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Effect of quasiparticle excitations and exchange-
correlation in Coulomb drag in graphene
Rajveer Fandan1,2*, Jorge Pedrós 1,2*, Francisco Guinea3,4, Alberto Boscá1,2 & Fernando Calle 1,2

Coulomb drag in double layer graphene systems separated by an h-BN interlayer allows

probing of the electron-electron interactions in the effective limit of zero layer separation.

Although these interactions can be influenced by plasmons, phonons and exchange and

correlation effects, these excitations have never been studied altogether, missing the effects

of their coupling on the drag physics. Here we study theoretically the effects of these

quasiparticles and their coupling, including also the effects of the electronic exchange and

correlation, and demonstrate that the drag resistivity can attain a maximum value at room

temperature and beyond, where hybridized plasmon-phonon modes contribute significantly.

In particular, the hybridization of the plasmons with the hyperbolic phonons of h-BN, confined

within the reststrahlen bands, enhance the drag resistivity. This study paves the way for the

exploration of novel many-body physics phenomena in systems coupled through emerging

2D hyperbolic materials.
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Coulomb drag is a phenomenon which occurs in two 2-
dimensional (2D) electrical conductors placed close to
each other but still electrically isolated, such that an

electric current in one conductor, called active layer, drags car-
riers inducing a closed-circuit current (or an open-circuit voltage)
in the other conductor, called passive layer. This phenomenon is
caused by the transfer of momentum between carriers in the
different layers due to the interlayer electron–electron interac-
tions1–4. Coulomb drag is of special interest because it is identi-
cally zero unless these interactions are present, thus becoming an
ideal experimental probe. This tool provides a detailed insight
into the many-particle interactions in low-dimensional systems,
which play a central role in a wide range of condensed matter
phenomena like the fractional quantum Hall effect, the high-
temperature superconductivity, the Wigner crystallization, the
exciton condensates, and the Mott transition. The first experi-
mental demonstration of Coulomb drag was carried out using 2D
electron gases (2DEGs) in GaAs double quantum well struc-
tures5,6 and, during two decades, they were the most used
material systems for experiments. This situation changed though
with the recent experiments in double-layer graphene systems7,
specially those using few-layer hexagonal boron nitride (h-BN) as
the insulating interlayer8,9, and the intense theoretical effort that
has accompanied them10–21.

Graphene is a 2D semimetal that naturally hosts a 2DEG,
whose carriers are Dirac-like massless fermions with a linear
dispersion near the Dirac point. The atomically flat surface
without dangling bonds of the 2D h-BN crystal provides gra-
phene with the largest carrier mobility as compared to any other
insulating substrate. Moreover, an h-BN interlayer thickness d of
only 1 nm (a few monolayers) is sufficient to ensure the electrical
isolation between two graphene layers, thus providing a strong
interlayer interaction. In addition, the graphene/h-BN/graphene
(G/h-BN/G) system allows to move from the Fermi-liquid regime
to the Dirac point by tuning in-situ the Fermi energy (EF), i.e. the
carrier density (of either electrons (n) or holes (p)), through
electrostatic gating. Thus, with n(p) in the 1011–1013 cm�2 range,
and with the carrier scattering length l given by l � nðpÞ�1=2, the
d=l � 1 condition can be achieved easily8.

Coulomb drag can be enhanced by plasmonic excitations
supported by the 2DEGs in the active and passive layers. More-
over, it can also be assisted by phonon exchange through the
dielectric interlayer. The contribution of both plasmons and
phonons was first addressed in doped polar semiconductor het-
erostructures. The enhancement of the drag by plasmons was
shown to become significant for T � 0:2TF

22–24, where TF is the
Fermi temperature. In the case of phonons, at very low tem-
peratures, these materials only showed a contribution from the
acoustic phonons25–28. However, at higher temperatures, the
electron-energy scales (Fermi and plasma energies) become
comparable to the energy of the longitudinal optical (LO) pho-
non29, so that coupled plasmon–LO phonon modes were shown
to contribute further to the Coulomb drag by virtual phonon
exchange30.

