
 Eindhoven University of Technology

MASTER

Design of a platform-independent business rule authoring environment for non-technical
authors

Duwaer, D.F.

Award date:
2016

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/26dddfb8-2db0-4da3-ab31-820d4e15c07c

Design of a Platform-Independent Business Rule

Authoring Environment for Non-Technical

Authors

David Duwaer

December 1, 2016

Abstract

This thesis is the result of a research conducted during the author’s
internship at Royal Philips N.V. In it, an authoring environment for
business rules named Rash is proposed. A distinguishing feature of this
authoring environment in that it is stand-alone and is made to support
any number of business rule engines, target languages and authoring
languages. The authoring Graphical User Interface (GUI) is a syntax-
directed editor aimed to suit non-programmer users, which is achieved
by optimizing simplicity [1], visually representing relevant concepts and
providing corrective feedback. Where previous syntax-directed editors
are made to look like a text editor [2][3], the editor proposed here dis-
tinguishes itself by moving away from text-editing paradigms, towards
structure-editing paradigms. The authoring environment is suitable for
language extensibility: new functions written by software engineers can
easily be embedded in the authoring environment; complete with a natural
language-like syntax and type checking. Finally, function libraries forming
a basic authoring language are proposed. These functions read like nat-
ural language, and adhere to the principle of referential transparency [4]
so that any expression written with them is also a valid natural language
expression.

Contents

1 Introduction 3
1.1 Introduction . 3
1.2 What are business rules and why are they used? 3
1.3 Business rules in practice . 4
1.4 Philips’s case . 5
1.5 Conclusion . 5

2 Some basic theory and terminology 7
2.1 Introduction . 7
2.2 Rule engines . 7
2.3 An example business rule . 8
2.4 Firing cardinality . 9

3 Requirements 11
3.1 Introduction . 11
3.2 System scope . 11
3.3 Business Object Model (BOM) 11
3.4 Rule expressiveness . 13
3.5 Deployment . 18
3.6 UI Integration . 20
3.7 Rule testing . 21
3.8 Conclusion . 21

4 Existing solutions 23
4.1 Introduction . 23
4.2 Existing business rule authoring environments 24
4.3 Existing database query authoring environments 26
4.4 Assessment of most useful authoring concepts 28
4.5 Existing syntax-directed editors 29
4.6 Conclusion . 31

5 Main design decisions 33
5.1 Syntax-guided editor . 33
5.2 Usability for non-programmer . 33
5.3 Type system . 37
5.4 Two languages per rule: condition and consequence 39
5.5 Extensibility of the syntax . 40

1

6 Initial design 43
6.1 Introduction . 43
6.2 Editor . 44
6.3 Language & Business Object Model (BOM) configuration 52
6.4 The Rule Metamodel . 58
6.5 Standard libraries . 59
6.6 Conclusion . 61

7 Prototype and user testing of initial design 64
7.1 Introduction . 64
7.2 Prototype . 64
7.3 Testing method . 65
7.4 Usability issues found in user tests 66

8 Additional design decisions 69
8.1 Introduction . 69
8.2 Design decisions . 69
8.3 Conclusion . 74

9 Improved design 75
9.1 Introduction . 75
9.2 Editor of improved design . 75
9.3 Rule Language & BOM Metamodel of improved design 78
9.4 Rule Metamodel of improved design 79
9.5 Libraries of improved design . 79
9.6 Conclusion . 79

10 Conclusion 80

2

Chapter 1

Introduction

1.1 Introduction

The business rule approach gained massive momentum since the early 2000’s [5],
and is in fact a second life for the technique that was used in expert systems from
the 1970s to the mid-1990s [6]. While machine-learning techniques have been
the focus of advancements in artificial intelligence in the most recent decade [7],
business rules are still just as relevant as discrete, well-defined and transparent
logic has different application domains than the less transparent decision making
typically provided by machine-learned models.

The focus of this thesis is the design of an authoring environment for business
rules, which is to be used at Royal Philips N.V. for a multitude of different rule
engines that are being used in and for various products. The aim is to make
the authoring environment such that Subject Matter Experts (SMEs) for the
products, who have no programming knowledge, can author the logic -without
help from an IT expert.

1.2 What are business rules and why are they
used?

According to the Object Management Group (OMG), within the Business
Motivation Model (BMM) [8], business rules “provide specific, practicable guid-
ance to implement Business Policies. Some Business Rules could be automated
in software; some are practicable only by people.” For business rules that can be
automated by software, there are Business Rule Management Systems (BRMSs).
BRMS’s are systems that maintain a base of formally specified business rules
and automatically enforces them. The core component of a BRMS is a rule
engine. A rule engine, depicted in Figure 1.1, reads from a set of rules that
reason about a model called the Business Object Model (BOM), which is an
abstraction from the schema of the Business Data. When a rule condition be-
comes true because of a change in the business data, the rule engine executes
the rule’s action, which in turn may modify the business data. The business
rules’ only dependency on the rest of the software is through the BOM, and the

3

Rule Engine

read

modify

read
Business

rules
Business

data

Figure 1.1: A rule engine and its context.

implement

(re)specifyevaluate

run/test

Figure 1.2: Involvement of SMEs (blue) is an integral part of the Software
Development Life Cycle.

business rules are interpreted at runtime. This creates great advantages of using
the business rule approach to implement business logic, over implementing it in
conventional program code.

1. Business rules can be developed and deployed independently of the rest of
the software. This allows for more agility [9].

2. To update business rules the application they are a part of does not have
to be restarted. This is especially useful if large enterprises are using the
application.

3. Individual business rules relate closely to individual functional require-
ments [9], making those requirements highly traceable.

4. Business rules are separated from program logic.

5. BRMS’s typically provide functionality to define domain specific languages.
The goal here is to have a language that trades flexibility for ease-of-use,
so that for its application domain it can be used by people who have little
to no skill in programming.

1.3 Business rules in practice

Some businesses need logic in their software that reasons about subjects outside
the knowledge domain of their software engineers. As a consequence, SMEs and
Software Engineers (SEs) need to collaborate to get this logic implemented. In
Figure 1.2, it is shown how SMEs are a part of the Software Development Life
Cycle (SDLC). This cycle, or a variation on it, is usually iterated through several
times when a software solution is created [10]. Having multiple actors play a part
in this cycle adds communication barriers that not only have the disadvantage
of having people spending time on creating and interpreting communications

4

(e.g. requirements, documentation, . . .), but can also act as funnels slowing
the entire process down [11] [12]. It would therefore improve the agility of the
business rule management if the collaboration between SEs and SMEs would
not be not necessary.

A way this could be achieved is by having a team of people that have knowl-
edge of both software and the domain of application. Educating an SME to be
an SE or vice-versa can take long: in the Netherlands, in most fields (including
software engineering) an applied sciences degree takes 4 years to obtain and a
master’s 5 years. The fast-changing market surrounding software makes this
solution therefore unsuitable, if not unfeasible.

Another way to eliminate the necessity of SMEs and SEs collaborating is to
use a tool that bridges the gap between the business domain and the software
domain. Because the business domain differs per application, it is not feasible
to make a single tool that allows software people to understand and work with
all of these domains. Inventing with a tool that allows non-software people
to write software is, however hard, a much narrower challenge. Business rules
in particular —even in their formal (executable) form— have the property of
being more easily understood by “business people” (people without program-
ming knowledge) as they are relatively compact, coherent peaces of code that
correspond closely to individual business requirements [5]. It is therefore not
surprising that most BRMS’s come with a rule authoring environment that is
meant to be used by non-programmers.

1.4 Philips’s case

Philips has multiple business rule executing components of varying degrees of
“hard-codedness” running on varying platforms, not all of which are suitable
for replacement by rule engines that comes with industry-grade BRMS’s, let
alone all by the same one. This raises the need for a stand-alone Business
Rule Authoring Environment (BRAE) that can “export” its authored logic to
any execution platform —even to source code containing hard-coded rules, if
some application would require this. As Chapter 4 will point out, the industry
currently does not offer stand-alone rule authoring solutions, as the tendency is
towards the vertically integrated solutions known as BRMS’s.

The need for building a BRAE in-house will also be leveraged for re-considering
the ease-of use of rule authoring for business users: existing tools will be as-
sessed on their usability and user tests will be employed in an effort to come
up with a design that maximizes a non-programming SME’s ability to author
rules.

1.5 Conclusion

1.5.1 Assignment description

The goal is to design a rule authoring environment which...

5

1. is independent of the target rule engine, and can be used for multiple such
rule engines or other kinds of components that execute business rules

2. is optimal in enabling non-programmers to author executable business
rules

3. is extensible to incorporate external data sources, computation modules
and decision makers into the decision-making power of the business rules

1.5.2 Report outline

A more detailed investigation of the requirements will take place in Chapter 3.
An investigation of existing solutions and approaches is done in Chapter 4.
Chapter 5 explains the main decisions that led to the initial design of Rash,
the BRAE this thesis proposes. Chapter 6 describes that initial design. A
prototype of the initial design was made with which user tests were conducted,
described in Chapter 7. This led to additional design decisions being made and
revisioning of previous design decisions, described in Chapter 8. The improved
design is then presented in Chapter 9. The thesis is concluded in Chapter 10.

6

Chapter 2

Some basic theory and
terminology

2.1 Introduction

This chapter serves to explain some basic theory and introduce some terminology
that will frequently be used in the remainder of this report.

2.2 Rule engines

BRMS’s have a Business Rule Engine (BRE) as their core component. This is
the component that reads and interprets business rules that have been specified
in some given formalism, and executes them whenever they should be executed,
based on the business data, as shown in Figure 1.1. A Business Rule Engine
(BRE) is mostly based on a Production system. We will first explain the more
general production rule systems, and then further our focus to BREs.

2.2.1 Production rule systems

As depicted in Figure 1.1, three components are most relevant to a production
system.

1. A set of production rules, referred to as the ruleset.

2. A database

3. An interpreter

A production rule consists of a condition, commonly referred to as the rule’s
Left-Hand Side (LHS), and an action, or Right-Hand Side (RHS). A rule’s LHS
contains a proposition about data in the database. The interpreter matches the
rules against the database and when a rule’s condition becomes true, triggers
the rule, meaning its action is allowed to be executed. When the rule’s action
is actually executed, it is said that the rule fires [9].

7

Person

+name: string
+date of birth: Date

Car

+plateId: string

Asset

House

Policy

+cars 1

+owner

0..*

+policies0..*

+owner0..*

+houses

0..*

+owners

0..*

+covered

0..*

+coveredBy

0..*

Figure 2.1: A typical BOM

2.2.2 Business Rule Engines

In most BREs, the rules reason about the database strictly by means of a model
of the database called the Business Object Model (BOM). This is a a set of
classes or complex data types that each contain a specific set of key-value pairs
called properties. Relations between the classes of a model are represented by
properties too. Figure 2.1 contains an example BOM. In this report we define
an entity as being a datatype in the BOM. In BREs, it is common behavior
that rules fire immediately upon being triggered [6] [13].

2.3 An example business rule

Consider a typical BOM, given in Figure 2.1. Next, consider the following
business rule that reasons about the BOM from Figure 2.1.

If a car is not insured by its owner, send a notification to the owner.

This rule can be broken down into the LHS “a car is not insured by its owner”
and the RHS “send a notification to owner”. The LHS consists of a fact about
two entities: a car and a person. When this fact becomes true for some combi-
nation of a car and a person, the rule will trigger and fire. The RHS refers to a
person, which has to be the same person that was matched with the LHS by the
interpreter. This is done by using variables inside rules: a rule condition can
assign variable names to the entities it reasons about. Upon matching, these
variables will point to the entity instances that were matched. In pseudocode,
the rule could look like what is shown in Listing 2.1.

Listing 2.1: Pseudocode of example rule

IF

[$x: Car] is not insured by [$y: Person]

THEN

Send notification with text "..." to [$y]

8

Here, “[$x: Car]” is at the same time a reference to an instance of entity
Car and a variable assignment of the matched entity to a variable named “$x”.
“[$x]” is a usage of that variable.

2.4 Firing cardinality

Let us talk about how many times the consequence of the rule will execute when
a condition becomes true. Suppose we have the following condition.

If there is a red marble in a blue bucket, do A.

And we are given the following classes.

class Marble {
static String shape = ’ball’; String color }

class Bucket {
String color; Collection<Marble> marbles }

Then we propose that we refer to the marble class by simply writing Marble,
to a static property by writing Marble.shape, to an object of the marble class
by writing [Marble], to an object while at the same time assigning a variable m

to that object by writing [Marble m], and a property of that object by writing
[Marble].color or m.color. Then the condition for the rule above would be
expressed as follows:

∃[Marble m],[Bucket b]

[
m.color = ’red’

∧ b.color = ’blue’

∧ m ∈ b.marbles
]

When this rule is fired, the consequence will only execute once: when this
condition turns from false to true, even though there may be hundreds of red
marbles spread over dozens of blue buckets. So how do we specify that we want
a consequence to execute, say, for every marble for which the condition holds
true? We write:

∃[Bucket b]

[
[Marble m].color = ’red’

∧ b.color = ’blue’

∧ m ∈ b.marbles
]

The difference with the previous condition is, that [Marble m] is now a free
variable in the condition, because it is not quantified by the exists-clause any-
more. Similarly, if we write

[Marble m].color = ’red’

∧ b.color = ’blue’

∧ m ∈ b.marbles

then the consequence may be executed for every combination of a red marble
and a blue bucket, where the red marble is in the blue bucket. The cardinality
of a rule firing generalizes to the following.

9

Given the following:

• The condition of a rule, expression E contains a set V of free (i. e. not
bound by a quantifier) variables, which may be objects, object properties,
classes or class (static) properties.

• The subset of V that is objects is OO.

• The properties in V belong to objects, the set making up all objects of
these properties is OP .

• The total set of objects O = OO ∪OP .

• If two objects in V are unified by a variable name in E they are considered
to be one and the same object in OO, OP and O.

Then a rule with condition E fires for every combination of objects in O for
which the condition is true. The objects in O are also called the matches of a
rule.

10

Chapter 3

Requirements

3.1 Introduction

The proposed authoring environment is meant to be used for multiple applica-
tions, each with different requirements. For the investigation, four focus appli-
cations from within Philips were selected, each having one or more components
that execute some form of business rules. The following approach has been used
to work toward a valid software solution.

1. Detailed sets of requirements for every focus application were collected.

2. Identifying the differences and the similarities between the requirements
from the different focus applications.

3. Proposing how the differences can be generalized and adhered to by means
of configuration.

4. Specifying exactly what the functionality of the software will be, estab-
lishing the first version of the Software Requirements Document (SRD).

The following sections will investigate the requirements that those applica-
tions pose on all relevant aspects of a business rule authoring environment.

3.2 System scope

Figure 3.1 denotes the scope of the system we are proposing. Input to the system
is the configuration of the rule language and the BOM for a specific application.
This enables a rule author to create/model rules for that application through
the authoring User Interface (UI), and the resulting rule models are output to
an execution environment or compiler.

3.3 Business Object Model (BOM)

3.3.1 Occurring BOM styles

Between the rule engines of the focus projects, the data was available in several
different ways. Each of these ways is elaborated in the following subsections.

11

To-be-Proposed
Business Rule

Authoring
Environment

Authoring UI

Figure 3.1: The dashed line denotes the boundary of the proposed system, the
arrows denote the interfaces with surrounding systems.

Object model

Some rule engines have their data available through an object model: a set
of classes with properties, and relations between those classes represented by a
subset of their properties. A simple example is given in Figure 2.1. Note that
this BOM contains generalization/type inheritance; this is not important now,
but it is something we will get back to in Section 5.3.

Primitive variables

When a rule engine has only one object class to match (e.g. rules can only
match a set of users), it may not be necessary anymore to present data to the
rules through object classes. Rules for such a rule engine only refer to plain,
non-object-oriented variables. An example rule is given in Listing 3.1.

