
 Eindhoven University of Technology

MASTER

Human resources analytics at Viggo
warehousing solutions for CSV data

Triantos, K.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0cf38ad3-352d-4706-a397-b529ae61a04e

Human Resources
analytics at Viggo:

warehousing solutions for
CSV data

Master Thesis

Konstantinos Triantos

Department of Mathematics and Computer Science
Web Engineering Group

Supervisors:
dr. G.H.L. Fletcher (Eindhoven University of Technology)
ir. G. Oerlemans (Viggo Eindhoven Airport B.V.)
M.Sc. J. Melissen (Viggo Eindhoven Airport B.V.)

Examination Committee:
dr. P.M.E. De Bra
dr. G.H.L. Fletcher

ir. G. Oerlemans
dr. A. Serebrenik

Eindhoven, November 2016

Abstract

This master thesis focuses on the design, the implementation and the analysis of a data warehouse,
which is specialized in HR analysis, within Viggo Eindhoven Airport, the largest service provider
in Eindhoven Airport. More specifically, within Viggo there is a spreadsheet overuse, which pre-
vents the HR and BA departments to make fast and accurate decisions, regarding the development
of Viggo’s manpower. Because of the fact that it is difficult for Viggo to shift to a completely
new software system, which will provide better management of the stored to the spreadsheets
information, an alternative solution should be investigated. This work recommends a data ware-
house, which converts the existing spreadsheets into a fully centralized data repository, focused
on HR department business analysis, as this alternative. Precisely, within this thesis project, two
problems are discussed. The former is the data warehouse design, based on HR analysis and the
latter is regarding ETL solutions for spreadsheet-based sources. Regarding the ETL solutions, an
ETL framework, which uses a query mechanism for CSV spreadsheets, has been designed. The
introduced ETL framework is called CSVQL and is a potential query language. The work load is
split into two major parts. The former focuses on Viggo’s data warehouse design and the latter
investigates ETL solutions according to Viggo’s data sources. With the use of the aforementioned
data warehouse system, which transforms the raw information into meaningful charts, Viggo can
easily produce solutions regarding decision making with low cost and without the need to switch
into a new software system. Moreover, the available OLAP servers in the market, can utilize the
views of the stored information, in a manner, which can unmask problems or give answers to
difficult dilemmas, with respect to Viggo’s requirements.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

iii

Preface

This report concludes the results of my graduation project, regarding the “Computer science
& engineering” M.Sc. program at the department of “Computer Science & Mathematics” in
Eindhoven University of Technology. This project was performed within the “Web Engineering”
group of Eindhoven University of Technology, in collaboration with Viggo Eindhoven Airport
B.V. In completing this graduate project, I have been fortunate to receive help, support and
encouragement from many people and I would like to acknowledge them for their cooperation.

First of all, I would like to thank my graduation supervisor dr. G.H.L. Fletcher for guiding
me through, not only on this project, but during my whole studies in the Netherlands. The
collaboration during the lectures, the seminars and my master project has been a pleasant and a
great learning experience for me.

In addition, I would like to express my gratitude to my supervisors ir. G.Oerlemans and M.Sc.
J.Melissen, who gave me the opportunity to not only start working on this project, within Viggo,
but also for their assistance and support on a daily basis all these months. I am truly grateful for
the fact that you were my first supervisors in the beginning of my career.

Furthermore, I would like to thank all my friends, my classmates and my colleagues for the help
and the positive energy I received during my first years in the Netherlands. Being far away from
home is difficult, but you made me overcome all the difficulties I faced and to consider Eindhoven
as my new home.

In conclusion, I would like to thank my parents for their unconditional love and support,
all these 27 years. All the care they have provided me over the years is the greatest gift that
anyone has ever given me. Last but not least, I would like to say thanks to pumba, my half-dog,
half-human best friend, who made me realize my own potential as a person and as a friend.

Konstantinos Triantos,
Eindhoven,

November 2016

Human Resources analytics at Viggo:
warehousing solutions for CSV data

v

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Current state of art . 1
1.2 Problem statement . 2
1.3 Thesis contribution . 4
1.4 Thesis outline . 4

2 Preliminaries 5
2.1 Database management systems . 5
2.2 Data warehouse concepts . 6
2.3 Data warehouse architecture . 7

2.3.1 Data sources . 8
2.3.2 Back-end tier . 8
2.3.3 Data warehouse tier . 8
2.3.4 OLAP tier . 9
2.3.5 Front-end tier . 9

2.4 Management of Comma-Separated Values data . 9
2.4.1 Definition . 9
2.4.2 Data querying . 10

3 Data warehouse overview 13
3.1 Solution . 13
3.2 Benefits of data warehouses . 13

3.2.1 Data warehouses as spreadsheets overuse cure 14
3.2.2 Data warehouses as data repositories . 15

3.3 Viggo data warehouse . 16
3.3.1 Architecture . 16
3.3.2 Data sources . 16
3.3.3 Back-end tier . 17
3.3.4 Data warehouse tier . 17
3.3.5 OLAP tier . 17
3.3.6 Front-end tier . 17

4 Data sources analysis 19
4.1 Viggo Shift Rosters . 19

4.1.1 Functionality . 19
4.1.2 Schema . 19

4.2 Viggo Training Managers . 20

Human Resources analytics at Viggo:
warehousing solutions for CSV data

vii

CONTENTS

4.2.1 Functionality . 20
4.2.2 Schema . 20

4.3 Youforce database . 21
4.3.1 Functionality . 21
4.3.2 Schema . 21

5 Back-end tier 23
5.1 ETL process . 23

5.1.1 Global problems and constraints . 23
5.1.2 Extraction & transportation . 24
5.1.3 Transformation & cleaning . 24
5.1.4 Loading . 25
5.1.5 ETL in Viggo . 25

5.2 CSVQL . 26
5.2.1 Clauses overview . 26
5.2.2 SELECT . 27
5.2.3 FROM . 27
5.2.4 WHERE . 29
5.2.5 OUTPUT . 30
5.2.6 Querying Viggo Training Manager . 31

5.3 CSVQL Implementation . 35
5.3.1 Concept idea . 35
5.3.2 Implementation architecture . 36
5.3.3 Data Load script . 36
5.3.4 Query MySQL mapping . 36

5.4 Experimental study . 38
5.4.1 Scenario . 38
5.4.2 Experiment set-up . 38
5.4.3 Implementation . 40
5.4.4 Experiment results . 40

6 Data warehouse tier 43
6.1 Design assumptions . 43

6.1.1 Dimensions . 44
6.1.2 Measures . 45

6.2 Conceptual level . 45
6.2.1 Basic concepts . 45
6.2.2 ER diagram . 46
6.2.3 Entities . 47
6.2.4 Relationships . 49

6.3 Logical level . 50
6.3.1 Mapping rules . 51
6.3.2 ER diagram mapped to relational schema 51

6.4 Physical level . 51

7 OLAP & Front-end tier 53
7.1 IcCube server . 53

7.1.1 Communication with Data warehouse tier 53
7.1.2 Cube builder . 54
7.1.3 Cube querying . 54

7.2 Web reporting tools . 55
7.2.1 Bar chart . 56
7.2.2 Line chart . 56
7.2.3 Bullet chart . 56

viii Human Resources analytics at Viggo:
warehousing solutions for CSV data

CONTENTS

7.2.4 Heat map . 57

8 Conclusions 59
8.1 Organizational . 59
8.2 Academic . 59
8.3 Future Work . 60

8.3.1 Organizational . 60
8.3.2 Academic . 60

Bibliography 63

Appendix 65

A Data Load script 65
A.1 CSVQL.java . 65
A.2 LoadCSV.java . 66

B CSVQL experiment results 70
B.1 Primary index . 70
B.2 Secondary index . 70

Human Resources analytics at Viggo:
warehousing solutions for CSV data

ix

List of Figures

2.1 A three-dimensional cube regarding sales . 6
2.2 A data warehouse architecture . 7
2.3 Samples obtained by a 20 Hz GPS sensor traces. Each line of this file is a time-

stamped record. The first line is the header line. 10

3.1 Viggo data warehouse architecture. 16

4.1 A sample of Viggo Shift Rosters’ schema. 20
4.2 A sample of Viggo Training Managers’ schema. 20
4.3 A sample of Youforce export spreadsheets’ schema. 22

5.1 The logo of CSVQL framework. 26
5.2 Select clause example 1 . 27
5.3 Select clause example 2 . 27
5.4 Select clause example 3 . 27
5.5 From clause example 1 . 28
5.6 From clause example 2 . 28
5.7 From clause example 3 . 28
5.8 From clause example 4 . 28
5.9 Where clause example 1 . 30
5.10 Where clause example 2 . 30
5.11 Output clause example 1 . 30
5.12 Output clause example 2 . 31
5.13 The relational structure of Viggo training.csv file, after CSVQL application. 31
5.14 Querying Viggo training.csv file . 32
5.15 The f1 row-by-row path within Viggo training.csv file. 32
5.16 The f2 row-by-row path within Viggo training.csv file. 33
5.17 The f3 row-by-row path within Viggo training.csv file. 33
5.18 The f4 row-by-row path within Viggo training.csv file. 34
5.19 CSVQL implementation Achritecture . 36
5.20 Experiment’s input as a CSV grid . 38
5.21 Experiment’s input after Data Load Script operation. 39
5.22 Benchmark query with one join on Primary key . 39
5.23 Benchmark query with one join on Secondary key 39
5.24 Benchmark query with eight joins on Primary key 40
5.25 Benchmark query with eight joins on Secondary key 40
5.26 CSVQL performance for joins on primary key per experiment 41
5.27 CSVQL performance for joins on primary key per join 41
5.28 CSVQL performance for joins on secondary key per experiment 42
5.29 CSVQL performance for joins on secondary key per join 42

6.1 The hierarchy of calendar dimension. 44

Human Resources analytics at Viggo:
warehousing solutions for CSV data

xi

LIST OF FIGURES

6.2 The hierarchy of human resources dimension. 44
6.3 The hierarchy of skills training dimension. 44
6.4 The entity-relationship diagram of Viggo data-warehouse. 46
6.5 The entity-relationship diagram of Viggo data-warehouse after reverse engineering

process on physical level. 52

7.1 MDX query example . 55
7.2 Web reporting tool overview. 55
7.3 Bar chart regarding payment in Viggo Cleaning department. 56
7.4 Bar chart regarding payment in Viggo Cleaning department, per function. 56
7.5 Line chart regarding payment in Viggo Cleaning department. 56
7.6 Line chart regarding payment in Viggo Cleaning department, per function. 56
7.7 Bullet chart regarding payment in Viggo Cleaning department. 57
7.8 Bullet chart regarding payment in Viggo Cleaning department, per function. . . . 57
7.9 Heat map regarding payment in Viggo Cleaning department, per date. 57

xii Human Resources analytics at Viggo:
warehousing solutions for CSV data

List of Tables

5.1 CSVQL Clauses . 26
5.2 Results of CSVQL scalability experiment with Primary index 41
5.3 Results of CSVQL scalability experiment with Primary index 42

B.1 Results of CSVQL scalability experiment with Primary index 70
B.2 Results of CSVQL scalability experiment with Secondary index 70

Human Resources analytics at Viggo:
warehousing solutions for CSV data

xiii

Abbreviations

Abbreviations Meaning First occurrence

BA Business Analysis p.2
CSV Comma-Separated Values p.4
CSVQL Comma-Separated Values Query Language p.4
DBMS Database Management Systems p.4
ETL Extract, Transformation and Loading p.4
HR Human Resources p.2
MDX MultiDimensional eXpressions p.17
OLAP On-line Analytical Processing p.1
OLTP On-Line Transaction Processing p.6
RDBMS Relational Database Management Systems p.5
SQL Structured Query Language p.4
W3C World Wide Web Consortium p.10
XML Extensible Markup Language p.8

Human Resources analytics at Viggo:
warehousing solutions for CSV data

xv

Chapter 1

Introduction

1.1 Current state of art

Nowadays, business industry is encountering complex and demanding challenges, in terms of data
analysis. More specifically, each organization impels its workforce to analyze even the minor detail,
which may give either a slight either a critical advantage against its competitors. Consequently,
people, in this kind of organizations, struggle with data analysis tools and try to utilize each
decision, which will lead them to meet the demands of their operational goals. The process, which
is described above is the application of “business intelligence” in practice.

Business intelligence encompasses all the methodologies, the processes, and the technologies,
which can transform raw data into variable information for decision making. More specifically,
business intelligence helps managers of numerous organizational levels by supporting them on ana-
lyzing information. A business intelligence system collects big amounts of raw data and transforms
them into a form, which can be used for business analysis. The process of this data transformation
is split into a set of smaller processes, which extract the source data and after applying trans-
formation, integration, and cleansing tasks on them, they store the output in a database, which
is called “data warehouse” [6].

A data warehouse is a database, which has been implemented as an integral part of a business
intelligence system. Data warehouses are data stores, where the data are stored in a structure,
which facilitates the user to receive fast and accurate answers to complex queries, regarding these
data. In recent times, business community offers a wide variety of mechanisms and systems that
operate on retrieval, analysis and visualization of the data, which are stored inside data warehouses.
The most popular among all of them is the “On-Line Analytical Processing” (OLAP) [6].

OLAP systems offer the power to its users to query the data of a data warehouse and to
study them from multiple perspectives. In other words, OLAP systems contribute on the decision
making process by enabling their users to obtain and analyze the information that they need,
in a multilevel manner. Because of the fact that business intelligence is a new born science, it
grows exponentially, day by day, compared with the rest of scientific community. As a result, new
business intelligence techniques appear and are applied in industrial field. This rapid evolution of
business intelligence can offer powerful tools, which can be applied in the data analysis field [6].
However, this work focus only on the current state of business intelligence and more specifically,
on data management challenges regarding data analysis.

Data management is a broad term, but within this work it indicates all the means, which
operate on the data, as a resource of information for data analysis. More specifically, in this
thesis, a research takes place regarding the design, the implementation and the use of a data
warehouse for human resource analysis. In the following chapters, a real life case study with
reference to human resource management is introduced and according to this case a quest on the
data warehouse world begins. Precisely, in this report, all the steps, which are followed to build
a data warehouse are introduced and an attempt has been made to contribute to the existing

Human Resources analytics at Viggo:
warehousing solutions for CSV data

1

CHAPTER 1. INTRODUCTION

knowledge and technology.

1.2 Problem statement

Viggo Eindhoven Airport B.V. is the largest service provider in Eindhoven Airport, with 42-years
history, and offers total solutions in ground handling, cargo, security and cleaning services. More
specifically, every year, Viggo handles around 28 thousand flights and guarantees comfort and
security for more than 4 million passengers inside Eindhoven Airport. For this purpose, Viggo
employs more than 6 hundred operators, who cleverly integrate the existing links in the service
chain, on a daily basis. As every company that wants to excel, Viggo collects and analyzes big
amount of data regarding its employees, in order to improve its services and to keep the leadership
among its competitors.

Subsequently, Human Resources (HR) and Business Analysis (BA) departments apply analytic
processes, in order to improve employee performance and, therefore, getting a better return on
their investment. According to this ambition, Viggo administration should not just deal with
gathering data, but should aim to provide insights and metrics, which can be retrieved from these
sources of information. These specific metrics are crucial, because they unravel all the meaningful
information, which is concealed inside the data and will assist Viggo to make relevant decisions.

The process, which will produce the metrics that the BA department tends to analyze, requires
an efficient structure, in which the data sources are formulated. However, this structure does not
exist and the reason is the fact that data sources in Viggo are escalated inside spreadsheets.
More specifically, there is a spreadsheet overuse that concludes files with enormous amount of
information, which is difficult or impossible to be analyzed. This spreadsheet overuse is supported
by the fact that, inside Viggo, employees from different departments and with different background
seem to be eager to interact with spreadsheets, rather than any other form of data representation.
Precisely, within Viggo, the “Export to Excel” joke, which “is the third most common button in
data and business intelligence apps... after OK and Cancel” is not far away from reality [5]. As a
result, Viggo has a huge amount of data, but at the same time, there is a lack of knowledge about
its employees. The main reason is the fact that spreadsheets may demonstrate the information via
a graphical user-friendly interface with direct manipulation tools, but they lack essential database
functionality. More specifically, spreadsheets assert the following disadvantages:

Difficult to keep up-to-date Keeping a spreadsheet up to date is often a commotion, because
there are no automatic mechanisms, which guarantee that the enclosed information is always
the appropriate. This commotion can be exponentially worse as the volume of stored data
enlarges and especially when more than one users manipulate the same spreadsheet. The only
solution, which can secure that the current information is the most recent is the manually
inspection. Nowadays, this process is assisted by macros - automated input sequences, which
imitate keystrokes or mouse actions. However, there is no audit technique, which secures
that data in a spreadsheet are always synchronized [11]. As a result, taking into account
that Viggo operates on thousands of passengers and hundreds of flights on daily basis, it
is concluded that unnecessary time and effort are wasted updating spreadsheets in order to
keep data up to date.

Vulnerable to fraud Since, this work has been taken place inside the business industry, this
spreadsheet disadvantage has the potential to be the most damaging, among all of the
spreadsheet disadvantages, which are listed. Nowadays, the most popular system to design,
edit and maintain spreadsheets is the Microsoft Excel software. Deceitful manipulations in
a company’s Microsoft Excel files have resulted in multimillion-dollar losses [10]. The main
reason, which causes this vulnerability is the lack of mechanisms, which can control who
alters formulas, values, or dependencies. As a result, a user can modify crucial modules
without being detected [11].

Prone to human errors Apart from the fraud threat, there is another more significant threat,
which can conclude the same disaster as fraud. This threat is the built-in inefficiency of

2 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 1. INTRODUCTION

spreadsheets to prevent even trivial human errors. More specifically, spreadsheet systems do
not support functions for validation and, thus, human mistakes can occur critical errors. A
missed negative sign or a misaligned row might sound harmless, but they may affect a whole
payment plan and cause a loss of thousands of euros. Therefore, valuable time is consumed
to validate and to track information, especially when the spreadsheet contains big volumes
of data. Moreover, a hardware failure or an external threat can potentially disorganize or
even steal all the work and destroy a whole business analysis [11].

Unfit for agile business practices Since there are no standards regarding spreadsheet devel-
opment and because of the fact that spreadsheets are normally created by individuals, who
have not any knowledge about data management and software documentation, the majority
of the business world faces the same problem: personalized spreadsheets. More specifically,
when a company do not provide spreadsheet templates and directions for spreadsheet devel-
opment to its employees, the spreadsheet files become highly personal and individual. As
a result, each spreadsheet is built independently and is affected by the background or the
applications that its developer uses. Therefore, a new user, who tries to take over this kind of
spreadsheets, should start from scratch, in order to understand the structured information,
which these spreadsheets enclose [11]. Inspecting Viggo case, there are around 20 different
spreadsheet structures, which have been resulted during the years, because of the different
needs between company’s departments and after Microsoft Excel system’s recommendations.