Graphene supports plasmons in the THz to mid-infrared
regime and their effect in Coulomb drag has been evaluated in
double-layer systems31 as well as in lateral waveguides32. In both
cases, it has been shown that the drag resistivity can be enhanced
by the plasmon contribution for T � 0:15TF. Moreover, the weak
coupling of the electrons to the graphene acoustic phonons33

allows to study the interlayer phonon contribution to the Cou-
lomb drag at high electron temperatures. However, none of these
studies consider the full frequency-dependent permittivity of the
dielectric in between the graphene layers or waveguides but just a
static permittivity, thus lacking the contribution to the Coulomb
drag from the phonon exchange mediated by the dielectric

material. In G/h-BN/G systems, Amorim et al.34 studied the
contribution to the Coulomb drag of the virtual phonon exchange
through the h-BN interlayer. Although the role of the h-BN
anisotropy on the phonon-mediated mechanism was already
pointed out, the hyperbolic nature of the phonons in this material
was not described till a couple of years later35–37. Moreover, this
study only took into account the contribution from the intraband
region, neglecting that from the interband region where the
plasmons lie. Therefore, there is a lack of a comprehensive study
of the effect of plasmons and phonons altogether on the Coulomb
drag in graphene.

The drag resistivity is typically calculated in the framework of
the random phase approximation (RPA), which assumes that the
electrons respond to the external field plus the time-dependent
Hartree potential determined by the external and the polarization
charges. The RPA neglects the short-range effects due to
exchange and correlation (XC), which can modify the Coulomb
interactions38. XC effects can be taken into account by employing
local field factors (LFFs), which describe the repulsion hole
around an electron due to the exchange repulsion and correlation.
LFFs become more important for large wave vectors and small
carrier densities, and they have been shown to have a significant
impact on the plasmon dispersion and the drag resistivity of 2D
electron bilayers39.

In this article, we study the Coulomb drag mechanism in G/h-
BN/G structures along with the effects of the contribution of
plasmons and phonons, and their coupling, by going beyond RPA
and including the XC effects by means of LFFs. We show that the
inclusion of the LFFs strongly modifies the drag resistivity
becoming an essential ingredient for comparing theory and
experiment. We also show the effect of the hyperbolic phonons of
the h-BN interlayer on the drag resistivity, which has never been
discussed so far according to our knowledge. In particular, we
demonstrate that the hybridization of plasmons and phonons leads
to a strong enhancement of the drag resistivity by the hyperbolic
plasmon–phonon (HPP) modes in the intraband region, whereas
the contribution from the surface plasmon–phonon (SPP) modes in
the interband region reduces as compared to that from the unhy-
bridized plasmon modes. We also demonstrate that the maximum
value of the drag resistivity can be obtained within a physically
realizable experimental regime.

Results
Plasmon–phonon hybridization and exchange–correlation
effects. Here we consider a stacked structure of h-BN/G/h-BN/G/
h-BN. The top and bottom h-BN layers are thick enough to be
considered semi-infinite, whereas the thin h-BN layer between the
two graphene layers has a thickness d. Both graphene layers are
doped, and carriers in one layer interact with those in the other
layer by both Coulomb interaction and phonon exchange through
the h-BN interlayer that leads to dressed interactions. The two
graphene layers can be modelled using their polarizability, which
can be calculated within the RPA framework. Here we consider
the full finite temperature form of the graphene polarizability40. A
transport-dominated regime, with τ >> τee, is assumed, where τ
and τee are, respectively, the carrier transport and the
electron–electron interaction times. h-BN is an anisotropic wide
bandgap insulator whose in- and out-of-plane frequency-
dependent relative permittivities, ϵxðωÞ and ϵzðωÞ respectively,
have opposite sign in the two reststrahlen bands, thus supporting
a series of hyperbolic phonon modes that are confined within
these bands (see Supplementary Note 1 for mathematical
expressions and graphs of ϵxðzÞðωÞ)36,41. To model the h-BN

layer, we first define the expressions ϵsðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵzðωÞϵxðωÞ

p
and

ϵaðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵzðωÞ=ϵxðωÞ

p
, that are plotted in Fig. 1a, b respectively.
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The bare intra- (i ¼ j) and interlayer (i ≠ j) Coulomb interactions
in the graphene layers (i, j = 1, 2) are then given by34,42,43

Vijðq;ωÞ ¼
e2

2qϵ0ϵsðωÞ
e�qdð1�δijÞϵaðωÞ; ð1Þ

where ϵsðωÞ acts as an effective permittivity and ϵaðωÞ is a factor
responsible for the origin of the HPP in the two restrahlen bands
of h-BN with opposite phase. These Coulomb interactions get
modified by the XC effects, thus leading to the effective Coulomb
interactions given by