Listing 3.1: Example rule from rule engine with only simple variables

Claims > 0

AND RegisteredOn > TodayDate - 14

AND RegisteredOn < TodayDate - 6

Rules in this rule engine match a (set of) user(s) by default, so it does not need
to be stated explicitly that some variables are properties of a user. This is why
a simple variable suffices, and no complex data type like e. g. User.Claims or
User.RegisteredOn.

Singleton objects

Some rule engines, along with a set of classes describing their object model,
have global objects: objects of which there is only one instance. Consider, for
instance, an insurance company “Insurance Co.”, which has a data model with
several entities, e. g. Person, Policy, House, et cetera. In its data model, the
state of the company itself is also available: through a variable called “Insurance
Co.” of class InsuranceCo. This could be useful for accessing the state of
company-wide policy that often changes and that may be of relevance to business
rules. It does not make sense for any rule to make any other instance of this
class than the available one, so the class itself should not be a part of the BOM.
The pre-instantiated variable of this class, however, should be.

12

3.3.2 Separation of data and logic

An object model in a general-purpose object-oriented programming language
can contain methods and derived properties (methods without parameters, with
syntactic sugar to make it look like a normal property). The BOM available to a
rule author could also contain these concepts. However, embedding logic into the
data model makes this logic domain-specific because of where it is implemented.
A data model without logic allows one to instantiate e.g. a data-handling back-
end application for a specific application merely by soft configuration. Moreover,
the logic is in a place and a format that is independent of the data model of
a single application (although it can be made application-specific). For this
reason, the BOM should contain no methods. As for derived properties: to the
authoring environment they are indistinguishable from normal properties as the
authoring environment itself does not deal with the implementation of the data
model, and so the distinction is irrelevant.

3.3.3 Resulting requirements

The variations above are all implemented if we propose the BOM is an object
model, but with a few extensions:

1. not only complex, but also primitive data types may be part of the BOM;

2. the BOM may contain global variables of any datatype, including of
datatypes that are not in the BOM.

This results in the requirement set given in Table 3.1.

ID Description
BOM01 The BRAE’s only view on the business data is the BOM.
BOM02 The BOM consists of a set of datatypes (commonly referred to as

the entities) and a set of variables.
BOM03 Each entity can be either complex (i.e. a class) or primitive.
BOM04 A BOM variable may be of any datatype, including datatypes that

are not part of the BOM as an entity.

Table 3.1: Requirements on the BOM

3.4 Rule expressiveness

3.4.1 Introduction

This section aims to elicit what should at least be possible to express in the
body of the requirements, as well as what classes of requirements there are.
Note should be taken that the the designed authoring environment should allow
for extension into more expressivity, and that the requirements elicited in this
section are seen as a minimum to comply with the current set of rules specified
for the focus projects.

13

We start out by classifying rules in Subsection 3.4.2, determining what classes
are needed by focus projects and reducing these classes to a single class with
an extended definition. Next, we start eliciting expressiveness requirements in
Subsections 3.4.4 (for the LHS), 3.4.5 (for the RHS), 3.4.6 (concerning data
aggregation), but not before some necessary assumptions to the BOMs of the
focus projects are made (Subsection 3.4.3).

3.4.2 Types of rules

Table 3.2 shows a classification of rules that is taken from [9]. All the rules used

Rule type Explanation
Mandatory constraints A rule that prevents some actions from be-

ing enabled.
Guidelines Similar to mandatory constraints, but in-

stead of rejecting an action that would vi-
olate the constraint, issues a warning.

Action-enablers Rule that tests a condition and upon find-
ing it true, initiates an external action

Computations Rule that generates new information
based on computation. Describes the
name of some value, and how this value
is computed.

Event-Condition-Action (ECA) When a specific event occurs, evaluates a
condition. If condition is true, initiates an
action.

Inferences Upon finding a condition true, creates new
facts for the rule engine to consider (can
therefore trigger other inference, action-
enabler or ECA rules)

Table 3.2: Classification of rules used in [9]

in the focus projects have been checked and are either action-enabler, inference
or ECA rules. This classification assumes that an “action” is invoking some
external procedure, distinct from making a change in the business data. If
your definition of an action includes possible changes to the business data, or in
other words: adding modifying or removing facts for the rule engine to consider,
then inferences become a subclass of action-enabler rules. Similarly, if, by your
definition, a “condition” may include the requirement that an event must occur
and rules are activated instantaneously after their condition becomes true (as
is standard in BRMS rule engines [6][13]), then ECA rules form a subclass of
action-enabler rules too. The advantage we gain is that we only have to deal
with a single definition for rules, given that they satisfy these requirements of
expressive power that therefore have been added to Tables 3.3 and 3.4.

14

3.4.3 Dependency of expressiveness assessment on the BOM
structure

If the BOM contains methods, these methods can provide (part of the) calcula-
tions that need to be expressed in the rule body. To find out what logic really
needs to be expressed in the rules currently specified for the focus projects, we
have assumed for each project a dumb BOM (see Section 3.3) representing the
business data. Moreover, every concept mentioned in the rules that would by
reasonable assumption have a finite number of instances (not, for instance, a
date object) was assumed to be an entity, meaning that —conceptually— all
instances of it are loaded into the rule engine memory and can be matched
against. This provides a fairly normalized data representation for the analysis
performed in the next subsection.

3.4.4 Rule condition expressiveness

To get an idea of what expressive power will be required for the rule conditions,
we used the following approach.

1. Collect all sets of rules currently specified for the focus projects

2. Write out these rules using constructs from first order logic, arithmetic,
comparison operators and set theory

3. List which constructs are used

From this, it was learned that these rules could all be written by using exclusively
the following concepts. Concepts needed for data aggregation are left out here,
and are specifically addressed in Subsection 3.4.6.

1. Propositional logic operators, i. e. AND, OR and NOT

2. Comparison operators, i. e. =, 6=, <,>,≤,≥

3. Basic number arithmetic, i. e. +,−, ∗, /, pow(),
√

4. Combining multiple constraints on variables by unification, i. e. by simply
referring to the same variable in these multiple constraints

5. Set membership, i. e. “∈”

6. Set builder, i. e. defining a set by stating the properties that its members
must satisfy [14].

7. Existential quantification

8. Universal quantification

An explicit set of requirements is given in Table 3.3.

3.4.5 Rule consequence expressiveness

A rule consequence contains one or more actions. As described in Subsec-
tion 3.4.2, a rule action may be a database update or an external procedure
call.

15

ID Description
RC1 It is possible to require the occurrence of specific events in a rule’s

condition
RC2 It is possible to express the semantical equivalent of mathematical

parenthesis that control the order of calculation inside a condition.
RC3 It is possible to express the semantical equivalents of logical AND,

OR and NOT inside a condition.
RC4 It is possible to express the semantical equivalents of =, 6=, <,>,≤

and ≥ inside a condition.
RC5 It is possible to express the semantical equivalents of +,−, ∗, /, pow()

and
√

inside a condition.

RC6 It is possible to express the semantical equivalent of unification inside
a condition.

RC7 It is possible to express the semantical equivalent of defining a set us-
ing set builder notation in the condition. This means that a datatype
and a condition is specified by the author, and the resulting set is the
selections of all items of that datatype for which the condition holds.

RC8 It is possible to express the semantical equivalent of logical exists
inside a condition.

RC9 It is possible to express the semantical equivalent of logical forall
inside a condition.

Table 3.3: User requirements on the expressive power for a rule’s condition

External procedure calls

The four focus projects have little variation in the kinds of actions that were
required by the specified rules. These actions were all in one of the following.

1. Sending a notification/showing a card to a person that was mentioned in
the rule condition

2. Setting a flag on a person that was mentioned in the rule condition

A card is a small rectangular Graphical User Interface (GUI) item providing
an insight to a user; it is like a notification, but displayed in a feed. It should
be possible for software engineers to define actions that the rule author can
then use. This is a very feasible job for the software engineers, given the small
amount of actions that projects (at least the focus projects) use.

A side note: there were many rules that had some time constraint with respect
to how often a card or notification of a specific type was to be shown, e.g. “don’t
show this card twice in one month”. For the rules to “know” this, a user’s
collection of notifications must be part of the BOM. This provides another way
of “sending” notifications to the user, i.e. by simply updating the notifications
in the business data, and letting the notification client discover the change in
the data by itself.

Database updates

Doing database updates entails the following standard actions.

16

ID Description
RA1 The RHS of a rule consists of one or more actions
RA2 An action may be the creation of a new instance of an entity.
RA3 An action may be a value update of a direct or indirect (i.e. the

property of a property, etc.) property of an entity instance.
RA4 An action may be the removal of an instance of an entity from the

business data.
RA5 An action may be an external procedure call pre-defined/configured

by a software engineer (the rule author needs only to enter function
parameters relevant to the business).

Table 3.4: User requirements on the expressive power for a rule’s consequence

1. Creating entities

2. Updating entities

(a) Updating values

(b) Inserting new values into a list

(c) Removing values from a list

(d) Updating values in a list

3. Removing entities

Note the recurring nature of this list: updating values in a list may entail
updating a list that is a property of that list item - and so on. A syntax has to
be devised to deal with this.

Requirements

The resulting set of requirements is given in Table 3.4.

3.4.6 Aggregation expressiveness

Aggregation is the combining of multiple data points —from multiple points in
time and/or belonging to multiple objects— in a calculation, to obtain a new
data point. Here are some typical expressions occurring in rule conditions that
contain data aggregation.

1. “the app has been in use daily for one week”
Here one has to confirm the existence of usage during every day of the
past seven days.

2. “the app has been used 20 times”
One has to count the amount of usage sessions.

3. “the app has been used for 30 hours in total”
One has to sum the durations of all usage sessions.

4. “the user’s heart rate is 20bpm higher than the user’s average”
One has to calculate the average user heart rate over time.

5. “the average age of the customers of shop a”
One has to calculate the average age of all customers.

17

ID Description
RC7 It is possible to express the semantical equivalent of defining a set us-

ing set builder notation in the condition. This means that a datatype
and a condition is specified by the author, and the resulting set is the
selections of all items of that datatype for which the condition holds.

ST1 There is a datatype, in further requirements referred to as —but in
the application not necessarily named— a DateTime, representing a
date specification.

ST2 There is a datatype, in further requirements referred to as —but in
the application not necessarily named— a TimeCriterium, represent-
ing a selection on time.

ST3 A TimeCriterium can be defined by specifying conditions on the date,
time and/or timezone attributes of timestamps that will be consid-
ered a part of the time selection.

ST4 There is a way to cluster a TimeCriterium into a collection of
TimeCriteriums based on the value of a property of the DateTime
datatype.

ST5 It is possible to check if a DateTime adheres to a TimeCriterium.

Table 3.5: User requirements on the selection power for a rule’s condition

Assuming the BOMs as described in the previous paragraph, we have formu-
lated, collected, generalized and structured the aggregation used by the existing
rules. Aggregation was split into two steps: selection of a collection of objects,
and doing the aggregation itself on that collection. A set of requirements on
what expressiveness the authoring environment should provide with respect to
selecting objects is given in Table 3.5 and with respect to the aggregation in
Table 3.6. Requirement RC7 from Table 3.3 is also featured in Table 3.5 for
cohesiveness.

3.5 Deployment

Assume there is a single Rash deployment per application. Consider one of the
applications that have multiple rule engines. This application has a rule engine
on the server-side and one on the client-side. Despite the fact that both engines
use the same application, both have a different model scope: the client-side
rule engine only sees a single user. Moreover, data is accessed differently on
the server and the client side: on the server side, all data is available in the
BOM entities, while on the client side, much data is available through service
classes. While ideally, the application is adapted so that the data is available
through BOM entities as much as possible, it is not known if this will be possible
or feasible for all future applications. Hence, you have to assume completely
different BOMs for the different rule engines within an application. Because
different rule engines may also support different sets of functions, you cannot
assume any similarity between rule engines of the same application. If there is
to be a single instance of Rash per application, it will take only a marginal extra
effort to support multiple applications. This leaves the following two options.

1. One Rash instance per rule engine (so sometimes multiple Rash instances

18

ID Description
A1 A rule author can express that a specific condition should hold for a

specific fraction of the elements in a collection.
A2 A rule author can express that a specific condition should hold for a

specific number of elements in a collection.
A3 A user can get the average value of a function of a collection member

over that collection.
A4 A user can get the sum of the value of a function of a collection member

over that collection.
A5 A user can get the minimum value of a function of a collection member

over that collection.
A6 A user can get the maximum value of a function of a collection member

over that collection.
A7 A user can get the number of items in a collection.
S8 A user can obtain a list of the first n elements of a list. In case

of elements with begin and end timestamps, the user may specify
whether to use the begin or the end timestamp for the ordering; by
default the beginning timestamp is used.

S9 A user can obtain a list of the last n elements of a list. In case of ele-
ments with begin and end timestamps, the user must specify whether
to use the begin or the end timestamp for the ordering, otherwise the
ending time stamp is used.

Table 3.6: User requirements on the aggregation power for a rule’s condition

per application)

2. One Rash instance for all applications

While there are no guarantees about similarities of the BOMs and the sets
of supported functions between the rule engines of an application, there will be
an aim to make them similar, so that rules can be reused. If this is the case,
then there is a big advantage in letting a single authoring environment handle
all the rule engines in one application. A rule that is dependent on functions
and entities that appear in more than one rule engine only needs to be written
once, and an author can control in which engines the rule is deployed. This
leads us to the conclusion that the second option, a single Rash instance for all
applications, is a requirement.

ID Description
DP1 Rash will be centrally deployed
DP2 Rash will be accessed through a portal
DP3 A single instance of Rash can manage multiple applications

Table 3.7: User requirements on how, when and where Rash is deployed

19

3.6 UI Integration

Currently, the focus projects each have their own approach to rule authoring.
The following UIs types are found.

1. No GUI — the rule engine is Drools and rules are authored only by soft-
ware engineers in *.drl files.

2. A text-box for entering rule conditions in an extremely simple condition
language. This text-box has no language support of any kind. The con-
dition always selects a set of users and the action is always to send a
notification to these users. A second text-box serves to enter the notifica-
tion text.

3. A modular form (see Figure 3.2) that lets the author build a rule by
selecting a template for a condition, then fill in the blanks, followed by
selecting a template for an action, then fill in the blanks. The templates
are fixed; users cannot create custom templates.

Rule 1 for survey “Well Being Survey #1”

How well did you sleep last night?

Very bad

Set a flag on patient

of medium severity

If...

was answered with...

then...

Figure 3.2: A modular form for building a template-based rule. In this screen-
shot: the choices made in the 1st and 3rd inputs change the available options in
the 2nd and 4th inputs, respectively.

All interfaces that occur (options (2) and (3)) are web interfaces. Their UI’s
have different look-and-feels. Moreover, some applications use forms to build a
rule, and these forms have intermediate database lookups. Designing a reusable,
generic interface that would accommodate this last feature would require for-
malizing what constraints to the presented editing options and to the authored
rule the interface is aiming to achieve. This is an advanced challenge with un-
certain outcome, but certainly interesting for future work. A simpler solution,
for now, is to design the system such that different rule authoring UI’s can be
created for it. The resulting set of requirements is given in Table 3.8.

20

ID Description
UI1 The authoring UI should be web-based (i.e. should run in a web

browser).
UI2 The UI for editing the body of a single rule can be embedded in another

application’s web-based UI.
UI4 The architecture should be such that additional UIs can be created

that only work for specific applications.

Table 3.8: Requirements on the authoring environment’s UI

3.7 Rule testing

Should the author test?

A few of the focus projects provide rule authoring for end-users, which are
presumed to be non-programmers. In both these projects, rules are deployed
into the actual rule engine directly when the user “saves” a rule. In BRAEs
that come with industry-grade BRMS’s —IBM Operational Decision Manager
[3], inRule [15], Drools [16], etc.— rules can be tested by feeding them with
mock data. The reason for this difference is that while the rules authored in
the former case are meant for fairly predictable, elemental use cases, and there
are no cases of inference rules (see Table 3.2), while the BRAEs in the latter
case are meant to be ready for any kind of rules. Because we are designing a
general-purpose BRAE we should see testing as an integral part of authoring,
and users should therefore be able to test rules before employing them in the
live application.