Not designed for collaborative work A spreadsheet consists a powerful and efficient tool for
every professional. However, spreadsheets behave efficient until more users start operating
on and editing it. Precisely, after a spreadsheet becomes shared, horrific chaos and confu-
sion often occurs. Since, there is no system to indicate who commit any change and when
this change occurred, anyone can be blamed for any mistake, which eventuates. In Viggo,
employees cooperate every day in many projects, regarding planning, forecasting, budget-
ing, and reporting. All these activities are collaborative by nature, because they require
information from different individuals, who belong to different departments. Experience will
tell that these collaborating processes tend to duplicate erroneous data. Consequently, team
members will face difficulties on keeping track of similar files and sometimes even end up
sending or working on a wrong version [11].

Scale poorly As an organization, like Viggo grows, data, which are stored in spreadsheet-based
systems, become more distributed, according the time. This means that the outlined disad-
vantages affect the work in a higher rate than normally. Moreover, spreadsheet systems are
not designed for big volume of data and as a result their performance is affected is a negative
manner, resulting lower efficacy and higher response time. Hence, it could be concluded that
it is not prudent for a large organization to keep relying on spreadsheets, for business and
data analysis in general [11].

Hard to consolidate As it mentioned above, spreadsheets are highly favored by end users, when
the requirements are bounded by simple data entries or quick ad-hoc data analysis tasks.
Precisely, this is the reason that spreadsheets consist of one of the most popular office tools in
business field. Consequently, data in spreadsheet-based systems are distributed throughout
companies and organizations. This fact results a slow consolidation process, when there is a
need to generate a report, which requires data from multiple data sources. More specifically,
in most of the cases, end users have to collect data from multiple files, to summarize them
and, finally, to submit them through emails, portable storage media or by upload them to
a commonly shared network folder. This process must take place as many times as it is
needed, till the information reaches the department or the company top decision makers.
Throughout this entire consolidation process, data is subjected to numerous error-prone
and filtering activities such as copy-pasting, cell entry, and range specification, which can
conclude different than the actual results [11].

Human Resources analytics at Viggo:
warehousing solutions for CSV data

3

CHAPTER 1. INTRODUCTION

This concludes that spreadsheet overuse prevents the HR and BA departments to make fast
and accurate decisions, regarding the development of Viggo’s manpower. Moreover, there is no
ambition, within the company, to shift to appropriate contemporary software solutions, which will
provide better management of the stored to the spreadsheets information. As a result, at this
moment, it is impossible for Viggo to analyze data and make decisions.

1.3 Thesis contribution

The aforementioned set of problems can be treated by importing into and performing analytics
within Database Management Systems (DBMS). These systems are able to collect big amounts
of data and organize them in a structure, which can be used, in order to analyze organizational
behavior, from a business analyst perspective. This result is achieved by the use of a set of tasks,
which retrieve data from sources and, by means of extraction, transformation and integration
processes, store the data in a centralized DBMS, which is called as data warehouse.

This master thesis focuses on the design, the implementation and the analysis of a data ware-
house, which is specialized in HR analysis, within Viggo. More specifically, in this work, we have
designed a data warehouse, which converts the existing spreadsheets into a fully cent-
ralized data repository, focused on HR department business analysis. This specific data
warehouse integrates information from Viggo’s internal data sources (spreadsheets and databases)
and will facilitate business intelligence operations on its stored data.

Precisely, within this thesis project, two problems are discussed. The former is the data ware-
house design, based on HR analysis and the latter is regarding Extract, Transformation and Load-
ing (ETL) solutions for spreadsheet-based sources. Both of the topics focus on HR assistance for
Viggo. However, the ETL solutions focus on an academic research regarding querying spreadsheets.
More specifically, regarding the ETL solutions, we have designed an ETL framework, which
uses a querying mechanism for Comma-Separated Values (CSV) spreadsheets. This
ETL framework that we introduce in this thesis is called CSVQL (Comma-Separated
Values Query Language) and is a potential query language. Precisely, CSVQL is in a
Structured Query Language (SQL) form and has been built to query information from CSV files,
no matter file’s structure. The proof of thesis’ concept idea will validated via a set of tools. Pre-
cisely, the efficiency of CSVQL will be certified by a MySQL implementation and the capabilities
of Viggo’s data warehouse by icCube, an OLAP server, which operates over data warehouses.

1.4 Thesis outline

As it mentioned in Section 1.3, within this project, the work load is split into two major parts. The
former focuses on Viggo’s Data Warehouse design and the latter investigates ETL solutions for
Viggo’s data sources. Both parts are presented in the following chapters which have the structure
of data warehouse modules:

Chapter 2. Preliminaries Background knowledge.

Chapter 3. Data warehouse overview Concept idea behind Viggo’s Data Warehouse.

Chapter 4. Data sources analysis Viggo’s data internal sources analysis.

Chapter 5. Back-end tier Introduction to CSVQL and its attributes.

Chapter 6. Data warehouse tier Design and implementation of Viggo data warehouse.

Chapter 7. OLAP & Front-end tier Introduction to icCube utilities and its reporting tools.

Chapter 8. Conclusions Discussion and suggestions.

4 Human Resources analytics at Viggo:
warehousing solutions for CSV data

Chapter 2

Preliminaries

This chapter is served as the recommended background for the project, by providing the prior
knowledge for the material, which is presented in the following chapters. More specifically, in
this chapter the basic concepts of data warehouses are introduced. Section 2.1 consists of an
introduction Database Management Systems and in Section 2.2, the need of a data warehouse
is elaborated and its building blocks are introduced. In Section 2.3, the architecture of data
warehouse systems is described in detail. Precisely, the basic components of the architecture of a
typical data warehouse are presented. For each of these components, there is an presentation of
their characteristics.

2.1 Database management systems

Since the beginning of computer age, the most crucial and essential component regarding com-
puter’s performance has been the memory. More specifically, the manner in which the information
is organized inside the memory, can conclude either the success or the disaster of any computation
attempt. Nowadays, data management is a hot topic, since almost any application relies on data,
which size usually increases exponentially according the time. From simple web sites to complex
business analyst tools, different types of data should be processed, stored and retrieved, in a ef-
ficient and accurate way. As a result, the systems, which operate over data must be adaptive,
responsive, efficient and accurate as well.

Any system, which operates on data management is called Database Management System
(DBMS). This kind of systems is characterized as a high-level software, which cooperates with
low-level interfaces, aiming on data storage and querying. More specifically, a DBMS assists the
user to handle enormous collections of data, which are stored in the hard drive. Because of the fact
that a data collection does not have standard shape or size, a lot of DBMS have been developed,
during the years in order to assist in dealing with this variety in data format. Consequently,
there are dozens of solutions, which have been developed, though the years and offer different
approaches in data management, according to user’s needs. However, only a relatively small set
became popular and stay in use for a longer time. Precisely, the most popular kind of DBMS all
this time is the Relational DBMS (RDBMS).

Relational databases are the primary data storage mechanism in recent times. As its name
indicates, a relational database is based on the relational algebra schema, which organizes the
data into tables with specific structures and attributes. Nowadays, there are a lot of versions
of a RDBMS - commercial and open source products- such as Oracle Database, Microsoft SQL
Server, MySQL, PostgreSQL and SQLite. These specific versions offer various functions and tools
regarding data management and consists of the biggest piece of the pie chart of popular database
systems.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

5

CHAPTER 2. PRELIMINARIES

2.2 Data warehouse concepts

As it mentioned in the introduction, the necessity and the priority of data analysis increases
steadily, as every organization in business field tries to utilize its decision-making mechanisms,
which will maintain or increase any advantage against its market competitors. However, the
traditional DBMS cannot fulfill the obligations of a data analysis project. The reason is the
fact that these database systems are built to support data management, in terms of fast and
accurate information retrieval on daily basis. This transactional approach indicates that this kind
of systems offers data consistency and security for everyday transactions and as a result they are
described as On-Line Transaction Processing (OLTP) database systems [6].

As it is mentioned above, OLTP database systems focus on transactional operations. A trans-
action could be an insertion of a new order inside the database, an update of the status of a placed
order or the deletion of this specific order. In addition to these transactional actions, an OLTP
database system is characterized by strong indexing capabilities, in order to support fast and effi-
cient data querying. Moreover, in order to support heavy transaction loads and to prevent update
anomalies, OLTP systems are able to achieve a high level of normalization. However, these char-
acteristics affect their performance in a negative manner, when complex queries and aggregation
tasks should be applied to a huge amount of stored data. Furthermore, the up-to-date operational
mode of OLTP database systems results data structures with detailed but not historical data.
According to these needs, which are required for decision making processes, an “on-line analytical
processing” (OLAP) database system is a oriented solution [6].

An OLAP database system builds its data structure model in order to support heavy queries,
which probably require joins of multiple tables and data aggregation. These tasks usually demand
the traversing all the records of the database and because of that, they are expensive for an
OLTP database’s schema, in terms of processing power and memory space. As a result, there
should be a schema that utilize this expensive process. In contrast, with OLTP databases, OLAP
database systems do not tend to spread their data into tables to fulfill normalization and indexing
obligations, since the reconstruction of the information requires joins, which are the most expensive
query. A database system, which fits into the OLAP profile is called “data warehouse” [6].

A data warehouse can be described as a particular database, which is designed and optimized
in order to support OLAP queries. More specifically, they are large repositories, which store data
from multiple sources and consist of the main core of any business intelligence application. The
data model of a data warehouse is based on multidimensional model, which offers a data view
from multiple perspectives, since the data are stored in an multidimensional space. The building
block of this specific model is the cube (hyper-cube for four or more dimensions) [6].

Figure 2.1: A three-dimensional cube regarding sales
[6]

As it is presented in Figure 2.1, a cube is a structure which presents the stored information via

6 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 2. PRELIMINARIES

multiple perspectives. More specifically, a cube is defined by its dimensions and its facts. A di-
mension of a data cube represents a perspective, in which the information of this data is described.
In Figure 2.1, there are three dimensions: “Product”, “Time” and “Customer”. Moreover, each
dimension can have hierarchy levels, which represent the level of detail, in which the information
is described via this specific dimension. For example, the hierarchy levels of “Time” dimension
can be: “Day”, “Week”, “Month”, “Quarter” and “Year”. On the other hand, a fact represents
the measures, which are stored in a data cube. These measures can be numeric values or not. In
Figure 2.1, the fact of the data cube, represents the measure “Quantity”. A data cube can have
more than one facts [6].

2.3 Data warehouse architecture

In the market, there are a lot of data warehouse systems, which differ among each other. However,
all of them follow a general architecture, which is introduced by several tiers. These are the
following:

Data sources represents the external sources, which supply the data warehouse with data.

Back-End tier represents the process of data insertion in the data warehouse.

Data warehouse tier represents the way in which the data are stored inside the data warehouses

OLAP tier represents the multidimensional model in which the stored data are analyzed.

Front-end tier represents the output of the data analysis inside OLAP tier.

The introduced tiers are represented by the Figure 2.2.

Figure 2.2: A data warehouse architecture
[6]

Human Resources analytics at Viggo:
warehousing solutions for CSV data

7

CHAPTER 2. PRELIMINARIES

2.3.1 Data sources

A data source of a data warehouse can be any supplier of information, which is intended to be
stored inside this specific data warehouse. In Figure 2.2, the data sources are internal and external
files, such as spreadsheets or Extensible Markup Language (XML) files, and databases.

2.3.2 Back-end tier

The back-end tier indicates the process, which retrieves the data from the external sources. This
process is also well-known as Extraction, Transformation, Loading (ETL) process. As its name
indicates, ETL is a three-step process and each of these step is described bellow:

Extraction During the first step, data from multiple and heterogeneous external sources, are
obtained. These external data sources can be operational databases but also may be files
with various formats, such as spreadsheets, XML files or even document files. These files
can be internal and/or external to the organization.

Transformation During transformation step the obtained data are modified from the format
that they had in their data source to a new one that fits to warehouse data model. The
transformation process encloses sub-tasks such as:

• Cleaning, which fixes errors and inconsistencies in the data, which will be converted
into a standardized format;

• Integration, which adjusts the data from the data sources, according to data warehouse
schema;

• Aggregation, which performs calculations and create measurements regarding the ob-
tained data

Loading During last step the data warehouse is filled with the transformed data. Consequently,
this task requires also to refresh the data warehouse and to trigger updates regarding the
stored data.

ETL process usually uses an extra database in order to provide an extra filter and back-up
layer. This database is called data staging area or operational data store and stores the obtained
data, until the transformation step finishes.

2.3.3 Data warehouse tier

The data warehouse tier is associated with the actual storing structures of the data warehouse.
Figure 2.2 illustrates an enterprise data warehouse and several data marts. Data marts are small
parts of the data warehouse, because usually a data warehouse stores data from not only a depart-
ment, but from a whole organization. As a result, data marts aim only to a specific set of data
(regarding only one department for example), while an enterprise data warehouse encompasses the
entire organization. From a different perspective, a data mart can be considered as a smaller local
data warehouse. An additional component to data warehouse tier is the metadata repository. A
metadata repository usually contains the following information:

• Metadata regarding the structure of the data warehouse and/or the data marts, at con-
ceptual, logical and physical level. Furthermore, these metadata may contain security and
monitoring information.

• Metadata regarding the data sources and their schemas. In addition, these metadata can
have descriptive additional information such as ownership, update frequencies and intervals,
limitations, and access rights and methods.

• Metadata regarding ETL processes, including data origin, rules about extraction, cleaning
and transformation and algorithms for aggregation.

8 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 2. PRELIMINARIES

2.3.4 OLAP tier

The OLAP tier handles the stored data and presents them via a multidimensional perspective. In
Figure 2.2 the OLAP tier is represented by an OLAP server, which reconstructs the data from
data warehouses and/or data markts into multidimensional data (cubes). In general, the concept
idea of a data warehouse is based on the multidimensional model. As it is presented in Section
2.2, in a multidimensional model, the information is represented via cubes. These cubes contain
measures and these measures have levels of abstraction, which are called dimensions and they are
important to the business community. The measures inside the cube cells contain measures for
business analysis, such as salaries, dates and any possible aggregations. Regarding the building
of these cubes, OLAP components operate on Data warehouse tier and query the stored data in
a manner, which outputs the aforementioned cubes [6]. As a result, OLAP tier consists a higher
level than data warehouse tier, regarding the representation of the stored data. This means that
with the use of this tier, the actual structure of the stored data and the specifications of the
underlying DBMS are hidden.

2.3.5 Front-end tier

The front-end tier consists of the visualization end of a data warehouse and offers tools that can
help the user to project the contents of this data warehouse. As it is presented in Figure 2.2, the
typical client tools are the following:

OLAP tools OLAP tools achieve interactive navigation within the data warehouse OLAP tier,
offering multiple views and levels of detail.

Reporting tools Reporting tools support the construction of paper-based or interactive reports,
where the output of the OLAP queries is presented.

Statistical tools Statistical tools offer data cubes analysis and visualization, with the use of
statistical theory.

Data mining tools Data mining tools identify patterns inside the data and support decisions
by predicting trends.

2.4 Management of Comma-Separated Values data

Because of the fact that the majority of the data sources within Viggo are CSV files, a extended
study should take place regarding the main concepts and characteristics of this type of data
structures. The reason is that these files are potential data sources for a data warehouse and, as
a result, any information retrieval process must take into consideration the manner in which the
information is stored.

2.4.1 Definition

A Comma-Separated Values (CSV) file contains tabular data in a plain text form. This means
that every line of a CSV file can be considered as a table line. Moreover, in case of relational data,
a line of a CSV file can be considered as a data record. According to its definition, every record
consists of one or multiple columns, which are separated by commas. The use of the comma, as a
column separator, defines the name of this type of file format [22].

However, the CSV file format has not been standardized, yet. The concept idea of separating
columns gets complicated, when the values within the columns are in form of a string and contain
also commas or even embedded line-break characters. This kind of problems are treated with the
use of quotation marks around the value of each column. Nevertheless, quotation does not solve
all the aspects of this issue 100%, because it is possible that the value of a column may need
embedded quotation marks. This concludes that despite of the fact that CSV idea is simple and

Human Resources analytics at Viggo:
warehousing solutions for CSV data

9

CHAPTER 2. PRELIMINARIES

clear, CSV implementation has major issues regarding the “separators” between the values [22].
Figure 2.3 presents, a sample of some recorded values in a CSV format.

Figure 2.3: Samples obtained by a 20 Hz GPS sensor traces. Each line of this file is a time-stamped
record. The first line is the header line.

On February 2016, World Wide Web Consortium (W3C) published a note of 43 pages, regarding
CSV standards, since the use of this format is very popular on the web. More specifically, the
“CSV on the Web Working Group” developed standard mechanisms to express metadata regarding
CSV files and similar tabular data [22].

2.4.2 Data querying

Recalling ETL process, the need of information retrieval from data sources is the most interesting
field of research within the Back-end tier of a data warehouse. Precisely, when these data sources
are in CSV format, then in addition with the rest of any ETL issues, the CSV data structure
requires also the attention of the data warehouse engineer. During the years, a lot of research has
been made regarding CSV format, but because to the fact that this format is not a standard yet,
every work has been developed based on different assumptions, regarding the data schema and
the metadata which a CSV file stores. Since the assumptions among the scientific works do not
meet the same standards, within this work, the related work is taken into consideration only as a
motivation for research.

In the paper “A framework for annotating CSV-like data”, Marcelo Arenas et al. conclude
that CSV grids cannot be queried by SQL mechanisms. The reason is that CSV grids usually are
not in the form of relational tables. Since, the annotation systems of these mechanisms are based
on a row-based model, such as the relational schema, they cannot support their functionality for
CSV grids, where the data can be stored in any possible manner [18]. Thus, in terms of SQL
querying, the information is not enough to be presented via tabular data, but it must follow the
relational model.

The above conclusion is supported by the work of Juliana Freire et al. with title “The Exception
that Improves the Rule”. Within this work, the paradox of spreadsheets overuse is investigated.
In contrast with the great development of database community, in terms of solutions and tools,
spreadsheets usage is still high. More specifically, a proposal has been made that indicates the
creation of a hybrid spreadsheet/relational system, which can use the advantages of both of these
means of data storage [17]. As a result, an alternative to this “expensive” proposal, could be the
creation of a mechanism, which can transform the “unstructured” CSV grids into relational tables.
In this way, the spreadsheet user could still interact with the familiar to them CSV files and at
the same time the querying process would be still feasible.