Veff
ij ðq;ωÞ ¼ Vijðq;ωÞð1� Gijðq;ωÞÞ; ð2Þ

where Gijðq;ωÞð¼ Gjiðq;ωÞÞ are the intra- (i ¼ j) and interlayer
(i ≠ j) LFFs (see Supplementary Note 2 for more details and
graphs) and Veff

ij ðq;ωÞ ¼ Veff
ji ðq;ωÞ. The total dielectric screening

function is given by

ϵTðq;ω;TÞ ¼ ½1� Veff
11 ðq;ωÞχð0Þ1 ðq;ω;TÞ�

´ ½1� Veff
22 ðq;ωÞχð0Þ2 ðq;ω;TÞ�

� ðVeff
12 Þ

2ðq;ωÞχð0Þ1 ðq;ω;TÞχð0Þ2 ðq;ω;TÞ;
ð3Þ

where χð0Þl ðq;ω;TÞ is the temperature-dependent polarizability or
irreducible density–density correlation function of layer l (l = 1,
2)40. Clearly, the XC effects are cancelled out and the RPA is
recovered by setting Gijðq;ωÞ ¼ 0.

The bare interactions will be screened by charge carriers in the
two graphene layers. These screened interactions can be described
by the coupled Dyson equations and written in matrix form as

Uðq;ω;TÞ ¼ Vðq;ωÞ þ Vðq;ωÞ:χð0Þðq;ω;TÞ:Uðq;ω;TÞ; ð4Þ
where Uðq;ω;TÞ is the 2 × 2 matrix of the screened interaction.
From Eq. (4), one can find that the dressed interlayer interaction
is given by

U12ðq;ω;TÞ ¼
Veff

12 ðq;ωÞ
ϵTðq;ω;TÞ

: ð5Þ

Similarly, the reducible density–density correlation function
Xðq;ω;TÞ can also be defined in terms of χð0Þðq;ω;TÞ and
written in matrix form as

Xðq;ω;TÞ ¼ Vðq;ωÞ þ Vðq;ωÞ:χð0Þðq;ω;TÞ:Xðq;ω;TÞ: ð6Þ
In single graphene monolayer systems, one can define the
electron loss function as the �=½1=ϵTðq;ω;TÞ� to obtain the
hybridized plasmon–phonon dispersion. However, in the double-
layer graphene system, this function changes sign for the acoustic
branches. In oder to avoid this inconvenience, here we plot
alternatively the imaginary part of the trace of the matrix
Xðq;ω;TÞ, defined as the loss function which characterizes the
spectral density of the hybridized quasiparticle excitations:

Lðq;ω;TÞ ¼ �=½Tr½Xðq;ω;TÞ��: ð7Þ

Coulomb drag. For the double-layer graphene system, the drag
resistivity is a 2 ´ 2 matrix given by

ρD ¼ σ12
σ11σ22 � σ12σ21

’ σ12
σ11σ22

: ð8Þ
In this equation, σ11ðσ22Þ is the temperature-dependent intralayer
conductivity of the top (bottom) layer, given by the expression
e2μDτ=ðπ_2Þ, where τ is the graphene carrier transport time,
which is assumed to be energy independent, and μD is the
effective Drude weight, which depends on the carrier density and
the temperature (see Supplementary Note 3 for more details on
the graphene conductivity, chemical potential, and Drude
weight), and σD � σ12 ¼ σ21 is the interlayer drag conductivity,
which, up to second-order perturbation in the interlayer inter-
action, is given by

σD ¼ e2

64π3kBT

Z
d2q

Z 1

0
dω

´
U12ðq;ω;TÞðj j2Γ1ðq;ω;TÞΓ2ðq;ω;TÞ

sinh2ð_ω=2kBTÞ
;

ð9Þ

where ω and q are the transferred energy and momentum from
active to passive layer at temperature T with Γlðq;ω;TÞ being the
rectification function or non-linear susceptibility of layer l15. The
final expression for the drag resistivity can be then written as

ρD ¼
Z

dq
Z 1

0
dωIðq;ω;TÞ; ð10Þ

where Iðq;ω;TÞ is the drag intensity given by

Iðq;ω;TÞ ¼ 2πe2

64π3kBT

´
U12ðq;ω;TÞðj j2Γ1ðq;ω;TÞΓ2ðq;ω;TÞ

sinh2ð_ω=2kBTÞ

´
π_2

e2μDτ

� �2

:

ð11Þ

Fig. 1 Modelling of h-BN. Plot of a ϵsðωÞ and b ϵaðωÞ. The vertical lines,
labelled as ωxðzÞ

TOðLOÞ, are the in- (out-of-) plane transverse (longitudinal)
optical phonon frequencies of h-BN. Both ϵsðωÞ and ϵaðωÞ vary rapidly
around the two restrahlen bands. The y axis is the absolute magnitude of
ϵsðωÞ and ϵaðωÞ, both of which are complex functions of ω, and the filling
colour is the argument. The phase remains the same for ϵsðωÞ in the two
restrahlen bands but it is of opposite sign for ϵaðωÞ, hence leading to a
variation in the total phase of the exponential term of Eq. (1) within these
two restrahlen bands, which gives rise to the hyperbolic modes confined
within these bands.
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Numerical results. Figure 2a, b shows the loss function,
Lðq;ω;TÞ, calculated at T= 0 within the RPA only and with the
inclusion of the XC effects, respectively. For simplicity, two
identical (same carrier density) graphene layers separated by 6
nm have been considered to be placed in a homogeneous medium
of dielectric constant 4.74 (i.e. the ϵsðω ¼ 0Þ of h-BN). The
Lðq;ω;TÞ, which is related to the dynamical structure factor
Sðq;ω;TÞ that accounts for the spectral strength of the various
elementary excitations, characterizes the collective modes (plas-
mons) of the coupled 2DEGs of the two graphene layers. There
are two such modes, one where the electron densities in the two
layers oscillate in phase, called as the optical mode (O, ω � ffiffiffi

q
p

),
and one where the oscillations are out of phase, called as the
acoustic mode (A, ω � q). Since both modes lie within the Pauli-
blocked interband region (vFq < ω < vFð2kF � qÞ), i.e. outside of
the particle-hole continuum (PHC), they cannot decay via
intraband excitations. However, both modes get damped as soon
as they enter into the region ω < vFq and ω > vFð2kF � qÞ, as they
decay via interband PHC transitions (Landau damping) that are
now allowed by the energy–momentum conservation. It has to be
also noted that the acoustic plasmon becomes degenerate with the
PHC as d ! 0. The comparison of the colour scale bars of Fig. 2a,
b indicates that the maximum value of Lðq;ω; 0Þ in the XC case is
almost double that in the RPA case. Moreover, the two plasmon
branches shift to higher q values for a fixed ω and to lower ω
values for a fixed q, as shown, respectively, in Fig. 2c, d. In
addition, the inclusion of the XC reduces the interlayer Coulomb
interactions compared to those provided by the RPA alone, as
shown in Fig. 2e, f for a fixed value of both ω and q, respectively.

Thus, the XC increases the ϵT and decreases the Veff
12 , which in

turn decreases the dressed interlayer Coulomb interaction,
U12ðq;ω;TÞ, given by Eq. (5). As a result, the drag resistivity,
which is directly proportional to j U12ðq;ω;TÞð j2, decreases with
the inclusion of XC (see Supplementary Note 2 for more details
and plots).

Figure 3a shows the loss function, Lðq;ω;TÞ, whereas Fig. 3b,
c shows the Coulomb drag intensity, Iðq;ω;TÞ, without and with
phonons, respectively, all calculated for the h-BN/G/h-BN/G/h-
BN system for a temperature of 50 K. Figure 3d–f plots the same
magnitudes, respectively, as Fig. 3a–c but for a temperature of
300 K. For simplicity, both graphene layers are considered to have
identical carrier density (with EF1 ¼ EF2 ¼ 0:064 eV) and the h-
BN interlayer thickness is d ¼ 6 nm. The effect of h-BN phonons
and their hybridization with the plasmons in graphene can be
eliminated by setting ϵsðω ¼ 0Þ and ϵaðω ¼ 0Þ in the expressions
of Veff

11ð22Þ and Veff
12ð21Þ only (see Supplementary Note 1 for more

details and graphs). In this way, the direct comparison of the
results with and without phonons provides the net contribution
of the phonon exchange to the drag intensity. In the Lðq;ω;TÞ
plot, both plasmon modes, optical and acoustic, hybridize
with the phonons of h-BN. In the case of the higher temperature
value (300 K, Fig. 3d), both optical and acoustic modes start to
get damped. The reason for this can be found in the imaginary
part of the graphene temperature-dependent polarizability