Testing on real or mock data

It seems like a convenient choice to allow the author to test rules on the real
business data, without harming that data. This is easily possible by simply
not persisting any changes made by the rules to the data during test runs.
The problem with testing on real data, however, is privacy. A rule author can
write rules that set highly specific conditions (e.g. in a rule condition requiring
a person’s address to be that of his neighbors). From the test results, the
author can then elicit private information. This could especially be harmful
if the business data covers sensitive information like medical patients’ records.
For this reason, rules should be tested against mock instances of the business
database.

Requirements

The resulting set of requirements is given in Table 3.9.

3.8 Conclusion

Many requirements topics were omitted in order to keep the research effort fo-
cused on the core problem of the assignment. For instance, security wasn’t

21

ID Description
VC1 Per rule engine the BRAE can be configured to deploy rules imme-

diately upon clicking save.
VC2 Per rule engine the BRAE can be configured to bundle saved changes

into a commit. A commit has to be explicitly pushed by the rule
author for the changes to the rule set to be deployed.

Table 3.9: User requirements on the integration concerning rule deployment

covered, and version control was only covered to a limited extent in the test-
ing section. The requirements that have been covered should provide a sound
motivation for the design that is presented in Chapter 6.

22

Chapter 4

Existing solutions

4.1 Introduction

When devising any enterprise software solution, the build or buy question is one
of the first and important ones to answer [17]. Also, it is crucial to be aware
of the state of the art. Therefore, for this research, a wide range of existing
solutions for business rule authoring have been assessed in various industry
niches.

The industry offers a range of BRMS’s that offer a rule engine, a rule au-
thoring environment and rule management capabilities including rule approval
workflows. Unfortunately, the authoring environments offered with these prod-
ucts are not offered separately, and there are no commercial or open-source
stand-alone BRAEs available. However, there are lessons that can be learned
from the BRAEs that come with existing BRMS’s for building a stand-alone
BRAE in-house.

First, industry-leading BRMS’s were explored for their rule authoring envi-
ronments. In addition to this, authoring environments for database queries were
explored. This is because rule conditions have a lot in common with database
queries: making a selection on a set of database instances (rows) is similar to
making a selection on a set of entity instances for which a rule should fire. All
the UIs for rule- and query-authoring that can be found in the industry can
be broken down into six categories, which are elaborated in Section 4.2 and
4.3. Of these categories, one was chosen to be essential for Philips’s purposes
(Section 4.4). Existing tools that applied this editing approach —but were not
specifically built for rules— were looked at next, assessing for reuse and har-
vesting the concepts they apply (Section 4.5). Finally, in Section 4.6, the choice
is made to build the solution in-house.

23

Figure 4.1: A text editor, enhanced with features specifically useful for editing
code

4.2 Existing business rule authoring environments

4.2.1 Introduction

The authoring environments of InRule R© [15], Drools [16], XpertRule R© [18],
Bosch Visual Rules R© [19], Progress R© Corticon R© [20].

4.2.2 Code

Drools is an example of a rule engine that has a language, Drools Rule Language
(DRL), in which entire rule bases can be written. This can be edited in Eclipse
(see Figure 4.1) or in Workbench, Drools’s web-based rule authoring and man-
agement environment. Unfortunately, neither environment has type-checking
and auto-complete for the DRL. A BRMS like InRule has no language exposed
to the user to do this, but it does have a language (an ’Excel R©-like syntax’ [15])
for entering only the condition of a rule.

4.2.3 Flow/decision tree

Most BRMS’s support decision trees, sometimes referred to as flows. A decision
tree is depicted in Figure 4.2. Every leaf in the decision tree is equivalent
to a rule’s consequence. The condition of that rule is then equivalent to the
conjunction of all conditions appearing on the root path of that leaf [21].

4.2.4 Decision table

The decision table is semantically similar to the decision tree, but differently
visualized. Every row in a decision table corresponds to a root path to a leaf in
a decision tree. Every column in a decision table corresponds to a variable and
the rows contain conditions about these variables, see Figure 4.3.

24

Figure 4.2: A decision tree encodes several rules. Angular boxes contain vari-
ables, rectangular boxes contain conditions and round boxes (leafs) contain ac-
tions.

Figure 4.3: A decision table encodes several rules. Each column is about a
variable, each row contains conditions on each of those variables (or a “*” if no
condition has to hold) and the last column contains actions.

25

Figure 4.4: Editing natural-language code by not typing text, but editing the
syntax tree directly, filling up fields by selecting possible content options from
a menu’s.

4.2.5 Syntax-directed editor

A projectional editor like the one of InRule displayed in Figure 4.4 lets the
user manipulate some language’s Abstract Syntax Tree (AST) directly. By
choosing constructs and values from drop-down boxes, one builds up a syntax
tree. Because this bypasses parsing, the syntax of the edited language may look
like natural language.

4.3 Existing database query authoring environ-
ments

When a rule becomes enabled, it does so for a selection of entities, described in
Section 2.3. If every entity corresponds to a database table, the condition of a
rule has the same function as a database selection query. For this reason we have
also looked at authoring solutions for database queries for non-programmers.

4.3.1 Visual query builder

A visual query builder, shown in Figure 4.5 is one that shows the classes of a
database in schema view (an Entity-Relationship (ER) diagram), and attempts
to visualize the conditions the query imposes on the displayed classes in this
view. Relations between properties of distinct classes are drawn as lines, and
conditions in which only a single class’s property is involved are drawn as a
seperate item connected with a line to said property.

4.3.2 Template query builders

Another common way the industry lets non-technical users author queries is by
letting authors move directly towards building a visualization, see Figure 4.6.
The author chooses what has to be on the x-axis, on the y-axis, what to group
by and what to filter by, or whatever is relevant to the type of visualization that
is being built. The underlying query is a fixed template for a visualization type,
and the author selects (lists of) database columns for the blank spots. Filters
can be added too, which are fixed templates with open parameters too.

26

Figure 4.5: A visual query builder, based on the attempt to visualize a query
in an ER diagram.

Figure 4.6: A template query builder lets a user “fill in the blanks” in a mostly
pre-formed query

27

4.4 Assessment of most useful authoring con-
cepts

4.4.1 By comparison with found alternatives

Template query builders

Template query builders are included in the previous Subsection for completion,
but they are not suitable for expressive diversity demanded by rules specified
at Philips; see Chapter 3.

Visual query builders

Visual query builders visualize entities and relations between them; a relation
about a single entity is shown as a ’filter’. If used for editing rule conditions
these relations would be the facts about one or more entities. When using more
complex datatypes that are not entities like selections of time or timestamps,
the meaning of the visual query builder view becomes unclear: should these
datatypes be displayed in the same way as an entity? And how should it be
displayed if a datatype like a time selection is in fact the result of a calculation?
Moreover, the visual query view natively provides no way to visualize what
the logical relationship between the many facts are: if they should hold in
conjunction, disjunction, or more complicated nested structures.

Workflow / decision tree editors

Workflow and decision tree editors are also not suitable. Workflow editors,
contrary to visual query builders, only provide a visualization of logical relations;
all other expression constructs are hidden within the nodes. For decision tables
a similar issue holds, but there the calculations have to be hidden in the column
headers. This raises the issue of how those constructs are then edited inside the
nodes. For example, neither a decision table or decision tree can in a trivial way
represent a for-all construct, meaning another way of editing that and other
expressions would still have to be developed.

Syntax-directed editors

Syntax-directed editors work with a view that encodes all information at once.

Conclusion

The syntax-directed editor seems the clear winner here, but let us back up a bit
and consider combinations of the alternatives. One could think of combining a
workflow or decision tree editor with a visual query builder, because they are
partially complementary. Unfortunately, even the combination of these editors
could not, for instance, visualize a for-all construct. Therefore they would still
have to incorporate code editing in their nodes or column definitions, or in-
corporate a syntax-directed editor for doing this. Moreover, having multiple
different views increases the complexity of the editor and thereby the learn-
ing curve. The syntax-directed editor is the only catch-all solution even when
combinations are considered, and is therefore the solution of our choice.

28

Natural
language

Target rule
language 1

Target rule
language 2

Target rule
language n

transpile

transpile

transpile

Figure 4.7: Hypothetical solution: transpiling from natural language to target
languages that can be loaded into a rule engine.

4.4.2 By comparison with natural language

Another way to explain why the syntax-directed editor is the best solution is to
see it as the next-best alternative to using natural language to program. One
could see natural language as the ideal way for non-programmers to communi-
cate their wishes to a computer, if it were not for the fact that that is, in its
most direct sense, impossible. Natural language is, after all, used with great ease
by all of us to communicate concepts of high complexity, this report being an
example of that. The situation is displayed in Figure 4.7. As is to be expected,
there are a number of issues with this. Firstly, the semantics of natural lan-
guage are often ambiguous. Secondly, if it would not be ambiguous, capturing
its vocabulary and grammar in a working parser is a world-class challenge.

A solution is to have an intermediary, non-ambiguous rule language. Each
construct of this rule language can be parsed to natural language and displayed
to the user. This fits the syntax-directed editor paradigm: the user can select
from a menu of natural-language constructs that fit, thereby understanding
what is going on the one hand, while keeping the program executable on the
other hand. The structure is depicted in Figure 4.8.

4.5 Existing syntax-directed editors

The syntax-directed editor is not only being used for business-rules. It is a
fairly old concept, and in the past decades several incarnations have popped up,
notable examples being the Intentional Programming Workbench, SmartTools,
Jetbrains Meta-Programming System (MPS) (see Figure 4.9) and Mbeddr (Fig-
ure 4.10). A study was conducted in 2014 by M. Voelter et al. [22], which
investigated the usability of such systems, and Jetbrains MPS specifically. This
study highlighted a set of usability issues with projectional editors, see Table 4.1.
This list of issues needs to be considered when aiming to improve the usability
of syntax-directed editors for rules. Some of the issues need some explanation.

29

Condition
Language

Target rule
language 1

Target rule
language 2

Target rule
language n

transpile

transpile

transpile

Natural
Language

display as

Figure 4.8: Transpiling from a machine-readable condition language to target
languages and natural language.

Category ID Issue

Efficiently
Entering
(Textual) Code

EE1 Requires manual, user-based disambiguation
EE2 Cannot establish references to non-existing nodes
EE3 Requires structure-aware typing
EE4 What you see is not what you type
EE5 Requires notation-specific editor support

Selecting and
Modifying Code

SM1 Selection is based on the tree structure
SM2 Hard to perform cross-tree modifications
SM3 Requires structure-aware copy/paste
SM4 Does not support free-floating comments
SM5 Requires dedicated support for commenting code
SM6 Does not support custom layout

Infrastructure
Integration

II1 Requires tool support for diff/merge
II2 Text-based shell-scripting tools cannot be used
II3 Requires tool support to export/import textual

syntax

Table 4.1: Usability issues with projectional editors, found by Voelter et al. [22]

30

Figure 4.9: Example of projectional editing in JetBrains MPS

Figure 4.10: Example of projectional editing in Embeddr

Issue EE1 refers to the fact that constructs are chosen by text-input: the user
can start typing code at some vacant node in the syntax tree, and the editor
generates a subtree from the typed code. When the syntax of this code is am-
biguous, as it is sometimes in projectional editors because projectional editors
allow it to be, the editor has to prompt the user to disambiguate. EE4 and EE5
do not apply so much to a projectional editor as shown in Figure 4.4, where all
projections are text-centered, as they do to more general projectional editors
as shown in Figure 4.9 and Figure 4.10 that have non-textual projections of
language constructs.

A more general conclusion Voelter et al. made in their research, from an
enquiry among Jetbrains MPS users, was that projectional editing was generally
seen as an efficient technique for every-day work, but that the effort of getting
used to it is high. This provides another challenge for the design of Rash.

4.6 Conclusion

Several kinds of editor paradigms are used to make non-programmer users au-
thor business logic. However, available tools either are not stand-alone or sep-
arable from the software package they belong to, which is the case with the
authoring environments that come with BRMS’s, or they are tools that are
very general-purpose and therefore providing a lot of configurability, making it
hard to learn for an end user. Theoretically, one could separate Drools Work-
bench from the rest of Drools, but this likely requires a large reverse engineering

31

effort and adaptation on one hand, and much adaptation of Drools-specific code
on the other hand.

The choice therefore falls on developing a new tool from the ground up. Doing
this will provide us with full flexibility to address all user requirements in an
optimal way, and to fully optimize the tool for usability by non-programmers.

32

Chapter 5

Main design decisions

This chapter aims to explicitly list which design decisions were made in order
to address the challenges set out in Section 1.5. In the previous chapter a
choice was made to design a syntax-directed editor, a decision recounted in
Section 5.1. The subsequent decisions that were made to optimize usability for
non-programmers are given in Section 5.2. Decisions regarding the type system,
which is an important system both in guiding the user towards and in ensuring
the user can only do correct solutions, are described in Section 5.3. How the
languages of the rule’s condition and consequence relate to each other is inferred
in Sectin 5.4. Finally we discuss language extensibility and what challenges it
addresses in Section 5.5.

5.1 Syntax-guided editor

As discussed in Chapter 4, but repeated for completeness here, examination
of existing solutions led us to the decision for taking the syntax-guided editor
approach to let non-programmers author rules.

5.2 Usability for non-programmer

5.2.1 Maximization of simplicity

When a rule author logs into the system, he only sees information that has
relevance to his role as rule author for the applications he is entitled to author
for; all other information is left out.

5.2.2 From a piece of text to a syntax tree visualization

In a syntax-directed editor, you are essentially not creating a text, but you
are manipulating the abstract syntax tree directly. The text is generated from
that. Existing syntax-directed editors for rules still look very much like a piece
of text is being created [3][15][16]. From Table 4.1, issues EE1, EE3, EE4,
SM1, SM2 and SM3 all originate from the fact that the editor still looks like
a text editor, leading the user to want to treat it as text: from wanting to
type the construct (s)he wants to use (EE1, EE3, EE4) to wanting to make text

33

selections disregarding the syntax tree structure (SM1, SM2, SM3). Because the
projectional editor still wants to be similar to a code editor, problems arise, and
the true potential of directly editing the underlying structure is not leveraged.

What a syntax-directed editor should do instead of trying to look like text is to
communicate the structure that is actually being edited to the user: the syntax
tree. The experience of editing textual code should be completely dropped in
favor of editing a syntax tree, so instead of hiding the tree structure we will
bring it out visually as clear as possible while keeping in mind that the author
can still read the resulting projected text. Because a syntax tree or tree data
structure in general is similar to a physical structure, for building (“authoring”)
one, lessons can be taken from building physical structures on a desk: it relies
heavily on moving parts around with your hands (e.g. moving Lego blocks or
jigsaw pieces around). This can be translated to a heavy reliance on dragging
and dropping.

5.2.3 Type system awareness

We show the datatypes of expressions to the user. Not just at the empty leafs
of the syntax tree (where input is required), but through the entire tree, so that
the type of each expression is known before it is dragged-and-dropped elsewhere.
This is not done in existing syntax-directed editors [3][15][16][2], instead, they
only show the data type of an empty leaf requiring input. To continue the
example of the last subsection, not showing the datatypes of expression to the
user is like giving the user a jigsaw puzzle where all interconnects have identical
shape: there is going to be a lot more trial and error, because the number of
correct solutions has not changed, but the number of clues to direct the user
toward them has decreased.

5.2.4 Automatically creating variables

Of Table 4.1, issue EE2 states that one cannot establish references to non-
existing nodes. With rule editing variable scopes are fairly simple: there is
the global scope, containing all global variables and variables representing the
matches of a rule (the instances of entities against which a rule will match).
Then if there is a function with a lambda expression, then that lambda expression
introduces a new variable scope and one or more variables that are only defined
within that scope. For instance, if we have an expression “. . . and there exists
a person x such that x’s name is ‘John”’, then x is the new variable and the
part that came after the words “such that” is the new scope outside of which
x is not defined. E.g., x is not defined in the part of the sentence denoted by
“. . . ”.