However, the aforementioned process is not trivial and it cannot be fully automated. In the
paper “Integrating Spreadsheet Data via Accurate and Low-Effort Extraction”, Zhe Chen and
Michael Cafarella, advocate that this process can be implemented as a two-phase semiautomatic
mechanism, which outputs relational data. The disadvantage of this approach is the required
metadata, which must be included in every CSV file. Moreover, the data in the CSV files must
be in a semi-relational form, in a sense that they must be tabular but with multiple headers [23].
Therefore, there is no “one fit to all” solution, since each CSV set of data should contain a small
set of metadata, regarding its schema. Because of the fact that this small piece of information is
not always available, then it is difficult or even impossible to create an adaptive to every possible
CSV schema system, which can retrieve data automatically or semiautomatically.

10 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 2. PRELIMINARIES

On the other hand, an adaptable system such as an SQL-like query language could meet some of
the discussed demands. In papers “A Spreadsheet Algebra for a Direct Data Manipulation Query
Interface” of Bin Liu et al. and “Expressive Query Construction through Direct Manipulation of
Nested Relational Results” of Eirik Bakke and David R. Karger, the possibility of an SQL-like
expressiveness framework is introduced. More specifically, a query system could allow the user
to express his query preferences and then these preferences would be translated in terms of CSV
parameters [9] [13]. In this manner, the user would be able to query the CSV files as SQL tables,
with the only difference that she should recognize the pattern, in which the data are stored on his
own.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

11

Chapter 3

Data warehouse overview

This chapter illustrates the concept idea, which consists the solution to Viggo’s problem. More
specifically, in Section 3.1, the solution according Viggo’s problem statement is introduced and its
benefits are elaborated. This specific solution advocates the implementation of a data warehouse,
which stores all the information related to Viggo’s needs, will be the centralized repository of the
whole organization. In Section 3.2, the advantages of this choice are elaborated. Precisely, the
benefits are split into two major parts. The former includes the advantages of a data warehouse
use according to spreadsheet overuse and the latter introduces the advantages of using a data
warehouse as a centralized repository. In Section 3.3 the architecture of Viggo data-warehouse is
presented and the modules of this specific data warehouse are described.

3.1 Solution

According to the problem statement, within Viggo, HR and BA departments usually struggle
to take decisions regarding the development of company’s manpower. The main reasons are the
problems that spreadsheets introduce and the lack of a centralized repository, which can facilitate
business intelligence operations on the stored data. The solution which treats this problem in
an efficient manner is the design and the implementation of a data warehouse. This data ware-
house will be the centralized data repository, which quickly integrate data from Viggo’s internal
data sources, such as spreadsheets and assisting database systems. More specifically, this specific
product will designed in order to fulfill demands regarding:

• decision-support

• analytical-reporting

• ad-hoc queries

• data mining

3.2 Benefits of data warehouses

The importance of the data warehouses in business community is supported by Forbes. More
specifically, during 2010, a Forbes Insights study concluded that “data-related problems cost the
majority of companies more than 5 million annually, and for the 20 % of the companies costs more
than 20 million annually” [19]. Thus, a proper data warehouse can cause a serious positive impact
on the expenses of a company or an organization.

Precisely, data warehouses not only save time, resources and effort by stockpiling data in only
one centralized storage, but they also guarantee the quality of the provided information. More
specifically, the provided information from data warehouse is more accurate and reliable than from

Human Resources analytics at Viggo:
warehousing solutions for CSV data

13

CHAPTER 3. DATA WAREHOUSE OVERVIEW

spread and usually unprotected data sources, such as spreadsheets. Consequently, data warehouses
can help Viggo to minimize or even to eliminate threats, caused by spreadsheet overuse.

3.2.1 Data warehouses as spreadsheets overuse cure

Regarding the issues that Viggo faces because of its spreadsheet overuse, a data warehouse treats
the following threats:

“Difficult to keep up to date” threat By definition, a database is a centralized data-store [6].
As a result, the information is not spread along multiple sources and, consequently, there is
no need for multiple updates when there is a data update. Moreover, the update process
can be performed automatically, by update triggers and overnight tables maintenance.

“Vulnerable to fraud” threat A data warehouse can provide an environment, in which the
users can interact with the data with safety. This safety concerns the use and the manip-
ulation of the stored information. More specifically, to a database, a broad set of controls
and layers, which can prevent fraud, can be applied, including [16]:

• Access control

• Auditing

• Authentication

• Encryption

• Integrity controls

• Backups

• Application security

• Database Security applying Statistical Method

“Prone to human errors” threat A basic characteristic of a relational data store is the re-
striction regarding the type of its data. More specifically, each column within a database
table is required to have a specific name and a specific data type. As a result, a data type
can be considered, practically, as a label or as a guideline to the user, in order to understand
what type of data is expected inside of each column. This mechanism will secure the data-set
against human errors [16].

“Unfit for agile business practices” threat Relational data stores are built with a predefined
schema. More specifically, insides a relational data store the information is organized in a
specific form of tables, which have specific columns with specific data-types. As a result, the
users of this specific data store, always know the structure of the stored data and they can
utilize their applications according to this specific schema [15]. On the other hand, when the
data are stored into individual files, then the structure is not predefined and as a result, no
assumptions can be made regarding the manner in which the data are stored. Consequently,
the operation on these data cannot be utilized.

“Not designed for collaborative work” threat A RDBMS is a centralized data store, which
have one or multiple users. These users can have concrete rights regarding database usage
and operate on the data at the same time. In addition, there is a log file, which stores all
the actions that took place. In addition, there are back-up option when there is a need of
rolling-back actions, which caused data loss or other inconsistencies [3].

“Scale poorly” threat According to the nature of the data and the hardware, a relational
data stores can scale millions of records. On the other hand, a spreadsheet can scale some
hundreds of records with huge latency and poor performance [21].

14 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 3. DATA WAREHOUSE OVERVIEW

“Hard to consolidate” threat The centralized character of an RDBMS erases this threat, since
all the data are stored inside one source and they are not spread in multiple sources. By
definition, a database is a centralized data-store [6]. As a result, the information is not
spread along multiple sources and, consequently, there is no need of sources combination in
order to consolidate data.

3.2.2 Data warehouses as data repositories

Instead of evaluate a data warehouse, as a medicine for spreadsheet overuse, it would be more
beneficial to investigate a data warehouse as a DBMS. The reason is the fact that a comparison
between a data warehouse and a spreadsheet can easily suggest the data warehouse as the best
option, but, on the other hand, it hides data warehouse’s real potential, as a business analysis
tool. In this section, an attempt is made to investigate the benefits of data warehouses.

Fundamentally, a data warehouse is a kind of data store, which stores information for business
analytics. Business analytics require calculations and aggregations on data, which are important
for the organization that interacts with them. However, this kind of operations are expensive, in
terms of time and storage, when they are implemented as ad-hoc queries. Data warehouses are
used in order to solve these expenses. More specifically, a data warehouse is able to interact with
transactional systems, extract their data and convert them into usable information for business
analysis, in quick and efficient manner. In addition, a data warehouse, according to its structure,
can process and execute complex and demanding queries with a highly-efficient mode. Thus, a
data warehouse can offer to business community various improvements and practical gains.

From early 1990s, the need of data warehouses has been identified, More specifically, the
explosion of Internet and of digital marketing created enormous amounts of data that were growing
exponentially and the current database technology couldn’t manage successfully. Trying to solve
the arisen problem, during the 1990s, Bill Inmon published a book with title “Building the Data
Warehouse”. This book is a introduction a modern concept of storing data. According to the
author, “data warehouses provided a much-needed strategy for organizations to collect, store, and
analyze vast amounts of data. As businesses expand both brick-and-mortar and online activities,
the field of data warehousing has become increasingly important”. Trying to simplify, these
words, a data warehouse can provide a structure in which the information is provided, according
to business needs. Consequently, a business analyst should spend less effort and time to extract
patterns and results, regarding customers or products and, as a result, to define business decisions.
In general, the main reasons, that a data warehouse can be beneficial for a company, are the
following:

First, data warehouses help employees not to waste valuable effort and time, by allowing them
to store all the information at the same place. In contrast, an employee, who keeps his data
in multiple locations, need to spend a serious amount of time to retrieve and maintain the
actual information and its structure. Thus, data warehouses can assist business analysts to
conclude and improve strategic decisions, without needing to combine different data sources.
In addition, data warehouses can reduce the expenses of a company, since the business
analysts of the company can retrieve and inspect data, without expensive actions or extensive
assistance from company’s Information and Communications Technology (ICT) department.

Second, the format of the stored information within a data warehouse can be a standard for the
company, which uses this specific data warehouse. More specifically, companies can benefit
themselves from storing their data, according to a specific format. The reason is the fact that
if all the departments, within an organization, standardize their data in the same format,
then each data set can be synchronized with the rest, without any modification, no matter
the origin department. This data quality and uniformity can lead business analysts to feel
more confident, regarding their data, in terms of accuracy, and, as a result, to produce more
informed business decisions.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

15

CHAPTER 3. DATA WAREHOUSE OVERVIEW

Third, business intelligence can be affected in a positive manner with the use of data warehouses.
Because of the fact that a data warehouse combines information from multiple sources and
sectors of the company, business analysts can feel more confident, about their decisions,
since they have been made based on a broad set of information. More specifically, a data
warehouses can determine a full picture of a company, in terms of marketing factors, financial
logs, inventory and sales history. This broad view allows business analysts to make their
decisions, based not only on one aspect, but on various conditions.

3.3 Viggo data warehouse

The following data warehouse is the solution to Viggo’s problem statement. This data warehouse
is a centralized data repository, which integrates data from Viggo’s internal data sources via an
ETL framework, which uses CSVQL query language. The data, which are extracted with the use
via the ETL process, are stored into a MySQL database and on top of this specific database, an
icCube OLAP server operates, by creating multidimensional views of these stored data. One level
above, these specific multidimensional views are presented via the icCube web reporting tool. More
specifically, this web reporting tool provides graphs and charts, which consist a diagrammatical
illustration of the stored data and are required for HR and BA analytics. The architecture of the
introduced data warehouse and its modules are presented by the following sub-sections.

3.3.1 Architecture

The architecture of Viggo data-warehouse is presented by the Figure 3.1. The modules of this
data-warehouse are described by the following subsections.

Figure 3.1: Viggo data warehouse architecture.

3.3.2 Data sources

The data sources of Viggo data-warehouse are spreadsheets, XML files and relational databases.
However, within this work the data sources are only spreadsheets and relational databases. Because
of the fact that some of these databases are inside DBMS’s, which are used via product license,
there is no option for direct data retrieval. The reason is that the providers of these systems, offer
to Viggo only the option to extract data in spreadsheets. As a result, the data sources in practice
can be only spreadsheets, of which some are in relational form already and some others are not.

16 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 3. DATA WAREHOUSE OVERVIEW

3.3.3 Back-end tier

The back-end tier refers to the ETL process of the data warehouse and is implemented by a new-
born framework. This tier receives the most of the attention, during this work and is the main
focus of research. More specifically, this specific framework uses a querying mechanism for CSV
spreadsheets, which is called CSVQL (Comma-Separated Values Query Language). CSVQL is a
potential query language, which is in a SQL form and is built to query information from CSV
files, no matter if the file is in a relational form or not. CVSQL in addition with the import/ bulk
functions of the SQL DBMS implements the ETL process and consequently the back-end tier of
Viggo data warehouse.

3.3.4 Data warehouse tier

The data warehouse tier is implemented by a SQL DBMS. This specific database system will
store in a relational structure, all the information, which is retrieved by the Viggo’s internal data
sources via the ETL process. More specifically, a MySQL 5.7.13 server, which runs on an Ubuntu
16.04.2 operating system, is used. MySQL is an open-source RDBMS, which has been released
for the first time in 1995, and at this moment, it is the second most popular database engine after
Oracle, according to DB-Engines Ranking [1].

3.3.5 OLAP tier

The OLAP server, which operates over the Data warehouse tier, is an icCube Server. This product
is an in-memory OLAP server, which supports its users with business intelligence and web report-
ing tools. Within this project, the icCube Suite 5.2, which is released in May 2016, is used [2].
More specifically, the OLAP tier is implemented via MultiDimensional eXpressions (MDX) quer-
ies, which build the OLAP cubes for business analysis. As a result, all the OLAP cubes, which
are required, will be built via MDX queries to MySQL DBMS through icCube platform.

3.3.6 Front-end tier

The front-end tier is implemented by icCube Web reporting tools. More specifically, icCube
platform offers a variety of web reporting tools and dashboards, which are presented via a unique
Web interface [2]. Precisely, at this layer all the graphs and dashboards, which will unravel the
hidden information from data sources, are implemented. As a result, this layer is the actual
solution to Viggo’s problem, since it gives useful insights for Viggo’s manpower and implements
the requirements of BA and HR departments. Moreover, the OLAP and the Front-end tiers consist
the proof of the solution, which is proposed in Section 3.1.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

17

Chapter 4

Data sources analysis

This chapter focuses on the first tier of Viggo data warehouse; the data sources. Viggo’s internal
data sources provide Viggo data warehouse with data, are introduced. Viggo has a big variety
of spreadsheets, but within this work three types of spreadsheets will be used; the Shift Rosters,
the Training Managers and the Youforce exported spreadsheets. Each section represents one type
of spreadsheets and analyzes its type, in terms of functionality and data schema. Section 4.1
describes Viggo Shift Rosters, Section 4.2 describes Viggo Training Managers and Section 4.3
describes the exported spreadsheets from Youforce database.

4.1 Viggo Shift Rosters

Viggo Shift Rosters are spreadsheets, which contain a list of employees, and associated information
regarding their tasks (e.g. working times) for a given time period (e.g. week). These specific
spreadsheets are created by the operation manager on a weekly basis, with the use of Microsoft
Excel. Since 2010, within Viggo there is one Shift Roster per department with duration one
semester (6 months). Each of these spreadsheets, contains 3 - 4 tabs, more than 200 rows and
around 550 columns, regarding employee’s shift scheduling.

4.1.1 Functionality

Shift Rosters are necessary for the day-to-day operations. More specifically, they contain the
scheduling of the employees in Eindhoven Airport during a certain period of time. Thus, every
employee can access the rooster, in order to get informed about her shifts, during the period of
time that this specific rooster indicates.

4.1.2 Schema

The schema of a Shift Roster is not relational, in a sense that it does not follow the relational
model. As it can be seen in Figure 4.1, the schema of a rooster is not organized as a set of records,
with concrete attributes and with a unique key identifying each record. In contrast, a Shift Roster
is a time series schedule, in the following form.

The schedule is represented by columns, which are ordered chronologically. Each employee is
represented by rows, which are ordered alphabetically. Employees are listed on the left hand side
of a grid, with the days of the week on the top of the grid. Each day has two data points per
employee; the starting time and ending time of her shift in HH:MM format. When an employee
does not work a day, both of the data points of this specific day for this specific employee have
the value “VRIJ”.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

19

CHAPTER 4. DATA SOURCES ANALYSIS

Figure 4.1: A sample of Viggo Shift Rosters’ schema.

4.2 Viggo Training Managers

Training Managers are spreadsheets, which contain a list of employees, and associated information
regarding their skills (e.g. expired data of a trained skill such as “Towbar Pushback”). These
specific spreadsheets are created and updated by the trainers within Viggo Academy on a monthly
basis, with the use of Microsoft Excel. Since 2010, within Viggo there are around 3 Training
Managers, per department. Each of these spreadsheets, contains 6 to 7 tabs, more than 200 rows
and more than 50 columns, regarding employee’s training.

4.2.1 Functionality

Training Managers are necessary for the classification of the employees into function categories
(e.g “EA Platform Employee 1”, “EA Platform Employee 2”) and for task assignments. More
specifically, each employee can perform only the task for which she has the required skills. As a
result, Training Managers are the official logs of employees’ capabilities. Thus, every operation
manager should access the Training managers, in order to get informed about her shifts, during
the period of time that this specific rooster indicates.

4.2.2 Schema

As in Roosters case, the schema of a Training Manager is not relational, in a sense that it is not
in a relational table. The schema of a Training Manager can seen by Figure 4.2.

Figure 4.2: A sample of Viggo Training Managers’ schema.

20 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 4. DATA SOURCES ANALYSIS

As it can be seen in Figure 4.2 the expire dates of the skills are represented by a grid. The
header rows of the grid contain the skills by name and the rest of the rows represent the employees.
The names of the employees are listed on the left side of a grid, with the skills on the top of the
grid. For each skill, every employee has two data points; the starting date and the ending date
of the period that the skill is active for this specific employee. In case that an employee is not
trained for a skill, the data points of this specific skills are empty.

4.3 Youforce database

Youforce is a Database Management System (DBMS), which is used by Viggo for HR purposes and
is provided by Raet B.V. Raet’s manpower is more than 1000 employees and it provides services
in business industry, for more than 50 years. Raet’s most popular product is Youforce. Youforce
DBMS stores around 1.7 million employees worldwide and provides insights over HR affairs [4].
Within, Viggo, Youforce DBMS is used for payroll and contract administration. Since 2010, within
Viggo there are Shift Rosters. Each of these spreadsheets, contains tabs, rows and columns,
regarding employee’s training.

4.3.1 Functionality

As the nature of the product indicates, Viggo uses Youforce for payroll purposes. More specifically,
by using payroll, Viggo “will always pay the right amounts to employees, pension funds and
other institutions, since payroll let its users easily calculate and change salary data on line. Any
consequences of a change on the net payment and deductions will be automatically calculated
according to the applicable laws and regulations and collective labor agreement” [4].

4.3.2 Schema

As a data source, Youforce is only available in spreadsheet mode. Raet does not provide any API
for information retrieval and, as a result, the only way to import data from Youforce is to extract
them in spreadsheet mode and re-import them again into Viggo data warehouse. The spreadsheets
which are produced have relational structure, with the following columns:

Medewerkercode : The working Code of the employee
e.g. 0001VC

Naam : The name of the employee
e.g. John Smith

Datum uitdienst : The last date that the employee worked for Viggo (in case she is fired)
e.g. 31/12/2015

Leeftijd : The age of the employee
e.g. 18

Functie : The function of the employee within Viggo
e.g. VC Cleaning Supervisor

Afdeling : The department in which the employee belongs
e.g. Cleaning Viggo Eindhoven Airport

Salaris ft schaal : The salary of the employee according to her scale (Dutch financial system)
e.g. 1101.01

Salaris full time : The full-time salary of the employee
e.g. 1201.01

Human Resources analytics at Viggo:
warehousing solutions for CSV data

21

CHAPTER 4. DATA SOURCES ANALYSIS

Salaris periodiciteit : The periodicity of the salary
e.g. per maand

Salaris uurloon : The salary of the employee per hour
e.g. 11.01

Schaalbedrag uurloon : The salary of the employee according to her scale (Dutch financial
system) per hour
e.g. 11.01

Salaristrede : The salary overview
e.g. 48

Salarisschaal : The salary scale in which the employee belongs (Dutch financial system)
e.g. 03

Student : Indication if the employee is a student
e.g. Ja

Afloopdatum : The termination date of employee’s contract
e.g. 31/12/2015

Arbeidsovereenkomst soort : The type of employee’s contract
e.g. Stagiair(e)

Contractomschrijving : The description of employee’s contract
e.g. Basiscontract

Datum indienst : The date when the employeed started working for Viggo
e.g. 01/01/2000

Soort contract : The type of employee’s payment
e.g. Bepaalde tijd

The overview of the above description can be presented by Figure 4.3.

