
 Eindhoven University of Technology

MASTER

Solving the stochastic vehicle routing problem with service requirements in the DAIPEX
project using adaptive large neighborhood search

Creemers, D.J.A.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b37a70a8-aa22-4656-ae35-fde65159d450

Eindhoven University of Technology

Solving the Stochastic Vehicle
Routing Problem with
Service Requirements

in the DAIPEX project using
Adaptive Large Neighborhood Search

Daan Creemers

supervised by

Prof.dr.ir. Wim Nuijten

19-12-2016

Public version

2

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Quintiq and DAIPEX . 13
1.3 Research assignment . 13
1.4 Hypotheses . 14
1.5 Contributions . 15
1.6 Structure . 15

2 Related work 17
2.1 Vehicle Routing . 17
2.2 Categorization of vehicle routing problems 18
2.3 Optimization under Uncertainty . 20
2.4 Solution approaches . 21

3 DAIPEX Transportation Planning Problem 25
3.1 Instance data . 25

3.1.1 Transportation network . 25
3.1.2 Orders . 26
3.1.3 Transportation resources . 27

3.2 Transportation plan . 27
3.2.1 Planning decisions . 28

3.3 Operational constraints . 29
3.3.1 Time constraints . 29
3.3.2 Service reliability requirement 30
3.3.3 Vehicle constraints . 30
3.3.4 Capacity constraints . 30
3.3.5 Legal constraints . 31

3.4 Objective . 31
3.4.1 Vehicle-dependent costs . 32
3.4.2 Driver-dependent costs . 32
3.4.3 Constraint costs . 32
3.4.4 Virtual Stochastic Costs . 34

4 Stochastic travel times 35
4.1 Travel time representation . 35

4.1.1 Traversing time periods . 35

3

4.1.2 Simulations . 40
4.1.3 Service reliability . 43

4.2 Travel time data . 44
4.2.1 Communication Quintiq and TU/e 45
4.2.2 Mapping to unknown arcs . 47

5 Optimization algorithms to solve the DTPP 55
5.1 Optimization algorithm . 55

5.1.1 Clustering . 55
5.1.2 Large Neighborhood Search 56

5.2 Building in slack . 60
5.2.1 Time window slack . 61
5.2.2 Travel time slack . 63
5.2.3 Travel time slack in combination with breaks 64

5.3 Sample Average Approximation . 65
5.3.1 Sample Average Approximation in the DAIPEX application . 65
5.3.2 Sample Average Approximation in optimization algorithm . . 66
5.3.3 Virtual Stochastic Costs versus Virtual Expected Costs 70

6 Start time calculation 73

7 Computational study 77
7.1 Problem instances . 77
7.2 Hypotheses . 80
7.3 Experiments and results . 80

7.3.1 Using expected travel time . 81
7.3.2 Time window slack . 82
7.3.3 Travel time slack using �xed percentage 82
7.3.4 Travel time slack based on Standard Deviation 83
7.3.5 Travel time slack based on MAD 85
7.3.6 Sample Average Approximation 86
7.3.7 Comparison solution approaches 87
7.3.8 Driving limit . 88
7.3.9 Lowered reliability costs . 92
7.3.10 Convergence of optimization algorithms 92
7.3.11 Limited number of resources 93
7.3.12 Quick result . 95

7.4 Conclusions . 97

8 Conclusion and Future Work 99
8.1 Conclusion . 99
8.2 Future Work . 100

A Format communication Quintiq and TU/e 107
A.1 Example request . 107
A.2 Example response . 107

4

B Additional experimental results 109

5

6

Abstract

Transportation companies face the challenge that their day-to-day transportation
execution does not conform to the transportation plan that they made in advance.
To a large extent this is caused by the fact that the software that aids in the cre-
ation of transportation plans, does not su�ciently take the real-world complexity
the transportation company is faced with into account. As a consequence the trans-
portation plans that are generated can lead to violated time windows, unnecessary
delays, and underutilized transportation capacity. The real-world complexity of
transportation planning is caused by the high level of detail that is required to get
executable plans, the size of the instances as found in reality, and the large volumes
of data that must be collected and processed to gather the information required to
create the planning. A particular source of detail is stochasticity and time depen-
dency of travel times and service times, which is the area where this thesis focuses
on.

The work reported on in this thesis is done as part of the DAIPEX project. This
project is funded by DINALOG and its goal is to develop algorithms and soft-
ware that can handle time-dependent, stochastic, planning problems, based on high-
volume information. In this thesis we concentrate on developing algorithms that gen-
erate transportation plans that include time-dependent and stochastic travel times
and service times. We use information coming from data aggregation algorithms
as developed by the IE&IS group of Eindhoven University of Technology (TU/e),
where we also developed functionality that supplements that information there were
it is missing and use it in a way that better represents reality.

We solve the DAIPEX Transportation Planning Problem (DTPP) where customers
have service level requirements. A service level requirement of 95% expresses that
the customer should be serviced on time with 95% certainty. To solve the DTPP we
propose three techniques which we use in an Adaptive Large Neighborhood Search
approach. The �rst technique uses time window slack where we reserve time at the
end of a time window. The second technique overestimates travel times in di�erent
ways. We show that using time window slack or travel time slack gives better
transportation plans compared to plans in which the expected travel time is used.
We also show that determining the right level of overestimating is hard. The third
technique explicitly considers stochasticity in the algorithms which gives further
improvements. A computational study shows what improvements can be obtained
under which scenarios when considering stochastic travel times. Furthermore, we
developed a way to calculate at which time a driver should depart from the depot
to best meet the customers service requirements.

7

8

�The art of programming is the art of organizing complexity, of mastering
multitude and avoiding its bastard chaos as e�ectively as possible.�

� Edsger W. Dijkstra

Acknowledgments

This master thesis is the last part of my study Computer Science and Engi-
neering at Eindhoven University of Technology (TU/e). The project is part
of the Data and Algorithms for Integrated Transportation Planning and
Execution (DAIPEX) project, created by DINALOG, which is a collab-
oration project between Quintiq, TU/e, TomTom and four transportation
companies. While writing this thesis I received a lot of support from several
people. I would like to thank all of them, in particular the following.

First of all, I would like to thank my graduation supervisor Wim Nuijten
for his support, enthusiasm and motivation. His thoughtful guidance and
critical comments helped me during my research. Next I would like to thank
Dan Roozemond and Mark Lekkerkerker for our insightful discussions.

I would also like to thank Ludwig van den Ouweland, Lieke Schreurs and
Edwin de Jong for their support throughout the project. I would also like
to thank my colleagues at Quintiq Products for welcoming me.

Last but not the least, I would like to thank my parents, family and friends
for their continuous support and encouragement throughout the period of
my study and while writing this thesis.

Daan Creemers
Eindhoven, November 2016

9

10

1

Introduction

1.1 Motivation

Uncertainty is a growing concern in the �eld of Supply Chain Planning and Opti-
mization. It may arise from several sources including travel times in vehicle routing,
processing times in manufacturing and changing demands in energy supply plan-
ning. While calculated plans look good if no uncertainty is taken into account,
during execution of a plan companies are faced with disturbances making the plan
suboptimal or even infeasible. An important issue there is that some decisions have
a big impact if they cannot be executed as planned, while for other decisions the
inability to execute them has limited to no impact. In vehicle routing we see that
planning to deliver an order just before the end of the time window can be optimal
in terms of costs, but due to uncertainty in travel and service times delivery of this
order can suddenly be too late. If the time window is hard, there can be a high
penalty on delivering late and if there is a lot of uncertainty on the arrival time you
might be setting yourself up for failure.

When executing this project we also discovered the issue of driving time limits.
Using a transportation plan with �xed travel times, we can guarantee that the
driving time for every driver meets the daily driving limit set by the European Union.
However, during execution of the transportation plan disturbances can lead to longer
travel times than expected and a violated driving limit. Transportation companies
are being �ned when a driver that drove too long gets caught, and therefore, we
want to take the driving limit into account when considering uncertainty of travel
times.

A large part of the delivery business is concerned with time-boxed deliveries. With-
out agreeing on a delivery time window with a customer, chances are that the
customer is not at home at the moment of delivery. We see a trend of services of-
fered by companies where customers can choose their time window or where orders
are delivered at the same day. Scheduled delivery, which is already provided by the
supermarket chain Albert Heijn in The Netherlands as can be seen in Figure 1.1, is
not only an advantage for the customer: transport companies can use this to prevent

11

Figure 1.1: Scheduled delivery available with di�erent costs at the Albert Heijn in
The Netherlands.

repeated visits to a customer which are needed because of customer unavailability.
Taking into account uncertainty becomes even more relevant with the increase of
customers demanding smaller time windows. Ignoring uncertainty in this case can
lead to dissatis�ed customers because of late deliveries or penalty costs because of
not meeting a pickup or delivery requirement of a company.

We also see the movement of time-boxed deliveries in the distribution and retail
area. Stores demand that the inbound logistics from warehouses is delivered into
small time-windows. For example because of limited storage space, or because the
docking place can only be reached due to limited opening hours of city centers.

A simple solution to increase service reliability is increasing the number of routes
used to serve all orders: less orders on a route there is less uncertainty which can
cause service requirements violations. However, there are numerous disadvantages to
this approach. First of all, the number of vehicles is limited in most transportation
companies. Secondly, using an extra vehicle incurs extra costs because the driver
and the vehicle has to be paid. Moreover, using more vehicles for the same number
of orders causes the routes to be shorter. In many transportation companies drivers
are contracted which means they are being paid for a full day. Planning routes for
them for only half a day is thus expensive.

There are di�erent methods to cope with stochastic travel times. We use the terms
stochastic travel times and uncertain travel times interchangeably in this thesis.
Planning algorithms which explicitly considering uncertainty by taking probabil-
ity distributions into account should be able to generate transportation plans with
less late deliveries to customers and less driving limit violations. If there is no in-
formation on the probability distribution of the travel times, we can still generate

12

transportation plans which have value to a transportation company by using travel
time slack and time window slack. When using travel time slack the planning algo-
rithm assumes the travel on every arc takes longer than the expected travel time.
In this way a driver will more likely arrive on time at a customer, with the disad-
vantage of a more expensive transportation plan because of waiting times or using
more vehicles. When using time window slack the planning algorithm assumes the
time window of every customer closes earlier than the actual time window. Using
a transportation plan with time window slack, the driver may arrive at a customer
before the time window opens meaning that the driver has to wait. The advantage
is that even if the driver is delayed because of a tra�c jam, he can still be on time
at the customer. We will show that travel time slack and time window slack work
under certain circumstances, while using the probability distributions of the travel
times works better in general.

1.2 Quintiq and DAIPEX

This research has been conducted at Quintiq, a Supply Chain Planning and Opti-
mization company with headquarters in Den Bosch. Quintiq sells software to solve
scheduling and planning problems. Using optimization technology customers can
lower their costs, produce more output, increase their pro�t or generate plans in
less time. The research is done on behalf of Quintiq Products, a horizontal layer
within Quintiq which builds industry-focused products like Logistics Planner, Com-
pany Planner, Demand Planner, Fleet & Crew Planner, Macro Planner, Scheduler,
Service Planner and Workforce Planner. They continuously improve their planning
and scheduling software, which is made available to the various business units and
partners. One of the currently active �elds of research is stochasticity and time-
dependency of travel times which is the focus of this thesis.

Data and Algorithms for Integrated Transportation Planning and Execution, better
known under the name DAIPEX, is a project of DINALOG, the Dutch Institute
for Advanced Logistics. It is a collaboration project between Quintiq, Eindhoven
University of Technology, TomTom and the four transportation companies H. Veld-
huizen Transport, Jan de Rijk Logistics, Ewals Cargo Care, and Ernst Opus V. The
goal is to develop generic, con�gurable planning software that takes into account
stochasticity and time dependency of travel times based on high-volume informa-
tion. The project considers integrating these stochastic dependencies in planning
problems that arise in Cross Chain Control Centers (4C).

1.3 Research assignment

The research assignment of the project is formulated as follows:

� Do a relevant literature study in the area of vehicle routing under uncertainty
with the focus on literature on Large Neighborhood Search (LNS) and on

13

stochastic travel times.

� Provide a formal description of the DAIPEX Transportation Planning Problem
(DTPP).

� Collect and construct real-life instances of the DTPP.

� Implement algorithms that �nd great solutions to the DTPP, where the op-
timizer can �nd solutions that under various circumstances provide the right
trade-o� between logistics costs and robustness of transportation plans.

� Investigate whether adaptive parameters (like adaptive penalties and adaptive
destruct size) as used by Quintiq for deterministic vehicle routing problems
also improves performance for the DTPP.

� Do a computational study which shows which algorithm works best under
which circumstances.

� Do a computational study which shows the in�uence of components and pa-
rameter settings of the algorithms on performance.

1.4 Hypotheses

We started the project with a number of hypotheses. Besides the hypotheses listed
below, we have de�ned more hypotheses while conducting research. These will be
explained in Chapter 7.

Hypothesis 1 (Expected travel times)
Using the expected travel times when calculating a transportation plan gives bad plans
in terms of service reliability.

Hypothesis 2 (Time window slack)
Using travel time slack by overestimating travel times works better than time window
slack.

Hypothesis 3 (Travel time slack based on �xed percentage)
Building in slack by adding a certain percentage to the travel times will result in
either many unmet service reliability requirements or an ine�cient use of resources.

Hypothesis 4 (Travel time slack based on Standard Deviation)
Building in slack by overestimating the travel times based on the standard deviation
of travel times works better than adding a �xed percentage to the travel time.

Hypothesis 5 (Travel time slack based on MAD)
Building in slack by overestimating the travel times based on the Mean Absolute
Deviation from the Mean (MAD) works better than adding a �xed percentage to the
travel time.

14

Hypothesis 6 (Sample Average Approximation)
Doing Sample Average Approximation works best in terms of quality, but takes more
time and requires much more data of much higher quality.

1.5 Contributions

We have formally de�ned the DAIPEX Transportation Planning Problem (DTPP).
Based on data provided by a transportation company we have constructed real-life
instances of the DTPP with di�erent circumstances. Moreover, we have de�ned the
communication format used in the DAIPEX project to communicate travel time
distributions.

We have used this communication format to obtain real-life travel time distributions
coming from TomTom. We implemented a data completion algorithm capable to
calculate realistic travel time distribution which are originally missing. Furthermore,
we implemented a sampling mechanism allowing to get realistic simulations taking
geographical dependencies into account.

We are capable to solve real-life transportation planning problems having time-
dependent, stochastic travel and service times, where our optimizers can �nd solu-
tions that under various circumstances provide the right trade-o� between logistics
costs and robustness of transportation plans. This is supported by our compu-
tational study where we show which solution approaches work best under which
circumstances.

1.6 Structure

The remainder of this thesis is structured in the following way. Chapter 2 discusses
the related work on vehicle routing and di�erent solution approaches. The DAIPEX
Transportation Planning Problem is formally introduced in Chapter 3. In Chapter 4
we describe the stochastic travel times and how we obtained these. Optimization
algorithms to solve the DTPP are described in Chapter 5. In Chapter 6 we describe
how to �nd the best start time of a route in order to satisfy all demands from
customers but minimizing the costs. Chapter 7 presents a computational study
showing the di�erent strength and weaknesses of the various algorithms. We �nish
with the conclusion and future work in Chapter 8.

15

16

2

Related work

The DAIPEX Transportation Planning Problem (DTPP) reported on in this thesis
is a generalization of the Vehicle Routing Problem (VRP). Much research has been
conducted in this �eld, of which we give an overview in Section 2.1. The classical
problem of vehicle routing assumes deterministic travel times between customers,
but this can be extended by including stochastic input or having input which changes
over time. In Section 2.2 we categorize optimization problems based on the quality
and evolution of information. Section 2.3 discusses how optimization under uncer-
tainty is dealt with in two other research �elds to show that optimization under
uncertainty is not only relevant for vehicle routing. Finally, in Section 2.4 we show
di�erent solution approaches to deal with optimization under uncertainty.

2.1 Vehicle Routing

The Vehicle Routing Problem (VRP) was de�ned by Dantzig and Ramser (1959)
as a generalization of the Traveling Salesman Problem. The goal of the problem
is to design an optimal set of routes for a �eet of identical capacitated vehicles all
starting in a central depot such that each customer is visited exactly once while min-
imizing the total routing costs. Dantzig and Ramser propose a linear programming
based heuristic which gives a near optimal solution for this NP-hard problem. Ever
since their paper this problem has been extensively studied and various variants
are introduced. Clarke and Wright (1964) present an algorithm which gives a big
improvement over the algorithm proposed by Dantzig and Ramser. They start with
a route for each customer and in each iteration the two routes which give the largest
saving are merged. Although this algorithm can be performed by hand computation
it is overtaken by many other algorithms.

Shaw (1998) introduced Large Neighborhood Search (LNS) for vehicle routing as an
iterative technique `which is compatible with state of the art Operations Research
meta-heuristic methods, while being signi�cantly simpler'. In each iteration of LNS
a set of customers is removed from the solution and this set is inserted at other
positions, therefore its acronyms `Destroy and Repair' and `Ruin and Recreate'.

17

The destroy and repair methods implicitly de�ne the neighborhood of a solution.
Shaw (1998) uses a branch and bound technique with constraint propagation and
heuristics for variable and value selection to �nd the best position to insert the
customers. They included Limited Discrepancy Search in the constraint-based tree
search to speed up the time to solve problems. LNS is preferred over Local Search,
because the latter has di�culties if the search space is pitted with local minima or is
disconnected. This problem is partially alleviated by LNS, because a move by LNS
is more far-reaching which allows to step over local minima or small disconnected
regions. However, some regions in the search space can only be reached by moving
through a large infeasible region of the search space. Increasing the neighborhood
mitigates this problem, but can cause the search to be less ine�cient as a result of
jumping through the search space.

Adaptive Large Neighborhood Search (ALNS), introduced by Ropke and Pisinger
(2006), extends the LNS heuristic by allowing multiple destroy and repair methods to
be used within the same search. By assigning a weight to each method, a weighted
selection is done to choose which method to use in the next LNS iteration. The
weights are adjusted dynamically depending on the success in the iteration such that
the heuristic adapts itself to the current instance and to the search phase. Besides
including di�erent destroy and repair methods, one can include the ordinary local
search method to explore the close neighborhood around a solution from time to
time.

Conijn (2013) solves the Vehicle Routing Problem with Stochastic Travel Times,
but they assume time windows are hard. The DTPP assumes soft time windows,
because we see in real-life that planners can decide to not satisfy a time window
if this outweighs the saved costs for the reduced distance or for using a vehicle
less.

2.2 Categorization of vehicle routing problems

In the previous section we have seen there are many variants of the Vehicle Routing
Problem (VRP). In the classical de�nition by Dantzig and Ramser (1959) all travel
and service times are deterministic and the demand request from customers is known
before starting the optimization. These are strong assumptions which often do
not apply in real-world applications. There are applications where new customer
requests arrive on the go or the demand amount of a customer is only known when
arriving at a customer.

Pillac, Gendreau, Guéret, and Medaglia (2013) distinguish two dimensions in real-
world applications: evolution and quality of information. Evolution of information
relates to information which changes over time, for instance a problem where new
customer requests arrive while executing the plan. Quality of information relates
to uncertain input because of uncertain environments or technical issues. Examples
include only knowing a range for the demand amount or travel times being stochastic
as a result of congestion. Note that stochastic travel times can be categorized in

18

either of the two dimensions. Looking from one perspective we generate a plan with
the stochastic travel times which we do not change during execution. Looking from
the other perspective we generate a plan, but we keep in mind that during execution
more information becomes available which allows to improve the plan.

The combination of information evolution and information quality gives four cate-
gories of optimization problems, presented in Table 2.1 by Pillac et al. (2013). When
having static and deterministic information all information is known beforehand and
this does not change during the execution of the generated solution. The classical
VRP as discussed before is an example in this category. Other examples in the �eld
of vehicle routing include, but are not limited to, Vehicle Routing with LIFO, where
the order of loading and unloading goods is restricted to last-in-�rst-out (Carrabs,
Cordeau, and Laporte (2007)), and Vehicle Routing with Soft Time Windows, where
violating a time window is allowed taking into account that extra costs have to be
paid (Ta³, Dellaert, Van Woensel, and De Kok (2013)).

In static and stochastic problems the information does not change during execution
of a plan, but there is uncertainty in the input data. The uncertain input is modeled
by random variables and their realizations are revealed during the execution of
the solution. A solution should be constructed based on the information that is
available prior to the execution of the solution, for example based on the probability
distribution of the random variables and on the input data which is �xed. The
research reported on in this thesis belongs in this category: we assume we know the
probability distributions of the travel times and we assume we know in advance which
customers should be served and which demand they have. Two other categories of
static and stochastic problems are stochastic demands and stochastic customers. In
problems with stochastic demands the exact amount of the demand is only revealed
when arriving at a customer (Lei, Laporte, and Guo (2011)). While generating a
solution we should consider the stochastic demands such that a realization of the
demands does not overload a vehicle. When having stochastic customers a customer
has to be served with a certain probability (Bent and Van Hentenryck (2004)).
Only after creating the solution it becomes known which customers can be omitted,
while we still want e�cient routes. In general the goal is to construct a solution
which does not require replanning of actions during the execution of the solution.
The solution should be valid during execution, because the problem is static and
stochastic: the information does not change during execution of a solution. If the
information changes over time, then real-time replanning can improve the solution.
However, real-time replanning is more common in a dynamic setting as we will
discuss next.

Both dynamic and deterministic problems and dynamic and stochastic problems
are characterized by input not fully known a priori, but where the information is
revealed during execution of the solution. The di�erence between the two problems
is the information that is available a priori. While in dynamic and deterministic
problems there is no information on the dynamically revealed information, in dy-
namic and stochastic problems there is stochastic information available in advance
which can be exploited for the generation of a solution. For these types of problems
technological support is required: positioning systems like GPS and real-time com-

19

Information quality

Deterministic input Stochastic input

Information
evolution

Input known

beforehand

Static

and

deterministic

Static

and

stochastic

Input changes

over time

Dynamic

and

deterministic

Dynamic

and

stochastic

Table 2.1: Categorization of optimization problems by Pillac et al. (2013).

munication devices like mobile phones or centralized navigation products to allow
the decision maker to communicate the improved solution to the vehicles. In the
problem with uncertain travel times, real-time replanning can be bene�cial when one
vehicle ends up in tra�c congestion while another vehicle is serving his customers
expeditiously. We could then decide to pickup an order which was originally planned
by another vehicle. This can even be more bene�cial when it is not required to serve
all customers, but when we can decide during execution if serving another customer
is useful. These problems are also known as online planning problems, while static
planning problem are known as o�ine planning problems. In this research we show
that pro�t can be made when optimizing o�ine planning with uncertainty. We will
show that some methods give faster good results, such that they can be used as
online planning problems.

2.3 Optimization under Uncertainty

Besides vehicle routing there are other domains which are subject to uncertainty.
We will shortly discuss two domains to see how uncertainty is handled in those
problems.

In the �eld of manufacturing there are various types of uncertainty. Mula, Poler,
Garcia-Sabater, and Lario (2006) distinguishes environmental uncertainty and sys-
tem uncertainty. Environmental uncertainty includes uncertainties which are beyond
the production process like demand uncertainty and supply uncertainty. System un-
certainty on the other hand is related to the production process like production lead
time uncertainty, failures of production systems and quality uncertainty. Mula et
al. (2006) give a vast overview of manufacturing under uncertainty where the most
frequently encountered modeling approach was stochastic programming, which we
will discuss in Section 2.4. For example, Gupta and Maranas (2003) use a stochastic
programming based approach to solve the problem of tactical planning of supply
chains under demand uncertainty.

Another �eld which is subject to uncertainty is energy supply planning. Sources
of uncertainty include markets, politics and technology. Lee (2014) propose a two-

20

stage stochastic program with recourse to solve the problem of coupling energy
supply planning and energy supply chain design. Long-term decisions, like con-
structing new energy plants, are made based on stochastic input. After realization
of the uncertain parameters the long-term decision can be countered by making
short-term decisions, like the procurement of biomass and deciding on which ma-
terial to process. Sharifzadeh, Garcia, and Shah (2015) show that seasonal and
geographical uncertainties in biomass resources should be considered and di�erent
decisions should be made on the energy supply chain design. They develop a mixed
integer (piece-wise) linear program to determine the optimal supply chain design
under uncertainty. Considering uncertainty in this �eld is of importance because
the design of the energy supply chain can have signi�cant in�uence on the viability
of the biofuel technology.

2.4 Solution approaches

When looking for solution approaches that can help solve the DTPP, the area of
solving the Traveling Salesmen Problem (TSP) draws attention, as great progress
has been made recently. While early algorithms could only solve small instances,
current algorithms can handle millions of customers. Rego, Gamboa, Glover, and
Osterman (2011) provides TSP heuristics to �nd solutions which are with a high
probability only 1 to 3% away from the optimal solution in reasonable time. Al-
though this provides hope to also get good results for the Vehicle Routing Problem
with Time Windows (VRPTW), it turns out the VRPTW is more di�cult. While
in the TSP the stops on a route `only' need to be sequenced, in the VRPTW there
is a second planning decision of which stops to include on which route. As a result,
problems with 100 customers are already di�cult to solve. The DAIPEX Trans-
portation Planning Problem is a very broad extension of the VRPTW amongst
others by including driving regulations and stochastic time-dependent travel times.
The combination of the VRPTW and the additional practical constraints has as
result that we unfortunately cannot use the TSP heuristics.

One prominent practical constraint is about driving regulations. Driving regulations
are in fact not often considered when solving the vehicle routing problem. Recently,
Goel and Kok (2012) considered the truck driver scheduling problem in which a
sequence of locations must be visited by a driver within given time windows under
the US driving regulations. Their method can solve the truck driver scheduling
problem in quadratic time, but only for US driving regulations. Vidal, Crainic,
Gendreau, and Prins (2014) state that no polynomial algorithm is known for the
truck driver scheduling problem under the more restrictive European (EU) driving
regulations. Prescott-Gagnon, Desaulniers, Drexl, and Rousseau (2010) propose a
Large Neighborhood Search algorithm using a column generation heuristic for the
VRP with EU driving regulations. Columns are generated by tabu search that checks
the feasibility with relation to driving regulations using a labeling algorithm.

Kok, Hans, Schutten, and Zijm (2010) also consider the EU driving regulations in
their VRP, but extend this with tra�c congestion by using time-dependent travel

21

times. They use a dynamic programming heuristic by adding several dimensions,
like remaining capacity, current time and the remaining travel time until a break
must be scheduled, to each subproblem. Due to increased computation times they
only expand a limited number of subproblems which have the lowest costs. We have
not considered this approach, because adding stochastic travel times increases the
complexity even more.

One component of the DTPP is the presence of uncertainty. Two major approaches
to deal with optimization under uncertainty are Stochastic Programming and Robust
Optimization, as discussed in Gorissen, Yan�ko§lu, and den Hertog (2015) and Evers
(2013). They both focus on constructing solutions for which we expect they are good
under many realizations of the data. This means that the goal is not to �nd the
best solution possible by one realization of the uncertain data, but to �nd a good
solution which is valid for a myriad of realizations of the uncertain data.