=½χð0Þl ðq;ω;TÞ�, shown in Fig. 4, that represents the PHC. In
this figure, the hybridized SPP modes are indicated by the
superimposed black lines. At low temperature, the plasmon

Fig. 2 Comparison of randomphase approximation (RPA) and exchange and correlation (XC). Density plot of the loss function, Lðq;ω;0Þ, given by
Eq. (7), calculated for the case of a RPA and b XC for the double-layer graphene system with background dielectric constant ϵ ¼ 4:74. The solid lines
separate the regions with Landau damping due to intraband (ω < vFq) and interband (ω > vFq, vFð2kF � qÞ) particle-hole continuum and the Pauli-blocked
interband region (vFq < ω < vFð2kF � qÞ). Cross section of Lðq;ω;0Þ for c ω=EF ¼ 0:9 and d q=kF ¼ 0:65, showing the shift of the optical (O) and acoustic
(A) plasmon branches with the inclusion of the XC effects. The latter also lead to a decrease in the magnitude of the effective interlayer Coulomb
interaction Veff

12 ðq;ωÞ as shown in e and f for ω=EF ¼ 0:9 and q=kF ¼ 0:65, respectively. Parameters are EF1 ¼ EF2 ¼ 0:064 eV and d ¼ 6 nm.
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modes, which lie in the region vFq < ω < vFð2kF � qÞ, are
undamped as they do not overlap with the PHC, as shown in
Fig. 4a for T ¼ 50 K. Nevertheless, at high temperature, these
plasmon modes overlap with the PHC, as shown in Fig. 4b for
T ¼ 300 K, thus reducing their lifetime as they now can decay via
particle-hole excitations.

The drag intensity, which is directly proportional to the drag
resistivity, ρD, allows us to discriminate the different quasiparticle
excitations contributing to the Coulomb drag. Figure 3b, c
indicates that, at low temperature (50 K), the major contribution
to the drag resistivity comes from the intraband region, ω < vFq,
and it is identical for both cases of with and without phonons.

This has a twofold explanation. On the one hand, the
contribution to the drag resistivity is restricted to low frequency
values as the temperature T in the sinh term in the denominator
of Eq. (11) sets an effective upper cut-off in frequency. Thus, at
low temperature, the HPP modes, appearing at higher frequencies
(the two reststrahlen bands lie at around 100 and 180 meV), do
not contribute to the Coulomb drag. On the other hand, the drag
intensity is proportional to the non-linear susceptibility, which
vanishes at low temperature in the region where the SPP modes
lie, vFq < ω < vFð2kF � qÞ, as shown in Fig. 5a. In this figure, the
hybridized SPP modes are indicated by the superimposed black
lines. Thus, at low temperature, these modes do not contribute
either to the Coulomb drag.

The drag intensity changes dramatically at high temperature, as
shown, for example, in Fig. 3e, f for T ¼ 300 K. In the case when
phonons of h-BN are not considered, Fig. 3e, the drag intensity is
markedly enhanced due to the contribution from the optical and
acoustic plasmon modes in the interband region. When the effect of
the h-BN phonons is taken into account, as shown in Fig. 3f, the
strong enhancement of the drag intensity is caused by the
contribution of both hybridized surface and HPP modes. These
contributions clearly mimic the dispersion shown by the loss
function in Fig. 3d, where the SPP modes are contained in the
interband region while the HPP modes propagate confined within
the two reststrahlen bands of h-BN even into the intraband region.

Apart from the general higher effective upper cut-off in
frequency, the specific reason for the enhancement of the
Coulomb drag intensity at higher temperatures lies in the fact
that the scattering matrix element given by the screened Coulomb
interaction U12ðq;ω;TÞ is inversely proportional to ϵTðq;ω;TÞ
(see Eq. (5)). The latter becomes very small (vanishing at T ¼ 0)
for certain ωðqÞ corresponding to the plasmons of the system,
here optical and acoustic modes. This makes U12ðq;ω;TÞ very