Figure 4.3: A sample of Youforce export spreadsheets’ schema.

22 Human Resources analytics at Viggo:
warehousing solutions for CSV data

Chapter 5

Back-end tier

This chapter describes the Back-end tier of Viggo data warehouse. More specifically, Section
5.1, highlights the hottest topic, regarding ETL process. During this section, the phases of ETL
process are described with emphasis on the constraints and the requirements. In addition, there
is an overview of the ETL process in Viggo. In Section 5.2, the CSVQL is introduced. The initial
clauses of this new born framework are presented in a form of a tutorial and a real life example
of CSVQL is presented with the use of Viggo’s data sources. Section 5.3 describes the process of
the implementation CSVQL framework and its concepts into an actual query system. In Section
5.4, an experimental study takes place. This study validates the performance of the implemented
system, according to virtual data sources.

5.1 ETL process

As it mentioned in Chapter 2, data warehouse operational processes consist of a specific work flow,
where tasks, such as the extraction, the cleaning, the transformation, and the loading of data takes
place, in order to populate the information inside the warehouse. To deal with this set of tasks
the specialized set of actions should take place, under the general title “ETL” (Extraction Trans-
formation Loading) process. More specifically, ETL process is consisted of inner tasks responsible
for the Extraction of data from one or several sources, the Transformation of the extracted data,
in order to fit business needs and database schema, and the Loading of these specific into the data
warehouse.

During all the phases of the ETL process, particular issues can arise and alter data warehouse
refreshment into a troublesome task. In this work, there is an attempt to clarify the complexity
and the common issues of ETL processes. Thus, the following sub-sections are brief presentation
of several issues and constraints, which use to arise in each phase of ETL process [7].

5.1.1 Global problems and constraints

Oracle states that the 90% of all the problems, inside a data warehouse, are caused by the nightly
batch cycles [8]. During this period, the administrators of the data warehouse should deal with
various difficulties such as:

(a) efficient data loading

(b) simultaneous job mixture and/or dependencies

In addition, ETL process in industry use to have global time constraints, according to the initiation
time and to market deadlines. Practically, in the most the industries, there is a narrow and
inflexible “time window”, usually during the night, when the data warehouse can be maintained
and be updated. The main reason is the fact that the most of the companies do not use their

Human Resources analytics at Viggo:
warehousing solutions for CSV data

23

CHAPTER 5. BACK-END TIER

systems or, at least the systems are in their pick in terms of usage. Consequently, the first and
the major problem is regarding the scheduling of the whole process.

Regarding scheduling, there is a need of an execution plan, which utilize the ETL process by
taking into account the available data sources, the DBMS’s limitation in terms of performance
and the available time space. In case that a data warehouse is used for business analytics and
strategic purposes and the “time window” for updating is not so tight, then the ETL plan can be
executed easier, since long-term reporting/planning cannot be affected by small delays [7].

5.1.2 Extraction & transportation

As the acronym ETL indicates, one of the very first tasks is the Extraction of the information,
which is related to the data warehouse. This specific information, which is stored in the data
sources, should be imported into the data warehouse, in order to have always the most recent and
up to date information for analysis. Consequently, on daily, weekly or monthly basis, any new
piece of information has to be obtained and be added to with the rest of the facts. However, this
task requires the detection of the data that have not been imported yet, in order to minimize
the overall processing time and to avoid duplicates. The most common technique to achieve that
is a physically detection, which is performed by comparing two snapshots of the extraction task
output. A snapshot regarding the previous extraction and another one regarding the current one.
Moreover, there are efficient algorithms which can utilize this task, such as snapshot differential
algorithms. Another popular technique focuses on log “sniffing”. More specifically, there are log
files, which can reconstruct the changes that took place, since the last extraction. Rarely, there
are triggers, which are activated when a change detection occurs. However, this solution is difficult
to be implemented because of the fact that usually the data sources can be either legacy systems
either flat files in the most of the cases. On the other hand, when the data sources are relational
systems, the use of triggers can slow down the performance of the whole process or even after
the structure of the data warehouse. Another crucial issue involves the transportation of the
extracted information. More specifically, security and speed are aspects that matter and, thus,
FTP, encryption/decryption and compression/decompression can possibly concern [7].

5.1.3 Transformation & cleaning

Regarding Transformation, two kind of problems can be identified:

1. Mismatch between data sources and data warehouse schema

2. Data format

More specifically, according to schema level there can be naming conflicts. This means that
the same header is used for different kind of entities (homonyms) or that each schema names the
same entity differently (synonyms). In addition, on schema level there can be structural conflicts
too, where there is different different representations of the same entity across multiple sources.

According to data format, there can be a lot of conflicts across the data sources. Some of this
kind of conflicts are the following:

1. contradicting records,

2. different value representations (e.g. for marital status),

3. different interpretation of the values (e.g. measurement units Dollars against Euros),

4. different aggregation levels (e.g. sales per product against sales per product group),

5. reference to different points in time (e.g. current sales as of yesterday for a certain source
against as of last week for another source)

This list can be enriched by low-level technical problems, such as of conflicts are the following:

24 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

• data type conversions,

• applying format masks,

• assigning fields to a sequence number,

• substituting constants,

• setting values to NULL or DEFAULT based on a condition,

• using simple SQL operators (e.g., UPPER , TRUNC , SUBSTR , etc.)

Thus, the transformation tasks, which will operate over the extracted the data, should cure
the upper issues. As a result, a set of activities should be performed, such as:

1. reformatting,

2. recalculating,

3. modifying key structures,

4. adding an element of time,

5. identifying default values,

6. supplying logic to choose between multiple sources,

7. summarizing,

8. merging data from multiple sources etc

5.1.4 Loading

Finally, the Loading phase indicates the loading of the extracted and transformed information into
the data warehouse. As the aforementioned phases, this phase has its own challenges. The major
issue is the discrimination between the records, which are totally new, and the ones that should
be updated. Modern ETL techniques provide some mechanisms regarding this problem but these
solution are based on language prediction. Furthermore, SQL queries are not sufficient, because of
the fact that when records are inserted one by one in a loop which scan the whole data warehouse,
the performance becomes extremely low in terms of time, especially for the vast volumes of data.
Another problem is the usage of the rollback segments and/or log files during the loading tasks.
From a performance perspective, an possible solution is to deactivate this log files. On the other
hand, this option contains some risk, especially in case of a loading failure. So far, it seems that
the best solution is to use the batch loading tools, which are offered by most RDBMSs. Alternative
solutions that can utilize the loading task suggest the creation of temporary tables, the reduction
of inter-process wait states, and/or the maximization of concurrent the hardware [7].

5.1.5 ETL in Viggo

According to Viggo needs, the ETL tasks will be defined as follow:

Extraction Data extraction from Viggo Shift Rosters, Viggo Training Managers and Viggo
Youforce database. More specifically, these data will fill the fact tables of Viggo data ware-
house regarding the training, the shifts, the contracts and the payments.

Transformation Transformation of data schema, which are retrieved from Viggo Shift Rosters
and Viggo Training Managers, into a relational structure. Precisely, the output of this phase
will be set of records that will be ready to be loaded into the RDBMS, which implements
Viggo data warehouse tie.

Loading Loading of Transformation phase outputs into Viggo data warehouse, with the use of
RDBMS’s batch functions.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

25

CHAPTER 5. BACK-END TIER

5.2 CSVQL

As it has been discussed in Chapter 2, ETL work for CSV data sources requires a mechanism, which
can query these CSV files in an SQL-like manner. In order to fulfill the ETL obligations in Viggo
data warehouse, with respect to related work suggestions, a query framework for CSV querying,
has been designed. More specifically, this framework is called CSVQL (Comma-Separated Values
Query Language) and, as its name indicates, consists a query language, which allows the user
to extract information from CSV (Comma-Separated Values) data sources. Precisely, this query
language’s feature is the ability to retrieve and transform data from CSV spreadsheets into rela-
tional tables. These manipulation and formatting tasks can achieve the Extraction and Transform
requirements of ETL process, within Viggo’s data warehouse. The Loading task can be solved by
the bulk functions of the DBMS (Database Management System), which implements the “Data
warehouse” tier. The logo of CSVQL framework is presented by Figure 5.1.

Figure 5.1: The logo of CSVQL framework.

The syntax of CSVQL is similar to SQL and the reason is the intention to keep the productivity
ratio of the framework at a high level. As productivity, it is defined how handy and useful
a query language is. More specifically, with the term productivity, the functions that a query
language offers to its users to assist them, are indicated. Productivity consists of a major metric
of evaluation, because a more friendly-user language is more preferable than another one, even
with more utilities and better performance [21]. In this case, developers familiar with SQL are
able to quickly learn and use CSVQL in a very short period of time. However, there are some
significant differences, between these two query languages, because of the fact that they operate on
data with different structure. SQL operates over relational tables and CSVSQL over unstructured
CSV grids.

5.2.1 Clauses overview

The syntax of the query language is composed of the following clauses:

Table 5.1: CSVQL Clauses

Clause Usage

SELECT Selects which information will be written in the output file, and in which order.
FROM Indicates the source of a cells-set to be operated upon.
WHERE Filters the cells that match a condition.
OUTPUT Indicates in which file the query result will be stored.

As the Table 5.1 presents, each clause starts with a keyword and it is separated by spaces from
its arguments. All the clauses are mandatory, except from the clause WHERE, which is optional.
Each clause is described in details in the following subsections.

26 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

5.2.2 SELECT

Description

The SELECT clause is used to specify the information, which will be written in the output file
in the OUTPUT clause. More specifically, this information will be consisted by data, which are
retrieved from data sources, and by strings, which the user inputs. The aforementioned information
will be written to the output file, in a order that is defined in the SELECT clause.

Examples

• The Query 5.2 duplicates the file “employees.csv”. If * is used, all of the data of the data
sources will be retrieved and will be written in their original order (row by row and column
after column).

SELECT ∗

FROM employees . csv

Figure 5.2: Select clause example 1

• The Query 5.3 outputs the cell [1,A] of the file “employees.csv”. More specifically, the data,
which is stored inside cell [1,A] of query’s data source, will be retrieved and will be written
to the output file, in a column with header name “Employee”.

SELECT [1 ,A] AS Employee

FROM employees . csv

Figure 5.3: Select clause example 2

• The Query 5.4 outputs the cell [1,A] of the data source “filename” and the string “Active”.
More specifically, the data, which is stored inside cell [1,A] from data source “filename”
will be retrieved and will be written in a column with header name “Employee”. Next
this column, there will be another column with header name “Status” and this column will
contain the string “Active”.

SELECT f i l ename . [1 ,A] AS Employee , ”Act ive ” AS Status

FROM employees . csv AS f i l ename

Figure 5.4: Select clause example 3

5.2.3 FROM

Description

The FROM clause is used to specify the data sources of the query. A data source can be an
entire CSV file or a row-set from a specific CSV file. More specifically, in FROM clause the user
can create one or multiple data sources from a CSV file. For better understanding, a data source
can be considered as a traditional SQL table. However, a data source is not a table, but it is a
row-by-row path of cells inside a specific CSV file. This means that a specific data source defines a
specific path, which the query parser will follow inside a CSV file, in order to obtain the required
information.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

27

CHAPTER 5. BACK-END TIER

Examples

• The Query 5.5 duplicates the file “employees.csv”. The data source is a row-by-row path of
the whole CSV file “employees.csv”. The data of all its cells will be retrieved, row by row
and column after column, and be written to the output file.

SELECT ∗

FROM employees . csv

Figure 5.5: From clause example 1

• The Query 5.6 outputs the cell [1,A] of the data source, which is named as “file”, which is
the whole CSV file employees.csv. The data of its cell [1,A] will be retrieved and be written
to the output file, in a column with header name “Employee”.

SELECT f i l e . [1 ,A] AS Employee

FROM employees . csv AS f i l e

Figure 5.6: From clause example 2

• The Query 5.7 outputs the cell [1,A] of the data source “file1”, the cell [2,B] of the data
source “file1” and the string “Active”. The data source, which is named as “file1”, is a
row-by-row path of the whole file “employees.csv”. The data of its cell [1,A] will be retrieved
and be written to the output file with header name “Employee”. In the same manner the
data source, which is named as “file2”, is a row-by-row path of the whole file “functions.csv”.
The data of its cell [2,B] will be retrieved and be written to the output file next to column
“Employee”, with header name “Function”. Finally, next to column “Function”, there will
be another column with name “Status” and this column will have the string “Active”.

SELECT f i l e 1 . [1 ,A] AS Employee ,
f i l e 2 . [2 ,B] AS Function ,
”Active ” AS Status

FROM employees . csv AS f i l e 1
f unc t i on s . csv AS f i l e 2

Figure 5.7: From clause example 3

• The Query 5.8 outputs some specific cells of the data source “employee” and some other
cells of the data source “function”.

SELECT employee . [ROW, COLUMN] AS Employee ,
f unc t i on . [1 , COLUMN] AS Function

FROM employees . csv . [1 : 1 0 WITH STEP 1 , A] AS employee ,
f un c t i on s . csv . [∗ ,B: J WITH STEP 2] AS func t i on

Figure 5.8: From clause example 4

The data source, which is named as “employee”, is a cell-by-cell path within the CSV file
employees.csv. This path contains the column A of the rows 1,2,3 . . . 10, and this cell-by-
cell path is retrieved row by row. This means that the cells of the 1st row will be retrieved

28 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

first, then the cells of the 2nd row, etc. According to this definition, the data of the cells,
which are included in this specific path are the following:

1. cell[1,A]

2. cell[2,A]

3. cell[3,A]

4. cell[4,A]

5. cell[5,A]

6. cell[6,A]

7. cell[7,A]

8. cell[8,A]

9. cell[9,A]

10. cell[10,A]

When a cell-by-cell path is retrieved, there are two variables, which indicate the coordinates
of the current position of this specific path. The variable ROW indicates the current row
and the variable COLUMN indicates the current column of the file, which this specific path
operates on. Thus, the variables ROW and COLUMN of an expression in SELECT clause
indicate the index of the current position of a specific row-by-row path, which is defined
in the FROM clause. In this example the data of the cells of the path “employee” will be
retrieved and will be written to of the output file. More specifically, they will be written in
first column with header name “Employee”.

In the same manner, the data source, which is named as “function”, is a cell-by-cell path
within the CSV file functions.csv. The “function” path contains the columns B,D,F,H,J of
all(*) the rows of the CSV file functions.csv (assuming that this CSV file has 15 rows). The
data of the cells, which are included in this specific path are the following:

1. cell[1,A]

2. cell[2,A]

3. cell[3,A]

4. cell[4,A]

5. cell[5,A]

6. cell[6,A]

7. cell[7,A]

8. cell[8,A]

9. cell[9,A]

10. cell[10,A]

11. cell[11,A]

12. cell[12,A]

13. cell[13,A]

14. cell[14,A]

15. cell[15,A]

5.2.4 WHERE

Description

The WHERE clause is used to return only information that match a specified condition. More
specifically, WHERE clause is used to specify conditions while fetching the data from a data-
source or joining with multiple data-sources. If the given condition is satisfied then only it returns
specific value from the table. You would use WHERE clause to filter the records and fetching only
necessary records.

The simple comparison operators are

• <=

• <

• >

• >=

• =

• ! =

• <>

Both comparison operators ! = and <> mean not-equal. Strings are compared by lexicographic
value. Note that equality is indicated by =, not == as in most computer languages. Comparing
to null is done using is null or is not null. Multiple conditions can be joint by using the logical
operators AND, OR, and NOT. Parentheses can be used to define explicit precedence. The
WHERE clause also supports some more complex string comparison operators. These operators
take two strings as arguments; any non-string arguments (for example, dates or numbers) will be
converted to strings before comparison. String matching is case sensitive (you can use upper() or
lower() scalar functions to work around that).

contains - A sub-string match. whole contains part is true if part is anywhere within whole.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

29

CHAPTER 5. BACK-END TIER

starts with - A prefix match. value starts with prefix is true if prefix is at the beginning of value.

ends with - A suffix match. value ends with suffix is true if suffix is at the end of value.

matches - A (preg) regular expression match. haystack matches needle is true if the regular
expression in needle matches haystack.

like -A text search that supports two wildcards: %, which matches zero or more characters of
any kind, and (underscore), which matches any one character.

Examples

• The Query 5.9 outputs only the employees with name that starts with “Jo”. For example, an
employee with name “Joost”, will be retrieved and will be written in a column with header
name “Employee”.

SELECT employee . [ROW,COLUMN] AS Employee

FROM employees . csv . [1 : 1 0 WITH STEP 1 , A] AS employee

WHERE employee . [ROW,COLUMN] s t a r t s w i t h (”Jo”)

Figure 5.9: Where clause example 1

• The Query 5.10 outputs only the salaries that are higher than 4000 euros. For example, a
salary with which is 3000 euros, will not be presented.

SELECT s a l a r i e s . [ROW,COLUMN] AS HighSa l a r i e s

FROM s a l a r i e s . csv . [1 : 1 0 WITH STEP 1 , C] AS s a l a r i e s

WHERE s a l a r i e s . [ROW,COLUMN] > 4000

Figure 5.10: Where clause example 2

5.2.5 OUTPUT

Description

The OUTPUT clause is used to specify where the results of the query will be stored. More
specifically, OUTPUT indicates where the result of SELECT clause will be stored.

Examples

• The Query 5.11 creates a duplication of data source “employees.csv” with the name “duplic-
ateEmployees.csv”.

SELECT ∗

FROM employees . csv

OUTPUT dupl icateEmployees . csv

Figure 5.11: Output clause example 1

30 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

• The Query 5.12 creates files named “listHighSalaries.csv”, which contains a list with all the
high salaries.

SELECT s a l a r i e s . [ROW,COLUMN] AS HighSa l a r i e s

FROM s a l a r i e s . csv . [1 : 1 0 WITH STEP 1 , C] AS s a l a r i e s

WHERE s a l a r i e s . [ROW,COLUMN] > 4000

OUTPUT l i s tH i g h S a l a r i e s . csv

Figure 5.12: Output clause example 2

In this example, only the employees with name that starts with “Jo”, e.g. Joost, will be
retrieved and will be retrieved and will be written in a column with header name “Employee”.