Because of the simple variable scope system, creation of variables can easily
be automated: global scope is assumed by default. If a variable is used in the
variable-declaration part of a lambda expression (i.e. the “person x” part of
“there exists a person x such that . . . ”), its scope is set to the corresponding
function-body part of that lambda expression instead (i.e. the “x’s name is
‘John”’ part of the example). The first action that is done (i.e. the first usage
of a variable) that violates this scope constraint is the one that gets rejected:

34

Figure 5.1: Ways to visualize the BOM: graph (t.l.), list (t.r.), schema (b.l.)
and nested shapes (b.r.)

this can be a variable usage outside of that variable’s scope, or this can be a
variable usage that sets its scope such that some usages would fall outside of it.

If the creation of variables is automated, the user can move right on to ref-
erencing them. We can let the user do this by, in whichever place (s)he can
choose a variable for usage, always presenting an unnamed alternative for ev-
ery datatype. This nameless alternative can be used in the same ways as the
named, already-created variables, with the sole difference that using it will give
it a name and “create” it.

5.2.5 Visual object hierarchy guidance

Visualization style

The business object model can be viewed as a forest-like structure: it is a set of
classes that have zero (in case of a primitive) or more properties, which besides
having a property name are classes too. Properties can therefore have properties,
creating multiple tree structures, i.e. a forest. We want to give the user a
comprehensive and intuitive insight into the BOM and we can use the power of
visualization to achieve this. For a forest structure, several visualizations are
available, see Figure 5.1.

The multi-level list is a suitable way to encode a forest structure like the
BOM, but has a tendency to become much higher than it is wide when it gets
expanded, become harder to fit on a screen in its entirety. It also does not evoke

35

the analogy in the viewer’s mind that the list items are physical objects that
can be pointed to and that have properties, an analogy that is often used as a
narrative when teaching the object-oriented programming paradigm.

The schema visualization, when being used for displaying entities and their
properties, including relations, do not display the data structure as a forest.
For instance, when we have entities Person and Car, and a car has a property
“owner” of type Person, the schema visualization puts an edge named “owner”
between the Car and the Person tableau’s for that, instead of drawing a second
Person-tableau and drawing a line towards that one. If it would, the view
would get clogged very quickly. Also, properties that have complex datatypes,
displayed as edges, and of properties that have primitive datatypes, displayed as
items in a list, are treated completely non-homogeneously by the visualization.
On the upside, the schema visualization does evoke some notion of physical
objects.

The nested shapes visualization does evoke some notion of physical objects
and the fact that objects and primitives that are properties are drawn inside
the owner’s shape confirms the notion of ownership. The latter however has
a downside: it somewhat strongly suggests containment with every property,
while properties can also merely be references. All properties are treated homo-
geneously, while the visualization of complex properties/entities extends seam-
lessly from the visualization of a primitive property/entity.

The graph-style visualization shows a shape for each entity or property like
the nested shapes visualization does. A property’s shape is displayed outside of
the owner’s shape, with a directed edge (e.g. with an arrow head) denoting the
relation between the two. It therefore has the same advantages as the nested
shapes visualization, but it lacks the disadvantage of suggesting containment.
Therefore, our choice falls on this visualization.

Interactivity

The forest of a BOM can be infinite. Consider, for instance, a Person having a
property “spouse” that is also of type Person. This recurrence creates an infinite
path. Hence, the BOM can never be visualized in its entirety. Even if it could
be, showing all of the BOM at once can overwhelm the user. For this reason, we
use interactivity: properties are only shown when an object is clicked. When a
primitive property or entity is clicked, nothing happens. When the user clicks
the background, the visualization goes back to only showing the top nodes.

Force layout

A physical force layout is employed to let the nodes float around in, partially
attracting and repelling each other, to strengthen the physical analogy.

5.2.6 User-defined functions

Authors can reuse their own and other author’s creations with a user-defined
functions feature. Pieces of AST can be diverted to a new function with the

36

help of a user friendly mechanism. A user-defined function will automatically
become available at any other application if its dependencies (i.e. the functions
and datatypes that are in its body) are also available.

5.3 Type system

5.3.1 Entity or no entity

Consider a rule engine for an insurance company with the BOM depicted in
Figure 2.1. This BOM contains a set of complex types (classes), e.g. Person
and House. It also contains at least one primitive type, e.g. String, the type of
a property of Person. This type, besides being primitive, has another difference
with Person and House: it is not an entity in the data model; one way of thinking
of it is that there is no separate database table for all string values. As another
example, consider the property date of birth of class Person, which is itself
of type Date. This type is a complex datatype, but it is not an entity. Each
type has a flag that says whether it is or is not an entity. Only if a datatype is
an entity, it will be featured as a top-level node in the BOM visualization.

5.3.2 Constructibility

As has been concluded in Subsection 3.4.5, it should be possible to construct
new objects. Classes have no methods in Rash, so new objects can only be
returned by functions that have no object-oriented context —functions that are
only dependent on their arguments. An object’s constructor is also a function
that depends on nothing but the class that it is creating and the constructor ar-
guments; because of this similarity, we refer to the functions that create objects
as constructors.

Some complex datatypes may have attributes that are all allowed to have
undefined values, while others have properties that are not. The constructors of
some objects may also be “smart”, i.e., may not be a straightforward mapping
between (a subset of) the entity’s properties and the constructor’s arguments.
Therefore, Rash cannot automatically generate constructors for all objects.
Hence, both kinds of entities can be accommodated by simply specifying in a
datatype definition if the datatype is allowed to have a no-argument construc-
tor. Only if this is specified to be true, Rash will provide the author with such
a constructor for that datatype.

5.3.3 Generic types

In BOMs, collections are a common thing. Consider the BOM of Figure 2.1,
which contains several collections: Person.cars, Person.houses and Person.

policies, for instance. A collection is a datatype, but it is a generic datatype:
it also has an item type. Person.cars is a collection with item type Car

and House.owners is a collection with item type Person. In common object-
oriented programming languages Java, C++ and C#, a generic type is denoted
Type<Parameter>, e.g. Collection<Car>.

37

Data

Boolean Number String Object

Person

Car

Policy Date

House

Asset

Figure 5.2: An example datatype inheritance tree

5.3.4 Enum types

BOMs, it often occurs that a property of some type —a number, or a string—
can only take a finite set of values. For instance, a House may have an integer
property ’carStorage’ that may take only the values 0 (meaning none/public), 1
(parallel), 2 (angled), 3 (perpendicular), 4 (driveway) or 5 (carport). It would
be ideal if not only the authoring-environments type checking system could
prevent the user from entering faulty values (e.g. -1 or 6), but also only let the
user interact the names/meanings of the possible values, instead of with the
integer values, e.g. with “driveway” instead of “4”.

5.3.5 Subtyping

Should subtyping be part of the type system supported by the BRAE? Suppose
you want to have a function that checks if two objects are equal. Because
every application has different datatypes coming with its BOM, this function
would have to be respecified for every one of these datatypes. If you have a
type hierarchy, however, you can define the equality function to work with an
abstract type called, say, ’object’. Now, every datatype introduced can simply
be specified to be a subtype of ’object’, and is therefore understood to work as an
input to the object equality function. Some sort of type hierarchy is considered
essential for usability of functions.

Another design choice is whether to allow multiple supertypes to one datatype.
The reason to do this is to allow polymorphism across the inheritance tree.
Consider the example inheritance tree depicted in Figure 5.2. Suppose that we
want a “greater than” function to work for both Number and Date parameters
(provided that at each individual usage, both parameters are the same type).
There is two ways to solve this.

1. Define the “greater than” function to work on some abstract type called,
for example, Comparable. Both Number and Date datatypes, besides be-
ing subtypes of Data and Object, respectively, will also be subtypes of
Comparable.

38

2. Define the ’greater than’ function as requiring arguments of type Number.
Overload this function to also accept Date arguments.

There are several problems with the first approach that illustrate why we should
not support multiple supertypes.

1. One should consider the time functions are implemented. One would
expect that the greater than function and the Number type would be reused
by almost all applications. If one of those applications needs to make
greater than work on a Date object as well, then the greater than function
definition would need to be adapted to support an abstract Comparable

type, and the Number type definition would have to be adapted to have
Comparable as a supertype. To prevent every possible case of this, one
would have to create an abstract supertype for every function.

2. Multiple inheritance is harder to communicate to the author. If we con-
sider the inheritance graph, where the nodes are types and the directed
edges correspond to direct subtype-supertype relations, then with multi-
ple inheritance this graph is a directed acyclic graph, while with single
inheritance it is a (poly)tree.

With function overloading, the downsides are

1. Functions that are overloaded support multiple distinct types, which may
be more complicated to communicate to the user. However, this is likely
to be less complicated to communicate than the myriads of abstract types
likely to result from multiple inheritance.

2. It is not possible to demand that some methods are implemented. With
multiple inheritance, this is possible. For example: suppose for Comparable
both a greater than and a less than function are specified. Then it is im-
possible for a Date object to inherit Comparable, while only implementing
the greater than, but not the less than function.

These issues are considered less problematic than the issues associated with
multiple inheritance. Hence, we decide against multiple supertyping, but add
the requirement that it should be possible to overload the types of function
parameters.

5.4 Two languages per rule: condition and con-
sequence

In a rule editor one needs to edit rule conditions and rule consequences: essen-
tially two “programs” per rule that have distinct purposes, begging the ques-
tion how these languages are related. After all, there are expressions that have
meaning in both the condition and the consequence (e.g. “1 + 2”) and there are
expressions that do not (e.g. an action like “send notification” does not fit in
the consequence). The namespace of the condition and the consequence are also
related, as any variable used in the condition can be used in the consequence. As
variables can be of all types this entails that all types in the condition language
should be part of the consequence language.

39

Considering constructs, we should realize that the execution engine handles
the code in a consequence differently. Consider for instance Drools as the exe-
cution engine. If someone would want to do a for-all quantification to calculate
a boolean value, the syntax for this is different in the condition and in the con-
sequence. Generally, for each authoring language construct you have to write
separate compilers for the condition and for the consequence. However, we want
to drag e.g. a “+” construct freely between the condition and the consequence
in the authoring interface, even though if the rule engine implementation dif-
fers depending on its place. For this reason, for some more advanced condition
constructs it may be considered not worth the effort to support them in the
consequence, or some consequence constructs may be completely meaningless
in the condition (e. g. any construct of type “procedure”). Note that the latter
does not happen vice-versa: all condition constructs “make sense” in the con-
sequence, since the top node of the condition is a boolean, and one can think
of procedure constructs in the consequence that take a boolean as an operand.
Anyhow, one wants to define constructs that are supported for both the con-
dition and the consequence, and one wants to define constructs that are only
supported by either one of them.

Now the next question is: should both consequences use the same set of types,
or should there be consequence-only types? The answer is to use the same set
of types, because a type that has no meaning in either part of the rule will never
end up there if there are no constructs supported in this rule that make use of
it. For example: if the condition’s top node type is “boolean”, an element of
output type “procedure” will never end up in the syntax tree of the condition if
there is no condition construct with an input type “procedure” or any supertype
of that. Because it also simplifies things, we let the type sets for the condition
and the consequence be equal.

5.5 Extensibility of the syntax

We aim to ensure that the language for rule writing used in our authoring
environment can provide the highest possible level of abstraction while staying
formal/exact. Consider Figure 5.3. The line denotes the level of abstraction of
concept specifications (everything is a concept, including a business rule). At
the top are a person’s thoughts: the concepts are very abstract. If users could
nevertheless program with their thoughts, e.g. program simply by imagining
the designed solution, it is safe to say that their productivity would be very
high relative to the productivity of a modern-day programmer. With natural
language this would still be very high. However, computers work with formally
specified, discrete concepts, not the fuzzy concepts that humans can work with.
The optimal point for users to be programming in would therefore be the most
abstract concept specification that is still formal. Figure 5.3 denotes this with
the green dot.

Current-day high-level general purpose programming languages are probably
the highest level of abstraction we can achieve without getting domain specific.
If you want to go further up, you have to make assumptions about the context of
the application, and a language is not suitable for all domains anymore. Because

40

Fuzzy
concepts

Formally
specified
concepts

Binary instructions

Person’s thoughts

Natural language

Sweet spot

High-level, general purpose
programming language

Figure 5.3: Range of abstractness, from instructions in the brain (highly ab-
stract) to binary instructions on a processor (highly concrete). The sweet spot
is where would want rule authoring to be.

in Rash an author manipulates the syntax tree directly, the need for parsing
is bypassed. This allows it to provide a functional language in which function
calls can have a free form syntax specified per-function. This allows maximum
flexibility in specifying domain-specific syntax, with the only limitation being
that the syntax has to be context-free. This is not a big problem, as the vast
majority of natural languages have been found to be context-free [23].

Suppose a business wants to program on a high level abstraction to achieve
the most productivity. Firstly, they use the highest-level generic purpose pro-
gramming language out there to get their logic implemented. If a business can
specify its own functions and add them to the rule language for general use
or for specific applications, it would allow business to create a language more
tailored to the application: they go up from generic-purpose towards the “sweet
spot” in Figure 5.3, but only as much as their programmer’s time would allow
them to. To get closer, one could let rule authors introduce abstraction. Rule
authors should therefore be able to combine expressions built with these func-
tions to define more functions in a quick, user-friendly and easy-to-understand
way, so they can do it autonomously and flexibly allocate their time between
introducing and using these abstractions. In Figure 5.3, this brings us as close
to the “sweet spot” as the time of a business’s programmers and rule authors
combined allows.

Summarizing:

• Software engineers can for any project at any time add new functions by
creating a Rash definition for this function, and specify in it which rule
engines support it, and implementing the parser for this function for every
rule engine that is supposed to support it.

41

• Rule authors, in turn, can create new functions from expression trees he’s
created in a user-friendly way, which will be explained further in Chapter 6.

The former provides extensibility to the authoring environment: for any data
source that might become available in the future, functions that use it can be
added to the rule language. The latter improves the usability of the authoring
environment.

42

Chapter 6

Initial design

6.1 Introduction

6.1.1 Chapter outline

The goal of this chapter is to propose the initial design of a BRAE named
Rash. Consider Figure 6.1, which was featured earlier in the requirements
section of this report. The system has three interfaces with its surroundings,
and this chapter specifies all three of them: the editor that forms the authoring
UI (Section 6.2), the language and BOM configuration (Section 6.3) and the
rule model that comes out of the editor (Section 6.4). The language and BOM
configuration is organized in modules referred to as libraries, and some essential
libraries are proposed in Section 6.5. We conclude the chapter in Section 6.6.

To-be-Proposed
Business Rule

Authoring
Environment

Authoring UI

Figure 6.1: The dashed line denotes the boundary of the proposed system, the
arrows denote the interfaces with surrounding systems.

6.1.2 Choice of narration: constructs become functions

Whereas in the previous chapters we have repeatedly referred to constructs as
the building blocks of a language, the authoring language that is part of the
system presented in this chapter has functions as its building blocks. This is
because it is a functional language; one that of which the syntax solely consists
of calling/using functions; even defining functions is done outside the language.

43

Figure 6.2: The Rash rule editor when starting with a new rule

6.2 Editor

6.2.1 Overview

Upon opening a newly created, unedited rule, the rule editor looks like is shown
in Figure 6.2. The rule editor contains the following areas, with the section
numbers that describe them.

• Title, description and save button. The title and description are ed-
itable in-place. The description serves as a quick and easy way to write
the purpose of the rule down informally, and serves to make sure the orig-
inal intention of the rule stays clear while authoring; and for quick and
detailed identification of the rule to people who did not author it.

• Rule panel, described in Subsection 6.2.2

• Entities panel, described in Subsection 6.2.3

• Leftovers panel, described in Subsection 6.2.4

After explaining these GUI elements, the ways to interact with them in order
to build rules are explained (Subsection 6.2.5).