The main di�erence between the two approaches is the assumption that is made on
the uncertain data. In Stochastic Programming the assumption is made that the
true probability distribution of the uncertain data is known or can be estimated.
In practice, probability distributions can be unknown or hard to obtain. On the
other hand, Robust Optimization does not assume the probability distributions
are known. Instead it assumes that uncertain parameters belong to a deterministic
uncertainty set, that is, the uncertain parameters are unknown but bounded. Robust
Optimization uses a min-max approach using the uncertainty set by optimizing the
worst-case value of the optimization objective. The solution will satisfy all instances
within the uncertainty set, and given all instances the solution will be optimal.

Early robust optimization algorithms provide conservative solutions, since the result-
ing solutions should be satis�ed under every combination of uncertain parameters,
including the scenario where every parameter reaches the worst value at the same
time. Bertsimas and Sim (2004) introduced a new robustness concept. Instead of
requiring the solution to be valid for every possible combination of uncertain pa-
rameters, they propose to adjust the level of conservatism of the robust solution in
terms of probabilistic bounds of constraint violations. This model assumes that only
a subset of the uncertain parameters will change to have a negative e�ect on the
solution, such that the robust solution will be feasible with high probability.

Maggioni, Potra, and Bertocchi (2015) apply Stochastic Programming and Robust
Optimization in a transportation problem where the problem is to determine the
number of vehicles to replenish cement factories. According to Maggioni et al.
the main advantage of Robust Optimization is that it can be solved in polynomial
time and has theoretical guarantees on the quality of the solution, which is not the
case for Stochastic Programming. Their numerical experiments show that Robust
Optimization results in worse objective values due to certitude with relation to
satisfying constraints.

A di�erent approach to solving stochastic optimization problems is Sample Aver-
age Approximation (SAA) as discussed by Verweij, Ahmed, Kleywegt, Nemhauser,
and Shapiro (2003). This Monte Carlo based approach generates a set of random
simulation worlds by sampling from a probability distribution for every uncertain

22

parameter. The expected objective function of the stochastic optimization problem
is approximated by the average of the samples. We will adopt this technique, since
it allows to easily include a wide range of real-world constraints like driving regu-
lations, heterogeneous �eets, vehicle to site compatibilities and many more, while
this is not the case for Stochastic Programming and Robust Optimization. More-
over, Sample Average Approximation allows to extend the problem to include other
types of uncertainty like uncertain demands. Studying how to solve the DTPP using
Robust Optimization is an interesting next research topic.

23

24

3

DAIPEX Transportation Planning
Problem

The DAIPEX Transportation Planning Problem (DTPP) is an extension of the clas-
sical Vehicle Routing Problem (VRP) which is studied extensively in literature. In
the DTPP we try to capture a broad array of real-life vehicle routing problems faced
by transportation companies. In this chapter we describe the DAIPEX Transporta-
tion Planning Problem. We divide the problem de�nition in four parts: instance
data, transportation plan, operational constraints, and the objective. The DTPP is
then de�ned as the problem to �nd a transportation plan as de�ned in Section 3.2,
that satis�es all operational constraints in Section 3.3 and minimizes the objective
function as de�ned in Section 3.4.

3.1 Instance data

The instance data is comprised of the transportation network, the customer or-
ders and the transportation resources. Together they characterize the problem of a
transportation company.

3.1.1 Transportation network

The transportation network contains the customer locations, the central depot and
the arcs between them. Let G = (N0, A) denote the transportation network where
N0 = {depot, 1, . . . , n} is the set of locations and A = {(i, j)|i, j ∈ N, i 6= j} the set
of arcs between the locations. The depot is located at location depot and N = N0 \
{1, . . . , n} represents a set of customers locations. In general a location represents
a single customer, but a location can be shared by multiple customers.

Let d(i, j) ∈ R denote the distance of the arc between locations i and j. A distance
matrix D = {d(i, j)|i, j ∈ N0} is de�ned on A and we assume the arcs have asym-
metric distances, that is, traveling from location i to location j does not necessarily

25

have the same distance as traveling from location j to location i. This is the re-
sult of one way roads, city centers, and motorways. We assume the transportation
network is complete such that for every pair of locations there is an arc with �nite
distance.

Travel times in the transportation network are subject to random factors. This
includes but is not limited to tra�c jams, crowded city centers, tra�c lights, weather
conditions and road works. We include this in our problem de�nition by assuming
that travel times on arcs are continuous random variables. Besides travel times
being stochastic, we also see there is a correlation between the time of the day an
arc is traversed and the travel time. A clear example is rush hour in the morning
and in the evening which causes travel times to be higher compared to traveling
just before lunch. We divide the day in time periods such that travel conditions for
di�erent departure times within a time period are comparable. Let P be the set of
time periods where every time period has its own probability distribution for the
travel time. Any random probability distribution can be used in this approach. The
travel time on arc (i, j) in time period p ∈ P is denoted by the continuous random
variable T p

i,j. This random variable is applicable when the complete travel takes
place in time period p. However, it often happens that a travel starts in one time
period and continues in one or multiple other time periods. The travel time on arc
(i, j) starting at departure time D is denoted by the continuous random variable
−→
T i,j(D). The relation between T p

i,j and
−→
T i,j(D) will be explained in Chapter 4.

Note that we use bold letters for random variables.

Given a route we are interested in the arrival and departure times at the cus-
tomer locations. Because the travel times are random variables, arrival and de-
parture times are also random variables. The corresponding probability distribu-
tions can be obtained by applying the convolution operator as will be explained in
Section 3.3.1.

3.1.2 Orders

Customers have two types of orders: delivery orders and pickup orders. Let O
denote the set of orders. For a delivery order a quantity qo ∈ R has to be loaded at
the depot and unloaded at a location di�erent than the depot. For a pickup order
o ∈ O a quantity qo ∈ R has to be loaded at a location di�erent than the depot and
unloaded at the depot. We de�ne the stop location lo of an order o to be the pickup
or delivery location of an order, e.g., for a delivery order it is the location at which
the order has to be delivered.

Each order has to be delivered or picked up at its customer within a prede�ned time
window. The time window of the stop location has a release date ro and a due date
do such that we express the time window by [ro, do]. The release date of a time
window is hard and the due date of a time window is soft. That is, when a vehicle
arrives before the release date at a customer it is required to wait until the release
date starts before the service can start. Arriving after the due date is allowed, but
induces a penalty cost as explained in Section 3.4.3. Arriving at the stop location

26

at the due date is considered to be on time, even if the service at the customer does
not end before the time window closes. The time window of the depot is denoted
by [rdepot, ddepot].

Each order o has a stochastic service time and depends on the order to be trans-
ported. It is denoted by the continuous random variable ST o and represents the
loading or unloading of the order.

We have used the above de�nition of service times. Another option is to base the
service times on stops. If multiple orders have to be serviced at the same location,
then the service time not only depends on each separate order but also on the
stop (multiple orders for the same location). For example, it takes time before the
customer is available to start the service, but when he is available then other orders
for this location can be serviced without having to wait again for the customer. We
can express this by introducing a stochastic service waiting time for a stop which
expresses the waiting time before the service of the �rst order for this location can
start. Next to the stochastic service waiting time there is a stochastic service time
for an order which expresses the service time of an order.

Each order o has a service reliability requirement sro ∈ [0, 1] expressing that the
customer of order o should be serviced on time with a probability of at least sro.

3.1.3 Transportation resources

Given a heterogeneous �eet of vehicles V , where vehicle v has capacity Qv, all orders
should be serviced with this set of vehicles. All vehicles are initially located at the
depot and they have to �nish at the depot at the end of the route. Driving is subject
to driving regulations, which is explained in Section 3.3.5.

3.2 Transportation plan

Given instance data as described in Section 3.1, a transportation plan is de�ned on
this instance data and is a set of routes which serve the customers. More formally,
a transportation plan is a tuple 〈Rv, stv, sto, stdv,l〉, where Rv = {o1, . . . , o|Rv |} gives
the route of vehicle v, stv gives the start time of vehicle v, sto gives the start time
of the service of order o, and stdv,l gives the time when a vehicle starts driving from
location l. The DTPP is the problem to �nd a transportation plan that satis�es
all constraints in Section 3.3 and minimizes the objective function as described in
Section 3.4.4. In this section we describe what a transportation plan of the DTPP
is.

Each element of a route Rv = {o1, . . . , o|Rv |} corresponds to either the delivery or
pickup action of an order. The sequence only contains the actions outside the depot,
because the vehicles are preloaded and post unloaded. Preloading a vehicle means
loading the orders of the route to be delivered into the vehicle and is done before the
start of the route by depot operators. Post unloading a vehicle means that orders

27

which are picked up during the execution of the route are unloaded after arrival at
the depot by depot operators. This implies that both loading and unloading times
at the depot do not add up to the working time of the driver.

Let Ao be the arrival time at the stop location of order o. Let So be the start time
of the service of order o. Let Do be the departure time at the stop location of order
o. In Section 3.3 we will explain the relation between these times.

3.2.1 Planning decisions

In Section 3.1 we have explained the instance data of the DAIPEX Transportation
Planning Problem. Given the instance data and the transportation plan as de�ned
by tuple 〈Rv, stv, sto, stdv,l〉 in the previous section, there are six planning decisions
which have to be taken to solve the problem:

1. Which orders are planned on which vehicle?

2. What is the sequence of stops on a route?

3. What is the start time stv of vehicle v?

4. What is the start time of the service sto of order o?

5. What is the time stdv,l that vehicle v starts driving from location l?

6. When are breaks planned?

The �rst two planning decisions will be taken by the optimizer and are explained in
Chapter 5. We use optimization algorithm when we refer to the theoretical algorithm
and we use optimizer when we refer to the software which implements an optimiza-
tion algorithm. The third planning decision is taken after �xing the routes and is
explained in Chapter 6. The three remaining planning decisions will implicitly be
taken, but explicitly considering them can improve the transportation plan.

Deciding on the start time of the service at a customer can allow the driver to
take a break before the service. This applies when there is much waiting time in
the transportation plan. For example, a driver has to wait 40 minutes before the
time window of a customer opens. Because the waiting is less than a break of 45
minutes, the waiting time is normally not counted as a break. Instead of starting the
service at the start of the time window, we can decide to have the driver wait �ve
additional minutes such that he can take a break of 45 minutes. This can improve
the transportation plan.

The next planning decision that has e�ect on the solution is the departure time
from a location. If a driver has to drive a route which expects to take almost the
driving limit, then less driving during rush hour can give a transportation plan which
satis�es the driving limit. For example, if a driver starts driving immediately after
the service at a customer, he would have to drive an additional 2 hours to the depot
during rush hour. He then would have driven 9:05 hours, while the driving limit is
9 hours. If the driver waits 45 minutes at the customer, the rush hour has �nished

28

and now driving to the depot only takes 1:45 hours. The driver arrives at the depot
after driving 8:50 hours, which is less than the driving limit.

Planning decision 6 is about breaks. We model breaks as an implicit planning
decision, because we always plan a break after 4:30 hours. Explicitly modeling
breaks as a planning decision can improve a transportation plan, for example when
considering time-dependent travel times. Planning a break during rush hour can
have as e�ect that the total driving time of the driver decreases compared to planning
a break during o�-rush hours.

3.3 Operational constraints

In this section we explain the di�erent constraints that apply to the DAIPEX Trans-
portation Planning Problem. We de�ne a route to be the sequence of orders that
are serviced on this route. Together with the fact that each vehicle starts and ends
at the depot we get a sequence of arcs that have to be traveled by the vehicle.

3.3.1 Time constraints

Time windows of orders enforce time constraints. Together with travel times we can
de�ne the arrival time Ao at the stop location of order o, the start time So of the
service of order o and the departure time Do from the stop location of order o. For
route Rv = {o1, . . . , o|Rv |} we de�ne the relation between these times. Let DRv ,depot

be the departure time of vehicle v from the depot. The time period p which de�nes
the stochastic travel time is derived from the departure time. Chapter 4 explains
how we deal with travel times longer than the size of a time period.

The arrival time at the stop location of the �rst order o1 of route Rv is de�ned as
follows:

Ao1 = DRv ,depot +
−→
T p

depot,lo1

where time period p corresponds to the time period in which the departure time
from the depot DRv ,depot falls and will be explained in Chapter 4.

The service start time of order oi is de�ned by the maximum of the arrival time and
the release date of the order:

Soi = max{Aoi , ro}

The departure time from the stop location of order o is de�ned by the convolution
of the stochastic service time and the start time of the service:

Do = So ∗ ST o

Arrival at the stop location of order oi+1 is the convolution of the departure time
from the previous location (stop location of order oi) and the travel time between

29

these two locations. Because of time-dependent travel times, the travel time between
the two locations depends on the departure time.

Aoi+1
= Doi ∗

−→
T loi ,loi+1

(Doi)

The arrival time at the depot is found in a similar way:

Adepot = Dl|Rv |
∗
−→
T l|Rv |,depot

(Dl|Rv |
)

The convolutions involving travel time possibly involve multiple time periods.

3.3.2 Service reliability requirement

Each customer should be serviced with the service reliability requirement of its order.
The probability of arriving at the stop location of order o before the due date do
should be at least sro:

P(So ≤ do) ≥ sro

Violating this constraint incurs constraint costs as explained in Section 3.4.3, which
means that violating the service reliability requirement can be advantageous com-
pared to solving it.

3.3.3 Vehicle constraints

We assume that each order can be transported by every vehicle in the �eet. An
order has to be transported by exactly one vehicle, that is, an order cannot be split
up and transported by more than one vehicle:∣∣{v ∈ V : o ∈ Rv}

∣∣ = 1 o ∈ O

3.3.4 Capacity constraints

Vehicle v has a capacity of Qv which should not be exceeded at any moment during
the execution of route Rv. Let Lv,depot be the loaded quantity after preloading vehicle
v. We introduce γo which indicates whether order o is a pickup order (γo = 1) or a
delivery order (γo = −1). The capacity of vehicle v should not be exceeded at any
time:

Lv,depot +
k∑

i=1

γoi · qoi ≤ Qv ∀k, 0 ≤ k ≤ |Rv|

30

3.3.5 Legal constraints

Vehicles are driven by drivers who must adhere to driving regulations. We use the
European driving regulations as de�ned in Regulation (EC) No. 561/2006 by the
European Union (2006). We distinguish driving time and working time. The driving
time is the actual time the driver controls his vehicle. The working time is the time
between two daily rests and includes activities like driving, loading and unloading,
but also cleaning the vehicle or doing administrative work.

The driver is allowed to drive at most 4:30 hours without taking a break. A break is
either �rst a sub break of 15 minutes and a second sub break of 30 minutes or a full
break of 45 minutes. We will use the breaks of 45 minutes in this problem, where
a break is planned after driving exactly 4:30 hours. This means that driving 4:29
hours can be done without taking a break, but when driving 4:31 hours a break is
planned after 4:30 hours with a remaining driving time of 1 minute. The reason for
this is that it is not allowed to drive more than 4:30 hours without taking a break
and can result in a high penalty. A driver is allowed to take a break while waiting
for the release time of an order in case the waiting time is at least the break period
of 45 minutes.

Besides a limit on consecutive driving time, we also consider the daily driving limit
and the daily working limit. A driver is allowed to drive 9 hours on one day. Similar
to the service reliability requirement we have a driving limit reliability requirement:
we require that the probability that the driving time for route R = {o1, . . . , o|Rv |} is
at most 9 hours should be at least drR:

P

T depot,lo1
+ T lo|Rv |

,depot +
∑

1≤i<|R|

T loi ,loi+1
(D) ≤ 9

 ≥ drR (3.1)

Section 3.4.3 explains the constraint costs incurred when violating this constraint,
which can be bene�cial compared to solving it. Moreover, the regulations state
that a driver is entitled to have a daily rest of at least 11 hours every day in which
the driver is not performing any actions related to his work. This means the daily
working limit is 13 hours. Besides a normal daily rest there is also a reduced daily
rest which is only allowed three times during two weeks. The reduced daily rest is
9 hours which means the working limit on those days is 15 hours. We will not go
into detail on the regulations related to driving multiple days.

3.4 Objective

The objective of the DAIPEX Transportation Planning Problem is to minimize
the costs and constraint costs of a transportation plan. The cost has di�erent
components which are explained in this section. We distinguish vehicle-dependent
costs, driver-dependent costs and constraint costs.

31

Let dRv denote the distance traveled in route Rv:

dRv = d(depot, lo1) +

|Rv |−1∑
i=1

d(loi , loi+1
) + d(lo|Rv |

, depot) (3.2)

Table 3.1 shows �ve di�erent cost factors used in the de�nition of the objective.

cvu cost per vehicle usage
cvk cost per driven kilometer for a vehicle
cvh cost per hour of vehicle usage
cdu cost per driver usage
cdh cost per worked hour of drivers

Table 3.1: Di�erent cost factors

3.4.1 Vehicle-dependent costs

Using a vehicle in a transportation plan induces three types of costs: �xed costs, costs
per driven kilometer and costs per hour of resource usage as can be seen in Table 3.1.
When using a vehicle, we �rstly have to pay a �xed amount cvu. Next to this we pay
an amount of cvk for every driven kilometer. Furthermore, we pay an amount of cvh
for every hour that the vehicle is used. Together with Formula 3.2 and the expected
value of the driving duration (stochastic arrival time minus deterministic departure
time from depot) we calculate the vehicle-dependent costs for route Rv:

CostsV ehicleRv = cvu + cvk · dRv + cvh · E(Adepot −DRv ,depot) (3.3)

3.4.2 Driver-dependent costs

Next to vehicle-dependent costs, these vehicles also have to be driven by a driver
who has to be paid as well. Assigning a driver to a route induces two types of
costs: �xed costs and costs per worked hour of a driver as can be seen in Table 3.1.
Planning in a driver costs a �xed amount of cdu. For every worked hour of a driver
we have to pay cdh. This gives the driver-dependent costs for route Rv:

CostsDriverRv = cdu + cdh · E(Adepot −DRv ,depot) (3.4)

3.4.3 Constraint costs

Each order should be served with a required service reliability requirement. However,
there are problem instances in which it is not possible to meet the service reliability
requirement of all orders or we want a trade-o� between satisfying a constraint with
high constraint and not satisfying a constraint with a large reduction in costs. The
same holds for the driving limit reliability constraint and the capacity constraint.

32

We de�ne the Virtual Stochastic Costs as the costs for the vehicle and the driver;
and the constraint costs for not meeting all constraints such that we can compare
transportation plans even if violated constraints.

3.4.3.1 Service reliability requirement

Let o be an order which has a service reliability requirement of sro and a realization
of the service reliability requirement of rsro meaning that with a probability of rsro
the vehicle arrives before the time window of the stop location closes. We de�ne
the violation for o: violationo = max(sro− rsro, 0). The service costs are positive if
there is a violation of the service reliability requirement:

ServiceCostso =

{
0 if violationo = 0

factors · (violationo + offsets)
powers if violationo > 0

(3.5)

where factors, offsets and powers are equal factors for all orders. If an order is
served with at least the service reliability requirement then the service costs are zero
for this order.

We de�ne the service costs for a route as the sum of service costs of its orders:

TotalServiceCostsRv =

|Rv |∑
i=1

ServiceCostsoi (3.6)

3.4.3.2 Driving limit reliability requirement

Violating the driving limit is not allowed according to European Regulations. To
solve this problem in practice di�erent alternatives are available which are discussed
in Section 7.1. We will use the constraint as expressed by Formula 3.1 for the driving
limit.

Let R be a route which has a driving limit reliability requirement of drR and a
realization of the driving limit reliability requirement of rdrR meaning that with
a probability of rdrR the driving time for route R is at most 9 hours. We de�ne
the violation for R : violationR = max(drR − rdrR, 0). The driving limit costs are
positive if there is a violation of the driving limit reliability requirement:

DrivingLimitCostsR =

{
0 if violationR = 0

fdr · (violationR + vodr)
pdr if violationR > 0

(3.7)

where fdr, vodr and pdr are equal factors for all routes. If the probability that the
driving time of a route is below the driving limit with at least the driving limit
reliability requirement, then the driving limit costs for this route are zero.

33

3.4.3.3 Capacity constraint

Each transportation resource Rv has a maximum capacity Qv. Violating this incurs
a constraint costs. We de�ne the constraint violation on order level: for every
pickup or delivery we verify if the maximum capacity is exceeded. We use the same
terminology as in 3.4.3: γo indicates whether order o is a pickup order (γo = 1) or
a delivery order (γo = −1) The violation for order j on resource Rv is de�ned as
follows:

violationRv ,j = max

LRv ,depot +

|Rv |∑
i=0, i≤j

γoi · qoi −QRv , 0

 (3.8)

The capacity constraint costs for order o on resource Rv are positive if there is a
violation of the capacity constraint:

CapacityCostsRv ,j =

{
0 if violationRv ,j = 0

fca · (violationRv ,j + voca)
pca if violationRv ,j > 0

(3.9)

where fca, voca and pca are equal factors for all routes.

We de�ne the capacity constraint costs for a route as the sum of the capacity con-
straint costs of its orders:

TotalCapacityCostsRv =

|Rv |∑
i=1

CapacityCostsRv ,oi (3.10)

3.4.4 Virtual Stochastic Costs

The total objective is a combination of the vehicle-dependent costs, driver-dependent
costs and violation costs. We can use the costs in Formulas 3.3, 3.4 and 3.6 to
calculate the total objective named Virtual Stochastic Costs :

V irtual Stochastic Costs =
∑
v∈V

(CostsV ehicleRv + CostsDriverRv+

TotalServiceCostsRv+

DrivingLimitCostsRv+

TotalCapacityCostsRv) (3.11)

34

4

Stochastic travel times

The optimizer developed in this research for the DAIPEX Transportation Planning
Problem is tested on real-life instances for which travel time data is used. In Chap-
ter 3 we assumed we have a function which provides the travel time between any two
locations. In Section 4.1 we explain how we constructed this travel time function.
Section 4.2 explains how we obtain travel time distribution for every arc where that
distribution is originally missing. This technique is useful when not enough data
is available, for example in case one is frequently faced with new locations, which
is a common use case in areas of logistics. This is especially useful when one gets
travel time distributions from logs coming from handheld or on board devices. Such
logs are mostly gathered through a Transportation Management System (TMS) and
provide travel time data for a company's own trucks. In this thesis we used this
data completion approach to obtain missing travel time distributions as TomTom
was not yet able to provide us with all distributions in the available time.

4.1 Travel time representation

Let the continuous random variable T p
i,j denote the travel time on arc (i, j) in time

period p ∈ P as introduced in Chapter 3. This random variable is characterized by
the quantile function Qp

i,j(q), where q is a cumulative probability between 0 and 1.
Given a quantile q, with 0 ≤ q ≤ 1, the quantile function expresses that the travel
time from location i to j in time period p is Qp

i,j(q). Figure 4.4 shows the quantile
function for the travel time from Zaandam to Utrecht. We have a set of time periods
P and every time period p ∈ P has a start and end time: pstart and pend denoted as
p = [pstart, pend].

4.1.1 Traversing time periods

This section explains how to calculate the travel time when traversing a link using
multiple time periods: it shows the relation between T p

i,j and
−→
T i,j(D), where i and j

35

are locations, p is a time period and D is a departure time. The �rst calculation does
not take into account breaks. The next step is to include breaks in the algorithm
according to the driving regulations explained in Section 3.3.5. We will see that the
calculation of breaks should be intertwined with the travel time calculation.

4.1.1.1 Excluding breaks

When calculating with time-dependent travel times, we have to be aware that a ve-
hicle which travels along a link can cross boundaries of time periods. Calculating the
travel time naively causes the travel times to violate the `�rst-in-�rst-out` property
(FIFO). This property states that if vehicle 1 departs before vehicle 2 from location
i, then vehicle 1 should arrive at location j before vehicle 2.

Consider the following example with two time periods p1 and p2 with p1 = [0, 5] and
p2 = [5, 10]. Vehicle 1 departs from location i to location j at time 4 and vehicle 2
departs from location i to location j at time 5. Let Qp1

i,j(q) = 4 and Qp2
i,j(q) = 2.

Using these travel times we get that vehicle 1 arrives at location j at time 4+4 = 8.
Vehicle 2 arrives at location j at time 5 + 2 = 7. In this example it seems bene�cial
for vehicle 1 to wait until the start of the second time period such that it arrives
earlier at location j, while in reality this should not be possible.

The example shows that we should take the FIFO property into account when calcu-
lating time-dependent travel times. Ichoua, Gendreau, and Potvin (2003) introduce
a model based on time-dependent travel speeds. Instead of assuming the travel time
function on a link is a step function of the time of the day, Ichoua et al. assume the
travel speed is a step function of the time of the day. The result is that the travel
time is a piecewise continuous function over time. The travel speed makes `jumps`
at the boundaries of the time periods, which could be solved by assuming the ac-
celeration is a step function of the time such that the travel speed is a piecewise
continuous function over time. This would give a quadratic function for the travel
time.

We will use the model proposed by Ichoua et al. to calculate time-dependent travel
times. The idea is to calculate how much of the complete travel is in a time period.
If the complete travel can be �nished before the time period ends the algorithm
terminates. If only a part of the travel can be �nished before the time period ends,
we calculate which part is traversed in the time period and which part is not yet
traveled. In the latter case we continue the algorithm with the next time period
and a reduced part of the link which should be traveled. Algorithm 1 shows how to
compute the travel time.

Let's recall the example from the beginning of this section. We have two time
periods p1 and p2 with p1 = [0, 5] and p2 = [5, 10]. Vehicle 1 departs from location
i to location j at time 4 and let Qp1

i,j(q) = 4 and Qp2
i,j(q) = 2. Using the algorithm

we �nd that vehicle 1 can traverse 5−4
4

= 0.25 of the link in the �rst time period.
This means that in the next time periods vehicle 1 has to traverse 0.75 of the link.
In the second time period Qp2

i,j(q) = 2, so vehicle 1 traverses 2 · 0.75 = 1.5 in the

36

Algorithm 1: Calculation time-dependent travel time excluding breaks.
input : locations a and b, departure time d, cumulative probability q
output: time-dependent travel time between a and b when departing from a

at time d with cumulative probability q
1 begin
2 φ← 1
3 T ← 0
4 while φ > 0 do
5 period← time period p ∈ P with pstart ≤ d < pend

6 δ ← min

(
φ,
pend − d
Qp

i,j(q)

)
// ratio traversed in time period

7 T ← T + δ ·Qp
i,j(q)

8 φ← φ− δ
9 d← pend // departure time for next time period

10 end
11 Return T
12 end

second time period which is possible because time period p2 is 5 hours. Vehicle 1
has �nished traversing the link which means the algorithm has �nished. We get an
arrival time at location j of 4 + 1 + 1.5 = 6.5. We now see that it is no longer
bene�cial for vehicle 1 to wait until the start of the second time period.

4.1.1.2 Including breaks

In Section 3.3.5 we have seen that a driver is allowed to drive 4:30 hours consecutively
and must then take a breaks of 45 minutes. When using a single time period we can
a�ord to �rst calculate the travel time for an arc and afterwards calculate whether
a break should have been taking during the travel and simply adding it to the travel
time. When using time-dependent travel times it is of the uttermost importance to
calculate the start time of breaks while calculating the travel time.