5.2.6 Querying Viggo Training Manager

The objective of this example is to extract information regarding the training of Viggo employees.
More specifically, there is a CSV file with name “training.csv” which contains all the necessary
information but not in a relational structure, as it is presented by the Figure ??. However, there
is a need to create a new CSV file, which has a relational structure as it is presented by the Figure
5.13. This specific structure will make the data more suitable for Viggo’s data warehouse.

However, there is a need to create a new CSV file which will have the following structure:

Figure 5.13: The relational structure of Viggo training.csv file, after CSVQL application.

This result can be achieved by executing the 5.14 query:

Human Resources analytics at Viggo:
warehousing solutions for CSV data

31

CHAPTER 5. BACK-END TIER

SELECT ” id ” AS t id ,
f 1 . [ROW,COLUMN] AS s k i l l ,
f 2 . [ROW,A] AS employee ,
f 3 . [ROW,COLUMN] AS sta r tdate ,
f 4 . [ROW,COLUMN] AS enddate

FROM t r a i n i n g . csv . [6 , E :AR WITH STEP 2] AS f1 ,
t r a i n i n g . csv . [8 : 2 8 WITH STEP 1 , {A,D}] AS f2 ,
t r a i n i n g . csv . [8 : 2 8 WITH STEP 1 , E:AR WITH STEP 2] AS f3 ,
t r a i n i n g . csv . [8 : 2 8 WITH STEP 1 , F :AS WITH STEP 2] AS f4

WHERE f1 .COLUMN = f3 .COLUMN AND
f2 .ROW=f3 .ROW AND
f1 .COLUMN = f4 .COLUMN + 1 AND
f2 .ROW=f4 .ROW AND
f2 . [ROW,D] = ”Active ”

OUTPUT r e l a t i o n a l . csv

Figure 5.14: Querying Viggo training.csv file

FROM Clause

Inside FROM clause, 4 cell-by-cell paths are created:

• f1 (source file: training.csv), which indicates that

from row 6:

the columns E to AR with step 2 (E, G, I, K, . . ., AP , AR) are retrieved.

As a result, the cells which are inside this path are

1. cell[6,E]

2. cell[6,G]

3. cell[6,I]

4. cell[6,K] . . .

The visualization of this path is presented by Figure 5.15.

Figure 5.15: The f1 row-by-row path within Viggo training.csv file.

• f2 (source file: training.csv), which indicates that

from rows 8 to 28 with step 1 (8, 9, 10, 11, . . ., 27, 28):

the columns A, D are retrieved.

As a result, the cells which are inside this path are

32 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

1. cell[8,A]

2. cell[8,D]

3. cell[9,A]

4. cell[9,D] . . .

The visualization of this path is presented by Figure 5.16.

Figure 5.16: The f2 row-by-row path within Viggo training.csv file.

• f3 (source file: training.csv), which indicates that

from rows 8 to 28 with step 1 (8, 9, 10, 11, . . ., 27, 28):

the columns E to AR with step 2 (E, G, I, K, . . ., AP , AR) are retrieved.

As a result, the cells which are inside this path are

1. cell[8,E]

2. cell[8,G] . . .

3. cell[9,E]

4. cell[9,G] . . .

The visualization of this path is presented by Figure 5.17.

Figure 5.17: The f3 row-by-row path within Viggo training.csv file.

• f4 (source file: training.csv), which indicates that

from rows 8 to 28 with step 1 (8, 9, 10, 11, . . ., 27, 28):

the columns F to AS with step 2 (F , H, J , L, . . ., AQ, AS) are retrieved.

As a result, the cells which are inside this path are

Human Resources analytics at Viggo:
warehousing solutions for CSV data

33

CHAPTER 5. BACK-END TIER

1. cell[8,F]

2. cell[8,H] . . .

3. cell[9,F]

4. cell[9,H] . . .

The visualization of this path is presented by Figure 5.18.

Figure 5.18: The f4 row-by-row path within Viggo training.csv file.

WHERE Clause

As it mentioned above, the data sources f1, f2, f3 and f4 can be considered as SQL tables which
participate in a SQL query. Thus, if there is a need to combine these data sources, there is an
obligation to apply a mapping pattern. This mapping filter will filter unwanted combinations of
information. In case there is no filter, the result will be a Cartesian product of all the cells from
these specific data-sources, which means that every possible combination of cells will be in the
output. As a result, in the WHERE clause there are conditions, which extract only those records
that fulfill a specified criterion, by synchronizing the variables of the row-by-row paths and/or
approve only the cells with the desired data.

The 5 conditions, which consist the filter in this CSVQL query are

• f1.COLUMN = f3.COLUMN
This condition looks like a SQL condition, which joins two tables on a column. However,
this condition indicates that data-source f1 and data-source f3 are joined on their columns.
This means that the query will process data-sources f1 and f3 and will combine only the
cells, which have the same column coordinate.

• f2.ROW = f3.ROW
In the same manner, the query will process data-sources f2 and f3 and will combine only the
cells, which have the same column coordinate.

• f1.COLUMN = f4.COLUMN+1
This condition looks like a SQL condition, which joins two tables on a column. However,
this condition indicates that data-source f1 and data-source f4 are joined on their columns.
This means that the query will process data-sources f1 and f4 and will combine only the
cells, which have the same column coordinate, as it is defined by the condition f1.COLUMN
= f4.COLUMN+1. This means that column of data source f4 is shifted right by one position
then column of data source f1. For example if f1.column = A then f4.column = B

34 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

• f2.ROW = f4.ROW
In the same manner, the query will process data-sources f2 and f4 and will combine only the
cells, which have the same column coordinate.

• f2.[ROW,D] = “Active”
This condition specifies that a cell from a row of data-source f2 can be retrieved, only if the
column D of this specific line is equal with “Active”.

These condition are introduced with the AND operator and, as a result, all of them should be
fulfilled.

SELECT Clause

In this example, the query output strings and specific cells from the data-sources in a specific
order. The output the column of the output are presented bellow:

• “id” AS tid
The string “id” is the first column, which has the name “tid”.

• f1.[ROW,COLUMN] AS skill
The second column, which has the name “skill”, contains all the cells, which the cell-by-cell
path f1 indicates.

• f2.[ROW,A] AS employee
The third column, which has the name “employee”, contains the cells which are in column A
inside the cell-by-cell path f2 indicates and the column D on their row is equal with “Active”.

• f3.[ROW,COLUMN] AS startdate
The forth column, which has the name “startdate”, contains the cells which which the cell-
by-cell path f3 indicates.

• f4.[ROW,COLUMN] AS enddate
The fifth column, which has the name “enddate”, contains the cells which which the cell-by-
cell path f4 indicates.

5.3 CSVQL Implementation

As it mentioned above, CSVQL is an ETL framework, in a form of a query language, which allows
the user to extract information from CSV (Comma-Separated Values) data sources. In order to
apply CSVQL queries to real data sources, such as the Viggo’s ones, this framework must be
implemented. In this section, the implementation of CSVQL is described in terms of existence
technology.

5.3.1 Concept idea

Since CSVQL is in a form of SQL query language, the most similar to it technology is an actual
SQL query language of a DBMS. According to DB-Engines Platform, nowadays, the most popular
non-commercial SQL DBMS is MySQL. Therefore, MySQL has been chosen as the query language,
which implements the CSVQL, because of its popularity, which results a lot of available forums
and libraries for support. More specifically, a CSVQL query will be translated into a MySQL one
and then it will be applied to the data source that concerns. However, each data source must be
uploaded first inside the MySQL database, before any query application. This is achieved with the
use of a script, which imports the CSV data source as a MySQL table into the MySQL database,
which implements CSVQL.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

35

http://db-engines.com/en/ranking

CHAPTER 5. BACK-END TIER

5.3.2 Implementation architecture

The implementation of CSVQL is a two components system. The main component of this system
is a MySQL database, which stores the CSV data sources in a form of relational tables. Any
CSVQL query regarding a data source, will be translated first into a MySQL one and then it will
be applied to the relational table, which stores this specific data source.

The second component of this system is a script, which imports the CSV data sources into the
MySQL database in a form of relational tables. Assuming that every data source is a .csv file, a
relational table represents exactly one .csv file. The aforementioned script is implemented with
the use of Java programming language and can be found in Appendix A with name “Data Load
Script”.

The architecture of the whole implementation is presented on Figure 5.19 :

Figure 5.19: CSVQL implementation Achritecture

5.3.3 Data Load script

The role of “Data Load Script” is to convert a CSV grid into a MySQL table. More specifically,
the input of the script is one or multiple CSV files. For each of the input files, the following
procedure is performed.

1. Retrieves the input file line by line and imports its cells into an 2-Dimensional array. At the
end, this 2-Dimensional array is identically same with the CSV grid, which is stored into the
input file.

2. Connects to the MySQL database

3. Creates a table with the name of the input file or overwrites any existing table with the
same name.

4. Imports the 2-Dimensional array, which has been created during the first step into the
table with the input file’s name. Each row of this table is in the following relational form:
(csvrow, csvcolumn, csvvalue). Every

csvrow indicates the row of the stored cell, inside the input file

csvcolumn indicates the column of the stored cell, inside the input file

csvvalue indicates the value of the stored cell

5.3.4 Query MySQL mapping

Because of the fact that CSVQL has similar structure with MySQL, the transformation from
the former query language to the latter one, is a trivial process. More specifically, the following
transformations should take place:

36 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

FROM Clause

As it is presented in Section 5.2, with the use of CSVQL the query’s data sources are represented
as Figures 5.5, 5.6, 5.7 and 5.8 indicate. When a CSVQL query is translated into a MySQL one,
then every query’s data source is represented by a MySQL sub-query. This sub-query has the same
data source and the same parameters that the CSVQL query has. Regarding, the coordinates of
the data source, the “csvrow” and “csvcolumn” columns are used. The “WITH STEP” command
is implemented with the “MOD” function of MySQL. Only in case of A,D set, there is a need of
JOIN, otherwise the implementation in MySQL is not feasible. In practice, the contents in FROM
clause of Query 5.14 will be transformed into

(SELECT ∗
FROM t r a i n i n g
WHERE csvrow=6 AND csvcolumn>=5 AND csvcolumn MOD 2 = 1) f1 ,

(SELECT tra in ingA . csvrow AS csvrow , t ra in ingA . csvcolumn AS csvcolumn , tra in ingA .
c s cva lue AS A, tra in ingD . c s cva lue AS D

FROM t r a i n i n g AS tra in ingA
INNER JOIN t r a i n i n g AS tra in ingD
ON tra in ingA . csvrow = tra in ingD . csvrow

WHERE tra in ingA . csvrow>=8 AND tra in ingA . csvrow<=28 AND tra in ingA . csvcolumn = 1
AND tra in i ngd . csvcolumn = 4)) f2 ,

(SELECT ∗
FROM t r a i n i n g
WHERE csvrow>=8 AND csvrow<=28 AND csvcolumn>=5 AND csvcolumn MOD 2 = 1) f3 ,

(SELECT ∗
FROM t r a i n i n g
WHERE csvrow>=8 AND csvrow<=28 AND csvcolumn>=6 AND csvcolumn MOD 2 = 1) f4

WHERE Clause

As it is presented in Section 5.2, the statements, inside the WHERE clause are classified into
two major categories. The former concerns the constraints regarding the values of the data (e.g.
f2.[ROW,D] = “Active”) and its translation is a straight forward process. The latter accomplishes
the join of the FROM clause data sources (e.g. f2.ROW=f3.ROW). This kind of statements can
be translated either straight forward either with the use of JOIN. In this example, the statements
are translated straightforward. In practice, the contents in WHERE clause of Query 5.14 will be
transformed into

f 1 . csvcolumn = f3 . csvcolumn AND
f2 . csvrow=f3 . csvrow AND
f1 . csvcolumn = f4 . csvcolumn + 1 AND
f2 . csvrow=f4 . csvrow AND
f2 .D = ‘ ‘ Act ive ’ ’

SELECT Clause

In the same manner with the WHERE Clause,the contents in SELECT clause of Query 5.14 will
be transformed into

” id ” AS t id ,
f 1 . c svva lue AS s k i l l ,
f 2 .A AS employee ,
f 3 . c svva lue AS s ta r tdate ,
f 4 . c svva lue AS enddate

Human Resources analytics at Viggo:
warehousing solutions for CSV data

37

CHAPTER 5. BACK-END TIER

5.4 Experimental study

The implementation of CSVQL must be efficient in terms of productivity and performance. The
former requirement is fulfilled by the uses of MySQL syntax, which is the most popular non
commercial language within SQL family. The latter must be examined. Within this section, the
performance of CSVQL implementation will be examined. More specifically, an experiment has
been implemented about the ability of the system to response quick to benchmark queries, which
use data sources similar to Viggo’s ones.

5.4.1 Scenario

The scenario of the experiment focus on scalability analysis of specific MySQL queries, which
implement the CSVQL ones. According to this scenario, a set of benchmark queries, has been
built, which perform a set of joins on CSV grid data sources. Join is the most expensive operation
in a relational algebra implementation. The reason is the fact that it has a quadratic complexity
O(n2) in both time and space. As a result, as the number of records increases, the join become
also larger and, since the space complexity is also quadratic, large joins often either run out of
memory either need to be stored on disk which makes processing even slower [21].

The arity of joins, inside the benchmark queries, starts from one (single join) until eight. The
number eight is not a random number. Eight is the highest number of columns that a table of
Viggo’s data warehouse has. Therefore, assuming that at the worst case there will be needed a
data source per attribute, the max number of joins will be eight.

5.4.2 Experiment set-up

Data sources

The data source of the experiment is a CSV grid of integer number, which has been imported into
the MySQL database. Figure 5.20 illustrates this data source as a CSV grid. This grid has 1747
rows and 71 columns.

Figure 5.20: Experiment’s input as a CSV grid

With the use of “Data Load Script”, this CSV is imported into the MySQL data as a relational
table, which has the form that Figure 5.21 presents. This relational table has 124037 records.

This relational table has as Primary index the set of “csvrow” and “csvcolumn” columns.
Moreover there are two Secondary indexes; one on “csvrow” column and one on “csvcolumn”
column. According to the number of joins, the use of this data source is repeated.

38 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

Figure 5.21: Experiment’s input after Data Load Script operation.

Benchmark queries

As it mentioned above, the set of the benchmark queries focuses on the on the performance analysis
of CSVQL implementation. More specifically, there are 14 queries, which operate on the input
data-set. These queries project all the columns of the output, which is the result of data sources’
join. Every join operates on 124037 records per data source. There are two query families; one
which joins on the primary key and one which joins on the Secondary key. It could be a third one,
which joins on a column which is not an key of an index. However, this approach will never be
the case in Viggo and as it mentioned in Sub-Section 5.4.1 it will be always O(n2) (where n: the
number of the records), in terms of time at the worst case.

The 7 queries that join data sources on the primary key, output the data, which are at the
same position inside these specific data sources, next to each other. For instance they output all
the values of all the cells [1,A] of all the data sources next to each other. This approach can be
used within Viggo in order to inspect versions of the same kind of CSV files, such as the ones,
which have been introduced in Chapter 4.

The other 7 queries that join data sources on the secondary key, output the data, which are
at the same row or at the same column inside these specific data sources, next to each other.
For instance they output all the values of all the cells which are at the column A of all the data
sources next to each other. Practically, this means that all the values, which are stored in column
A such as employee’s names, will be presented. This approach can be used within Viggo in order
to inspect or combine data of the same or different kind of CSV files, such as the ones, which have
been introduced in Chapter 4.

Some sample queries are presented by the Figures 5.22, 5.24, 5.23 and 5.25.

Se l e c t ∗
From CSVQL. Sample1 as F1

Inner Join CSVQL. Sample2 as F2
on F1 . csvrow=F2 . csvrow and F1 .

csvcolumn=F2 . csvcolumn ;

Figure 5.22: Benchmark query with one join
on Primary key

Se l e c t ∗
From CSVQL. Sample1 as F1

Inner Join CSVQL. Sample2 as F2
on F1 . csvrow=F2 . csvrow and F1 .

csvcolumn=F2 . csvcolumn ;

Figure 5.23: Benchmark query with one join
on Secondary key

Human Resources analytics at Viggo:
warehousing solutions for CSV data

39

CHAPTER 5. BACK-END TIER

Se l e c t ∗
From CSVQL. Sample1 as F1

Inner Join CSVQL. Sample2 as F2
on F1 . csvrow=F2 . csvrow and F1 .

csvcolumn=F2 . csvcolumn
Inner Join CSVQL. Sample3 as F3

on F1 . csvrow=F3 . csvrow and F1 .
csvcolumn=F3 . csvcolumn

Inner Join CSVQL. Sample2 as F4
on F1 . csvrow=F4 . csvrow and F1 .

csvcolumn=F4 . csvcolumn
Inner Join CSVQL. Sample3 as F5

on F1 . csvrow=F5 . csvrow and F1 .
csvcolumn=F5 . csvcolumn

Inner Join CSVQL. Sample2 as F6
on F1 . csvrow=F6 . csvrow and F1 .

csvcolumn=F6 . csvcolumn
Inner Join CSVQL. Sample3 as F7

on F1 . csvrow=F7 . csvrow and F1 .
csvcolumn=F7 . csvcolumn

Inner Join CSVQL. Sample1 as F8
on F1 . csvrow=F8 . csvrow and F1 .

csvcolumn=F8 . csvcolumn
Inner Join CSVQL. Sample1 as F9

on F1 . csvrow=F9 . csvrow and F1 .
csvcolumn=F9 . csvcolumn ;

Figure 5.24: Benchmark query with eight
joins on Primary key

Se l e c t ∗
From CSVQL. Sample1 as F1

Inner Join CSVQL. Sample2 as F2
on F1 . csvrow=F2 . csvrow and F1 .

csvcolumn=F2 . csvcolumn
Inner Join CSVQL. Sample3 as F3

on F1 . csvrow=F3 . csvrow and F1 .
csvcolumn=F3 . csvcolumn

Inner Join CSVQL. Sample2 as F4
on F1 . csvrow=F4 . csvrow and F1 .

csvcolumn=F4 . csvcolumn
Inner Join CSVQL. Sample3 as F5

on F1 . csvrow=F5 . csvrow and F1 .
csvcolumn=F5 . csvcolumn

Inner Join CSVQL. Sample2 as F6
on F1 . csvrow=F6 . csvrow and F1 .

csvcolumn=F6 . csvcolumn
Inner Join CSVQL. Sample3 as F7

on F1 . csvrow=F7 . csvrow and F1 .
csvcolumn=F7 . csvcolumn

Inner Join CSVQL. Sample1 as F8
on F1 . csvrow=F8 . csvrow and F1 .

csvcolumn=F8 . csvcolumn
Inner Join CSVQL. Sample1 as F9

on F1 . csvrow=F9 . csvrow and F1 .
csvcolumn=F9 . csvcolumn ;

Figure 5.25: Benchmark query with eight
joins on Secondary key

5.4.3 Implementation

The SQL data store have been implemented by the MySQL DBMS for Linux. The system’s
specifications are the following:

OS Linux 4.4.0-28-generic, Ubuntu 16.04 LTS

CPU 4x Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz (862.589MHz)

RAM 11.72GB

SQL DBMS MySQL 5.7.12 and Workbench 6.3 have been installed.