6.2.2 Rule panel

The panel titled “Rule”, contains the rule “code”: in here we will build expres-
sions for the condition (an expression of type “boolean”) and the consequence

44

(an expression of type “procedure”) of a rule that are formal enough to be au-
tomatically transformed to executable form. In Rash, expressions are built by
manipulating the Abstract Syntax Tree directly. An example of a rule as it ap-
pears in Rash to the rule author while editing is shown in Figure 6.3. From this
figure, you should note that the entire rule reads like an instruction in natural
language; it can be read like a text from the top left to the bottom right.

Figure 6.3: A rule as it appears in Rash. This rule sends a notification to users
on their birthday.

The parts of the rule that can be changed by the author are the two syntax
trees corresponding to the condition and the consequence. They can be recog-
nized by the two hierarchies of nested wireframe boxes. Each box represents
an expression of the datatype that is specified in its top right corner in all caps
font, a style that is maintained for datatypes throughout the application. Its
contents may be either a function (a nonterminal, i.e. having child expressions),
a literal value (terminal) or a variable (terminal). For example: the outermost
box of this rule’s condition is of datatype boolean, and it contains a logical con-
junction (“. . . and . . . ”) function. This function demands two child expressions
of datatype “boolean”. In this example, they have both been filled in with the
equality (“. . . = . . . ”) function. This equality function requires two child ex-
pressions of datatype “data”. The types “number” and “month” are subtypes
of “data”. Therefore, the attribute of the “now” variable (which is —not visible
in this partial screenshot— of type “date”) called “dayInMonth” which is of
type “month” could be used as a child expression. Similarly the other variables
could be used too.

The top row displaying the “For every [x Person] such that” is automatically
generated based on what the current syntax tree for the condition contains. It
is an explicit recounting of the condition’s free variables (in this case “x” of
type Person).

Authoring language

Though the formulation of the instruction in Figure 6.3 is more verbose than
how humans would normally say that someone’s birthday is today, the sentence
is correct and the rule is displayed in a self explanatory way. The ambiguity

45

and vagueness in the way humans communicate with each other means that this
relative verboseness in formally specifying a rule can never be fully eliminated.

The authoring language is the language that the author sees. It is a functional
programming language [24]. Because by building a syntax tree the parser is
bypassed, the grammar may be ambiguous and does not need to be suitable for
parsing. The tree hierarchy is displayed with help of boxes around the text, the
user won’t make parsing errors either. This together allows the text or syntax
describing a function call (each box contains either a function call, a variable
or a literal value) to take any form. In the case of Figure 6.3 it takes the form
of natural language sentence describing what the function does, which is the
intended use for Rash, though other syntaxes are possible. In order to make
the assembly of nested natural expressions read like proper natural language
too, the sentences that form the syntax of each individual function have to be
referentially transparent. This boils down to the requirement that any entity in
the sentence can be replaced by its definition and vice versa. Hence in Rash
the natural language syntax of a function should be a definition or description
of its output.

6.2.3 Entities panel

In the card titled “Entities” the types and variables making up the BOM are
shown. Banners with a name represent variables; banners without a name rep-
resent objects that are not instantiated yet. Uninstantiated objects become
instantiated upon using them (creating a reference to them in one of the syntax
trees), meaning another banner with an automatically generated name will ap-
pear in the domain browser, along with the nameless banner, and the reference
created in the syntax tree will refer to the newly instantiated object. Note that
there is one object called now of type Date already instantiated. This is an ob-
ject that comes with the Time library, something that was already implied by
Figure 6.10, and it contains the current date and time. The result of instantiat-
ing an object is shown in Figure 6.4. This object was instantiated by dragging
the nameless Car object to the empty input field on the leftovers card. Notice
that a new variable with name “carA” appeared on the entities card, how the
carA object is handled as an expression of datatype Car, and how a new empty
field has appeared at the bottom of the leftovers card.

6.2.4 Leftovers panel

The panel titled “Leftovers”, featured on the bottom left of Figure 6.2 and
6.4, can house any expression you drag into it —from single variables to entire
expression trees—, and it has no upper limit on the number of expressions it
can hold. You can also create new expressions in it. The sketchpad serves as
“table space” to put things aside or to write down parts of the implementation
of the rule. It allows the user to work in any order —if the sketchpad had not
been there, the user would be forced to write the correct rule implementation
top-down in one go in the Rule panel.

46

Figure 6.4: A Car object has been instantiated

6.2.5 Editing methods

Expression selection menu

Each expression box in the Rule and Leftovers panel features a small down-
pointing arrow in the top right corner. When clicked, a dropdown menu appears
in which an expression can be chosen as content for that box, see Figure 6.5.
It shows all the functions with a fitting output datatype, the option to enter
a literal value if allowed for the datatype and, if available, a few likely choices
for variables that fit the datatype. Because variable attributes can be infinitely
recurrent (e. g. if a Person has an attribute of type Person), it is often impossible
to show a complete list of variables.

The top right corner of an empty expression box states the allowed datatype.
In order for an expression to fit the box its (output) datatype must be a subtype
(direct or indirect) of the allowed datatype of that box. Additionally, some
functions also require the child expression to be of a specific nature (besides
a specific datatype). The dropdown menu of the expression box adapts to
this; e.g. when a function needs a root variable as a child (a variable that is
not another variable’s attribute), the drop-down of that child expression shows
possible types to instantiate a variable, as shown in Figure 6.6 (it is still possible
to drag a root variable into the expression box from the entities card).

Drag and drop

Expressions, variables and uninstantiated objects can be dragged and dropped.
One can drag variables (so also attributes of variables) or uninstantiated objects
(and also attributes of uninstantiated objects) to an expression in the syntax

47

Figure 6.5: Clicking the drop-down button in the corner opens the expression
selection menu.

48

Figure 6.6: A drop-down for an expression that has to be a reference to a root
variable.

tree. This replaces the target expression, but only if the type of the dragged
variable inherits the allowed type of the target expression.

One can also drag expressions to other expressions. This removes the ex-
pression from its original location, and replaces the expression on which it is
dropped. Again, the move is rejected if the dragged expression does not inherit
the allowed type of the target expression.

Select, copy, cut, paste and delete

Selecting expressions is done by clicking on them. By holding ctrl or shift,
the user can select multiple expressions. Selecting an expression means one se-
lects the entire subtree that has that expression as a root node. Selecting an
expression and then one of its (indirect) children is therefore the same as select-
ing only the first expression. Deleting the selection is done by pressing delete.
If one deletes the last usage of a particular variable that was instantiated by
the rule, this variable also disappears from the entities card. Using ctrl+c
or ctrl+x, one can copy or cut the selected expressions, respectively, and the
expressions are hereby placed on the clipboard. When using ctrl+v subse-
quently, the expressions (meaning, the expressions including all their children)
get appended to the bottom of the leftovers card.

49

Undo and redo

For any UI where the user makes some kind of creation in which mistakes can
be made, undo and redo are two essential operations. They are available under
ctrl+z and ctrl+shift+z, respectively, or as buttons in the top right corner,
left of the save button. To keep the GUI minimal, they are only visible when
applicable, i.e. the undo and redo buttons are only visible if and only if there is
at least one action on the undo or the redo stack, respectively. The undo and
redo stacks are not saved along with the rule.

Repeating parts of a function

When an expression is selected that contains a function, operand-repetition
buttons become available where they are applicable. Consider for instance the
“. . . and . . . ” function. For this function it makes sense to have more than two
operands. When selecting an expression that uses it, it appears as in Figure 6.7.
Clicking the “+” button next to the 2nd operand will expand the function the
read “. . . and . . . and . . . ”.

Figure 6.7: Function expansion button (encircled in blue), visible when expand-
able function (here: a conjunction) is selected.

6.2.6 User-defined functions

After evoking the context menu on an expression box (e.g. by right-clicking), one
can select “Define function...”, see Figure 6.8. By selecting this option, a pop-in
opens in which the author can define a function out of the entire subtree of the
right-clicked expression, that is, the expression and all its child expressions. We
will refer to this subtree as the function body. In Figure 6.8, an expression is
selected that says that variable personB of type Person has his or her birthday
today. Indeed, this could be said in a shorter way, and so we want to define a
function for this.

Figure 6.9 shows the pop-in for defining the function. The right-hand col-
umn shows a list of arguments. Here you can select the argument you wish to
edit. Clicking the bottommost, transparently printed argument will allow you
to create a new argument.

50

Figure 6.8: The context menu is used for defining a new function from a subtree

Figure 6.9: Pop-in in defining a new function.

After selecting an argument, you can click in the function subtree what child
Expression or RootVariable you wish the argument to correspond to. Not all
choices you can make are allowed. If you make an illegal choice, your action will
be rejection and you will get a pop-in with the reason why. Table 6.1 lists cases
when arguments are illegal, and the reasons why. Furthermore, sometimes there
are Expressions or RootVariables that have to be in an argument in the final
function. To this end, arguments satisfying this are already instantiated when
the function definition pop-in opens. When you try to remove or change these
such that the constraint is no longer met, your action is rejected and you get a
pop-in with the reason why. Table 6.2 lists when arguments are obligated and
the reason why.

51

Argument corresponds
to...

Reason for rejection

Subtree that contains a
variable that is also used
elsewhere in function body.

If the function would be reused with differ-
ent content in this argument, the unification
link between the variable now used in the ar-
gument and in the other place(s) in the func-
tion body will be broken, leading the reused
function to behave differently than the origi-
nal subtree from which it was defined.

Table 6.1: Restrictions on the parameters of author-defined functions

When Reason for obligation
When a variable is free with
regard to the function body,
i.e. it is not a bounded
variable of which the corre-
sponding function is in the
function body, this variable
has to be contained in (the
subtree of) an argument of
the function.

If this is not enforced, replacing the original
subtree with the function that is based on it
will cause the usage of this variable to disap-
pear, leading to breakage of unification links
with other uses of the variable and/or to the
disappearing of a match of the rule.

Table 6.2: Restrictions on the parameters of author-defined functions

6.3 Language & BOM configuration

This chapter describes how the rule language and BOM are configured. First,
it is argued that configuring either of them involves instantiating objects from
the same set of classes in Subsection 6.3.1. There it is also explained that these
instantiations are grouped into libraries. Subsequently, the classes that need to
be instantiated to configure the language and the BOM are presented. These are
Function, elaborated in Subsection 6.3.2, Type, elaborated in Subsection 6.3.3
and Variable, elaborated in Subsection 6.3.4.

6.3.1 Organization of the language & BOM configuration

Figure 6.10 shows the complete content creation workflow of Rash. Let us
start by focusing on the rightmost part of the chart. The arrows from the
Domain-Specific Rule Metamodel, or simply Rule Metamodel, to the Rule Model
denotes the process of authoring the condition and consequence syntax trees.
Instantiating variables happens automatically by simply referring to them as
described in Subsection 5.2.4 and 6.2.5.

Before there can be authored, however, there needs to be a business rule
language and a BOM, as they are part of the Rule Metamodel. The term
rule language is a somewhat misleading shorthand, because technically the rule
language is fixed: it is a functional language in which the functions may vary
per application domain. It is not possible to define these functions in by using

52

Domain-
Specific

Rule
Metamodel

Instantiate
global

variables

Instantiate

types

Instantiate

functions

Standard
Lib

Boolean,
Number, …

and, or,
not, for all,

...

-

Time Lib

Date,
Daterange,
Month, ...

select
time, is

during, ...

now: Date

Running
Lib

Person,
Running-
session

send
notifica-

tion

-

Language &
BOM

Metamodel

Rule
Model

Rule
authoring

Instantiate
condition &
consequence
syntax trees

Instantiate
rule
metadata

Instantiate
variables

Rule
Language

& BOM

...

Figure 6.10: As part of the Domain-Specific Rule Metamodel (or simply: Rule
Model) the rule language and BOM need to be defined. One does this by defining
a set of libraries, each being a set of types, functions and globals. The libraries
detailed in this figure serve as examples. From left to right, they increase in
domain-specificness.

the rule language itself; the rule language is for writing rules and in rules it
is only possible to use functions. Therefore, the syntax is completely shaped
by the functions, types and variables that form the Rule Language & BOM.
These three classes, Type, Function and Variable, therefore form the core of
the Language & BOM Metamodel, featured at the left of Figure 6.10.

The BOM usually consists of a set of business object classes, which are types.
It is, however, not impossible for a business to have a singleton or a service, i. e.
a class of which there is only one instance in their business object model. For
this reason, besides classes, a business object model may consist of variables
too, and it may also have classes defined that the rule author cannot instanti-
ate. Furthermore, one may want to define domain-specific functions. Common
bundles of functionality that are of interests to many applications —like first-
order-logic and number arithmetic— can be composed of a set of types and
functions. Some bundles, like reasoning about time, may need global variables
too: for instance, a “current time” instantiation of the a date-time datatype.
The bottom line is: a “common bundle of functionality” is not all that differ-
ent from the definition of a BOM, as they may both need functions, types and
variables.

For this reason, the notion of libraries is used. Each library consists of a set
of types, functions and variables. A few libraries have been recommended as a
part of this work, they are described in Section 6.5. The BOM for an application
is provided by just defining another library that contains the necessary types.
Figure 6.10 displays this process. For each application, or for each rule engine if

53

an application has multiple rule engines (e. g. server-side and client-side), before
rules are being authored for it, one can decide which libraries will be supported.
Also, which rules depend on which libraries completely defines for which other
rule engines the rules can be reused.

6.3.2 The Function class

Functions appear in the user interface as something similar to what is depicted
in Figure 6.11.

Figure 6.11: Example of the way a function should look. This is a for-all
function.

The information we need for a function like this is the type signature (e.g.
“Any” or “Collection<Any>”) of every parameter, and what text comes in
between the parameters (e.g. “for every”, “in”, ...). Moreover, some functions
(also the one in Figure 6.11) have pairs of input fields that combined function
as a single lambda function being passed as input to the function. Also, some
operands may be any kind of expression with the right datatype, while other
operands may have to be a reference to a type, a classproperty, a variable or a
root variable (i.e. not a property of some other variable). A UML class diagram
of the metamodel of a function is given in Figure 6.12.

In the following paragraphs we will first cover type signatures in more detail,
then the repeatability of operands, then the surrounding text forming the syntax
of the function and finally we cover lambda relations.

IC0 LambdaRelation.lambdaVar.expressionType = ’rootvar’

IC1 LambdaRelation.lambdaExpression.expressionType =
’expression’

IC2 ∀o ∈ Function.operands

[
|Construct.templates| = |o.templates|

]
Table 6.3: Invariants concerning function definitions in Rash

Type templates

Consider the function depicted in Figure 6.11. If someone would fill in the
first parameter with an object of, say, type Car, the allowed type in the second
parameter would become more specific, namely Collection<Car> instead of
Collection<Any>. This is because the “any” types in the type signatures of the
first and the second parameter are coupled. In Figure 6.12, this is modeled by
having a single TypeEqClass with a property max: Type pointing to the Type

54

Function

+name: String
+syntaxText: String[*]

Operand

+repeatable: Boolean
+expressionType: 'expression'|'rootvar'|'var'|'type'|'classproperty'
+delimiterText: String
+lastDelimiter: String+operands 0..*

1

LambdaRelation
0..*1

TypeEqClass

1..*

+typeSignature
0..1

Type

+name: String

1

+hasToInherit

0..*

+typeSignature
1..*

0..1

CustomFunction

PreDefFunction

ExprOperand+param

11

+body 1..*1

ClassPropOperand

+propertyOf

Figure 6.12: UML class diagram of the metamodel of a Function. Invariants
from Table 6.3 hold.

with name Any. This TypeEqClass is referenced from an array of TypeEqClasses
called typeSignature of both the first and the second Operand. When functions
are assembled into a syntax tree, the TypeEqClass’s of neighboring functions
are hooked up so that similarity constraints such as this can propagate through
the syntax tree. Rash makes sure the allowed and current datatype of every
expression in the syntax tree is kept up to date accordingly.

