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Chapter 1

Introduction

This thesis deals with the problem of exploring the design space of RF-circuit blocks. Out
of the title several questions might emerge. We could ask, what design space exploration
actually is, and furthermore what RF-circuit blocks are. The first question will be answered

in this introductory chapter. The background of RF-circuit blocks will be treated later.

First, we will introduce the problem and the aims of this work in more detail. Afterwards,

an overview of the remaining chapters will be given.

1.1 Problem Statement and Aim of the Thesis

In this section we will introduce the problem of exploring the design space of an RF
building block (or any other system that behaves similarly) and additionally, the goals of
this project will be stated. First, the general framework of this project will be described.
After introducing the task of reverse modeling and pointing out the occurring difficulties
when dealing with it, we will define the so-called design space exploration(DSE) problem.
The reverse modeling problem can be seen as a starting point of this project, because it
is the first question arising, when dealing with the inversion of functions. The later on
defined DSE problem is a generalization of reverse modeling.

Then, we will first point out the general issues with solving the design space exploration
problem. Based on the needs of end-users, i.e. RF-circuit designers, it will be justified to
reduce the DSE problem to a related one, namely to a multiobjective optimization problem
(MOP). This will be the general problem we are focusing on in this thesis. Finally in
Subsection 1.1.3 the aims and goals of this project will be stated.

1.1.1 Reverse Modeling and Design Space Exploration

First of all, the general setting of this project will be explained and the initially stated

problem will be discussed. Then it will be transformed into another quite interesting form,
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i.e. the design space exploration problem, which will be the basis for further discussions

and for the problem statement of the next subsection.

Generally speaking, the task of this project is to explore the design domain of a given
model. We limit ourselves to so-called Response-Surface Models (RSM), which for our case
are multidimensional functions built by polynomial, rational or spline interpolation. In

other words, we assume to be given a model with a certain smoothness.

Generally speaking, the mathematical relations consist of ¢ performance characteristics
p= (pi)Z-:l, ..., as functions of n design parameters d = (dj)j:L ...,n- The input parameters
are restricted to a certain domain D C R™. In the framework of RSMs for RF-circuit
building blocks those restrictions can be due to physical and practical limitations. Hence,

the output domain P is given by
P=p(D):={p|3de D : p=p(d)} CR". (1.1)

The task of exploring the design space of a model is named reverse modeling. This is,
because we are given the performance figures and we want to calculate the corresponding
input parameters. The first task in the framework of reverse modeling that usually comes
to our mind is the following: For a given performance vector y € R?, we want to compute
the corresponding design or decision vector d € D, such that p(d) = y. But unfortunately,
this task is ill-posed in general, especially in higher dimensions. Typically one of the two

following properties hold:

1. there does not exist any vector d € D, such that p(d) =y for any y € R,

2. the solution d is not unique, i.e. there are at least two decision vectors that lead to

the same performance vector y.

The problems, mentioned before, are typical for higher dimensional functions, since the
function p has to be surjective and injective to avoid these possibilities from happening.
Of course, due to a restriction to the range of p, i.e. P, surjectivity would be an immediate
consequence and hence, the first point of the previous enumeration would never eventuate.
Furthermore, the set P is not known for general models. Injectivity is even a bigger
problem. It is equivalent to strictly increasing or decreasing monotonicity. Note, that

especially polynomial and rational interpolation functions are not monotonic in general.

Consequently, due to the explanations given above, the inverse map should be regarded as
a point-to-set mapping, i.e. p~!: P — P(D), withp ! :y—p(y):={d €D :p(d) =
y}. Since additionally P is not known explicitly, a subset of Y of R? is chosen instead of
a single performance y. Hence, the problem of design space exploration can be stated as

follows:

Problem 1.1 (Design Space Exploration). For a given a set Y C R, find the mazximal
set X C D, such that
Y =p(X). (1.2)
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Additionally notice, that the design space exploration is the inverse problem of the so-
called performance space exploration, which is to compute Y for given X. This problem is

well-posed, if p is well-defined.

In the following subsection the difficulties of this problem will be stated. Furthermore, we
will make some practical remarks, that are closely related to the task of circuit design.
Based on this, Problem 1.1 will be transformed into a final form, namely into a multiob-
jective optimization problem. This problem provides the basis for all further investigations

in this thesis.