The experiment has 14 phases. Every phase refers to one benchmark query and consists of
ten executions of this specific query. All the experiments are executed via Workbench platform.
Something that must be mentioned is that Workbench calculates the duration of each query as a
summary of Query duration + Fetching time . Fetching time measures how long transferring
fetched results take, which has nothing to do with query execution. As a result, this parameter
cannot be considered as an SQL query metric, since fetching time depends on network connection.

5.4.4 Experiment results

In this section the results of the experiment are presented. The full tables with all the results can
be found in Appendix B with name “CSVQL Experiment Results”; one table regarding the eight
join queries on primary key and one table about the eight join queries on secondary key. The
analysis of the results is split into two categories; one for the queries, which join data sources on
primary key and one for the queries, which join data sources on secondary key.

40 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 5. BACK-END TIER

Join on primary key

As it can be seen in Figures 5.2 and 5.27, for one until seven joins on table’s primary key, the
average time of a CSVQL benchmark query via the aforementioned implementation is no more
than 0.0027 seconds. For eight joins the average time increases to 0.0037 seconds. Moreover Figure
5.26 indicates that the worst time among this category of queries has been recorded during the
eight joins benchmark query and it is 0.0059 seconds. For the rest of the queries the worst time
is not higher than 0.0034 seconds. On the other hand, all the queries have best execution time
around 0.002 seconds. Practically, this means that when a user wants to compare or present data
which are at the same position in a CSV grid, she doesn’t need more than 40 milliseconds, or in
other words 8 honey bee’s wing flaps according to Michael S. Engel in “The taxonomy of recent
and fossil honey bees (Hymenoptera: Apidae: Apis)” [20].

Table 5.2: Results of CSVQL scalability experiment with Primary index

One Join Two Joins Three Joins Four Joins Five Joins Six Joins Seven Joins Eight Joins
Average time 0.0027 0.002 0.0021 0.0022 0.0022 0.0021 0.0023 0.0037
Worst time 0.004 0.0024 0.003 0.0029 0.0026 0.0028 0.0034 0.0059
Best time 0.0021 0.0018 0.002 0.0019 0.002 0.0019 0.002 0.0021

Figure 5.26: CSVQL performance for joins on primary key per experiment

Figure 5.27: CSVQL performance for joins on primary key per join

Human Resources analytics at Viggo:
warehousing solutions for CSV data

41

CHAPTER 5. BACK-END TIER

Join on secondary key

As it can be seen in Figures 5.3 and 5.29, for one until four joins on table’s secondary key, the
average time of a CSVQL benchmark query via the aforementioned implementation is no more
than 0.0025 seconds. However, after the fifth join the time grows exponentially. More specifically,
for five joins the average time is 0.0065 seconds, for six joins 0.023 seconds, for seven joins 0.014
and for eight joins 1.06 seconds (460 times more than the average time of one join’s average
time). Something that must be mentioned is the fact that in every experiment, the biggest
difference between the performance results are at most 60 milliseconds, which means that the
behavior of CSVQL in terms of expected performance time is constant and reliable. In Figure
5.29, the difference between the benchmark queries can be inspected. This view emphasizes on
the comparison between the benchmark queries performance. After a closer inspection, it can be
remarked that even the worst performance time which is 1087 milliseconds is less than 3 blinks of
an eye according to Krishna, G.V.Siva, and K. Amarnath in “Anovel approch of eye tracking and
blink detection with a human machine” [14].

Table 5.3: Results of CSVQL scalability experiment with Primary index

One Join Two Joins Three Joins Four Joins Five Joins Six Joins Seven Joins Eight Joins
Average time 0.0023 0.0028 0.0017 0.0025 0.0065 0.023 0.14 1.06
Worst time 0.0035 0.0062 0.0024 0.0044 0.011 0.0042 0.172 1.087
Best time 0.0015 0.0017 0.00077 0.001 0.0025 0.0014 0.108 1.028

Figure 5.28: CSVQL performance for joins on secondary key per experiment

Figure 5.29: CSVQL performance for joins on secondary key per join

42 Human Resources analytics at Viggo:
warehousing solutions for CSV data

Chapter 6

Data warehouse tier

This chapter introduces the data-warehouse, which stores the all the data, regarding the employees
of Viggo Airport Eindhoven BV. This specific data-warehouse is named Viggo data-warehouse and
is a SQL database, which follows the basic relational database concepts as concerns design and
implementation. By the theory, the basic relational database concepts are split into three major
levels - the conceptual, the logical, and the physical level - and, as a result, this data-warehouse
is described according to these specific levels. More specifically, Section 6.1 clarifies the assump-
tions, which have been made regarding the data-warehouse design, and introduces the framework
in which this data-warehouse is built. Section 6.2 introduces the conceptual design level, which
produces the initial model of the data-warehouse, by focusing especially on entity-relationship
model. Section 6.3 elaborates the logical design level, which develops a relational implementa-
tion of the conceptual level’s output, by introducing the mapping process, which translates an
entity-relationship model to relational schema. Section 6.4 presents the physical design level,
which optimizes the logical level’s product with respect to a particular database technology or
implementation platform.

6.1 Design assumptions

The implemented data-warehouse follows the rules of a traditional OLAP database design. The
traditional OLAP database design suggests a data model based on the fact and the dimension
tables. More specifically, the data are organized into tables and each table is either a fact either
a dimension table. The whole data model is built in a way, which should support heavy queries
in terms of time execution. This kind of queries usually implies aggregation and, as a result, the
processing time involves the traversing of all the records.

According to the above analysis, the data-warehouse, which has been created, fulfills the fol-
lowing obligations:

Fact tables The fact tables focus on the following aspects:

1. Shifts, in terms of duration and time windows.

2. Payment, in terms of salary.

3. Contract, in terms of duration and type of agreement.

4. Skills training, in terms of duration and type of specialization.

Dimensions There will be three dimensions, with hierarchy “child with exactly one parent” and
they focus on the following aspects:

1. Time

2. Human resource

3. Skills training

Human Resources analytics at Viggo:
warehousing solutions for CSV data

43

CHAPTER 6. DATA WAREHOUSE TIER

6.1.1 Dimensions

There are three dimensions in which the cubes of Viggo data-warehouse are organized:

Calendar

This dimension refers to the time and its hierarchy is organized with a leveling, which is presented
in Figure 6.1.

Day

Week

Month

Quarter

Year

All

Figure 6.1: The hierarchy of calendar dimension.

Human resource

This dimension refers to the employees and its hierarchy is organized with a leveling, which is
presented in Figure 6.2.

Employee

Function

Department

All

Figure 6.2: The hierarchy of human resources dimension.

Skill training

This dimension refers to the skills that Viggo employees possess and its hierarchy is organized
with a leveling, which is presented in Figure 6.3.

Skill

Category

Department

All

Figure 6.3: The hierarchy of skills training dimension.

44 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 6. DATA WAREHOUSE TIER

6.1.2 Measures

There are two kind of measures that Viggo data-warehouse focuses on:

Additive measures The attributes, which can be meaningfully summarized along all the dimen-
sions are the following:

• Employee’s salary

• Shift’s duration

Nonadditive measures The attributes, which cannot be meaningfully summarized across any
dimension are the following:

• Contract’s duration

• Contract’s scale

• Training’s duration

6.2 Conceptual level

The design of a database at the conceptual level aims to create a user-oriented illustration of the
database. This user-oriented representation behaves in a high level of abstraction, since it does
not take any implementation requirements into consideration. This level of abstraction is achieved
by using a conceptual model, which can identify the relevant concepts of the database system at
hand. In this work, the conceptual model, which is used is the entity-relationship model, one of the
most popular conceptual models for database design [6]. The role of an entity-relationship model
is to demonstrate the conceptual view of Viggo data-warehouse. More specifically, it specifies the
real-world entities, which participate in, and the relationships among them. The basic concepts
of an entity-relationship model are presented in Section 6.2.1.

6.2.1 Basic concepts

The building blocks of the entity-relationship model are the following:

Entity

As an entity, any animate or inanimate real-world object can be defined. For instance, in a
airport database, passengers, aircrafts and scheduled flights can be considered as entities. All
these entities have some attributes, which define their identity. In a the same manner, a set of
entities is a collection of the same type of entities. More specifically, a set of entities contains
homogeneous entities, with same attributes and similar values. For instance, a set of passengers
contains all the passengers of an airport and flights contains all the flights that operate in this
specific airport.

Attributes and Keys

As it mentioned above, entities are characterized by their properties, which are called attributes
and these attributes have values. For instance, a passenger entity may have a name, a nationality,
and an age as attributes. Within a set of entities, every entity must be unique and be uniquely
identified. For this purpose, one or more attributes consist a key value, which uniquely identifies
a specific entity among its entity set. For instance, an attribute, which can identify a passenger,
within the set of passengers, is the ID-number of her passport, which is unique world-wide.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

45

CHAPTER 6. DATA WAREHOUSE TIER

Relationship

Two or more entities can be associated with each other and their association is named relationship.
For instance, a passenger “takes” a flight, an aircraft “performs” a flight. In this case, “takes”
and “performs” are called relationships. In the same manner, a set of relationships is a collection
of the same type of relationships. Likewise entities, a relationship can also have attributes. These
specific attributes are called descriptive attributes.

Mapping Cardinalities

The term cardinality defines the arity of entities in an entity set, which can be related with a
number of entities of another entity set via a relationship set.

One-to-one One entity of an entity set A can be affiliated with at most one entity of entity set
B and vice versa.

One-to-many One entity of an entity set A can be affiliated with more than one entities of entity
set B. On the other hand, an entity of entity set B, can be affiliated only with at most one
entity of entity set A.

Many-to-many One entity of an entity set A can be affiliated with more than one entity of
entity set B and vice versa.

6.2.2 ER diagram

The entity-relationship diagram and its concepts are presented below:

Diagram

Figure 6.4 represents the entity-relationship diagram of Viggo data-warehouse.

Figure 6.4: The entity-relationship diagram of Viggo data-warehouse.

46 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 6. DATA WAREHOUSE TIER

Explanation

The Figure 6.4 illustrates the entity-relationship model of Viggo data-warehouse model. The
aforementioned basic concepts are represented via the following visualization:

Entity Entities (or entity sets) are symbolized by rectangles. These rectangles are in the shape
of a table with one column and two rows. The former row indicates the name of the entity
and the latter, the attributes of this specific entity.

Relationship Relationships (or relationship sets) are symbolized by diamond-shaped boxes,
which induce the name of this specific relationship, inside. The entities (rectangles) that
participate in this relationship are attached to diamond-shaped box of this specific relation-
ship by lines. The nature of these lines varies and is explained below.

Relationship and Cardinality Relationships between entities have two potential types; Bin-
ary or Multiple. Binary relationship is a relationship with only two entities participating.
Multiple relationship is a relationship with three or more entities participating. Regarding
binary relationships, the most important factor is the cardinality. More specifically, accord-
ing to a binary relationship, cardinality indicates the arity of an entity that can be associated
with the related to it entity, via this specific relationship.

One-to-one In case when at most one instance of an entity is affiliated with its associated
entity via a binary relationship relationship, then it is marked Arrow Diamond Arrow.

One-to-many When more than one instance of an entity is associated with a relationship,
it is marked Arrow Diamond Line

Many-to-many The following image reflects that more than one instance of an entity on
the left and more than one instance of an entity on the right can be associated with
the relationship. Line Diamond Line

6.2.3 Entities

More specifically, inside the diagram of Figure 6.4 there are 9 set of entities, which are presented
bellow. The underline attributes consist of the primary key of the entity.

Department Indicates the departments of Viggo Eindhoven Airport. Department is a Level
table.
(e.g. Platform Viggo Eindhoven Airport, Cleaning Viggo Eindhoven Airport)
Attributes:

did : Primary key

name : Department’s name (e.g “Platform Viggo Eindhoven Airport”)

Employee Indicates the employees of Viggo Eindhoven Airport. Employee is a Level table.
(e.g. John Smith, John Doe)
Attributes:

eid : Primary key

workercode : Working code of Viggo employees (e.g 0001VC)

name : Employee’s name (e.g “John Smith”)

age : Employee’s age (e.g 18)

student : Employee’s student state (e.g “Nee”)

Function Indicates the functions that the employees of Viggo Eindhoven Airport possess. Func-
tion is a Level table.
(e.g. VC Assistant Cleaning Supervisor, EA Platform Employee 2)
Attributes:

Human Resources analytics at Viggo:
warehousing solutions for CSV data

47

CHAPTER 6. DATA WAREHOUSE TIER

fid : Primary key

name : Function’s name (e.g “EA Platform Employee 2”)

Skill Indicates the skills that the employees of Viggo Eindhoven Airport are trained for. Skill is
a Level table.
(e.g. Towbar Pushback, Bagage tracing procedures course FR)
Attributes:

sid : Primary key

name : Skill’s name (e.g “Towbar Pushback”)

Category Indicates the categories that the skills of set of entities ”Skill” belong to. Category is
a Level table.
(e.g. Platform Employee 1, Passage Security)
Attributes:

cid : Primary key

name : Category’s name (e.g “Platform Employee 1”)

Calendar Indicates the calendar dates from 1/1/2010 to 31/12/2020. Calendar is a Level table.
(e.g. 1/1/2010, 3/1/2010)
Attributes:

date : Primary key - the date in DD/MM/YYYY format (e.g 1/1/2010)

day : Day’s number in year (e.g 365)

dayName : Day’s name (e.g “Monday”)

dayWeek : Day’s number in week (e.g 7)

week : Week’s number in year (e.g 52)

month : Month’s number in year (e.g 12)

monthName : Month’s name (e.g “January”)

quarter : Quarter’s number in year (e.g 4)

year : Year’s number (e.g 2010)

Contract Indicates the contracts that employees of Viggo Eindhoven Airport have signed. Con-
tract is a Fact table.
(e.g. Contract with Cleaning Viggo Eindhoven Airport department, contract Platform Viggo
Eindhoven Airport department)
Attributes:

cid : Primary key

duration : Contract’s duration in days till expire date (e.g 365)

scale : Contract’s salary scale (e.g 3)

zerohours : Contract’s type (boolean) (e.g True)

order : Contract’s order (e.g “2nd contract”)

Payment Indicates the payment that employees of Viggo Eindhoven Airport receive. Payment
is a Fact table.
(e.g. Payment of John Smith on 29th July 2010, Payment of John Smith on 29th June 2010)
Attributes:

pid : Primary key

salary : Payment’s amount (e.g 2010e)

48 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 6. DATA WAREHOUSE TIER

Shifts Indicates the shifts that the employees of Viggo Eindhoven Airport worked or planned to
work. Shifts is a Fact table.
(e.g. 12:00-20:00, 8:30-16:30)
Attributes:

sid : Primary key

duration : Shift’s duration in minutes (e.g 60)

starttime : Shift’s start time as timestamp (e.g 15:30)

type : Shift’s type (e.g “Planned”)

6.2.4 Relationships

In addition, there are 12 set of relationships between these 9 entities:

Function - Department The set of entities “Function” is related to the set of entities “Depart-
ment” with the following cardinality:

• A function belongs exactly to one department.

• A department has at least one or more functions.

Employee - Function The set of entities “Employee” is related to set of entities “Function”
with the following cardinality:

• An employee possesses exactly one function.

• A function can be assigned to zero or more employees.

Category - Department The set of entities “Category” is related to set of entities “Depart-
ment” with the following cardinality:

• A category of skills belongs exactly to one department.

• A department can be have zero or more categories of skills.

Skill - Category The set of entities “Skill” is related to set of entities “Category” with the
following cardinality:

• A skill belongs exactly to one category of skills.

• A category of skills has at least one or more skills.

Category - Function The set of entities “Category” is related to set of entities “Function” with
the following cardinality:

• A category of skills supports zero or more functions.

• A function requires zero or more categories of skills.

Payment - Calendar The set of entities “Payment” is related to set of entities “Calendar” with
the following cardinality:

• A payment took place on exactly one calendar date.

• Om a calendar date, zero or more payments can be done.

Payment - Employee The set of entities “Payment” is related to set of entities “Employee”
with the following cardinality:

• A payment refers exactly to one employee.

• An employee can have already received zero or more payments.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

49

CHAPTER 6. DATA WAREHOUSE TIER

Shifts - Calendar The set of entities “Shifts” is related to set of entities “Calendar” with the
following cardinality:

• A working shift of hours takes place on exactly one calendar date.

• On a calendar date, zero or more working shifts can take place.

Shifts - Employee The set of entities “Shifts” is related to set of entities “Employee” with the
following cardinality:

• A working shift refers exactly to one employee.

• An employee can have zero or more working shifts.

Contract - Calendar The set of entities “Contract” is related to set of entities “Calendar” with
the following cardinality:

• A contract has exactly one calendar date of start.

• On a calendar date, zero or more contracts can start.

Contract - Employee - Department The sets of entities “Contract”, “Employee” and “De-
partment” are related to each other with the following cardinality:

• A contract is singed by exactly one employee.

• A contract is singed by exactly one department.

• An employee has at least one or more contracts signed with a department.

• A department can have zero or more contracts with an employee.

• A contract is valid, until an exactly one specific expire date.

Employee - Skill - Calendar The sets of entities “Employee”, “Skills” and “Calendar” are re-
lated to each other with the following cardinality:

• An employee can have zero or more skills.

• A skill can belong to zero or more employees.

• A skill belongs to an employee, until an exactly one specific expire date.

6.3 Logical level

Conceptual models are beneficial, in terms of database design, since they present the basic con-
cepts of the designed data model, in a simplified manner. However, conceptual models must be
transformed into logical ones, in order to implement a data model view, which is closer to the
database schema. This process takes place at the logical level. At logical level, database design
focus on translating the conceptual model (entity-relational model in this case) into an appropriate
logical model, which can be implemented by a database management system. The most popular
logical model, at present, is the relational model, which is introduced by Edgar F. Codd in 1970
[6] [12]. More specifically, in the relational model of a database, the information is organized
and represented in form of relations (tables), and every relation is in form of tuples (rows with
columns). In order to guarantee a proper logical representation, a set of mapping rules will be
declared. More specifically, by applying these specific rules to a conceptual model, an accurate
logical model, which represents all the aspects that the translated conceptual model indicates, will
be created.

