EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Algebraic differential attacks on symmetric cryptography

Lukas, K.A.Y.
Award date:
2016

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/171d61e3-2c1c-4410-a135-5ac8c2573bef

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computer Science

Master’s thesis
Algebraic differential attacks on
symmetric cryptography
by

K.AY. Lukas (0758084)

Supervisors:
prof. dr. J. Daemen,
prof. dr. T. Lange

Secondureader:
dr. B. Skoric¢

Nijmegen, December 2016

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of
this thesis are original and have not been submitted in whole or in part for consideration for any
other degree or qualification in this, or any other University. This thesis is the result of my own work
and includes nothing that is the outcome of work done in collaboration, except where specifically

indicated in the text.

K.AY. Lukas
December 2016

Abstract

This thesis studies the topic of algebraic differential attacks on symmetric cryptography. In particular,
the effects of cube attacks by Dinur and Shamir [19] on sponge, duplex and farfalle constructions are
researched. All three of these constructions utilize a permutation f to build cryptographic primitives.
The impact of vulnerabilities of the used permutation in a duplex construction is investigated by
performing a cube attack on the PRIMATE permutation family. The PRIMATE permutation family
is used in the PRIMATEs family for authenticated encryption. Farfalle is a construction for building
a pseudorandom function that uses, in addition to a permutation f, an algorithm to encode block
indices. We will show that the encoding algorithm used in farfalle must be chosen carefully, and that
the sequence of encodings generated should not contain large affine subspaces.

Our contribution in this thesis is a cube attack requiring 232 input blocks against one of the
PRIMATES encryption schemes (gibbon), assuming that nonces are reused. By performing attacks on
a reduced-round PRIMATE permutation, we make a prediction of the computational power required
for the attack on gibbon. Furthermore, we present various types of algorithms that can be used to
encode a sequence of block indices that will not contain large affine subspaces. These algorithms are

specifically designed to be used in the farfalle construction to avoid the weakness we identified.

Contents

Declaration iii
Abstract iv
Contents vii
1 Introduction 1
2 Background and Definitions 5
2.1 Background 5
2.2 Definitions 8

3 Sponge and Duplex constructions 15
3.1 Sponge construction Lo e 16
3.1.1 Applications 18

3.2 Duplex construction oL e 19
3.2.1 Applications L 21

3.3 Permutation types L 21
3.3.1 ARX-based 22

3.3.2 S-box-based 22

4 Higher-order differential cryptanalysis 25
4.1 Attack model L 25
4.2 Differential analysis. L e 26
4.2.1 Differential along a vector space oL 29

4.3 Cube attacks 30
4.3.1 Anexample attack 30

4.3.2 Attack procedure 32

4.3.3 Limitations of this attack 0 34

5 Cube attack on PRIMATES 35
5.1 PRIMATEs: an authenticated encryption family 35
5.1.1 Schemes 36

5.1.2 The permutation L 40

viii Contents

5.2 Cube attack on PRIMATES o vt vt vt e it e et e e e 41
5.2.1 Basiccubeattack L Lo 42

5.2.2 Generating linear equations out of quadratic equations 42

5.2.3 Skipping the first SubElements operation 43

5.3 Results. . . . o o 44
5.3.1 Impact on the PRIMATE-family 45

5.3.2 Attack details 46

6 Farfalle: a parallelizable PRF construction 49
6.1 Sketch of the scheme L 49
6.2 Vulnerability: creating an all-zero intermediate state 51
6.3 Countermeasure using the counter encoding, 53

7 Low affine dimensional encoding 55
7.1 Calculating the affine dimension, 57
7.2 Basic multiplicative encodingso L 60
7.2.1 Mathematical properties 61

7.2.2 Experimental results Lo Lo 66

7.3 Logarithmic encodings L e 70
7.3.1 Dealing with even values of |log,(4) +1] 70

7.3.2 Experimental results o 72

7.4 Concatenated encodings oL 73
7.4.1 Mathematical properties L Lo 74

7.4.2 Experimental analysiso oo 78

7.5 Rotation-based encodings L Lo 80
7.5.1 Exponential encoding L L 80

7.5.2 Shifted encoding 81

7.5.3 Smeer encoding L. L 83

8 Conclusion 93
8.1 Future work 94

References 95

Chapter 1

Introduction

Cryptography is the science in which we study secret codes. These secret codes or ciphers trans-
form unencrypted data (plaintext) into ciphertext. This ciphertext can not be read directly without
decrypting it first, decryption transforms the ciphertext into the plaintext again. Cryptography is
often divided into two groups: symmetric cryptography and asymmetric cryptography. Symmetric
cryptography uses a single key for both encryption and decryption. Asymmetric cryptography uses
one key for encryption and another key for decryption. As two different keys are used, a receiver
can publish the key used for encryption (the public key), allowing anyone to send a message to the
receiver, while keeping the key used for decryption private (the private key). This allows the receiver
to be the only one able to decrypt messages. Symmetric cryptography is normally not able to do

this. In this thesis we are concerned with symmetric cryptography only.

When a new symmetric-key cipher has just been designed, it is often not known if this cipher
is secure. The security of these ciphers cannot always be proven mathematically. This makes one
question how our current ciphers are derived and why we consider the mainstream ciphers as se-
cure. Secret-key cryptography has a long standing tradition of selecting secure ciphers by organizing
competitions. These secure ciphers are selected from a wide range of submissions. The scientific com-
munity puts these submitted ciphers under scrutiny by analysing and searching for vulnerabilities for
each cipher. This allows the committee to select secure and well-performing ciphers. An example of
such a competition is the AES competition. This competition was won by the Rijndael cipher (now
called the AES cipher). The aim of this thesis is to provide a contribution to the CAESAR competition.
The CAESAR competition is a competition for authenticated ciphers. The main difference between
the AES competition and the CAESAR competition is that the CAESAR competition is about authen-
ticated encryption schemes while the AES competition was purely for block ciphers. Authenticated
ciphers provide encryption but also provide authenticity assurance on the data. Authenticity assur-
ance means that the receiver can detect if unauthorized changes are made to the message. Often
authenticated ciphers produce a ciphertext as well as an authentication tag. This authentication tag
allows to the receiver to check the ciphertext for authenticity.

In this thesis we contribute to two different ciphers: the authenticated encryption family PRIMATEs
and Keyak. Both ciphers were submitted as a candidate to the CAESAR competition. While this thesis

was being written, the PRIMATEs family was deselected for the current round (round three) of the

2 Introduction

CAESAR competition. Nonetheless, we hope that the result can still be helpful for anyone wanting to
use the PRIMATES family of authenticated algorithms and be helpful for the PRIMATES designers.

To provide a contribution and to analyse these ciphers we will study differential attacks on sym-
metric cryptography. Differential attacks are attacks that exploit relations between differences in-
duced in the input data and differences observed in the output data. This type of cryptanalysis was
first introduced by Biham and Shamir in 1991 [9]. They used this type of cryptanalysis to break
amongst others DES. Biham and Shamir recognized that this type of attack was not specific to DES
and directly applied it to other DES-like system. Differential attacks are together with linear crypt-
analysis the most significant type of attacks on symmetric cryptography [23|. Linear cryptanalysis is
a type of attack that formulates linear relations between the input and output data that hold with a
high probability. The exact process is out of the scope of this thesis, more information can be found
in “Linear Cryptanalysis Method for DES Cipher” by Matsui [31].

By encrypting multiple sets of data we are able to perform a differential attack. This input data
will each time be nearly the same, except for a unique difference from the original data. Afterwards,
we combine the output data in such a way that linear relations between input data and output data
are found. By solving these linear relations we can reconstruct the input data. In chapter 4 a closer

look into differential attacks is given. Formalisms are taken from Seidlova [43].

Ciphers submitted to the CAESAR competition could be developed using various different tech-
niques. Firstly, one can create a whole new cryptographic algorithm providing both encryption and
authentication. This can give performance advantages because calculation of the encryption and the
authentication tag can be combined in an efficient manner. An example of such a submission is
AEGIS [47]. Secondly, a design can be based on a stream cipher. Stream ciphers generate pseudoran-
dom data (called the keystream) using the cryptographic key and the input message. By combining
this pseudorandom data with the input message a ciphertext can be created. This same keystream
(which is dependent on the plaintext data) can be reused to generate an authentication tag. This
gives performance advantages because such a tag is calculated from an already existing keystream.
Examples of such submissions are Keyak and PRIMATEs. Lastly, one can use an already existing block
cipher, which is treated as a black box, and provide a mode to add authentication to this cipher.
Research on these techniques has already been started more than ten years ago [26, 47, p. 2]. An

example of such a submission is AES-OTR [34].

The authenticated encryption family PRIMATEs and Keyak are both based on or very similar to
the sponge and/or duplex construction [7, p.3|[1, p.16]. The sponge and duplex construction are
a relatively new construction introduced in 2011 by the Keccak team [5]. The SHA-3 algorithm (a
subset of Keccak) uses a sponge construction and made them popular [36]. A sponge construction
is a type of construction that allows someone to build an algorithm that accepts any input stream
of finite length and can output an arbitrarily long stream of data. Internally, such a construction
uses a finite state to store information about the input stream. This finite state is combined with
a permutation algorithm to generate an arbitrarily long stream of data. The duplex construction
extends this by allowing the interleaving of input data and output data. Duplex constructions can
be used as stream ciphers. The heart of both of these constructions is the permutation algorithm.
Therefore, we will focus on finding flaws in permutation algorithms. A view into sponge and duplex

constructions is given in chapter 3.

The state of a duplex construction can be used to find information of the data that was output
as well as the data that will be output. The security of a duplex construction relies on the adversary
not knowing the state completely. Thus when there is knowledge about the state it is, in some cases,
possible to find vulnerabilities in the algorithm. Therefore, our differential attack focuses on finding
the state of these algorithms. This is done by performing a differential attack on the permutation of
PRIMATEs. In chapter 4 the attack method is explained and in chapter 5, we document our attack
on PRIMATES.

After we have seen how such differential attacks are performed, some methods to defend against
such an attack are given. We will develop a new defence mechanism by generating a set of block
indices with special properties. This defence mechanism is designed to be used in a novel construction
for parallelizable pseudorandom functions, called farfalle. As we have explained before, differential
attacks work by inserting differences in the data that has to be encrypted/hashed/permuted. The
effect of these differences on the output data are then analysed, which we will use to extract informa-
tion of the input data. Our new defence mechanism works by limiting the possible differences that
can be inserted, by allowing only certain elements to be used. More specifically, we limit the elements
in such a way that the size of the largest affine subspace possible is small. This prevents an attacker
from inserting all vectors from a certain large vector space into the data. Consequently, limiting the
elements in our way is a countermeasure against higher order differential attacks. This is explained

in chapter 7.

Chapter 2

Background and Definitions

In this chapter some background information and definitions used throughout this thesis are given.
Definitions are given in this chapter to create a centralized chapter where all (important) definitions

can be found.

2.1 Background

As described in the introduction, cryptography is the study of secret codes or ciphers. Ciphers are
algorithms that perform encryption or decryption. Encryption allows someone to encode a message
in such a way that only authorized parties can read this message. Encryption will output a ciphertext
C of a message M given a key K. A decryption algorithm can output the original message M given
the ciphertext C' and a key K. Thus using encryption, someone can encode a message in such a way,
that only owners of the key K can read the message. In general, we distinguish two types of ciphers:
symmetric and asymmetric ciphers.

In symmetric ciphers the keys used for encryption and decryption are equal, thus K = K. Asym-
metric ciphers use different keys for encryption in decryption, thus K # K. This means that anyone
that has access to K and thus can encrypt messages, cannot read all messages that are encrypted
with K. A receiver can choose to publish the key K while keeping K secret. This allows anyone
to send a message to the receiver while the receiver is the only one able to read this message. Such
a usage poses some security questions: when K is public, K should not be derivable from K. Due
to these extra requirements, asymmetric ciphers require more computational power than symmetric
ciphers. In a communication protocol, asymmetric ciphers can be used to first negotiate a key to be
used in a symmetric cipher, which is then used to encrypt all messages from then on [17, p. 57]. We
are only concerned about symmetric ciphers in this thesis.

Symmetric ciphers can be divided into various different types. The most common types of sym-
metric ciphers are block ciphers and stream ciphers. Block ciphers are keyed permutations that map
an n-bit block to another n-bit block, in such a way that it is difficult to recover the input from
the output without knowing the encryption key. A block cipher will always encrypt the same block
given the same key to the same output block. A consequence of this is that block cipher can only

encrypt a single block per key securely. If multiple blocks are encrypted separately with the same

6 Background and Definitions

e YT 3 A

M. M1 1,

N
- % %
Block encryption Block encryption Block encryption

¥ |

L u

- —
M,
WHgF

L L .

Figure 2.1 A diagram of the cipher block chaining mode of operation. Each block of M is exclusive-
OR’ed with the previous ciphertext block before encrypting it using a given block cipher.

key, a codebook attack can be performed [11]. To allow the usage of block ciphers for longer messages
consisting of multiple blocks, modes of operation are developed.

Modes of operation are algorithms that use a block cipher to encode messages that are longer than
the block size of a block cipher. A mode essentially ensures, among other things, that whenever two
blocks in the input message are the same the blocks in the ciphertext corresponding to these input
blocks are not the same. An example of such a mode is the cipher block chaining (CBC) mode. This
mode was invented in 1976 and patented by 1BM [21]. CBC encrypts a message M by dividing the
message into blocks M7, My, Ms, ... where the length of each block is equal to the block size of the
cipher. A bitwise exclusive-or operation with an initialization vector IV is then done on the first block
before M is encrypted. This gives C. For any other block M; with ¢ > 1 an exclusive-or operation
is done with the previous ciphertext C;_; before encryption. An illustration of this principle is given
in figure 2.1. By making the encryption of a block dependent on the previous ciphertext, blocks with
the same value will no longer be encrypted to the same ciphertext. Many other different modes of
operation exist.

In contrast to block ciphers, stream ciphers encrypt bits individually [37]. This means that stream
ciphers can encrypt messages of arbitrary length. A stream cipher can encrypt bits individually by
producing a keystream. Each bit is encrypted by combining it with a bit from the keystream using
an exclusive-or operation. It should be noted that modes like cipher feedback (CFB), output feedback
(oFB) and counter (CTR) mode can turn a block cipher into a stream cipher [38]. Therefore, block
ciphers can be used as a building block to build a stream cipher.

Another important concept in cryptography next to encryption, is authentication. While en-
cryption prevents intermediaries to read the message sent, it does not prevent them from modifying
this message. Thus, the receiver does not know if the data has been modified and who sent the
data. In other words, encryption does not provide integrity and authenticity. Methods that provide

authenticity can be distinguished into two groups: MAC algorithms and digital signatures [41].

2.1 Background 7

MAC algorithms were first referenced in a patent in 1972, but were already used for a long time in
the banking community at that moment. MAC algorithms allow the sender to generate a MAC value
using the input message and a shared key K. Both the receiver and the sender must have access to
this shared key K. The receiver can than verify the authenticity of a message by using K and the
given MAC value. For example, the receiver can generate the MAC value of the message itself and
check if this generated MAC value is equal to the MAC value received. MAC algorithms attempt to
make it difficult to change both the message and change the MAC value accordingly without having
access to the key K [41].

Because the sender and the receiver both use the same key to generate and verify the MAC,
it is impossible to prove who generated a certain message. This is because the sender as well as
the receiver can generate correct MACs . In other words, a MAC algorithm does not provide non-
repudiation. Digital signatures on the other hand, do provide this property. Digital signatures were
introduced by Diffie and Hellman in 1976 [18]. Digital signatures use asymmetric encryption to
provide authenticity and non-repudiation. When using digital signatures the sender of a message
has a private key that he or she keeps secret, but it publishes a public key. Using the private key
it can generate a signature of a message. Anyone that has access the public key can then verify the
authenticity of the message. However, to generate a signature of a message one needs to have access to
the private key. As the sender is the only one with access to this private key, it can be proven that the
message was sent by the sender [42]. As with symmetric and asymmetric encryption, MAC algorithms
require less computation than digital signatures and are often preferred when non-repudiation is not
required [41].

MAC values can be generated using hash functions. Hash functions are a class of functions that
maps data of arbitrary size into a bit string of fixed length, often called the digest or the hash
value. Hash functions can be dependent on a key (keyed hash function) or only dependent on the
input message (unkeyed hash function). For usage in MAC algorithms, these hash functions are often

dependent on a key.

Hash functions should also be hard to invert: the input data cannot be reconstructed using the
output data. More formally, this means that given a digest h of a message M, it is infeasible to find
any message M’ such that the digest of M’ is h. This property is called preimage resistant. Moreover,
it is also required that given M and its digest h, it is hard to find an M’ different from M such that
the digest of M’ is also h. This is called second preimage resistant [40]. Besides second preimage
resistant, we also want that it must be hard to find two messages M and M’ that give the same hash

values. Note that in this case M is not chosen beforehand. This is called collision resistance.

Historically, cryptographic hash functions were built from one-way compression functions [39,
p. 3]. One-way compression functions are functions that transform two fixed-length inputs into an
output of the same size as one of the inputs [32, p. 328]. This means that a compression function will
lose information about the two fixed-length inputs. By losing information, compression functions aim
to make it difficult to find the (or any) preimage of the output. Such a compression function is then
used in other constructions, such as the Merkle-Damgard construction, to construct a cryptographic
hash function. This construction is an iterative design and divides the input into blocks equal to the
input length of the compression function (padding the last block if necessary), and then compresses

each block sequentially, combining the output of the previous round with the next block.

8 Background and Definitions

Another application for hash functions is password hashing. Password hashing is a method of
storing passwords used in a system without keeping track of the actual passwords by using a crypto-
graphic hash function. If the database of a system is compromised, this prevents attackers from being
able to login on the system or other systems, as users often reuse the same password (sometimes with
slight modifications). To provide security, it must be hard to generate the preimage of a hash value.
As password are often simple/short and can be brute forced by trying all possible values or a list
of commonly used passwords (dictionary attack), such methods require that generating a hash value
takes a considerable amount of computation. By requiring such a computation, it becomes difficult
to try all possible values.

Hash functions can also be used for other applications than MAC algorithms or password hash-
ing. For instance, cryptographic hash functions can be used to create a cryptographic key derivation
function. Cryptographic key derivation is used to generate secure keys from several data sources. In
various cryptographic algorithms, a key must be of a fixed size. Often, the user of this cryptographic
algorithm has a secret that is not of the size that is needed, either more or less data. To provide secu-
rity, a cryptographic hash function used in cryptographic key derivation should generate a uniformly
random key derived from the secret.

Lastly, cryptographic key derivation functions can be generalized by defining pseudorandom num-
ber generators (PRNG). PRNGs are algorithms generating a sequence of numbers approximating a se-
quence of truly random numbers. These generators are used in many applications: gambling, gaming,
computer simulations and many more. A cryptographically secure pseudorandom number generator
(CSPRNG) is a pseudorandom number generator that can be used in cryptography. This means that
it has more requirements to its randomness. Often such a CSPRNG is slower than a PRNG used in
computer simulations, because of these requirements. CSPRNG can be used to generate uniform keys
from a truly random (but not uniform) source of data, and are in that functionality often similar or
equal to a key derivation function. The difference with a key derivation function, however, is that a
CSPRNG is able to generate an arbitrary number of random numbers.

In this thesis, we will study symmetric encryption schemes that also provide authentication.

2.2 Definitions

Our defence mechanism that will be introduced in chapter 7, is based on an encoding that encodes a
number as a binary string. To be able to define these encodings we need to be able to transform from
elements in the set of natural numbers (N) to binary strings. Binary strings are strings of single bits.
Bits are defined as elements in Fy. We write Fo = {0,1}. We use 0 and 1 instead of 0 and 1 to be
able to distinguish between elements of Fo and N. This is important as addition in N is different from
addition in Fy. We define a function i2bsp that transforms a number into a binary string. bs2ip

transforms binary strings back to numbers.

Definition 1. i2bp (Integer to binary primitive) converts an integer to a binary bit b (b € Fy):

0 ifi is even,

1 ifiis odd.

i2bp(i) =

2.2 Definitions 9

One can see that i2bp gives the least significant bit of the binary representation of an integer.

Definition 2. i2bsp converts an integer i € N to a binary string s € F3 of length d.

S1y-++387,..+,8 ifi < 29,
i2bsp(i,d) = (51 ! o i
error otherwise,

with:

T

sj = 12bp(| 5= 1)-

Definition 3. 2bsp converts an integer i € N to a binary string s € F4 of length d. In contrast to
i2bsp, 42bsp, discards the most significant bits, in case i > 2¢.
42bsp(i,d) = (s1,...,8,...,54d)

with:

55 = 120p(| 355).

Definition 4. b2ip converts a binary element b € Fo to an integer i € {0,1}.

1 ifb=1,
b2ip(b) =
0 otherwise.

Definition 5. bs2ip converts a binary string s € F§ of length d to an integer i € N.
d
bs2ip(s) = Zb?ip(sj) - 24=7,
j=1

To be able to design encodings, we need to be able to concatenate binary strings. Concatenation

is denoted by | and is defined as follows:

Definition 6. Concatenation on two binary strings s € Fg, s’ € Fg/ is defined as follows:
o8 =t cm
with:

!

Siq fi>d

5 otherwise.

Differential cryptanalysis analyses relations between differences induced in the input and differ-

ences observed in the output strings. Differences between two strings can be found when subtracting

10 Background and Definitions

(which is equal to our addition operation in F¢) one string from another. Therefore, we need to be

able to perform addition of two field elements in Fg.

Definition 7. Addition of two equal-length binary strings s, s’ € F4 is defined as follows:
s+ =tecFg,
with:
tj=sj+s;.

In other words, addition on binary strings is the bitwise exclusive-or operation.

In differential cryptanalysis we often use & as the null vector. Furthermore, we use the unit
vectors e; that consists of only one 1. This is because encrypting & allows us to analyse certain

properties of the cipher. Because these are repeatedly used in this thesis, we will define them below.

Definition 8. ¢? is the null element of F with respect to addition (+) and is equal to:
0% =(0,...,0) = i2bsp(0, d).

When d is clear from the context, we sometimes write 0% as €. By e; we denote the it" unit vector
of Fd and it is defined as:
it element
e; =(0,...,0,1,0,...,0)
= i2bsp(297%, d).

Definition 9. Multiplication of a bit b € Fy with a binary string s € FY is defined as follows:

s ifb=1
b-s=
0% otherwise.

Definition 10. Multiplication of two binary strings s, s’ € F$ is defined as follows:
s-s =tcTd,
with:

fr— ».,,
tj=s8;-5;.

In other words, multiplication on binary strings is the bitwise and operation. Of course, addition
of two elements in Z remains the usual addition. Integer multiplication also remains unchanged.

Mathematically, F4 is the d-dim vectorspace over the field Fy with - the componentwise multiplication.

Lastly, we use the rotation operation rol in several encodings.

2.2 Definitions 11

Definition 11. rol (Rotate Left) is an operation on bit strings: FS — F$. Let an s = (s1,...,54) €
F¢ be given, and let an i € N be given.
Then:

TOZ(S,i) = (81_._1', S24iy+++3Sd;S15525 -+, Sz)

The following part concerns affine subspaces in F¢. Affine spaces are an extension of linear
subspaces. To understand affine spaces, we will take a look at some spaces in R3. First, consider the
subspace S of R® = {(x,y,2) : x,y, 2z € R} defined by the solutions to the linear equation y = 0. This
gives S = {(x,0,2) : x, 2 € R}. One can see that S is a subspace of R3, as S contains the zero vector
(0,0,0); the sum of two elements (z1,0, z1), (2,0, 21) € S yields (z1 + 22,0, 21 + 22) € S and for any
(2,0,z) € S and ¢ € R scalar multiplication yields ¢ (z,0,2) = (¢-2,0,c¢- 2z) € S. In figure 2.2a S
has been graphed.

While the linear equation y = 0 induces a subspace, y = 1 does not. If T is the set of solutions
of this linear equation, we have T' = {(z, 1, 2) : z,z € R}. Obviously, (0,0,0) ¢ T. A careful reader
might note that T is the translation of all elements by (0,1,0) in S: T'= {5+ (0,1,0) : §€ S}. This
is illustrated in figure 2.2b. To extend the definition of linear subspaces, we could define (0,1,0) as
the origin of T'. However, this translation vector (0, 1,0) is not unique. For instance, translating S
by (1,1,0) would also yield T":

{(z,1,2) : 2,z € R}

={(z+1,1,2):x2+1,z€ R}

={(x+1,1,2): 2,z € R}
{(1,1,0) + (x,0,2) : &,z € R}
{ g:

1,1,0) +5: 5€ S}.

~—~ o~

This is illustrated in figure 2.2c. Likewise, if we take any ¢ € T then t = (t,, t,,t,) can translate S
to T

/\/é\/-\
+
~
8
~
<
N
+
~~
S
~—
8
+
~
g
W
+
~
S
m
7
—
~
<
I
—_
~—

This means that the origin is not translated to any specific point. In fact, S can be translated to T’

in so many ways that the origin can become any arbitrary point in 7.