Type overloading

Notice from Figure 6.12 that the class properties Function.templates and
Operand.templates are plural: Function and Operand may have multiple tem-
plates. This is useful for overloading a function. For example consider a function
greater than from a standard library. This function is only defined on numbers.
Suppose that for some application, a software engineer has a datatype named
Date representing the date and time, and wants the greater than function to be
defined on that datatype. He can then overload the greater than function, and
specify a second set of templates for it (i.e. a template for the output and a one
for each of its operands). The function will then appear as in Figure 6.13.

Figure 6.13: GUI appearance of a function that is overloaded to support a type
named Date

55

IT0 GenericTypeInstance.param equals, or is a direct or indirect
subtype of GenericTypeInstance.instanceOf.param

Table 6.4: Invariants concerning types in Rash

Repeatability

Sometimes, one might want to define a function in which operands are repeat-
able. Consider, for instance, a conjunction. The syntax may be “... and ...”,
with only two operands. But if one were to make the first or the second operand
“repeatable”, with “ and ” as the delimiter text, then the function could take
from 2 up to infinite operands, e. g. “... and ... and ...” would be possible too.
In the user interface, if applicable to an operand, the user gets the option to
add another operand, or remove one.

Text surrounding the parameters

Before the first operand, between every operand and after the last operand,
text can be configured to appear. A function that has two operands and a
Function.syntaxText array of [’there exists’, ’such that’, ’’] yields
the syntax “there exists ... such that ...”. If the first operand’s repeatable

attribute is set to True, its delimiterText and lastDelimiter left to their
default values, then the syntax “there exists ..., ... and ... such that ...” becomes
possible.

Lambda relations

Notice that in Figure 6.11, the variable that is specified in the first parameter
can only be used in the expression that will be placed in the third parameter,
and not outside. This is because this variable is a bounded variable. In fact,
parameter 1 and 3 together specify an anonymous function or lambda function,
with an input variable (parameter 1) and an expression calculating the output
(parameter 3). In the execution engine, this lambda function itself, instead
of just its calculated output, is passed to the for-all function as a whole to
apply it to every element of the collection given in parameter 2. The restriction
that lambda functions use variable definitions (parameter 1) which may only be
used in the lambda expression (parameter 3) must be enforced in the GUI and
therefore the presence of a lambda relation must be modeled explicitly.

6.3.3 The Type class

A class diagram of the datatype metamodel is shown in Figure 6.14.

6.3.4 The Variable class

A class diagram of the variable metamodel is shown in Figure 6.15. Variables can
be either RootVariable or ObjectProperty. If a variable is an ObjectProperty

is does not have a name of itself, but it is owned by another variable.

56

+param

1

0..*

ClassProperty

+name: String

Class

+defaultConstructible: Boolean

Enum

+options: String[2..*]

GenericType

GenericTypeInstance

SimpleType

Type

+name: String

+properties1

+of0..*

+is

0..*

1

+instanceOf

0..*

1

+param

1

0..*

+inherits
0..*

0..*

Figure 6.14: Metamodel for Types in Rash. Invariants of Table 6.4 hold

Variable

+type: Type

ObjectPropertyRootVariable

+name: String

+propertyOf0..*

1

+is0..*

1

+correspondingTo0..*

1

Type

+name: String

Class

+defaultConstructible: Boolean

+properties1

+of0..*

ClassProperty

+name: String
+is

0..*

1

Figure 6.15: Variables in Rash. Invariants from Table 6.5 hold.

IV0 ObjectProperty.propertyOf.type =
ObjectProperty.correspondingTo.has

Table 6.5: Invariants concerning variables in Rash

57

6.4 The Rule Metamodel

A UML diagram of the Rule class is given in Figure 6.16. A rule has a title,
e. g. “Birthday notification” and a textual description, which the author can
optionally use to write an initial, informal specification of the rule, e. g. “Send a
birthday notification to a person on his or her birthday”. The rule has one ex-
pression for its condition, one for its consequence and any number of expressions
as “sketches”, which correspond to the expressions built in the leftovers panel
(see Section 6.2.4). The expressions of a rule are in a context-free grammar.

NonTerminalExpression

TerminalExpression
Expression

+children

0..*

0..1

Rule

+id: Integer
+title: String
+description: String

1+condition0..1

+consequence0..1

0..*
+sketches0..1

Figure 6.16: Class diagram of the metamodel of a rule

Therefore, an expression consists of a syntax tree, structered as denoted in the
right half of Figure 6.16. We distinguish between a NonTerminalExpression,
which is an expression that has child expressions, and a TerminalExpression.
Any Expression exist as a child of some NonTerminalExpression or of the
rule, as a sketch, the consequence or the condition. Now consider the meta-
model of a Rash syntax tree in Figure 6.17. It is essentially the same model as
in the right half of Figure 6.16, but more elaborate.

Expression

TerminalExpressionNonTerminalExpression

+children

0..*

0..1

FunctionUse VarUse ClassPropRefTypeRef Literal

+value

Function

+uses
1

0..*

Variable

+uses
1

0..*

Type

+refs
1

0..*

ClassProperty

+refs
1

0..*
+is0..*

1

Figure 6.17: More elaborate metamodel of a syntax tree in Rash, showing all
possible kinds of expressions and the things they refer to.

58

This figure shows a NonTerminalExpression is always a FunctionUse which,
as the name says, uses a Function. TerminalExpressions can refer to any other
elements of the language metamodel: a VarUse can refer to variables which are
instances of types or their (in case of classes), while TypeRef and ClassPropRef

can refer to the types and their properties themselves. A Literal, as the name
says, refers to a literal occurrence of an instance of a type. Note that all of the
classes that can be referenced by the syntax tree, the classes on the bottom row
of Figure 6.17, have already been covered in Section 6.3.

Figure 6.18: An example rule

An example instantiation of the rule metamodel is given in Figure 6.19. It
depicts part of the rule of which the GUI-equivalent is given in Figure 6.18.

6.5 Standard libraries

6.5.1 First order logic library

Because a condition of a rule is essentially a proposition that should evaluate
to True for some selection of entities, a language that comes to mind is First
Order Logic extended with arithmetic for comparing numbers, strings and other
types (i. e. with >, <, =, etc.), and sets (with ∈, ⊆, etc.). The set of functions
for first-order logic included for Rash is given in Table 6.6.

59

: Rule

+id = 0
+title = 'Birthday notification'
+description = 'Send a ... birthday'

: FunctionUse

+consequence
: PreDefFunction

+name: 'sendNotification'

+uses

: VarUse

: Literal

+value = 'Happy birthday!'

: RootVariable

+name = 'personA'

: ExprOperand

+repeatable = false
+expressionType = 'expression'

+children

: ExprOperand

+repeatable = false
+expressionType = 'expression'

+operands

+uses

Figure 6.19: Object diagram depicting a partial (i.e. without the condition)
model of the rule of Figure 6.18.

Function name Function signature
negation not bool −→ bool

conjunction bool and bool −→ bool

disjunction (inclusive) at least one of bool or bool is true −→ bool

for all for every data in collection<data> it must hold
that bool −→ bool

exists there exists a object such that bool −→ bool

equals data = data −→ bool

greater than number > number −→ bool

lower than number < number −→ bool

greater than or equal to number ≥ number −→ bool

lower than or equal to number ≤ number −→ bool

Table 6.6: First-order-logic functions

60

Function name Function signature
addition number + number −→ number

subtraction number - number −→ number

multiplication number × number −→ number

division number / number −→ number

power number ∧ number −→ number

Table 6.7: Arithmetic functions for the rule condition language

6.5.2 Number arithmetic library

From the requirements it is clear that we need basic number arithmetic, so we
provide this with the functions in Table 6.7.

6.5.3 Aggregation library

Based on the requirements posed in Section 3.4.6, a set of Rash functions is
proposed, given in Table 6.8.

6.5.4 Time library

A big part of language is reasoning about time. A good example is in a rule
condition like “If a user brushes at least 2 minutes, 2 times a day, every day, for
2 weeks.” To elegantly specify this expression, one would need to use a “for all”
on a “collection of days”. More generally, one might want to make a selection of
time based on any criterium, and then cluster it to get a collection of these time
selections. A set of requirements to reason about time has been defined, given
in Table 3.5. Based on these requirements, a set of Rash functions is defined,
given in Table 6.9.

6.5.5 Event library

In ECA rules, the condition, besides containing facts about business objects,
contains a statement that an event happens. The moment an event happens
this statement is true, so it makes sense to make the output type of such a
function a bool. For the input type, the event, we introduce a new datatype
event. The functions of this library are given in Table 6.10.

6.5.6 Action library

Table 6.11 lists functions that allow basic data alteration actions, and a function
that allows you to do multiple actions in sequence.

6.6 Conclusion

We have proposed a design for an authoring environment that tackles the chal-
lenges outlined in Chapter 1. There is plenty of design aspects that has not
been treated here —user rights management, version control, interfacing with
rule engines, to name a few— because they are too far from the core problems
that are the focus of this research.

61

Function name Function signature
set builder the set of all variables object for which holds that

bool −→ collection<object>

element of data is an element of collection<data> −→ bool

count the number of items in collection<data> −→
number

max the maximum value in collection<number> −→
number

min the minimum value in collection<number> −→
number

average the average value in collection<number> −→
number

sum the sum of all values in collection<number> −→
number

sum of a property the sum of attribute of object of all the objects
in collection<object> −→ number

average of a property the average attribute of object of all the objects
in collection<object> −→ number

min of a property the minimum attribute of object of all the ob-
jects in collection<object> −→ number

max of a property the maximum attribute of object of all the ob-
jects in collection<object> −→ number

first data is the first item in collection<data>−→ bool

last data is the last item in collection<data> −→ bool

next data is the collection item after data −→ bool

previous data is the collection item before data −→ bool

sort by attribute sort collection<object> by attribute of

object −→ collection<object>

sort sort collection<sortable> −→
collection<sortable>

n first items the first number elements of collection<data> −→
collection<data>

n last items the last number elements of collection<data> −→
collection<data>

cluster collection cluster collection<object> by attribute of

object −→ collection<collection<object>>

Table 6.8: Aggregation functions for the rule condition language

Function name Function signature
time selection all moments date between date and date for which

holds that bool −→ daterange

occurs during date occurs during daterange −→ bool

cluster time selection cluster daterange by attribute of date −→
collection<daterange>

Table 6.9: Time functions for the rule condition language

62

Function name Function signature
occurs event occurs −→ bool

Table 6.10: Functions for the event library

Function name Function signature
sequence Action; Action −→ Action

create create a new object of type Object −→ Action

update set data to data −→ Action

delete delete Object −→ Action

append append data to Collection<Data> −→ Action

remove remove data from Collection<Data> −→ Action

Table 6.11: Functions for the event library

A prototype with core features was built, focusing on the GUI front-end.
With this prototype, a series of user tests were conducted, and the next chapter
describes the tests along with their findings.

63

Chapter 7

Prototype and user testing
of initial design

7.1 Introduction

Testing is an integral part of a scalable software development process [25] [10].
User testing specifically is important in the development of a valid user inter-
face. It is, contrary to testing of most components, both part of the software’s
verification and validation [26] processes. This means that the requirements to
the software change as a result of the findings from the user tests. This thesis
contains one such iteration.

The structure of this chapter is as follows. We first clarify what parts of the
initial design were included in the prototype in Section 7.2. The testing method
is explained in Section 7.3. Events pointing towards a hindered usability that
occurred during the tests, and the usability problems that were deduced from
them, are given in Section 7.4.

7.2 Prototype

A prototype was made of the initial design proposed in Chapter 6. Some features
could be implemented only partially and some not at all, but here is a list of
features that made it into the prototype.

7.2.1 List view

When the prototype is opened, a rule list view is seen. The application domain
can be selected in a drop down menu in the right corner of the screen in the title
bar. When opening the application, the first application domain in the menu is
selected.

The rule list shows each rule’s title with its description below it. Clicking on
a rule opens it, navigating the user to the rule editor. When hovering a rule’s
table row a red delete button becomes visible in the right end of the row. In

64

the bottom right corner of the screen, with fixed position (i.e. relative to the
browser window), a yellow “+” button appears. Clicking it creates a new rule
titled “Untitled rule” and with description “This rule’s description goes here”
and immediately adds it to the bottom of the list.

7.2.2 Editor view

All panels and editing methods described in Chapter 6 were implemented. How-
ever, not all features of the metamodel were implemented, which manifests itself
in the editor:

• Overloaded function type signatures

• Repetition of individual operands (only one repeating operand per func-
tion was supported)

• Constructing complex datatypes

• For a ClassPropOperand only the type template of the owner class could
be specified, and not the template for the type of the property itself

• The constraint that a variable usage in a subtree of a variable that has
a scope larger than that subtree has to be part of one of the operands
if that subtree were to be used to define a function, has not yet been
implemented.

7.2.3 Persistence

Rules were persistent, i.e. they could be saved. Custom function definitions
could not be saved. This also led to an error if someone tried to load a rule that
was saved with a custom function in its body.

7.3 Testing method

The subject was given a laptop with a prototype of Rash running in full screen
mode. A video capture was made featuring only the screen (video), the com-
puter audio and audio in the room (through the laptop’s built-in microphone).
Assignments that the user had to carry out in Rash were written down on
paper, and not revealed before prior assignments were completed. Prior to all
tests, the user was...

• asked for permission to record the screen, the computer sound and the
sound in the room;

• reminded that the test is about the application’s performance, and not
theirs;

• instructed to vocalize their thoughts whenever they can, especially if they
would not know how to proceed;

• reminded that they can ask questions to the tester, even if the tester
cannot answer all of them for the sake simulating the situation that the
user will be on his own;

65

Subject’s relevant experience Example rule
walkthrough

1 None -
2 None +
3 None +
4 Professional software engineer +
5 Specifying rules to programmers part of job; had a

few programming assignments in University
+

Table 7.1: User tests

• explained the background and purpose of business rules, as well as what
they are and how they are structured.

A total of 5 user tests were conducted, see Table 7.1. The table also features if
beforehand a walkthrough of building an actual business rule was given.

7.4 Usability issues found in user tests

The user test analysis is as follows. First, events that are testifying of a hindered
usability are collected, which is done in Subsection 7.4.1. A set of problems with
the application that were causing these hindrances were deducted from this in
Subsection 7.4.2. Solutions to these problems are considered not in this chapter
but in Chapter 8.

7.4.1 Events

All events that manifested problems with the usability —some of which occurred
often, others only once— are given in Table 7.2. A thin layer of interpretation
has already been applied before writing this down —this is necessary because
otherwise all events that related to a subject saying something would be unique,
and this list would be impractically long.

7.4.2 Problems with the design

A list of problems was compiled that are likely to be the cause of the events
listed in Table 7.2, and this list is given in Table 7.3. For these problems, a
set of solutions was proposed in Chapter 8. The extra step of defining prob-
lems first, instead of finding solutions for unwanted events directly, was done
because solving broad, conceptual problems leads to a more coherent product
that finding individual solutions for many tiny problems.

66

Event description Problem
S shows misunderstanding of type name 1, 2
S shows misunderstanding of variable name 1, 2
S shows misunderstanding of function name/description 1, 2, 22
S shows misunderstanding purpose of ’leftovers’ panel 6
Automatic move of first non-empty boolean expression from left-
overs to condition confuses S

5, 23

S shows misunderstanding relationship between objects and
their properties

7

S shows he had insufficient experience in business rule specifica-
tion

8

leading S trying to find solution by trying random combinations 9
S expects expression can be deleted by dragging it somewhere
but finds out it cannot

10

S wants to select the matches first 11
S retries action after it got rejected 12
S tries to select variable box instead of expression box surround-
ing it; this is not possible

4

S shows insufficient experience in programming 8
S unclear on what constraints decide what expressions are al-
lowed where (typing, variable scoping, expression-type)

13

S unaware that ’new rule’ button has worked after having clicked 14
S unclear on when mouse cursor is on ’delete rule’ button and
when not

14

S unclear on fact that rule title is editable 14
S can’t find way to enter literal; does not know meaning of the
word ’literal’

16

S unclear on value conventions of certain database fields (e.g.
Car.color: “red”, “Red”, “#FF0000”?)