We will show this using an example with two consecutive time periods p1 and p2
with p1 = [0, 5] and p2 = [5, 10]. A driver is allowed to drive 4.5 and a break takes
0.75. Let Qp1

i,j = 5 and Qp2
i,j = 2. A vehicle leaves location i at time 4.25 to go to

location j. Consider the di�erence between planning a break during a tra�c jam
(time period p1) or planning a break during quite hours (time period p2). In the
former case let's plan the break directly at the start of the travel at 4.25. The break
�nishes at 4.25 + 0.75 = 5. This coincides with the end of the �rst time period
and thus with the start of the second time period. The travel can completely be
done in this second time period which means vehicle 1 arrives at location j at time
5 + 2 = 7.

In the latter case the vehicle drives 0.75 in �rst time period which is 0.75
5

= 0.15

37

of the complete travel. This means the vehicle has to travel (1 − 0.15) · 2 = 1.7
in the second time period, besides the break of 0.75. This gives an arrival time at
location j of 4.25 + 0.75 + 1.7 + 0.75 = 7.45. We see that the time when a break
is planned can have e�ect on the travel time for time-dependent travel times. It
can be bene�cial to plan a break during a tra�c jam, since the vehicle cannot cover
much distance during this period. Therefore, to include breaks in Algorithm 1, we
have to calculate the exact time when breaks occur. We also have to consider the
cases for breaks being longer than a time period or planning multiple breaks in a
single time period.

Algorithm 2 shows how to compute the time-dependent travel time between locations
including breaks. In the �rst 6 lines of Algorithm 2 various parameters are initialized.
The idea of the algorithm is equal to Algorithm 1: we calculate how much of the
travel has been done in a time period and which part is left.

When calculating time-dependent travel times with breaks, we have to take into
account how long the driver has driven before this travel has started (this should
also be done when using a single time-period, but can be done afterwards in this
case). Therefore, the driving time since the last break Tbefore is an argument of the
algorithm. Next to the driving time since the last break we also maintain the break
duration we should take in the next period, because the last period has ended. If the
break to take does not �t in the time period (lines 9 to 12), the period is completely
planned as a break and the break that is left is passed to the next time period after
updating the counters for the breaks and the departure time.

If the break �ts in the period, the break is completely planned (line 14). We calculate
the travel time which is possible in the time period without taking into account
breaks and which has not been traveled. If no break is required during this duration
(travel time before period plus travel time in period is less than maximum driving
time between breaks), the driving can start and we update the relevant counters
(lines 33 and 34). If a break is required during the driving, we start the driving
until the break is required. The break might not �t in the period, so the break is
partially done and the rest is forwarded to the next time period (lines 18 to 21).

If the break �ts in the time period, the break is done. We are now in the situation
that driving can start and can be alternated by breaks. Lines 23 to 30 show that
driving and breaks alternate until either the time period has ended or the driving
in this time period has ended.

While executing the algorithm we should maintain the travel time T , the break in the
travel breakInTravel and the driving time since the last break drivingAfterLastBreak.
They will be returned at the end. We can see that calculating time-dependent travel
times including breaks is more complicated than 1) time-dependent travel time with-
out breaks and than 2) travel times including for a single time period.

38

Algorithm 2: Calculation time-dependent travel time including breaks.
input : locations a and b, departure time d, cumulative probability q,

driving time since last break Tbefore
output: time-dependent travel time between a and b when departing from a

at time d with cumulative probability q, break duration Btaken taken
during the travel, travel time TafterBreak after the last break

1 begin
2 φ← 1 // ratio left to travel
3 T ← 0 // total travel time
4 breakInTravel← 0 // total break duration during travel
5 drivingAfterLastBreak ← 0 // driving duration since last break
6 breakToTakeInPeriod← 0 // required break duration for next period

7 while φ > 0 do
8 period← time period p ∈ P with pstart ≤ d < pend

9 if breakToTakeInPeriod does not �t in period then
10 Do part of break
11 Update counters for breaks and departure time d
12 Continue with next period
13 else
14 Do break // break �ts in period
15 driving ← travel time in period using φ and pend without breaks

16 if break needed during driving then
17 Start driving until break required

18 if break does not �t in period then
19 Do part of break
20 Update counters for breaks and departure time d
21 Continue with next time period
22 else
23 Do break // break �ts in period
24 φ2 ← 0 // Large period requires multiple breaks
25 while φ2 > 0 and period has not ended do
26 Driving until break required or end period
27 Do break
28 Update counters for driving, break and departure time d
29 Continue with next period
30 end

31 end

32 else
33 Do driving
34 Update counters for driving, breaks and departure time d
35 end

36 end

37 end
38 Return T, breakInTravel, drivingAfterLastBreak
39 end

39

A

B

C

Figure 4.1: Arcs (A,C) and (B,C) have much of the route in common, while
independent sampling does not take this into account.

4.1.2 Simulations

In Section 2.4 we have discussed various solution approaches for optimization under
uncertainty. As explained, we will use the Sample Average Approximation tech-
nique as described by Verweij et al. (2003) to solve the DTPP. Therefore, instead of
calculating with the probability distributions of the travel times in our algorithms
directly, we will create a set of simulation worlds based on the probability distribu-
tions. By sampling from the probability distributions the realized travel times in
the simulation worlds approximate the travel time distributions.

Let S be the set of simulation worlds we use. For every arc (i, j), where i and j
are locations from N0, and for every simulation world s ∈ S we need a sample qsi,j
between 0 and 1 to get the realized travel time from the travel time distribution. The
sample qsi,j expresses the tra�c �ow on the arc. A sample close to 1 has a meaning
of high tra�c �ow: traveling this arc takes longer than on average. We discuss three
methods to generate samples for an arc: independent sampling, sampling based on
maximum distance clustering and sampling based on hierarchical clustering.

4.1.2.1 Independent sampling

Using independent sampling we generate a random sample qsi,j from X ∼ U(0, 1) for
every arc for every simulation. This gives |N0|2 samples for every simulation world,
where N0 is the set of locations. This method has the disadvantage that there is no
dependence between the travel times, despite in reality travel times are correlated.
For example, when traveling from location A to C and from B to C where locations
A and B are close and C is further away. When traveling on those two arcs they
have much of the route in common shown by the middle arc in Figure 4.1. This
means that when two vehicles depart from location A and B at the same time to go
to location C, they su�er from the same tra�c �ow on a major part of their route.
Using independent sampling we assume the travel times are independent shown by
the dashed arcs in Figure 4.1. The triangle inequality is not satis�ed in this case.
The travel time from A to C can be longer than driving from A to B and then to
C. To overcome this, we introduced clustering before sampling.

40

4.1.2.2 Sampling based on maximum distance clustering

To overcome the problem we saw with independent sampling, we cluster the locations
and we assume the tra�c �ow between the locations of one cluster and the locations
of another cluster are equal. We show two algorithms to cluster the locations,
where the second algorithm is discussed in the next section. The �rst algorithm
places locations in the same cluster if they are within a maximum distance d of each
other. The idea behind this is shown in Figure 4.1 and discussed in the previous
paragraph: if two arcs share a major part of their route, then they should have
the same tra�c �ow. Assume the N0 locations are clustered in a set of clusters C.
Instead of generating a sample for every arc using the set of locationsN0, we generate
a sample for every arc using the set of clusters C resulting in |C|2 samples for every
simulation world. This means that we use the same sample for two arcs (i, j) and
(k, l) if locations i and k are in the same cluster and locations j and l are in the
same cluster.

Pickup and delivery locations are often not uniformly distributed over the area, but
instead many locations are close to each other in cities while outside of the cities the
locations are further apart. Using a �xed maximum distance has as result that there
are large di�erences in the sizes of the clusters. For example, we use a maximum
distance of 4 km such that all addresses which are within 4 km of each other are in
the same cluster. Clustering 318 customer locations from a transportation company
with a maximum distance of 4 km gives 100 clusters where the �ve largest clusters
together contain 47% of the addresses but most of the clusters contain only 1 or 2
addresses.

We generate two samples for every pair of clusters (arcs are directed) resulting in
many samples between small clusters. We then see a similar e�ect as independent
sampling: when a major part of the route is equal for two arcs the tra�c �ow can
still be very di�erent. On the other hand if we take a larger maximum distance then
the largest cluster becomes even larger, while we still have many small clusters.
Another disadvantage of this approach is that a cluster can consist of two smaller
clusters but they are both within the maximum allowed distance from each other
such that the two smaller clusters get merged into the large cluster. In this case
we assume all arcs in the largest cluster have the same tra�c �ow, but because the
locations cover a large area we do not believe sampling using this method gives the
best results.

4.1.2.3 Sampling based on hierarchical clustering

The third method to generate samples we have explored is based on hierarchical
clustering. The idea is that pairs of arcs which have a large part of their route in
common should have the same tra�c �ow. We use an agglomerative hierarchical
clustering algorithm where we start with each location in its own cluster and pairs
of clusters are merged when moving up the hierarchy. For the distance between two
locations we use the geodesic distance (shortest path between two points on the

41

a

b

c

d

(a) Arcs (a, c), (a, d), (b, c) and (b, d) have much

of their route in common.

a b c d level

0

1

2
C6

C4 C5

(b) Dendrogram of hierarchical

clustering.

Figure 4.2: Hierarchical clustering

Earth's surface). For the distance between two clusters A and B we use the average
linkage clustering:

1

|A||B|
∑
a∈A

∑
b∈B

geodesic(a, b) (4.1)

Figure 4.2a shows four locations a, b, c and d where a and b are close to each other
and c and d are close to each other. The hierarchical clustering of these four locations
is shown in Figure 4.2b, where a cluster is shown using a circle. At the lowest level
every location is in its own cluster. In the second level locations a and b are in one
cluster and locations c and d are in another cluster. Moving to the highest level
gives a single cluster with all locations.

For every simulation world s ∈ S, we generate a sample qsi,j with q
s
i,j ∼ U(0, 1) for

every cluster in the hierarchical clustering. We de�ne an ancestor of a cluster C as a
cluster which has all locations from cluster C and which has a higher level. For the
arc from location i to j in simulation world s, we use the sample qsi,j from the �rst
common ancestor cluster of clusters Ci and Cj. For example in Figure 4.2 when we
want a sample for the arc from location A to location C we �nd the �rst common
ancestor cluster to be cluster C6 at level 2. For the simulation world s we use the
sample qsa,c of cluster C6 to instantiate the travel time for arc (a, c).

Figure 4.3 shows a part of the hierarchical clustering of 319 locations where 3 lo-
cations a, b, c are highlighted with green squares and clusters are shown with their
convex hull. We want to generate samples for arc (a, b) and (a, c). For arc (a, b) we
�nd the �rst common ancestor cluster of locations a and b to be the cluster shown
in Figure 4.3 with the dark blue convex hull. By visual inspection we see that for
arc (a, c) the same cluster is the �rst common ancestor of locations a and c. The
result is that the same sample q, 0 ≤ q ≤ 1, is used for the two arcs. This means
that that when driving from a to b we expect an equal tra�c �ow as when driving
from a to c.

This sampling approach can be extended to take into account the direction of an
arc, which is the case for the sampling based on maximum distance clustering. We
generate two samples for every cluster in the hierarchy. The �rst sample for arcs
with a from-location in the left child and with the to-location in the right child and
the other sample for the other direction (in Figure 4.2b the left child of cluster C6

is cluster C4 and the right child is cluster C5).

42

Figure 4.3: Finding the common ancestor of clusters for sampling based on
hierarchical clustering.

4.1.2.4 Overview

In this section we have seen three methods methods to generate samples for an arc:
independent sampling (4.1.2.1), sampling based on maximum distance clustering
(4.1.2.2) and sampling based on hierarchical clustering (4.1.2.3). When using inde-
pendent sampling we see many violations of the triangle inequality in the simulation
worlds. This is undesirable as it does not accurately represent the real world. We
proposed two solutions for this issue. Using sampling based on maximum distance
clustering gives a couple of large clusters while many clusters are small, because
the locations are not uniformly spread over the total area. To overcome this, we
have proposed a second solution using sampling based on hierarchical clustering. No
maximum distance is needed for this approach. The advantage is that similar arcs
(arcs with the from-locations close to each other and the to-locations close to each
other) use the same sample. This applies for arcs with a large travel time, but also
for arcs with a short travel time.

4.1.3 Service reliability

Given the set of simulation worlds S and an order o, we approximate the service
reliability sro and whether this meets the service requirement so for order o. In
Section 3.2 we de�ned So as random variable representing the start time of the
service of order o. Let Ss

o be the start time of the service of order o in simulation
world s ∈ S. We de�ne the function OnTime(s, o) to express if the service of order

43

o starts on time in simulation world s ∈ S:

OnTime(s, o) =

{
1 if Ss

o ≤ do

0 else
(4.2)

For the approximation of the service reliability sro we calculate in which percentage
of the simulation worlds the service of order o starts before the order due date:

sro =
1

|S|
∑
s∈S

OnTime(s, o) (4.3)

4.2 Travel time data

The IE&IS group of the TU/e has developed data aggregation algorithms which
allow to obtain probability distributions for travel times from TomTom. They make
use from an API provided by TomTom (TomTom Custom Travel Times API (n.d.))
and process the data were needed. In Section 4.2.1 we explain which format we
de�ned to communicate requests and responses between Quintiq and the IE&IS
group of the TU/e. We have a limited set of locations for which we have the full
submatrix of travel time distributions. Section 4.2.2 explains how we approximate
the travel time distributions for missing arcs based on the available probability
distributions. In this section we will explain how the travel time data looks like and
how we will use it when applying sampling average approximation.

Using historical tra�c data from TomTom we get a probability distribution repre-
senting the travel time on arc (i, j) in time period p. Next to the average travel
time of an arc, TomTom provides us with incomplete probability distributions: the
travel times for the cumulative probabilities in the set {0.05, 0.1, 0.15, . . . , 0.95} are
provided. The cumulative probabilities de�ne a piecewise-linear quantile function
between two locations on the interval [0.05, 0.95]. The black circles in Figure 4.4 show
the received quantile function for the travel time from Zaandam to Utrecht.

We are missing travel times for the start and trail of the distributions: [0, 0.05]
and [0.95, 1]. These values are required when generating the simulation worlds: if
random sample q is in the interval [0.95, 1] we need to know the travel time at the
1.0 quantile to interpolate the travel time for sample q. We solve this problem by
computing the cumulative probabilities 0 and 1, such that the expected value of the
distribution is equal to the average provided by TomTom. They have provided us
with n data points (qi, ti) ∈ Q with cumulative probability qi and maximum travel
time ti, where q1 = 0.05 and qn = 0.95. Since Q is a cumulative probability function,
we know that if qi < qi+1, then ti ≤ ti+1. The expected value of the piecewise-linear
quantile function can be calculated using the probability mass of every interval. We
use the average travel time of an interval for the time representing the bin. The
expected value of the probability distribution can be calculated using the follow
formula:

E(Q) =
1

2

n−1∑
i=1

(qi+1 − qi)(ti + ti+1) (4.4)

44

40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile function between Zaandam and Utrecht

Travel time (minutes)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

40 50 60 70 80 90 100 110 120 130 140

Figure 4.4: Quantile function for travel times between Zaandam and Utrecht
including calculated quantiles (shown by red squares).

In the data provided by TomTom we have qi+1 − qi = 0.05 for every 1 ≤ i < n.
Lekkerkerker (2016) uses this formula to calculate the travel time for the last quantile
qn+1, such that the average of the received distribution is equal to the expected value
of the cumulative probability function:

tn+1 =

2µ−
n−1∑
i=1

(qi+1 − qi)(ti + ti+1)

1− qn
− tn (4.5)

where µ is the average of the received cumulative probability function. To �nd tn+1

they set t0 = t1 to get the function with the lowest variance.

Figure 4.4 shows the complete quantile function for the travel times between Zaan-
dam and Utrecht. The computed travel times at quantiles 0 and 1 are shows with
red squares. We use linear interpolation between known quantiles to get travel times
for other quantiles.

4.2.1 Communication Quintiq and TU/e

The probability distributions for the travel times, also known as travel time distri-
butions, used in this research come from the IE&IS group of Eindhoven University
of Technology (TU/e) hereafter referred to as TU/e. Quintiq can request a set of
travel time distributions between addresses. We have de�ned a format to ease this
process. The format can and should be used in general to communicate travel time

45

distributions, this as part of the data that is required to de�ne the DAIPEX Trans-
portation Planning Problem. We explain the format of the request and response.
Appendix A shows use cases of how this format can be used. The format is split in
a request and a response.

4.2.1.1 Request

The general idea is to de�ne groups of addresses and to request travel times between
these groups of addresses. This should give a submatrix of travel time distribu-
tions.

The request �le is structured as follows: on each line an address (identi�er, latitude
and longitude), then a white line, then on each line a group, then a white line and
then on each line a group combination from which the travel time distributions are
requested. The travel time distributions are requested from each of the addresses in
the �rst group to each of the addresses in the second group.

The speci�cation is shown below:

--- Start of file ---

ID address 1, latitude, longitude

ID address 2, latitude, longitude

...

ID address n, latitude, longitude

GROUP1, ID address 1, ID address 2

GROUP2, ID address 3, ID address n

GROUP1, GROUP2

--- End of file ---

The coordinates are expressed in geographic coordinates in decimal degree notation
(latitude bounded by 90◦ and longitude bounded by 180◦). Both latitude and
longitude are formatted using a point (.) as decimal separator. An example latitude
is 52.471592.

4.2.1.2 Response

The response contains for each requested address pair the travel time distributions.
The request does not contain the time period, but after a study of the IE&IS group
we have decided to use the following periods:

� 0:00 - 7:15

� 7:15 - 9:30

� 9:30 - 17:00

46

� 17:00 - 19:00

� 19:00 - 23:59

A request for the travel time distribution from address A to address B should a
response of 5 travel time distributions: one for each period of the day.

The response �le starts with one line of headers. This will be:

Origin,Destination,Day,Time,Duration,Average,Median,[Q1],...,[Qn]

with [Qi] replaced by a value between 0 and 1 that represent the quantile.

Then every line below these headers will be data, according to the speci�ed headers.
So a line looks like:

[Origin],[Destination],[Day],[Time],[Duration],[Average],

[Median],[[Q1]],[[Q2]],...,[[Qn]]

where we replace:

Origin: The identi�er of the origin location. This is a String.

Destination: The identi�er of the destination location. This is a String.

Day: The day of the week. The days are integer values between 1 and 7, with 1 =
Monday, 2 = Tuesday, . . . , 7 = Sunday. When travel time distributions are
aggregated over work days, WorkDays is also a valid value for [Day].

Time: The start time of the time window.

Duration: The duration of the time window.

Average: The average travel time.

Median: The median travel time.

[Qi]: The travel time at quantile [Qi].

The Time, Duration, Average, Median and quantile values are formatted like HH:MM:SS
(so hours, minutes and seconds always have two digits). For instance: 09:14:00 or
17:00:04. Elements on the diagonal of the matrix of locations (the same from and
to address) are not calculated (0 travel time) and thus not returned.

4.2.2 Mapping to unknown arcs

The IE&IS group from the TU/e has provided us with the full set of time dependent
travel time distributions between the 32 locations Sprovided, which are requested
by Quintiq. These travel time distributions are for 5 time periods, which means
Sprovided consists of 32 · 31 · 5 = 4960 travel time distributions. As will be discussed
in Chapter 7, our test instances will have 319 locations, called Sall, which means
we need 319 · 318 · 5 = 507, 210 travel time distributions. Requesting all travel
time distributions from TomTom is computationally intensive and not feasible in
the scope of our research. Therefore, we will use the known distributions for arcs

47

Figure 4.5: 319 locations: travel time distributions between all red locations in
Sprovided are known. Travel time distributions between green locations in

{Sall \ Sprovided} are not known.

for which we are missing a travel time distribution. We need two steps to get
realistic travel time distributions for all arcs. The �rst step is assigning a travel
time distribution shape to every arc. The travel time distribution shape expresses
the uncertainty for an arc. The second step is to scale the travel time distribution
such that the expected value matches the average travel time.

4.2.2.1 Getting a distribution shape for every arc

Figure 4.5 shows the locations in Sprovided in red and the locations in Sall\Sprovided in
green. We have the travel time distribution between every location in Sprovided. We
can map the travel time distributions for known arcs to arcs which are missing travel
time distributions. When considering two arcs of which the from locations are close
and the to locations are close to each other (as can be seen in Figure 4.2a), then they
generally share a major part of the route. Looking to Figure 4.2a, if we have the
travel time distribution for the arc from a to c, then we can use this distribution to
approximate the travel time distribution for the arc from b to c. We use the shape
of the distribution for the missing arc, but we should �rst scale the distribution
such that the average of the new distributions equals the expected travel time of the
arc.

If a location is not part of Sprovided, then we map it using the Euclidean distance to
the closest location from Sprovided. After mapping every location in Sall to a location
in Sprovided (every location in Sprovided maps to itself), we can use for every arc the
travel time distribution between the mapped locations. We want to obtain the

48

Figure 4.6: Locations with an equal color are mapped to the same location
from Sprovided

travel time distribution between locations a and b, which are mapped respectively
to locations c and d. If a or b belong to Sprovided, then a = c or b = d.

c is not equal to d: both c and d belong to the set Sprovided because of the con-
struction of c and d. This means we can use the travel time distribution shape
from arc (c, d) for arc (a, b).

c is equal to d: because there is no distance between the locations, we do not
have a useful travel time distribution for arc (a, b). Next we will explain how
to handle this case.

Given location a ∈ Sprovided, we de�ne Ma as the set of locations which map to a.
That is, for each location c ∈ Ma the closest location b ∈ Sprovided to location c is
location a:

∀a, b ∈ Sprovided : ∀c ∈MA : distance(c, a) ≤ distance(c, b) (4.6)

Figure 4.6 shows an overview where the locations in Sall are mapped to: locations
with the same color are mapped to the same location. Set Sprovided has 32 locations,
which means there are 32 groups of locations which have the same color. The largest
setMa has 53 locations (around Amsterdam), the second largest set has 26 locations
(The Hague, Rotterdam), then 24 (Utrecht) and then 21 (Limburg and Eindhoven)
locations.

49

4.2.2.1.1 Mapping in a cluster Given locations a and b which are both not
part of Sprovided, that is, we do not yet have the travel time distribution between a
and b. Assume they both map to location c ∈ Sprovided. This means they are in the
same geographical region, since otherwise they would have been mapped to di�erent
locations. For example, a and b can be in the same city when Mc is dense or they
are in the same province when Mc is less sparse.

To get a travel time distribution between a and b we have request additional travel
time distributions to the IE&IS group. To capture the characteristics of travel times
in the region of a and b, we can request additional travel time distributions to char-
acterize the travel times between locations of Mc. When we expect large di�erences
in travel time distribution, we can increase the number of travel time distributions
which are requested to get a better approximation. We have requested two travel
time distributions for every location a ∈ Sprovided. Given the set of addresses Mc

which map to the same location c, there are n · (n− 1) arcs between the locations.
We sort these arcs according to expected travel time from PTV (system used in the
DAIPEX application to obtain deterministic travel times between locations), after
which we select a number of arcs which together characterize the travel times in this
set well. De�ne Aadd as the set of arcs which are additionally requested for set Mc.
We have used two additional arcs at the 25th percentile and the 75th percentile.
We have requested the travel time distribution for those two arcs from the IE&IS
group.

We will use the additional distributions for the arcs between the locations in the set
Mc. For an arc (a, b), where locations a and b are both part of Mc, we select the
closest arc from Aadd with relation to expected travel time. We then use the travel
time distribution distribution from the selected arc for the arc (a, b). In the next
section we will explain how to scale the distribution such that the expected travel
time from the distribution equals the expected travel time of the arc.

4.2.2.2 Scaling travel time distributions

In the previous section we have seen how to obtain a travel time distribution for
every arc given all travel time distributions for a subset of locations. We cannot use
the travel time distributions directly, since the expected value of the distributions
do not match the expected travel times for the arcs. Therefore, we will only use the
shape of the distribution which expresses the amount of uncertainty on the travel
time for the arc. The only information that is available about an arc for which we
do not have the travel time distribution is the expected travel time which is used by
the DAIPEX application. We scale the distribution such that the expected value of
the distribution is equal to this expected travel time.

We use the Geographical Information System (GIS) provider PTV 1 in the DAIPEX
application. The PTV system provides a distance matrix from which the distance
between locations and the travel time between them can be retrieved. The travel
times retrieved from PTV are based on trucks, because we are using trucks in the

1http://xserver.ptvgroup.com/en-uk/products/ptv-xserver/ptv-xdima/

50

http://xserver.ptvgroup.com/en-uk/products/ptv-xserver/ptv-xdima/

Start
period

End
period

Expected
value

travel time
distribution

0.05 0.10 ... 0.95

00:00 07:15 0:44:10 0:33:53 0:35:31 ... 0:58:42
07:15 09:30 0:59:53 0:36:06 0:37:53 ... 1:55:02
09:30 17:00 0:45:47 0:35:08 0:36:36 ... 1:01:01
17:00 19:00 0:54:03 0:35:11 0:36:46 ... 1:40:52
19:00 23:59 0:42:43 0:33:37 0:35:15 ... 0:56:27

Table 4.1: Travel time distributions from Zaandam to Utrecht

test instances as will be explained in Chapter 7. The �rst observation from the
received travel time distributions is that the travel times are shorter than the travel
times retrieved from PTV. The reason for this is that the travel time distributions
received from the IE&IS group are based on both trucks and passenger cars and
passenger cars drive faster than trucks in general.

In Chapter 5 we discuss solution approaches for the DTPP, but it is important to
know that we use the travel times from PTV in varies solution approaches. To get a
fair comparison between the solution approaches, the expected travel time from the
travel time distributions should be equal to the travel times from PTV. The scaling
is done in two steps. The �rst step is to scale a travel time distribution to get a
relative distribution. This relative distribution expresses the dispersion for an arc
and can be used for other arcs which su�er from equal tra�c �ow. The second step
is to scale the relative distribution such that the expected value of the distribution
equals the expected value of the arc.

We start with scaling to a relative distribution. Table 4.1 shows the travel time
distribution received from the IE&IS group between Zaandam and Utrecht, includ-
ing the corresponding expected value of the distribution which is provided as well.
The distribution has a di�erent shape for every time period. The di�erent shapes
become clear when scaling the distributions for the �ve time periods to a relative
distribution.

Table 4.2 shows the relative travel time distributions. The travel time for every
quantile is scaled using the expected value of the travel time distribution. For
example, the travel time for the 95th quantile in the �fth time period (italic in
Table 4.1) is 0:56:27 hours and the average of the time period is 0:42:43 hours.
Dividing these travel times gives a dispersion measure about the distribution. A
large value means the 95th quantile is far from the expected value, indicating there
is much dispersion in the travel time. Converting the travel times to seconds gives
a value of 0:56:27

0:42:43
= 3387

2563
= 1.3215.