In this example, T is an affine space. As with T, in all affine spaces there are no distinguished

12 Background and Definitions

oy=20

(a) (b)

Figure 2.2 An illustration of affine spaces. In figure 2.2a the subspace S induced by the linear equation
y = 0 is shown. In figure 2.2b and figure 2.2c S is translated with two different translation vectors t,
both yielding T' (the set of solutions for the linear equation y = 1). T is an affine space.

origin vectors. Affine spaces are of the form:

for V' a vector space.

Because an affine space does not have an origin, addition does not make sense. However, in our
case we will define our own kind of addition on affine subspaces. This allows us to perform various
proofs in chapter 7. For more information, the reader can read Dodson and Poston [20]. To be able
to define addition of two elements in an affine subspace, we fix a unique element (in fact, any unique
element in the affine subspace is enough). To this end, we introduce an ordering on F4 using bs2ip,

and select the smallest element.

Definition 12. The numerically minimal element o of an affine subspace A C F¢ is the unique

element satisfying:

o€ A
Va € A :bs2ip(o) < bs2ip(a)

Definition 13. Let an affine subspace A C F4 be given and its numerically minimal element be o.
Then the addition of two strings s,s' € A with regard to the affine subspace A, denoted as ® 4 is
defined as:

s@as’ =s+5+o0

0 s also called the origin with respect to @ 4.

2.2 Definitions 13

We will use some functions in this thesis and will need to reason about the image of these functions.

Therefore, we need to define the image of a function:

Definition 14. Let a function f : X — 'Y be given. The image im(f) CY of a function f is defined
by:

im(f) = {f() : ¢ € X}.

Chapter 3

Sponge and Duplex constructions

Sponge constructions are a type of construction, originally used to construct hash functions from
permutations. As stated in section 2.1 originally hash function were built from one-way compression
functions using constructions like the Merkle-Damgéard construction. Sponge constructions offer an
alternative, by allowing usage of one-way compression functions as well as permutations.

Lately, several complications to constructions such as the Merkle-Damgéard construction are found,
as described below. Because hash functions combine arbitrarily large input data into a fixed size
digest, collisions will always occur. Sponge constructions are not different in this matter. However,
in a simple Merkle-Damgard construction it is easy to generate multiple collisions, when a single
collision has been found. For instance, if a certain message pair M and M’ (where the length of M
and M’ are both a multiple of the block length) generate a collision, then the messages M | X and
M’ | X will generate the same digest for any message X. This is because the blocks are digested
sequentially, and when the Merkle-Damgérd construction has processed either M or M’ it is in
the same state. Secondly, a need has risen to generate arbitrarily long digests. For instance, this
allows someone to use one algorithm to generate keys of different sizes. Because Merkle-Damgard
constructions only output a fixed length block, it is not straightforward to generate an arbitrarily
long digest. Sponge constructions are designed, however, to output arbitrary long digests. It is
even possible to output an infinite string of data, which allows sponge constructions to be used as a
PRNG [5].

In contrast to the Merkle-Damgard construction, sponge constructions take a different approach
to building such a hash function: instead of using a compression function, they allow the usage
of a permutation function. In contrast to compression functions, permutations are invertible. To
avoid generating multiple collisions whenever a collision between two input messages is found, sponge
constructions use a state. The state is used to generate the digest. It is desirable that there are
many more possible states than possible digests. If correctly designed, multiple states can generate
the same digest and make it difficult to determine the state from the digest. Under that assumption,
a collision in the digest does not directly imply a collision in the state. Moreover, the size of the state
can be chosen much larger that the size of the digest. This allows the designer to make it very difficult
to find collisions in the state. Furthermore, an arbitrarily long output string can be generated by

repeatedly permuting the state and extracting a part of the state in between the permutations. Again,

16 Sponge and Duplex constructions

because the state can be chosen large enough, the first part of the output string does not determine
the remaining part of the output string. In section 3.1 the sponge construction is explained.

One should take into account that to solve the problem where one collision can be used to generate
multiple collisions more advanced Merkle-Damgard constructions have also been developed. These
more advanced constructions use a finalisation part to compress a larger internal state at the end
of the construction to the required length, simulating the same principle that a sponge construction
uses.

Duplex constructions are an extension upon sponge constructions. In sponge constructions, input
data is first processed before an arbitrarily long data string is outputted. Duplex constructions
allow the input data and the output data to be interleaved. In section 3.2 the duplex construction is
explained. Further uses of the sponge and duplex construction are explained in section 3.1.1 and 3.2.1.

This chapter explains sponge constructions and duplex constructions by summarizing [5].

3.1 Sponge construction

A sponge function h(M,1) is a function that, given an arbitrary but finite bit string M and a length
[, outputs a bit string of length [only dependent on M. It is often required that h(M,1) should be
one-way: it must be hard to reconstruct M using h(M,l). Moreover, we often also require that it
should be hard to find collisions for h.

A sponge construction sponge|f,pad,r] constructs a sponge function given a permutation f, a
padding rule pad and an integer r. Here f is a permutation, i.e. a one-to-one map from bit strings
of length b to bit strings of length b. This length b is implicitly given to the sponge construction,
and is also called the width. Security of the sponge construction is determined by the properties of
f. Informally, the goal is to have the permutation behave as a random oracle. A random oracle
responds to every unique query with a completely random, uniform, response [2]. A random oracle
will, however, always respond to the same query with the same response. As described before, a
sponge construction uses a state. This state is also of length b. pad is a padding rule. A padding
rule pad[z|(|M]) outputs a bit string, such that the length of M | pad[z](|M]) is a multiple of x and
given M | pad[x](|M]) the padding portion of the bit string can be identified and removed, so that
M can be found. The parameter r describes the bit rate of the sponge construction. The bit rate is
the number of bits the sponge construction can absorb in its state before the permutation function
is called. Because the bits are absorbed into the state, the bit rate must be smaller than the width
b: r <b.

A sponge construction sponge|f, pad, r] constructs a sponge function from a permutation as fol-

lows:

e An input M and output length [is given.

The sponge construction uses a state of size b. This state is initialized to the zero bit string:
81 = o’ S Fg

e The message M is padded, such that its length is a multiple of r: M’ = M | pad[r](|M]).

M’ is split into a sequence of n blocks of length r: M’ = M| | M} | ... | M],.

3.1 Sponge construction 17

M

—p> —p> —p> '

Initialization: Absorbing : Squeezing

_——— crop | —

Figure 3.1 A diagram of the sponge construction

e Then the absorbing phase absorbs the blocks into the state. Each block is processed sequen-

tially, by first performing an exclusive or of the block with the state, and afterwards permuting
this state with f. Formally: s; = f(s;—1 + (M;_1 | 0°77)) for 1 <i <n+ 1.

In the squeezing phase the output blocks are generated from the state. This output is
generated from the first r bits of the state. More than r bits can be generated by permuting
the state until enough bits are generated. Formally we have s; = f(s;—1) for ¢ > n + 1. The
output string is denoted by Z = Z; | ... | Z,,, with m = [L]. Each output block Z; can be

derived from the states as follows:

P crop(Sitn,T) if i <m,
crop(Smin,l — (m —1)-r) otherwise,

where

crop((vi,...,vj,...,v4),J) = (v1,...,0;) forv € Fy,5,n €N,j < f.

Note that it is not necessary to remember previous states, and the implementation can repeatedly

calculate the next state, generating the output of each block whenever the state required for a certain

output block is reached. Figure 3.1 illustrates the construction with a diagram. A more detailed and

formal definition of the sponge construction can be found in [5, algorithm 1].

As can be seen in figure 3.1 the last b — 7 bits of the state cannot be read from or written to by

the user. This part of the state is referred to as the inner state, and its width is denoted by ¢ = b—r,

also called the capacity. The first r bits of the state are public and can be read from or written to by

the user, depending on the phase. This part is called the outer state, and its width is the rate r. The

inner state cannot be modified by the user. As the user can only affect the outer state, the user can

only generate a collision if he or she can generate a collision in the inner state. Creating a collision in

18 Sponge and Duplex constructions

the inner state costs in the order of 22 queries when using a general attack. Therefore, to achieve a

security level s, we need to have ¢ > 2-s. As such, ¢ determines the security of the construction [4].

3.1.1 Applications

Sponge functions can be used in wide variety of applications. Some of them are briefly explained in

this section.

Cryptographic hash functions

As described before, hash functions are functions that map bit strings of arbitrary size to data of
fixed size (called hash value). These can be very simple functions and are used in a wide variety of
applications. For instance, hash functions can be used in hash tables for quickly comparing data for
equality. In our case, we are interested in cryptographic hash functions. These functions are made for
usage in cryptography. Sponge constructions can be used in cryptographic key derivation, message
authentication codes and password hashing.

These different applications of cryptographic hash functions have different and possibly conflicting

requirements, as described below.

e For cryptographic key derivation and MAC algorithms calculating the hash should be fast: this

puts less strain on the system using the algorithms.

e In password hashing, passwords are often simple/short and can be brute forced by trying all
possible values or using a list of commonly used passwords. In order to slow down such an

attack, generating a hash value should take a considerable amount of time.

Moreover, it should be hard to generate the input message (in this case, the password) from
the hash value. Furthermore, it should be hard to generate collisions, as this would implicate

that the system would accept multiple passwords.

e In MAC functions the secret key should not be derivable from the MAC. Furthermore, it should
not be possible to modify the input message and use the original hash value to generate a

correct MAC value without having access to the secret key.

e In cryptographic key derivation, the hash value should be generated as uniformly as possible
over the key space. Moreover, the length of the hash value generated should match the key

length required.

More requirements can also be formulated, but that is outside of the scope of this thesis. Many
hash functions can only output a hash of a fixed size. Therefore, it can be difficult to match the
output size of a hash function with the key size of another cryptographic algorithm, when using the
hash function in cryptographic key derivation. Sponge functions do not have this limitation: a hash
of any arbitrary length can be generated.

Furthermore, we have seen that different applications require a computationally efficient or slow
hash function. Often a hash function is only designed to be computationally efficient. To build a
computationally difficult hash function from a fast hash function several methods have been published,

such as PBKDF2 [24]. Moreover, some hash functions are specialized to handle this case: such

3.2 Duplex construction 19

as bcrypt. Sponge functions have this functionality automatically: the algorithm can be used to
generate a hash quickly or slowly. By using a sponge function in the regular way a hash is generated
relatively quickly. To generate a hash in a more computationally difficult manner, a very long hash
can be generated discarding all but the last bits. Because the permutation function must be applied
each time r bits are output, this can be used to increase the number of permutations, and thus the

computational difficulty.

Pseudorandom number generator

Sponge functions can be used to generate random numbers for usage in cryptographic protocols as
a CSPRNG. This requires that the sponge function produces uniformly distributed bits and passes

several statistical tests.

Stream cipher

Stream ciphers generate a keystream that is combined with the input message. As a sponge can
generate an arbitrarily long output, this can be seen as a keystream. Sponge functions can be used

as such a stream cipher by providing the symmetric key as input.

3.2 Duplex construction

As just shown, sponge functions have a great flexibility in their purposes: they can be used as a PRNG,
hash functions, et cetera. Two interesting uses of sponge functions are their application in stream
ciphers and MACs. In some cases we both need a symmetric-key cipher and a MAC. This combination
creates a cipher with authentication, also called an authenticated encryption scheme. This scheme
simultaneously provides confidentiality, integrity, and authenticity. Building such an authentication
scheme directly from a sponge function is impractical. Building a MAC function requires absorbing
all blocks first into the inner state before outputting the MAC. If we use such an approach to build
an authenticated encryption scheme, encrypting a bitstream requires two passes: first to absorb all
blocks into the inner state to generate the MAC, and then to encrypt the blocks by generating the
encryption stream using the symmetric key. This requires twice the amount of computation required
for a stream cipher. The duplex construction solves this problem by allowing both absorption of
blocks into the state as squeezing data out of the state at the same time.

A duplex object D is an interface with a state and one operation: D.duplexing(M,[). Just as
a sponge function, a duplex object has a bit rate ». A duplex object is also dependent on k: the
maximum length of the block that can be absorbed. After creation a duplex objects always starts
in the same state. D.duplexing(M,l) with [< r is a function that, given a finite bit string M
of maximum length & outputs a bit string of length [only dependent on M and the current state
of D. This means that the output is only dependent on all previous M’s that were passed to the
duplex object, including the order. Again, D.duplexing(M,!) should be one-way: it must be hard
to reconstruct M, or any of the other previous blocks passed to D. Moreover, it should be hard to

find collisions between outputs. In practice D.duplexing will output a pseudorandom bit string.

20 Sponge and Duplex constructions

Mo Z M; Z M, Zs

| | L1 I

T v

(p;d) (crop) (Clrop) (p;d)

aabEIENaPEINNaY

N

v
v
v

—/ N —/

Initialization Duplex operation Duplex operation Duplex operation

Figure 3.2 A diagram of the duplex construction

A duplex construction duplex|f,pad,r] constructs a duplex object given a permutation f, a
padding rule pad and an integer r. The meaning of each of these parameters is the same as in the
sponge construction. Moreover, the meaning of inner state and outer state has not changed: the

constructed duplex object has a state size of b =r + c.

A duplex construction constructs and defines the operation on a duplex object as follows:

e A duplex object is constructed with an empty state s = 0% € FS.

e The variable k is set to the maximum length of the block that can be absorbed. k is dependent
on pad, it must be chosen such that M; | pad[r](|M;|) with |M;| < k will always result in a bit
string of length r. Note that pad must be applied to each block M; separately as we allow any
length per block less than or equal to k.

e Whenever a duplexing operation has to be performed on the duplexing object, the following

operations will be performed:

— An input M; and output length [is given, with |M;| < k and | < r;
— The state s is updated: s < f(s+ (M; | pad[r](|M;]) | €°));

— The first [bits of s are output to the user.

In figure 3.2 the construction is illustrated with a diagram. A more detailed and formal definition
of the sponge construction can be found in [5, algorithm 2].

It is interesting to note that a duplex construction is in various ways similar to a sponge con-
struction, that is, most security properties applicable to sponge constructions are also applicable to

duplex constructions. Lemma 1 formalizes some of these similarities.

3.3 Permutation types 21

Lemma 1 (Duplexing-sponge lemma). If we denote the input to the it call to a duplex object (Mj,1;)

and the corresponding output by Z; we have:
Z; = D.duplezing(M;,1;) = sponge(M, | pad, | Ms | pady | ... | M;, 1))
with pad; a shortcut notation for pad[r](|M;]) [5, p. 3].

Please note that M, is not padded in lemma 1 when used as an input to the sponge construction.
This is because the sponge construction itself will pad M; and if we would pad M; ourselves, then it

would be padded twice.

3.2.1 Applications

Duplex objects can be used in place of sponge functions, as they can perform at least the same
functionality as sponge functions. Most of the extra functionalities provided by a duplex function

are more advanced versions of the functionalities provided by a sponge function.

Reseedable pseudorandom number generator

As described earlier, a sponge function can generate cryptographically secure random numbers. Often,
a PRNG is seeded with data generated by a truly random source. Often, such a truly random source
can only generate a limited amount of data in a certain time frame. However, after using the PRNG
for a while, this truly random source may be able to generate more truly random data. By allowing
input messages while simultaneously generating output, a duplex function can act as a reseedable

pseudorandom number generator: new entropy can be added to the state while in use.

Authenticated encryption

As mentioned at the start of section 3.2, a duplex construction can be used to provide authentication
and encryption at the same time. That is, it can be used to create an efficient authenticated encryption
scheme [33].

3.3 Permutation types

For most cryptographically secure sponge or duplex constructions, f is often chosen to be a permu-
tation. A permutation is a bijective function, in this case mapping bit strings of some length to bit
strings of the same length. The design of the permutation function determines the security of the
sponge or duplex construction.

It should be considered, that f does not need to be a permutation. In fact, the best known
general attack to find secondary preimages has a lower order when f is a permutation than when f is
a non-injective transformation. Therefore, sponge constructions with f a non-injective transformation
might be preferred when designing a hash function and do exist [3]. On the other hand, other general

attacks have a higher cost when f is a permutation. Nonetheless, for general purpose usages both

22 Sponge and Duplex constructions

permutations as non-injective transformation can be equally secure, as the strongest general attack
against both types has the same order [22].

In 1945, Claude Shannon reported two important properties a cryptographic function should
have: confusion and diffusion. Confusion seeks to make the relationship between the statistics of the
ciphertext and the value of the input as complex as possible. Diffusion seeks to make a single input
digit affect, in general, a lot (statistically a half) of the output bits [45]. It might be possible that a
single input affects only some bits or even only one bit, but this should be a rare occurence.

Another important property that the permutation function should have is non-linearity. This
means that each output bit cannot be defined by only performing an exclusive-or on some of the
input bits. This is important because a linear permutation can be attacked by generating a linear
system from its inputs and outputs and performing Gaussian elimination. The attacks described in

this thesis are roughly based on such an approach.

3.3.1 ARX-based

ARX stands for algorithms that rely on modular Addition, Rotation and eXclusive-or. ARX algorithms
are fairly attractive in the area of lightweight cryptography and anywhere where simplicity and
efficiency is required. Furthermore, ARX provides some defences against hardware attacks such as
cache-timing and side-channel attacks [12].

In ARX, modular addition provides non-linearity [27]. Unfortunately, while ARX algorithms can
provide a good level of security, their methods of analysis are limited. This makes it hard to design
such an algorithm without relying on a lot of heuristics [12].

Several general attacks have been formulated for ARX-based algorithms. The branch of cryptog-
raphy concerning these attacks is called Rotational Cryptanalysis. Techniques that are universally
applicable to any ARX algorithm exist, however the complexity of such an attack depends on the
number of ARX operations. This means that such an attack is not feasible for all types of ARX
algorithms. As a side note, any cryptographic algorithm can actually be implemented using modular
addition, rotation and exclusive-or operations, but this attack is not feasible for all cryptographic
algorithms [27].

3.3.2 S-box-based

S-box-based(Substitution-box-based) algorithms rely on S-boxes to provide non-linearity. S-boxes
transform a relatively small number of bits (relative to the input size). When S-boxes are used to
build a permutation they are bijective mappings and are designed in such a way that the relation
between the input and output is complicated. A designer of a cryptographic primitive has a lot of
freedom by being able to specify any bijective operation, as the designer can specify the output for
each specific input. Designing a good S-box with a lot of input bits is difficult, however. Moreover,
an S-box is often implemented using a lookup-table to avoid using too many operations. This limits
the number of input/output bits an S-box uses [35]. For instance, the well known AES S-box uses only
8 input bits. Such an S-box operation is then commonly applied side-by-side on all input bits, such
that bits 0-7 are in the same S-box, the bits 8-15 in the same S-box, et cetera. Applying the S-box

side-by-side is often called the SubBytes operation, the SubElements operation or similar. When

3.3 Permutation types 23

an S-box is implemented using a lookup-table, the algorithm using this S-box can be susceptible to
cache-timing and side-channel attacks.

Therefore, an S-box does provide confusion, but the input to the S-box only affects a limited
number of output bits (that is, at most the output size). In this case, the other operations should
mix the output bits so that a certain part of the input can affect any output bit. These operations
often provide no non-linearity. Because an S-box provides non-linearity on a limited number of input
bits, an S-box is often applied multiple times after a diffusion layer is applied. This is commonly
done using rounds.

This thesis is mostly interested in S-box-based permutations.

Mathematical view on S-box

Because exclusive-or (with a variable or a constant) and logical and operations are together function-
ally complete, any mapping in F can be built using addition and multiplication. If each output bit
of an S-box is seen as a combination of exclusive-or and logical and operations, these functions can
be seen as polynomials in Fo. Because the degree of a polynomial in F5 is limited by the number of
input bits, the degree of these S-box is limited.

Because the other operations are linear, the degree of these S-box-based permutations is dependent
only on the number of SubElements operations in the permutation. In this thesis, we will exploit the
low degree of an S-box-based algorithm and formulate attacks on its permutations. Not all S-box-
based algorithms are vulnerable to our attack: this depends on the polynomial degree of the S-boxes
and the number of rounds in the algorithm.

In contrast, generally modular addition operates on a larger number of bits. While modular
additions can also be modelled by a polynomial in Fy the degree is most often sufficiently high.
On the one hand, this makes analysis harder because this produces high degree polynomials with
a certain structure. Attacks on these operations exist because of the limited possible polynomials
using modular addition. On the other hand, attacks based on a low degree when modelling these

polynomials in Fo are infeasible.

Chapter 4

Higher-order differential cryptanalysis

As mentioned in chapter 1, differential attacks are together with linear cryptanalysis the most sig-
nificant type of attacks on symmetric cryptography [23]. Linear cryptanalysis is a type of attack,
that formulates linear relations between the input and output data that hold with a high probability.
The exact process is out of the scope of this thesis, more information can be found in [31]. Differ-
ential attacks are attacks that exploit relations between differences induced in the input data on the
output [8].

As we have seen in chapter 3 on page 23 all functions can be represented as polynomials in Fs.
Moreover, the degree of permutations based on S-boxes are often low. In this chapter we formulate
a general attack on S-box-based permutations used in duplexes. The attack is based on the work of
Lai [30] and Seidlova [43]. In this chapter we will formulate our attacker model, briefly summarize the
findings by Seidlova and specify the attack. In chapter 5 the attack is applied to the PRIMATES family
of permutation-based authenticated encryption algorithms for lightweight applications: PRIMATEs is
a submission to the CAESAR competition. While this thesis was being written the PRIMATEs family

was rejected from round three of the CAESAR competition.

4.1 Attack model

In chapter 3 duplex and sponge function were explained. In this chapter, a general attack on duplex
functions using permutations will be formulated. Whether the formulated attack is successful on the
duplex function depends on properties of the permutation: the degree as will be explained below, the
capacity and the rate of the duplex function.

Our attack follows the chosen plaintext attack (CPA) model. Because CPA models are often
formulated for block ciphers, we will formulate below under which assumptions our attack is made.

Firstly, a duplex object is attacked. In our setting, the duplex object has a certain secret inner
state. The goal is to determine this inner state. We assume that we have no information about
this inner state, and thus, cannot read from the inner state. We can, however, read the outer state.
Furthermore, we can write to the outer state by performing duplexing calls to the duplex object. By
performing duplexing calls, we can also read the outer state after a duplex call has been made. We

assume that we can set the duplex state to a certain state multiple times, for instance by controlling

26 Higher-order differential cryptanalysis

all input that is given to the duplex function. Lastly, it is assumed that the attacker knows the inner
workings of the permutation function and can perform offline calculations while having complete
control over the permutation function.

To illustrate why these capabilities are needed, an overview of our attack is given below. Our

attack can be divided in three phases:

e Offline phase, in this phase the attack is prepared. This phase is not dependent on the
internal state about which we need to find information. Therefore, this attack can be run on
a local computation system. The output of the offline phase are linear equations that generate
information about the inner state. This phase is the most computationally-complex phase. In
this phase the permutation is analysed and thus requires an implementation of the permutation

that can be run locally on a computer.

e Online phase, in this phase duplexing calls are made to the initial duplex object (that is, the
duplex object with the secret inner state). The input that is given to the duplexing calls will

be chosen in the offline phase. The outputs of the duplexing calls are saved.

e Solving phase, in this phase the outputs of the duplexing calls made in the online phase
are combined with the linear equations of the offline phase. The offline phase specifies linear
equations between combinations of inputs and combinations of outputs produced by the duplex

object. This linear system is solved, giving the inner state.

4.2 Differential analysis

The state of a duplex function with rate r and capacity c is a sequence of b = ¢ + r bits. Mathemat-
ically, a duplex function D has a state s € F3, and uses a permutation f : F} — F3. The state s can
be written as s = (s1,...,8) = (@1,...,,01,...,0:). Then a = (a1,...,a,) is the outer state of
sand 8= (f,...,3.) is the inner state.

An attacker can only read and write to the «; values of s and calculate other states by performing

f(s). The permutation f(s) generates a new state. In our analysis we split f(s) per bit:

f(s) = (f1(s), .-, fis), -, fu(s));

where f; : Fg — .

As we mentioned in chapter 3, all functions can be constructed using exclusive-or and logical and
operations. As these operation are equivalent to addition and multiplication in Fy, we can write f;
as a polynomial. Such a polynomial f; consists of a summation of multiple monomials. A monomial
is the product of a number of input variables. In Fs this means that a monomial is a logical and

operation applied to a series of input bits. In Fy we will write a monomial m(z) : F — Fy as:

m(s) = i, * Siy + ... 8, = s,

where H = {iy,...i;} is the index set. Each index must be between 1 and b. As a shorthand, we
write I; for all indices between 1 and b. Thus, I;’ ={1,...,b} and H C I;'. Any polynomial can

4.2 Differential analysis 27

be written as the sum of monomials. The form in which we write our polynomials is referred to as

the algebraic normal form [13, p. 79]. In algebraic normal form we write f; as:

fl(s): Z tHSHv

HCIT,

with ¢ € Fo. Essentially, ¢t is a boolean constant that determines if s™ is a term of fi- Please note

that f; can also have a constant value, this is encoded as tg.