Fig. 3 Plasmon–phonon dispersion and drag intensity. Density plot of the loss function, Lðq;ω; TÞ, calculated at T ¼ 50 K (a) and T ¼ 300 K (d) for the h-
BN/graphene/h-BN/graphene/h-BN system. The solid lines separate the regions with Landau damping due to intraband (ω < vFq) and interband (ω > vFq,
vFð2kF � qÞ) particle-hole continuum and the Pauli-blocked interband region (vFq < ω < vFð2kF � qÞ), whereas the dashed lines correspond to the bulk
phonons of h-BN that define the two reststrahlen bands. The coupling of the graphene plasmons (optical and acoustic) and the h-BN phonons leads to
hybridized surface and hyperbolic plasmon–phonon modes (SPP and HPP, respectively); the superscript in HPP denotes the upper (U) and lower (L)
reststrahlen bands. Density plot of the drag intensity, Iðq;ω; TÞ, calculated at T ¼ 50 K without phonons (b), T ¼ 50 K with phonons (c), T ¼ 300 K
without phonons (e), and T ¼ 300 K with phonons (f). The temperature and the screening condition strongly influence the Coulomb drag. Parameters are
EF1 ¼ EF2 ¼ 0:064 eV and d ¼ 6 nm. The scale bars in a and b also apply, respectively, to d and c, e and f.

Fig. 4 Polarizability of graphene. Density plot of the imaginary part of the
graphene polarizability, =½χð0Þl ðq;ω; TÞ�, for a temperature T ¼ 50 K (a) and
T ¼ 300 K (b) with EF ¼ 0:064 eV. The dashed lines separate the regions
with Landau damping due to intraband (ω < vFq) and interband (ω > vFq,
vFð2kF � qÞ) particle-hole continuum and the Pauli-blocked interband
region (vFq < ω < vFð2kF � qÞ). The superimposed black curves are the
hybridized surface plasmon–phonon (SPP) modes of the h-BN/graphene/
h-BN/graphene/h-BN system.
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large at the ωðqÞ of these plasmons, which greatly increase the
total electron–electron scattering in the system. At low tempera-
ture, it has already been explained above that the contribution of
the plasmons to the Coulomb drag is suppressed because the non-
linear susceptibility, Γlðq;ω;TÞ, vanishes in the region
vFq < ω < vFð2kF � qÞ where the plasmons lie, Fig. 5a. However,
at high temperature, Γlðq;ω;TÞ acquires a non-vanishing finite
value in this region that overlaps with the plasmon–phonon
modes, as shown in Fig. 5b. In this figure, the hybridized SPP
modes are indicated by the superimposed black lines. Therefore,
the plasmon–phonon modes start to contribute to the Coulomb
drag intensity, as pointed out in Fig. 3e, f. It should also be noted
that the plasmon enhancement of the Coulomb drag is primarily
due to acoustic mode, since it is lower in energy than the optical
mode and runs closer to the PHC, thus facilitating its excitation at
lower temperatures than the optical mode. Nonetheless, the
optical mode also contributes to the drag, being its contribution
larger the higher the temperature.

The drag resistivity, ρD, has been numerically calculated as a
function of the three parameters that govern it, namely the
temperature T , the carrier density (defined here in terms of EF),
and the h-BN interlayer thickness d. In order to isolate the effects
of the different quasiparticle excitations, ρD has been calculated
with and without phonons, for the whole ω-q space as well as for
the inter- and intraband regions separately. Figure 6a–c presents

ρD as a function of T calculated for EF1 ¼ EF2 ¼ 0:064 eV and
d ¼ 4, 6, and 9 nm, respectively, showing a good agreement with
the experimental data of drag resistivity8. In all cases, ρD is
initially enhanced with increasing temperature, peaking at around
300 K. Beyond that threshold, ρD starts to decrease. In the G/h-
BN/G system considered here, this peak gets considerably more
intense when the plasmon–phonon hybridization is considered
(solid lines), as compared to the case where only plasmons are
taken into account (dashed lines). Thus, the full consideration of
the hybridized SPP and HPP modes leads to a 10%, 16%, and
25% percent higher values of ρD for d ¼ 4, 6, and 9 nm,
respectively. Although the overall magnitude of ρD decreases with
increasing d, the larger difference between the cases with and
without phonons for the thicker h-BN interlayer points out
the strong contribution arising from the HPP modes confined in
the h-BN reststrahlen bands, whose number increases with
increasing d. The final reduction of ρD beyond the peak
temperature is a consequence of the merging of the PHC with
plasmon modes as shown in Fig. 4b, as explained earlier. It is
important to remark that these results show that ρD can be
enhanced by various collective excitations even at room
temperature and beyond.