50 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 6. DATA WAREHOUSE TIER

6.3.1 Mapping rules

The rules by which, the conceptual model is translated into a logical one, are the following:

Rule 1 Each entity is translated into a table, with columns all the attributes of this specific
entity.

Rule 2 A relationship between two entities (binary relationship) is translated by the following
rules, depending on its cardinality:

Rule 2a If the relationship is one-to-one, the table corresponding to the fact or to the
child level is extended with all the attributes of the dimension level or the parent level,
respectively.

Rule 2b If the relationship is one-to-many, the table corresponding to the fact or to the
child level is extended with the primary key of the table corresponding to the dimension
level or to the parent level, respectively.

Rule 2c If the relationship is many-to-many, then this relationship is translated into a
table, with columns all the attributes of the relationship plus the primary keys of the
participants to this relationship tables.

Rule 3 A relationship between three or more entities (multiple relationship) is translated by
splitting this specific relationship into binary ones and then by applying the rules 1 and 2.

6.3.2 ER diagram mapped to relational schema

By applying the mapping rules of Section 6.3.1, the following relational model is obtained:

Department (did, name)

Function (fid, name, Department.did)

Employee (eid, workercode, name, age, student, Function.fid)

Category (cid, name, Department.did)

Skill (sid, name, Category.cid)

Calendar (date, day, dayName, dayWeek, week, month, monthName, quarter, year)

Contract (cid, duration, scale, zerohours, order, Calendar.date, Department.did, Employee.eid)

Payment (pid, salary, Employee.eid, Calendar.date)

Shift (sid, duration, starttime, type, Employee.eid, Calendar.date)

Requirements (Function.fid, Category.cid)

Training (Skills.sid, Employee.eid, Calendar.date)

6.4 Physical level

As it has been mentioned in the introduction of this chapter, the database design specifies the
physical storage of the database and all the aspects, which secure a certain level of performance
of this specific database application [6]. Within this report, the physical design will focus on the
application, which builds the database and how database is filled. The reason is the fact that, the
database, which is illustrated, is not an OLTP database but an OLAP and, as a result, there is
no need for analysis in terms of query and transaction processing.

The DBMS which is chosen to store the Viggo data is an instance of MySQL 5.7.12, with
the following system characteristics:

Human Resources analytics at Viggo:
warehousing solutions for CSV data

51

CHAPTER 6. DATA WAREHOUSE TIER

OS Linux 4.4.0-28-generic, Ubuntu 16.04 LTS

CPU 4x Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz (862.589MHz)

RAM 11.72GB

The platform, which is used to implement and manage the DBMS is the Workbench 6.3. More
specifically, MySQL Workbench 6.3(Version 6.3.6 build 511 CE, 64 bits) Community edition has
been installed.

The final form of the Viggo’s data warehouse is presented in Figure

Figure 6.5: The entity-relationship diagram of Viggo data-warehouse after reverse engineering
process on physical level.

52 Human Resources analytics at Viggo:
warehousing solutions for CSV data

Chapter 7

OLAP & Front-end tier

This chapter illustrates the OLAP and the Front-end tiers of Viggo data-warehouse. The OLAP
tier is consisted of an OLAP server, which builds a multidimensional view of the data inside the
data warehouse. On the other hand, the Front-end tier consists of the visualization end of the
OLAP tier and offers tools that can help the user to project the contents of the data warehouse.
Within this project, the implementation of the OLAP and the Front-end tiers is achieved with
the use of icCube 5.2. Thus, in this chapter, an attempt has been made to introduce icCube
server. More specifically, in Section 7.1, the basic characteristics of icCube server are presented.
In Section 7.1.1, the communication of icCube server with the data warehouse tier is elaborated
and Section 7.1.2 explains the manner in which the OLAP cubes are built inside icCube server.
Section 7.1.3 is a gentle introduction to MDX query language and its main concepts. Regarding
front-end tier, Section 7.2 illustrates icCube’s web reporting tools and Sub-Section ?? presents
some outputs, which prove the concept idea of Viggo’s data warehouse according to the problem
statement.

7.1 IcCube server

The platform icCube is an engine for data analysis and data visualization purposes. This engine is
characterized by high performance and, as it mentioned above, is in a form of a multidimensional
OLAP server. The most common use case of icCube lies in the field of business intelligence. More
specifically, icCube can be used, as an analysis tool, to get insights from data that are stored across
multiple sources, such as databases and spreadsheets. In addition to the OLAP server, icCube
features an additional Web Reporting server, which operates over the OLAP and implements the
front-end tier of the data warehouse, by providing interactive charts and dashboards [2].

7.1.1 Communication with Data warehouse tier

The icCube server provides multiple options to implement the OLAP tier. No matter the approach,
the implementation consists of selecting one or multiple data sources, such as databases or flat
files. Because of the fact that relational databases are the most popular data sources in icCube,
the platform has no limitation about the number of database sources that can be used for the
creation of this OLAP tier [2]. This means that data from multiple databases can be combined to
create a cube.

Within this project only one DBMS is used, so there is no use of this feature. Regarding the
supported technology, icCube supports any database with a jdbc driver. As a result, DBMS’s such
as Oracle, SQL Server, Postgres, Sybase ASE and MySQL are supported. Apart from that, the
output of SQL queries on these specific databases can be used as a data source. This feature of
icCube can be used in combination with the multiple databases use, in the case of Youforce data
source, if this product is supported with a jdbc driver in the future.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

53

CHAPTER 7. OLAP & FRONT-END TIER

7.1.2 Cube builder

As it mentioned in Chapter 2, the core of the OLAP tier is the cube. In relation with this, icCube
server can considered as a container of cubes. These cubes can be created with the use of the “Cube
Builder”. This module provides assistance during the creation of the OLAP schema via a modern
graphical interface. More specifically, via “Cube Builder”, the user can define all the necessary
needed components of a schema, such as the data sources, the dimensions, the hierarchies and the
calculated members. Among these components, the most important are the dimensions and the
facts [2].

7.1.3 Cube querying

This section describes the cube querying process with the use of icCube server. More specifically,
for cube querying there is a query language for Multidimensional Expressions (MDX) and it is in
form of SQL. This specific language supports also calculations in a similar manner as spreadsheet
formulas. The following paragraphs consist a gentle introduction regarding MDX and its main
concepts [2].

Overview

The name “MDX” stands for “Multi-Dimensional Expressions” and is the standard querying
language for querying OLAP servers, defined by Microsoft. The syntax of the MDX queries look
similar to SQL. However, MDX is a totally different language. SQL has been designed in order to
query relational data structures, where information is organized into rows and columns. On the
other hand, in OLAP structures, information is organized into measures, dimensions, hierarchies,
and levels. As a result, there is a need of a different approach. MDX is a query language, which
can operate over OLAP structures and it includes a broad set of functions for statistical analysis.
In contrast with SQL, MDX cannot manipulate information but only can read and analyze data
[2].

Concepts

Because of the fact that OLAP servers usually import their data from relational databases, SQL
can be used sometimes to describe MDX functionality. As a table and its columns are the building
blocks of SQL queries, in the same manner, dimensions, hierarchies, and levels, are the main
concepts in MDX [2].

Let’s consider the following example: Within Viggo, there is a need of some charts for the HR
and the financial departments and the information we have is as follows:

• John Smith received 5000 euros in January 2016 as a EA Platform Employee.

• John Smith received 4000 euros in February 2016 as a EA Platform Employee.

• John Doe received 3000 euros in January 2016 as a VC Assistant Cleaning Supervisor.

• John Doe received 4000 euros in February 2016 as a VC Assistant Cleaning Supervisor.

With this example, the concepts of ’Payment’, ’Employee’, ’Function’ and ’Time’ are intro-
duced. Within an OLTP database, this model can designed with one table per concept and then
the foreign keys can be related into another tables. In MDX ’Employee’, ’Function’ and ’Time’
are modeled as dimensions and the ’Payment’ as a measure. It must highlighted that measures
in MDX are different than dimensions and they have numeric values. The concrete value of a
dimension (e.g. “EA Platform Employee”) is a member of this specific dimension and it is similar
to the value of an SQL table. Thus, an OLAP cube can be considered as a collection of dimen-
sions, which index a list of measures. In this example there are three dimensions (’Employee’,
’Function’ and ’Time’) and one numeric measurable quantity (’Payment’). It obvious that in real
life business problems in Viggo there will be many more dimensions and measures.

54 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 7. OLAP & FRONT-END TIER

To elaborate the upper information an MDX query is presented in Figure 7.1, which results a
table with the amount of payments per function and per month. In order to compute some statistics
with this data, the information is enriched with additional details. Precisely, the functions are
organized into a graph (Department, Role, Function) the years into semesters and months (Year,
Semester, Month).

SELECT
([Department] . [Role] . [Function] . members) ON 0 ,
([Year] . [Semester] . [Month] . members) ON 1

FROM
[Payment]

Figure 7.1: MDX query example

In this manner, the cubes regarding HR and BA processes are retrieved, in order to be presented
via icCube reporting tools.

7.2 Web reporting tools

The front-end tier of Viggo’s Data warehouse has been implemented also with the use of icCube.
More specifically, icCube provides a web reporting tool, which is allows the user to create graphs
and charts, regarding the cubes of OLAP server. This reporting tool is in a form of a web
application and therefore is physically accessible via a URL of OLAP server’s domain. Inside
this web application, there are lot of graphs, which can visualize the data of the OLAP server.
Within this work, the charts, which are used are implemented with the use of D3.js library. This
JavaScript library makes available the use of CSS3, HTML, and/or SVG, in order to manipulate
the input data-set in terms of visualization. In addition, the represented elements of the data-set
can be interactive through the use of D3.js data-driven transformations and transitions. D3.js is
written in JavaScript and uses a functional style, which means that the code can be reused in
the future with specific functions to heart’s content. In the following sub-sections the charts that
are used in the front-end tier of Viggo data warehouse are presented. Something that must be
mentioned is the fact that the numbers on the charts are fictional and do not represent real facts.
The overview of icCube web reporting tool is presented by the Figure 7.2.

Figure 7.2: Web reporting tool overview.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

55

CHAPTER 7. OLAP & FRONT-END TIER

7.2.1 Bar chart

Bar charts are one of the most common ways to visualize data. Their advantage is the fact that
they are quick in terms of information comparison and revealing highs and lows at a glance. In
addition, bar charts are especially effective, when there are numerical data, which are split nicely
into different clusters and, as a result, trends about the data can be easily identified.

Figure 7.3: Bar chart regarding payment in Viggo
Cleaning department.

Figure 7.4: Bar chart regarding payment in Viggo
Cleaning department, per function.

Advantages:

• Comparing data across clusters. Examples: Amount of employees per function, amount of
payments per department, contract renewals per year.

• Multiple bar charts on a dashboard help the viewer to quickly compare related information
instead of flipping through a bunch of spreadsheets or slides to answer a question.

7.2.2 Line chart

Line charts are one of the most frequently used chart type. Line charts connect individual numeric
2D data points. The view is a simple, straightforward way to visualize a sequence of values as a
trend, over a period of time.

Advantages:

• Viewing trends in data over time. Examples: expenses for employees over a year period,
contract renewals during a five years period, revenue growth by quarter.

Figure 7.5: Line chart regarding payment in
Viggo Cleaning department.

Figure 7.6: Line chart regarding payment in
Viggo Cleaning department, per function.

7.2.3 Bullet chart

Bullet charts are ideal for progress tracking according to a set goal. At its heart, a bullet graph
is a variation of a bar chart and it has been It was designed to replace dashboard gauges, meters
and thermometers, because these means of visualization do not display sufficient information.

Advantages:

• Evaluating performance of a metric against a goal. Examples: Evaluating contract renewals
against a goal of a specific amount of renewals, actual payments against budget.

56 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 7. OLAP & FRONT-END TIER

Figure 7.7: Bullet chart regarding payment in
Viggo Cleaning department.

Figure 7.8: Bullet chart regarding payment in
Viggo Cleaning department, per function.

7.2.4 Heat map

Heat maps are a great way to compare data across two categories using color. The effect is the
quick observation of the intersection of the categories is strongest and weakest and of a distribution
of events over a time or spatial area.

Advantages:

• Observation of event distribution. Examples: Segmentation analysis of payments per semester,
segmentation analysis of training events over a semester.

Figure 7.9: Heat map regarding payment in Viggo Cleaning department, per date.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

57

Chapter 8

Conclusions

This work aims the design and the implementation of a fully centralized data repository for HR
and BA analytics. More specifically, the concept idea of this thesis is the production of a data
warehouse solution for Viggo. This data warehouse has been built after a 7 month research, which
consists of theoretical and experimental studies. During this period of time, some conclusions
have been made, regarding data warehousing solutions, terms of proof of concepts and potential
work. In the following sections, these conclusions are presented from an organizational and from
an academic perspective.

8.1 Organizational

From an organizational perspective, the state of Viggo will be analyzed. Viggo is a multilevel
company, which operates in airport handling business field. This field requires scheduling at the
finest level, otherwise the expenses for the company can sum into multi-thousands euros. As a
result, logistics play an important role in Viggo’s everyday life. The tools that assist scheduling
in the market are many, but Microsoft Excel is the most popular among all. The use of this
specific tool produces hundreds of spreadsheet per year and because of the reasons, which has
been introduced in Chapter 2, HR and BA departments face difficulties to make fast and accurate
decisions, regarding the development of Viggos manpower.

With the use of a data warehouse system, which transforms the raw information into meaningful
charts, Viggo can easily produce solutions regarding decision making with low cost and without
the need to switch into a new scheduling system. Moreover, the available OLAP server in the
market, can utilize the views of the stored information, in a manner, which can unmask problems
or give answers to difficult dilemmas.

8.2 Academic

From an academic perspective, data warehousing is a very broad topic and, as a result, there are
a lot of issues, which can be discussed. For this reason, the analysis will be clustered according
to the tiers of a data warehouse. Regarding the data sources of a data warehouse and the ETL
process, the main conclusion is the need of standards for CSV spreadsheets. Spreadsheets are
very popular inside business community, because of their availability and simplicity. However,
this simple model causes a lot of issues when there is a need of data retrieval. The reason is the
freedom of the user to store the information, without following any schema rules, such as relational
model and this makes any assumption of data structure impossible. Latest technology can offer
solution with the use of Data Mining and Query Languages, but even none of these solution can
fit to any ETL requirement.

In terms, of data storage, relational database can fulfill the most of the obligations. The
advantages when a relational database is used are the following:

Human Resources analytics at Viggo:
warehousing solutions for CSV data

59

CHAPTER 8. CONCLUSIONS

Well-known Each computer and data scientist is trained and aware of using a relational database.
More specifically, they know the fundamentals of a typical SQL database and they can use
it with almost no training in the most of the cases.

Mature Relational databases have already passed the rough tests of a new technology. There
are plenty of drivers and tools, which can connect them with the rest of the applications
and communities which can support the users. Moreover, there are no political issues which
should be taken into account regarding their use.

Still popular Taking into account that Facebook in year 2015 still uses a SQL database for the
storage of millions of records, we understand that a relational database can still support the
needs of an application, which intends to deal with big data.

At the highest tiers of a data warehouse system, OLAP servers can provide decent and efficient
solutions for Multidimensional structures. More specifically, the implementation of the OLAP and
the Front-end tiers have already become a trivial process and the newest versions of these tools
provide solutions even for the Back-end tier in terms of ETL process.

8.3 Future Work

Since this work is a newborn product, there are a lot of parameters, which could be improved, in
order to offer a better overview to business and academic community.

8.3.1 Organizational

From an organizational perspective, the future steps of Viggo will be analyzed. Viggo can set
short-term and long-term targets. A short term target, which should be implemented is the set
of standards, regarding CSV spreadsheets, within the company. More specifically, there is a big
amount of spreadsheets, which have been implemented for the same purpose but because of the
fact that the editor are different employees, their structure is different. As mentioned in Chapter 1,
since it is difficult for Viggo the shift to appropriate contemporary software solutions and because
of the fact that spreadsheets are normally created by individuals, who have different educational
background and not any knowledge about data management, within Viggo there is a big amount of
personalized spreadsheets. If Viggo provides spreadsheet templates and directions for spreadsheet
development to its employees, then there will be at least a standard per spreadsheet and a potential
for some automated processes regarding ETL process. A long-term target can be the shift to a
decent piece of software, which will provide better management of the stored to the spreadsheets
information. One step further, can be the total elimination of spreadsheets from Viggo’s processes
and their use will be limited only for personal or inner group use. Instead of spreadsheets, there
can be an investment on systems, which are specified into specific tasks, such as scheduling, human
resource etc. This option is more expensive, but, on the other hand, is more functional and it
will assist the employees. Moreover, the data management of this systems can assist Viggo’s data
warehouse to provide better insights for the organization.

8.3.2 Academic

Regarding academic community, the future steps of this work should focus on Back-end and on
Data warehouse tiers. Regarding Back-end tier, CSVQL should become an ordinary query lan-
guage and not remain a MySQL implementation. This decision requires the design of a grammar,
which will implement the syntax of the language and will define query’s clauses. The evolution of
CSVQL can be split into phases.

Phase A Design of Extraction tasks.

Phase B Design of Transform tasks.

60 Human Resources analytics at Viggo:
warehousing solutions for CSV data

CHAPTER 8. CONCLUSIONS

Phase C Design of Loading tasks.

Therefore, at the end of Phase C, CSVQL will be an ETL tool, which can implement the Back-end
tier of Viggo’s data warehouse.

Regarding Data warehouse tier, a study can take place about NoSQL data stores and data
warehousing. A lot of research has been published for the advantages of NoSQL data stores as
OLTP data stores. Thus, it would be an interesting future project, a research regarding the
capability of NoSQL to fulfill OLAP requirements. The requirements of data warehousing evolve
and the evolution of needs demands the evolution of solutions.