By performing summation while varying various input variables, we can reduce the degree of f;.

For instance, write f; as follows:

fi(s) = Z trst

HCT)

= > taoppsT 0 YT tys”
HCT\{1} HCT\{1}

= 51 - Z t(HU{l})SH+ Z tHSH

HCT\{1} HCT\{1}

= s1-p(s) +q(s),

with p(s) and ¢(s) independent of s;. We have split f; into two parts: one dependent on s; and one

independent of s;.

To simplify the notation we repeat the definition of the zero vector &' and the unit vectors e;.

6=(0,...,0)

7t element
—~

e; =(0,...,01,0,...,0)

We can extract p(s) by changing only the first bit of s and performing an addition of the evaluations:

fi(0,89,...,80)+fi(1,52,...,8n)
=0-p(0,52,...,8,) +¢q
1-p(1,s2,...,80) +q(1,52,...,5)
=0-p(s)+q(s)+1-p(s)+q(s) (p(s), q(s) independent of s1)
=p(s) +(1+1)-q(s) = p(s).

Sp, (0,89,...,8,)+
Sn

By extracting p(s) from f;(s), we are effectively reducing the degree: if the degree of f;(s) = d then

the degree of p(s) must be equal to or smaller than d — 1.

This can be done in the same manner for other bits. Take p(s) and ¢(s) independent of bit j and
such that:

fi(s) =55 - p(s) +q(s).

28 Higher-order differential cryptanalysis

For simplicity we introduce the differential notation ¢;:

6;(fi)(s) = fi(s +0-¢;) + fi(s +1-¢;)

= fi(s1,...,8j-1,8; +0,8j41,...,80) + fi(s1,...,8j-1,8; + 1,841, .-, Sn)

= fi(s1,...,8j-1,0,8541,...,8n) + fi($1,-..,8j-1,1,8j41,...,Sn)

=0-p(s)+q(s) +1-p(s) +q(s)

= p(s)

= > taogys™ (4.1)
HC(Z,\{j})

The differential operator J; can also be applied to the function f = (f1,..., f»). The same properties
then hold, but ¢z will be in the set F} instead of Fo. Obviously, we need to apply the differential
over multiple bits to generate a linear equation. To this end, let a set G = {g1,..., i, .-, gm} C N,

1 < g; < n be given and we define:

06 (fi)(s) = 04 (09 (- - 9, (fi) - -))(5)
= Z t(HUg)SH. (42)

HC(ZI\G)

By choosing G appropriately, dg(f;) can be linear. However, to formulate an attack, we need to
be able to determine the representation of d¢(f;). Essentially, this means that we need to determine
the values of tz. Firstly, we should note that ¢ = (0,0,...,0) is 0 except when H = @. When H

is @, s becomes the empty product, which is 1. This gives a way to retrieve tg:
fi(0) =ta.
To retrieve other tg’s we can combine this approach together with applying d¢:

6c(fi)(0) = Z tarue) O

HC(Z,\G)

=tg. (4.3)
One can also calculate t(gu(;)) when ¢ is known by using the following observation:

éc(fi)(ej) = ta +tau- (4.4)

Because the computation difficulty of d¢ doubles when the number of elements in G increases by one,
this trick can halve the computation time. We did not use this trick in our implementation, as we

discovered this observation in a late stage.

By generating linear equations and determining the representation of these equations, we can
build a linear system. Building this linear system will be explained in section 4.3.2. Elaborate proofs

of these statements are omitted in this paper and one can read [30] or [43] for more information.

4.2 Differential analysis 29

Lastly, to simplify the notation we define for f = (f1,..., fp):

5a(f) = (6a(f1), - -, 0a(fo))-

4.2.1 Differential along a vector space

Up to now, we only considered differentials along a set of input variables: the input variables specified
can be varied independently. For completeness, we will have to note that this theory can also be
extended to differentials along a vector space. This allows some more advanced attacks. In our
differential attack we do not need this more generalized approach. To be able to translate our
¢ function to a function that does calculate the differentials along vector spaces instead of input

variables, we define the vector space Wy generated by varying the bits indexed by the set H:

Wy =span({e, : h € H}).

In ‘Higher Order Differential Analysis of NORX’ [16] the derivative along a vector space is defined

as follows:

Definition 15. The derivative of function f : FS — Fy with respect to a linear subspace V of Fb is
defined as

Avf(s) = f(s+wv).

veV

There exists an equivalence between Ay f(s) and dg(f)(s) for V = Wg:

5c(f)(s) = Awe f(s).

Moreover, Ay f reduces the degree of f in the same manner as the § operator:

Theorem 1. Let V be a vector space in F and f : FS — Fo a function. Then:
deg(Ay f) < deg(f) — dim(V).

/43, Theorem 19].

Calculating the polynomial representation of Ay f(s) is done in the same manner as for o f(s):

30 Higher-order differential cryptanalysis

(07 07 1) (07 17 1)

(1,0,1)

(1,0,0) (1,1,0)

Figure 4.1 The cube represented by Wg € F3 with G = {1,2,3}.

Theorem 2. Let f :Fy — Fy be a function and

Avf(s)= Y tus"

HCT,f

its deriative along the linear space V. For any H C I;r, 1t holds that

Awy, (Av)(O) =0u(Av)(O) if VNWy ={0}

0 otherwise.

tg =

/48, Theorem 17].

Proving these properties of Ay is more difficult than proving the properties of d¢, but the idea

is the same. These theorems are proven in [43].

4.3 Cube attacks

As seen above, we can generate linear equations, by applying the dg function multiple times for
different values of G. If we take a look at the values in W, we see that Wg represents all points
in |GJ-dimensional hypercube. The attack then uses the sum of the result of each vertex in the
hypercube [19, p. 3]. An illustration of this can be seen in figure 4.1. Therefore, following Dinur and
Shamir we call attacks using the §g function cube attacks.

We will illustrate the attack by applying it to an example and then specify the steps required to

perform such an attack.

4.3.1 An example attack

Let f = (f1, f2, f3, f1a) be a permutation on F3. Let f be some permutation of degree 2. Let

f = (f1, f2). By applying the techniques described in this chapter, we will find information about

4.3 Cube attacks 31

the inner state. We will attack a duplex construction D using f, with parameters r = 2 and ¢ = 2.
The first step is to generate linear equations. This is done by choosing a set G (in our case |G| = 1)
and calculating the representation using equation (4.3). We write the polynomial representation of

f = (f1, f2) as + tys™ and the representation of fi as 4 t() gH H where ty = t(l),t@) .
HCT; HCT] H>lH

In our attack, we can choose G = {1} and calculate the representation of dg(f1) and dg(f2). This

is done by using equation (4.3). In our case, suppose we find the following results:

by = <t§i},tﬁ}> = 0a()(0) = [(0) + [(e) = (1,1)
troy = (1) {1 o) {1 2}) = dcugey())(O) = F(O) + fler) + flea) + fler +e2) = (1,1)
taay = (8] {1 ap {1 V0y) = dcus (H(0) = F(0) + Fler) + Fles) + Fler +es) = (1,0)
tay = (t4 t74) = dau (H(0) = F(0) + fler) + flea) + fler +ex) = (0,0)

This gives us the following linear equations:

31 (f1)(s) = dc(f1)(O) + 61(0c(f1))(O) - 51+ 62(dG (f1))(O) - s2+
33(6G (f1))(O) - s3 + 04(0c(f1))(O) - 54
=) + 0 s+t sty s+t s
=1+1-59+1-535+0- 54
=1+ 52+ s3,
61(f2)(s) = 0c(f2)(O) + 61(6c(f2))(O) - s1 + 62(6c(f2))(O) - s2+
33(6¢(f2))(O) - 53+ 04(0c(f2))(O) - 54

e (2)
=ty + 051 1]

2y 52+ Ly sty s
=1+4+1-59+0-53+0-34

:1+82

Note that 6, (6¢(f1))) and & (6c(f1))) are both 0 as dg(f) is independent of s;. This can be seen
in equation (4.1) and theorem 2. Unfortunately, d1(f2) does not provide any information about the
inner state because s3 and s4 are not involved. Therefore we try another G, to find another linear

equation. Choose G = {2} and suppose we find:

tzy = 0a(f)(0) = f(0) + f(e2) = (0,0)
tga1y = Saugiy(F)(0) = F(O) + flea) + fler) + flea + €1) = (1,1)
tra,3) = Scugsy(F)(0) = F(O) + flea) + fles) + flea + e3) = (0,0)
t(o.ay = cuay (F)(O) = F(O) + flea) + flea) + flez + es) = (0,1)

This gives us the following linear equations:

32 Higher-order differential cryptanalysis

Again, d2(f1) does not provide any information about the inner state. We choose to drop this equation
as it is not useful for our purposes. In the following steps, we could still use the equations of d2(f1)
and 61(f2), there is just no use for it. In our implementation of this attack, we do not drop these
equations, as calculating the values of these equations in the next step is essentially free, as we must
calculate &, (f) and d5(f) to find 01 (f1) and da(f2). Just keeping these values around is easier from
a programming perspective. In this example, however, we drop them and we get the following linear

equations:

61(f1)(s) =s2+s3+1
(52(f2)(5) = 81 —+ Sa —+ 0

Note that we can only read from the first 2 bits, so we can only consider linear equations found by
analysing f; or fo. The output of f3 and f4 cannot be read directly. Furthermore, we cannot directly
write to the last 2 bits, so d3 or d4 cannot be calculated, because we cannot control the value of s3 or
s4. Moreover, s; and sy are known. To use these linear equations to generate an attack, we formulate

the linear system in the form M -z = y. This gives:

10 s3 1 S2\ 01(f1)(s)
<o 1) | () " <0> " ()) <6z<f2><s>>
=

1 0) S3 . (51(f1)($)+1+82
0 1 S4 N (52(,]02)(8)4—04—81 .

So we have:

y— 01(f1)(s) +1+ s
6o(fa)(s) + 0451/

So to find s3 and s4 of an arbitrary state, we just need to:

calculate d1(f1)(s), 02(f2)(s);

calculate y. Note that s; and s, are known;

solve the linear system M - x = y to find z;

e 1 contains the values for s3 and s4.

4.3.2 Attack procedure

Suppose we attack a duplex construction produced by the permutation f, with rate r, capacity ¢ and

width b. As we mentioned above, our attack procedure has three phases:

4.3 Cube attacks 33

Offline phase, here we generate linear equations and calculate their polynomial representation.
This phase does not require to usage of the actual state, and can be reused for every attack. Various
sets G'1,Ga, ..., Gy must be chosen, such that dg; (fi)(s) for i < r are linear functions and reveal
information about 8 = (s;y1,5,42,...,5). Because dg;(f;)(s) for each i < 7 can be calculated
together, we generate r linear equations per set G;. Please note that all values in G; must be at

most r, because we cannot set the values of the inner state. Write these linear equations as:
M-z2=o0+d+ M, - .
Here x is a vector of unknowns:

ST+1

Sr+c

o is the output of the dg(f;)(s) functions and will be determined in the next phase, depending on
the state.

dc, (f1)(s)

601 (fr)(s)
06, (f1)(s)

dc,, (fr)(s)

d are the constant values of each linear equations, « are the values that will be known when attacking
the state (the outer state):

The linear terms in the equations are split into the known and unknown terms. The known terms

will be written to M, the unknown terms will be written to M.

Lastly, the sets G1,Ga, ..., G, must be chosen such that rank of M is ¢, otherwise not all inner

state values can be correctly determined. We will select the sets adaptively.

Online phase, in this phase we are given the duplex construction with some state s. The first
step is to manipulate the outer state values and calculate dg,(f;) by applying the definition given
in equation (4.2). Furthermore, by reading the outer state of s, we can derive the value of . In

summary, we calculate o and « in this phase.

Solving phase, this phase uses the information collected in the previous phases to derive the inner
state. Firstly, we can calculate M, -c. Combining this with the vector o (the dg, (f;) calculated in the

online phase) and ¢ gives the constant vector b = 0o+ d+ M, - . Then apply a Gaussian elimination

34 Higher-order differential cryptanalysis

method to solve the equation M -z =y for z. The value of x is the inner state 8 = (Sy41,...,5).

4.3.3 Limitations of this attack

Fortunately for permutation-based duplex constructions, this type of attack will not always work.
Firstly, theorem 1 gives a good indication about how the ds function affects the degree of a boolean
function f. If the degree of f is d, then the degree of dg(f) can be at most d — |G|. Because G can
only contain bits in the outer state, |G| has a maximum value of r. Thus if the degree d of f is bigger
than r, there is a high probability no linear equations can be found.

A second factor that affects the success of this attack is the actual polynomial representation. As
seen in theorem 1, the maximum degree of dg(f) is deg(f) — |G|. However, there is no reason that
there exists a G such that deg(f) — |G| is 1, so we might not be able to find a G that makes d¢g(f)

linear. To illustrate this, let 7 = 5 and ¢ = 5. Define the following boolean function f:
f(S)281~82~86~S7+83~S4~Sg~89+85~86~810-81.

Because each monomial in f is dependent on 2 bits in the inner state of s, we cannot generate linear
equations with G C {1,2,3,4,5}. In our research presented in chapter 5, this problem actually
occurred while attacking the PRIMATEs family of permutations. However, using some clever tricks,
we could circumvent this problem. Therefore, it is not advised to rely solely on such a defence against

this attack. Applying similar tricks might allow attackers to bypass this defence.

Chapter 5

Cube attack on PRIMATES

In this chapter, we will describe a cube attack performed on the family of authenticated encryption
algorithms called PRIMATES.

PRIMATEs uses duplexes to provide authenticated encryption. Firstly, we will describe how a
duplex object is used to provide authenticated encryption in PRIMATEs. Afterwards, we describe
the permutation used in the duplex object. Then we will describe our attacks performed on the
permutation and the results of these attacks. Lastly, the impact of this attack on the PRIMATES
algorithm is given. The PRIMATEs family is defined in [1].

5.1 PRIMATEs: an authenticated encryption family

The PRIMATEs family of authenticated encryption defines several algorithms to provide authenticated
encryption. The algorithms defined are generated by a scheme and a security level 5. The scheme
is a mode of operation that defines how the duplex function is used to provide encryption. This
scheme can be APE, HANUMAN or GIBBON. The security level defines the size of the permutation, or
more specifically the capacity of the permutation (the rate of the permutation stays the same). The
security level can be either 80 or 120 bits. The permutations used in the schemes are called PRIMATE.
PRIMATE has four different variants called pi, p2, p3 and ps. The exact definition of those four
variants will be given in section 5.1.2. Each variant has a 80 bit version, which is called PRIMATE-80,
and a 120 bit version, which is called PRIMATE-120. Thus in total eight versions of the PRIMATE
permutation are defined. The inverse of p; will be denoted with p;” 1A full authentication scheme is
notated as scheme-§ where § is the security level, for instance APE-120, denotes the APE scheme used
with a security level of 120 bits.

The size, rate and capacity of the different duplexes used by PRIMATEs is given by table 5.1. A
security level of 80 bits does not mean a state size or capacity size of 80 bits, instead it means a
capacity size of 2 - 80 = 160 bits. As stated in chapter 3, this is because sponge constructions are
resistant against generic attacks of complexity 2% (assuming the permutation behaves as a random
oracle). Therefore, a capacity of ¢ provides a security level of § [22, p. 9].

In our attack, we are only concerned with the security level of 80 bits. However, increasing the

capacity of the duplex construction does not provide extra defence against our attack. When the

36 Cube attack on PRIMATES

5 =280 bits 5 =120 bits

family name PRIMATE-80 PRIMATE-120
b (state size) 200 bits 280 bits
¢ (capacity size) 160 bits 240 bits
r (rate size) 40 bits 40 bits

Table 5.1 The security levels for the PRIMATE permutations.

capacity size is larger, we just need to find more linear equations: once some linear equations are
found, finding more is often not harder, and does not provide a significant (that is non-linear) increase

in computational costs.

5.1.1 Schemes

As explained before, the PRIMATESs family provides three different encryption schemes: APE, HANUMAN
and GIBBON. Our attack only has a direct impact on the GIBBON encryption scheme, as this scheme uses
a PRIMATE permutation with fewer rounds, and thus has a lower polynomial degree. For completeness
we will briefly discuss all three algorithms. For a more elaborate explanation, please read [1].

Each scheme provides an encryption algorithm Ex (N, A, M) and a decryption algorithm Dy (N, A, C,T).
Both algorithms are parametrized by the input key K. A different nonce N should be given every
time an encryption is performed. The actual value of N does not matter. A is the associated data.
This parameter A allows one to use the encryption scheme to also authenticate A, while not having
to keep A confidential. In contrast, M is authenticated but also encrypted. For instance, A can
be a header that is sent in plaintext together with ciphertext. The decryption will verify that A
corresponds to the ciphertext and is not changed. M is the message that is to be encrypted. The
encryption algorithm Ex (N, A, M) outputs a tuple (C,T) where C' is the ciphertext of M and T is
a tag that proves the authenticity of the ciphertext C' and the associated data A. Inserting these
parameters into the decryption algorithm will output the message M again. If the tag T cannot
authenticate the ciphertext C' and the associated data A, the decryption algorithm will output the
empty string L.

APE

APE is the most robust scheme defined by the PRIMATEs family. It uses the more secure versions of
their permutation algorithm (i.e. it uses more rounds) and is resistant to nonce reuse. This means
that reusing the nonce does not provide vulnerabilities directly. The nonce is actually handled the
same way that the associated data is handled. The encryption and decryption algorithms can be seen
in figure 5.1.

In practice, they use a duplex construction, where V is the duplex state. V,. is the outer state,
and V. is the inner state of the duplex construction.

It is interesting to see that the ciphertext blocks are produced by duplexing the message block
M]i] into the duplex state and then taking the resulting outer state (line 18,19 of the encryption

algorithm). In contrast, ciphertexts are often produced by applying an exclusive-or with the outer

5.1 PRIMATEs: an authenticated encryption family 37

Algorithm 1: E(N, A, M) Algorithm 2: D (N, A, C,T)

Input: K € C, N € Cz, A € {0,1}*, Input: K € C, N € Cz, A € {0,1}*,
M e {0,1}* ce{0,1}*, TeC

Output: C € {0,1}*, T C Output: M € {0,1}* or L

1 V0| K 1 IV <0 | K

2 N[1JN[2]---N[y] —« N 2 N[1JN[2]---N[y] — N

3 fori=1to ydo 3 fori=1to ydo

s | Ven(Niev V) s | IV e (Nl IV, | TV,)

5 end 5 end

¢ if A+# & then ¢ if A= then

7 A[NA[2]--- Afu] «— A 7 ANA[2]--- Afu] «— A

8 Alu] « Alu] || 10* 8 Alu] « Alu] || 10*

9 for i =1 to u do 9 for i =1 to u do

10 | Vep(Ail@V, | Ve) 10 | IV —pi(AL] @IV, | IV.)

11 end 11 end

12 end 12 end

13 Ve—VaO1]1) 13 C[1C[2]---Clw] « C

1a M[1JM[2]--- M[w] < M 14 [« |Cw]|

[— |M[w]|
M[w] « M[w] || 10*
for i =1 to w do
Ve (Ml @V, || V,)
end
C —CjC2]---Clw —2]
C—C| [Clw—1]l
C « C | Clw]
T—V.o K
return (C,T)

Clw] — [Clw = 1], || Clw]
Clw—1] « [Clw - 1]},
Cl0] « IV,
V—p ' (Clw] | K®T)
Mw] — |V,]; & Clw — 1]
V — V@ M[w]10* || 0¢
fori=w—-1to1do
V<—p1_1(V)
M}l —Cli—-1]aV,
Ve Cli—1]| V.

[

5
-
o

NN NN R e e
@ N B O © ® N O
NONNN == -
w N B O © ® N o

N
hN
N
I

end

M — M[M[2]--- M[w]

if IV, =V, (0°71| 1) then
| return M

else
| return L

end

N
a
N
o

W oW N N NN
H O © ® N &

Figure 5.1 The APE encryption Ex (N, A, M) and decryption Dk (A, C, T') algorithms. The pseudocode
is taken directly from [1, p. 5] and therefore the notation is unchanged: @ is the exclusive-or operator,

|| is the concatenation operator and C = F§, C: = Ff, 1=1,0=0.

state of the current duplex state. The consequence of this method is that APE must use the inverse

of p; to decrypt the message.

HANUMAN

HANUMAN provides authenticated encryption and decryption, while being more lightweight than APE
but more robust then GIBBON. HANUMAN uses the same number of rounds in its permutation as APE
does, but does not provide resistance against nonce reuse.

As with APE, the encryption algorithm uses a duplex construction to encrypt the data, but instead
of using the same permutation every time, the duplex constructions switches between permutation
p1 and py. Because the ciphertext is created by applying an exclusive-or with the outer state of the
current duplex state, the inverses of p; and ps are not needed to decrypt the data. The algorithm

can be seen in figure 5.2.

38 Cube attack on PRIMATES

Algorithm 3: £ (N, A, M) Algorithm 4: Dg (N, A,C,T)

Input: K € C:,NeC:, A€ {0,1}*, Input: K € C:,NeC:, A€ {0,1}*,
M € {0,1}* Ce{0,1}*, TeC:

Output: C € {0,1}*, T € C2 Output: M € {0,1}* or L

1 V—pi (0| K| N) 1 Vepi (0| K| N)

2 if A# & then 2 if A # @ then

3 A[1JA2) -+ Afu] — A 3 A[1A2] - Afu] — A

4 Alu] « Alu] || 10* 4 Alu] — Aly] || 10

5 fori=1tou—1do 5 fori=1tou—1do

6 | V—pi(Ali] @V, || Vo) 6 | Ve—p(Alil@V, || Ve)

7 end 7 end

s | Vep(An oV, | V) s | Vep(AWev, | V)

9 end 9 end

10 M[1M[2]--- M[w] «— M 10 C[1C2]---Clw] « C

11 £ — |M[w]| 11 £ — |Clw]|

fori=1tow—1do
Mli] < Cli]® V,
V —pi(Cli | Vo)
end
Mw] — [V:]¢e & Clw]
Ve pi(Mu] [10° & V;) | Vo)
M — M[1M[2]--- M[w — 1]M[w]
T — |Ve]e © K
return T =T7"7 M : L

-
N
o
N

Mw] «— M[w] || 10*
for i =1 to w do
Cli] — M[i]®V,
V —pi(Cli] | V)
end
C « C[1C[2]---Clw — 1]|C[w]]¢
return (C,T)

-
w
=
()

=
'S

-

I

-
o
=

o

BoH R
®o N o
e~
® N o

=
©
[
©

N
=

Figure 5.2 The HANUMAN encryption Ex (N, A, M) and decryption Dk (N, A,C,T) algorithms. The
pseudocode is taken directly from [1, p. 6] and therefore the notation is unchanged: @ is the exclusive-

or operator, || is the concatenation operator and C = F§, Cz = IFQ%, 1=1,0=0.

GIBBON

GIBBON is the most efficient, but is less secure: it does not provide resistance against nonce reuse
and uses fewer permutation rounds. Because GIBBON uses fewer permutation rounds, the polynomial
degree of its permutation is lower. This allows us to perform a differential attack on this algorithm.

Just like HANUMAN, the encryption algorithm uses a duplex construction to encrypt the data. Just
like HANUMAN it switches between the permutations used in the duplex construction. In this case, p1,
pa2, ps are used. Furthermore, the ciphertext is created by applying an exclusive-or with the outer
state of the current duplex state and thus we do not need the inverses of these permutations to

decrypt the ciphertext. The algorithm can be seen in figure 5.3.

5.1 PRIMATEs: an authenticated encryption family 39

Algorithm 5: Ex (N, A, M) Algorithm 6: Di (N, A,C,T)

Input: K € C2, N € C2, A€ {0,1}*, Input: K € C2, N € C2, A € {0,1}%,
M e {0,1}* Ce{0,1}*, TeC:

Output: C € {0,1}*, T € C2 Output: M € {0,1}* or L

1 Ve pi (07| K || N) 1 Ve pi (07| K || N)

2 VeV [(K|02)®V, 2 VeV, | (K|02)aV,

3 if A # @ then 3 if A # @ then

4 V — pz(V) 4 V — P2 (V)

5 A1JA[2] -+ Afu] «— A 5 A[1JA2) - Afu] — A

6 Alu] — Alu] || 10* 6 Alu] « Alu] || 10*

7 fori=1tou—1do 7 fori=1tou—1do

s || VemAlev | V) s | | Vem(Allov. | V)

9 end 9 end

10 V—Aud eV, | Ve 10 Ve—Au eV, | V.

11 end 11 end

12 M[1|M[2]--- M[w] — M 12 C[1]C2] -+ Clw] — C

13 { — |[M[w]| 13 { — |Clw]|

14 M[w] — M[w] || 10* 1 V—p3(V)

15 V(—pg(V) 15 fori=1tow—1do

M[i] — Cli] &V,
V —p3(Cli] || Vo)
end
Mw] « |V,.]e & Clw]
V= p3((M[w] [| 10* & V;.) || Vo)
M — MM[2]- -+ M[w — 1]M[w]
Vepi (Ve || (K] 0%) @ V)
T V)5 0 K
return T =T 7 M : L

for i =1 to w do

Cli] — M[i]® V;

V —p3(Cla] || Ve)
end
Vepi (Ve || (K 0%)eVe)
C—CNC[2]--- Clw —1][Clw]],
T Vs e K
return (C,7T)

[
=]
=
(=]

NONN == e
N B O © ® N
NONN E R R
N = O © o =N

N
w
N
«@

N
IS

Figure 5.3 The GIBBON encryption Ex (N, A, M) and decryption Di (N, A,C,T) algorithm. The
pseudocode is taken directly from [1, p. 6] and therefore the notation is unchanged: @ is the exclusive-

or operator, || is the concatenation operator and C = F§, C: = Fz,1=1,0=0.