1.1.2 Problem Statement

Problem 1.1 is in general very hard to handle. It is not clear at all how to treat it. One
attempt to obtain at least a subset X of X could be the following. Assuming simply con-
nected domains' X and Y and continuity of p, we could investigate only on the boundary
of Y, i.e. on dY. The corresponding values in the design space will cover than at least the
performances of Y. One reason for this approach could be to reduce the dimensionality
of the considered set by 1. If the function p is monotone in each direction, this method

would obtain dX. But in general it is impossible to make any statement on those results.

Now, if we think of the work of a circuit designer. In his/her case, the function p describes
the performance of an (in our case analog) electrical circuit. The designer wants the
performance variables to lie in some certain range, i.e. the set Y. Additionally he/she is
not interested in the whole feasible domain X, which would yield the complete feasible
performance space Y, since the feasible domain Y contains maxima as well as minima of
all performance variables. Usually, the designer is interested in an optimal behavior of
the circuit. A possible example in the case of an amplifier could be, that the gain should
be maximized, whereas the noise figure is to be minimized, and additionally the other
performances should only behave nicely, i.e. they should be bounded. In such a case it
is not necessary to compute the whole set of design variables X. Instead, it would be
sufficient to compute only the boundary of the domain, which results in optimal values
of those specific predefined performances. In other words, the aim could be to obtain the

so-called Pareto front?, i.e. we want to obtain a set of in a certain sense optimal values.

Due to the previous considerations, we will reduce our problem into one that is easier
to handle and more useful for a circuit designer. A transformation of Problem 1.1, in
the way explained above, leads to a so-called multiobjective optimization problem (MOP).
Without loss of generality let us define the first k£ (1 < k < t) performance figures as the

optimization variables. Then, we are able to state our new problem:

Problem 1.2 (Multiobjective Design Space Exploration). Let t, n, k € N with

1 < k < t. Furthermore, given the connected compact domain D C R™, the smooth

LA simply connected domain in R™ does not contain any holes.
2The basic theory to multiobjective optimization is treated in Chapter 3. The Pareto optimal front is
given in Definition 3.12 on page 21.
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function p : D — R! and the connected compact domain Y C RY. The multiobjective

design space exploration (MDSE) problem is given by

min po = po(d) := (p1(d), .-, pr(d))” (1.3)

subject to
p=(pi(d), ..., p(d)" €Y.

Note, that in the definition of Problem 1.2 we assumed without loss of generality, that all
optimization performances are to be minimized. If otherwise, we have to multiply single
or all functions by —1. Furthermore, the term smooth means, that p has to be at least
continuous. If later on more smoothness is required, we will mention it at the respective

position.

Furthermore, we limit the dimensions such that the solution approach is manageable, i.e.
the dimensions of design space and corresponding range of the model should not exceed 10.
This is a realistic assumption, since a few parameters determine already the main behavior

of analog RF-circuit blocks.

The special difficulty of this problem is, that we are only given a function p in form
of a black box. Hence, we are not able to compute the derivatives of p analytically.
Furthermore, it is not possible to make general statements about the behavior of p without
calculating its values. This means, that we do not now anything about monotonicity or
other properties of the performance function, and hence we have to assume a certain

regularity.

Additionally observe, that the relation of the performance space exploration and the multi-
objective design space exploration. For this sake, we can trim the constraints of Problem 1.2
in the way, that we restrict the design variables to the set X and we do not prescribe any
constraints on the performances p. Then by optimizing the performances in certain direc-
tions we get an impression of the corresponding performance set Y, at least of its boundary
oY.

1.1.3 Goals of the Project

After transforming the reverse model via the definition of Problem 1.1 into our final Prob-

lem 1.2, we are now able to formulate the goals of this project:
o Theoretical aspects. Investigate on the theoretical properties of Problem 1.2 and on
conditions that an optimal solution has to fulfill.
e Design space exploration. Find efficient ways to solve Problem 1.2.

o Application. Apply the approaches to RF-circuit block models to test the applicabil-
ity.



1.2 Outline 5

1.2 Outline

In the previous section we explained the general problem of design space exploration and
the transformation to a manageable one. Furthermore, the aims and goals of the project
were explained. Hence, it is basically clear what the remaining tasks are. This leads to

the following structure of this thesis.