2

S unclear on difference between hovered and selected boxes 14
S unclear on how to add another proposition in conjunction with
the current one

8, 19

S wants to create a new object but cannot 23
S unclear on that the content selection menu replaces the current
content (including all child expressions) of a box

4, 5

S finds application tiresome to use 3
S unclear on meaning of the different operands of some function 2
S expresses insufficient experience in declarative programming 8
S unclear on fact that all text in Rule panel forms a single sen-
tence

1, 9

S attempts to unify variables by giving them identical names 20
S does not see that a box with the variable name in it is a
manifestation of the object it refers to

21

Table 7.2: Problem manifestations during user tests, with ID’s of underlying
problem from Table 7.3. “S” is a shorthand for “subject”.

67

ID Problem description Solution
1 Naming of types, functions, properties not properly tar-

geted to non-programmer
4

2 No documentation available for types, properties, func-
tions and their operands

3

3 Application suboptimal regarding maximizing keyboard
liveness, button size and minimizing command-depth
(maximum amount of steps until command completion)

1, 7

4 Syntax tree visually inconsistent 1
5 Automatic actions are being done of which it is not cer-

tain that the user had intended them
1

6 Function of Leftovers panel is not self-explanatory 5
7 Relations between objects and their properties not self-

explanatory
6

8 Insufficient experience
9 The subject is insufficiently thinking about the semantics 7
10 Of three methods of moving expressions around: drag-

ging, context menu based and keyboard-shortcut based, it
is unpredictable which action can be performed by which
method.

2

11 The application imposes a working order that is not
strictly necessary.

8

12 Illegal moves are rejected without any feedback as to why;
as a result the user has no clue what went wrong.

7

13 Some constraints are invisible 7, 8
14 Not always clear enough visually whether something is a

clickable, what its click function is and when it is success-
fully clicked.

1

16 The command for entering a literal, as one of the three
main categories of expressions, is much too hidden.

9

19 Editing only happens top-down, and working bottom-up
requires a 3 step process

11

20 Upon moving focus off the variable name text box, no
validation is done

7

21 Most users understand the concept of variables from mid-
dle school mathematics, but the variable names are sim-
ply being identitied as being variable names.

10

22 Expression selection menu only features textual entries,
and does not employ any visual cues as to what its options
look like when employed in the syntax tree.

12

23 Not a problem with the initial design but only with the
prototype.

Table 7.3: Supposed problems causing hindrance during user tests with ID’s of
the solutions from Chapter 8 that addressed them

68

Chapter 8

Additional design decisions

8.1 Introduction

In this chapter, a number of design decisions motivated by the problems exposed
in the user tests are presented in Section 8.2. Each of the design decisions has a
“solution ID” for traceability to the problems given in Table 7.3. In this table,
the last column refers to the solutions of this chapter by these ID numbers.

8.2 Design decisions

8.2.1 Improving the syntax tree display

Solution ID: 1

Consistency

Functions and literals are represented by a single box in the tree view, see Fig-
ure 6.3. Variables, on the other hand, are a box in a box, the inner being a box
of solid color. Also, the entire rule supposedly reads like natural language, but
this mantra does not descent into the display of variables or object properties.
The top row of Figure 6.3 reads “For every x person”, while natural language
would have “For every person x”. Object properties read more unlike natural
language.

Instead, when a variable appears in the rule with its type it should feature the
type first, the name second, and when it appears in the rule its solid-colored box
should be the only box representing the variable as an expression —no seperate
wireframe box should appear around it. To emphasize that the variable is an
expression like literals and functions, the solid variable box will take the height
of an expression box, and feature its type in the top right corner as with other
expression boxes.

Finally, empty expressions will get a look as if they are shallow chambers in
the table —as if they lie a few millimeters deeper—, and they will also look a bit
darker, as if the surface of the editing panel has a slightly different color than

69

the material thats underneath. Besides make it far more obvious when a rule’s
syntax tree is not finished, it creates the suggestion that when content is put into
it, this content lays over the hole like a puzzle piece. This is important because
of the meaning of the datatype label. On empty expressions, this datatype label
states the allowed type, while on expressions that have content, it states the
actual type, the output type of the content that is in it. The overlay suggestion
supports this difference; the label in the hole is part of the hole, hence part of
the function around it that featured that hole, and the label on a nonempty
expression is part of the puzzle piece that lays on top.

Content selection menu only on empty expressions

The content selection menu should be featured only on empty expressions, for
three reasons:

1. Test subjects were repeatedly confused when they selected an expression
for an expression box that already had content in it, and upon selecting
it found out that what they selected replaced the original content. Only
allowing them to do this operation on expressions that are already empty
forces them to explicitly delete or move aside the original content if they
attempt to replace it, addressing problem 5 of Table 7.3. This does create
an extra action for the user, but it pushes them more into the intended,
dragging-oriented editing method described in Section 5.2.2.

2. The entire empty expression can be turned into a button, addressing prob-
lem 3 of Table 7.3.

3. Losing the small button in the top right corner of every expression makes
for a far less clogged view of the syntax tree.

8.2.2 Support as many actions as possible through all edit-
ing methods

Solution ID: 2

Table 8.1 shows which commands are supported by which editing method.
Firstly, the expression selection menu is only for creating new expressions. This
is a well-defined cause and can therefore be deemed predictable enough. The
context menu is currently only used for copy, cut, paste and function definition.
When right-clicking on an empty expression, we could let it show the expression
selection menu extended with a paste option so that it would support creation,
but this would make the difference between left and right mouse buttons vague,
and the right mouse button would not have a uniform response across all expres-
sions like it does now. The delete function could and should however be added
to the context menu. Moving to keyboard functions; it is hard to do creation
fully with the keyboard —e.g. open the expression selection menu with a key-
board key— as it is impossible to select an empty expression, and if you cannot
select it, it is not clear to which expression the keyboard key applies. Defining
functions however is only done on nonempty —selectable— expressions, so a
keyboard key, say, F can be designated for the define function command on
the selection. If the selection consists of multiple expressions, pressing F will
do nothing. Moving on to drag-and-drop: creation of functions and literals is

70

Create

D
e
le

te

C
o
p
y
-p

a
st

e

C
u

t-
p

a
st

e Define
func-
tion

F
u

n
c
ti

o
n

L
it

e
ra

l

V
a
ri

a
b

le

Expression selection menu + + +
Context menu (right-click) a + + +
Keyboard + + + a
Drag-and-drop + a a +

Table 8.1: Supported commands per editing method. A +-sign means the
command was supported in the initial design. An “a” means the command will
be added in the improved design.

not possible as there is nowhere to drag them from. Deletion, however, can
be added; this is described in the designated paragraph below. Furthermore,
dragging an expression from one place to another is inherently cut-paste. This
however could easily be extended to be copy-paste: if the user holds CTRL
when he starts the drag, a copy of the expression is being dragged off instead
of the original.

Deletion by dragging

From user tests is became apparent that users, in an environment that allowed
them to building things by dragging and dropping, expected things to also be
removable by dragging them to some place. This is a sign that users start
to see logic in the way the application work, since they are extrapolating this
logic. They should feel that expressions should be seen as “things” that they
can hold and move around like Lego blocks —and by this logic, similarly to
Lego blocks, the way to remove them from the playing field is by picking them
up and moving them off the table. This insight should be encouraged, so it is
important to feature a drop-point for removing expressions. This drop point
should both feel “off the playing field” and be clearly visible, so it will be hard
for users to not see it. This is achieved by only showing the drop point while
the user is dragging something, so that the drop point can be large, positioned
in the bottom center, hovering in front of the “playing field” (it is positioned
relative to the browser window, and not the document). It features a trashcan
icon as it is the universally accepted icon for removing things.

8.2.3 Room for documentation everywhere

Solution ID: 3

The following features will be added:

• Hovering over a type gives documentation about the type, which is an
optional property of the function metamodel

• Hovering over a property of a variable gives documentation about the
property, which is an optional property of the class property metamodel.

71

• Hovering over an empty expression box gives the documentation specific
to that operand, which is an optional property of the operand metamodel.

8.2.4 Non-technical names

Solution ID: 4

Types, functions and properties need to have names that are solely targeted to
non-programmers. Functions and properties will all get an optional property
called “display name” which may contain spaces. Datatypes will keep only a
single name, but this name should be made to reflect what a non-programmer
understands. A display name with spaces is unsuitable for datatypes (e.g. with
generic types, spaces would look confusing).

8.2.5 Making the leftovers self-explanatory

Solution ID: 5

The “Leftovers” panel will be renamed to the “Sketchpad” panel, i.e. the title
above the panel will be changed to “Sketchpad”. This sketchpad will feature the
set of boxes that have been dragged and/or created there, and in the bottom
there is always a big ’drop area’ surrounded by a dashed line, with in the center
the text ”Drag any piece of content here, or build a new expression by selecting
a function”, with ’selecting a function’ being obviously clickable. Clicking it will
create a new empty expression box to the pool with the content selection menu
open and the cursor focus in the search box, as when a function is selected in
the normal way according to the new design.

8.2.6 Promoting the object-property relationship

Solution ID: 6

The following will be implemented to promote the object-property relationship.

• In the tooltip when hovering an object property, the phrase “<property
name> of <class name/object name(if available)>” must be the
most clearly visible of the whole tooltip

• When an object property appears in the syntax tree, it must form the
phrase “<property name> of <object name>”.

In both cases, the object name in question can itself be a property of another
object. In this case, the object name is, recursively, “<property name> of
<object name>”, so that the entire chain of ownership is displayed.

8.2.7 Constructive feedback

Solution ID: 7

Most actions that are not allowed cannot be initialized by the user. For instance,
when clicking the dropdown button on a field of type “boolean”, the “addition”
function does not appear because it has an incompatible output type. For
other actions however, it can only be clear after the user has initialized them

72

that they are illegal. Think of drag-and-drop actions. If they are illegal, these
actions get rejected. In Rash, no action gets rejected without providing con-
structive feedback to the user. When a drag-and-drop action gets rejected, it
is usually because of a type mismatch. Rash shows a message that says what
the type mismatch is, making novice users aware of the type system, but also
providing insight into the type system (what types are subtypes of what other
types). Furthermore, Rash can present a list of functions that would form the
connection between the attempted input type and the demanded input type.
Upon clicking one of these functions, the user’s attempted drag-and-drop action
is completed by adding the selected intermediary function in between.

8.2.8 Possibility to explicitly add matches

Solution ID: 8

The author can drag entities into the top row of the rule (the row where the
matches are listed) to add it to the rule matches. Upon hovering over there
while an entity is being dragged, the row will look as it would if that entity
would be a match. This way it is shown to the user that dragging something
over there does something.

Semantically, this changes something about the rule model: the user can add
an entity to the matches without that entity being used in the rule’s condition.
It simply means that the rule will match against every new instance of that
entity.

One advantage is that the Event library from Subsection 6.5.5 becomes ob-
solete if events are objects from entity classes. Another advantage is that the
constraint that all variables used in the consequence must be globals or matches
will no longer have to lead to a user action being rejected if he tries to instanti-
ate a variable in the consequence. Instead, when the user does this this variable
simply also gets added to the rule matches, causing it to appear in the top row.

8.2.9 Improved literal entering

Solution ID: 9

The following should be implemented to make entering of literals go better.

• If the datatype of the expression box is primitive, show option reading
“Enter value. . . ” on the top of the expression selection menu

• If the datatype of the expression box is complex, show option reading
“Create new <type name>. . . ” on top of the content selection menu
—if constructing is turned on for that datatype

• The form for entering a literal must be in focus after the option for entering
a literal is chosen. The form focus must be clearly visible for users that
do not know where to look

73

8.2.10 Conventional variable names

Solution ID: 10

Variable names currently are currently the type name with a letter behind it,
starting from “a”, e.g. “carA”, “personC”. These strings were often not recog-
nized by the user as variable names. Hence, the improved design will adopt
a convention widely used in scholarly environments and single-letter variable
names starting from ’x’, then ’y’, et cetera. The entire alphabet is still used,
but the order is just different, and the type name is dropped.

8.2.11 Rejected: Bottom-up syntax tree building

Solution ID: 11

This feature was considered for the initial design, and is again reconsidered. It
means that, for an expression, a menu can be opened in which a function can be
picked that is placed around that expression. So if someone wrote a condition
and wants to add a second condition in conjunction, all he needs to do is select
conjunction from the bottom-up function selection menu and the conjunction
will be made around the condition that was already there.

The problem is that it is very hard to give the button that opens this menu
a place in the GUI such that it is, from its appearance and placement, imme-
diately understood what its function is. Beside this, disambiguation on which
operand the user wants the current expression to become of the the future par-
ent expression makes the UI even more confusing. It is decided it is safer to
omit this functionality, as bottom-up editing can still be done by a few more
moves on the author’s part, but these moves are all much easier to understand.

8.2.12 Improvement of content selection menu

Solution ID: 12

The content selection menu, in the initial design, does not employ any visual
cues, see Figure 6.5. In the improved design, previews of what each function
looks like in the syntax tree are given, so that the user immediately makes the
connection between the options presented in the menu, and the expressions he
sees in the syntax tree. The user will understand the application more quickly.
Also, suggested variable names will be shown in the menu exactly as they look
in the syntax tree.

8.3 Conclusion

Table 7.3 shows that all issues that have been identified have been addressed
in some way. For now, it is not a goal to address insufficient experience of rule
authors in any other way than having them practice with the application, which
does not require additional features. The improved design will be explained in
the next chapter, Chapter 9.

74

Chapter 9

Improved design

9.1 Introduction

This chapter proposes the improved design, on which lessons learned from user
tests on a prototype of the initial design have been applied. We go through the
upgrades in the design step by step, starting with the editing GUI in Section 9.2,
the Rule Language & BOM Metamodel in Section 9.3, the Rule Metamodel in
Section 9.4 and finally the standard libraries in Section 9.5.

9.2 Editor of improved design

9.2.1 Syntax tree view

The improved syntax tree appearance is shown in Figure 9.1. Note

• how the dropdown menu button in the corner of each expression has dis-
appeared,

• how variables now take up their entire expression box,

• how the object-property relationship is written out in natural language

• how a variable reads e.g. “person x” now, instead of “x person” and

• variable names are now instantly recognizable as such as they follow a
scholarly convention.

9.2.2 Expression selection menu

See Figure 9.2. An empty expression box appears as a shallow hole in the rule or
sketchpad panel. When clicked, a dropdown menu appears in which an expres-
sion can be chosen as content for the box, see Figure 6.5. It shows the option
to enter a literal value if allowed for the datatype, a few likely choices for vari-
ables that fit the datatype and all the functions with a fitting output datatype.
Because variable attributes can be infinitely recurrent (e. g. if a Person has an
attribute of type Person), it is often impossible to show a complete list of vari-
ables. A maximum is set of 8 variables, and a maximum recurrence depth of 2

75

Figure 9.1: Rule appearance in the improved design Rash, replacing the original
design shown in Figure 6.3.

(a property of a property). Upon opening the menu, the options can be filtered
by typing keywords with the keyword: the empty expression box temporarily
functions as the text input field and the option list updates with every keystroke.

Notice the improvements:

• The command for enter literal used to read “Enter literal. . . ” and ap-
peared at the bottom of the menu. Now, it appears at the top and reads
“Enter value. . . ”, a choice of words more targeted to non-programmers.

• Variables look in the menu as they do when used in the syntax tree.

• Functions look in the menu as they do when used in the syntax tree, and
they have more descriptive “display names” that may contain spaces, and
that are completely targeted to the user.

9.2.3 Entities panel

Figure 9.3 features the improved entities panel. There are three things that
should be noticed: the relation between objects and properties is now promoted
by a bold printed text in the tooltip of a property. Secondly, this tooltip can
feature property-specific notification, something that can be optionally defined
on a class property. Thirdly, author-friendly display names of properties are
supported, e.g. “date of birth” instead of “dateOfBirth”; these are optional as
well. To be consistent with the syntax tree, the type name is given before the
variable name.