In Fig. 7a, b, the ρD of Fig. 6b is calculated separately for the
inter- and intraband regions, respectively. In the interband
region, Fig. 7a, ρD slightly decreases when considering the h-BN
phonons because the two plasmon branches split into multiple
hybridized SPP modes which have finite lifetime. This splitting
occurs around the two reststrahlen bands of h-BN. Since only
HPP modes are allowed to propagate in the restrahlen bands and
they primarily lie in the intraband region, the spectral weight of
hybridized SPP modes in the interband region is smaller than that
of their counterparts (plasmon modes) when h-BN phonons are
not considered. Therefore, there is a net slight reduction in the
interband contribution to ρD with inclusion of h-BN phonons. In
the intraband region, Fig. 7b, the difference in the ρD when h-BN
phonons are considered is the result of the enhancement of ρD by
the HPP modes, which become more prominent even at room
temperature and beyond. Figure 7c shows the qualitative
evolution of ρD with respect to the temperature (normalized by
TF) due to the contributions of the SPP and HPP modes, which
are shown separately as shaded colour regions. For T ≲ 0:01TF,
ρD � T3 as shown in the inset. Above that range and for
T ≲ 0:07TFðTPHCÞ, ρD � T2:2 is dominated by the PHC. When
the temperature is increased further, the SPP modes start to
contribute with ρD � T1:75 till TSPP (�0:3TF). In the absence of
any other excitations, ρD is expected to decrease with increasing
temperature. However, Fig. 7c shows that ρD keeps increasing

Fig. 5 Non-linear susceptibility of graphene. Density plot of the non-linear
susceptibility of graphene, Γlðq;ω; TÞ, for a temperature T ¼ 50 K (a) and
T ¼ 300 K (b) with EF ¼ 0:064 eV. The dashed lines separate the regions
with Landau damping due to intraband (ω < vFq) and interband (ω > vFq,
vFð2kF � qÞ) particle-hole continuum and the Pauli-blocked interband
region (vFq < ω < vFð2kF � qÞ). The superimposed black curves are the
hybridized surface plasmon–phonon (SPP) modes of the h-BN/graphene/
h-BN/graphene/h-BN system.

Fig. 6 Temperature-dependence of drag resistivity. Drag resistivity, ρD, calculated as a function of the temperature for an h-BN thickness d ¼ 4 nm (a),
d ¼ 6 nm (b) and d ¼ 9 nm (c) with EF ¼ EF1 ¼ EF2 ¼ 0:064 eV. The enhancement of ρD , indicated by the difference between the solid (with phonons)
and dashed (without phonons) curves is due to the hybridization of the quasiparticle excitations (graphene plasmons and h-BN phonons). The comparison
with the data from the experiment reported in ref. 8 (red solid circles) shows a very good agreement with the theory.
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shifting the maximum value of ρD towards a higher temperature,
THPP (�0:45TF) and provinding a ρD � T0:35 dependence due to
the contribution from the HPP modes. Beyond THPP, the system
enters finally into the Boltzmann regime where ρD decreases
as �1=T2.

The calculated dependence of ρD on EF and d is shown in
Fig. 8a–c along with the experimental data from ref. 8. The
comparison shows an excellent agreement with the theory. The
ρD values decrease with increasing EF, as shown in Fig. 8a, b for
T ¼ 240 K and 300 K, respectively. The functional form of ρD
varies as ρD � 1=Eβ

F (or �1=nβ=2), with a β value of 2.3, 2.7, and
2.7 for d ¼ 4, 6, and 9 nm respectively, which agrees well with the
reported experimental data8. Similarly, ρD decreases with
increasing d as the two graphene layers start to decouple, as
shown in Fig. 8c for both T ¼ 240 K and 300 K. In this case, the
functional form of ρD has been assessed separately for the kFd < 1
and kFd > 1 regimes, with ρD varying as 1=dγ with γ ¼ 1:5 and
1.75, respectively. It should be noted that, close to the Dirac point,
the effects of the charge density fluctuations, known as electron-
hole puddles, in the two graphene layers need to be taken into
account44. In the calculations presented here, far from the Dirac
point, these effects have been neglected.