40 Cube attack on PRIMATES

5.1.2 The permutation

The permutation PRIMATE uses in the PRIMATEs authenticated encryption schemes is inspired by
Fides [10] and its structure resembles the RIINDAEL block cipher [15][1, p. 7]. The permutation is
defined for two different sizes, a 200-bit version (PRIMATE-80) and a 280-bit version (PRIMATE-120).
The permutation itself is an S-box-based permutation. The input and output states are divided into a
grid of 5-bit elements, corresponding to the input and output size of the S-box used. In PRIMATE-80,
the state is divided into 5 x 8 elements of 5 bits and in PRIMATE-120, the state is divided into 7 x 8
elements of 5 bits. The PRIMATE permutation updates the internal state in rounds, where each round

is a sequence of permutations:
PRIMATE-round = CAoMCo SR o SE.

These rounds are then applied multiple times, which gives the permutations pi, p2, ps and ps. The

operations applied to the state in one of the PRIMATE-rounds are:

e SE, the SubElements operation. This is the only non-linear operation in the PRIMATE permuta-
tion. This operation applies a 5-bit S-box to each element of the state. The polynomial degree

of this operation is 2.

e SR, the ShiftRows step. This step is a linear operation, and circularly shifts the rows of the
state. A circular shift is an operation that rearranges the entries in tuple. Each row is circularly
shifted by a different number (otherwise, all elements would stay in the same position relative
to each other). The shift offset is determined by the sequence h = (hy, ha,...): row 7 is shifted
left by h; positions. In PRIMATE-80 we have h = (0,1,2,4,7) and for PRIMATE-120 we have
h=1(0,1,2,3,4,5,7).

e MC, the MixColumns operation. This step is a linear operation. The MixColumns operation
multiplies each column with a 5 X 5 matrix in PRIMATE-80 or a 7 X 7 matrix in PRIMATE-120.
This multiplication is done in the field Fa[z]/(z® 4+ 2? 4+ 1). The exact matrix is not important

for our analysis and is left out.

e CA, the ConstantAddition step. This step is again a linear operation. It combines the second
element of the second row with a constant rc¢ using an exclusive-or operation. The purpose of
CA is to make each round different and to break the symmetry of the other operations. The
constant changes every round and is generated using a Linear Feedback Shift Register (LFSR).
An LFSR is a register with a feedback loop that generates a sequence of numbers by performing
a right shift. The new least significant bit is set to a combination of the previous bits, combined

by an exclusive or. In our case, the LFSR is defined as follows:
LFSR(rc) = (res + rey, rey, ree, 1es, 1C4).

The ConstantAddition step can be used to generate several different permutations, by setting
the initial value of the LFSR to different values. This is used, for instance, to define py, p2, p3

and py.

5.2 Cube attack on PRIMATES 41

5 bits per element

8 elements

outer, outer

inner 5 elements inner
S|S|S|S|S|S|S|S AA[AA|AA (A |AA |44 A4 20
SEEEEEEE -+ XXX TRTR XX D
S|s|S[s[s[s[s]s|— — XX XX TR XX —
HEEEEIEEE MRLKTATXTX LKA
S[s[s[s|s[s[s]s /

SubElements ShiftRows MixColumns ConstantAddition

o
LFSR]

PRIMATE-round

Figure 5.4 An diagram illustrating one of the PRIMATE-rounds in PRIMATE-80. The constant rc is
updated and reused every round.

A visualization of the PRIMATE-round is given in figure 5.4.

As we have seen, there is only one non-linear operation in a PRIMATE-round, and its degree is 2.
Therefore, the degree of one round of PRIMATE is 2. In general ¢ rounds of PRIMATE have a polynomial
degree of 2¢, but the degree is limited by the size of the permutation state. By varying the number
of rounds and the initial value of rc, the designers of PRIMATE defined several permutations. These

are given in table 5.2.

5.2 Cube attack on PRIMATES

To attack the PRIMATES scheme for authenticated encryption with associated data, we will use the
cube attack defined in section 4.3. Note that we need to vary ¢ — 1 bits to reduce an ¢ bit polynomial
to a linear equation. Unfortunately, all permutations defined have a higher polynomial degree than
the number of bits in the outer state. But with a clever trick, we are still able to attack py and
p3. In this section, we will only consider the permutations with security level 80, this means the

permutation has an input and output size of 200 bits. From now on, we will refer to one of the

Permutation-name p1 P2 D3 P4
Number of rounds 12 6 6 12
Initial value of rc 1 24 30 24

Polynomial degree 200/280 64 64 200/280

Table 5.2 The permutations py, p2, ps and ps. The polynomial degree of p; and py is 200 for the
200-bit variant and 280 for the 280-bit variant as the maximum polynomial degree is limited by the
number of input bits.

42 Cube attack on PRIMATES

PRIMATE permutations as f. Until section 5.2.3, f is a permutation by applying PRIMATE-round
multiple times with r¢ = 0. The number of rounds f has should be clear from the context. In section
section 5.2.3 we apply the attack for each rc value as described in table 5.2. We abstract from this
rc value initially (by taking rc = 0), as it does not make a difference for our type of attack. Only the
200-bit variant is attacked.

5.2.1 Basic cube attack

The initial approach is to basically apply the attack defined in section 4.3.2. As a start, we tried to
attack the first one and two rounds of f.

However, after analysing the polynomial of the one and two-round permutation, we see that no
linear function can be extracted. For instance, the polynomial representation of the first bit of one

round of PRIMATES is of the form:

filoa, ... auo, 1, - -, Breo) = a1z + azas + a1 + ag+
BeBr + BeP1o + BsPo + BsPio + Pio+
B51854 + B52853 + B52855 + Ps3fs5 + P52 + Ps3 + Psat
B1018104 + B1025103 + Bro2B105 + B1ro3B105 + Bioz + Bios + Broat
Bis6B8157 + BiseBieo + BissPise + PissPieo + Pieo + 1.

In this equation, the « variables are the outer part of the state, 8 variables are the inner part of
the state. If we would differentiate towards an a-term, no 3 variables are left in the linear polynomial.
This means that deriving an equation from this would not give any information about the inner part,
which is the part where we need information about.

In the two-round permutation, something similar happens. The two-round permutation is of
degree 4. So to derive a linear polynomial from this function, we need to differentiate over a vector
space in a of dimension 3. This linear polynomial needs to be dependent on -variables to allow us to
derive information about the inner part of the state. This means that terms of the form a; - o - a - 5
should be contained in the two-round permutation. However, this is not the case.

These two approaches fail because the S-box is the only non-linear operation in the permutation.
The S-box is only applied to groups of 5 bits at a time. This means that the S-box does not create
mix terms of a high degree between o and 3, because the SubElements step is the first step in the
PRIMATE-round. When more rounds are applied, the highest degree terms will always have either at
least two (-variables, or none.

It can, thus, be seen that increasing the number of rounds, will not create better attack opportu-

nities.

5.2.2 Generating linear equations out of quadratic equations

The second attempt is focussed on the two-round permutation. The idea is to create mix terms

between « and 8 of a high enough degree having only one (-variable in the mix term, by combining

5.2 Cube attack on PRIMATES 43

the output of several bits. If we view the polynomials obtained by differentiating the two-round

permutation, some interesting properties come to light.

The polynomials f1,..., fs are quite similar: the same variables are used. fi,..., f5 seem to
depend only on «q,...as5, B --- 810, Bs1s - -- 855, B101 - - -5 B105, B1s6, - - - » P160- Furthermore, terms of
the form a; - o - B (not be confused with terms of the form «; - a; - ay - ;) do exist in the polynomials
f1,.-., f5. Note the degree of fi,..., f5is 4. As such, if we differentiate f, ..., f5 over a vector space

of dimension 3 to make f1,..., f5 linear, the terms of the form «; - o; - 8 are reduced to a constant.

The idea is to differentiate the polynomials f1, ..., f5 multiple times over different vector spaces V'
of dimension 2, with V' C (ey,...e5). This means that we differentiate f two times towards ay,...as
and reduce the polynomial to a quadratic polynomial. This gives us a set of polynomials g1,..., gm.
Because the quadratic polynomials are quite similar, we try to find combinations of > g; such that

>~ g; is at most linear. This is done using linear algebra.

If we put the quadratic terms of each function into a matrix where each mixed term is a specific

column, the kernel space of this matrix gives the combination of functions without quadratic terms.

However after implementing this, it seems that every function found this way is the zero function:
this means that there is a dependency between the linear terms in g and the quadratic terms in g,

which means that whenever we cancel out quadratic terms, the linear terms also cancel out.

5.2.3 Skipping the first SubElements operation

The third attempt is based on the observation that by applying SubElements first, mix terms are
created with only outer state variables or only inner state variables. If we would be able to skip
this step, mix terms between the inner state and outer state variables should be created. Another
advantage would be that the polynomial degree would be halved, making the degree of p; and ps3 32,

which would allow us to attack it by varying bits in the outer state.

Fortunately, it is possible to skip the first SubElements step. The PRIMATE-round was defined as:
PRIMATE-round = CAoMCo SR o SE.

Write the input state s as (ai,...,a40, 51, - -, B160), Write the S-box used as S and its inverse S™!

and we can derive:

PRIMATE-round(s) = CA(MC(SR(SE(s))))
= CA(MC(SR(SE(a1, ..., 40, B1,- -, B160))))
= CA(MC(SR(S(a1,...as) | ... | S(azg, ..., 0u40) |

S(B1,---,B5) | .- | S(Bises - - -+ Bi6o))))-

44 Cube attack on PRIMATES

Now instead of inputting as, ..., auo we first apply S™! to each 5 bit element:
PRIMATE-round(s) = CA(MC(SR(S(S™!(au,...a5)) | ... | S(57 (aze,- - ., au)) |
S(Br---.B5) | .- | 8(Bise, - - Bie0))))
= CA(MC(SR((OQ, ce 015) | e | (043(5, ey 0440) |

S(B1y---3B5) | -+ | S(Bises - - - Bi6o))))
= CA(MC(SR((OQ, ey 0440) | S(ﬁl, ey ﬂg,) | e | 3(51567 e 7ﬁ160))))-

Now set S(S81,...,05) | --- | S(Bi56,---,B160) as our unknown variables. If we apply our attack
this way, we will find S(B1,...,85) | --. | S(Bis6,- - -, B160) and we just need to apply S~ to find the
real values of f1,..., B160-

This method is able to find linear equations and the results are discussed in the following section.

5.3 Results

The third attack was implemented by first attacking two rounds, then three rounds and so on. Because
the SubElements step was skipped, the polynomial representation of a single round instantly gives
40 linear equations. Unfortunately, we cannot generate more than 40 equations as we cannot apply
¢ with different values for G. Please note, that G is the set of indices of the bits that we apply
the differentiation function 6 on. Because there are more than 40 unknowns, we cannot use these 40
equations to find the inner state.

As described in section 4.3.2, we must choose sets Gy, ..., G, (for some n) for each number of
rounds greater than 1. These sets are used to calculate d¢, (f), which should result in linear equations.
The sets G, ...,G, should be chosen in such a way, that the linear equations produced by g, (f)
produce a linear system of rank 160, and thus we are able to derive the inner state using these
equations. Furthermore, to reduce the complexity of the attack, the number of sets n should be kept
as low as possible. In our attack, we have experimented with different values Gi,...,G,, and the
smallest number of sets giving a fully determined system are written down here. We aim to find
G1,...,G, with n as small as possible, as this reduces the computation time. The exact results,
and the G1,...,G, sets chosen for each round are documented in section 5.3.2; including the exact
specifications on which the tests are done.

In table 5.3 some statistics of the attack applied on each round are given. We see that most
rounds can be attacked with 8 d¢, (f) computations. It can be seen that the computation time of
the offline phase and the computation time of the online and solving phase increases exponentially.
Furthermore, when a small number of rounds is attacked, most of the computation time of the solving
phase is caused by starting the MATLAB engine. Please note, as said before, that we omit the first
SubElements step in f, this halves the degree of f.

For six rounds of the PRIMATE-permutation, the polynomial degree of f; is 32. Therefore, our

sets Gy, ..., G, should be of size 31. When calculating the linear equations for five rounds of the

5.3 Results 45

Rounds deg(f) ‘GI toﬁ‘line tontine + tsotw

2 2 8 <1s 19 s
3 4 16 4s 19 s
4 8 8 20 s 20 s
5 16 8 44 m 29 s

Table 5.3 Various statistics about the implemented cube attack on PRIMATE. The attack was per-
formed for different rounds, which are shown in this table. |G| indicates the number of sets in
G = {Gy,...,G,} we require to make the linear system generated by d¢,(f) fully determined.
Lofftine is the time required to compute the offline phase, ¢ oniine +tsotv is the time required to perform
the online phase and the solving phase.

PRIMATE-permutation already takes a considerable amount of time. Because the calculation time
will probably grow exponentially with the size of G, it is reasonable to first determine the expected
calculation time of the representation of dg(f) with |G| = 31 before attempting to calculate it.
This gives us the calculation time of one dg(f) with |G| = 31. It is likely that we at least need to
calculate it 8 times to generate a fully determined system. Furthermore, finding somewhat optimal
G1,...,G, that generate a fully determined system also requires some trial-and-error: not all sets G
with |G| = 31 will result in useful linear equations.

To determine the calculation time of dg(f) with |G| = 31, we have calculated dg(f) with 1 <
|G| < 21. As expected for |G| large enough, the calculation time will approximately double if |G|
increases by 1. We have extrapolated the results found and determined the approximate time to
calculate d¢(f) with |G| = 31: this will approximately take 234 days on our computer. This can be
seen in figure 5.5. Please note, that we did not use the speed up of equation (4.4) on page 28, as
we only discovered this afterwards. If we would implement this speed up, the calculation time would
be reduced to approximately 116 days. While 116 days per dg(f) calculation is a long time, it is
certainly not infeasible. Furthermore, the attack is highly parallelizable: a small to medium company
could rent 116 servers of equal computing power to the used laptop to perform such a calculation in
one day. Another approach would be to implement the attack using a graphics card: as the attack is
highly parallelizable, a good speed-up might be achieved. As the attack only needs to compute the
sum of various permuted input blocks, which can be calculated on demand, the amount of memory
and the throughput required is fairly limited. This makes an implementation on a graphics card
feasible.

For more than six rounds of the PRIMATE-permutation, it is impossible to apply this attack: we
cannot do a cube attack using more than 40 bits, as the outer state of the duplexes used in PRIMATES
is 40 bits.

5.3.1 Impact on the PRIMATE-family

As we have noted before, only GIBBON uses the PRIMATE permutation with 6 rounds. Therefore, we
could try to attack the GIBBON scheme by finding the inner state of the permutation. Such an attack
would require that the same inner state can be reproduced multiple times. Figure 5.3 shows that this
requires all inputs to the duplex to be the same until line 17 of the encryption algorithm. The only

way to achieve this, would be to reuse the nonce multiple times.

46 Cube attack on PRIMATES

T T T T T T 3

108 e Linear terms of dg(f) ~ 234 days il

Exponential fit 1000

sl

O Linear terms of d(f) with |G| = 31 (extrapolation)

107

106 100

sl

10°

[]
sl
—
o

10t

computation time (seconds)
computation time (days)

103 o

Lol

10

°
e0e0g00® 1 1 1 L L
0 5 10 15 20 25 30 35
G|

Figure 5.5 The approximate calculation time of dg(f) with |G| = 31 was calculated by extrapolating
the calculation time of dg(f) with 1 < |G| < 21.

So if the nonce would be reused multiple times we can find the inner state at line 18. Because we
use a chosen plaintext attack, we know the associated data A and the input message M. Using this,
we can calculate the inner state backwards until line 2. We cannot calculate the inner state at line 1,
as we cannot reverse the operation at line 2 because we do not know K. Therefore, we cannot find
K but we can deduce the inner state at line 2. This inner state is always the same if the same key
K and nonce N are used. Therefore, this attack reveals a vulnerability in GIBBON if one would reuse
the nonces.

It must be noted that in the specification of GIBBON [1, p. 4], it was stated that GIBBON was not
resistant against nonce reuse. However, this vulnerability can be avoided easily at the cost of adding

a single round to py and ps.

5.3.2 Attack details

This section describes the details of the PRIMATE attack. We attacked two rounds of the permutation,
and then continued with three, four and so on. Because the SubElements step was skipped, the
polynomial representation of a single round instantly gives 40 linear equations. Unfortunately, we
cannot generate more than 40 equations as we cannot apply dg with different values for G. Please
note, that G is the set of indices of the bits that we apply the differentiation function § on. Because
there are more than 40 unknowns, we cannot use these 40 equations to find the inner state.

As described in section 4.3.2, we must choose the sets G1,...,G, for each round. These sets
are used to calculate dg,(f), which should result in linear equations. The sets G, ..., G, should be

chosen in such a way, that the linear equations produced by d¢,(f) produce a linear system of rank

5.3 Results 47

160, and thus we are able to derive the inner state using these equations. Furthermore, to reduce the
complexity of the attack, the number of sets n should be kept as low as possible. In our attack, we
have experimented with different values G,...,G),, and the smallest number of sets giving a fully
determined system are written down here.

The computations documented here have been implemented in C++. Solving the linear system
in the last phase is performed using MATLAB. The computations have been carried out on a laptop

with the following specs:
e Type: Asus K501LX-DM104T.
e Memory: 8GB of RAM.
e CcpPU: Intel Core i7 5500U.
e Operating system: Linux.

The implementation is according to the method described in section 4.3.2 and uses only a single
thread. The polynomial representation of the linear equations has been calculated using equation 4.3
on page 28. Please note, that we did not apply the speed-up described in equation 4.4. Therefore,
in theory the computation time of the offline phase can be halved. The speed-up was not applied,
as it would not make a difference between what is computable and what is not. Furthermore, this
speed-up was discovered after the attack was implemented. We kept track of the computation by
recording the real time and the system time, the computation time is the sum of those two. Please
note, as said before, that we skip the first SubElements step: by skipping this step, we half the
polynomial degree of f; for any round that we attack.

For two rounds of the PRIMATE-permutation, the polynomial degree of f; is 2. Therefore, our sets
G1,...,G, should be of size 1. After experimentation, we found that a fully determined system is
generated by the sets G1,...,G, only if for each 5-bit element of the outer state a set GG; contains
the index of one bit that is inside that 5-bit element. In other words, this means that for each integer
set K ={5-j+1,...,5-74+5} with 0 < j < 8, there must be a set G; such that G; = {g1} with
g1 € K. In our case, we have chosen the sets: {1}, {5}, {6}, {10}, {11}, {15}, {16}, {20}, {21},
{25}, {26}, {30}, {31}, {35}, {36}, {40}. So we needed to perform d¢, (f) for 8 different sets in total
to generate a fully determined system.

For three rounds of the PRIMATE-permutation, the polynomial degree of f; is 4. Therefore, our
sets G1,...,G, should be of size 3. After experimentation, several manners to generate a fully
determined system have been found. These different manners all use the same number of sets. The
first manner is to systematically choose sets G; with all indices in the G; pointing to the same 5-
bit element in the state. After a linear system of rank 20 has been generated with all indices in
G;s all pointing to bits of the same 5-bit element, this method can be extended to generate a fully
determined linear system. In this manner we have found that the sets {1,2,3}, {2,4,5}, {3,4,5},
{1,2,4}, {6,7,8}, {7,9,10}, {8,9,10}, {6,7,9}, {11,12,13}, {12,14,15}, {13,14,15}, {11,12,14},
{16,17,18}, {17,19,20}, {18,19,20}, {16,17,19}, {21,22,23}, {22,24,25}, {23, 24,25}, {21,22,24},
{26, 27,28}, {27,29,30}, {28,29,30}, {26,27,29}, {31,32,33}, {32,34,35}, {33,34,35}, {31, 32,34},
{36, 37,38}, {37, 39,40}, {38, 39,40}, {36, 37,39} are probably optimal. However, each set G; could be

chosen such that the indices in G; point to bits of three different 5-bit elements. This is, however, more

48 Cube attack on PRIMATES

tricky to choose correctly, as there are more combinations possible. Just as with the first approach,
this approach requires us to perform d¢, (f) for 16 sets in total to generate a fully determined system.

For four rounds of the PRIMATE-permutation, the polynomial degree of f; is 8. Therefore, our
sets G1, ..., G, should be of size 7. After experimentation, we found that a fully determined system
is generated by the sets {1,...,7}, {6,...,12}, {11,...,17}, {16,...,22}, {21,...,27}, {26,...,32},
{31,...,37}, {36,...,40,1,2}. So we needed to perform d¢,(f) for 8 sets in total to generate a fully
determined system.

For five rounds of the PRIMATE-permutation, the polynomial degree of f; is 16. Therefore, our
sets G, ...,G, should be of size 15. After experimentation, we found that a fully determined sys-
tem is generated by the sets {1,...,9,11,...,14,16,17}, {6,...,14,16,...,19,21,22}, {11,...,19,
21,...,24,26,27},{16,...,24,26,...,29,31,32}, {21,...,29,31,...,34,36,37}, {26,...,34,36,...,39,
1,2}, {31,...,39,1,...,4,6,7}, {36,...,40,1,...,4,6,...,9,11,12}. So we need to perform ¢, (f)
for 8 sets in total to generate a fully determined system. The computation time of the offline phase
for these three rounds takes around 44 minutes. Performing the online attack and solving this system
takes around 29 seconds.

For six rounds of the PRIMATE-permutation, the polynomial degree of f; is 32. We did not find a
set of G;’s such that a fully determined system is formed by our attack. Instead we calculated, how
long it would take to calculate the representation of one dg(f) with |G| = 31. This turned out to

take 234 days on our computer, and with some extra speed-ups, 116 seemed to be achievable.

Chapter 6

Farfalle: a parallelizable PRF

construction

We have thus far seen the basic concepts of differential analysis, and how almost any duplex construc-
tion can be attacked. In this section, we will take a look at a novel cryptographic construction called
farfalle (Italian for ‘butterfly’) introduced by the Keyak team in ‘Farfalle: Parallel permutation-based
cryptography’ [6]. This construction is an attempt to find an alternative to the inherently sequential
sponge construction. The alternative must be highly parallelizable, but still offer the same benefits
a sponge construction has for keyed applications.

We will briefly introduce this construction in this chapter. After this construction has been
introduced, we will discuss a vulnerability that is related to a cube attack. After this vulnerability
is introduced, we will discuss a possible countermeasure to prevent such an attack exploiting this

vulnerability.

6.1 Sketch of the scheme

As we have seen in section 3.2 we can use either a duplex construction or a sponge construction to
encrypt and authenticate a message. When we get a message of ¢ blocks M1, ..., My, we first initialize
an empty duplex construction and provide the key K as input to the duplex construction, giving state
s2. Then each block will be given as input to the duplex construction, giving states ss, ..., s;. When
each state s; is found, it is used to generate the ciphertext C;_1 of each block M;_;. So to calculate
C;, we calculate C; = M; @ outer(s;—1). Because each state is dependent on the previous state, we
must calculate each block sequentially.

Making a duplex construction parallelizable is hard: the state must absorb all input blocks
My, ..., M, into the same state to provide authentication of all blocks.

A sponge construction can also be used to provide encryption and authentication: instead of
using the outer state to encrypt a block and then immediately absorb the block into the state, we
first absorb the key and generate an encryption stream. Then we absorb the key and all blocks into

a zero state and generate a MAC. Note that we do not simply input the message M and use that

50 Farfalle: a parallelizable PRF construction

to encrypt M. In such a construction, the receiving side would need to know M to decrypt the
encryption of M. Instead, we should then provide only the key K as input.