After calculating the relative travel time distribution for every time period, we have
to scale the distributions such that the expected value matches the expected travel
time for this arc from PTV. We distinguish between time-dependent travel times

51

Start
period

End
period

Expected
value

travel time
distribution

0.05 0.1 ... 0.95

00:00 07:15 0:44:10 0.7672 0.8042 ... 1.3291
07:15 09:30 0:59:53 0.6028 0.6326 ... 1.9210
09:30 17:00 0:45:47 0.7674 0.7994 ... 1.3327
17:00 19:00 0:54:03 0.6509 0.6802 ... 1.8662
19:00 23:59 0:42:43 0.7870 0.8252 ... 1.3215

Average 0:49:19

Table 4.2: Relative travel time distributions between Zaandam and Utrecht

and a single time period for the day.

4.2.2.2.1 Time-dependent When using time-dependent travel times, the rel-
ative travel time distributions from Table 4.2 give the wrong mutual tra�c �ow.
We have scaled all averages to their own expected value and we did not take into
account that the expected values of the di�erent periods are not equal. In other
words, the relative distribution only tells something about the dispersion within one
time period, while we are interested in the dispersion in relation to the `normal'
expected travel time from PTV.

To take the relation between the di�erent time periods into account, we calculate
a factor for every time period. This factor expresses how much the expected travel
time for a time period is in relation to an overall average. For example, a factor of
1.2 for the second time period (the morning rush) has a meaning that a travel in
the second time period takes on average 20% longer than the average travel time
over the complete day. Note that this factor does not express anything about the
dispersion of the distribution within a time period. The factor is calculated as the
expected value of a time period divided by the average of the expected values of the
�ve time periods.

The travel time distributions from Zaandam to Utrecht are provided (part of Sprovided).
We want to know the travel time distributions between Zaandam and Nieuwegein.
Using the mapping as explained in Section 4.2.2.1 we �nd that the arc between
Zaandam and Nieuwegein maps to the arc between Zaandam and Utrecht. Ta-
ble 4.3 shows the expected values of the �ve time periods for two di�erent arcs and
the scaled expected values.

We calculate the time period factor for the �fth time period (evening hours), which
is shown italic in Table 4.3. We divide the expected value of the �fth distribution
by the average of the �ve distributions after converting the travel times to seconds:
0:42:43
0:49:19

= 2563
2959

= 0.8661. This means that a travel during the �fth time period takes
on average 13.39% less than the average of the day.

52

Start
period

End
period

Expected value
Zaandam to
Utrecht

Time period
factor

Expected value
Zaandam to
Nieuwegein

00:00 07:15 0:44:10 0.8955 1:05:14
07:15 09:30 0:59:53 1.2142 1:28:27
09:30 17:00 0:45:47 0.9283 1:07:38
17:00 19:00 0:54:03 1.0960 1:19:50
19:00 23:59 0:42:43 0.8661 1:03:06

Average 0:49:19 1.0 1:12:51

Table 4.3: Scaling the expected values of the time periods for the arc from
Zaandam to Nieuwegein

Start
period

End
period

Calculated
expected value
travel time
distribution

0.05 0.10 . . . 0.95

00:00 07:15 1:05:14 00:50:03 00:52:28 . . . 01:26:42
07:15 09:30 1:28:27 00:53:19 00:55:57 . . . 02:49:55
09:30 17:00 1:07:38 00:51:54 00:54:04 . . . 01:30:08
17:00 19:00 1:19:50 00:51:58 00:54:18 . . . 02:28:59
19:00 23:59 1:03:06 00:49:39 00:52:04 . . . 01:23:23

Table 4.4: Calculated travel time distributions from Zaandam to Nieuwegein for
�ve time periods

The time period factors are shown in the fourth column of Table 4.3. To calculate
the expected value of the �ve distributions for the arc from Zaandam to Nieuwegein
we multiple the time period factor with the expected travel time provided by PTV.
This provided us with expected values for the distributions of the �ve time periods.
We can now scale the relative distributions to get a distribution which has the
calculated expected values as expected value.

The last scaling step is multiplying the relative distribution with the calculated
expected value of the distribution. Table 4.4 shows the �nal travel time distributions
for the arc from Zaandam to Nieuwegein.

4.2.2.2.2 Single time period In the previous paragraph we have seen how to
scale travel time distributions for time-dependent travel times. We also want to do
experiments using non-time-dependent travel times, i.e. a single time period for a
day. We have selected the morning rush which we will use for all day, because the
travel time distributions for this time period have the most dispersion.

If we use the method for the time-dependent travel times also for a single time
period, then the expected value of the distribution is for most arcs not equal to the
expected travel time from PTV. To be more speci�c, for most arcs the expected

53

Start
period

End
period

Calculated
expected value
travel time
distribution

0.05 0.10 . . . 0.95

00:00 23:59 01:12:51 00:43:55 00:46:05 . . . 02:19:57

Table 4.5: Calculated travel time distribution from Zaandam to Nieuwegein for
one time period

value of the distribution will be higher than the expected travel time from PTV,
since we have seen that the expected value of the morning rush period is in general
higher than the average of the expected values. When using a single time period
this is undesired: some solution approaches make use of the expected travel time
from PTV and this in�uence the evaluation of the solution approaches.

Therefore, we use a di�erent technique for scaling the travel time distribution when
using a single time period: we ignore the time period factor in this case. This means
we �rst scale to the relative travel time distribution shown in Table 4.2. We do not
multiplying the expected travel time from PTV with the time period factor. Instead
we multiply the expected travel time from PTV directly to the travel times of the
di�erent quantiles. The resulting distribution is shown in Table 4.5.

4.2.2.2.3 Discussion Using this mapping and scaling method, we have made
several assumptions:

� Travel time distributions for trucks are similar to the provided travel time
distributions which use a mixture of trucks and passenger cars.

� The relation between time periods is equal for the provided arc and the new
arc.

� The dispersion in a time period is equal for the provided arc and the new arc.
That is, the distribution shape is equal for the two arcs.

The combination of mapping distributions and scaling distributions has e�ect on the
validity of the triangle inequality between the locations. When using independent
sampling the triangle inequality is not satis�ed. We improved the sampling method
by using sampling based on hierarchical clustering. Nevertheless, the triangle in-
equality can still be violated. This can also happen in reality: a tra�c jam incurs
a long travel time, while taking a detour route can result in a shorter travel time.
The resulting simulation worlds might not be perfect, but we believe that given
the available information we constructed realistic simulation worlds. This can be
improved by using a triangle �xing algorithm. In the available time of this research
it proved to not be feasible to implement this, but Brickell, Dhillon, Sra, and Tropp
(2008) solve the metric nearness problem using an iterative algorithm: given a set of
distances between locations, �nd a `nearest' set of distances that satisfy the triangle
inequality. This allows to either make a signi�cant change to a few distances or to
change all distances a little.

54

5

Optimization algorithms to solve the
DTPP

This chapter presents a number of optimization algorithms to solve the DTPP.
Section 5.2 explains several ways on how to use slack to take stochastic travel times
into account. We basically help an optimization algorithm using deterministic travel
times by telling it to arrive some time before time windows close or by telling it
that travel times are longer than they actually are expected to be. Section 5.3
explains how to use the Sample Average Approximation Approach. This technique
uses simulation worlds by sampling the travel time distributions and taking those
simulation worlds into account in the optimization algorithm.

We start by describing the optimization algorithm we use across this chapter in
Section 5.1. That algorithm is based on the optimization algorithm of Logistics
Planner, one of the Quintiq Products, and uses deterministic travel times. This
algorithm is used in Section 5.2 and extended in Section 5.3.

5.1 Optimization algorithm

The �rst step of the optimization algorithm is clustering the orders which is ex-
plained in Section 5.1.1. After �nishing the clustering a Large Neighborhood Search
step is done, which is explained in Section 5.1.2.

5.1.1 Clustering

The �rst step in the algorithm is clustering of orders. The goal of this clustering
is to get a good start solution for the Large Neighborhood Search, where the idea
is that a cluster of orders 1) should �t together on a route and ii) should be close
together such that one can create a route with limited distance. Directly after the
clustering, the orders are sequenced on the route, which means the sequence of the

55

orders on the route is determined taking into account the constraints and the Virtual
Stochastic Costs as explained in Section 3.4.4.

The clustering algorithm uses multiple steps. The �rst step is estimating the number
of routes needed based on an estimate of the number of orders per route. The second
step, which is repeated multiple times, selects a subset of the routes and �nds the
best clusters for the orders which are planned on the selected routes.

The clustering algorithm is an iterative Mixed Integer Program (MIP). It uses an
order anchor for a route which can be thought of as an order which represents the
route: a driver drives to the stop location of the order anchor and the stop locations
of the other orders on the route should be in the neighborhood of the stop locations
of the order anchor. In every iteration the MIP takes a set of routes and minimizes
the distance of the orders in the route to the order anchor.

Selecting the routes is done starting from a single route and then selecting routes
in the neighborhood such that orders can be planned on another route where they
might �t better. We randomly choose a route r which has orders planned on it.
From route r we randomly select a number of orders O such that the number of
selected orders equals the number of desired routes of the MIP iteration. For every
order o1 in O we select the order o2 from the orders to cluster which is closest in
terms of distance. We use the route on which order o2 is planned in the current
iteration and continue with selecting more routes until we have selected the desired
number of routes.

The clustering in the MIP is done by a minimization goal which is twofold. The �rst
subgoal is the distance between the depot and the stop location of the order anchor.
The second subgoal is a metric measuring the compactness of a cluster. The cluster
cost is de�ned as the combination of these two subgoals and the goal is to minimize
this cost. The idea of the goal is to get routes with orders which �t well together
on the route. There is also a penalty for violating the capacity constraint of the
vehicle.

5.1.2 Large Neighborhood Search

After doing the clustering and sequencing the orders on the route, the Large Neigh-
borhood Search (LNS) starts. The LNS method has two levels: at the top level there
are iterations and in every iteration a subset of the problem is smartly selected for
improvement, as explained in Section 5.1.2.1. This subproblem is improved in the
second level using the Path Optimization Algorithm (POA), a Large Neighborhood
Search framework implemented by Quintiq and explained in Section 5.1.2.2. A
subproblem is independent of the rest of the problem, which makes it possible to
improve multiple subproblems in parallel. We call the top level the LNS meta layer
which has meta layer iterations and the second level is the POA layer and has POA
iterations.

56

5.1.2.1 Subproblem selection

The subproblem selection starts by selecting an order, which we call the leading
order, which will be used to select other orders which potentially �t well together
on a route. The leading order is selected based on a hierarchical selection criterion.
We �rst select orders which have not been in optimization the longest time or have
not been selected as leading order the longest time. We then prefer orders which
are not serviced in time and orders which are not yet planned.

After selecting a leading order, we select orders and routes to de�ne the subproblem.
We would like to have a subproblem such that POA converges to a local optimum.
When using too many routes the search space becomes too large such that the search
is too random or takes too long to converge. If the leading order is already planned,
we select the route and all orders that are planned on this route. We randomly
select orders which are nearby the order anchor. For a randomly selected order o,
we also select the orders which are planned on the same route on which order o
is planned. If there are unplanned orders or if there are routes which violate the
capacity constraint we select additional routes which are preferably empty.

The LNS meta layer can select multiple subproblems in parallel for optimization
to speed up the optimization algorithm. This is possible because the subproblems
are independent from each other. As explained in this section, we select orders and
routes which potentially �t well together. To get a good set of routes for every
iteration, the number of routes in optimization is limited. As such a low number of
routes will limit the number of concurrent POA invocations.

After selecting a subproblem, this subproblem is improved using the Path Optimiza-
tion Algorithm as explained in the next section.

5.1.2.2 Path Optimization Algorithm

Quintiq has implemented a Large Neighborhood Search framework called the Path
Optimization Algorithm (POA). When using POA one de�nes a set of nodes which
are sequenced on paths taking into account the constraints and minimizes the score
of the solution expressed by expressions. These are the di�erent components of
POA:

Nodes : The units that need to be planned. Every order will be a node in our
problem.

Paths : Where the nodes are planned on. Every truck and trailer combination will
be a path in our problem.

Expressions : These are needed to model constraints and goals. An expression is
an entity such as distance or time. The value of the expression changes along
the nodes of the path. The value change corresponds to a node or corresponds
to the transition when going from one node to another node. For example,
the expression `distance' changes when driving from one location to another

57

location. A path p can have multiple expressions, but all expressions operate
on the same sequence of nodes on p.

Constraints : De�nes what is allowed in a solution and what is not allowed. Con-
straints can be hard (no solution may violate them) or soft (a violation of the
constraint incurs a penalty). Example constraints include time windows and
the driving limit.

Goal : Expresses which solution is preferred if there are multiple solutions. The
goal function can consists of a combination of weighted subgoals. An example
goal is to minimize the total driving duration.

A problem de�ned by the components de�ned above is solved by POA using a
Large Neighborhood Search (LNS) which is the second level of the LNS (the �rst
level is the LNS meta layer). The LNS is de�ned by the POA strategy which has
di�erent actions. For example, a destruction action removes a number of nodes from
the solution of the previous iteration and a repair action tries to insert unplanned
nodes on the paths. Section 5.1.2.2.1 explains how we use the nodes, paths, etc.
Section 5.1.2.2.2 explains the strategy to walk through the search space.

5.1.2.2.1 POA de�nition We explain the various components of POA as de-
�ned above.

Nodes and Paths A problem de�nition in POA starts with nodes which have to
be planned on paths and sequenced on the path. Our problem includes only orders
which either have to be loaded at the depot and delivered to a customer or picked up
at a customer and unloaded at the depot. The sequence of the orders at the depot
is not relevant, since there is no driving between the loading or unloading of orders
at the depot. Therefore, we use a single node for every order which represents the
load or unload action at the stop location outside the depot.

An order is planned on a route, which is a combination of resources: a truck, a
trailer and a driver. A route is represented in POA by a path, so we create a single
path for every route.

Expressions The next POA components are the expressions. We have the follow-
ing expressions:

Capacity This expression represents the loaded amount in the vehicle. When load-
ing an order the value increases and when unloading an order the value de-
creases with the amount that is (un)loaded. The value remains equal during
driving and waiting.

Time This expression represents the time. A change in the time expression corre-
sponds to loading and unloading orders, to driving between two locations or
to waiting time.

58

Distance This expression represents the distance. The value changes when driving
from one location to another location.

Constraints We have multiple constraints to de�ne the problem in POA.

If a constraint is soft, then a violation incurs a penalty cost which is expressed by
the following formula:

Penalty costs = factor · (offset+ violation)power (5.1)

The factor, offset and power are parameters of the algorithm. They should be set
such that if there are two di�erent solutions S1 and S2 and the total score for S1

is lower than the total score for S2, then solution S2 should indeed be worse than
solution S1.

The �rst constraint is the capacity constraint, which expresses that every resource
has a maximum capacity which can be loaded at the same time. This is a soft
constraint meaning that violating this constraint incurs a penalty according to For-
mula 5.1.

The second constraint enforces time windows. An order cannot be serviced before
the release date. This is a hard constraint, that is, no solution can have the service
of the order start before the release date. If a driver arrives at a location before the
release date, the driver has to wait until the release date. The due date of a time
window is a soft constraint meaning that violating this constraint incurs a penalty
according to Formula 5.1.

The third and last type of constraint is related to driving regulations. As explained
in Section 3.3.5, a driver is allowed to drive 4:30 hours after which a break of 45
minutes is needed. POA internally uses calendars to enforce that after 4:30 hours
a break of 45 minutes is planned in which no other actions can occur. We allow to
plan a break of 45 minutes if the waiting time caused by a time window is at least
45 minutes.

Goal The last component is the goal function, which is build up from various
components. The distance expression is used to express that every driving kilometer
costs money. The time expression is used to express the costs for driving, waiting,
loading, and unloading. We use a single cost per hour for these four activities which
will be explained in Section 7.1. The distance and duration together give a total goal
score. We combine this with the total constraint score for the di�erent constraint
to get the a Total Score. This score is used by POA to evaluate solutions.

5.1.2.2.2 POA strategy After the POA problem is constructed, the strategy
de�nes how the search space is explored with the available search actions. They can
be categorized in destruction actions and repair actions.

We use three destruction actions: stop destruction, area destruction, and path de-
struction. They have an execution chance such that every iteration di�erent nodes

59

are removed from the existing solution. Nodes that are next to each other on a
path and that have the same location are considered to belong to the same stop.
When stop destruction is executed, all nodes from one randomly selected stop are
unplanned. When area destruction is executed, a stop is selected at random after
which the nodes corresponding to multiple nearest stops are unplanned. When path
destruction is executed, a path is randomly selected and all nodes at this path are
unplanned.

Besides destruction actions, we also have a repair action to recreate solutions using
the previously unplanned nodes. The repair action randomly selects an unplanned
node for which all possible moves, a possible way to plan the node, are determined.
Each move has an estimate of how good it is, and we place the best moves in a
population. Only the moves in the population are completely calculated such that
the move with the best score is selected. The best move is executed by planning
the corresponding node in the sequence of the corresponding path. The size of the
population is adaptive: if a move with a relatively bad estimate is often chosen as
best move, then the population size grows. The population size shrinks if the move
with the worst estimate is rarely chosen.

The POA strategy uses parachutes to get initial solutions. These are highly random
solutions, obtained by unplanning a large part of the orders in the initial solution
and then randomly planning them.

POA starts with all solutions in the solution pool generated by the parachute land-
ings and improves the solutions. During the execution of POA we maintain the
search depth. For every search depth the solutions in the solution pool are im-
proved. Improving a solution is done by executing the de�ned search actions. The
search actions which are de�ned before are executed until either a certain amount
of iterations has been done or until a certain amount of time has passed. After the
search actions are executed the best solution is added to the solution pool and this
is used in the next search depth.

When the strategy has �nished, the best solution is returned to the LNS meta layer
The meta layer evaluates the provided solution, writes the solution to the model
and starts a new meta layer iteration if the optimization duration has not been
met.

5.2 Building in slack

By building in slack in a transportation plan we want to try to guarantee more
orders are serviced within their service reliability requirement. Slack can be built
in the transportation plan using di�erent methods where we consider two types of
slack: time window slack and travel time slack. When using time window slack we
reserve time at the end of the time window, which we explain in Section 5.2.1. The
idea here is that you plan to be at a customer some time before the time window
closes to account for unforeseen longer travel times. The idea of travel time slack
is to overestimate travel times, which we explain in Section 5.2.2. By means of this

60

we make the optimizer always consider a worse scenario than the expected scenario.
This means that if we solve the problem in a worse scenario, we likely also have a
better solution when evaluating using stochastic travel times.

Kok et al. (2010) considered travel time slack when solving the vehicle departure time
problem where the departure time from the depot has to be decided to minimize the
duty time of the driver while satisfying time windows. They consider breaks in their
problem and they propose to use travel time slack instead of explicit driver breaks
scheduling. They show that adding slack to the travel times reduces the number
of infeasible routes from 64% to 2%, but only for light congestion (with medium
and high congestion the percentage of infeasible routes remains rather large). To
the best of our knowledge, no further research has been reported on using slack to
generate transportation plans when dealing with stochastic travel times.

Although a generated transportation plan is based on slack, we do not include slack
in the �nal transportation plan which is communicated to the drivers. As discussed
in Section 3.2, a transportation plan de�nes among others the time stdv,l when
a vehicle v starts driving from location l. In general the driver does not wait at
locations, because waiting uses precious time which is not available to serve other
customers. Therefore, the generated plan will not include explicit waiting actions,
instead the actions are planned as soon as possible. Waiting which is the result of
time windows not being open can still occur. It is also possible there are late orders,
because we have not included enough slack.

To evaluate the quality of the solutions generated by the di�erent optimization
algorithms we use Sample Average Approximation as explained in Section 5.3.

5.2.1 Time window slack

The idea of time window slack is to reserve time at the end of each time window.
By requiring to be at the location of an order a certain amount of time before the
time window closes, we want to guarantee that the order will also be served on time
when unforeseen changes in the travel times occur.

We require the optimization algorithm as explained in Section 5.1 to provide a
transportation plan using the reduced time windows. This means the optimization
algorithm generates a plan using �xed travel times and is not aware of stochastic
travel times. Given an order o1 with a time window of [ro1 , do1] where we are using
tws minutes time window slack, we require from the optimization algorithm to start
the service of o1 between ro1 and do1 − tws. This means there will be a penalty in
the optimization algorithm for a solution in which the start of the service of o1 is in
[do1 − tws, do1], which is on time according to the original time window.

Next to changing the time windows, we also take the driving limit into account when
using time window slack. Instead of using the normal driving limit of 9 hours, we
decrease the driving limit with the amount of time window slack.

drivingLimitadapted = drivingLimitactual − slack (5.2)

61

After the optimization algorithm has �nished, we evaluate the transportation plan
using Sample Average Approximation (SAA) as explained in Section 5.3 where we
do not use the slack and we use the original time window [ro1 , do1]. We hope to see
that using the provided plan more orders are served within the service reliability
requirement.

5.2.1.1 Small time windows

We can easily use the above approach of time window slack if the amount of slack is
less than the size of the time window. If more slack than the time window size should
be added, then the new due date is before the release date of the time window. This
would always result in constraint costs, since the release date of the time window is
a hard constraint. Therefore, we de�ne the release date of the time window to be
equal to the due date in this case. For example, for order o2 with a time window of
[9:59 - 10:00] and 30 minutes time window slack, we use the new time window [9:30
- 9:30] in the optimization algorithm.

Besides changing the time window, we also have to change the duration of the service
to re�ect both the introduced slack and the duration of the action. To prevent
that the service of the order has been �nished before the time window has actually
started, we increase the duration of the service. We add the time it takes from the
new release date until the original release date to the service duration.

We summarize the reduced time window, where actual refers to the time window be-
fore introducing slack and adapted refers to the adapted time window. The duration
of the service is denoted by durationactual.

dadapted = ractual − slack (5.3)

radapted = min(ractual, dactual − slack) (5.4)

durationadapted = durationactual +max(slack − size time window, 0) (5.5)

If the service starts at the start of the reduced time window, the adapted duration
ensures this corresponds to the action starting at the release date of the actual time
window. The disadvantage of this method is that if the time window is smaller
than the slack and the order is planned in its actual time window, then the service
also includes the slack duration. The result is that too much time is planned in for
the service of the order compared to the actual service duration. This may lead to
better on time performance, but also to underutilization of vehicles.

For example, we use 30 minutes time window slack for order o2 with a service
duration of 10 minutes and with time window [9:59 - 10:00]. This gives an adapted
time window of [9:30 - 9:30] and an adapted service duration of 10 + 30 − 1 = 39
minutes. If o2 is planned to start at 10:00 we still use the adapted service duration of
39 minutes giving an end time of 10:39, while the actual service ends at 10:10. The
reason we are always using the adapted service duration is that the POA framework
requires a �xed service duration and this cannot depend on the start time of the
service.

62

5.2.2 Travel time slack

In the previous section we have seen how to use time window slack in the optimiza-
tion algorithm. In this section we discuss travel time slack to overestimate travel
times. The idea of using travel time slack is that when making a transportation
plan we overestimate the travel times such that the orders have a higher reliability
of being serviced on time. We consider travel time slack using a �xed percentage
of the travel time (Section 5.2.2.1), travel time slack based on the standard devia-
tion of the travel time distribution (Section 5.2.2.2), and travel time slack based on
the Mean Absolute Deviation from the mean (MAD) of the travel time distribution
(Section 5.2.2.3).

5.2.2.1 Travel time slack using a �xed percentage

When using the �xed percentage approach, we overestimate the travel time using
the expected travel time. Given a percentage, with percentage ≥ 0, we calculate the
new travel time using the �xed percentage method with the following formula:

TravelT imefixedPercentage = ExpectedTravelT ime · (percentage
100

+ 1) (5.6)

This provides for every arc a travel time. We use the overestimated travel times
in the optimization algorithm as described in Section 5.1. After the optimization
algorithm has �nished, we evaluate the transportation plan using Sample Average
Approximation (SAA) where we do not use travel time slack.

5.2.2.2 Travel time slack based on Standard Deviation

In Sections 5.2.1 and 5.2.2.1 we have seen two approaches how to use slack which
is independent of the stochastic travel times. The approaches do not take into
account that for some arcs there is more variability in the travel times than for
other arcs. In this and the next approach the slack does depend on the stochastic
travel times.

When using travel time slack based on the standard deviation, we use the standard
deviation of the travel time distribution to calculate the slack for every arc. We use
the Sample Average Approximation method as explained in Section 5.3 to get a set
of N simulation worlds. Recall that Qp

i,j(q) is the quantile function of the travel time
de�ned in Section 4.2 which expresses that given a quantile q the travel time from
location i to location j in time period p is Qp

i,j(q). In Section 4.1.2 we introduced
the sampling method where qsi,j represents the sample for simulation world s ∈ S.
We calculate for every arc (i, j) the slack using the simulation worlds. We have
to select a time period to calculate the standard deviation. If we have probability
distribution which covers the full day, we can use this to calculate the slack. If the
travel times are time-dependent, we select the time period which has the highest
variability in travel times to calculate the standard deviation.

63

The expected travel time for arc (i, j) is denoted by ExpectedTravelT ime(i, j) and
the overestimated travel time for arc (i, j) by TravelT imestd(i, j). The standard
deviation tells a lot about the variability of the travel time, but adding this as slack
might be too much or not enough. Therefore, we introduce a factor fstd which we
use to scale the standard deviation. This factor is arc independent (i.e. we use
one factor for all arcs) and several alternatives are tested in Chapter 7. We use
the sample standard deviation, because the travel times are a sample of the full
population of travel times.

Q
p

i,j =
1

|S|
∑
s∈S

Qp
i,j(q

s
i,j) // average travel time on arc(i,j) (5.7)

σi,j =

√
1

|S| − 1

∑
s∈S

(
Qp

i,j(q
s
i,j)−Q

p

i,j

)2
(5.8)

TravelT imeStd(i, j) = ExpectedTravelT ime(i, j) + σi,j · fstd (5.9)

After the optimization algorithm has �nished, we evaluate the transportation plan
using Sample Average Approximation (SAA) where we do not use travel time slack.

5.2.2.3 Slack based on MAD

In the previous section we have seen how to use the standard deviation to overes-
timate travel times. Instead of using the standard deviation we also consider the
Mean Absolute Deviation from the mean (MAD) as proposed by Postek, Ben-Tal,
Den Hertog, and Melenberg (2015) in their research on Robust Optimization.

The calculation of the MAD is similar to the calculation of the standard deviation,
but instead of squaring the di�erences we take the absolute values for the di�erences
and we do not take the root:

Q
p

i,j =
1

|S|
∑
s∈S

Qp
i,j(q

s
i,j) // average travel time on arc (5.10)

MADi,j =
1

|S|
∑
s∈S

∣∣Qp
i,j(q

s
i,j)−Q

p

i,j

∣∣ (5.11)

TravelT imeMAD(i, j) = ExpectedTravelT ime(i, j) +MADi,j · fMAD (5.12)

After the optimization algorithm has �nished, we evaluate the transportation plan
using Sample Average Approximation (SAA) where we do not use travel time slack.

5.2.3 Travel time slack in combination with breaks

The idea of using travel time slack is that when making a transportation plan we
overestimate the travel times such that the orders have a higher reliability of being
serviced on time. What we expect when selecting a route and comparing the route
with and without slack, is that the route without slack will always be earlier or at

64

the same time at every customer location. Every arc in the overestimated route
has at least the same travel time as without using slack. However, when including
breaks it is no longer evident that the route with slack is always at least as late at
any location than the route without slack which we will discuss in this section.