Discussion
In this report, we have studied the Coulomb drag mechanism in
an h-BN/G/h-BN/G/h-BN system and have evaluated the con-
tribution of plasmons and phonons, as well as their hybrization,
thereto. We have also included the effects of XC in the standard
RPA, and have found that these effects further modify the plas-
mon modes of the system and thus drag resistivity. XC allows us
to replicate the experimental data to a very good accuracy. In
order to discriminate the different quasiparticles and their effects,
the contributions from the inter- and intraband regions with and
without h-BN phonons have been evaluated. We have showed
that apart from the drag enhancement led by the graphene
plasmons, their hybridization with the hyperbolic phonons of h-
BN, which extend into the intraband region, can further enhance
the drag resistivity even at room temperature and beyond. This
contrasts with the surface-like hybridized plasmon–phonon
modes in the interband region, whose contribution to the drag
resistivity reduces, as compared to the unhybridized plasmon
modes, due to their splitting imposed by the h-BN restrahlen
bands. Moreover, the calculated maximum of the Coulomb drag
resistivity takes place at room temperature for physically realiz-
able experimental conditions. This result is relevant, as Coulomb
drag experiments in G/h-BN/G systems have not been yet
explored for temperatures larger than 240 K8.

It is also worth mentioning that the XC effects introduced in
this study via LFFs obtained from the quantum Monte Carlo
(QMC) method are applicable for the Coulomb drag in single-
layer graphene, where the interaction parameter (rs) has a small
value. However, under different experimental conditions, such as

Fig. 8 Fermi energy- and interlayer thickness-dependence of drag resistivity. Drag resistivity, ρD, calculated as a function of the Fermi energy EF
(EF ¼ EF1 ¼ EF2) for T ¼ 240 K (a) and T ¼ 300 K (b) calculated for an h-BN thickness d ¼ 4, 6, and 9 nm. c ρD as a function of the h-BN interlayer
thickness d (with EF ¼ EF1 ¼ EF2 ¼ 0:064 eV and for T ¼ 240 K and T ¼ 300 K). The functional forms of ρD on EF and d are also indicated. The
comparison with the data from the experiment reported in ref. 8 (circles in a and c) shows a very good agreement with the theory.

Fig. 7 Contributing mechanisms to temperature-dependence of drag
resistivity. Drag resistivity, ρD, same as in Fig. 6b but calculated separately
for the a interband and b intraband regions as a function of temperature
with (solid line) and without phonons (dashed line). The inclusion of the
phonons of h-BN enhances ρD in the intraband region while reduces it in the
interband region. c Dependence of ρD in Fig. 6b on T=TF with the
contributions from the particle-hole continuum (PHC) and the different
quasiparticles, namely hybridized surface and hyperbolic plasmon–phonon
modes (SPP and HPP, respectively). The vertical dashed lines indicate their
characteristic temperatures, whereas the temperature functional form of ρD
for the different regions is indicated along its line shape. The inset shows a
magnified view of the low T=TF values.
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for example single-layer graphene in a large magnetic field, or in
other systems, such as bilayer graphene (BLG), rs can take large
values and thus it might be necessary to use other forms of the
LFFs (beyond the QMC method) and/or express rs in terms of
ϵTðq;ω;TÞ instead of ϵsðωÞ to fit the data (see Supplementary
Note 2 for details).

In addition, the described mechanisms of the enhancement
of the Coulomb drag in the double-layer graphene system
G/h-BN/G, led by the graphene plasmons hybridized with the
hyperbolic phonons of h-BN, are also foreseen to have an
important role in the more complex double BLG systems such as
BLG/WSe2/BLG

45 and BLG/h-BN/BLG46, where Coulomb drag
has already been measured at room temperature47,48. In this case,
it is necessary though to take into account the different plasmon
dispersion of the BLG49. Furthermore, the impact of these results
may also extend to the analysis of the Coulomb drag in other 2D
material systems with a h-BN interlayer, such as phosphorene/h-
BN/phosphorene50, or more generally to any future double 2D
layer systems including a naturally hyperbolic 2D interlayer
material, such as, for example, black phosphorous51 or transition
metal dichalcogenides52. This can open new ways for the
exploration of novel many-body physics phenomena. For exam-
ple, superposing graphene on black phosphorous has been shown
to lead to strained superlattices, which in turn create large
pseudomagnetic fields53 that are shown to have substantial effects
on the Coulomb drag8.

Data availability
Data that support the findings of this study are available from the authors on reasonable
request.
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