In farfalle, introduced by the Keyak team, they attempt to modify the sponge construction in such
a way, that it becomes parallelizable. Just as with a normal sponge function, first all input blocks
My, ..., M, are absorbed to give an intermediate state. This intermediate state output is squeezed
to generate the outputs Zi,...,Z,, for a chosen m. This output can then be used to generate a
MAC or to encrypt a message. However, instead of absorbing all blocks one at a time, the absorbing
process is designed to be done in parallel: that is, each block is absorbed together with key K into a
state, and the intermediate state is computed by combining all these separate states. Furthermore,
the squeezing phase is also designed to be done in parallel: each block Z; is directly computed from
the intermediate state, so that we do not need the state used to generate Z;_; to generate block Z;.
Below, we will sketch the idea of this construction. We have omitted the lengths of each input and
output block for simplicity.

Let M = My | ... | M, € F5? be the input message of appropriate length (i.e. the message has
been padded to fit the required block size b and each block M; € F5). Let K be a symmetric key, m
be the number of output blocks we want to generate. Finally, let f be the permutation function, just

as in the sponge construction. Then:

o Let i1,...,7 be a sequence of bit strings generated by some kind of counter, where each i; is

unique. Then calculate the states s, ..., s, € F} for each i as

As each s; is only dependent on three input variables that are known at the start of the

computation, s; can be calculated in parallel.

e Combine the states s1,..., sy into one intermediate state I:
i=1

Note that summation over bit strings is equal to performing exclusive-or operations. Computing
the exclusive-or operation in parallel is fairly straightforward and can be done in the same

manner the parallel prefix sum is calculated [29].

e Next we squeeze the output blocks Z1, ..., Z,, from the intermediate state I. The output blocks

Z1, ..., 2, are specified as follows:
Zi=f(I+((0,...,0) | i))) + K.

As each Z; is only dependent on I, this can be computed in parallel as soon as I is known. Z

is finally defined as:

Z=271..\Zm.

6.2 Vulnerability: creating an all-zero intermediate state 51

M Z

»
»

Figure 6.1 An illustration of the farfalle construction for PRFs. It can be seen that the shape of this
diagram resembles a farfalle pasta shape.

As with a sponge construction, if the construction is used to encrypt or decrypt the message P,
then M cannot be the plaintext message P. If the construction would be used in such a manner, then
the receiving end should know P to decrypt the ciphertext of P. In other words, this construction
can only be run in the forward direction, i.e. as a stream cipher. When used for encryption the input
can for instance be a key and a nonce. The bitstream can then be combined using an exclusive-or
operation with the plaintext message. An illustration of the farfalle construction is given in figure 6.1.

One interesting detail of the algorithms are the counters i1, ...,7. In the absorbing phase, these
are included to let the output reflect the ordering of the blocks Mj, ..., M,. That is, if the counters
i1,...,4¢ are not included then the message M = My | ... | M;—1 | M; | ... | My and the message
M =M | ... | M| M;—y | ... | My would generate the same output string Z. These counters
prevent such a vulnerability. Furthermore, these counters i1, ..., i, should also fulfil other properties
to ensure a secure absorbing phase, but this will be shown later on. In the squeezing phase, the

counters i1, ...,y are used to generate different blocks from the same intermediate state.

6.2 Vulnerability: creating an all-zero intermediate state

Unfortunately, when f has a low polynomial degree a vulnerability exists with this construction in
the current form. To explain this vulnerability, we take a look at the A function introduced in
section 4.2.1. The definition of A stated that the derivative of a function f : F} — Fy with respect

to a linear subspace V of F} is defined as

Avf(s) = fls+wv).

veV

52 Farfalle: a parallelizable PRF construction

Furthermore, theorem 1 stated, that for a linear subspace V of Fg we have:

degAy f < deg(f) — dim(V).

Let c be the bitlength of i;. Suppose that u is a sequence uq,...,u, in FS with ¢ = odes(f)

Furthermore, suppose there exists a linear subspace V' of Fg+c generated as follows:
Vz{(uh\ih):lghgﬁ}.

By theorem 1, we have that deg(Ay f) = 0 and thus Ay f = d for some constant bit string d. Now,
we attempt to absorb the sequence u using the proposed scheme, thus M = wu; | ... | ug. Then the

intermediate state I becomes:

Thus, the intermediate state becomes independent of K. Moreover, the intermediate state and also
the output blocks become independent from the input message M. Even more problematic is that
for1<h<¥:

Zh:K+f(I+((07""O)‘ih))
=K+ f(d+(0,...,0) | ip)

= K =2+ f(d+(0,...,0) | in).

Thus, we can derive K from a single output block. Moreover, when V is an affine subspace, that is
V' is of the form:

V={a+v:0 €V}

for some subspace V' C IFZQH'C and any string a €]FIQH'C, the intermediate state I also becomes d:

I f((uh ‘ ih) + K)

4

[
=

Ay fla+ K)

d.

Please note that any linear space is also an affine space. This shows a major flaw in this construction.

6.3 Countermeasure using the counter encoding 53

6.3 Countermeasure using the counter encoding

To prevent such a vulnerability from forming, we take a look at the definition of the intermediate
state I:

I=>"f((un]in) + K).

Jj=1

To prevent the reduction of the degree of f, we must prevent that

is an affine subspace of Fg“. Because ug | ... | ug is the message M that is chosen by the attacker, we
cannot formulate limitations on u;. However, i, is specific to the algorithm, and the only requirement
up to now is that each i, is unique. To prevent this vulnerability, we can add extra requirements to
ip. To formulate requirements, we analyse what properties 75, must fulfil if V' is an affine subspace of
F™¢. So let V be an affine subspace of the form:

Let a be such that V' is of the form
V={a+v:v €V}

for some subspace V’. Because V is an affine subspace, we must have that for any h,j with 1 < h <
L1<j< ¢

a+ (up | in) +a+ (u; | i) =a+a+ (up|in) + (uj | ij)

= (un | in) + (uj | i;) € V'
and thus some k, 1 < k < £ must exists, such that
a+ (ux | i) = (up | in) + (un | ij).
We can conclude, that for any h, j,1 < h < /{,1 < j < /£ there exists a k, 1 < k < ¢ such that
tp + 15 = i + Geounter;

where aeounter are the last ¢ bits of a.

Thus, if V' is an affine space, then the counters iy, ...,%; also form an affine space. As a defence
to such a vulnerability, we formulate the requirement that the counters i1, ..., i, do not form a large

affine space. In this case, a V' of the form

V={(up |in): 1<h <t}

54 Farfalle: a parallelizable PRF construction

cannot be a large affine space, removing this vulnerability from the algorithm.

Furthermore, it is also important that 4q,...,47;, does not contain large enough affine spaces.
For instance, suppose i1,...,i¢11 does not form an affine space, but is,...,ip+1 does form an
affine space with £ = 29°¢(f), Then we could find a matching sequence u, ... ,Ug41 such that

V ={us | i2,...,up41 | 4e+1} is an affine space. Again let a be such that V is of the form
V={at+v:0v eV}

for some subspace V.

If we would then encrypt M = uy,...,ups1, the intermediate state I would be:
241
1= f((un | in) + K)
j=1

= Ay fla+K)+ f((u | i1) + K)

= f((ur [1) +).

So I would only depend on the input messages outside the affine space. Therefore, the counter values
i1,...,%¢,... should not only be unique but the largest affine subspace contained in {iy,...,4.,...}
should also be of a small enough dimension, at least smaller than the degree of f. Our research

presented in chapter 7 will document how such a counter can be designed.

Chapter 7

Low affine dimensional encoding

As described in chapter 6 we need to define an encoding of the values 1,2,3,... such that it is hard
to find a large affine subspace in the set of encoded values. Thus we require that the largest affine
subspace has a low dimension. The dimension of this largest affine subspace in the code words
generated is called the maximal affine dimension of this encoding. In this chapter, we will first define
what properties such an encoding should have and then try to construct an encoding fulfilling these
properties. Besides limiting the size of the largest affine dimensional subspace, we also have practical
limitations: the encoding must be easy to calculate and should not use a lot of bits. We call this
type of encoding a low affine dimensional encoding.

This last property can be formulated using the concept entropy. Entropy, as a measure of ran-
domness contained in a probability distribution, is a fundamental concept in information theory and
cryptography [44]. When we speak of entropy, we mean Shannon entropy specifically. Roughly speak-
ing the Shannon entropy of an encoding is the amount of randomness in each code word. In this
thesis, we view entropy as the number of bits of information in each code word if we choose one of
the code words uniformly. Thus, if an encoding can only represent two values and we choose one
of these values uniformly, its Shannon entropy is 1 as we can describe our choice with 1 bit. This
means that when we can encode more values in the same bit string length, the Shannon entropy
increases. Another related concept is code rate. Code rate describes the amount of information per
bit. This means that if the code rate of an encoding is %, for every k bits of information, the encoding
generates a code word of length n, of which n — k are redundant. In this chapter the functions i2bsp
and bs2ip are used frequently. The function i2bsp(i, d) converts an integer 4 to a bit string of length
d. The function bs2ip(s) converts a bit string s to an integer. Definition 2 and definition 5 define
i2bsp and bs2ip respectively.

More formally, we require that a low affine dimensional encoding enc : Z,, — F5', with Z,, =

[0,n] € N, must fulfil the following properties:

1. The maximal affine dimension has to be low, while having a low computational complexity.
Moreover, if we limit the encoding to Z,, — F3* for any n’ with n’ < n, the maximal affine
dimension over subsets should also be low. This means that the maximal affine dimension

should slowly increase while the number of elements in the domain increases.

2. The entropy should be high: the encoding should be efficient in terms of length. In other

56 Low affine dimensional encoding

words, the ratio of the length of the code words to the ‘length’ of the largest integer that can
be encoded must not be too big. With length of an integer, we mean in this case the fewest

number of bits we can use to represent this integer as a bit string.

The first property directly defines the main property of a low affine dimensional encoding, meaning
that the dimensions of the affine subspaces must be low. The encoding we propose will encode a
simple increasing counter. The algorithms proposed will only encode a certain value i to use in farfalle
if all values smaller than ¢ have been encoded. Therefore, if the largest affine subspaces found in the
encoding contain encodings of large numbers, the attacker must provide a very large input message
to the parallelizable PRF to use this large affine subspace in an attack. Using such a large input
message might not be feasible for the attacker. This is codified in the first property, by demanding

that the affine dimension is relatively low when only considering the first n counters as input.

The second property is simply an efficiency property: anyone using the encoding should not have
to use an excessive number of bytes to encode their counter. We do not state the requirement that
when we limit the input space to Z,,; (all natural numbers smaller than n’) with n’ < n that the code
rate should still be high. In other words, when encoding a small number, we do not try to use as few
bits as possible. We only limit the total bits used when using the whole input space. This is because
the encoding is often simply used as a fixed size encoding, so limiting the number of bits used would

be an unnecessary restriction.

Below we define what constitutes an encoding.

Definition 16. An encoding enc is a module with a state and functions. It contains the following

functions:

e Preparation is an optional function that is called with a number of parameters determined by

the encoding. This function is always executed before the encoding is used.

e Encode(i) encodes the integer i,0 < i < n over F4, for some mazimum range n. Some
sub-encodings that are used in other encodings can be non-injective, but unless mentioned, all
encodings must injective. The maximum value n of the input is often left implicit, and can be

infinite.

e Increment(i,v) encodes the integer i given the previous state v of i — 1. The previous state is
often the previous result, but in some cases more data is kept track of. The result is a tuple with
as first element the value of Encode(i — 1), possibly only one value. This makes it possible to
optimize by remembering certain intermediate values. The other values in the tuple are together
the state.

e IncrementState(i) generates the state v that is used by Increment.

Functions are called by using for example enc. Preparation, enc. Encode, et cetera. In most cases

only enc. Encode(i) is used for some i. We will use the shorthand notation enc(i) for this.

7.1 Calculating the affine dimension 57

C1 C2 C3 Cq Cp,
cp | cp1+er cp+tee crte3 cter ... 1ty
Ca | ca+c1 catecy Ccatecz3 catcs ... C2tey
c3 | cg+cy c€c3+cy c3+c3 c3+cyg ... Cc3+cCy
cy | cg+c1 cgt+co cgt+cs cgtcy ... cygtcy
Cp | Cp+C1 cp+Cc2 cp+c3 cptca ... cCptcCy

Table 7.1 The table of differences of the set of code words C.

7.1 Calculating the affine dimension

The first step to design an encoding is to design and implement a program that can experimentally
verify the maximum dimension of an affine subspace of the code words produced by an encoding.
Unfortunately, it seems that such an algorithm will have a worst case exponential run time in the size
of the input set. We try to achieve a good performance by implementing heuristics. To analyse an
encoding that produced code words of length w, we generate the first n code words produced by this
algorithm and try to find a subset with a maximum affine dimension. The algorithm is thus given as
input the set C, C' = {c1,...,¢c,} CFY.

Firstly, we propose a naive implementation by performing a DFS (depth-first search) on all possible
affine subspaces of a given C. Each node in the tree on which we execute a DFs algorithm is then a
subset S of C, where the root is the empty set. Each child of a node adds a single element to the
subset S of its parent. To avoid considering the same subset twice, we have given each element in
C an index. The children of a node can only add elements to the subset S of its parent that have
a higher index then each element in S. Essentially, we generate subsets of C' and check if these are
affine. To check if a subset S of C' is an affine subspace, we take all pairs of two elements s;,s5; € S
and a fixed element s; € S. If S is affine, we have s; +s;+s; € S. If this holds for every combination,
we can conclude that S is an affine subspace. To increase the efficiency, we also add a pruning step.
Essentially we know which elements the descendants will add to S. Moreover, we can check which
elements at least need to be added to S to make S an affine subspace, these are elements can be
found by calculating s; + s; + s1 for s;,s; € S. If the elements that need to be added are not in the
set of elements that the descendants will add, we can just skip DFS on that branch.

The pseudocode of this algorithm can be seen in algorithm 1. By calculating the maximum size of
all affine subspaces, we can calculate the maximum affine dimension. The maximum affine dimension
is the dimension of the maximum affine subspace. The dimension of an affine subspace S can be
found by calculating log, (|S]).

Unfortunately, algorithm 1 becomes quickly too slow to check large C. For instance, if we define
Cy,, = {i2bsp(9-i) : 0 < i < n} (C), is the set of binary representations of all multiples of 9) then our
implementation calculates the affine dimension in 6 seconds for Cag, 122 seconds for Cys6 and 10
minutes for Cs76. To find a quicker algorithm, we analyse the differences between all elements of C'.

The idea is to calculate the difference between each pair of elements in C. This will give table 7.1.

Suppose we want to know if C' has an affine subspace A with IV elements. We assume this affine

subspace exists, and try to derive some properties of this table of differences. Then we can check if

58 Low affine dimensional encoding

Algorithm 1 AffineSubspace(C, E)

Input C = {ci,...,c,} is the set of elements;

E ={ey,...en} are the indices of the current subset of C, initially F = @.
Output One-by-one all affine subspace of C' are outputted.
Description Calculates all affine subsets by performing a DFS with pruning

> Check if the subset {ce,,...,cc,, } is affine:
isAffine < true
fori+1,...,mdo
for j < i,...,m do
> Check if the sum is inside our subset
UV <= Cey + Ce; + Ce;

if vé{ce, - sCe sCep+1,---,Cn} then
> This subset cannot be made into a subspace
by adding elements from {cc,,,Ce,,+1,---Cn}
return

else if v ¢ {ce,,...,c.,, } then
isAffine < false

if isAffine then
output {ce,,...,ce,,}

> Visit all subsets with the first m indices given by E
fori<~ m+1,...,ndo
AffineSubspace(C, E U {i})

these properties hold: if this is not the case, C' cannot possibly have an affine subspace A with N
elements.

Firstly, the affine subspace A will have some numerically minimal element o. To perform addition
inside the subspace A for some elements x and y inside the affine subspace, we first have to remove

the numerically minimum element o from the subspace, and later add it again:
(z+0)+(y+o)+o=z+y+o

For simplicity this is defined as z @ 4 y = © + y + 0. Now take an arbitrary pair of elements x,y € A.
It can be seen that we can find a vector z € A such that @4 2z =y for any . Take z =axHay € A

and we get:
rTPaz=rBarPay=cr+r+y+o+o=y.

Thus for any x,y € A we can find a vector z € A such that x + z = y + 0. Therefore, if the table of
differences has an affine subspace A with N elements, it must contain N times the difference y + o.
Because y was also arbitrary, there must also be IV differences that are contained N times in the table
of all differences. This gives us a way to calculate an upper bound on the maximum affine dimension
of a coding. However, as this is a upper bound, there is no guarantee that an affine subspace with
such an dimension is actually contained in the coding. Our algorithm will now use this upper bound

to quickly find a subset that might itself be or does contain an affine subspace. After this subset has

7.1 Calculating the affine dimension 59

been found we need to verify if the subset indeed contains such an affine subspace. If such a subspace
cannot be found, this upper bound will not be tight.

The algorithm is given in algorithm 2. The idea is that we use the table of differences to determine
which elements can be in an affine subspace of size 2¢, as each element must be found 2¢ times in

this table of differences once we add any vector of this affine subspace to all differences.

Algorithm 2 MaximumAffineDimension(C')

Input C = {c1,...,¢,} is the set of elements.
Output The maximum dimension of the largest affine subspace of C.
Description Calculates all affine subsets by using the table of differences.
T < table of differences of C.
d + Largest number such that there are at least 2¢ unique differences that are contained
at least 2¢ times in T.
while d > 0 do
Touter — T
C(outer — C
while |Cyuier| > 27 do
ﬂnncr — Toutcr
C’inner — Couter
v < A vector that has at least 2¢ differences dy, ..., d,, in its associated row
with each d; occurring at least 2¢ times in Tjyper-
Add v to each difference in Tinner.
O/ = C(inncr
do
C'inner —C
C' « differences in Tipner that occur at least 29 times.
Remove all rows and columns associated with a vector that is not in ¢’ from T.
while Ciper # C'
S < largest affine subspace in Ciypney (Generated with AffineSubspace)
if |S| = 27 then
return d
else
Remove v from Cyyter
Remove the column and row associated with v from Tyuter

The performance of this algorithm varies quite a bit. For some input sets our heuristics perform
much better than algorithm 1. However, on some input sets we even see worse performance than
algorithm 1. This is probably because the initial upper bound is not tight enough in all cases. Fortu-
nately, algorithm 2 seems to perform better for encodings with lower maximum affine dimensions. As
we aim to design such encodings, this means that for well designed encodings, algorithm 2 seems the
best way to calculate that maximum affine dimension. Therefore, in the rest of the chapter we use
algorithm 2 to calculate the affine subsets. In table 7.2 some results are summarized. The maximum
affine dimension of the multiples of 3 and 9 behave almost similar (this will be seen further on),
however the run time of the algorithms on the multiples of 3 is much longer than the run time on
the multiples of 9. Moreover, algorithm 2 has a longer run time than algorithm 1 on the multiples of
3. This case seems to be unique, in other encountered cases algorithm 2 performs better than algo-
rithm 1. As an example of a well performing encoding we have the multiples of 37. The properties

of this encoding will be discussed later on. However, we can instantly see that both algorithm 2 and

60 Low affine dimensional encoding

Run time
Input set Algorithm 1 Algorithm 2
Multiples of 3
{i2bsp(3-7) : 0 < i < 128} 124 s 6.3 s
{i2bsp(3-7) : 0 < i < 256} 228 s 64 m
{i2bsp(3-4) : 0 < i < 384} 38 m 10 h
Multiples of 9
{i2bsp(9-7) : 0 < i < 128} 6.0 s 0.03 s
{i2bsp(9-7) : 0 < i < 256} 122 s 0.06 s
{i2bsp(9-7) : 0 < i < 384} 10 m 3.8s
Multiples of 37
{i2bsp(37-4) : 0 < i < 128} 2.6s 0.09 s
{i2bsp(37-4) : 0 < i < 256} 29 s 24s
{i2bsp(37-4) : 0 < i < 384} 135s 5.5s

Table 7.2 A comparison of the run time of algorithm 1 and 2 on various input sets.

algorithm 1 have a shorter run time. Furthermore, algorithm 2 has a much shorter run time than
algorithm 1 in this case. It can be seen that if the heuristics in algorithm 2 fail to find a correct
upper bound, the affine subsets of the input set are calculated multiple times, this could explain the

behaviour of the run time. Lastly, both algorithms were implemented in python.

The next step in our research is to formulate and experiment with new encodings. In this man-
ner, we hope to get an idea as to what constitutes a good low affine dimensional encoding. Using

algorithm 2 we can experimentally verify effectiveness of the proposed encodings.

7.2 Basic multiplicative encodings

The first encodings we consider are basic multiplicative encodings called mulenc?. These encodings
encode an integer ¢ by multiplying it by the integer c. Finally, this integer is converted to a bit string

using i2bsp. This is described in encoding 1.

Encoding 1 mulenc?

Encode(:):
return i2bsp(c-i,d)

IncrementState(i):
return i2bsp(c-i,d)

Increment (i, v):
return i2bsp(bs2ip(v) + ¢, d)

7.2 Basic multiplicative encodings 61

7.2.1 Mathematical properties

The most important property we are concerned about when analysing an encoding is the maximum
affine dimension. As a shorthand, we write the maximum affine dimension of the image of an encoding
enc as afdim (enc). In this section, we will make a mathematical analysis to determine how the afdim

of mulenc behaves as we increase the number of elements in the domain.

The following properties apply to this encoding;:

mulencflb_c) (i) = i2bsp(b- ¢ - 1)
12bsp(b - bs2ip(mulenc?(i)), d)

and

mulenc?;i) (i) = i2bsp(2 - bs2ip(mulenc?(i)),d + 1)

= mulenc?(i) | (0).

In other words: when we encode an integer with an instantiation of mulenc,. and multiply this output
with an integer d (interpreting the output as a binary encoding of an integer), then this is the same
as encoding with mulenc,.4. This also means that if we double the ¢ value of some instantiation, the

output will remain unchanged except for an extra trailing O.

Lemma 2. For any domain I,,, the multiplicative encoding mulenc? with ¢ an even number has the

. . -1
same affine dimension as mulenc‘(iﬁ) , but a lower code rate.
2

4

5 is a whole number, we have:

Proof. Because

mulenc?(i) = 2- mulenC?_l(i) | (0).

5)

Any affine subspace found in mulenc‘(i;)1 is therefore also present in mulenc?. Therefore, the affine
2

dimension is the same. However, mulenc? uses an extra bit to encode the data, while still encoding

the same number of inputs. Therefore, the code rate of mulencg is lower than mulenc?;)l. O
2

Lemma 3. Let an affine subspace A = {ay,...,a,} of mulenc? be given, with a; < aj forl <i <
j <mn. Then if 2™ > bs2ip(a,,), the set:

{a; | aj:i,5 € {i,...,n}}

is an affine subspace of milenc??.

62 Low affine dimensional encoding

Proof. Let an arbitrary ¢ be given, this will be used for our mulenc. encoding. Let A = {a1,...,an}
and m be given as described in the lemma. Let B = {b1,...,b,} be the preimages of the elements in
A, thus mulenc?(b;) = a;.

Then we define:

* = {mulenc?(b; - 2™ +b;) 1,5 € {1,...,n}}
= {i2bsp(c-b; - 2" 4+ c¢-b;,2d) 1 4,5 € {1,...,n}}
= {i2bsp(2™ - bs2ip(mulenc?(b;))

+ bs2ip(mulenc?(b;)),2d) : i,5 € {1,...,n}}

d

= {mulenc?(b;) | mulenc?(b;) : i,5 € {1,...,n}} (mulenc.(b;) = a; < 2™)

={a;|a;:i,5€{i,...,n}}

This directly proves that A* C im(mulenc2?). What remains to be proven, is that A* is an affine
space. The origin for A becomes a; and similarly the origin for A* becomes a; | a;. Take an arbitrary

i,7,k, 1 € {1,...,n}, then:

(ai | a;) ®a- (an | @) = (ai | a;) + (ar | @) + (a1 | a1)
= (a; + ax + a1) | (aj +a;+a1)
= (ai ®aag) | (a; ©a ar)

:b|c

where b = (a; ®a ax) € A and ¢ = (a; $a a;) € A. By the definition of A*, we can conclude
(b | ¢) € A*. Because the chosen %,j and k,I both can be chosen such that every combination of

elements in A* is considered, we have shown that A* is an affine space. O

From lemma 2 and 3 it follows that:

Corollary 1. For any ¢,n € N with ¢,n > 0, we have:

("—1))

e afdim(mulence = afdim(mulency,)

e afdim(mulenc?”) > 2 - afdim(mulenc?).

Thus we see that for mulenc, the affine subspaces can be generated as described in lemma 3. This
provides a means for attackers to generate affine subspaces. In reality we see that the linearity of the
affine dimension of mulenc, generally holds: the affine dimension does not grow much faster than the
lower bound given by the lemma.