As an introduction, the electrotechnical background of this project will be outlined in
Chapter 2. First, the design flow for semiconductor devices will be explained. Furthermore
RF circuit blocks will be introduced with focus on the low noise amplifier, and we will
answer the question, why there is the need for compact models for this family of circuits.
Furthermore an overview about the models and the reverse modeling in terms of compact

RF circuit models will be given.

In Chapter 3 the theoretical aspects of multiobjective optimization problems (MOP) will
be treated. After an introductory section, where the terms related to optimality of such
problems are introduced, the existence of an, in some sense, optimal solution will be in-
vestigated. Additionally, we will present necessary and sufficient first order optimality
conditions. Afterwards, the term trade-off will be mathematically defined. It provides in-
sight into the drawback between single performances, which can be important information

for the designer.

In order to solve the MDSE problem, we will choose two completely different methods,

namely a probabilistic approach and a deterministic method.

Chapter 4 will treat the probabilistic approach. First, the basic concepts of so-called
evolutionary algorithms(EAs) will be considered. The standard case, the optimization of
a single function, i.e. single objective optimization problem (SOP), is used to examine the
steps of the general algorithm. After this, the adaption of EAs from SOPs to MOPs will
be discussed. Some examples of existing methods are given. The method of choice, the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) is introduced in more detail. Finally

the convergence properties of SPEA2 are investigated.

In Chapter 5 deterministic methods to deal with multiobjective optimization are presented.
Again the method of choice, the normal-boundary intersection(NBI), is treated in detail

and the relation to other methods will be stated.

Chapter 6 deals with the implementation details of both algorithms, SPEA2 and NBI.
The methods are compared by means of a simple example, for which the exact solution
is known explicitly. Furthermore, SPEA2 and NBI are applied to investigate the design

space of a low noise amplifier.

Finally, Chapter 7 summarizes the work and presents our main conclusions. Moreover,

suggestions for future work will be listed.
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Chapter 2

Electrotechnical Background

In the previous chapter we stated the problem we are dealing with in this thesis. We
mentioned, that the models, i.e. the function p, describe the performance behavior of an
electrical circuit in dependence of some design parameters. Therefore, this chapter aims

to create some insight in the framework within this thesis is situated.

First a general introduction of the semiconductor design process is presented. Furthermore,
the aim of the RF-building block modeling project will be stated. Later, the different com-
ponents of an electrical RF-circuit will be listed. Furthermore, the two different directions
of the circuit design flow are presented. The standard approach is to compute the per-
formance of a circuit with given design parameters. In the other direction, the so-called
reverse modeling, we compute the corresponding input parameters for given desired perfor-
mances. As mentioned in Chapter 1 this is the main task of this work. In our specific case,
the compact models will be so-called response surface models(RSM). Furthermore, the de-
sign and performance specifications of a low noise amplifier (LNA) will be explained. The
LNA acts as the RF circuit block on which we will demonstrate the methods developed in
this thesis.

Finally, this chapter will be summarized.

2.1 Introduction to the Semiconductor Design Process

In modern electronic applications integrated circuits consist of up to millions of compo-
nents. There are so-called passive components, like resistors, capacitors and inductors.
However, a circuit consists mainly of active devices, namely transistors. As an example
for the improvements in technology, compare the first transistor which was developed in
1947, depicted in Figure 2.1(a), and an integrated 60nm NMOS transistor of the Intel®
Corporation (shown in Figure 2.1(b)). The term 60nm is a design note and it denotes the

(gate) width of the transistor. The state of the art is now at around 45nm.

The production of a chip consists of several disciplines. First, there is the process step de-

velopment. Secondly, the process steps are used to produce the single devices and thirdly,
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Figure 2.1: The first transistor, invented in 1947 (left, found in [Lee|), and an integrated
60nm NMOS transistor of the Intel® Cooperation(right, found in [T*02]).

circuit blocks(cells) are made of the single devices.

Furthermore, the circuit design joins different types of basic circuit cells together. An
electrical circuit mainly consists of digital cells(digital circuits), memory cells and an
RF! /analog interface to the outside world, consisting of RF building blocks(RF front-end).
So-called standard cells increase the design speed and the accuracy due to less design it-
erations. So far, such cells do only exist for digital circuits and memories, but not for RF
building blocks. The reason for this lies in the different nature of digital and analog/RF

design.