76

Figure 9.2: The expression selection menu of the improved design, replacing
the old one shown in Figure 6.5. Provides the user with visual cues and more
natural text, among other things.

Figure 9.3: The entities panel in the improved design, showing improved prop-
erty naming and property-specific documentation in tooltips.

77

Figure 9.4: The improved appearance of the sketchpad, populated with two
arbitrary expressions.

9.2.4 Sketchpad panel (previously: Leftovers panel)

The improved leftovers panel, now called sketchpad, is shown in Figure 9.4. The
drop area now explains the functionality of the panel, as with a newly opened
rule this drop area is all that the sketchpad panel contains.

9.2.5 Editing methods

Four controls have been added, as reflected by Table 8.1.

1. Deletion with the context menu

2. Defining a function by pressing the F key when exactly one expression is
selected

3. Deletion by dragging towards a “trashcan”

4. Copy-paste by hold CTRL while starting a drag

Furthermore, it is now possible to instantiate variables anywhere in the rule,
which was previously only possible in the condition. Also, entities can be
dragged to the top row of text in the rule panel, which will add them as a
match.

9.3 Rule Language & BOM Metamodel of im-
proved design

In the rule metamodel, optional display name properties have been added to the
Function and ClassProperty classes. Optional documentation text properties
have been added to the Type, ClassProperty, Function and Operand classes.

78

9.4 Rule Metamodel of improved design

In the rule model, a property named unmentionedMatches is added to the Rule
class, to list matches that have not been mentioned once in the rule syntax
trees. In the initial design, matches were by definition free variables of the
rule’s condition. Now, a match can be explicitly added to the rule without
it ever being referred to in the condition or consequence of the rule, hence
the necessity for this new property of the Rule class. The union of the free
variables of the condition, the free variables of the consequence and the variables
in unmentionedMatches is now the set of matches of the rule.

9.5 Libraries of improved design

The Event library has been dropped, and display names have been added to all
functions. Beside this, the libraries have not been changed.

9.6 Conclusion

The majority of the features of the improved design presented in this chapter
have been implemented in the prototype, partially for demonstration purposes,
and partially to see how design decisions turn out in reality. However, a new
set of user tests is deferred to future work. A product is not made with a
single feedback loop, but with multiple. The design proposed in this chapter
addresses issues that occurred with the initial design of Chapter 6. Finding out
if it actually solves them will be part of the third design iteration.

79

Chapter 10

Conclusion

With this thesis, we have proposed a Platform-Independent BRAE for Non-
Technical Authors that is suitable for use at Royal Philips N.V. In academic
sense, we have achieved something that is

1. Unique in being the only stand-alone general purpose rule authoring en-
vironment

2. An on-the-fly domain-specific language creator, by letting authors define
functions of their own within the authoring GUI itself

3. Moving syntax-directed editing away from text editing paradigms towards
structure editing paradigms

There are some reservations to keep in mind. When an application has large
sets of rules that have many clauses in common, decision tree editing becomes
a useful addition to syntax-directed editing. The main disadvantage of decision
trees is that they need programmatic expressions in their edges and/or nodes. To
make editing these user-friendly something like Rash is still needed. However,
for the intended use by Philips there is no need for decision trees in sight.

Future work includes, first and foremost, a rule testing mechanism. Further-
more, more development cycles would make the product better, i.e. make more
prototypes and do more user tests. Other work is building the back-end that
will fit this rule engine: parsers to existing rule engines, or an entirely new rule
engine. Also, automatic configuration of the the rule metamodel, i.e. automatic
elicitation of the relevant types, functions and variables from this rule-executing
back-end so that these will not have to be configured by hand will be valuable
work. Finally the editor would be suitable for an automated training program,
in which a subject is taught to write rules by being given a series of textual
rule specifications of increasing complexity that have to be turned into a formal
specification.

80

Acronyms

AI Artificial Intelligence. 81

AST Abstract Syntax Tree. 25, 35, 44

BMM Business Motivation Model. 3

BOM Business Object Model. 1–3, 8, 10–15, 17, 18, 34–37, 42, 45, 51, 52, 74,
77

BRAE Business Rule Authoring Environment. 1, 5, 6, 12, 20–22, 37, 42, 79

BRE Business Rule Engine. 7, 8

BRMS Business Rule Management System. 3–5, 7, 13, 20, 22, 23, 30

DRL Drools Rule Language. 23

ECA Event-Condition-Action. 13, 60

ER Entity-Relationship. 25, 26

GUI Graphical User Interface. 1, 15, 19, 43, 49, 54, 58, 62, 73, 74, 79

LHS Left-Hand Side. 7, 8, 13

MPS Meta-Programming System. 28, 30

OMG Object Management Group. 3

RHS Right-Hand Side. 7, 8, 13, 16

SDLC Software Development Life Cycle. 4

SE Software Engineer. 4, 5

SME Subject Matter Expert. 3–5

SRD Software Requirements Document. 10

UI User Interface. 10, 19, 20, 22, 42, 49

81

Glossary

authoring language The language that appears to the author in Rash’s front
end. 45

C# C# is a multi-paradigm programming language encompassing strong typ-
ing, imperative, declarative, functional, generic, object-oriented (class-
based), and component-oriented programming disciplines [27]. 37

C++ C++ is a general-purpose programming language. It has imperative,
object-oriented and generic programming features, while also providing
facilities for low-level memory manipulation [28]. 37

card A small rectangular GUI container containing multiple related elements
that may appear multiple times on a page [29][30]. 15

functional programming language In computer science, functional program-
ming is a programming paradigm—a style of building the structure and
elements of computer programs—that treats computation as the evalu-
ation of mathematical functions and avoids changing-state and mutable
data [24]. 45

Java Java is a general-purpose computer programming language that is con-
current, class-based, object-oriented and specifically designed to have as
few implementation dependencies as possible [31]. 37

natural language Language used by humans. 1

Production system A production system is a program that provides some
form of Artificial Intelligence (AI) by executing a set of rules about be-
havior. 7

82

Bibliography

[1] Wilbert O Galitz. The essential guide to user interface design: an in-
troduction to GUI design principles and techniques. John Wiley & Sons,
2007.

[2] Jetbrains. Meta programming system - dsl development environment. URL
https://www.jetbrains.com/mps/. [Online; accessed 9-October-2016].

[3] IBM. Operational decision management, . URL http://www-03.ibm.com/

software/products/en/category/operational-decision-management.
[Online; accessed 21-October-2016].

[4] J.C. Mitchell. Concepts in Programming Languages. Cambridge Univer-
sity Press, 2003. ISBN 9780521780988. URL https://books.google.nl/

books?id=7Uh8XGfJbEIC.

[5] B. Von Halle. The business rule revolution : running business the right way
; [fundamental issues: business approach, technology approach]. Happy
About, 2006. ISBN 9781600050138. URL https://books.google.nl/

books?id=KrTGV2Xf7V8C.

[6] Drools. Drools documentation, . URL https://docs.jboss.org/drools/

release/6.5.0.Final/drools-docs/html_single/index.html. [Online;
accessed 8-October-2016].

[7] N. Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford Univer-
sity Press, 2014. ISBN 9780199678112. URL https://books.google.nl/

books?id=7_H8AwAAQBAJ.

[8] Object Management Group. Business motivation model. URL http://

www.omg.org/spec/BMM/1.3/. [Online; accessed 29-September-2016].

[9] J. Boyer and H. Mili. Agile Business Rule Development: Pro-
cess, Architecture, and JRules Examples. Springer Berlin Heidelberg,
2011. ISBN 9783642190414. URL https://books.google.nl/books?id=

nccgSywG2Y8C.

[10] Wikipedia. Systems development life cycle — wikipedia, the free ency-
clopedia, 2016. URL https://en.wikipedia.org/w/index.php?title=

Systems_development_life_cycle&oldid=746335442. [Online; accessed
26-October-2016].

83

https://www.jetbrains.com/mps/
http://www-03.ibm.com/software/products/en/category/operational-decision-management
http://www-03.ibm.com/software/products/en/category/operational-decision-management
https://books.google.nl/books?id=7Uh8XGfJbEIC
https://books.google.nl/books?id=7Uh8XGfJbEIC
https://books.google.nl/books?id=KrTGV2Xf7V8C
https://books.google.nl/books?id=KrTGV2Xf7V8C
https://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/index.html
https://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/index.html
https://books.google.nl/books?id=7_H8AwAAQBAJ
https://books.google.nl/books?id=7_H8AwAAQBAJ
http://www.omg.org/spec/BMM/1.3/
http://www.omg.org/spec/BMM/1.3/
https://books.google.nl/books?id=nccgSywG2Y8C
https://books.google.nl/books?id=nccgSywG2Y8C
https://en.wikipedia.org/w/index.php?title=Systems_development_life_cycle&oldid=746335442
https://en.wikipedia.org/w/index.php?title=Systems_development_life_cycle&oldid=746335442

[11] Oscar Hauptman. The different roles of communication in software de-
velopment and hardware r&d: Phenomenologic paradox or atheoretical
empiricism? Journal of Engineering and Technology Management, 7(1):
49–71, 1990.

[12] James D Herbsleb, Audris Mockus, Thomas A Finholt, and Rebecca E
Grinter. An empirical study of global software development: distance and
speed. In Proceedings of the 23rd international conference on software en-
gineering, pages 81–90. IEEE Computer Society, 2001.

[13] IBM. Operational Decision Management For Dummies. –For dummies.
. URL https://www-01.ibm.com/marketing/iwm/iwm/web/signup.do?

source=sw-app&S_PKG=ov30443&dynform=14874&lang=en_US.

[14] Wikipedia. Set-builder notation — wikipedia, the free encyclo-
pedia, 2016. URL https://en.wikipedia.org/w/index.php?title=

Set-builder_notation&oldid=742772024. [Online; accessed 5-October-
2016].

[15] InRule. Write business rules with irauthor. URL http://www.inrule.

com/products/inrule-components/irauthor/. [Online; accessed 29-
September-2016].

[16] Drools. Drools - overview, . URL http://www.drools.org/. [Online;
accessed 8-October-2016].

[17] Arthur M Langer. Build vs. buy. In Guide to Software Development, pages
37–48. Springer, 2011.

[18] XpertRule. Expert systems - graphical rules authoring. URL http://

xpertrule.com/expert-systems-graphical-rules-authoring/. [On-
line; accessed 8-October-2016].

[19] Bosch. Business rule management with visual rules - components. URL
https://www.bosch-si.com/products/business-rules-management/

brm-components/tools-platforms.html. [Online; accessed 8-October-
2016].

[20] Progress. Corticon business rule studio. URL https://www.progress.

com/corticon/components/studio. [Online; accessed 9-October-2016].

[21] J. Ross Quinlan. Simplifying decision trees. International journal of man-
machine studies, 27(3):221–234, 1987.

[22] Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. To-
wards user-friendly projectional editors. In International Conference on
Software Language Engineering, pages 41–61. Springer, 2014.

[23] Geoffrey K. Pullum and Gerald Gazdar. Natural languages and context-free
languages. Linguistics and Philosophy, 4(4):471–504, 1982. ISSN 1573-
0549. doi: 10.1007/BF00360802. URL http://dx.doi.org/10.1007/

BF00360802.

84

https://www-01.ibm.com/marketing/iwm/iwm/web/signup.do?source=sw-app&S_PKG=ov30443&dynform=14874&lang=en_US
https://www-01.ibm.com/marketing/iwm/iwm/web/signup.do?source=sw-app&S_PKG=ov30443&dynform=14874&lang=en_US
https://en.wikipedia.org/w/index.php?title=Set-builder_notation&oldid=742772024
https://en.wikipedia.org/w/index.php?title=Set-builder_notation&oldid=742772024
http://www.inrule.com/products/inrule-components/irauthor/
http://www.inrule.com/products/inrule-components/irauthor/
http://www.drools.org/
http://xpertrule.com/expert-systems-graphical-rules-authoring/
http://xpertrule.com/expert-systems-graphical-rules-authoring/
https://www.bosch-si.com/products/business-rules-management/brm-components/tools-platforms.html
https://www.bosch-si.com/products/business-rules-management/brm-components/tools-platforms.html
https://www.progress.com/corticon/components/studio
https://www.progress.com/corticon/components/studio
http://dx.doi.org/10.1007/BF00360802
http://dx.doi.org/10.1007/BF00360802

[24] Wikipedia. Functional programming — wikipedia, the free encyclo-
pedia, 2016. URL https://en.wikipedia.org/w/index.php?title=

Functional_programming&oldid=741227841. [Online; accessed 28-
September-2016].

[25] Wikipedia. V-model (software development) — wikipedia, the free ency-
clopedia, 2016. URL https://en.wikipedia.org/w/index.php?title=

V-Model_(software_development)&oldid=731736893. [Online; accessed
27-July-2016].

[26] Dolores R Wallace and Roger U Fujii. Software verification and validation:
an overview. Ieee Software, 6(3):10, 1989.

[27] Wikipedia. C sharp (programming language) — wikipedia, the free ency-
clopedia, 2016. URL https://en.wikipedia.org/w/index.php?title=

C_Sharp_(programming_language)&oldid=745154334. [Online; accessed
19-October-2016].

[28] Wikipedia. C++ — wikipedia, the free encyclopedia, 2016.
URL https://en.wikipedia.org/w/index.php?title=C%2B%2B&oldid=

745154329. [Online; accessed 19-October-2016].

[29] UI-Patterns.com. Cards design pattern. [Online; accessed 29-September-
2016].

[30] Intercom.com. Cards are fast becoming the best design pattern for mobile
devices.

[31] Wikipedia. Java (programming language) — wikipedia, the free ency-
clopedia, 2016. URL https://en.wikipedia.org/w/index.php?title=

Java_(programming_language)&oldid=743173085. [Online; accessed 8-
October-2016].

85

https://en.wikipedia.org/w/index.php?title=Functional_programming&oldid=741227841
https://en.wikipedia.org/w/index.php?title=Functional_programming&oldid=741227841
https://en.wikipedia.org/w/index.php?title=V-Model_(software_development)&oldid=731736893
https://en.wikipedia.org/w/index.php?title=V-Model_(software_development)&oldid=731736893
https://en.wikipedia.org/w/index.php?title=C_Sharp_(programming_language)&oldid=745154334
https://en.wikipedia.org/w/index.php?title=C_Sharp_(programming_language)&oldid=745154334
https://en.wikipedia.org/w/index.php?title=C%2B%2B&oldid=745154329
https://en.wikipedia.org/w/index.php?title=C%2B%2B&oldid=745154329
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=743173085
https://en.wikipedia.org/w/index.php?title=Java_(programming_language)&oldid=743173085

	Introduction
	Introduction
	What are business rules and why are they used?
	Business rules in practice
	Philips's case
	Conclusion

	Some basic theory and terminology
	Introduction
	Rule engines
	An example business rule
	Firing cardinality

	Requirements
	Introduction
	System scope
	BOM
	Rule expressiveness
	Deployment
	UI Integration
	Rule testing
	Conclusion

	Existing solutions
	Introduction
	Existing business rule authoring environments
	Existing database query authoring environments
	Assessment of most useful authoring concepts
	Existing syntax-directed editors
	Conclusion

	Main design decisions
	Syntax-guided editor
	Usability for non-programmer
	Type system
	Two languages per rule: condition and consequence
	Extensibility of the syntax

	Initial design
	Introduction
	Editor
	Language & BOM configuration
	The Rule Metamodel
	Standard libraries
	Conclusion

	Prototype and user testing of initial design
	Introduction
	Prototype
	Testing method
	Usability issues found in user tests

	Additional design decisions
	Introduction
	Design decisions
	Conclusion

	Improved design
	Introduction
	Editor of improved design
	Rule Language & BOM Metamodel of improved design
	Rule Metamodel of improved design
	Libraries of improved design
	Conclusion

	Conclusion