One option to counter this property of mulenc, is to take a large ¢ value. By choosing a large ¢

value the starting length of the encoding will be large, an encoding that encodes the values 0...2"

for some n will use much more than n bits, say ! bits, with { > n. But when we encode 0...22"
the encoding will take up ! + n bits, while the dimension will double according to lemma 3 when the

encoding uses 2[bits. Because [> n, and thus 2] > [+ n, lemma 3 has no significant impact. But

7.2 Basic multiplicative encodings 63

just taking any large ¢ will not help. For instance, if ¢ is even we have that the afdim of a range of

indices is the same as §. But also, if ¢ = 2¢ + 1 for some d > 1, we have that for each e < d that
afdim({mulenc??*2(0),...mulenc2?t2(2¢ — 1)}) = e, thus the affine dimension is maximal for these
sets.

But what if we would choose the opposite: choosing only 1’s in the binary representation: ¢ =
i2bsp(Z?:_01 2¢ d) for some d > 1. Or even, alternating 0’s and 1’s in the binary representation:

c= Zf;ol 221, In both cases the affine dimension is still far from optimal and close to maximal. In

the next part of this section, this will be proven.

Lemma 4. Let ¢ be of the form 2™ — 1, m € N then for any 0 < i < ¢ we have:

i2bsp(c,m) + i2bsp(i, m) = i2bsp(c — i, m).

Proof. Let a ¢ of the form 2™ — 1 and an 0 < i < ¢ be given. A bitwise exclusive-or with i2bsp(c, m)
means inverting all bits, as all elements of i2bsp(c,m) are 1. We write:
m—1
i=> i,

=0

where 4; is §™ element of the binary string i2bsp(i,m). Then

m—1
c—i=2" =1 ;-2
=0
m—1 —1
=> Y- i
=0 §=0
m—1
=) (1—ij)- 2
=0

Thus i2bsp(c — 4, m) also inverts all bits, and thus i2bsp(e¢, m) + i2bsp(i, m) = i2bsp(c —i,m). O

Lemma 5. Let ¢ be of the form 2™ — 1, m > 1 then for 1 <i < 2™, we have:

12bsp(c, 2m) + i2bsp(c - i, 2m) = 12bsp(i — 1,m) | i2bsp(i — 1,m).

64 Low affine dimensional encoding

Proof. By induction.
Base.
Take ¢ = 1, then:

i2bsp(c, 2m) + 12bsp(c - i,2m) = i2bsp(c, 2m) + i2bsp(c, 2m)
= (0,...,0)
i2bsp(0,m) | 12bsp(0,m)

i2bsp(i — 1,m) | i2bsp(i — 1, m).

Step.

Let an i, 2™ >4 > 1 be given. First we derive:

cii=c-(i—1)+c (7.1)
= bs2ip(i2bsp(c- (i — 1),2m)) + ¢
= bs2ip(i2bsp(c- (i — 1),2m) + i2bsp(c, 2m) + i2bsp(c,2m)) + ¢
= bs2ip((i2bsp(i — 2,m) | i2bsp(i — 2,m)) + i2bsp(c, 2m)) + ¢ (IH)
= bs2ip(i2bsp(i — 2,m) | (i2bsp(i — 2,m) + i2bsp(c,m))) + ¢ (c<2™)
= bs2ip((i2bsp(i — 2,m) | i2bsp(c — (i — 2),m)) + ¢ (Lemma 4)
= bs2ip(i2bsp(i — 2,m) | i2bsp(c — (i — 2),m)) + 2™ — 1 (c=2m—1)
= bs2ip(i2bsp(i — 2,m)) - 2" + bs2ip(i2bsp(c — (i — 2),m)) + 2™ — 1
= (bs2ip(i2bsp(i — 2,m)) + 1) - 2™ + bs2ip(i2bsp(c — (1 — 2),m)) — 1
= bs2ip(i2bsp(i — 1,m) | i2bsp(c — (i — 1), m)). (0<i—2<c)

Then:
i2bsp(c, 2m) + i2bsp(c - i,2m) = i2bsp(c, 2m) + i2bsp(c- (i — 1) + ¢,2m)
= i2bsp(c, 2m) + (i2bsp(i — 1,m) | i2bsp(c — (i — 1), m)) (Equation 7.1)
= i2bsp(i — 1,m) | (i2bsp(c,m) + 12bsp(c — (i — 1), m)) (e <2™)
= 12bsp(i — 1,m) | i2bsp(i — 1,m). (Lemma 4)
O

Lemma 6. Let ¢ be of the form 2™ — 1, m € N with m > 0 then the sets:
{mulenc®™ (i) : i € N,1 < i <29} deN,1<d<m

are affine subspaces of mulenc?™.

7.2 Basic multiplicative encodings 65

Proof. Let c of the form 2™ — 1, m > 0 and d, 1 < d < m be given.
Define:

A = {mulenc?™(i) :i € N,1 <i < 2%}.

Obviously, A is a subset of im(mulenc?™). What remains to be proven is that A is an affine space.
If A were an affine space, ¢ would be its origin. Let i,j be arbitrary numbers fulfilling 1 < i,j < 2.
We define k = bs2ip(i2bsp(i — 1,m) + i2bsp(j — 1,m)), 1 < k + 1 < 2. Using this, we have that:

mulenc’™ (i) ©4 mulenc?™ ()
= i2bsp(c, 2m) + i2bsp(c - i,2m) + i2bsp(c - j,2m)
= i2bsp(c, 2m) + 12bsp(c - i, 2m) + i2bsp(c, 2m)
+ i2bsp(c- j,2m) + i2bsp(c, 2m)
= 12bsp(c, 2m) + (i2bsp(i — 1,m) | 12bsp(i — 1,m))
+ (i2bsp(j — 1,m) | i2bsp(j — 1,m)) (Lemma 5)

12bsp(c, 2m) + ((i2bsp(i — 1,m) + 12bsp(j — 1,m)) |

(i2bsp(i — 1,m) + i2bsp(j — 1,m)))

= 12bsp(c, 2m) + (i2bsp(k,m) | 12bsp(k,m))

i2bsp(c- (k+1),2m) (Lemma 5)

=mulenc?™(k + 1)

This directly proves that A is an affine subspace. O

This gives more information about how we should choose ¢. From lemma 6 follows corollary 2:

Corollary 2. Let n,m > 1, then:
1. If c=2"—1, then for k <n: afdim(mulencgn-’_k)) =k—1.

2. If c=3"1 2™, then for k < n: afdim(mulencgn'erk)) >k—1.

Why corollary 2.2 is true, can be seen by viewing the binary representation of ¢. This will be of
the form: (1,0,1,0,1,...,0,1), (1,0,0,1,0,0,1,...,0,0,1), (1,0,0,0,1,0,0,0,1,...,0,0,0,1), et
cetera. But then we have that mulenc.(3) = (1,1,1,1,1,...,1,1), mulenc.(7) = (1,1,1,1,1,...,1,1),
mulenc.(15) = (1,1,1,1,1,...,1,1) respectively. Combining this with lemma 6 directly gives the
result.

So according to corollary 2, a repeating pattern should be avoided in the binary representation of
c. Rather, i2bsp(c, d) should somewhere contain a string where two elements with value 1 are close to
each other. This prevents that the encoding will just put the binary representations of ¢ next to each
other (thus preventing that the encoding of i looks like i2bsp(i,m) | (0,...,0) | i2bsp(i,m) |

Furthermore, corollary 2 also gives us that i2bsp(c,d) should contain multiple consecutive 0’s to

66 Low affine dimensional encoding

prevent such a repeating pattern.

7.2.2 Experimental results

Using algorithm 2 we can verify the actual performance of mulenc? for different values of c. In our
analysis, we limit ourselves to bit strings of 64 bits, this is the default integer size of our computer.

As a starting point the maximal affine dimension of the code words generated by mulenc$*,

mulenc?, mulenct* and mulenc§?* were calculated. To get a better understanding of how the maximal
affine dimension increases when the encoding encodes more values, we vary the number of counters
encoded. As a shorthand we define the function codewords(enc,n) that maps the set of integers

0...n — 1 to the set of the encodings using enc of these same integers 0...n — 1:
codewords(enc,n) = {enc(i) : 0 < i < n}.

Using the codewords function we calculate afdim(codewords(enc,n)) to get an understanding of how
the maximal affine dimension increases as a function of the number of code words. As calculating
the maximum affine dimension of codewords(enc,n) for each n takes a substantial amount of time,
we use an adaptive stepsize to calculate the maximum affine dimension for different n. In our case,

this means that the values of n are defined by the sequence n;:

nlzl,

ni =mni_1+ 2max{ |log, ni,174j,0}.

This means that the sequence n; doubles its stepsize each time it reaches a power of 2, starting at
32:

ni=(1,2,3,...,32,34,36,...,62,64,68,...,124,128 136,144, ...).

Another property that we are concerned about is the entropy. In the ideal case, we can encode
24 numbers in d bits: but this would also generate the worst possible maximum affine dimension. To
gain an understanding how different encodings behave, we define the property Ipb(C), information
per bit:

Ipb(C) = %.

Here d is the minimal number of bits used to represent C. With minimal number of bits, we mean
that while we can use 128 bits to represent the code words i2bsp(0,128),...,i2bsp(15,128) we can
also use 4 bits to represent them. Therefore d will be 4 in this case.

In table 7.3 the minimal number of elements required to have a certain maximum affine dimension
in each encoding mulenc$*, mulencS?, mulenc$ and mulenc$?® is given. One can see that the lower
bound of afdim given in corollary 1 is pretty close to the actual behaviour of afdim: each time the

number of bits used doubles, the afdim also doubles.

7.2 Basic multiplicative encodings 67

Minimal number of elements n and minimal number of bits d for various afdim values.

Maximum affine dimension (afdim)

1 2 3 4 5 6

Encoding n d n d n d n d n d n d
mulencég;l) 2 3 5 50 18 6 72 8 288 10 >640 >11
mulenc Eg;‘) 2 1 1 5019 7T 50 8 304 11 >640 >12
mulenc E%‘) 2 1 5 6 9 6 68 9 272 11 54 12
mulenci’ 2 5 1 6 8 7 T2 10 200 11 464 13

Table 7.3 The minimal number of elements n required such that codewords(mulencgm), n) for different

c values has a certain maximum dimension of its affine subspaces. The n values can be up to 2 Llogy] —4
too big. The d value gives the maximum word length in codewords(enc, n). The ¢ values are the first
4 odd numbers in N (excluding 1).

Table 7.3 gives us a baseline of compact encodings (i.e. encodings that can encode a lot of values
in a certain string length). As we have seen in corollary 1 the maximum affine dimension can be
reduced by increasing c. Corollary 2 tells us that the binary representation of ¢ should not contain
repetitions. To find new candidates for ¢, we have chosen four prime numbers between 32 and 1024,
which have almost an equal number of 1’s and O’s in their binary representation. The following four

values for ¢ have been chosen:

e 37: (1,0,0,1,0,1). The binary representation has three 0’s and three 1’s. Also, no repetition
can be found in the binary representation. The number 37 is also the number people are most

likely to state when asked to give a random number between 0 and 100.
e 151: (1,0,0,1,0,1,1,1). The binary representation has three 0’s and five 1’s.

e 233: (1,1,1,0,1,0,0,1). The binary representation of 233 is the representation of 151 written
backwards. Therefore, the binary representation has three 0’s and five 1’s. It will be interesting

to see if 233 performs similar to 151.

e 821: (1,1,0,0,1,1,0,1,0,1). The binary representation has four 0’s and six 1’s. A hint of
repetition can be found in its representation if one looks closely, as the representation starts
with two 1’s than two 0’s and then again two 1’s. It will be interesting to see how this ¢ value

behaves.

Please note that the ¢ values all have a different number of bits in its minimal representation. With
minimal representation, we mean that the most significant bit would be 1 in that case. Therefore, if
we just look at the number of bits 821 should perform better than 37. However, 37 has less repetition
than 821. This experiment allows to find how much the number of bits and the amount of repetition
affects the maximum affine dimension. Table 7.4 contains the minimal number of elements required
to reach a certain afdim for each value of c. d is again the minimal number of bits for an afdim value.

According to table 7.4 we see that 821 performs relatively poorly while it is the largest c-value of

the four. This shows that having little repetition in the binary representation can be more important

68 Low affine dimensional encoding

Minimal number of elements n and minimal number of bits d for various afdim values.

Maximum affine dimension (afdim)

Encoding n d n d n d n d n d n d
mulenc(s) 2 7 4 8 52 11 288 14 1600 16 >3200 >17
mulenc?g)l) 2 9 12 11 50 13 108 14 224 16 3200 19
mulencggg) 2 9 18 13 104 15 864 18 >4096 >20 >4096 >20
milencigy 2 11 10 14 36 15 368 19 1024 20 2304 21

Table 7.4 The minimal number of elements n required such that codewords(mulencgm), n) for different

c values has a certain maximum dimension of its affine subspaces. The n values can be up to 2 llog; 7| —4
too big. The d value gives the maximum word length in codewords(enc,n). The ¢ values have been
chosen by hand picking various primes between 32 and 1024, which is motivated in the text.

than just having a large c-value. Furthermore, 233 outperforms 157 while the binary representation of
233 is the binary representation of 157 backwards. This shows that there is probably no correlation
between the two. Furthermore, 37 performs relatively good having only a higher maximal affine
dimension than 233. This is especially impressive, considering it uses fewer bits than the other three
encodings. Furthermore, it seems that being a prime number does not provide a benefit to the
maximum affine dimension. We found that by calculating the maximum affine dimension for several
values in the [32,1024] range for different n, many composite numbers had similar maximum affine
dimensions as the selected candidates.

Unfortunately, the properties we described do not completely describe the ‘ideal’ candidate. While
they do provide some ‘ideal’ properties, many values fulfil such properties. Therefore, to find a good
performing candidate we performed a more brute-force search: we calculated the maximum affine
dimension for codevvords(mulencgﬁzl),300)7 codewords(mulencgm),400), codewords(mulencgm),500)
and codewords(mulenc£64)7 600) for ¢ in the range [9000, 12 000]. The five best performing ¢ candidates

were selected. These ¢ candidates are:

e 11479: (1,0,1,1,0,0,1,1,0,1,0,1,1,1),

11591: (1,0,1,1,0,1,0,1,0,0,0,1,1,1),

11641: (1,0,1,1,0,1,0,1,1,1,1,0,0,1),

11727 (1,0,1,1,0,1,1,1,0,0,1,1,1,1),

11873: (1,0,1,1,1,0,0,1,1,0,0,0,0,1).

While the range from which the best candidates were selected was relatively large, the actual
values of the candidates are quite close to each other. This results in the same most significant
bits in all the selected candidates. Apparently, having (1,0,1,1) as the most significant bits seems
to be a good choice. Furthermore, having multiple consecutive 1’s seems to be a good choice too.
This is interesting, as we have proven that ¢ consisting of only consecutive 1’s is one of the worst

combinations.

7.2 Basic multiplicative encodings 69

Minimal number of elements n and minimal number of bits d for various afdim values.

Maximum affine dimension (afdim)

1 2 3 4
Encoding n d n d n d n d
mulenc(yry 2 15 21 18 496 23 >3584 >26
mulenc(yylo, 2 15 28 18 512 23 >3584 >26
mulencgzgfj a2 15 20 18 448 23 2560 25
mulenc(yy)y, 2 15 22 18 480 23 2816 25
mulency)yyy 2 15 30 19 512 23 2688 25

Table 7.5 The minimal number of elements n required such that codewords(mulenc£64) n) for different

)

c values has a certain maximum dimension of its affine subspaces. The n values can be up to 2 Llogy] —4
too big. The d value gives the maximum word length in codewords(enc,n). The ¢ values have been
chosen by selecting the best candidates from the range [9000, 12 000].

To explain why having multiple consecutive 1’s produces no bad results in this case, we can take
a look at the lemma that allows us to easily produce affine spaces. An important property of ¢ with

multiple consecutive 1’s is lemma 5. This lemma states that
12bsp(c, 2m) 4 i2bsp(c - 4,2m) = 12bsp(i — 1,m) | 12bsp(i — 1,m).
If we have i = 2, this gives:
i2bsp(c, 2m) + i2bsp(c - 2,2m) = 12bsp(1,m) | i2bsp(1,m).
But in our case we get:
i2bsp(11479-2,15) 4+ i2bsp(11479,15) = (1,1,1,0,1,0,1,0,1,1,1,1,0,0,1).
Compare this with:

i2bsp(11641,15) = (0,1,0,1,1,0,1,0,1,1,1,1,0,0, 1).

Thus even 12bsp(11479-2,15) 4 i2bsp(11 479, 15) produces a supposedly good candidate ¢ value.
Lemma 5 used this formulate to generate an affine subset. As this formula produces a good candidate,
it makes it hard to generate affine subspaces based on the same trick we apply in lemma 5. It might
thus be interesting to check for each potential ¢ candidate whether i2bsp(c - 2,15) + 12bsp(c, 15)
would also be a good candidate.

In table 7.5 the behaviour of the maximum affine dimension is given. We see that 11479 and
11591 produces the best results.

70 Low affine dimensional encoding

7.3 Logarithmic encodings

The next encoding we propose will build upon the multiplicative encoding, or in general: im-
prove another encoding. The most interesting and problematic result of the theoretical analysis
of mulenc is lemma 3. As a reminder, lemma 3 allows us to construct a larger affine subspace from
a smaller affine subspace of mulenc.. This was done by using the property that mulenc??(i - 29) =
mulenc?(i) | (0,...,0). Anidea to counter this, is to slowly change ¢ when i increases, thus preventing
such a construction.

A simple idea is to take multiples of ¢ depending on the number of bits that ¢ uses. This comes

d

mulenc, encoding:

down to the following encoding, which is called the logenc

(¢ [logy(i) +1]) -

We see that this function wraps mulenc. in a way. In fact this method can be adapted to other
encodings as well. Therefore, we define the encoding in the fashion as described by logenc in
encoding 2. For a faster implementation of the Increment function, we use the Power0fTwo function

to check if an integer i is a power of two.

Power0f Two (i) = true if i2bsp(i,d) - i2bsp(i — 1,d) = 0, (72)
false otherwise.

Note that ¢ must be greater than or equal to 1 for correctness of the Power0fTwo function.

First, note that the length of the output binary string of the specified enc parameter must match
d. Because these parameters are the same, the parameter is sometimes omitted. Secondly, the log,
operation is quite expensive. As we only need to calculate the integer values of log,, which is the
minimum number of bits required to encode ¢, we can use functions designed to directly calculate
this value. Albeit the implementation of these functions can be faster, it is still a more expensive
operation than an addition or a multiplication. We aimed to remove this method in the Increment
function: this is done by checking if 7 is a power of 2. For this we use the efficient Power0fTwo?

function.

7.3.1 Dealing with even values of [log,(i) + 1]

A good observation that can be made is that |logy(i) + 1] will be even half of the time. As seen
in corollary 11 even values of ¢ used in mulenc, are useless. This is not necessarily true for the
logarithmic encoding, as the value of |log,(i) 4+ 1| will vary and still prevents the property proven in
lemma 3. However, it can be conjectured that the encoding would be more efficient if |[log,(7) + 1]

would odd. A solution would be to change the logarithmic encoding to:

c-(2|logy(i) + 1] +1) -4

7.3 Logarithmic encodings

71

d

enc

Encoding 2 logenc

Encode(:):
if i > 1 then
return i2bsp(bs2ip(enc.Encode(i),d) - [logy (i) + 1], d)
else
return enc.Encode(i)

IncrementState(i):
Vene < enc.IncrementState(i)
if © > 1 then
return (i2bsp(bs2ip((venc)o - |10gs(i) + 1], d), [logy(4) + 1], Venc)
else
return ((Venc)o, 0, Venc)

Increment (i, (v, Viog, Venc)):

Vene < enc.Increment (i, veyc)

if ¢ > 1 then
if Power0fTwo? (i) then

Vlog ¢ Vlog + 1

v < 12bsp(bs2ip(Venc) - Viog, d)
return (v, Vieg, Venc)

else
Venc < enc.Increment(i, venc)
return ((Venc)o, 0, Venc)

72 Low affine dimensional encoding

Minimal number of elements n and minimal number of bits d for various afdim values.

Maximum affine dimension (afdim)

1 2 3 4 5 6
Encoding n d n d n d n d n d n d
logenc .. 2 4 7 6 32 10 124 12 800 15 2560 17
(3)
logencmulenc(m) 2) 7 7 48 11 184 13 992 16 3200 18
(5)
logenc .. 4 2 5 7 8 62 12 200 14 320 15 2304 18
(7)
logencmulenc<s4) 2 6 11 9 80 13 96 13 128 14 3584 19
(9)
logenc .. (4 2 8 7 10 88 15 1600 20 3968 21 >4096 >21
mulenc ;)
logenc (64) 2 10 27 15 92 17 >4096 >23 >4096 >23 >4096 >23
mulenc(lsl)
logenc (64) 2 10 29 16 208 19 1344 22 >4096 >24 >4096 >24
mulenc<233)
logencmulenc<64) 2 12 20 17 176 21 608 23 864 23 >4096 >26

(821)

Table 7.6 The minimal number of elements n required such that codewords(logenc,, .64,7) for
different ¢ values has a certain maximum dimension of its affine subspaces. The n values can be up to
2lloga n] =4 t506 big. The d value gives the maximum word length in codewords(enc,n). The ¢ values
chosen are 3,5,7,9,37,151,233 and 821.

d

mulenc,.

This encoding is called 2logenc encoding. However, repeating multiple 1’s at the end of ¢

should be avoided, and considering this, changing the logarithmic encoding to:

(c- (4|logy(i) + 1] 4+ 1) -4

d

seems better. This encoding is called the 4logenc{, .

encoding. The logarithmic encodings logenc
and 4logenc are experimentally verified, and the results will be discussed below. The definition of

both encodings is straightforward from encoding 2 and is left to the reader.

7.3.2 Experimental results

To verify the performance of logenc we calculate the behaviour of the maximum affine dimension of

logenc (64) for various c values. The results can be found in table 7.6. The behaviour seems quite

randomm,ui:zrlllcicle 9 requires the largest n to reach an affine dimension of 6 of the four ¢’s smaller than
10, it can reach an affine dimension of 4 and 5 with less elements than any of the other encodings
with ¢ smaller than 10. A similar behaviour can be seen when ¢ is 151. These two show that it might
be hard to predict how the logenc performs when encoding larger sets of elements. An explanation
can be that log, will sometimes be an even number and sometimes an odd number with desirables
properties. While logenc has unpredictable results, it does reduce the maximum affine dimension
of each encoding. Moreover, 4logenc might solve these problems, by making sure that the value we
multiply with is odd and does not consist solely of only 1’s in its binary representation.

The next step is to verify the performance of 4logenc in the same way as we did for logenc. To

this end, the behaviour of the maximum affine dimension of 4logenc (en s calculated for various

mulen
¢ values. Some c values seen in table 7.6 have been omitted due to limitations in the resources available

7.4 Concatenated encodings 73

Minimal number of elements n and minimal number of bits d for various afdim values.

Maximum affine dimension (afdim)

1 2 3 4 5 6
Encoding n d n d n d n d n d n d
4logencmulenc§2?) 7 76 E S 725 I 800 17 3584 20 >4096 >20
4logencmulem§§;;) 2 7 8 10 64 14 608 17 736 18 960 18
41°gencmu1enc§$;‘) 2 7 13 11 176 16 352 17 1408 19 >4096 >21
4logencmulencgg;1) 2 8 13 11 92 15 1984 20 3328 21 >4096 >21
4logencmulenc<e4) 2 10 7 12 104 17 2048 22 >4096 >23 >4096 >23

(37)

Table 7.7 The minimal number of elements n required such that codewords(4logenc,; pc04,7) for
different ¢ values has a certain maximum dimension of its affine subspaces. The n values can e up to
2lloga n]=4 t50 big. The d value gives the maximum word length in codewords(enc,n). The ¢ values
chosen are 3,5,7,9 and 37.

to analyse the maximum affine dimensions. The results can be seen in table 7.7. Unfortunately, the
behaviour still seems quite random and unpredictable. It still seems hard to predict which ¢ will
generate a set of code words with the smallest maximum affine dimension when we increase the
number of code words. Moreover, if we compare table 7.7 with table 7.5 we see that the simple

mulenc, with a large ¢ value out performs 4logenc with a smaller ¢ value. Furthermore, the

mulenc,.

number of bits used (d) is only a little bit more in the encodings in table 7.5. Therefore, 4logenc

and logenc do not provide an improvement in the maximum affine dimension.

7.4 Concatenated encodings

In some cases, the encoding is allowed to use a long bit string to encode relatively small numbers. In
this case, the encodings presented so far struggle to use the whole encoding space. To make optimal
use of all bits in our binary string, we could opt to combine multiple encodings and put them together.
For instance, combining two multiplicative encodings with parameter ¢,d and ¢’,d’ can be done in

the following manner:
mulenc? (i) | mulencg: (7)

We define conenc as an encoding allowing us to combine multiple encodings in encoding 3.

