is larger than the required decrease in slack. Therefore updating the buffers is
finished and scheduling results in the Gantt chart of figure B.8.

Again it can be seen that the optimal period is not achieved. Adding a
buffer for node 1 resulted in an earlier start time, but another blocking buffer
is encountered now. There is a lack of tokens on edge (5, 1). Backtracking does
not lead to a better buffer to increase, so a buffer is added to this edge. Similar
to the previous iteration, an extra buffer is added on edge (2,12) to enable the
execution of node 12. After this, scheduling is performed again resulting in the
schedule of figure B.9.

Now the optimal period is achieved on all PEs, but the tasks that are sched-
uled on the DMA are still exceeding it. The same process is repeated twice
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Os 300s 1000s 1300s 2000s

Tasks @

5P I
ISP -
ISP2 I |
S
DA T — —
Figure B.8: The Gantt chart of loop body after the second iteration fo the buffer sizing
phase.
0s 300s 1000s 15300s 2000s
asks @l
IsPO I
ISP -
ISP2 [ ]
Cel.
DHAC T | —

Figure B.9: The Gantt chart of loop body after the third iteration fo the buffer sizing phase.

more. First the buffer size of edge (3,9) is increased by one resulting in the
schedule of figure B.10. After the fourth iteration, the buffer size of edge (3,8)
is increased and now the optimal period can be achieved, as can be seen in figure
B.11. The resulting SDF graph can be found in figure B.12.

0s 500s 1000s 1500s 20005
Tasks @
ISPO I
ISP1 1
ISPZ | |
SEl.
DMAO I [ m —

Figure B.10: The Gantt chart of loop body after the fourth iteration fo the buffer sizing
phase.

0s 500s 10005 15005 20005
Tasks @
ISPO .
ISP -
ISPZ | |
SP3
OMAO I T

Figure B.11: The Gantt chart of loop body after the fifth iteration fo the buffer sizing phase.

B.3 Scheduler output

If this gang is part of the final partition then also a preamble and postamble are
generated for it and this is written to a file called programScript.txt. To give an
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Figure B.12: The final model with the updated buffer sizes with which the optimal period
can be achieved. The retiming is not applied.

idea of what this output looks like, fractions of the program script for this gang
are shown below. This output is the input for the control program generator
that transforms in the C code that can be compiled for the scalar processor.

Information about buffers, consisting of a memory address, width,
height and number of buffers.

#buffers

BUFFER ddr:input_6_0

BUFFER ddr:output_13_0
BUFFER cellO:output_0_0

BUFFER cell3:output_3_0

Kernel loading instructions.

#kernels

LOAD_KERNEL warping cellO

LOAD_KERNEL chromaproc cell3

The preamble instructions

#preamble
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA

channell:

channell

channell:

channell

channell:

channell

ddr_addressb 1920

ddr_address20 1920
cell_addressO 1920

cell_address13 1920

cell_address10 cell_

cell_address6

ddr:input_11_0[0]
ddr:input_6_0[0]

ddr:input_6_0[1]
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1080 1
1080 1
1 1
1 2
addressO

cell_address7 ce...

-> celll:input_1_1[0]
-> cell2:input_2_1[0]

-> cell2:input_2_1[1]



DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
START_KERNEL
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
WAIT_KERNEL

DMA_TRANSFER
WAIT_DMA
START_KERNEL
DMA_TRANSFER
START_KERNEL
WAIT_DMA
WAIT_KERNEL
WAIT_KERNEL

The loop body instructions.

#loop

LOOP i 5
START_KERNEL
DMA_TRANSFER
START_KERNEL
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
START_KERNEL
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
START_KERNEL
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER
WAIT_KERNEL
WAIT_DMA
DMA_TRANSFER
WAIT_KERNEL
WAIT_DMA

->

channel2:

channel2

channel2:

channel2

channelO:

channelO
cellO

channel3:

channel3

channel3:

channel3
cellO

channel4:

channel4d
celll

channelO:

cellO
channelO
cellO
celll

1080
cell3

channell:

cell?2
channell

channel4:

channel4d
celll

channell:

channell

channel2:

channel2

channelO:

channelO

channelO:

channelO
cellO

channel3:

channel3

channel3:

cell?2
channel3

channel4:

cellO
channel4

ddr:input_12_0[0] ->
ddr:input_12_0[1] ->
ddr:input_10_0[0] ->
ddr:input_8_0[0] ->
ddr:input_8_0[1] ->

cellO:output_0_0[0] ->

celll:output_1_0[2] ->

ddr:input_11_0[i-1] ->

cellO:output_0_0[0] —>

ddr:input_6_0[i-2] ->
ddr:input_12_0[i-2] ->
celll:output_1_0[i-2]

ddr:input_10_0[i] ->

ddr:input_8_0[i-3] ->

cell3:output_3_0[i-5]

cell2:output_2_0[0] ->
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cell2:input_2_2[0]

cell2:input_2_2[1]

cell0:input_0_0[0]

cell3:input_3_1[0]

cell3:input_3_1[1]

celll:input_1_0[0]

cell2:input_2_0[0]

celll:input_1_1[0]

celll:input_1_0[0]

cell2:input_2_1[i-2]

cell2:input_2_2[i-2]
-> cell2:input_2_0[i-2]

cell0:input_0_0[0]

cell3:input_3_1[i-3]

-> ddr:output_13_0[i-5]

cell3:input_3_2[i-3]



DMA_TRANSFER
WAIT_DMA
WAIT_KERNEL
WAIT_KERNEL
ENDLOOP

The postamble instructions.

#postamble
START_KERNEL
DMA_TRANSFER
START_KERNEL
WAIT_DMA
DMA_TRANSFER
WAIT_DMA
START_KERNEL
DMA_TRANSFER
WAIT_DMA
DMA_TRANSFER

WAIT_KERNEL
DMA_TRANSFER
WAIT_DMA
WAIT_KERNEL
START_KERNEL
DMA_TRANSFER
WAIT_DMA
WAIT_KERNEL
DMA_TRANSFER
WAIT_DMA

channel2:
channel?2
celll
cell3

cell3
channell:
cell2
channell
channeld:
channel4d
celll
channell:
channell
channel2:

cell2
channeld:
channel4d
cell3
cell3
channel3:
channel3
cell3
channel3:
channel3

celll:output_1_0[i-3]

ddr:input_11_0[1079]

cellO:output_0_0[0] ->

ddr:input_6_0[1078] ->

ddr:input_12_0[1078]

cell2:output_2_0[0] ->

cell3:output_3_0[0] ->

cell3:output_3_0[1] ->

7

-> cell3:input_3_0[i-3]

-> celll:input_1_1[0]

celll:input_1_0[0]

cell2:input_2_1[0]

-> cell2:input_2_2[0]

cell3:input_3_2[1]

ddr:output_13_0[1078]

ddr:output_13_0[1079]
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