Human Resources analytics at Viggo:
warehousing solutions for CSV data

61

Bibliography

[1] DB-Engines Ranking. http://db-engines.com/en/ranking/, Retrieved in September 2016. 17

[2] icCube Suite. http://www.iccube.com/iccube-suite/, Retrieved in September 2016. 17, 53,
54

[3] MySQL User Account Management. http://dev.mysql.com/doc/refman/5.7/en/user-
account-management.html, Retrieved in September 2016. 14

[4] Raet official website. http://www.raet.nl/, Retrieved in September 2016. 21

[5] The 3rd most common button in data apps is... http://www.powerpivotpro.com/2012/03/the-
3rd-most-common-button-in-data-apps-is/, Retrieved in August 2016. 2

[6] Alejandro Vaisman & Esteban Zimanyi. Data Warehouse Systems. Springer, 2014. 1, 6, 7,
9, 14, 15, 45, 50, 51

[7] Alkis Simitsis. Modeling and Optimization of Extraction-Transformation-Loading (ETL)
Processes in Data Warehouse Environments, 2004. Dissertation thesis. 23, 24, 25

[8] B. Scalzo. Oracle DBA Guide to Data Warehousing and Star Schemas. Prentice Hall PTR,
2003. 23

[9] Bin Liu, H.V. Jagadish. A Spreadsheet Algebra for a Direct Data Manipulation Query Inter-
face. ICDE ’09 Proceedings of the 2009 IEEE International Conference on Data Engineering,
pages 417–428, 2009. 11

[10] Denizon Team. Spreadsheet Risks in Banks. https://www.denizon.com/, 2016. Retrieved in
August. 2

[11] Denizon Team. Top 10 Disadvantages of Spreadsheets. https://www.denizon.com/, 2016.
Retrieved in August. 2, 3

[12] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communication of
the ACM, 13(6):377–387, 1970. 50

[13] Eirik Bakke, David R. Karger. Expressive Query Construction through Direct Manipulation
of Nested Relational Results. SIGMOD ’16 Proceedings of the 2016 International Conference
on Management of Data, pages 1377–1392, 2016. 11

[14] G.V.Siva Krishna. Anovel approch of eye tracking and blink detection with a human machine.
International Journal of Advancements in Research and Technology, 2(7), 2013. 42

[15] Henryk Rybinski. On first-order-logic databases. ACM Transactions on Database Systems
(TODS), 12(3):325–349, 1987. 14

[16] Hugo Shebbeare - Microsoft MVP, SQL Server: Systems Administration. Database
Security Best Practices for the Vigilant Database Administrator and Developer. ht-
tps://technet.microsoft.com/, Retrieved in September 2016. 14

Human Resources analytics at Viggo:
warehousing solutions for CSV data

63

BIBLIOGRAPHY

[17] Juliana Freire, Boris Glavic, Oliver Kennedy, Heiko Mueller. The Exception that Improves
the Rule. Proceedings of the Workshop on Human-In-the-Loop Data Analytics, (7), 2016. 10

[18] Marcelo Arenas, Francisco Maturana, Christian Riveros, Domagoj Vrgoc. A framework for
annotating CSV-like data. Proceedings of the VLDB Endowment, 9(11):876–887, 2016 . 10

[19] Mark Everett Hall. Managing Information in the Enterprise: Perspectives for Business Lead-
ers. Forbes Insights, 2010. 13

[20] Michael S Engel. The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae:
Apis). Journal of Hymenoptera Research, 7-8, 1992. 41

[21] Triantos Konstantinos. NoSQL database systems for professional football analytics. 2016.
Eindhoven University of Technology, Capita Selecta Seminar. 14, 26, 38

[22] W3C. CSV on the Web: A Primer. http://www.w3.org/, Retrieved in September 2016. 9,
10

[23] Zhe Chen, Michael Cafarella. Integrating Spreadsheet Data via Accurate and Low-Effort
Extraction. KDD, 20:1126–1135, 2014. 10

64 Human Resources analytics at Viggo:
warehousing solutions for CSV data

Appendix A

Data Load script

In this section, the script, which transforms a CSV file into a MySQL table, is presented. The
functionality of this script, which is implemented in JAVA and is consisted of two classes, is
presented in Section 5.3.

A.1 CSVQL.java

package c svq l ;

/∗∗
∗
∗ @author Konstantinos Tr iantos
∗/

pub l i c c l a s s CSVQL {

/∗∗
∗ @param args the command l i n e arguments
∗ @throws java . lang . Exception
∗/

@SuppressWarnings (” r e s ou r c e ”)

pub l i c s t a t i c void main (S t r ing [] a rgs) throws Exception {

LoadCSV loadCSV1 = new LoadCSV(”CSVQL/ f i l e s /Samples/Sample1 . csv ”) ;
}

}

Listing A.1: The public class CSVQL

Human Resources analytics at Viggo:
warehousing solutions for CSV data

65

APPENDIX A. DATA LOAD SCRIPT

A.2 LoadCSV.java

package c svq l ;

/∗ ∗∗ ∗/
/∗∗ import l i b r a r i e s ∗∗∗ ∗/
/∗ ∗∗ ∗/

import com . opencsv . CSVReader ;
import java . i o . F i l e ;
import java . i o . Fi leReader ;
import java . s q l . Connection ;
import java . s q l . DriverManager ;
import java . s q l . SQLException ;
import java . s q l . Statement ;
import java . u t i l . ArrayList ;
import java . u t i l . Arrays ;
import java . u t i l . L i s t ;

/∗ ∗∗ ∗/
/∗∗ c l a s s LoadCSV ∗∗ ∗/
/∗ ∗∗ ∗/

pub l i c c l a s s LoadCSV {

/∗ ∗∗ ∗/
/∗∗ Var iab l e s ∗∗ ∗/
/∗ ∗∗ ∗/

// JDBC dr i v e r name and database URL
s t a t i c f i n a l S t r ing JDBC DRIVER = ”com . mysql . jdbc . Dr iver ” ;
s t a t i c f i n a l S t r ing DB URL = ” jdbc : mysql : // l o c a l h o s t :3306/CSVQL?useSSL=f a l s e ” ;

// Database c r e d e n t i a l s
s t a t i c f i n a l S t r ing USER = ” root ” ;
s t a t i c f i n a l S t r ing PASS = ” root ” ;

p r i va t e f i n a l F i l e c s v f i l e ;
p r i va t e Lis t<St r ing []> c e l l s ;

/∗ ∗∗ ∗/
/∗∗ Constructor ∗∗ ∗/
/∗ ∗∗ ∗/

LoadCSV(St r ing i n p u t f i l e) throws Exception {

System . out . p r i n t l n (”Loading from CSV f i l e i n to database j u s t s t a r t ed . . . ”) ;

t h i s . c s v f i l e = new F i l e (i n p u t f i l e) ;

inputData () ;

connectDatabase () ;

System . out . p r i n t l n (”Loading from CSV into database f i n i s h e d .\n”) ;
}

/∗ ∗∗ ∗/
/∗∗ Import data from CSV ∗∗∗ ∗/
/∗ ∗∗ ∗/

p r i va t e void inputData () throws Exception {

System . out . p r i n t l n (”Reading from input f i l e ”+ c s v f i l e . getPath () . t oS t r i ng ()
+” . . . ”) ;

66 Human Resources analytics at Viggo:
warehousing solutions for CSV data

APPENDIX A. DATA LOAD SCRIPT

c e l l s = new ArrayList<St r ing [] > () ;

/∗ For norma l i az t i on o f the tab l e ’ s row count ing (s t a r t from 1 and not from
0) , we add t h i s l i n e in the beg in ing ∗/

St r ing norma l i za t i on [] = {” norma l i za t i on ” , ” norma l i za t i on ” } ;
c e l l s . add (norma l i za t i on) ;

/∗
∗ the 0(zero) i n d i c a t e s the l i n e which the r e t r i e v a l s t a r t s
∗ CSVReader (Reader reader , char separator , char quotechar , i n t l i n e)
∗/
CSVReader reader = new CSVReader (new Fi leReader (c s v f i l e . toPath () . t oS t r i ng ()

) , ’ , ’ , ’ ” ’ , 0) ;

/∗ Read CSV l i n e by l i n e and use the s t r i n g array as you want ∗/
St r ing [] nextLine ;
whi l e ((nextLine = reader . readNext ()) != nu l l) {

i f (nextLine != nu l l) {

/∗ For norma l i az t i on o f the tab l e ’ s columns count ing (s t a r t from 1
and not from 0) , we add t h i s ext ra s t r i n g in the beg in ing ∗/

St r ing record = ” normal i zat ion , ”+Arrays . t oS t r i ng (nextLine) .
r e p l a c eA l l (” [\ \ [\ \]] ” , ””) ;

c e l l s . add (record . s p l i t (” , ”)) ;
}

}

System . out . p r i n t l n (”Reading from input f i l e ”+ c s v f i l e . getPath () . t oS t r i ng ()
+” f i n i s h e d . ”) ;

}

/∗ ∗∗ ∗/
/∗∗ Connect to Database ∗∗ ∗/
/∗ ∗∗ ∗/

p r i va t e void connectDatabase () {

Connection conn = nu l l ;
Statement stmt = nu l l ;

t ry {

//STEP 2 : Reg i s t e r JDBC dr i v e r
Class . forName (”com . mysql . jdbc . Dr iver ”) ;

//STEP 3 : Open a connect ion
System . out . p r i n t l n (”Connecting to CSVQL database . . . ”) ;
conn = DriverManager . getConnect ion (DB URL, USER, PASS) ;
System . out . p r i n t l n (”Connected to CSVQL database s u c c e s s f u l l y . . . ”) ;

//STEP 4 : Execute a query DELETE TABLE
System . out . p r i n t l n (”De le t ing tab l e ”+c s v f i l e . getName () . sub s t r i ng (0 ,

c s v f i l e . getName () . l ength () − 4)+” in CSVQL database . . . ”) ;
stmt = conn . createStatement () ;

S t r ing s q l = ”DROP TABLE IF EXISTS ”+c s v f i l e . getName () . sub s t r i ng (0 ,
c s v f i l e . getName () . l ength () − 4) ;

stmt . executeUpdate (s q l) ;
System . out . p r i n t l n (”Table ”+c s v f i l e . getName () . sub s t r i ng (0 , c s v f i l e .

getName () . l ength () − 4)+” i s de l e t ed in CSVQL database . . . ”) ;

//STEP 5 : Execute a query CREATE TABLE
System . out . p r i n t l n (”Creat ing tab l e ”+c s v f i l e . getName () . sub s t r i ng (0 ,

c s v f i l e . getName () . l ength () − 4)+” in CSVQL database . . . ”) ;
// stmt = conn . createStatement () ;

Human Resources analytics at Viggo:
warehousing solutions for CSV data

67

APPENDIX A. DATA LOAD SCRIPT

s q l = ”CREATE TABLE ”+c s v f i l e . getName () . sub s t r i ng (0 , c s v f i l e . getName () .
l ength () − 4)+” ” +

” (csvrow INTEGER not NULL, ” +
” csvcolumn INTEGER not NULL, ” +
” csvva lue VARCHAR(255) , ” +
” PRIMARY KEY (csvrow , csvcolumn)) ” ;

stmt . executeUpdate (s q l) ;
System . out . p r i n t l n (”Created tab l e ”+c s v f i l e . getName () . sub s t r i ng (0 ,

c s v f i l e . getName () . l ength () − 4)+” in CSVQL database . . . ”) ;

//STEP 6 : Execute a query INSERT RECORDS
System . out . p r i n t l n (” I n s e r t i n g r e co rd s in to the tab l e ”+c s v f i l e . getName

() . sub s t r i ng (0 , c s v f i l e . getName () . l ength () − 4)+” . . . ”) ;
f o r (i n t i = 1 ; i < c e l l s . s i z e () ; i++) {

f o r (i n t j = 1 ; j < c e l l s . get (i) . l ength ; j++) {

s q l = ”INSERT INTO ”+c s v f i l e . getName () . sub s t r i ng (0 , c s v f i l e .
getName () . l ength () − 4)+” ” +

”VALUES (”+i+” , ”+j+” , ’ ”+c e l l s . get (i) [j] . tr im ()+” ’) ” ;
stmt . executeUpdate (s q l) ;

//System . out . p r i n t l n (i + ” ,” +j+ ” ,” +c e l l s . get (i) [j]) ;
}

}
System . out . p r i n t l n (” In s e r t ed r e co rd s in to the t ab l e ”+c s v f i l e . getName ()

. sub s t r i ng (0 , c s v f i l e . getName () . l ength () − 4)+” . . . ”) ;

//STEP 7 : Execute a query CREATE INDEXES
System . out . p r i n t l n (”Creat ing index rowINDEX on ”+c s v f i l e . getName () .

sub s t r i ng (0 , c s v f i l e . getName () . l ength () − 4)+” tab l e in CSVQL
database . . . ”) ;

s q l = ”CREATE INDEX rowINDEX\n” +
”ON ”+c s v f i l e . getName () . sub s t r i ng (0 , c s v f i l e . getName () . l ength () −

4)+” (csvrow) ” ;

stmt . executeUpdate (s q l) ;
System . out . p r i n t l n (”Created index rowINDEX on ”+c s v f i l e . getName () .

sub s t r i ng (0 , c s v f i l e . getName () . l ength () − 4)+” tab l e in CSVQL
database . . . ”) ;

System . out . p r i n t l n (”Creat ing index columnINDEX on ”+c s v f i l e . getName () .
sub s t r i ng (0 , c s v f i l e . getName () . l ength () − 4)+” tab l e in CSVQL
database . . . ”) ;

s q l = ”CREATE INDEX columnINDEX\n” +
”ON ”+c s v f i l e . getName () . sub s t r i ng (0 , c s v f i l e . getName () . l ength () −

4)+” (csvcolumn) ” ;

stmt . executeUpdate (s q l) ;
System . out . p r i n t l n (”Created index columnINDEX on ”+c s v f i l e . getName () .

sub s t r i ng (0 , c s v f i l e . getName () . l ength () − 4)+” tab l e in CSVQL
database . . . ”) ;

} catch (SQLException | ClassNotFoundException se) {
} f i n a l l y {

// f i n a l l y b lock used to c l o s e r e s ou r c e s
t ry {

i f (stmt != nu l l) {
conn . c l o s e () ;

}
} catch (SQLException se) {
}// do nothing
try {

68 Human Resources analytics at Viggo:
warehousing solutions for CSV data

APPENDIX A. DATA LOAD SCRIPT

i f (conn != nu l l) {
conn . c l o s e () ;

}
} catch (SQLException se) {
}

}
System . out . p r i n t l n (”Goodbye ! ”) ;

}
}

Listing A.2: The public class LoadCSV

Human Resources analytics at Viggo:
warehousing solutions for CSV data

69

Appendix B

CSVQL experiment results

This section presents the results of the experimental study in Section 5.4. More specifically, there
are two tables: the former regarding the results of CSVQL scalability experiment with primary
index and the latter regarding the results of CSVQL scalability experiment with secondary index.

B.1 Primary index

Table B.1: Results of CSVQL scalability experiment with Primary index

One Join Two Joins Three Joins Four Joins Five Joins Six Joins Seven Joins Eight Joins
1st experiment 0.003 0.0019 0.002 0.0022 0.0021 0.002 0.0021 0.0022
2nd experiment 0.0035 0.0022 0.002 0.0022 0.0021 0.0021 0.0022 0.0059
3rd experiment 0.0023 0.002 0.002 0.0022 0.002 0.002 0.0025 0.0043
4th experiment 0.0018 0.002 0.002 0.0019 0.0024 0.0019 0.0034 0.0044
5th experiment 0.0019 0.002 0.0022 0.0024 0.0022 0.002 0.0021 0.0022
6th experiment 0.004 0.0018 0.0022 0.0021 0.002 0.002 0.0021 0.0048
7th experiment 0.0021 0.0019 0.0021 0.0023 0.0026 0.0021 0.0021 0.0042
8th experiment 0.0023 0.0024 0.002 0.0021 0.0024 0.0021 0.0021 0.0021
9th experiment 0.0024 0.0021 0.003 0.0029 0.002 0.0019 0.002 0.0043
10th experiment 0.0035 0.002 0.002 0.002 0.0021 0.0028 0.0022 0.0022

B.2 Secondary index

Table B.2: Results of CSVQL scalability experiment with Secondary index

One Join Two Joins Three Joins Four Joins Five Joins Six Joins Seven Joins Eight Joins
1st experiment 0.0035 0.0062 0.0027 0.0023 0.0086 0.025 0.118 1.033
2nd experiment 0.0032 0.0023 0.001 0.0027 0.0047 0.014 0.108 1.087
3rd experiment 0.0015 0.002 0.002 0.0022 0.011 0.021 0.137 1.074
4th experiment 0.0032 0.0017 0.0021 0.0029 0.0072 0.02 0.186 1.081
5th experiment 0.0018 0.0028 0.00077 0.0037 0.0043 0.014 0.115 1.028
6th experiment 0.0017 0.0017 0.0024 0.0014 0.0054 0.026 0.174 1.052
7th experiment 0.0023 0.0038 0.0028 0.0044 0.0025 0.014 0.145 1.031
8th experiment 0.0019 0.0037 0.00083 0.0033 0.0096 0.023 0.122 1.082
9th experiment 0.0017 0.0024 0.0012 0.001 0.0058 0.026 0.172 1.038
10th experiment 0.00223 0.0013 0.001 0.001 0.0057 0.042 0.114 1.104

70 Human Resources analytics at Viggo:
warehousing solutions for CSV data

	Contents
	List of Figures
	List of Tables
	Introduction
	Current state of art
	Problem statement
	Thesis contribution
	Thesis outline

	Preliminaries
	Database management systems
	Data warehouse concepts
	Data warehouse architecture
	Data sources
	Back-end tier
	Data warehouse tier
	OLAP tier
	Front-end tier

	Management of Comma-Separated Values data
	Definition
	Data querying

	Data warehouse overview
	Solution
	Benefits of data warehouses
	Data warehouses as spreadsheets overuse cure
	Data warehouses as data repositories

	Viggo data warehouse
	Architecture
	Data sources
	Back-end tier
	Data warehouse tier
	OLAP tier
	Front-end tier

	Data sources analysis
	Viggo Shift Rosters
	Functionality
	Schema

	Viggo Training Managers
	Functionality
	Schema

	Youforce database
	Functionality
	Schema

	Back-end tier
	ETL process
	Global problems and constraints
	Extraction & transportation
	Transformation & cleaning
	Loading
	ETL in Viggo

	CSVQL
	Clauses overview
	SELECT
	FROM
	WHERE
	OUTPUT
	Querying Viggo Training Manager

	CSVQL Implementation
	Concept idea
	Implementation architecture
	Data Load script
	Query MySQL mapping

	Experimental study
	Scenario
	Experiment set-up
	Implementation
	Experiment results

	Data warehouse tier
	Design assumptions
	Dimensions
	Measures

	Conceptual level
	Basic concepts
	ER diagram
	Entities
	Relationships

	Logical level
	Mapping rules
	ER diagram mapped to relational schema

	Physical level

	OLAP & Front-end tier
	IcCube server
	Communication with Data warehouse tier
	Cube builder
	Cube querying

	Web reporting tools
	Bar chart
	Line chart
	Bullet chart
	Heat map

	Conclusions
	Organizational
	Academic
	Future Work
	Organizational
	Academic

	Bibliography
	Appendix
	Data Load script
	CSVQL.java
	LoadCSV.java

	CSVQL experiment results
	Primary index
	Secondary index