In most cases applying a conenc encoding at least doubles the required string length. In some
cases, this is not feasible. In a way to reduce the required string length, one should observe, that we
are only using injective encodings — until now. To make conenc injective, it is only required that one
of the encodings used is injective. To this end, we define the following non-injective encoding, based

on the mulenc. encoding in encoding 4. Note that mulencg(i) =mulenc?(i) if i < [%1

74 Low affine dimensional encoding

Encoding 3 conencenc, encs,...,enc,

Encode(:):

return enci.Encode(i) | enco.Encode(i) | ... | enc,.Encode(?)
IncrementState(i):

return (enc;.IncrementState(i), enco.IncrementState(i), . .., enc,.IncrementState(i))
Increment (i, (u,v1,ve,...,0n-1)):

for j«<1,...,ndo

vj, < enc;.Increment (i, v,)
Uj, W5 <= Vj

return (ug |ug | ... | up),v1,v2,...,0,

Encoding 4 mulencf

Encode(:):
return i2bsp(c-i,d)

IncrementState(7):
return i2bsp(c - i,d)

Increment (i, v):
return i2bsp(bs2ip(v) + ¢, d)

7.4.1 Mathematical properties

As seen in lemma 3, it is possible to construct a larger affine subspace from a smaller affine subspace
of mulenc.. Unfortunately, the construction of a new encoding by concatenation does not prevent an
similar version of lemma 3 applying to the new encoding.

First we need to prove some lemmas, to make it possible to prove a similar property as lemma 3.

Lemma 7. Let f = conencenc,, ... enc,
with

enc,, — mulencg: 1<m<n
for some ¢, and d,, € N. Let a,b,d € N fulfilling b - max(cy,...,c,) < 2%. Then:

fla-2¢4+b) = f(a-2%) + f(b).

Proof. Let f,ency,...enc,,a,b,d be given as stated in the lemma. Take an arbitrary m, 1 < m <
n. We are going to look at the bits produced by the m' encoding. Note that this is a fixed
position/substring of the output of f. Projecting:

f(a-2¢4b)

7.4 Concatenated encodings 75

h

on the m*™ encoding gives:

mulenci’: (a-2¢4).
We define the bit strings ¢, s such that:

(t1y... tq,,) = mulenci:(a),

(S$1y.--,84,,) = mulencf::(b).
Suppose d,, > d, then:

mulenci’: (a- 24 4 b) =12bsp(cm - -2 4 ¢ - b, dyy)
= i2bsp(bs2ip(i2bsp(cy, - a - 24, dm)) + bs2ip(i2bsp(cm - b, dim)), dim)

d times
_ —
= i12bsp(bs2ip((td,,—d,---,t1,0,...,0))) + bs2ip((Sd,,,---,50))s dm)
dy, — d times

= 12bsp(bs2ip((td,, —d;--->t1,0,...,0) +bs2ip((0,...,0 ,54,...,51)),dm) (cm-b<29)
:(tdm_d,...,to,o,...,0)—|—(0,...,O,Sd,...,81))

= mulencg:: (a-2%) + mulenci:: (d).
If d,, < d, then we have mulencj:j (a-2%) =(0,...,0) and so
- a4, d —d,, ——d,, F I —
mulenc,” (a - 2% +b) = mulenc.” (b) = mulenc,” (a - 2) + mulenc,” (b).
In both cases, if we combine all enc,, together into f, we get:

fla-27+b) = fla-29) + f(b).

O
Lemma 8. Let f = conencenc, ... enc,
with
—————d
ency, = mulenc.” 1<m<n.
If

fla) + f(b) + f(o) = f(e)

for some a,b,0,e € N, then for any d > 0,d € N:

fla-29) + f(b-2%) + f(o-27) = f(e-27).

76 Low affine dimensional encoding

Proof. Let f and the corresponding ency,...,enc, be given. Suppose a,b,0,e € N are given such
that

fla) + f(b) + f(o) = f(e).

Take an arbitrary m , 1 < m < n. We are going to look at the bits produced by the m'" encoding.
Note that this is a fixed position/substring of the output of f. Projecting gives:

enc,,(a) + enc,, (b) + enc,, (0) = ency,(e)

Now enc,, is of the form:

mulencg::
for some c¢,,,d,, € N. This gives:
i2bsp(cm - a,dpm) + i2bsp(cm - b, dim) + 12bsp(ep, - 0,dp,) = 12bsp(ep, - €,dpm).

But if we look at the definition of 12bsp(i, d,,), then we conclude that the following property holds:
if i2bsp(i,dpm) = (Sd,--.,s1) then i2bsp(2-4,dy) = (S4—1,-.-,51,0). Now let an n € N be given. If

12bsp(cm * @y dm) = (Sd, - -+, 81),
12bsp(cm - by dpm) = (tq - -)
12bsp(cm - 0,dm) = (ug, -) and
12bsp(cp, - €,dp) = (v4, - -)

then:

12bsp(cm - a- 2%, dy,) + 12bsp(cy, - b- 29, dp,) + 120sp(cm - 0- 2%, d,y)
= (Sd,, —dy--551,0,...,0) + (ta, —dy---,t1,0,...,0) + (wa,,—d,-.-,u1,0,...,0)
= (va,,—d,---,01,0,...,0)
= 12bsp(cm - €- 2%, d,y).

Thus
enc,,(a - 2%) + enc,, (b~ 2%) + enc,, (0 - 2%) = encp (e - 2%)
and s0:
fla-2%) + f(b-2%) + f(o-2%) = f(e-27).

O

Using these lemmas, we can prove a similar property as lemma 3 for conenc when using as

7.4 Concatenated encodings 7T

sub-encoding the multiplicative encoding.

Lemma 9. Let f = conencenc,,... enc,
with

—d
enc,, — mulencc;” 1<m<n.

Let B be a set B C N, such that
A={f@i):i€ B}

is an affine subspace. If max(B)-max(cy,...,c,) < 2% then
{£G-2"+j) 4,5 € B}

is an affine subspace of f.

Proof. Let f,encq,...,enc,, A and B be given as stated in the lemma. We write:
B*={i-2¢+j:i,j€ B}
and

A*={f(e) : e € B*}
={f(i-29+j):i,j € B}

Obviously A* is a subset of im(f). What is left to prove is that A* is an affine space. Let oz -2¢ + oy,
be the value in B* for oy, 0y, € B such that

flow -2+ o)

is the origin of A*. Take an arbitrary u,v € A* and let ay,ar,by,by € B be such that u =
flag -2%+ar) and v = f(bg -2¢ + by). Because A is affine, a pair ey, er, € B must exist such that

flam) + f(bu) + flon) = f(en)

and

flar) + f(br) + flor) = fler)-

78 Low affine dimensional encoding

Encoding (conencenc, enc,) Maximum affine dimension (afdim)

encq encsy 1 2 3 4 5 6
mulenc®” mulenc(*” 2 10 52 248 832 3968
mulenc§32) mulenc(732) 2 5 34 136 1088 >4096
mulenc®” mulenc(®” 2 10 76 608 3200 >4096
mulenc®™ mulenc{*? 2 4 36 100 1152 3200
mulenc(732) mulencéw) 2 7 64 200 464 4096

Table 7.8 The minimal number of elements n required such that codewords(conencenc, enc,,”) has a
certain maximum dimension of its affine subspaces. The n values can be up to 2L°8271=% too big.
The sub-encodings enc; and encs are chosen from the encodings used in table 7.3.

Note that max(cy,...c,) - ep < 2% Then ey -2¢ + er € B* and thus:

UDAx V= f(aH'2d+aL)—|—f(bH'2d+bL) —|—f(OH '2d—|—OL)
(

= flag - 29 + flap) + f(by - 2% + f(br) + f(om - 2%) + f(or) (Lemma 7)
= (flam -2%) + f(bu - 29) + fon - 2)) + (f(ar) + f(bL) + f(oL))
err - 24 + fler) (Lemma 8)

= /f(
= f(

e 2% +ep) € A*

Because u, v can be any element in A* we have shown that A* is an affine subspace of im(f). O

7.4.2 Experimental analysis

To verify if the encoding construction provided by conenc yields useful results, we have combined
several encodings using this construction. At first we started with combinations of mulenc encodings
with small ¢ values. This can be seen in table 7.8. Then we computed the maximum affine dimension

of logenc with the same c values. This can be seen in table 7.9. Lastly, we combined mulenc

mulenc
encodings with a counter that counts from 0 to either 15 or 255 and then starts again at 0. These
results can be seen in table 7.10.

If we compare table 7.8 to table 7.3 and table 7.9 to table 7.6, then we can see that the conenc
reduces the affine dimension by 1 or 2. However, the encoding generated by selecting the ideal ¢ values
from 9000 to 12000 (table 7.5) generated code words with a maximum affine dimension comparable
to these conenc construction. One must also note that conenc increases the numbers of bits required
to encode some values excessively. While it does provide lower maximum affine dimensions, it might

be possible to find better encodings that can encode more values.

7.4 Concatenated encodings

79

Encoding (conencenc, enc,)

Maximum affine dimension (afdim)

enc, ency 1 2 3 4 5 6
logencmulencéw) logencmulem(sgz) 2 10 176 1728 3200 >4096
1ogencmulencé32) 1ogencmulenc§32) 2 7 168 2304 >4096 >4096
logencmulencéa;z) logencmlencggz) 2 10 208 3072 >4096 >4096
logencmulemégz) logencmulemégz) 2 34 168 3072 >4096 >4096
1ogencmu1enc<732> logencmulem(gaz) 2 28 112 3968 >4096 >4096

Table 7.9 The minimal number of elements n required such that codewords(conencenc, enc,,”) has a
certain maximum dimension of its affine subspaces. The n values can be up to 2L°827/=% too big.
The sub-encodings enc; and ency are chosen from the encodings used in table 7.6.

Encoding (conencenc, enc,) Maximum affine dimension (afdim)

enc; encoy 1 2 3 4 5 6
mulencém) mulenc 54) 2 6 18 72 288 >640
mulencése') mulenc §8) 2 6 44 304 832 >3584
mulencgs?) mulenc §4) 2 4 20 50 304 >640
mulenc’” mulenc” 2 4 48 208 832 3200
mulenc!® muTenc!" 2 7 34 68 400 >640
mulenc!’®” muTenc|” 2 7 50 448 1088 >3584
mulencéGo) mulenc §4) 2 4 8 72 200 464
mulencs()%) mulenc 58) 2 4 8 144 400 928

Table 7.10 The minimal number of elements n required such that codewords(conencenc, enc,,n) has
a certain maximum dimension of its affine subspaces. The n values can be up to 2U1°82"/=% t00 big.
The sub-encodings ency are chosen from the encodings used in table 7.3. ency is a simple 4 or 8 bits
(8))

or mulency

. . (4
counter that overflows when the maximum value has been reached (i.e. mulenc;)

80 Low affine dimensional encoding

7.5 Rotation-based encodings

The next encoding that will be introduced is the smeer encoding (named after the Dutch word for
‘spread’ in sandwich spread). The previous encodings were trivially injective, because all encodings
were strictly monotonic when converted to an integer. The encodings that will be introduced now
will not have this property. Injectivity will be proven for the more practical algorithms, the other

algorithms merely serve as an illustration.

7.5.1 Exponential encoding

The idea of the smeer encoding comes from analysing the encoding, that can encode more than one
value, with the lowest possible dimension: dimension 1. An example of such an encoding is the

exponential-encoding expenc, as described in encoding 5.

Encoding 5 expenc,

Encode(i):
return i2bsp(2+!, d)

IncrementState(i):
return i2bsp(2+!, d)

Increment (i, v):
return i2bsp(bs2ip(v) - 2,d)

In other words, the expenc, encodes the numbers 0,1,2,...,d—1to (0,...,0,1), (0,...,0,1,0),
(0,...,0,1,0,0), (1,0,...,0). While this is the best encoding to make sure no affine subspace with
more than 2 elements will exist, it is horribly inefficient in terms of length and plainly not practical.
The next step would be to extend this encoding, while keeping the maximal affine dimension low.

A logical method would be to keep the first d values the same as the first d (and only) values
of expenc,;. The idea for the remaining part of the encoding, is to change the value that is being
rotated over all bits. Logically, the next value after 1 would be (1,0), but this would result in the
same encodings as the first d encoding. Thus 1,1 is chosen. So the next values are chosen to be the
values (0,...,0,1,1), (0,...,0,1,1,0), (0,...,0,1,1,0,0), (1,1,0,...,0). and then the next values
can then be (0,...,0,1,0,1), (0,...,0,1,0,1,0), (0,...,0,1,0,1,0,0), (1,0,1,0,...,0). The next
values can then be found by shifting (0, ...,0,1,1,1), thus we numerically increment the base number
while skipping even numbers. If we continue this method, we get the shifted odd numbers encoding
shiftedoddenc? (encoding 6).

Injectivity of the shifted odd numbers encoding, can be proven by interpreting the encoding as a
number n and factorizing n in primes. Each factorization will be different: either the multiplicity of
2 will differ, or the odd number achieved by dividing n by 2 until it is an odd number is different.

In general, we can note several things: calculating the encoding of a specific number is very
inefficient in this primitive implementation. Whereas all implementations of encodings seen so far were
O(1), this implementation is O(n). This can probably be improved by investigating the properties
of this encoding, but this is outside of the scope of this thesis.

7.5 Rotation-based encodings 81

Encoding 6 shiftedoddenc®

Encode(:):
v, w + IncrementState(7)
return v

IncrementState(i):
v < 12bsp(1,d)
w + i2bsp(1,d)
for j«<1,...,i—1do
v, w < Increment(j, w,v)

return v, w

Increment(i, v, j):
if bs2ip(v) > 297! then
return i2bsp(j + 2,d),j + 2
else
return i2bsp(bs2ip(v) - 2,d), j

The second important consideration, is that this encoding will eventually reach every possible
value in F¢. It can be said that this encoding is equivalent to the mulenc{ encoding, but the order is
completely different and if the domain is limited, we actually get a decent encoding. These statements

can be verified in the experimental analysis.

Experimental analysis

Table 7.11 gives the minimal number of elements to reach a certain maximum affine dimension. The
table also includes the Ipb value, indicating how much information each bit gives about the encoded
value. We see that the Ipb increases sublinearly with the maximum affine dimension. Furthermore,
when the bit length is increased, the Ipb at a certain maximum affine dimension decreases. It
can be seen that the encodings, especially shiftedoddenc(®?) performs pretty well relative to the
encodings seen so far when n is small. However, when n reaches a certain kind of boundary (for
shiftedoddenc'® around n = 100) the affine dimension rapidly increases. This is possibly be due
to the fact that shiftedoddenc is simply a reordering of all the codewords generated by mulenc,
which is the worst encoding possible. This means that when the encoding reaches a certain n, the

combination of bit strings that make the mulenc; perform badly will all be used as a code word.

7.5.2 Shifted encoding

While the exponential encoding seems to be a decent encoding, we have seen better encodings.
However, it is possible to generalize the developed encoding: instead of shifting odd values, we can
shift the value of an existing encoding. This results in the shiftedenc encoding as described in
encoding 7.

To make sure our version is injective, we assume that the existing encoding used does not contain
both a value x with the last bit set to O and a value y equal to x but with the last bit set to 1. The

encoding will force the last bit set to 1 and, in this manner, avoid an attack by using the fact that

82 Low affine dimensional encoding

Minimal number of elements n and information per bit Ipb for various afdim values.

Maximum affine dimension (afdim)

1 2 3 4) 6

Encoding Ipb n Ipb n Ipb n Ipb n Ipb n Ipb

shiftedoddenc(?) 003 34 016 96 021 216 0.24 448 0.8 896 0.31

n

shiftedoddenc(® 2 006 18 026 48 0.35 100 0.42 200 0.48 384 0.54
2

shiftedoddenc(®® 2 0.2 68 0.10 192 0.12 448 0.14 928 0.15 20487 0.17

Table 7.11 The minimal number of elements n required such that codewords(shiftedoddenc(®, n)
for different d values (code word length) has a certain maximum dimension of its affine subspaces.
The n values can be up to 2182714 to0 big. The Ipb value gives the information per bit for the
code word space, which is in this case equal to %. The d values chosen are 16, 32 and 64.

t The actual value is somewhere between 1728 and 2048.

d

subenc

Encoding 7 shiftedenc

Encode(:):
v, w < IncrementState(7)
return v

IncrementState(i):
v, subinc_state « subenc.IncrementState(0)
v <+ 1
w < i2bsp(1,d)
for j«<1,...,7—1do
v, w < Increment(j, w,v)

return v, w

Increment(i, v, sub_v, j, subinc_state):

if bs2ip(v) > 297! then
sub_v, subinc_state + subenc.Increment(j + 1, sub_v, subinc_state)
> Set the least significant bit to 1
(sub_v)g < 1
return i2bsp(sub_v,d),sub_v,j + 1, subinc_state

else
return i2bsp(bs2ip(v) - 2,d), sub_wv, j, subinc_state

7.5 Rotation-based encodings 83

shifting a value is equal to doubling the input value in case of mulenc. In fact, without forcing the
last bit set to 1 the encoding presented is not injective.

Injectivity can again be proven in a similar way to shifted odd numbers encoding: the values
achieved by encoding with subenc will always be forced to an odd number, and therefore, the number
of shifts can be found by viewing the prime factorization.

Calculating the encoding of a specific number is still inefficient in this implementation. Moreover,
finding a better implementation for this generalized encoding is almost impossible: one does not know
the length of the encoded values before they are calculated. Moreover, these lengths do not even have
to be monotonically increasing. This makes it, as far as we know, impossible to find a constant-time
encoding, instead of this O(n) implementation.

Nonetheless, this encoding, gives some promising results as can be seen in the experimental

analysis.

Experimental analyis

In table 7.12 some experimental results are given for shiftedenc. We used two different sub-

encodings, mulencs; and 4logenc Both encodings use the same ¢ value, namely 37. This ¢

mulencyy
value has been chosen because we have seen that mulencs; performs reasonable well, while 37 is also
quite small, allowing us to observe the performance of shiftedenc for sub-encodings that perform
well.

We can directly see, especially when the sub-encoding is mulencs; that the n values for when
the maximum affine dimension is 2 are nearly the same as when shiftoddenc was used. As these n
values for dimension 2 were already much higher than for the other encodings we have seen, this is
a good sign. It shows that the ‘optimal’ behavior of shiftedoddenc for the first set of code words is
kept when we use different sub-encodings.

Moreover, when we use the sub-encoding 4logenc shiftedenc performs much better than

mulencsy’
when we use the sub-encoding mulencsy, showing some synergy between 4logenc and shiftedenc.
In this case we see that the n values for when the maximum affine dimension is 2 are much higher

then when shiftedoddenc is used.

7.5.3 Smeer encoding

As we have seen, shiftedenc gives promising results, but because the Encode operation will most
likely always be inefficient, it is not a feasible encoding. Therefore, it is a good idea to modify the
encoding in such a way that the Encode operation can be implemented in an efficient manner. One
should note that the Encode operation is inefficient because per different subenc.Encode value, the
number of shifts changes. To solve this problem, one wants to introduce a fixed number of shifts for
every subenc.Encode value. Multiple options exist to construct such an encoding.

Firstly, one could limit the output length of the sub-encoding, such that we know a upper bound
of the output. This upper bound can be used to shift the values over the whole range. This has
multiple downsides: it is very costly, a lot of entropy is given up to make this work. Furthermore,
for small values relative to the upper bound, the value is not shifted over the whole range.

Another, more constructive option, is to replace the shift operation used in the shiftedenc with

84 Low affine dimensional encoding

Minimal number of elements n and information per bit Ipb for various afdim values.

Maximum affine dimension (afdim)

1 2 3 4 5

Encoding n Ipb n Ipb n Ipb n Ipb n Ipb
shiftedenchios.. 2 006 17 0.26 116 0.43 640 058 20487 0.69
shiftedencins,.,. 2 003 34 016 320 026 2304 035 >2944 >0.36
shiftedenciojl.c. 2 002 68 0.10 704 015 >2044 >0.18 >2944 >0.18
shiftedenci)oipiee, 2 006 52 0.36 - - N —
shiftedencmaee, 2 0.03 152 023 20480 034 >2044 >036 >2044 >0.36
shiftedenclyopmien, 2 0.02 352 013 >4006 >0.19 >4096 >0.19 >4096 >0.19

Table 7.12 The minimal number of elements n required such that codewords(shiftedenc(®,n) for
different d values (code word length) and encodings has a certain maximum dimension of its affine
subspaces. The n values can be up to 2L°%2"J=% too big. The Ipb value gives the information per bit
for the code word space, which is in this case equal to %. The d values chosen are 16, 32 and 64.

The sub-encodings used are mulenc and 4logmulenc, which is an abbreviation for 4logenc

T The actual value is somewhere between 1728 and 2048. ¥ The shiftedenc‘(ﬁ?gmulenC37 encoding can

only encode 164 elements, at which point the maximum affine dimension is 2 and the Ipb is 0.46.

mulenc. "’

a rotation (left-rotation in our case). If done correctly, this does not reduce the entropy of the sub-
encoding and the value can be shifted over the whole range. One problem does exist, simply replacing
shift with a rotation in shiftedenc does not result in a injective encoding: the sub-encoding could
output the value (1,0,1,0,0,0,1,0,1) and output the value (0,0,0,1,0,1,1,0,1), where the first
value is the second value rotated to the right for 3 times. To solve this, we add a counter to the

encoding that indicates the number of places the value has been rotated.

This solution can be seen in encoding 8, which we call smeerenc. One must note that the
sub-encoding used, subenc must have valid dimensions to fit the encoding. The dimension of the
sub-encoding is either given or determined in the preparation phase. Often the dimension of subenc

is not written down for convenience of notation.

It can be seen that the entropy of smeerenc of dimension d applied to a multiplicative encoding of
dimension d’ is almost the same as the entropy of the same multiplicative encoding on dimension d.
This is because smeerenc generates almost 24—d" different rotations for each element, and increasing
the dimension of a multiplicative encoding from d to d’' generates approximately 24—d" times more

elements. Thus in the optimal case smeerenc does not lower the entropy of the sub-encoding mulenc.

The counter has been added to the encoding to make sure the encoding is injective. As we have
seen in section 7.4, concatenated encodings perform very poorly. This added counter can be seen
as some sort of concatenated encoding. Therefore, removing this counter and thus allowing more
rotations to occur could very well improve the performance of the encoding. Unfortunately, if the
sub-encoding may produce full length outputs, injectivity of the encoding does not always hold.
However, if we limit the sub-encoding to half the length of our encoding, the encoding is injective.

This is proven in lemma 12. This allows us to introduce uncountedsmeerenc in encoding 8.

7.5 Rotation-based encodings

85

(d,maxrot)

: d
Encoding 8 smeerenc, .. , smeerencg,...

Preparation:
if maxrot is not given then
maxrot < d — [logy(d — 1)]
count_size + [logy(maxrot — 1)]
internal_size < d — count_size
Assert Dimension of subenc is internal_size

Encode(i):
j < 1 mod maxrot
k A Lma;rotJ
v < subenc.Encode(k)
vo <+ 1
return i2bsp(j, count_size) | rol(v,)

IncrementState(i):
w,data < subenc.IncrementState(i)
J < ¢ mod maxrot
k F I—maxzrotJ
vV w
Vo < 1

return (i2bsp(j, count_size) | rol(v,j)), w, data

Increment(i, v, w,data):

j < i mod maxrot

k A L1'11aer::>tJ

if j =0 then
w, data < subenc.Increment(k, w, data)
V4w
vg <+ 1
return v, w,data

return (i2bsp(j, count_size) | rol(v, 1)), w,data

86 Low affine dimensional encoding

(d,maxrot)

d
subenc 5 uncountedsmeerenc()

Encoding 9 uncountedsmeerenc subenc

Preparation:
Assert Dimension of subenc is g
if maxrot is not given then
maxrot < d — [logy(d — 1)]

count_size + [log,(maxrot — 1)]
internal_size < d — count_size

Encode(:):
J i mod maxrot
k <_ |—maxlrotJ
v + i2bsp(0, 4) | subenc.Encode(k)
vo <+ 1

return rol(v,j)

IncrementState(i):
w,data < subenc.IncrementState(i)
J < 1 mod maxrot

k <_ I—maxlroti
v 4 i2bsp(0, 4) | w
Vo < 1

return rol(v,j), w,data

Increment (i, w,data):

j i mod maxrot

k A I—maxzrot

if j =0 then
w,data < subenc.Increment(k, w, data)
v+ i2bsp(0, 4) | w
vg <+ 1
return v, w,data

return rol(v, 1), w,data

7.5 Rotation-based encodings 87

Theoretical analysis

Lemma 10. Let d € N and maxrot < d— [log,(d—1)] be given. Let subenc be an arbitrary encoding
of length d' = d — [logy(maxrot — 1)]. Let D be the domain of subenc. If for every i,j € D,i # j:

(subenc(i)g, .. .,subenc(i)s) # (subenc(i)q, ..., subenc(i)sa),

(subenc is injective on the substring from position 2 to d') then encoding 8 (smeerencgig";}imt)) using

sub-encoding subenc is injective.