In general a route is planned such that the driver arrives exactly on time at many
customer locations: waiting incurs costs so this should be prevented if possible. This
also applies to the route which is planned using travel time slack. The vehicle vslack
in the route with slack arrives mostly in the time window of the order such that no
waiting is needed before starting the service. When using the route without slack,
the travel times are shorter and the vehicle vnoSlack can arrive before the release date
of the order, in particular when the time windows are tight. This causes waiting
time for vehicle vnoSlack, while vehicle vslack was driving during that waiting time.
This waiting time is often less than 45 minutes, so no break can automatically be
planned in the waiting time, as this would delay the start of the next service.

Because we plan a break after 4:30 hours driving, vehicle vslack has its break earlier
on the day than vehicle vnoSlack. The result is that vehicle vnoSlack needs a break
later on the day after 4:30 hours driving. This can cause a delivery to be late for
vehicle vnoSlack while it was on time for vehicle vslack. This is not what one would
expect and can be solved by using the breaks from vehicle vslack also for vnoSlack.
This means that the vehicle takes a break earlier than required, but it prevents the
situation that a delivery is late while it was not when considering slack.

5.3 Sample Average Approximation

In Section 5.2 we have shown how to include slack in di�erent ways into the optimiza-
tion algorithm as described in Section 5.1. The resulting optimization algorithm is
working with �xed travel times and does not explicitly consider the stochastic travel
times. Verweij et al. (2003) discuss the Sample Average Approximation (SAA)
method which is an approach for solving stochastic optimization problems by us-
ing Monte Carlo simulation. Using this approach we generate a set of simulation
worlds which together approximate the travel time distributions. In Section 4.1.2
we showed how we sample in a smart way from the travel time distributions to gen-
erate simulation worlds. In this section we explain how to extend the optimization
algorithm described in Section 5.1 to solve the DTPP by explicitly taking stochas-
tic travel times into account. We �rst explain how to incorporate Sample Average
Approximation in the DAIPEX application (Section 5.3.1), after which we explain
how to include it in the optimization algorithm (Section 5.3.2).

5.3.1 Sample Average Approximation in the DAIPEX appli-
cation

To evaluate the quality of a transportation plan we use the Sample Average Approx-
imation (SAA) approach. We also refer to an optimization algorithm using SAA as

65

a travel time distribution optimizer, since it takes the distributions into account in
the optimization. For every order in every simulation world we have to evaluate if
the service starts on time. We maintain for every order on every route for every
simulation world a vector expressing the time logic. The time logic of an order gives
all details about the order related to time. The vector stores among others the start
time of the service, the break duration since the last break, the driving time since
last break, and the total driving time on the day. The vector is initialized for the
�rst order on the route. For every next order we can calculate the time logic vector
based on the vector of the previous order. The time logic calculation includes en-
forcing the release dates of the time windows, planning breaks (using Algorithm 2),
and maintaining the total driving time.

The time logic vectors can be used to calculate the service reliability for every order.
The time logic as calculated in the DAIPEX application should be equal to the time
logic in the optimization algorithm, which is explained next.

5.3.2 Sample Average Approximation in optimization algo-
rithm

We have seen the POA de�nition in Section 5.1.2.2.1. This includes a single ex-
pression to represent the time. In the solution approaches where we use �xed travel
times a single expression is enough to represent the time entity. However, when
using Sample Average Approximation (SAA) we have to maintain the time for every
simulation world. We introduce an expression Time_s for every simulation world
s ∈ S with the corresponding travel times. In Section 5.3.2.1 we explain how to
get the correct start times from the depot for every simulation world. We explain
in Section 5.3.2.2 how to evaluate the service reliability requirement for the DTPP
and in Section 5.3.2.3 we explain how to implement the driving limit reliability re-
quirement. We end in Section 5.3.2.4 with an explanation how to implement breaks
for time-dependent stochastic travel times.

5.3.2.1 Enforce start time from depot

In the POA framework nodes can be planned either as-soon-as-possible (ASAP) or
just-in-time (JIT). Planning nodes ASAP in combination with a variable start time
of the route from the depot has as result that there is much unwanted waiting which
incurs costs. Planning nodes JIT causes a di�erent problem as shown in Figure 5.1.
The vehicle departs from the depot at 6:30 when using the expected travel time to
exactly arrive at the release date of the �rst order C1. In the �rst simulation world
the route starts later than 6:30, because the travel time is less than the expected
travel time from the depot to the �rst location. In the second simulation world on
the other hand, the route starts before 6:30, because the travel time is larger than
the expected travel time. In these cases the driver had preliminary information on
the stochastic travel times, while this is not possible in practice.

66

8:00

Driving

Driving

Driving

Driving

C1

C1

C1

C1

6:300:00

Driving

Driving

Driving

Driving

C2

C2

C2

C2 Driving

Driving

Driving

Driving

Simulation 1

Simulation 2

Simulation 3

Expected
travel time

Figure 5.1: Planning nodes just-in-time in POA.

8:00

Driving

Driving

Driving

Driving

C1

C1

C1

C1

6:300:00

dummy

dummy

dummy

dummy

Driving

Driving

Driving

Driving

C2

C2

C2

C2 Driving

Driving

Driving

Driving
Expected

Simulation 1

Simulation 2

Simulation 3

travel time

Figure 5.2: Using dummy nodes in POA in combination with ASAP planning to
enforce correct start times from the depot in the simulation worlds.

We use dummy nodes in POA to enforce correct start times from the depot in the
simulation worlds. Figure 5.2 shows that these dummy nodes `block' the time until
the departure time from the depot using the expected travel time. The driving
nodes are planned ASAP, such that in the �rst simulation there is waiting time due
to shorter driving time and in the second simulation world the service of order C1

starts later.

5.3.2.2 Service reliability requirement

When using �xed travel times we enforce time windows of orders by using a hard
constraint for the release date of the time window and a soft constraint for the
due date with penalty costs according to Formula 5.1. If we are using SAA we
can use the simulation worlds to evaluate the service reliability of orders using the
Service Costs as de�ned in Section 3.4.3. The POA framework has a constraint
(MultiEndConstraint) which allows to express that the service reliability of each
order should meet at least a required lower bound: the service of an order should
start before the due date of the order in at least lowerbound · |S| simulation worlds
with 0 ≤ lowerbound ≤ 1, and S the set of simulation worlds. For order o the
violation and reliability are de�ned as follows. If the violation is positive, it can
be used in Formula 5.1 to calculate the penalty costs for the service reliability

67

requirement. If the violation is zero, the penalty costs are zero.

reliabilityo =
number of expressions on time

total number of expressions
(5.13)

violationo = max(lowerbound− reliability, 0) (5.14)

The release date of a time window is expressed using a hard constraint for every
time expression. When using Sample Average Approximation we still have the time
expression with the expected travel times, because we use the expected travel time
for the departure time from the depot. This can be improved as explained in Chap-
ter 6.

The POA framework has the EndConstraint and the InTimeConstraint. The for-
mer expresses that if there are multiple orders for the same location (a stop in
POA), then every order must be served on time, while the latter expresses that
only the �rst order of the stop should be served in time if the other orders follow
directly. The Logistics Planner optimization algorithm normally uses the InTime-
Constraint to evaluate lateness of orders. The POA constraint which we use to
express the service reliability requirement is the MultiEndConstraint, because there
is no MultiInTimeConstraint available in the POA framework. Therefore, we have
also changed this in the DAIPEX application to use the EndConstraint instead
of the default InTimeConstraint. Note that we advice Quintiq to implement the
MultiInTimeConstraint.

5.3.2.3 Driving limit

The optimization algorithm of Logistics Planner includes functionality for driving
regulations. We have already seen in Section 5.1.2.2.1 that we use the available
driving breaks. Next to driving breaks the DTPP has a driving limit which can be
modeled using night rests. But activating night rests while in fact drivers have a
maximum driving duration of 9 hours has a negative e�ect on the performance of
POA. For example, when the driving limit is violated with one minute, a night rest
of 11 hours is added. There is only little di�erence in costs between violating the
driving limit with 1 minute or with one hour, because the night rest of 11 hours is
dominant in the costs. It is better to have a gradual cost function where the amount
of violation is taken into account for the constraint costs. Therefore, we disabled
the night rests.

An alternative approach we have considered is using the EndPathConstraint, which
is normally used for maximum route duration. However, there are several problems
with this approach. First of all, breaks are included in the route duration, while the
driving regulations state that you can only drive 9 hours a day excluding breaks.
Secondly, the dummy nodes introduced in Section 5.3.2.1 give an increased route du-
ration while the dummy nodes do not belong to the driving time. Thirdly, the driving
limit reliability requirement requires an EndPathConstraint which can be evaluated
on multiple expression and this is not available in the POA framework.

68

To overcome the described problems, we have added an extra POA expression for the
driving time. This expression su�ces when using �xed travel times, because we can
use a POA constraint to enforce the driving limit (EndPathConstraint). If we are
using Sample Average Approximation, then the driving limit reliability requirement
should be expressed on the driving times of all simulation worlds. Therefore, we need
for every simulation world s ∈ S next to the introduced time expression Times, an
expression DrivingT imes for the driving time in simulation world s.

If we are using a single time period for the day, then the driving time expressions
are correct when they only contain the driving time. We can use the MultiEnd-
Constraint to express the driving limit reliability requirement. When we are using
time-dependent travel times, it is not enough to only have the driving time on the
expression, because the driving time depends on the time of breaks as we have seen
before. This means we have to add the full time logic including service durations
and time window constraints also on the driving time expressions. Directly apply-
ing the MultiEndConstraint is not possible due to the presence of service durations
and waiting times. We solve this by enabling the night rests on the driving time
expressions: using a calendar we can add a night rest of 2 days after reaching the
driving limit of 9 hours. Instead of comparing the amount of violation, we use the
MultiEndConstraint on the driving time expressions with an latest end of two days
such that all expressions which violate the driving limit and thus take longer than
two days are counted as a violated expression.

The large increase in number of expressions does have an in�uence on the perfor-
mance of POA, which we will show in Chapter 7.

5.3.2.4 Breaks for Sample Average Approximation

In this technical section we explain how to implement breaks in POA in the sim-
ulation worlds when using time-dependent travel times. For breaks using a single
time period we refer to Section 5.1.2.2.1 which should be applied for every simula-
tion world. Planning breaks for time-dependent travel times is more complicated
than breaks for a single time period as explained in Section 4.1.1. We have seen
that the exact start time of the break is required, otherwise the travel time can be
wrong.

In POA one can set a �ag WaitingResetsBreakCalendars which indicates that a
driver is allowed to rest during waiting in case the waiting time is at least the break
period. For this �ag to work the expression path of each route should have the
participation calendar be set.

Time-dependent travel times are set in POA using a transition calendar. One can
specify for each period of the day which travel times should be used. This transition
calendar is added to a combined calendar (adding the transition calendar to the
Dynamic Transition of an expression does not work because then the break calendar
is not aware of the transitions such that no breaks are planned) and the combined
calendar is set as the active transition calendar of the expression path of a route.
Setting this combined calendar also as the active participation calendar for this

69

expression path, which is required to plan breaks during waiting as explained in the
previous paragraph, is technically not possible because the combined calendar is not
de�ned on participation level.

This can be solved by de�ning two combined calendars: the �rst combined calendar
uses the transition calendar with the time-dependent travel times and the break
calendar for the driving breaks and is set as the active transition calendar of the
expression path of a route. The second combined calendar only uses the break
calendar for the driving breaks and is set as the active participation calendar. It is
important that one break calendar for the driving breaks is created and used in both
combined calendars, because otherwise the two break calendars will both schedule
breaks.

5.3.3 Virtual Stochastic Costs versus Virtual Expected Costs

In Section 3.4.4 we have introduced the Virtual Stochastic Costs. This objective
expresses the costs of the vehicle and the driver, but also the penalty costs incurred
by not meeting the service reliability requirement or driving limit reliability require-
ment. We use this objective to evaluate a transportation plan which is generated
when using �xed travel times or when using the Sample Average Approximation
in the optimization algorithm. In the latter case we can directly use the Virtual
Stochastic Costs in the optimization algorithm to evaluate the transportation plan
at intermediate steps.

We cannot use the Virtual Stochastic Costs when using �xed travel times at inter-
mediate steps, because we do not use the Sample Average Approximation approach
in this case. Therefore, we introduce the Virtual Expected Costs. This objective
uses the costs for the vehicle and the driver as in the Virtual Stochastic Costs, but
the penalty for constraint violations are calculated di�erently.

Instead of using the reliability requirements for the service and the driving limit, we
use constraints for �xed travel times.

5.3.3.1 Service costs �xed travel times

We check whether the start of the service according to the expected travel time
is before the due date of the order. Let E(So) be the start of the service of or-
der o according to the expected travel time. We de�ne the violation for order o as
violationo = max(do − E(So), 0).

ServiceCostsF ixedo =

{
0 if violationo = 0

flate · (violationo + volate)
plate if violationo > 0

(5.15)

where flate, volate and plate are equal factors for all orders.

70

We use the ServiceCostsF ixedo for order o to de�ne the total service for a route
using �xed travel times:

TotalServiceCostsF ixedRv =

|Rv |∑
i=1

ServiceCostsF ixedRv (5.16)

5.3.3.2 Driving limit costs �xed travel times

De�ne drivingR as the driving time in route R. Let DrivingLimit be the driv-
ing limit according to European Regulations and de�ne violR = max(drivingR −
DrivingLimit, 0) as the amount of driving time above the driving limit. The driving
limit costs are positive when there is a violation of the driving limit:

DrivingLimitCostsF ixedRv =

{
0 if violRv = 0

fdl · (violRv + vodl)
pdl if violRv > 0

(5.17)

where fdl, vodl and pdl are equal factors for all routes.

5.3.3.3 Virtual Expected Costs

We de�ne the Virtual Expected Costs as the sum of the costs for the vehicle plus
the constraint costs for the service and driving limit using �xed expected travel
times.

V irtual Expected Costs =
∑
v∈V

(CostsV ehicleRv + CostsDriverRv+

TotalServiceCostsF ixedRv+

DrivingLimitCostsF ixedRv) (5.18)

We use this objective in the optimization algorithms when working with �xed travel
times. When the algorithm is �nished, we evaluate the generated transportation
plan using the Virtual Stochastic Costs.

71

72

6

Start time calculation

In Section 3.2.1 we discussed the planning decisions which are needed to solve the
DAIPEX Transportation Planning Problem. We have seen that our optimizer de-
cides which orders should be transported by which vehicles and in which order the
orders should be serviced. Next to these two planning decisions, we also have to
decide on the start time of the route from the depot. Using the start time of the
route we have in�uence on the service reliabilities of the orders. Hypothesis 7 states
that using travel time distributions to calculate the departure time from the depot
can increase the service reliabilities of orders. If the �rst order has a service relia-
bility of 90% for a given departure time from the depot, while it requires 95%, we
can leave earlier from the depot to increase the service reliability. This does not
only apply to the �rst order of a route, but it can also apply to other orders in the
route. If the orders have time windows with a release date during the execution of
the route, then the departure time from the depot can have less in�uence on the
service reliabilities. The release date of these time windows results in waiting time
if a vehicles arrives before the release date. In this case departing earlier from the
depot cannot increase the service reliabilities much.

Lekkerkerker (2016) proposed three algorithms to optimize the departure time from
the depot. Their objective is twofold: the �rst objective is to service all customers
with a service reliability which is as close as possible to the service requirements
of the orders. Often there is a myriad of solutions which all have the same service
reliabilities for the orders. Therefore, Lekkerkerker de�ned a second objective to get
the lowest possible costs by leaving the depot as late as possible without decreasing
a service reliability of any order.

The �rst objective of Lekkerkerker is a convex function of the departure time of a
route: leaving the depot earlier can never decrease the service reliability of any of the
orders due to the FIFO property (explained in Section 4.1.1). Given a latest start
time of a route, the second objective is to minimize the costs. The second objective
is also a convex function of the departure time of the route: leaving earlier than
the given latest start time always increases the costs. The �rst algorithm proposed
by Lekkerkerker is a binary search on the optimum departure time from the depot.
This algorithm assumes that the objective function is convex. We will see that this

73

Departure time depot 5:00 6:40 6:50 7:04 7:10

Service reliability 76% 76% 75% 75% 73%
Virtual Stochastic Costs 1,789 1,716 1,720 1,709 1,731

Table 6.1: Virtual Stochastic Costs as function of the departure time

is not the case for the objective of the DTPP.

In Section 3.4 we de�ned the objective Virtual Stochastic Costs based on two parts:
the costs of the vehicle and driver, and the costs for violating a constraint. There
is a clear di�erence between the Virtual Stochastic Costs and the objective used
by Lekkerkerker. Lekkerkerker �rst requires the highest possible service reliability
at the expense of any costs of resources and only secondly the costs are minimized
without lowering the service reliability. Our objective Virtual Stochastic Costs is a
combination of the costs of resources and the constraint costs for not meeting the
service reliability requirements. The motivation is that meeting all service reliability
requirements should not be done at the expense of every costs.

Given a route, the Virtual Stochastic Costs is not convex in the departure time
from the depot. For a �xed service reliability the driver can depart earlier from the
depot, but departing earlier costs money due to an increase in waiting time (if there
are time windows) and does not gain anything on the service reliability. The driver
can depart even earlier in order to increase the service reliability of an order. The
service requirement violation can decrease more than the increase of the costs due
to more waiting time such that the Virtual Stochastic Costs decreases. Then the
same argument holds that departing earlier incurs waiting time and thus an increase
in costs while not gaining anything on the service reliability.

Table 6.1 shows an example route with di�erent departure times from the depot.
This table shows the Virtual Stochastic Costs of a route and the service reliability
of the 8th order on this route. We assume all other orders on this route satisfy
their service requirement. We see that leaving the depot at 5:00 gives a solution
with a service reliability of 76% and a Virtual Stochastic Costs of 1,789. Departing
at 6:40 gives the same service reliability of 76%, but the Virtual Stochastic Costs
decreases due to a shorter working time (there was waiting when departing at 5:00).
Departing even later at 6:50 gives 1% less service reliability and therefore the costs
increase to 1,720. The same service reliability of 75% can be obtained by departing
at 7:04 with a lower costs. Departing later causes a decrease of the service reliability
of 2% to 73% and an increase in costs again. This example con�rm that the Virtual
Stochastic Costs is not convex in the departure time from the depot.

The second approach discussed by Lekkerkerker (2016) is Mixed Integer Program-
ming (MIP). To get the optimum departure time, they model every simulation world
with decision variables in the MIP. Using 100 simulation worlds the MIP requires
35 seconds to get the optimal departure time from the depot for a route with 15
orders. When increasing the number of orders on a route to 21, the MIP is not able
to solve the problem to optimality within one minute. The optimization duration

74

Approach Advantage Disadvantage

Binary search using
service reliabilities

Flexible
� Wrong objective function
� Approximation

MIP Exact Slow

Backwards calculation - No driving regulations

Binary search using
Virtual Stochastic Costs

Flexible Approximation

Table 6.2: Overview of start time calculation methods

to solve the MIP �uctuates, but in general we can say that this MIP model is too
slow to solve this problem.

The third approach by Lekkerkerker uses backwards calculation. For an order we
can calculate for every simulation world at which time the vehicle should leave from
the depot to serve the customer on time. Using the service requirement of every
order we know in which simulation worlds we a�ord to be late, which gives us for
every order a departure time from the depot such that the service requirement is
exactly matched. This O(n2) algorithm calculates the minimum departure time for
the di�erent orders on a route. This approach works when using time-dependent
travel times, but not when we are concerned with driving regulations. We cannot
calculate the travel time backwards, because this depends on the time a break is
scheduled.

The �rst three rows in Table 6.2 show the advantages and disadvantages of the
approaches proposed by Lekkerkerker. This shows that the three approaches cannot
be used for the DTPP. We propose to use a binary search approach using the Virtual
Stochastic Costs to determine the best departure time from the depot. The reason
is that this is a �exible approach where we can include driving regulations. The
approach is an approximation due to the non-convexity of the Virtual Stochastic
Costs, but should give a departure time that results in a lower Virtual Stochastic
Costs compared to using expected travel times.

In the available time of this research it proved to not be feasible implement this, but
we believe that this approach can give good results. Therefore, we more research is
required for Hypothesis 7.

75

76

7

Computational study

This chapter presents the problem instances and experiments we have done to eval-
uate our proposed optimization algorithms. In Section 7.1 we present the di�erent
problem instances we have used in our experiments. Section 7.2 presents a set of
additional hypotheses which were not covered by the hypotheses in the Introduction
(Section 1.4). The experiments and the results are presented in Section 7.3.

7.1 Problem instances

To the best of our knowledge, there are no benchmarks for the DAIPEX Transporta-
tion Planning Problem or Vehicle Routing Problem with Stochastic Travel Times
based on data from transportation companies and real-life travel data. Therefore,
we have constructed a set of problem instances based on real-life data. We use
instance data from a transportation company, hereafter referred to as company V .
As discussed in Chapter 4, we use travel time data coming from data aggregation
algorithms as developed by the IE&IS group of Eindhoven University of Technology
which obtained travel time data from TomTom. We use 100 simulation worlds to
evaluate the results.

The instance data from company V is based on Friday 18 September 2015, which
was a regular day for transportation companies. On this day company V had to
transport 357 orders to 318 di�erent locations. We call this problem instance V-
357 . Based on V-357 we have constructed a couple of other problem instances with
di�erent properties.

V-357 The base instance has 357 orders for 318 locations and the time windows
are provided by company V . This instance has a service reliability requirement
of 95% and a driving limit reliability requirement of 95%.

V-357 tight-50 As discussed in Section 1.1 the delivery business is concerned with
time-boxed deliveries. There are time-boxes communicated by transportation
companies to their customers and time-boxes required by customers because
of unavailability outside of the time-boxes due to closed shops or closed city

77

centers. Therefore, we have constructed a problem instance were we have
tightened the time windows. Starting from problem instance V-357 we have
randomly selected 50% of the orders and tightened their time windows to
2 hours. When tightening a time window [ro, do] the new release date ro is a
random hour within the old time window. If the original time window is smaller
than the required two hours, we do not change the time window. Using this
approach 45% of the orders got a smaller time window, such that 50% of the
orders have a time window of at most two hours.

V-357 service Orders from customers have di�erent levels of importance. Some
customers have orders which they would like to receive or pickup somewhere
during the week, but they are indi�erent about the moment of service. Other
customers have orders which should not be received late under any circum-
stances because of economical or health reasons. Moreover, some time windows
are strict where service is not possible outside of the time window, for exam-
ple because of closed city centers or shops. Other time windows are �exible:
the customer prefers to be served within the time window, but accepts being
served outside the time window.

The importance of service within the time window can be de�ned in a contract
with the customer. A transportation company can for example have a default
service reliability requirement of 95%. If a customer agrees that a service
reliability requirement of 75% is su�cient for them, the company can o�er
their services at a lower price. The contrary is also possible: demanding a
service reliability requirement of 99% can be o�ered at a higher price.

Therefore, we constructed the V-357 service instance where 40% of the orders
have a service reliability requirement of 75%, 50% of the orders requires 95%
and the remaining 10% has a service reliability requirement of 99%. We use
the V-357 tight-50 as base instance, meaning that 50% of the orders have a
time window of 2 hours or less.

V-357 driving Violating the daily driving limit can have the consequence of being
�ned or getting a driving ban. There are various options when faced with
exceeding the driving limit:

� Continue driving and risk a �ne.

� Send out another driver. Potential problem is that the original driver is
still working, possibly exceeding the working limit.

� Eliminate some stops in order to be back at the depot before violating
the driving limit. Not delivering all orders incurs penalty costs.

� Switch to a two day route. This is possible if a sleeping cabin is present
in the truck.

Which of these options is best depends on the situation. What the options
have in common is that they all incur additional costs. Therefore, considering
this while making a transportation plan can save money. We have constructed
the V-357 driving instance which has an increased driving limit reliability

78

Test instance Time window
Service

requirement
Driving limit
requirement

V-357 Normal 95% 95%

V-357 tight-50
50% orders
2 hours

time window
95% 95%

V-357 service
50% orders
2 hours

time window

10% orders 99%
50% orders 95%
40% orders 75%

95%

V-357 driving
50% orders
2 hours

time window
95% 99%

Table 7.1: Problem instances

requirement of 99%. The instance is based on V-357 tight-50 , meaning that
50% of the orders have a time window of 2 hours.

The four problem instances used to evaluate our optimization algorithms are sum-
marized in Table 7.1.

The cost structure includes a cost per hour and a cost per distance. There are no
costs for resource usage, because they are included in the cost per hour and cost per
distance. The costs per hour and cost per distance are not reported in this thesis
because of con�dentiality reasons. The Total Costs, Virtual Stochastic Costs and
Virtual Expected Costs reported in this thesis are not the real costs, but a factor
has been applied because of con�dentiality reasons.

In our experiments we assume there is no limit on the number of transportation
resources we can use. Moreover, we assume we have a homogeneous �eet of trucks
and trailers. Every resource should make a single round trip: it is not allowed
to load or unload at the depot apart from the end of the route. If in the resulting
transportation plan the �rst resource �nishes before the second resource starts, these
routes can be executed by the same resource. This has the same costs, since we
assume there is �xed costs for resource usage.

We evaluate every solution using the Virtual Stochastic Costs as de�ned in Sec-
tion 3.4.4. We use the expected travel time to calculate the costs for the vehicle
and the driver and we use the Sample Average Approximation approach to calcu-
late the constraint costs. The reason is that we have seen that the costs using
expected travel times are close to the costs based on the Sample Average Approxi-
mation (SAA) approach, while it requires more computation time to use the SAA
approach. During the execution of the optimization algorithm multiple solution ap-
proaches use a di�erent cost function: the Virtual Expected Costs. The di�erence is
explained in Section 5.3.3.

79

7.2 Hypotheses

In Chapter 1 we have stated a set of hypotheses which we had before starting the
project. Next to these hypotheses we have de�ned new hypotheses while conducting
research.

Hypothesis 7 (Start time calculation)
Calculating departure times from the depot using expected travel times leads to or-
ders with unmet service reliability requirement. Using travel time distributions to
calculate the departure time can increase their service reliabilities.

Hypothesis 8 (Driving limit expected travel times)
Using the expected travel times results in many routes which violate the driving limit
when evaluating using Sample Average Approximation.

Hypothesis 9 (Driving limit Sample Average Approximation)
Doing Sample Average Approximation works better than using the expected travel
times to evaluate the driving limit.

Hypothesis 10 (Quick result)
When a plan is required within �ve minutes, using travel time slack performs better
than using the travel time distributions in the optimization algorithm.

7.3 Experiments and results

For each of the four problem instances we have a solution with lowest Virtual
Stochastic Costs. This has been found by running the travel time distribution
optimizer multiple times for a long time until the optimization algorithm has con-
verged every time. We can see the optimization algorithm has converged, because
for example for the V-357 instance in the last 3 hours no improvement has been
found. Manual inspection of the solution neither gives any improvement. This does
not mean the found solutions are the best possible solutions. The optimization al-
gorithm uses Large Neighborhood Search which means the solution can be a local
optimum. Nevertheless, we believe our best known solutions have a good Virtual
Stochastic Costs, because of repeatedly �nding solutions which are close to this best
solution.

We use the terminology unreliable order and unreliable route in this chapter. An
unreliable order refers to an order which does not satisfy the service reliability re-
quirement. An unreliable route refers to a route which does not satisfy the driving
limit reliability requirement.

Typically most information on orders is available at the evening of the day before the
execution. The time available to generate a good transportation plan for company
V is 60 minutes. Moreover, we use 60 minutes to get a fair comparison between the
di�erent solution approaches as discussed in Section 7.3.10.

80

The performed experiments are done using two di�erent types of virtual machine
from Quintiq. The �rst type is an Intel(R) Xeon(R) CPU E5-2660 v3 @2.60 GHz
and 64GB RAM. The second type is an Intel(R) Xeon(R) CPU E5-2650 @ 2.00 GHz
and 32GB RAM. There is a di�erence in hardware which we should compensate for
by changing the allowed runtime. We have done equal experiments on both machines
and compared the number of iterations. This showed that using the 64GB machine
we could do 87% more iterations in an equal amount of time. Therefore, all results
reported on in this chapter are based on 60 minutes runtime on the 64GB machine
or an equivalent of 60 · 1.87 = 112 minutes on the 32GB machine.

The optimization algorithm used for the experiments is a random algorithm. There-
fore, we have repeated a selected number of experiments multiple times to exclude
the possibility of �nding a result much better than the average. Time did not allow
us to repeat every experiment multiple times, but comparing the results from di�er-
ent settings we can see that we cannot expect to get much better results with most
settings. When performing experiments with multiple settings for the same solution
approach we have �rst done a single run for every setting. We have repeated the
three settings which give best results based on the single run three times. For every
experiment we indicate if this is the result of a single run or the average of multiple
runs. If this is the result of multiple runs, we report on average values which means
we can expect rational numbers for routes and orders. We refer to Appendix B for
detailed results for the di�erent experiments.

The experiments reported on in this chapter are conducted using a single time
period. Using multiple time periods signi�cantly decreases the performance of the
optimization algorithm. We have selected the time period with the largest variance
in the travel times, which is the morning rush, to use for the full day because this is
the most di�cult time period. The solution obtained by solving the DTPP for the
time period with the largest variance can also be used for the other time periods
which have less variance in the travel times.

7.3.1 Using expected travel time

Hypothesis 1 states that using expected travel times when calculating a transporta-
tion plan gives bad plans in terms of service reliability. Table 7.2 shows the number
of unreliable orders and the largest service reliability requirement violation for the
four problem instances using the expected travel time. V-357 has the normal time
windows while for the other three problem instances at least 50% of the orders have
tightened time windows. We see that 23% of the 357 orders in the V-357 problem
instance are not serviced with their required service reliability requirement. This
increasing to 30% to 39% for the other three problem instances which have tighter
time windows. Table 7.2 also shows that the largest violation of the service relia-
bility requirement is to 0.64, which means this order is serviced with a reliability of
0.95− 0.64 = 0.31.

The bad plans are re�ected by the Virtual Stochastic Costs as shown in Table 7.2.
The optimization algorithm does not take the service reliability requirement into

81

Problem
instance

Virtual Stochastic Costs #unreliable
orders

Largest violation
unreliable order

0 ≤ viol. ≤ 1Exp. Best ∆

V-357 37,462 12,896 190% 83 (23%) 0.44
V-357 tight-50 56,822 17,211 230% 134 (38%) 0.55
V-357 service 46,896 16,575 183% 106 (30%) 0.52
V-357 driving 59,704 21,674 175% 140 (39%) 0.64

Table 7.2: Using the expected travel time (shown in column Exp.) gives bad plans
with many unreliable orders. The results are averages of three 1-hour runs. ∆
gives how much worse the plan gets when using the expected travel time. The

percentage for the #unreliable orders shows which percentage of the 357 orders are
unreliable.

account which explains the high number of unreliable orders and supports Hypoth-
esis 1.

7.3.2 Time window slack

Figure 7.1 shows the Virtual Stochastic Costs when increasing the time window slack
for the four problem instances, as discussed in Section 5.2.1. There is a clear di�er-
ence between the V-357 problem instance and the three other problem instances.
For V-357 we can add time window slack to decrease the Virtual Stochastic Costs,
but using more than 90 minutes time window slack does not gain much for the Vir-
tual Stochastic Costs. We can see in Table B.2 that using more than 90 minutes time
window slack gives solutions in which the number of unreliable orders decreases, but
at the additional costs of more distance due to using more routes. For the problem
instances V-357 tight-50 , V-357 service and V-357 driving using 120 minutes time
window slack gives the lowest Virtual Stochastic Costs. Adding more has the op-
posite e�ect: the solutions get worse scores. The reason for this is that the V-357
problem instance does not have tight time windows while the other three have tight
time windows. When arriving too early add a customer the driver has to wait and
this waiting increases when adding more time window slack.

The solutions found with the best setting for time window slack are respectively
50%, 63%, 68%, and 60% worse than the best known result as shown in Tables B.2,
B.5, B.8, and B.11.

7.3.3 Travel time slack using �xed percentage

Figure 7.2 presents the results when overestimating travel times using a �xed per-
centage. We see that the Virtual Stochastic Costs decrease as the �xed percentage
increases. This only holds up to a certain amount of slack after which the addi-
tional costs for driving no longer outweighs the increased number of orders which

82

30 60 90 120 150 180 210
10,000

20,000

30,000

40,000

Slack (minutes)

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

V-357
V-357 tight-50
V-357 service
V-357 driving

Figure 7.1: Time window slack in minutes. The dotted lines show the best known
solution.

meet their service reliability requirement. The percentage to use for the travel time
slack to minimize the Virtual Stochastic Costs is around 70%. We can see that
the solutions obtained with overestimating the travel times using 90% have scores
similar to the ones using 70%. The exact amount of slack depends on the problem
instance and should be determined more accurately when applying this technique
in practice. Finding the right amount of slack is di�cult, because using too much
slack generates transportation plan which uses many resources while reserving too
little slack causes many unmet service reliabilities.

The best setting for travel time slack with a �xed percentage gives solutions of 26%,
27%, 35% and 23% worse results than the best known solutions as can be seen in
Tables B.3, B.6, B.9, and B.12 in Appendix B. However, travel time slack using a
�xed percentage gives 50% better results than using the expected travel time as can
be seen in Figure 7.5.

Hypothesis 3 states that overestimating travel times using a �xed percentage re-
sults in either many unmet service reliability requirements or an ine�cient use of
resources. We see in Tables B.3, B.6, B.9, and B.12 in Appendix B that overes-
timating the travel times indeed results in using more resources and that to get a
comparable number of unreliable orders more resources are needed than the best
known solution.

7.3.4 Travel time slack based on Standard Deviation

Figure 7.3 shows the results of using travel time slack based on the standard de-
viation. As explained in Section 5.2 we overestimate the travel time on an arc by
adding slack. We �nd the amount of slack by multiplying the standard deviation
of the travel times in the simulation worlds with a factor. Preliminary tests have

83

10 30 50 70 90 110 130
10,000

20,000

30,000

40,000

Slack as �xed percentage of travel time (%)

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

V-357
V-357 tight-50
V-357 service
V-357 driving

Figure 7.2: Travel time slack as a �xed percentage of the travel time. The dotted
lines show the best known solution.

shown that the factor should be in the range of 0.5 to 5.5, which is also supported
by the results.

We see that using travel time slack based on standard deviation can give much
better results than using the expected travel time. We �rst conducted experiments
using a factor from 0.5 to 5.5 with steps of 1.0. Figure 7.3 shows there is a large
improvement when using 1.5 instead of 0.5 as factor for the travel time slack based
on standard deviation. Therefore, we included an extra experiment with a factor
of 1.0. For problem instance V-357 the Virtual Stochastic Costs is almost equal
compared to using a factor of 1.5 (0.2% di�erence which can be contributed to
randomness). For the other three instances the Virtual Stochastic Costs gets worse
when decreasing the factor to 1.0. For this reason, a factor of 1.5 should be used for
the travel time slack based on standard deviation which is independent of our four
problem instance. Adding more slack quickly gives worse results on all four problem
instances.

Using a factor of 1.5 for the slack based on standard deviation gives respectively 18%,
17%, 21% and 17% worse results than the best known solution. Hypothesis 4, which
states that overestimating the travel time based on standard deviation of travel times
works better than adding a �xed percentage to the travel time, is supported.

Table B.3 in Appendix B shows the additional results of the experiments with travel
time slack based on standard deviation. While using the expected travel times gives
a transportation plan with 83 unreliable orders, this decreases to 39 when using a
factor of 0.5, to 9 when using 1.0 and 3.7 when using 1.5. We can even generate a
transportation plan where all orders are served with the service reliability require-
ment: using a factor of at least 2.5 for the travel time slack based on standard
deviation gives plans in which no order is unreliable. This is at the expense of in-
creasing costs. The best solution without any unreliable order has Virtual Stochastic
Costs of 16,646, while the best known solution has a score of 12,896 but with one

84

0.5 1 1.5 2.5 3.5 4.5 5.5

15,000

20,000

25,000

30,000

35,000

Factor

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

V-357
V-357 tight-50
V-357 service
V-357 driving

Figure 7.3: Travel time slack based on standard deviation. The dotted lines show
the best known solution.

unreliable order. This shows that the optimization algorithm does not only focus on
the number of unreliable orders, but rather compares solutions based on the Virtual
Stochastic Costs. One can use di�erent parameters to change the weight of service
reliability requirement. This optimization algorithm can thus give solutions with
di�erent trade-o� between costs and service reliabilities.

Related to the standard deviation is the variance: variance = σ2. One might ask
why we have not tested using travel time slack based on the variance. The �rst
reason is that the variance is in a di�erent order of magnitude than the standard
deviation, and the standard deviation is in the same magnitude as travel times. The
second reason is the size of the variance. If the standard deviation of the travel
time on an arc is less than 1.0, then the variance is even smaller due to the square.
Using the travel times in hours gives a standard deviation which is often less than
1.0, resulting in a small variance. We could have done the computation for the
variance in minutes to account for this, but then we are still faced with the problem
of a di�erent order of magnitude. Therefore, we have not included results on using
travel time slack based on the variance.

7.3.5 Travel time slack based on MAD

Solutions obtained with overestimating travel times based on MAD have lower Vir-
tual Stochastic Costs than when using the expected travel time, as can be seen in
Tables 7.3, 7.4, 7.5, and 7.6. Figure 7.4 show the results of using travel time slack
based on MAD for the four problem instances. While for the travel time slack based
on standard deviation the Virtual Stochastic Costs quickly increases when adding
too much slack, this is not the case when using the MAD. This is a strong point in
favor of using travel time slack based on MAD. This optimization algorithm is less
sensitive for the factor and therefore more likely to do well on a range of problem

85

0.5 1.5 2.5 3.5 4.5 5.5

20,000

30,000

40,000

Factor

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

V-357
V-357 tight-50
V-357 service
V-357 driving

Figure 7.4: Travel time slack based on Mean Absolute Deviation from the mean
(MAD). The dotted lines show the best known solution.

instances.

We see that using a factor of 2.5 for the MAD based slack gives the best results,
but when using a factor of 1.5 or 3.5 the di�erence in Virtual Stochastic Costs is
relatively small.

Hypothesis 5 states that building in slack by overestimating the travel times based
on the Mean Absolute Deviation from the Mean (MAD) works better than adding
a �xed percentage to the travel time. Using travel time slack based on MAD gives
solutions which are respectively 17%, 19%, 23%, and 15% worse than the best known
results. For every problem instance this is better than using a �xed percentage for
the travel time slack, which supports Hypothesis 5.

Similar as when using travel time slack based on standard deviation, we can also
obtain transportation plans without unreliable orders by increasing the factor for
the MAD. This is again at the expense of more routes and thus a higher costs and
more distance, giving a higher Virtual Stochastic Costs.

7.3.6 Sample Average Approximation

Hypothesis 6 states that using Sample Average Approximation (SAA) works best in
terms of quality, but takes more time and requires much more data of much higher
quality. The latter part is supported by Chapter 4 where we have explained which
data is needed for the SAA approach. Section 7.3.10 discusses that doing SAA takes
more time than using deterministic travel times. This section shows that the SAA
approach works best in terms of quality.

Figure 7.5 shows the result of all solution approaches to the four problem instances
where the best parameter setting is used for the di�erent types of slack. The best
known solutions are obtained repeatedly running the optimization algorithm using

86

V-357 V-357 tight-50 V-357 service V-357 driving

20,000

40,000

60,000
V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

Expected travel time Time window slack
Travel time slack using �xed percentage Travel time slack based on Std
Travel time slack based on MAD Sample Average Approximation

Figure 7.5: Comparison of all solution approaches with for every solution approach
the best parameter setting. Horizontal lines show best known solutions.

Sample Average Approximation for a long period. We can see that using Sample
Average Approximation performs best of the di�erent solution approaches for the
four problem instances.

Tables 7.3, 7.4, 7.5 and 7.6 show the Virtual Stochastic Cost for all solution ap-
proaches using the best parameter setting for the problem instances V-357 , V-357
tight-50 , V-357 service and V-357 driving . We can see that for problem instances
V-357 and V-357 driving the Sample Average Approximation gives solutions which
are only 3% worse than the best known solution. For problem instances V-357 tight-
50 and V-357 service the solutions are respectively 4 and 8% away from the best
known solution.

7.3.7 Comparison solution approaches

We have seen in Section 7.3.1 that using expected travel times gives bad plans
in terms of service reliability requirements. When using time window slack the
solutions are better than the solutions obtained with expected travel times, but
they are still around 50% worse than the best known solutions. Therefore, we
focus our comparison on the remaining solution approaches: using di�erent types
of travel time slack and using Sample Average Approximation in the optimization
algorithm.

Figure 7.6 shows the four solution approaches with the best results together with
the best known solution, �ltered from Figure 7.5 to get a better comparison of
the approaches. We see that using travel time slack with a �xed percentage obtains

87

V-357 V-357 tight-50 V-357 service V-357 driving

15,000

20,000

25,000

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

Travel time slack using �xed percentage Travel time slack based on Std
Travel time slack based on MAD Sample Average Approximation

Figure 7.6: Comparison of best four solution approaches (excluding expected travel
time and time window slack) with for every solution approach the best parameter

setting.

worse results on the four problem instances than the other three solution approaches.
There is not much di�erence between using travel time slack based on standard de-
viation or based on MAD when one compare the best results. For V-357 tight-50
and V-357 service MAD performs slightly better while for V-357 driving using the
standard deviation gives slightly better results. Using travel time slack based on
MAD is more robust with relation to the chosen factor. Doing Sample Average Ap-
proximation gives clearly the best results on all four problem instances. How much
the solution is away from the best known solution depends on the problem instance.
As said, while this is only 3% for V-357 and V-357 driving , it is respectively 4%
and 8% away for V-357 tight-50 and V-357 service.

Hypothesis 2 states that using travel time slack works better than using time window
slack. The results in Tables 7.3, 7.4, 7.5, and 7.6 indeed show that all thee types of
travel time slack work better than using time window slack.

7.3.8 Driving limit

Hypothesis 8 states that using expected travel times results in many routes which
violate the driving limit reliability requirement and Hypothesis 9 states that doing
Sample Average Approximations works better than using expected travel times. We
discuss these hypotheses in the next sections.

Comparing the number of unreliable routes does not give us all relevant information
if driving limit violations get solved when using slack. The reason is that we can have
two transportation plans with the size of the violations very di�erent. For example,

88

V-357

Solution approach Virtual Stochastic Costs ∆

Expected travel time 37,462 190%
Time window slack: 180 min. 19,309 50%
Travel time slack �xed percentage: 70% 16,312 26%
Travel time slack Std * 1.0 15,245 18%
Travel time slack MAD * 2.5 15,041 17%
Sample Average Approximation 13,291 3%
Best known solution 12,896 0%

Table 7.3: Best setting for each solution approach for problem instance V-357 .

V-357 tight-50

Solution approach Virtual Stochastic Costs ∆

Expected travel time 56,822 230%
Time window slack: 120 min. 28,117 63%
Travel time slack �xed percentage: 90% 21,866 27%
Travel time slack Std * 1.5 20,110 17%
Travel time slack MAD * 2.5 20,504 19%
Sample Average Approximation 17,977 4%
Best known solution 17,211 0%

Table 7.4: Best setting for each solution approach for
problem instance V-357 tight-50

V-357 service

Solution approach Virtual Stochastic Costs ∆

Expected travel time 46,896 183%
Time window slack: 120 min. 27,798 68%
Travel time slack �xed percentage: 70% 22,454 35%
Travel time slack Std * 1.5 19,223 16%
Travel time slack MAD * 2.5 20,449 23%
Sample Average Approximation 17,893 8%
Best known solution 16,575 0%

Table 7.5: Best setting for each solution approach for
problem instance V-357 service

89

V-357 driving

Solution approach Virtual Stochastic Costs ∆

Expected travel time 59,704 175%
Time window slack: 120 min. 34,610 60%
Travel time slack �xed percentage: 70% 26,643 23%
Travel time slack Std * 1.5 25,417 17%
Travel time slack MAD * 2.5 24,942 15%
Sample Average Approximation 22,231 3%
Best known solution 21,674 0%

Table 7.6: Best setting for each solution approach for
problem instance V-357 driving

the �rst plan has 10 unreliable routes and every unreliable route has a violation of
0.1, giving a sum of violation of 1. The second plan also has 10 unreliable routes,
but these unreliable routes all have a violation of 0.3, giving a sum of violation of 3.
The �rst plan is clearly better in terms of the driving limit reliability requirement.
Therefore, we compare the sum of the violations of the unreliable routes.

7.3.8.1 Expected travel time

In Table B.1 in Appendix B we indeed see that 9 out of the 22.3 routes do not satisfy
the driving limit reliability requirement (there are 22.3 routes, because we report
the average of three runs).

We look more closely to one of the three transportation plans which has 9 unreliable
routes out of the 23 routes. In this transportation plan there are two routes with
a driving time of respectively 8:55 hours and 8:58 hours. Only a small disturbance
in the travel time compared to the expected travel time results in a violation of the
9-hour driving limit. The two routes have a driving limit reliability of respectively
0.75 and 0.60, which means they have a violation of 0.20 and 0.35. Next to these
two long routes, there are �ve routes with expected driving duration of between 8:10
hours and 8:30 hours. These routes have varying driving limit reliabilities of 0.70 to
0.87, but they all have a violation. The sum of all driving limit violations is 1.26.
This supports Hypothesis 8 that using expected travel times results in many routes
which violate the driving limit reliability requirement.

7.3.8.2 Using slack

We showed in Section 5.2.1 that we use an adapted driving limit when using time
window slack. In the left �gure in Figure 7.7 we see that using time window slack
the sum of violations decreases when increasing the slack. This gives a reduction
from 1.26 for no time window slack to 0.58 when using 60 minutes time window
slack. Increasing the amount of slack does not decrease the sum of violations much.

90

0 30 90 150 210
0.2

0.4

0.8

1.2

Time window slack (min)

Su
m

vi
ol
at
io
ns

0.5 2.5 4.5
0.2

0.4

0.8

1.2

Factor for MAD

Su
m

vi
ol
at
io
ns

Figure 7.7: Sum of driving limit violations for V-357 using time window slack and
travel time slack based on MAD. The dotted lines show th sum of violations for

the best known solution.

This shows that time window slack is not no good solution to meet the driving limit
requirements.

We show in the right �gure in Figure 7.7 how travel time slack performs with relation
to the driving limit reliability. We see that this gives better results than using time
window slack. The sum of violations decreases when increasing the factor for the
travel time slack. The number of unreliable routes decreases from 9 when using
expected travel times to 4 when using travel time slack based on MAD with a factor
of 4.5. Increasing the factor more could decrease the sum of violations, but more
experiments should con�rm this. This can be explained, because using a higher
factor results in longer travel times such that less orders are placed on a route. We
then more likely satisfy the driving limit reliability requirement.

7.3.8.3 Sample Average Approximation

Hypothesis 9 states that doing Sample Average Approximation (SAA) works better
than using the expected travel time to evaluate the driving limit. In the previous
section we have already seen that using slack can only partly alleviate the driving
limit violations when using the expected travel time.

When doing SAA the number of unreliable routes is reduced to two and they have
0.18 violation together. Both the number of routes as the sum of the violation is
lower than using expected travel times or using slack. It is an improvement of 86%
on the sum of the violations, which we have used to compare the transportation
plans.

In the transportation plan obtained with SAA, the two routes with the violation have
an expected driving time of 7:51 and 8:22 hours and we see that all other routes
have an expected travel time of at most 7:30 hours. We see that those two routes
visit customers far from the depot. Ensuring the driving limit requirement is met,
can be done by using an extra route. Distributing the orders over the two routes is

91

in general not a good idea: although we do not have a cost for resource usage, this
vehicle has to drive far incurring high costs. This means that if there are multiple
orders which are far from the depot, but those orders are together, then using a
single route for all orders thereby likely violating the driving limit requirement can
be the best solution. If transportation companies belief di�erently, then the costs
for violating the driving limit reliability should be increased.

7.3.9 Lowered reliability costs

In the previous experiments we have always assumed the goal was to satisfy all
service reliability requirements and driving limit reliability requirements. We have
seen the costs are higher when satisfying the reliability requirements compared to
using expected travel times where there are many violations. We can also decide to
make the reliability less important and focusing more to get a short total distance
and low total costs.

We can do this by changing the factor in the penalty cost function as de�ned in
Section 3.4. We have a factor fs for the service reliability requirement and a factor fdl
for the driving limit reliability requirement. They have default values of respectively
200 and 400. In the experiments in this section we use a factor of 50 for the driving
limit and we vary the factor for the service requirement.

Table 7.7 shows the experiments with changed factors for the service requirement.
We see that lowering the factor for the service reliability, gives transportation plans
with increasing number of unreliable orders. More unreliable orders allows to de-
crease the costs and the distance, as can be seen in the table. We see that using
a factor lower than 2 gives solutions with very similar costs, while the number of
unreliable orders di�ers much (from 47 to 81). This means constraint costs for the
service reliability requirement is very low compared to the costs of the transportation
plan.

7.3.10 Convergence of optimization algorithms

The optimization algorithms used in this research are based on Large Neighbor-
hood Search (LNS). These algorithms are based on randomness and on doing many
iterations. After doing a certain amount of iterations, the LNS is in a local (or
global) optimum. Continuing the search does not much gain in this case; only lit-
tle improvements will be found when doing many iterations. Before arriving in a
local optimum, most iterations give an improvement. Therefore, we should verify if
the optimization algorithm has converged, because otherwise we could get a better
solution by running the optimization for a longer period.

Figure 7.8 shows the objective value during the search for two optimization runs. In
Figure 7.8a we used travel time slack based on standard deviation. We should verify
the convergence using the Virtual Expected Costs, because that is the objective
which is used in the optimization algorithm. After 9 minutes we obtained a solution

92

#R Costs Dist.
#unrel.
orders

Largest
violat.
unrel.
order

#unrel.
routes

Largest
violat.
unrel.
route

Sum
violat.
unrel.
routes

Service
reliability
factor fs

30 11,365 7,320 1 0.29 2 0.09 0.18 fs = 200

28 10,700 6,720 5 0.29 4 0.1 0.33 fs = 20
28 10,590 6,495 21 0.95 4 0.21 0.53 fs = 10
28 10,412 6,336 31 0.95 5 0.19 0.67 fs = 5
24 9,715 5,806 47 0.95 5 0.21 0.7 fs = 2
24 9,714 5,757 61 0.95 6 0.15 0.54 fs = 1
26 9,726 5,821 81 0.95 6 0.37 1.07 fs = 0.5

Table 7.7: Problem instance V-357 using lowered service reliability costs. Factor
fdl for the driving limit reliability requirement is 50. Sample Average

Approximation approach is used.

with score within 1% of the �nal solution and we see that there is hardly any
improvement after 20 minutes. For these reasons, we can conclude the optimization
algorithm has converged. This not only applies when using travel time slack with
standard deviation, but in general when using deterministic travel times.

It is a di�erent story when doing Sample Average Approximation (SAA). We ver-
ify the convergence using the Virtual Stochastic Costs in this case. We can see in
Figure 7.8b that even after 50 minutes the optimization algorithm still �nds im-
provements. To get a fair comparison, we have limited the optimization duration
to 60 minutes, but increasing the optimization duration should allow to �nd more
improvements when doing SAA. We have already made improvements to the LNS
to converge faster, but we believe there is still room for improvement.

We have a potential improvement which is not yet supported by POA. POA ini-
tializes the subproblem at the start of every iteration. This takes a signi�cant part
of the optimization duration due to the initialization of the simulation words. The
travel times in these simulation worlds do not change, so initializing this once at the
start of the optimization and then reusing them at every iteration can improve the
speed of the optimizers up to 20% we believe.

Hypothesis 6 states among others that Sample Average Approximation takes more
time. Looking to the convergence results of the two optimization algorithms, we
conclude that the hypothesis is supported.

7.3.11 Limited number of resources

In the previous sections we assumed that the number of vehicles is unlimited. One
consequence is that the number of vehicles used in a transportation plan can be high,
in particular when using much slack. Table B.1 in Appendix B shows that when

93

0 1,000 2,000 3,000

17,000

17,500

18,000

Time (sec.)

V
ir
tu
al
E
xp
ec
te
d
C
os
ts

(a) Using travel time slack based on

standard deviation with factor 1.5

0 1,000 2,000 3,000

13,000

14,000

15,000

Time (sec.)

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

(b) Using Sample Average

Approximation

Figure 7.8: Convergence of two optimization algorithms on V-357 .

using expected travel times we obtain a transportation plan with 22.3 routes. The
best known solution obtained using Sample Average Approximation uses 30 routes
and is 190% better than the solution obtained using expected travel times.

If we limit the number of resources when using Sample Average Approximation
(SAA), we should still be able to �nd a solution at least as good as the solution
from the expected travel times. Exactly this solution is still valid for the SAA,
but we are interested if it can also be found. Therefore, we have done several
experiments on V-357 using SAA with limited number of routes. While conducting
the experiments we have seen that 60 minutes optimization duration is not enough
when limiting the number of routes. To make sure the optimization algorithm is
�nished, we have used 8 hours for these runs.

Figure 7.9 shows the Virtual Stochastic Costs when the number of routes is lim-
ited on problem instance V-357 using the SAA. We have also included the Virtual
Stochastic Costs when using expected travel times. We see that using 19 routes is
not enough: the Virtual Stochastic Costs is very high due to 47 unreliable orders
and 8 unreliable routes. Increasing the number of available routes decreases the Vir-
tual Stochastic Costs, but only up to 29 routes because then the objective remains
equal.

The solution from the expected travel time uses 22 or 23 routes. We selected the
solution with 23 routes and conducted an experiment using Sample Average Ap-
proximation with 23 routes resources available. Table 7.8 shows the results of using
expected travel times and using Sample Average Approximation with 23. We see
that a better solution is obtained using SAA compared to using expected travel
times in terms of Virtual Stochastic Costs. We see we can decrease the number of
unreliable orders from 83 to 12, but at the expend of increasing costs.