(d,maxrot
subenc

Proof. Let an instantiation of the smeer encoding, f = smeerenc), be given with parameters
subenc, d and maxrot. We have to prove that f(i) = f(j) = ¢ = j. To this end, let ¢, j in the domain
of f be given such that f(i) = f(j), and let v = f(i) and w = f(3).

We define e = [logy(maxrot — 1)], then define h = bs2ip(vg,...,V4—ct1). This h must be
the number of shifts that the original value was shifted by. Similarly, g = bs2ip(wg,...,Wd—et1)-
Because w = v, we must have h = g.

As h is derived from i mod maxrot and ¢ from ;7 mod maxrot in encoding subenc, we have that

¢ mod maxrot = j mod maxrot. Now we define:

q=10l((vVg—e,.-.,v2),—h),
p=rol((Wi—e,-..,02),—g).
Because v = w and h = g, we must have p = q. Moreover, as h and g are the number of places that v

and w were rotated respectively, ¢ (= p) will be equal to the encoding produced by subenc, without
the least significant bit. And thus we have that:

= b N b
¢ = (su enc(LmaxrotJ)d S enc(LmaxrotJ)Q)
j ;
= b PSRN b
¢ (su enc(LmaxrotJ)d ’ S8 enC(LmaxrotJh)
But we also have that for any k,l € N:
(subenc(k)qr, ..., subenc(k)s) = (subenc(l)q,...,subenc(l)2) = k =1,

thus | — xjrotj = | =], and also ¢ mod maxrot = j mod maxrot. Combining these two equalities

gives i = j. O

Lemma 11. Let v = (0,...,0,ULgJ,...,U2,1) € Fg. Let i be given with i mod d # 0. Then if

w = rol(v,i), then w is not of the form:

(O,...,O7’U}L%J7...7U)271).

88 Low affine dimensional encoding

Proof. Let v, d, i and w be given as described in the lemma. Suppose (i mod d) < f%], then:

wy =rol(v,i);
= Vd+1—i

0 (<[=>d—i>[2))

Thus w is not of the form:

Suppose (i mod d) > [4], then:

Thus w has in its first (%1 most-significant bits a 1. And thus w is not of the form:
(0,...,0,'ZUL%J,...,'ZU1,1).

O

Lemma 12. Let d € N and maxrot < d be given. Let subenc be an arbitrary encoding of length
d = L%J Let D be the domain of subenc. If for everyi,j € D,i # j:

(subenc(i)g, ..., subenc(i)z) # (subenc(j)q,. .., subenc(j)s2),
(subenc is injective on the substring from position 1 to |%|) then encoding 9

(d,maxrot

(uncountedsmeerencg, -)) using sub-encoding subenc is injective.

7.5 Rotation-based encodings 89

(d,maxrot
subenc

Proof. Let an instantiation of uncountedsmeerenc), be given with parameters subenc, d and
maxrot. We have to prove that f(i) = f(j) = i = j. To this end, let 4, j in the domain of f be given
such that f(i) = f(j), and let v = f(i), © = f(j). By definition of the uncountedsmeerenc, there we

have that for:

1

k‘:
Lmaxrotj’
k=],
maxrot

=1 mod maxrot,

=7 mod maxrot

the following holds:

with
d
w = 12bSP(O, 5) | w/7
~ d Y
W = i2bsp(0, 5) w
and
’LU; — (Subenc(k)dl7 ceey subenC(k)% 1)7
W, = (subenc(k)a,. . ., subenc(k)s, 1).
Because:

w= (O,...,O,ngjil,...,wl,l) and

w

(O’""O’ﬁ)L%J—l""7w171)'
By lemma 11, we know that rol(v,m) = rol(w,m + 1) = rol(w, m + 1) is of the form:

(O,.. .,O,rol(v,m)L%J_l, ...,rol(v,m)s,1)

if m+1=0 moddand m+1[= 0 modd. But w and @ are both in this same form. Thus
rol(v,m) = w implies m +1 = m 41 mod d and so | = I, and also w’ = @&'. Because for every
i,j € D,i#j:

(subenc(i)g, .. ., subenc(i)s) # (subenc(j)a, ..., subenc(j)z2),

we must have that k = k and so i = j. O

920 Low affine dimensional encoding

Minimal number of elements n and information per bit Ipb for various afdim values.

Maximum affine dimension (afdim)

1 2 3
Encoding n Ipb n Ipb n Ipb
smeerencﬁfé)enCS7 2 0.02 176 0.12 704 0.15
SmeerencCpyionc,; 470 2 0.02 232 0.12 >3584 >0.18
SmMeerencCpyionc,; 5o, 2 0.02 232 0.12 >3584 >0.18
uncountedsmeerencg?éemm 2 0.02 68 0.10 768 0.15
uncountedsmeerenc, ienc,; 7o 2 0.02 256 0.13 2560 0.18
uncountedsmeerenc'’ 2 0.02 256 0.13 3456 0.18

mulencii 591

Table 7.13 The minimal number of elements n required such that codewords(smeerenc(¥) n) and
codewords(uncountedsmeerenc(¥, n) for different encodings has a certain maximum dimension of its

affine subspaces. The n values can be up to 21182714 t00 big. The Ipb value gives the information

per bit for the code word space, which is in this case equal to %. The sub-encodings used are

mulenc, for ¢ € {37,11479,11591}.

Experimental analysis

To experimentally analyse smeerenc and uncountedsmeerenc, we calculated the minimal number
of elements needed to reach a certain maximum affine dimension. We applied both smeerenc and
uncountedsmeerenc on mulenc, with ¢ € {37,11479,11591}. The values 11479,11591 have been
chosen from table 7.5. The values 11479, 11591 were the best performing ¢ values of this table. The
values we found can be seen in table 7.13. We can see in this table that uncountedsmeerenc per-
forms about as well as smeerenc. Using these values, it is impossible to tell if uncountedsmeerenc or
smeerenc performs better, as at some values smeerenc is better and at some values uncountedsmeerenc
is better. As smeerenc is just uncountedsmeerenc with an extra counter, which according to sec-
tion 7.4 should not provide a lot of benefits, there should be not much of a difference between those
two. It is interesting to note that there does not seem to be a lot of difference between the perfor-
mance of smeerenc and shiftedenc, if we compare table 7.5 with table 7.12. Therefore, smeerenc
seems to be a very useful alternative to shiftedenc.

Because we are rotating our code words, it can be seen that we use the whole string length early
on. As we have seen, this lowers the maximum affine dimension when we are encoding up to 4096
numbers. However, we are also interested in what happens to the maximum affine dimension of the
encoding when generating all possible code words. As generating all code words of length 64 by
smeerenc is infeasible, we limited the number of bits used. Furthermore, we also analysed 4logenc
in this step. In table 7.14 this can be seen. Firstly, this table shows us that the affine dimension
does not increase dramatically when all code words are used, assuming that a suitable sub-encoding
is used. Note that this was not the case for shiftedoddenc. Secondly, we saw that mulenc for large
by table 7.7 and table 7.5. However, by table 7.14

and table 7.5, it seems that using 4logenc gives extra benefits, when combined with smeerenc.

¢ values did perform better than 4logenc

mulencsy

7.5 Rotation-based encodings 91

Minimal number of elements n and information per bit Ipb for various afdim values.

Maximum affine dimension (afdim)

1 2 3
Encoding n Ipb n Ipb n Ipb
Smeerencyoymionc, 2 0.02 336 0.13 5888 0.20
smeerencyoimienc, 2 0.03 160 0.23 2688 0.36
smeerencgi)gmulenCW 2 0.06 24 0.29 —t —
smeerencmionc, | 2 0.05 96 0.30 1664 0.49
smeerencioiuionc, | 2 0.04 108 0.29 1856 0.47

Table 7.14 The minimal number of elements n required such that codewords(smeerenc(¥) n) for
different d values (code word length) has a certain maximum dimension of its affine subspaces. The
n values can be up to 2L°82"1=4 too big. The Ipb value gives the information per bit for the code
word space, which is in this case equal to %. The d values chosen are 64, 32, 23, 22 and 16.
The sub-encoding used is 4logmulenc,,, which is an abbreviation for 4logenc

mulencsy”
16
f The smeerencz(uo?gmulenC37 encoding can only encode 87 elements, at which point the maximum affine

. L 22 . . .
dimension is 2; the smeerencz(uo?gmulem37 can only encode 3439 elements, at which point the maximum

. N 23 . .
affine dimension is 3; the smeercancé(uo?gmulenc37 can only encode 3869 elements, at which point the
maximum dimension is 3.

Chapter 8

Conclusion

To conclude, the impact of the research performed will be given. In section 8.1 various options to

extend the research done in this master project will be given.

We have seen a vulnerability in the GIBBON algorithm of the PRIMATEs family of authenticated
encryption algorithms. Furthermore, a proof of concept has been developed, showing how such a
vulnerability could be exploited and showing the computational power required to perform such an
attack. The GIBBON family uses a permutation that performs a particular round function six times.
The vulnerability shown in this permutation was shown to only exist in permutations using the round
function at most six times. If the round function would be applied seven times, the vulnerability
would not exist. Furthermore, we have seen that this vulnerability can only be exploited if the nonce
would be reused. Therefore, the attack is only applicable to implementations that deviate from the
specification. However, when the same nonce is reused many times, the attacker can deduce the
internal state at the start of the encryption. This internal state can be used to decrypt any message

using the same nonce.

Secondly, farfalle using a symmetric key was discussed and its vulnerabilities were analysed. It was
shown that this construction requires a counter, that would generate unique binary strings while also
keeping the maximum affine dimension of any subset generated by this counter low. To implement
such a counter we have introduced several low affine dimensional encodings and have proven some
theoretical properties about these encodings. Using an algorithm we have experimentally verified the
affine dimension of each of these encodings. Several suitable encodings have been found. In particular
mulenc. for several specific ¢ values has been found to generate a low affine dimensional encoding.
However, the affine subspaces generated by mulenc,. can be generated rather easily. To improve the
mulenc,. encoding, we have formulated encodings that wrap known encodings, and improve them
by applying extra operations to their input or output. For instance, to prevent generation of affine
subspaces, we have seen that we can use logenc to improve the mulenc. encoding. Unfortunately,
logenc is not a computationally simple encoding, which has its drawbacks. Finally, we have seen

that we could use smeerenc or uncountedsmeerenc to reduce the affine dimension of an encoding.

94 Conclusion

8.1 Future work

The attack performed on the PRIMATES permutation did not require much knowledge about the
internal workings of the PRIMATEs permutation. In a future work, one could develop a tool that
automatically analyses such permutations and tries to perform attacks. This could be used by
anyone designing a new permutation algorithm, such that they can instantly see problems with a
certain design. The tool could also output an advice on the minimal number of rounds required in
the algorithm. Moreover, in PRIMATEs the SubElements operation was executed at the start of the
round, which allowed us to perform an attack on GIBBON. These kind of problems could be detected
by this tool. This could improve all submissions entered into a competition and directly filter out
some weaker algorithms.

Furthermore, more research can be done to find applications of low affine dimensional encodings.
It might be interesting to check if using a low affine dimensional encoding in, for instance, a sponge
construction would provide any benefit. Lastly, more research can be done in creating low affine
dimensional encodings. The encodings presented in this thesis can be improved in three different
properties. Firstly, the maximum affine dimension of the encodings can be lowered. Secondly, a
smaller bit string length in relation to the total number of code words could be achieved. Lastly, the

efficiency in computational cost on modern hardware can be improved.

References

1
2]

3l

4]

[5]

[6]
7]
18]

[9]

[10]

[11]
[12]

[13]

[14]

ANDREEVA, E., BILGIN, B., Bogpanov, A., Luvykx, A., MENDEL, F., MENNINK, B., MouHA, N.,
WANG, Q., AND YasuDA, K. Primates v1.1. Tech. rep., KU Leuven, July 2016.

BELLARE, M., aAND Rocaway, P. Random oracles are practical: A paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security (New
York, NY, USA, 1993), CCS ’93, ACM, pp. 62-73.

BERGER, T. P., D’HAYER, J., MARQUET, K., MINIER, M., AND THOMAS, G. The GLUON family:
A lightweight hash function family based on fcsrs. In Progress in Cryptology - AFRICACRYPT 2012:
5th International Conference on Cryptology in Africa, Ifrance, Morocco, July 10-12, 2012. Proceedings
(Berlin, Heidelberg, 2012), A. Mitrokotsa and S. Vaudenay, Eds., vol. 7374 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 306—-323.

BERTONI, G., DAEMEN, J., PEETERS, M., AND VAN AsscHE, G. On the indifferentiability of the
sponge construction. In Advances in Cryptology — EUROCRYPT 2008: 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17,
2008. Proceedings (Berlin, Heidelberg, 2008), N. Smart, Ed., vol. 4965 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 181-197.

BERTONI, G., DAEMEN, J., PEETERS, M., AND VAN AssSCHE, G. Duplexing the sponge: Single-pass
authenticated encryption and other applications. In Selected Areas in Cryptography: 18th International
Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers (Berlin,
Heidelberg, 2012), A. Miri and S. Vaudenay, Eds., vol. 7118 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 320-337.

BERTONI, G., DAEMEN, J., PEETERS, M., VAN AsscHE, G., AND VAN KEER, R. Farfalle: Parallel
permutation-based cryptography.

BERTONI, G., DAEMEN, J., PEETERS, M., VAN AsscHE, G., AND VAN KEER, R. CAESAR submission:
Keyak v2. Tech. rep., STMicroelectronics, Radboud University Nijmegen, September 2016.

BinawMm, E. Differential Cryptanalysis. Encyclopedia of Cryptography and Security. Springer US, Boston,
MA, 2005, pp. 147-152.

Binam, E., AND SHAMIR, A. Differential cryptanalysis of DES-like cryptosystems. In Advances in
Cryptology-CRYPTO’ 90: Proceedings (Berlin, Heidelberg, 1991), A. J. Menezes and S. A. Vanstone,
Eds., vol. 537 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 2-21.

BiLain, B., Boapanov, A., KNEZEVIG, M., MENDEL, F.; AND WANG, Q. Fides: Lightweight authen-
ticated cipher with side-channel resistance for constrained hardware. In Cryptographic Hardware and
Embedded Systems - CHES 2013: 15th International Workshop, Santa Barbara, CA, USA, August 20-
28, 2013. Proceedings (Berlin, Heidelberg, 2013), G. Bertoni and J.-S. Coron, Eds., vol. 8086 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 142—-158.

Birvukov, A. Codebook Attack. Springer US, Boston, MA, 2011, pp. 216-216.

Biryukov, A., VELICHKOV, V., AND LE CORRE, Y. Automatic search for the best trails in ARX: Ap-
plication to block cipher speck. In Fast Software Encryption: 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers (Berlin, Heidelberg, 2016), T. Peyrin,
Ed., vol. 9783 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 289-310.

CALIK, C., AND DoGANAKSOY, A. Computing the weight of a boolean function from its algebraic normal
form. In Sequences and Their Applications — SETA 2012: 7th International Conference, Waterloo, ON,
Canada, June 4-8, 2012. Proceedings (Berlin, Heidelberg, 2012), T. Helleseth and J. Jedwab, Eds.,
vol. 7280 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 89—100.

DaeEMEN, J. Hashing and sponge functions part 1: What we have and what we need, May 2011.
https://www.frisc.no/wp-content/uploads/2012/02 /Sponge-Finse-pl.pdf.

https://www.frisc.no/wp-content/uploads/2012/02/Sponge-Finse-p1.pdf

96

References

[15]

[16]
[17]
[18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

(28]

[29]
[30]
31]
[32]
[33]
[34]

[35]

[36]

[37]

DAEMEN, J., AND RIJMEN, V. The block cipher rijndael. In Smart Card Research and Applications:
Third International Conference, CARDIS’98, Louvain-la-Neuve, Belgium, September 14-16, 1998. Pro-
ceedings (Berlin, Heidelberg, 2000), J.-J. Quisquater and B. Schneier, Eds., vol. 1820 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, pp. 277-284.

Das, S., MaITraA, S., AND MEIER, W. Higher order differential analysis of NORX. Cryptology ePrint
Archive, Report 2015/186, 2015. http://eprint.iacr.org/2015/186.

DierkS, T., AND RESCORLA, E. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246,
RFC Editor, August 2008. https://tools.ietf.org/rfc/rfc5246.txt.

DirrIE, W., AND HELLMAN, M. New directions in cryptography. IEEE Trans. Inf. Theor. 22, 6 (Sept.
2006), 644-654.

DiNuUR, I., AND SHaMmIR, A. Cube attacks on tweakable black box polynomials. In Advances in Cryp-
tology - EUROCRYPT 2009: 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings (Berlin, Heidelberg, 2009),
A. Joux, Ed., vol. 5749 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 278-299.
Dobson, C. T. J., AND PosToN, T. Affine Spaces, vol. 130 of Graduate Texts in Mathematics. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1991, ch. Tensor Geometry, pp. 43-56.

Enrsam, W., MEYER, C., SMITH, J., AND TucHMAN, W. Message verification and transmission error
detection by block chaining, Feb. 14 1978. US Patent 4,074,066.

Guipo, B., JoaN, D., Micua#L, P., AND GiLLES, V. Cryptographic sponge functions, 2011. http:
/ /sponge.noekeon.org/CSF-0.1.pdf.

Heyvs, H. M. A tutorial on linear and differential cryptanalysis. Cryptologia 26, 3 (2002), 189-221.
http://dx.doi.org/10.1080/0161-110291890885.

Kariski, B. PKCS #b5: Password-Based Cryptography Specification Version 2.0. RFC 2898 (Informa-
tional), Sept. 2000. http://www.ietf.org/rfc/rfc2898.txt.

Karz, J. The Random Oracle Model. Digital Signatures. Springer US, Boston, MA, 2010, pp. 135-142.
Karz, J., AND YUNG, M. Unforgeable encryption and chosen ciphertext secure modes of operation. In
Fast Software Encryption: 7th International Workshop, FSE 2000 New York, NY, USA, April 10-12,
2000 Proceedings (Berlin, Heidelberg, 2001), G. Goos, J. Hartmanis, J. van Leeuwen, and B. Schneier,
Eds., vol. 1978 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 284-299.
KnovratovicH, D., AND NikoLI¢, I. Rotational cryptanalysis of ARX. In Fast Software Encryption:
17th International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Selected Papers
(Berlin, Heidelberg, 2010), S. Hong and T. Iwata, Eds., vol. 6147 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 333—-346.

KoBLiTz, N., AND MENEZES, A. J. The random oracle model: a twenty-year retrospective. Designs,
Codes and Cryptography 77, 2 (2015), 587-610.

LADNER, R. E., AND FiscHER, M. J. Parallel prefix computation. J. ACM 27, 4 (Oct. 1980), 831-838.
Lait, X. Higher Order Derivatives and Differential Cryptanalysis, vol. 276 of The Springer International
Series in Engineering and Computer Science. Springer US, Boston, MA, 1994, ch. Communications and
Cryptography, pp. 227-233.

Matsul, M. Linear cryptanalysis method for DES cipher. In Advances in Cryptology — EUROCRYPT
’93: Workshop on the Theory and Application of Cryptographic Techniques Lofthus, Norway, May 23-27,
1998 Proceedings (Berlin, Heidelberg, 1994), T. Helleseth, Ed., vol. 765 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 386-397.

MENEZES, A. J., vaN OorscHOT, P. C.;, AND VANSTONE, S. A. Handbook of Applied Cryptography,
fifth printing ed. CRC Press, August 2001.

MENNINK, B., REYHANITABAR, R., AND VIzAR, D. Security of full-state keyed sponge and duplex:
Applications to authenticated encryption. Cryptology ePrint Archive, Report 2015/541, 2015. http:
//eprint.iacr.org/2015/541.

MiINEMATSU, K. AES-OTR v3.1. Tech. rep., NEC Corporation, Japan, September 2006.

MISTER, S., AND ADaMS, C. Practical S-Box Design. In SELECTED AREAS IN CRYPTOGRAPHY,
1996 (1996).

NIST CoMPUTER SECURITY DivisioN. SHA-3 standard: Permutation-based hash and extendable-
output functions. FIPS Publication 202, National Institute of Standards and Technology, U.S. Depart-
ment of Commerce, May 2014. http://csrc.nist.gov/publications/drafts/fips-202/fips 202 draft.
pdf.

Paar, C., AND PELzZL, J. Understanding Cryptography. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, ch. Stream Ciphers, pp. 29-54.

http://eprint.iacr.org/2015/186
https://tools.ietf.org/rfc/rfc5246.txt
http://sponge.noekeon.org/CSF-0.1.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://dx.doi.org/10.1080/0161-110291890885
http://www.ietf.org/rfc/rfc2898.txt
http://eprint.iacr.org/2015/541
http://eprint.iacr.org/2015/541
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf

References 97

[38]

[39]

[40]
[41]
[42]

[43]
[44]

[45]

[46]
[47]

Paar, C., AND PELzZL, J. Understanding Cryptography. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, ch. More About Block Ciphers, pp. 123-148.

PRrENEEL, B. The first 30 years of cryptographic hash functions and the nist sha-3 competition. In Topics
in Cryptology - CT-RSA 2010: The Cryptographers’ Track at the RSA Conference 2010, San Francisco,
CA, USA, March 1-5, 2010. Proceedings (Berlin, Heidelberg, 2010), J. Pieprzyk, Ed., vol. 5985 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, pp. 1-14.

PRrRENEEL, B. Hash functions. In Encyclopedia of Cryptography and Security, H. C. A. van Tilborg and
S. Jajodia, Eds. Springer US, Boston, MA, 2011, pp. 543-553.

PRENEEL, B. Message authentication algorithm. In Encyclopedia of Cryptography and Security, H. C. A.
van Tilborg and S. Jajodia, Eds. Springer US, Boston, MA, 2011, pp. 775-775.

Sako, K. Digital signature schemes. In Encyclopedia of Cryptography and Security, H. C. A. van Tilborg
and S. Jajodia, Eds. Springer US, Boston, MA, 2011, pp. 343—-344.

SEIDLOVA, M. Algebraic-differential analysis of keccak. Master’s thesis, Charles University, 2015.
SKORsSKI, M. Shannon entropy versus renyi entropy from a cryptographic viewpoint. In Cryptography
and Coding: 15th IMA International Conference, IMACC 2015, Oxford, UK, December 15-17, 2015.
Proceedings (Cham, 2015), J. Groth, Ed., vol. 9496 of Lecture Notes in Computer Science, Springer
International Publishing, pp. 257-274.

STALLINGS, W. Cryptography and Network Security: Principles and Practice, 3rd ed. Pearson Education,
2002.

STICKLER, B. A., AND SCHACHINGER, E. Basic concepts in computational physics. Springer, 2016.
Wu, H., AND PRENEEL, B. Aegis: A fast authenticated encryption algorithm. In Selected Areas in
Cryptography — SAC 2013: 20th International Conference, Burnaby, BC, Canada, August 14-16, 2013,
Revised Selected Papers (Berlin, Heidelberg, 2014), T. Lange, K. Lauter, and P. Lisonék, Eds., vol. 8282
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 185-201.

	Declaration
	Abstract
	Contents
	1 Introduction
	2 Background and Definitions
	2.1 Background
	2.2 Definitions

	3 Sponge and Duplex constructions
	3.1 Sponge construction
	3.1.1 Applications

	3.2 Duplex construction
	3.2.1 Applications

	3.3 Permutation types
	3.3.1 ARX-based
	3.3.2 S-box-based

	4 Higher-order differential cryptanalysis
	4.1 Attack model
	4.2 Differential analysis
	4.2.1 Differential along a vector space

	4.3 Cube attacks
	4.3.1 An example attack
	4.3.2 Attack procedure
	4.3.3 Limitations of this attack

	5 Cube attack on primates
	5.1 primates: an authenticated encryption family
	5.1.1 Schemes
	5.1.2 The permutation

	5.2 Cube attack on primates
	5.2.1 Basic cube attack
	5.2.2 Generating linear equations out of quadratic equations
	5.2.3 Skipping the first SubElements operation

	5.3 Results
	5.3.1 Impact on the primate-family
	5.3.2 Attack details

	6 Farfalle: a parallelizable prf construction
	6.1 Sketch of the scheme
	6.2 Vulnerability: creating an all-zero intermediate state
	6.3 Countermeasure using the counter encoding

	7 Low affine dimensional encoding
	7.1 Calculating the affine dimension
	7.2 Basic multiplicative encodings
	7.2.1 Mathematical properties
	7.2.2 Experimental results

	7.3 Logarithmic encodings
	7.3.1 Dealing with even values of "4262304 log2(i) + 1"5263305
	7.3.2 Experimental results

	7.4 Concatenated encodings
	7.4.1 Mathematical properties
	7.4.2 Experimental analysis

	7.5 Rotation-based encodings
	7.5.1 Exponential encoding
	7.5.2 Shifted encoding
	7.5.3 Smeer encoding

	8 Conclusion
	8.1 Future work

	References