This shows that even if a transportation cannot a�ord to buy an additional resource,
using the existing resources we can still generate better transportation plans than
using expected travel times. Increasing the number of resources allows to gain even

94

Exp 19 21 23 25 27 29 31 33

10,000

20,000

30,000

40,000

So
m
e
la
b
el

Number of routes available

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

Figure 7.9: Limited number of routes using Sample Average Approximation on
V-357 and using expected travel times on unlimited number of routes.

Solution
approach

#R
Virtual

Stochastic
Costs

Costs Dist.
#unrel.
orders

#unrel.
routes

Sum
violat.
unrel.
routes

Expected
travel times

23 35,432 9,733 5,856 83 9 1.26

Sample Average
Approximation
23 routes

23 28,116 10,645 6,571 12 6 1.44

Table 7.8: Sample Average Approximation using 23 routes, because solution
expected travel times uses 23 routes.

more in Virtual Stochastic Costs and transportation companies can make a trade-o�
between these two.

7.3.12 Quick result

Hypothesis 6 states that doing Sample Average Approximation takes more time than
using time window slack or travel time slack. This is formalized in Hypothesis 10
by stating that if a transportation plan is required within 5 minutes, then travel
time slack outperforms Sample Average Approximation. We tested the hypothesis
on problem instance V-357 using a 5 minute optimization duration.

Figure 7.10 provides support for Hypothesis 10 which gives averages for three exper-
iments. Although doing Sample Average Approximation performs better than using
expected travel times, it performs much worse compared to using slack. Using time

95

V-357
10,000

15,000

20,000

25,000

30,000

35,000

V
ir
tu
al
St
oc
ha
st
ic
C
os
ts

Expected travel time Time window slack 180 min.
Travel time slack using �xed percentage 70% Travel time slack using Std·1.0
Travel time slack using MAD·2.5 Sample Average Approximation
Best known

Figure 7.10: Results after 5 minutes optimization for problem instance V-357
using three runs.

window slack, which performs badly when enough optimization time is available,
now performs better than using Sample Average Approximation. Using travel time
slack performs even better than using time window slack and which type of travel
time slack does not matter much.

Looking to the individual results from every solution approach shows large variety.
For example, the three experiments when doing Sample Average Approximation
give Virtual Stochastic Costs of 24,896, 18,735, and 25,672. This shows that the
optimizer is far from converged after 5 minutes.

What we also see is that a transportation plan can become worse when increasing
the optimization duration when using slack. The reason is that when using slack, the
optimizer uses the Virtual Expected Costs to evaluate intermediate solutions. This
objective does not include the service reliabilities nor the driving limit reliabilities.
As a result, the optimizer might change the transportation plan such that orders
are served more closely towards the due date of its time windows. When evaluating
using the Virtual Expected Costs it does not make a di�erence if the order is served
1 minute or 1 hour before the due date of the time window, but this matters much
for the Virtual Stochastic Costs. As a result, it can happen that the best solution
obtained when using slack is not the �nal solution and therefore, we do not report
on this.

96

Hypothesis Con�rmed
More research

required

Hypothesis 1 o
Hypothesis 2 o
Hypothesis 3 o
Hypothesis 4 o
Hypothesis 5 o
Hypothesis 6 o
Hypothesis 7 o
Hypothesis 8 o
Hypothesis 9 o
Hypothesis 10 o

Table 7.9: Overview which hypotheses are con�rmed, which ones are refuted and
which require more research.

7.4 Conclusions

We have seen that using expected travel times gives bad transportation plans in
terms of service reliabilities and driving limit reliabilities Using time window slack
improves the transportation plans a lot, but is still around 70% worse than the best
known solutions. Better solutions can be obtained using travel time slack.

We have seen that using travel time slack with a �xed percentage allows to obtain
transportation plans which are better than those obtained using time window slack.
However, these transportation plans are still around 30% worse than the best known
solutions. This can be improved by using travel time slack based on the variance
of the travel times. Using the standard deviation or the mean absolute deviation
from the mean (MAD) allows to obtain better transportation plans. Depending on
the problem instance this can be 20% worse than the best known solution. While
using the standard deviation is very sensitive, using the MAD is less sensitive for
the factor to scale the slack and thus more likely to do well on a range of problem
instances.

The best transportation plans are obtained when using travel time distributions in
the optimization algorithm. We have shown that using Sample Average Approxi-
mation allows to obtain transportation plans which are 3 to 8% worse than the best
known solutions.

Table 7.9 shows which hypotheses are con�rmed and which ones require more re-
search. We can see that Hypothesis 7 requires more research. We discussed in
Chapter 6 several methods to calculate the departure time from the depot. In
the available time for this research it proved to not be feasible to implement these
methods.

97

98

8

Conclusion and Future Work

This chapter presents the found conclusions of this thesis in Section 8.1 and discusses
some ideas for future research in Section 8.2.

8.1 Conclusion

In this thesis we studied the DAIPEX Transportation Planning Problem (DTPP).
The DTPP captures a broad array of real-life vehicle routing problems faced by
transportation companies. One of the challenges faced are stochastic time-dependent
travel times making transportation plans that are made in advance become sub-
optimal or even infeasible during execution. Another important issue are driving
regulations including driving breaks and a daily driving limit. Furthermore, the
DTPP includes time windows and cost structures as used by transportation compa-
nies.

We introduced a new way of evaluating the lateness of orders and the driving limit
when considering stochastic travel times. The proposed measures allow to express
with how much certainty an order should be served and with how much certainty
the driving limit should be satis�ed.

Generated transportation plans are evaluated on real-life instances using travel time
data. This travel time data can come from TomTom or from logs coming from hand-
held devices to get travel time data for a company's own trucks. We introduced a
data completion algorithm capable to calculate realistic travel time distributions
which are originally missing. Using a hierarchical sampling mechanism we got real-
istic simulations taking geographical dependencies into account.

We have seen that using expected travel times when calculating transportation plans
gives bad plans in terms of service reliabilities and driving limit reliabilities. To im-
prove this we proposed several solution approaches for the DTPP. The �rst solution
approach uses time window slack by using a tighter time window in the optimiza-
tion algorithm. This improves the transportation plans, but cannot solve the many
unmet service and driving limit reliabilities.

99

The second type of solution approach we introduced is travel time slack where we
overestimate travel times. By means of this we obtain transportation plans that have
more orders meet their service reliability requirement. An imprecise overestimation
results in using too many vehicles which increases the distance and the costs of
a transportation plan. We showed that overestimating travel times based on the
standard deviation or on the mean absolute deviation from the mean works much
better than using expected travel times or using time window slack.

Nevertheless, these solution approaches are still around 20% away from the best
known solutions. These best known solutions are obtained by the optimization
algorithm we developed that explicitly uses travel time distributions. This widely
applicable algorithm outperforms all other solution approaches and allows to make
a trade-o� between logistics costs and robustness of a transportation plan.

8.2 Future Work

While conducting the research we came up with several potential directions for
future research.

Trajectory method Looking at space-time diagrams we can perform a realistic
simulation of the route duration for a speci�c historical departure time by
using the Trajectory Method as introduced by Lint and Zjipp (2003). This
requires much data, since we need for each simulation world one day in history
with enough available data, but it more accurately represents the real world.

Satisfying triangle inequality Our hierarchical sampling method does not en-
force the triangle inequality. This can be �xed in di�erent ways, for example
by solving the metric nearness problem which minimizes distance between dis-
tance matrices. One could use sampling where we verify for each new sample
if the triangle inequality is still satis�ed and resample otherwise. Many itera-
tions can be necessary and the average travel time in the resulting simulations
might be di�erent than the expected travel time.

POA MultiInTimeConstraint In Section 5.3.2.2 we explained that we use the
EndConstraint and corresponding MultiEndConstraint of POA to verify the
lateness of orders. We explained that we prefer to use the InTimeConstraint
and the corresponding MultiInTimeConstraint, but the latter is not supported
by POA. We advice Quintiq to make the MultiInTimeConstraint available in
POA.

Stochastic and time-dependent service times We have focused on �xed ser-
vice times, but in real-life service times are stochastic. Time dependent service
times could be needed when locations have busy hours in which servicing takes
longer than usual. Implementing time dependency in the simulations in the
model is possible by generating a time dependent sample matrix. For example
one probability distribution is used when the service takes place in the time
window of the order and another probability distribution is used when the ser-

100

vice takes place outside of the time window. When evaluating whether orders
are on time (and when evaluating the costs), we know the time at which the
service starts so we can request the sample that belongs to the time period
from the sample matrix.

Implementing time dependent service times in POA is more di�cult. For
time dependent travel times we use a transition calendar for which you can
set which `distribution' to use in which time period. There exists no similar
participation calendar where you could set multiple time periods and for each
interval you have a probability distribution. This could partially be solved
by using a calendar to reduce the capacity outside the time window. In this
way the service times take longer compared to service times within the time
window. What we are doing here is stretching the distribution instead of using
another distribution.

Service reliability requirement The service reliability requirement is de�ned as
factor · (violation + offset)power where the violation counts the number of
simulations which violate the time window. This means we do not take into
account the amount of lateness in every simulation world. If we have two
orders and both of them have a reliability of 0, i.e. 95% violation (assuming
service requirement of 95%), then we can still have very di�erent latenesses.
It can be that the �rst order is 30 minutes late in expected time, while the
other is 10 hours late. The penalty for the travel time distribution optimizer
is equal for these two orders. This is the idea of hard time windows: you are
late or you are not, but if you are late we do not care how much.

Future research is to investigate if taking the amount of lateness in the sim-
ulation worlds into account gives better transportation plans. This could be
proposed to transportation companies to see what they deem more important.

Increased travel time variance We would like to investigate how the proposed
solution approaches behave under increased travel time variance. Figure 8.1
shows that we can sample from a mixture of normal distributions instead of
sampling from a uniform distribution when generating simulation worlds to
get travel times with more variance.

Auto-tuning service requirement weight We would like to investigate if the
proposed solution approaches can be improved by auto-tuning the relative
relative weight of the cost of not meeting a service reliability requirement. We
expect this performs better than trying to choose a �xed value for that weight.

Improve convergence Sample Average Approximation We have seen in Sec-
tion 7.3.10 that using Sample Average Approximation requires much more
time than using deterministic travel times (time window slack and travel time
slack). Research is needed to improve the speed of the optimization algorithm
that uses Sample Average Approximation. One improvement is starting the
optimization with a subset of the simulations and only if there are violations
we increase the number of simulation worlds. This allows to do more iterations
with a subset of simulations to get to a good result faster.

101

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Increased travel time variance

Value

D
en

si
ty

(a) Increased variance-1 for the travel

times.

0.0 0.2 0.4 0.6 0.8 1.0

Increased travel time variance

Value

D
en

si
ty

(b) Increased variance-2 for the travel

times.

Figure 8.1: Increasing the travel time variance by sampling from a mixture of
normal distributions instead of a uniform distribution.

A second improvement is related to POA. The problem is initialized in POA at
the start of every iteration. This takes a signi�cant part of the optimization
duration due to the initialization of the simulation words, while the travel
times in these simulation worlds do not change. Initializing this once at the
start and reusing it at every iteration can improve the speed of the optimizers
up to 20% we believe.

102

References

Bent, R. W., & Van Hentenryck, P. (2004). Scenario-based planning for partially dy-
namic vehicle routing with stochastic customers. Operations Research, 52 (6),
977�987.

Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations research,
52 (1), 35�53.

Brickell, J., Dhillon, I. S., Sra, S., & Tropp, J. A. (2008). The metric nearness
problem. SIAM Journal on Matrix Analysis and Applications , 30 (1), 375�
396.

Carrabs, F., Cordeau, J.-F., & Laporte, G. (2007). Variable neighborhood search
for the pickup and delivery traveling salesman problem with lifo loading. IN-
FORMS Journal on Computing , 19 (4), 618�632.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to
a number of delivery points. Operations research, 12 (4), 568�581.

Conijn, B. (2013). Modeling and Solving the Vehicle Routing Problem with Stochas-
tic Travel Times and Hard Time Windows. Eindhoven University of Technol-
ogy, Department of Mathematics and Computer Science.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Manage-
ment science, 6 (1), 80�91.

Evers, L. (2013). Phd-project robust and agile planning. Newsletter Expertise Centre
Military Operations Research, June.

Goel, A., & Kok, L. (2012). Truck driver scheduling in the United States. Trans-
portation science, 46 (3), 317�326.

Gorissen, B. L., Yan�ko§lu, �., & den Hertog, D. (2015). A practical guide to robust
optimization. Omega, 53 , 124�137.

Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty in supply chain
planning. Computers & Chemical Engineering , 27 (8), 1219�1227.

Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-
dependent travel times. European journal of operational research, 144 (2),
379�396.

Kok, A. L., Hans, E., Schutten, J., & Zijm, W. (2010). Vehicle routing with tra�c
congestion and drivers' driving and working rules.

Lee, J. H. (2014). Energy supply planning and supply chain optimization under
uncertainty. Journal of Process Control , 24 (2), 323�331.

Lei, H., Laporte, G., & Guo, B. (2011). The capacitated vehicle routing problem with
stochastic demands and time windows. Computers & Operations Research,
38 (12), 1775�1783.

103

Lekkerkerker, M. (2016). Robust scheduling of the vehicle routing problem with time
windows (Master's thesis). Retrieved from http://dspace.library.uu.nl/

bitstream/handle/1874/340055/thesis.pdf

Lint, J., & Zjipp, N. (2003). An improved travel time estimation algorithm using
dual loop detectors. In Trb 82nd annual meeting. washington dc.

Maggioni, F., Potra, F. A., & Bertocchi, M. (2015). Stochastic versus Robust
Optimization for a Transportation Problem. Optimization Online, 03�4805.

Mula, J., Poler, R., Garcia-Sabater, J., & Lario, F. C. (2006). Models for production
planning under uncertainty: A review. International journal of production
economics , 103 (1), 271�285.

Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic
vehicle routing problems. European Journal of Operational Research, 225 (1),
1�11.

Pisinger, D., & Ropke, S. (2010). Large neighborhood search. In Handbook of
metaheuristics (pp. 399�419). Springer.

Postek, K., Ben-Tal, A., Den Hertog, D., & Melenberg, B. (2015). Exact robust
counterparts of ambiguous stochastic constraints under mean and dispersion
information.

Prescott-Gagnon, E., Desaulniers, G., Drexl, M., & Rousseau, L.-M. (2010). Euro-
pean driver rules in vehicle routing with time windows. Transportation Science,
44 (4), 455�473.

Quintiq vehicle routing problem with time windows. (n.d.). http://www.quintiq

.com/optimization/vrptw-world-records.html. (Accessed: 2016-06-28)
Rego, C., Gamboa, D., Glover, F., & Osterman, C. (2011). Traveling salesman

problem heuristics: leading methods, implementations and latest advances.
European Journal of Operational Research, 211 (3), 427�441.

Ropke, S., & Pisinger, D. (2006). An Adaptive Large Neighborhood Search heuris-
tic for the pickup and delivery problem with time windows. Transportation
science, 40 (4), 455�472.

Sharifzadeh, M., Garcia, M. C., & Shah, N. (2015). Supply chain network design
and operation: Systematic decision-making for centralized, distributed, and
mobile biofuel production using mixed integer linear programming (MILP)
under uncertainty. Biomass and Bioenergy , 81 , 401�414.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. In International conference on principles and prac-
tice of constraint programming (pp. 417�431).

Solomon benchmark. (1987). https://www.sintef.no/projectweb/top/vrptw/

solomon-benchmark/. (Accessed: 2016-06-28)
Ta³, D., Dellaert, N., Van Woensel, T., & De Kok, T. (2013). Vehicle routing

problem with stochastic travel times including soft time windows and service
costs. Computers & Operations Research, 40 (1), 214�224.

European Union. (2006, March 15). Regulation (EC) No. 561/2006 [REGULATION
(EC) No 561/2006 on the harmonisation of certain social legislation relating
to road transport and amending Council Regulations (EEC) No 3821/85 and
(EC) No 2135/98 and repealing Council Regulation (EEC) No 3820/85]. Of-
�cial Journal of the European Union.

104

http://dspace.library.uu.nl/bitstream/handle/1874/340055/thesis.pdf
http://dspace.library.uu.nl/bitstream/handle/1874/340055/thesis.pdf
http://www.quintiq.com/optimization/vrptw-world-records.html
http://www.quintiq.com/optimization/vrptw-world-records.html
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/

Tomtom custom travel times api. (n.d.). http://developer.tomtom.com/

products/realtimemaps/traffic/trafficstats/TrafficStats_Custom

_Travel_Times. (Accessed: 2016-10-20)
Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., & Shapiro, A. (2003). The

sample average approximation method applied to stochastic routing problems:
a computational study. Computational Optimization and Applications , 24 (2-
3), 289�333.

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2014). A uni�ed solution
framework for multi-attribute vehicle routing problems. European Journal of
Operational Research, 234 (3), 658�673.

105

http://developer.tomtom.com/products/realtimemaps/traffic/trafficstats/TrafficStats_Custom_Travel_Times
http://developer.tomtom.com/products/realtimemaps/traffic/trafficstats/TrafficStats_Custom_Travel_Times
http://developer.tomtom.com/products/realtimemaps/traffic/trafficstats/TrafficStats_Custom_Travel_Times

106

Appendix A

Format communication Quintiq and
TU/e

A.1 Example request

An example request �le is below:

--- Start of file ---

Eindhoven,51.441642,5.469722

Amsterdam,52.370216,4.895168

GROUP1,Eindhoven

GROUP2,Amsterdam

GROUP1, GROUP2

--- End of file ---

A.2 Example response

An example response for the above request. Note that the below �le has 6 lines and
that indented lines are wrapped from the previous line.

107

--- Start of file ---

Origin,Destination,Day,Time,Duration,Average,0.05,0.1,0.15,0.2,0.25,0.3,

0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95

Eindhoven,Amsterdam,WorkDays,00:00:00,07:15:00,01:27:04,01:35:07,01:35:46,

01:36:16,01:36:43,01:37:06,01:37:29,01:37:52,01:38:15,01:38:42,

01:39:11,01:39:42,01:40:14,01:40:55,01:41:43,01:42:42,01:44:11,

01:46:21,01:50:11,02:00:48

Eindhoven,Amsterdam,WorkDays,07:15:00,02:15:00,01:41:45,01:36:10,01:36:58,

01:37:37,01:38:13,01:38:49,01:39:24,01:40:00,01:40:41,01:41:24,

01:42:12,01:43:06,01:44:13,01:45:37,01:47:25,01:49:53,01:53:37,

01:59:54,02:13:06,03:02:27

Eindhoven,Amsterdam,WorkDays,09:30:00,07:30:00,01:29:55,01:36:28,01:37:21,

01:38:03,01:38:39,01:39:14,01:39:49,01:40:25,01:41:08,01:41:50,

01:42:42,01:43:40,01:44:47,01:46:08,01:47:45,01:49:58,01:52:59,

01:56:25,02:01:34,02:14:16

Eindhoven,Amsterdam,WorkDays,17:00:00,02:00:00,01:36:00,01:36:34,01:37:29,

01:38:14,01:38:55,01:39:33,01:40:10,01:40:50,01:41:35,01:42:28,

01:43:25,01:44:33,01:45:46,01:47:28,01:49:34,01:52:37,01:57:04,

02:03:43,02:15:22,02:42:06

Eindhoven,Amsterdam,WorkDays,19:00:00,04:59:00,01:24:06,01:35:55,01:36:42,

01:37:17,01:37:49,01:38:19,01:38:48,01:39:18,01:39:48,01:40:25,

01:41:01,01:41:38,01:42:31,01:43:24,01:44:26,01:45:53,01:47:57,

01:50:19,01:55:06,02:06:06

--- End of file ---

108

Appendix B

Additional experimental results

The tables in this appendix give additional results from the conducted experiments.
Results with a * denote the average result of 3 runs, which can cause rational
numbers for routes and orders.

We give an overview of the meaning of the various columns used in the tables of this
appendix:

∆
How much worse is the solution than the best known solution (in %).

Virtual Stochastic Costs
The Virtual Stochastic Costs as de�ned in Section 3.4.4.

Virtual Expected Costs
The Virtual Expected Costs as de�ned in Section 5.3.3.3.

#R
The number of routes in the solution.

Costs
The costs of the transportation plan excluding the penalty costs incurred by
constraint violations. That is, the costs for vehicle and driver usage as ex-
plained in Sections 3.4.1 and 3.4.2.

Dist.
Total distance driven by the vehicles in the transportation plan.

#unrel. orders
The number of orders which do not satisfy the service reliability requirement
as de�ned in Section 3.3.2.

Largest violat. unrel. order
An order which satis�es the service reliability requirement has a violation.
This column gives the violation of the order with the largest violation of the
service reliability requirement. The violation is always between 0 (meet the
service reliability requirement) and 1 (never serve the order on time). Note

109

that a violation of 0.5 can still mean that the order is never served on time
due to a service reliability requirement of 0.5.

#unrel. routes
The number of routes which do not satisfy the driving limit reliability require-
ment as de�ned in Section 3.3.5.

Largest violat. unrel. route
A route which does not satisfy the driving limit reliability requirement has a vi-
olation. This column gives the violation of the route with the largest violation
of the driving limit reliability requirement. The violation is always between
0 (meet the driving limit reliability requirement) and 1 (the driving time is
never below the driving limit). Note that a violation of 0.5 can still mean that
the order is never served on time due to a service reliability requirement of
0.5.

Sum violat. unrel. routes
Connected to the previous column. While the previous column gives the largest
violation, this column gives the sum of the violations.

Solution approach
Which solution approach is used to obtain the transportation plan.

110

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

12
,8

96
11
,3

65
30

11
,3

65
7,

32
0

1
0.
29

2
0.
09

0.
18

B
es
t
kn
ow

n

*
19

0%
37
,4

62
9,

60
2

22
.3
3

9,
60

2
5,

75
4

83
0.
44

9
0.
39

1.
37

E
xp
ec
te
d
ti
m
e

op
ti
m
iz
at
io
n
1h

*
3%

13
,2

91
11
,6

91
32

11
,6

39
7,

41
5

2
0.
29

2
0.
12

0.
19

T
ra
ve
l
ti
m
e

di
st
ri
bu
ti
on

op
ti
m
iz
at
io
n
1h

T
ab
le
B
.1
:
P
ro
bl
em

in
st
an
ce

V
-3
57

us
in
g
ex
p
ec
te
d
ti
m
e
op
ti
m
iz
er

an
d
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.
*
de
no
te
s
th
e
av
er
ag
e

re
su
lt
of

3
ru
ns

an
d
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
us
in
g
th
e
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

12
,8

96
11
,3

65
30

11
,3

65
7,

32
0

1
0.
29

2
0.
09

0.
18

B
es
t
kn
ow

n

11
1%

27
,2

45
9,

88
9

24
9,

88
9

5,
94

5
65

0.
29

9
0.
25

0.
99

30
m
in
.

75
%

22
,6

32
10
,5

34
26

10
,5

34
6,

56
4

41
0.
29

10
0.
20

0.
58

60
m
in
.

60
%

20
,6

14
10
,9

77
29

10
,9

77
6,

92
3

28
0.
29

10
0.
14

0.
49

90
m
in
.

*
60
%

20
,6

65
12
,2

26
33
.3

12
,0

71
7,

77
7

27
.7

0.
29

7.
7

0.
22

0.
47

12
0
m
in
.

*
52
%

19
,5

61
12
,5

48
35
.3

12
,4

43
7,

96
0

23
0.
29

5.
7

0.
19

0.
52

15
0
m
in
.

*
50
%

19
,3

09
13
,3

20
42

13
,3

20
8,

59
8

13
0.
29

7.
3

0.
14

0.
37

18
0
m
in
.

59
%

20
,5

06
14
,3

98
48

14
,3

98
9,

28
9

9
0.
29

9
0.
14

0.
39

21
0
m
in
.

T
ab
le
B
.2
:
P
ro
bl
em

in
st
an
ce

V
-3
57

us
in
g
ti
m
e
w
in
do
w
sl
ac
k.

T
he

am
ou
nt

of
sl
ac
k
is
in

m
in
ut
es
.
*
de
no
te
s
th
e
av
er
ag
e
re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
th
e
ti
m
e
w
in
do
w
sl
ac
k.

111

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

12
,8

96
11
,3

65
30

11
,3

65
7,

32
0

1
0.
29

2
0.
09

0.
18

B
es
t
kn
ow

n

11
2%

27
,2

90
10
,2

20
24

10
,0

76
6,

02
6

60
0.
29

9
0.
19

0.
86

p
er
ce
nt
ag
e
=
10
%

43
%

18
,4

07
11
,1

68
26

10
,9

53
6,

54
1

25
0.
16

5
0.
38

0.
58

p
er
ce
nt
ag
e
=
30
%

*
35
%

17
,3

98
11
,6

24
28
.7

11
,6

24
6,

75
2

17
0.
07

5.
7

0.
18

0.
51

p
er
ce
nt
ag
e
=
50
%

*
26
%

16
,3

12
12
,2

92
30
.7

12
,2

92
7,

00
8

4.
7

0.
04

6.
3

0.
15

0.
42

p
er
ce
nt
ag
e
=
70
%

*
28
%

16
,5

19
13
,0

12
32

12
,9

59
7,

11
8

3.
3

0.
03

5.
7

0.
18

0.
42

p
er
ce
nt
ag
e
=
90
%

31
%

16
,9

29
13
,7

00
34

13
,7

00
7,

46
4

1
0.
02

6
0.
14

0.
37

p
er
ce
nt
ag
e
=
11
0%

37
%

17
,6

67
14
,7

80
37

14
,7

80
7,

85
4

0
0

6
0.
11

0.
27

p
er
ce
nt
ag
e
=
13
0%

69
%

21
,7

77
10
,5

19
26

10
,5

19
6,

25
4

39
0.
19

9
0.
09

0.
38

sl
ac
k
=
St
d
*
0.
5

*
18
%

15
,2

45
11
,2

80
28

11
,2

80
6,

54
4

9
0.
05

4.
7

0.
16

0.
41

sl
ac
k
=
St
d
*
1.
0

*
17
%

15
,1

35
12
,1

33
31

12
,0

85
6,

95
3

3.
7

0.
03

4.
7

0.
14

0.
35

sl
ac
k
=
St
d
*
1.
5

*
29
%

16
,6

46
13
,6

04
34

13
,6

04
7,

43
4

0
0

6
0.
13

0.
35

sl
ac
k
=
St
d
*
2.
5

*
44
%

18
,6

25
15
,4

10
40

15
,4

10
8,

22
1

0
0

6.
7

0.
11

0.
31

sl
ac
k
=
St
d
*
3.
5

52
%

19
,6

65
17
,2

39
41

17
,2

39
8,

66
0

0
0

5
0.
10

0.
24

sl
ac
k
=
St
d
*
4.
5

79
%

23
,1

29
19
,9

56
48

19
,9

56
9,

99
0

0
0

7
0.
05

0.
22

sl
ac
k
=
St
d
*
5.
5

10
2%

26
,1

06
10
,2

57
24

10
,2

57
6,

16
1

59
0.
24

10
0.
15

0.
53

sl
ac
k
=
M
A
D
*
0.
5

*
19
%

15
,3

29
11
,2

04
27
.7

11
,2

04
6,

51
2

12
0.
07

4
0.
16

0.
40

sl
ac
k
=
M
A
D
*
1.
5

*
17
%

15
,0

41
12
,2

96
31

12
,2

96
7,

10
6

2
0.
04

4.
7

0.
11

0.
31

sl
ac
k
=
M
A
D
*
2.
5

*
21
%

15
,6

06
13
,0

14
32
.7

13
,0

14
7,

27
7

0.
7

0.
01

5
0.
11

0.
28

sl
ac
k
=
M
A
D
*
3.
5

29
%

16
,6

15
14
,4

66
36

14
,4

66
7,

84
1

0
0

4
0.
14

0.
29

sl
ac
k
=
M
A
D
*
4.
5

38
%

17
,8

32
15
,3

39
40

15
,3

39
8,

37
3

0
0

5
0.
11

0.
27

sl
ac
k
=
M
A
D
*
5.
5

T
ab
le
B
.3
:
P
ro
bl
em

in
st
an
ce

V
-3
57

us
in
g
tr
av
el
ti
m
e
sl
ac
k.

T
he

�r
st
se
t
us
es

tr
av
el
ti
m
e
sl
ac
k
w
it
h
a
�x
ed

p
er
ce
nt
ag
e.

T
he

tr
av
el

ti
m
e
sl
ac
k
in

th
e
se
co
nd

se
t
is
ba
se
d
on

th
e
st
an
da
rd

de
vi
at
io
n
an
d
fo
r
th
e
th
ir
d
se
t
th
e
sl
ac
k
is
ba
se
d
on

th
e
M
A
D
.
*
de
no
te
s
th
e

av
er
ag
e
re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
ea
ch

of
th
e
th
re
e
ty
p
es

of
sl
ac
k.

112

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

17
,2

11
14
,3

71
37

14
,3

71
9,

09
3

3
0.
29

4
0.
07

0.
26

B
es
t
kn
ow

n

*
23

0%
56
,8

22
11
,1

75
25
.6
7

11
,1

75
7,

02
2

13
4

0.
55

10
.6
7

0.
32

1.
93

E
xp
ec
te
d
ti
m
e

op
ti
m
iz
at
io
n
1h

*
4%

17
,9

77
15
,5

21
41
.3
3

15
,5

21
9,

88
1

4
0.
29

2.
67

0.
09

0.
21

T
ra
ve
l
ti
m
e

di
st
ri
bu
ti
on

op
ti
m
iz
at
io
n
1h

T
ab
le
B
.4
:
P
ro
bl
em

in
st
an
ce

V
-3
57

ti
gh
t-
50

us
in
g
ex
p
ec
te
d
ti
m
e
op
ti
m
iz
er

an
d
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.
*
de
no
te
s
th
e

av
er
ag
e
re
su
lt
of

3
ru
ns

an
d
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
us
in
g
th
e
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

17
,2

11
14
,3

71
37

14
,3

71
9,

09
3

3
0.
29

4
0.
07

0.
26

B
es
t
kn
ow

n

15
2%

43
,3

13
12
,0

37
27

11
,8

45
7,

50
3

11
8

0.
29

12
0.
37

1.
63

30
m
in
.

99
%

34
,2

78
12
,9

79
30
.0

12
,7

27
8,

17
1

76
0.
29

13
0.
46

1.
16

60
m
in
.

*
91
%

32
,9

57
14
,6

39
35
.0

14
,5

71
9,

45
6

63
.7

0.
29

14
.3

0.
26

0.
93

90
m
in
.

*
63
%

28
,1

17
17
,6

16
45

17
,5

56
10
,7

07
35
.3

0.
29

9
0.
19

0.
56

12
0
m
in
.

*
68
%

28
,8

32
20
,9

96
56
.7

20
,9

96
12
,0

91
20

0.
29

9
0.
14

0.
49

15
0
m
in
.

86
%

31
,9

73
25
,2

29
74

25
,2

29
13
,9

81
14

0.
29

9
0.
08

0.
37

18
0
m
in
.

10
1%

34
,6

68
27
,9

00
89

27
,9

00
15
,1

48
11

0.
29

10
0.
12

0.
39

21
0
m
in
.

T
ab
le
B
.5
:
P
ro
bl
em

in
st
an
ce

V
-3
57

ti
gh
t-
50

us
in
g
ti
m
e
w
in
do
w
sl
ac
k.

T
he

am
ou
nt

of
sl
ac
k
is
in

m
in
ut
es
.
*
de
no
te
s
th
e
av
er
ag
e

re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
th
e
ti
m
e
w
in
do
w
sl
ac
k.

113

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

17
,2

11
14
,3

71
37

14
,3

71
9,

09
3

3
0.
29

4
0.
07

0.
26

B
es
t
kn
ow

n

13
6%

40
,5

88
11
,9

11
27

11
,7

26
7,

11
2

11
0

0.
33

11
0.
25

1.
05

p
er
ce
nt
ag
e
=
10
%

76
%

30
,3

22
12
,9

51
30

12
,7

54
7,

47
2

74
0.
18

8
0.
29

0.
73

p
er
ce
nt
ag
e
=
30
%

45
%

25
,0

30
14
,0

68
32
.0

14
,0

68
7,

93
9

39
0.
12

10
0.
18

0.
49

p
er
ce
nt
ag
e
=
50
%

*
31
%

22
,5

36
15
,8

10
35
.3

15
,8

10
8,

48
8

18
.7

0.
07

8.
3

0.
11

0.
31

p
er
ce
nt
ag
e
=
70
%

*
27
%

21
,8

66
16
,6

92
36
.7

16
,6

32
8,

71
0

8.
3

0.
06

7
0.
23

0.
54

p
er
ce
nt
ag
e
=
90
%

*
30
%

22
,4

28
18
,0

36
39
.7

18
,0

36
8,

95
3

5
0.
03

7.
3

0.
11

0.
38

p
er
ce
nt
ag
e
=
11
0%

*
31
%

22
,5

29
19
,0

25
41

19
,0

25
9,

17
2

1
0.
01

6.
67

0.
12

0.
38

p
er
ce
nt
ag
e
=
13
0%

87
%

32
,1

72
13
,0

16
30

12
,8

31
7,

74
9

83
0.
22

8
0.
29

0.
74

sl
ac
k
=
St
d
*
0.
5

*
36
%

23
,3

50
13
,8

74
31
.3

13
,7

54
7,

80
0

32
0.
11

8.
3

0.
23

0.
58

sl
ac
k
=
St
d
*
1.
0

*
17
%

20
,1

10
15
,4

23
35
.3

15
,3

76
8,

58
3

10
.7

0.
07

6.
3

0.
13

0.
35

sl
ac
k
=
St
d
*
1.
5

*
25
%

21
,5

43
17
,9

77
40
.7

17
,9

77
9,

05
6

0
0

7.
3

0.
11

0.
35

sl
ac
k
=
St
d
*
2.
5

*
37
%

23
,4

98
20
,2

50
44
.3

20
,2

50
9,

55
9

0
0

7.
0

0.
11

0.
25

sl
ac
k
=
St
d
*
3.
5

49
%

25
,6

56
22
,6

17
47

22
,6

17
10
,1

48
0

0
6

0.
10

0.
36

sl
ac
k
=
St
d
*
4.
5

71
%

29
,4

44
26
,2

53
52

26
,2

53
11
,2

61
0

0
7

0.
05

0.
23

sl
ac
k
=
St
d
*
5.
5

12
6%

38
,9

57
12
,1

91
28

12
,1

91
7,

46
2

10
1

0.
3

13
0.
13

0.
84

sl
ac
k
=
M
A
D
*
0.
5

41
%

24
,2

62
13
,7

44
32
.0

13
,5

57
7,

63
8

35
0.
11

10
0.
31

0.
62

sl
ac
k
=
M
A
D
*
1.
5

*
19
%

20
,5

04
15
,7

27
36
.3

15
,5

88
8,

56
2

8
0.
05

6.
7

0.
29

0.
50

sl
ac
k
=
M
A
D
*
2.
5

*
23
%

21
,1

79
17
,1

41
38
.0

17
,0

71
8,

87
3

1.
0

0.
02

7.
7

0.
19

0.
45

sl
ac
k
=
M
A
D
*
3.
5

*
27
%

21
,8

66
18
,9

84
42
.3

18
,9

30
9,

59
0

0
0

5.
7

0.
15

0.
35

sl
ac
k
=
M
A
D
*
4.
5

40
%

24
,1

49
20
,1

96
44

20
,1

96
9,

64
9

0
0

8
0.
11

0.
42

sl
ac
k
=
M
A
D
*
5.
5

T
ab
le
B
.6
:
P
ro
bl
em

in
st
an
ce

V
-3
57

ti
gh
t-
50

us
in
g
tr
av
el
ti
m
e
sl
ac
k.

T
he

�r
st
se
t
us
es

tr
av
el
ti
m
e
sl
ac
k
w
it
h
a
�x
ed

p
er
ce
nt
ag
e.

T
he

tr
av
el
ti
m
e
sl
ac
k
in

th
e
se
co
nd

se
t
is
ba
se
d
on

th
e
st
an
da
rd

de
vi
at
io
n
an
d
fo
r
th
e
th
ir
d
se
t
th
e
sl
ac
k
is
ba
se
d
on

th
e
M
A
D
.
*

de
no
te
s
th
e
av
er
ag
e
re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
ea
ch

of
th
e
th
re
e

ty
p
es

of
sl
ac
k.

114

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

16
,5

75
14
,1

67
36

14
,1

67
8,

96
1

7
0.
29

2
0.
07

0.
11

B
es
t
kn
ow

n

*
18

3%
46
,8

96
11
,1

67
25

11
,1

03
6,

91
7

10
6

0.
52

10
.6
7

0.
35

1.
59

E
xp
ec
te
d
ti
m
e

op
ti
m
iz
at
io
n
1h

*
8%

17
,8

93
15
,3

42
41
.0

15
,3

42
9,

93
8

7
0.
29

2
0.
13

0.
21

T
ra
ve
l
ti
m
e

di
st
ri
bu
ti
on

op
ti
m
iz
at
io
n
1h

T
ab
le
B
.7
:
P
ro
bl
em

in
st
an
ce

V
-3
57

se
rv
ic
e
us
in
g
ex
p
ec
te
d
ti
m
e
op
ti
m
iz
er

an
d
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.
*
de
no
te
s
th
e

av
er
ag
e
re
su
lt
of

3
ru
ns

an
d
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
us
in
g
th
e
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

16
,5

75
14
,1

67
36

14
,1

67
8,

96
1

7
0.
29

2
0.
07

0.
11

B
es
t
kn
ow

n

11
8%

36
,0

60
12
,2

19
28

11
,9

96
7,

54
4

84
0.
29

13
0.
36

1.
32

30
m
in
.

85
%

30
,7

30
12
,8

08
31

12
,8

08
8,

34
4

57
0.
29

13
0.
25

1.
20

60
m
in
.

*
73
%

28
,7

34
14
,5

76
34
.3

14
,5

76
9,

34
3

38
.7

0.
29

13
.7

0.
17

0.
94

90
m
in
.

*
68
%

27
,7

98
17
,3

93
45

17
,3

43
10
,5

02
28
.7

0.
29

11
0.
19

0.
65

12
0
m
in
.

*
77
%

29
,3

39
20
,6

73
51

20
,6

73
11
,7

32
19
.3

0.
29

10
.7

0.
17

0.
59

15
0
m
in
.

96
%

32
,4

32
25
,2

31
74

25
,2

31
13
,7

92
17

0.
29

9
0.
08

0.
38

18
0
m
in
.

10
7%

34
,3

21
27
,7

95
84

27
,7

95
14
,7

82
15

0.
29

8
0.
12

0.
36

21
0
m
in
.

T
ab
le
B
.8
:
P
ro
bl
em

in
st
an
ce

V
-3
57

se
rv
ic
e
us
in
g
ti
m
e
w
in
do
w
sl
ac
k.

T
he

am
ou
nt

of
sl
ac
k
is
in

m
in
ut
es
.
*
de
no
te
s
th
e
av
er
ag
e

re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
th
e
ti
m
e
w
in
do
w
sl
ac
k.

115

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

16
,5

75
14
,1

67
36

14
,1

67
8,

96
1

7
0.
29

2
0.
07

0.
11

B
es
t
kn
ow

n

10
7%

34
,2

79
15
,2

34
28
.0

11
,8

64
7,

28
6

76
.0

0.
38

10
.0

0.
25

1.
00

p
er
ce
nt
ag
e
=
10
%

60
%

26
,5

80
13
,4

90
30
.0

13
,2

63
7,

80
6

49
0.
24

7
0.
40

0.
75

p
er
ce
nt
ag
e
=
30
%

*
45
%

23
,9

57
14
,3

22
32
.3

14
,2

76
7,

94
7

35
.7

0.
14

7.
3

0.
17

0.
56

p
er
ce
nt
ag
e
=
50
%

*
35
%

22
,4

54
15
,6

75
35
.3

15
,6

75
8,

49
2

17
.7

0.
1

8.
3

0.
12

0.
41

p
er
ce
nt
ag
e
=
70
%

*
42
%

23
,4

56
16
,4

75
37

16
,4

75
8,

61
1

14
.3

0.
07

9.
3

0.
22

0.
56

p
er
ce
nt
ag
e
=
90
%

38
%

22
,8

10
18
,0

59
40

18
,0

59
8,

99
1

9
0.
08

7
0.
12

0.
35

p
er
ce
nt
ag
e
=
11
0%

39
%

23
,1

00
19
,0

15
41

19
,0

15
9,

21
6

2
0.
03

8
0.
11

0.
34

p
er
ce
nt
ag
e
=
13
0%

78
%

29
,5

18
12
,7

54
29
.0

12
,5

69
7,

47
6

64
0.
22

10
0.
29

0.
68

sl
ac
k
=
St
d
*
0.
5

*
36
%

22
,4

66
13
,7

57
30
.7

13
,6

37
7,

73
6

32
0.
1

7.
3

0.
23

0.
49

sl
ac
k
=
St
d
*
1.
0

*
21
%

19
,9

99
15
,3

29
35

15
,2

37
8,

49
0

11
.3

0.
1

5.
7

0.
15

0.
41

sl
ac
k
=
St
d
*
1.
5

*
33
%

22
,0

83
17
,4

79
38
.7

17
,4

32
8,

80
5

4.
3

0.
02

8.
3

0.
14

0.
39

sl
ac
k
=
St
d
*
2.
5

*
44
%

23
,9

04
20
,4

27
45

20
,4

27
9,

72
3

0.
3

0
7.
3

0.
13

0.
28

sl
ac
k
=
St
d
*
3.
5

60
%

26
,5

43
22
,7

86
48

22
,7

86
10
,2

66
0

0
8

0.
10

0.
32

sl
ac
k
=
St
d
*
4.
5

80
%

29
,8

61
26
,2

37
52

26
,2

37
11
,3

46
0

0
8

0.
05

0.
25

sl
ac
k
=
St
d
*
5.
5

78
%

29
,4

39
12
,0

99
27

12
,0

99
7,

23
8

61
0.
22

11
0.
13

0.
75

sl
ac
k
=
M
A
D
*
0.
5

*
36
%

22
,5

64
13
,7

89
31

13
,6

03
7,

72
5

31
.3

0.
12

7.
3

0.
30

0.
53

sl
ac
k
=
M
A
D
*
1.
5

*
23
%

20
,4

49
15
,4

02
35
.3

15
,3

41
8,

39
6

10
.3

0.
08

6.
7

0.
20

0.
47

sl
ac
k
=
M
A
D
*
2.
5

*
30
%

21
,5

24
16
,8

80
38
.3

16
,8

80
8,

75
2

4.
3

0.
03

8
0.
16

0.
44

sl
ac
k
=
M
A
D
*
3.
5

32
%

21
,8

56
19
,2

11
42

19
,2

11
9,

46
8

1
0.
01

5
0.
11

0.
28

sl
ac
k
=
M
A
D
*
4.
5

50
%

24
,8

44
20
,3

71
45

20
,3

71
9,

72
2

4
0.
01

8
0.
11

0.
41

sl
ac
k
=
M
A
D
*
5.
5

T
ab
le
B
.9
:
P
ro
bl
em

in
st
an
ce

V
-3
57

se
rv
ic
e
us
in
g
tr
av
el
ti
m
e
sl
ac
k.

T
he

�r
st
se
t
us
es

tr
av
el
ti
m
e
sl
ac
k
w
it
h
a
�x
ed

p
er
ce
nt
ag
e.

T
he

tr
av
el
ti
m
e
sl
ac
k
in

th
e
se
co
nd

se
t
is
ba
se
d
on

th
e
st
an
da
rd

de
vi
at
io
n
an
d
fo
r
th
e
th
ir
d
se
t
th
e
sl
ac
k
is
ba
se
d
on

th
e
M
A
D
.
*

de
no
te
s
th
e
av
er
ag
e
re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
ea
ch

of
th
e
th
re
e

ty
p
es

of
sl
ac
k.

116

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

21
,6

74
14
,4

66
39

14
,4

66
9,

28
3

3
0.
29

13
0.
16

0.
70

B
es
t
kn
ow

n

*
17

5%
59
,7

04
11
,1

89
25

11
,1

89
6,

95
1

14
0

0.
64

13
.3

0.
34

2.
14

E
xp
ec
te
d
ti
m
e

op
ti
m
iz
at
io
n
1h

*
3%

22
,2

31
15
,4

06
41
.3

14
,8

87
9,

28
9

4.
7

0.
32

12
.0

0.
13

0.
74

T
ra
ve
l
ti
m
e

di
st
ri
bu
ti
on

op
ti
m
iz
at
io
n
1h

T
ab
le
B
.1
0:

P
ro
bl
em

in
st
an
ce

V
-3
57

dr
iv
in
g
us
in
g
ex
p
ec
te
d
ti
m
e
op
ti
m
iz
er

an
d
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.
*
de
no
te
s
th
e

av
er
ag
e
re
su
lt
of

3
ru
ns

an
d
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
us
in
g
th
e
tr
av
el
ti
m
e
di
st
ri
bu
ti
on

op
ti
m
iz
er
.

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

21
,6

74
14
,4

66
39

14
,4

66
9,

28
3

3
0.
29

13
0.
16

0.
70

B
es
t
kn
ow

n

10
9%

45
,3

26
12
,0

88
27

11
,8

19
7,

39
5

12
2

0.
29

13
0.
57

2.
19

30
m
in
.

75
%

37
,9

70
12
,8

66
30

12
,5

93
8,

01
0

81
0.
29

15
0.
62

1.
91

60
m
in
.

*
65
%

35
,8

54
14
,7

23
34
.7

14
,6

68
9,

56
6

59
.7

0.
29

20
0.
24

1.
56

90
m
in
.

*
60
%

34
,6

10
17
,5

55
49

17
,4

56
10
,6

37
36
.3

0.
29

21
.3

0.
25

1.
36

12
0
m
in
.

*
69
%

36
,6

66
21
,1

05
55
.3

21
,1

05
12
,1

29
20
.3

0.
29

25
0.
18

1.
15

15
0
m
in
.

85
%

40
,1

02
25
,1

90
76

25
,1

90
13
,7

36
12

0.
29

27
0.
12

1.
07

18
0
m
in
.

10
2%

43
,7

70
27
,9

32
87

27
,9

32
15
,0

81
13

0.
29

29
0.
16

1.
06

21
0
m
in
.

T
ab
le
B
.1
1:

P
ro
bl
em

in
st
an
ce

V
-3
57

dr
iv
in
g
us
in
g
ti
m
e
w
in
do
w
sl
ac
k.

T
he

am
ou
nt

of
sl
ac
k
is
in

m
in
ut
es
.
*
de
no
te
s
th
e
av
er
ag
e

re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
th
e
ti
m
e
w
in
do
w
sl
ac
k.

117

∆
V
ir
tu
al

St
oc
ha
st
ic

C
os
ts

V
ir
tu
al

E
xp
ec
te
d

C
os
ts

#
R

C
os
ts

D
is
t.

#
un
re
l.

or
de
rs

L
ar
ge
st

vi
ol
at
.

un
re
l.

or
de
r

#
un
re
l.

ro
ut
es

L
ar
ge
st

vi
ol
at
.

un
re
l.

ro
ut
e

Su
m

vi
ol
at
.

un
re
l.

ro
ut
es

So
lu
ti
on

ap
pr
oa
ch

•
0%

21
,6

74
14
,4

66
39

14
,4

66
9,

28
3

3
0.
29

13
0.
16

0.
70

B
es
t
kn
ow

n

11
4%

46
,4

87
11
,8

78
26

11
,6

88
7,

06
7

11
8

0.
35

15
.0

0.
35

1.
78

p
er
ce
nt
ag
e
=
10
%

40
%

30
,3

76
13
,3

99
30

13
,1

73
7,

71
8

54
0.
19

13
0.
44

1.
15

p
er
ce
nt
ag
e
=
30
%

*
32
%

28
,6

01
14
,2

02
31
.3

14
,0

98
7,

84
9

36
.3

0.
11

16
.7

0.
21

1.
11

p
er
ce
nt
ag
e
=
50
%

*
23
%

26
,6

43
15
,7

16
36

15
,7

16
8,

58
9

15
.3

0.
08

17
.7

0.
15

0.
84

p
er
ce
nt
ag
e
=
70
%

*
23
%

26
,6

86
16
,6

30
37
.3

16
,6

30
8,

71
7

6
0.
05

18
.3

0.
25

0.
96

p
er
ce
nt
ag
e
=
90
%

35
%

29
,3

08
18
,3

52
42

18
,3

52
9,

23
5

4
0.
04

22
0.
15

0.
87

p
er
ce
nt
ag
e
=
11
0%

34
%

28
,9

58
18
,7

34
40

18
,7

34
9,

08
9

2
0.
01

20
0.
24

1.
02

p
er
ce
nt
ag
e
=
13
0%

64
%

35
,6

48
12
,7

49
29
.0

12
,5

64
7,

48
3

78
0.
3

15
0.
33

1.
18

sl
ac
k
=
St
d
*
0.
5

*
27
%

27
,5

60
13
,8

90
32

13
,7

69
7,

81
6

37
0.
09

15
.6
7

0.
29

0.
93

sl
ac
k
=
St
d
*
1.
0

*
17
%

25
,4

17
15
,4

60
36
.3

15
,4

60
8,

67
0

9.
7

0.
08

17
.7

0.
17

0.
77

sl
ac
k
=
St
d
*
1.
5

*
17
%

25
,3

74
17
,5

15
39
.3

17
,5

15
8,

86
9

0.
0

0
16

0.
14

0.
81

sl
ac
k
=
St
d
*
2.
5

*
34
%

29
,1

48
20
,5

37
45
.7

20
,5

37
9,

69
0

0.
0

0
18
.3

0.
15

0.
72

sl
ac
k
=
St
d
*
3.
5

47
%

31
,7

66
23
,0

85
49

23
,0

85
10
,4

11
0

0
18

0.
14

0.
82

sl
ac
k
=
St
d
*
4.
5

70
%

36
,7

80
26
,1

83
52

26
,1

83
11
,0

40
0

0
23

0.
09

0.
80

sl
ac
k
=
St
d
*
5.
5

86
%

40
,3

86
12
,2

49
28

12
,2

49
7,

54
9

10
6

0.
29

14
0.
22

1.
40

sl
ac
k
=
M
A
D
*
0.
5

*
24
%

26
,9

13
13
,6

97
30
.7

13
,5

11
7,

69
4

35
0.
11

15
0.
33

0.
91

sl
ac
k
=
M
A
D
*
1.
5

*
15
%

24
,9

42
15
,6

98
35
.7

15
,6

33
8,

53
8

7.
3

0.
05

16
.3

0.
24

0.
89

sl
ac
k
=
M
A
D
*
2.
5

*
16
%

25
,1

76
17
,0

62
38
.3

17
,0

62
8,

80
1

0.
3

0.
01

16
0.
19

0.
90

sl
ac
k
=
M
A
D
*
3.
5

27
%

27
,5

26
18
,9

19
42

18
,9

19
9,

47
8

0
0

18
0.
15

0.
77

sl
ac
k
=
M
A
D
*
4.
5

32
%

28
,7

09
20
,3

36
45

20
,3

36
9,

91
7

0
0

17
0.
15

0.
87

sl
ac
k
=
M
A
D
*
5.
5

T
ab
le
B
.1
2:

P
ro
bl
em

in
st
an
ce

V
-3
57

dr
iv
in
g
us
in
g
tr
av
el
ti
m
e
sl
ac
k.

T
he

�r
st
se
t
us
es

tr
av
el
ti
m
e
sl
ac
k
w
it
h
a
�x
ed

p
er
ce
nt
ag
e.

T
he

tr
av
el
ti
m
e
sl
ac
k
in

th
e
se
co
nd

se
t
is
ba
se
d
on

th
e
st
an
da
rd

de
vi
at
io
n
an
d
fo
r
th
e
th
ir
d
se
t
th
e
sl
ac
k
is
ba
se
d
on

th
e
M
A
D
.
*

de
no
te
s
th
e
av
er
ag
e
re
su
lt
of

3
ru
ns
,
•
gi
ve
s
th
e
b
es
t
kn
ow

n
re
su
lt
an
d
th
e
b
ol
d
re
su
lt
sh
ow

s
th
e
b
es
t
sc
or
e
fo
r
ea
ch

of
th
e
th
re
e

ty
p
es

of
sl
ac
k.

118

	Introduction
	Motivation
	Quintiq and DAIPEX
	Research assignment
	Hypotheses
	Contributions
	Structure

	Related work
	Vehicle Routing
	Categorization of vehicle routing problems
	Optimization under Uncertainty
	Solution approaches

	DAIPEX Transportation Planning Problem
	Instance data
	Transportation network
	Orders
	Transportation resources

	Transportation plan
	Planning decisions

	Operational constraints
	Time constraints
	Service reliability requirement
	Vehicle constraints
	Capacity constraints
	Legal constraints

	Objective
	Vehicle-dependent costs
	Driver-dependent costs
	Constraint costs
	Virtual Stochastic Costs

	Stochastic travel times
	Travel time representation
	Traversing time periods
	Simulations
	Service reliability

	Travel time data
	Communication Quintiq and TU/e
	Mapping to unknown arcs

	Optimization algorithms to solve the DTPP
	Optimization algorithm
	Clustering
	Large Neighborhood Search

	Building in slack
	Time window slack
	Travel time slack
	Travel time slack in combination with breaks

	Sample Average Approximation
	Sample Average Approximation in the DAIPEX application
	Sample Average Approximation in optimization algorithm
	Virtual Stochastic Costs versus Virtual Expected Costs

	Start time calculation
	Computational study
	Problem instances
	Hypotheses
	Experiments and results
	Using expected travel time
	Time window slack
	Travel time slack using fixed percentage
	Travel time slack based on Standard Deviation
	Travel time slack based on MAD
	Sample Average Approximation
	Comparison solution approaches
	Driving limit
	Lowered reliability costs
	Convergence of optimization algorithms
	Limited number of resources
	Quick result

	Conclusions

	Conclusion and Future Work
	Conclusion
	Future Work

	Format communication Quintiq and TU/e
	Example request
	Example response

	Additional experimental results