For digital circuits, the increasing amount of devices? makes it very hard to deal with the
different influences of all components. For example, in Figure 2.2(a) Moore’s law is applied
to Intel®’s processors. It is seen that the number of transistors in Intel®’s processors in-
creased from several thousands in the 1970’s up to 100 millions and even more nowadays.
Furthermore, to get an impression of the complexity of, especially digital, circuits, see Fig-
ure 2.2(b), where the photo of a Intel® Core™2 Extreme mobile processor die is depicted.
For analog circuit blocks the design complexity does not arise from the number of tran-
sistors, which usually does not exceed 100 transistors. In this case the design complexity
originates from the sensitivity to details in the design. While digital devices can be con-
sidered on or off, for analog design we need to take the full behavior of the devices into

account, which makes it difficult to standardize.

The complexity of the whole design process means, that if the designs would be made
purely based on experiments this would require many design iterations. This would be
too expensive and too time consuming. Therefore special simulation tools are used in all
phases of the design process. Usually, the impact of the production process on semicon-
ductor devices is simulated via process simulation tools. Going one step further, single

components are modeled and simulated, respectively, by use of device simulation packages.

'Radio-Frequency. It includes all signals that can be transmitted wireless. Therefore, frequencies from
10kHz to 300Ghz are regarded as RF.

2 According to the famous Moore’s law (cf. [Moo65]) the amount of transistors on an integrated circuit
for minimum component cost doubles every 18 months.
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Figure 2.2: Moore’s law applied to Intel’s CPUs (left, see [M*02]) and a photo Intel®
Core™2 Extreme mobile processor die (right, see [Int]).

The behavior of a whole circuit is treated with circuit stmulators and on the highest level,

system stmulation tools are used to deal with whole systems.

The underlying models for single devices are based on semiconductor physics and are quite
complicated. Using the same models in circuit simulation, it would result in too complex
simulations and therefore, they would be too time consuming. Hence, compact models of
devices are used. For digital systems again simplified models are used for cells. At this
time, behavioral models for RF-circuit blocks are typically not very accurate, because they

are not based on a standardized cell.

The aim of the RF-building block-modeling activity within NXP Semiconductors is to
develop models that accurately describe the behavior of RF circuit blocks and offer insights

in relevant design trade-offs. This activity is briefly introduced in the next section.

RF circuit blocks are (small) RF circuits that perform a specific function in a receiver for
instance, e.g. low-noise amplifiers, mixers, oscillators, .... In the framework of this thesis
we are dealing with such circuit blocks, focusing on LNAs. An LNA is an amplifier that has
a very low noise figure N F' (see Section 2.3), which means that almost no disturbances, so-

3

called noise”, are added to the amplified signal. For details see [Lee04| (especially chapter

12) or [LvdTVO1].

2.2 RVF-Circuit Block Models

In the following, we will outline the basic components of RF circuit block models. Fur-
thermore, we will state two different ways to design a circuit. An electrical circuit model

as defined in [CKO7] consists of the following three main parts (see Figure 2.3(a)):

e (lircuit Part: This part consists of the circuit topology modeled and its design pa-
rameters that are considered to be variable. Those will serve as input parameters for
the model.

3 According to [Lee04], the most general definition of noise is: “everything except the desired signal”.
Therefore, all disturbing signals are regarded as noise.
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e Flectrical Representation: It models the electrical behavior of the circuit and can be
implemented in circuit simulators. It describes the relations between the occurring
voltages and currents at the input and output, from which the performance specifica-
tions are derived. For the purpose of this thesis the electrical representation acts as
a black box model to link the design parameters(input) to the performance specifica-
tions. This black box model consists of response-surface models (RSM), constructed
by polynomial, rational or spline interpolation. The corresponding data points are

obtained by circuit simulations for different parameter settings.

e Performance Specifications: Properties of interest that give the designer insight in
the performance of the considered circuit. Performance figures are explained in Sub-

section 2.3. They are derived from the electrical behavior of the building block.

Additionally observe, that building-block models are only useful, if they are available for
different topologies and several circuit block classes. Hence a lot of models have to be
set up. By using physics-based models it would take several years to generate a suitable
library. Consequently this technique is not applicable. Therefore, the RSM-approach is
used in a first instance(cf. [CKO07]).

In Figure 2.3 the structure of an overall model is depicted. Additionally to the already
stated parts, there are two more:
e Process Technology: It defines the technology used to build the circuit. It can be

based on device measurements or on simulations of certain technologies.

o Circuit Environment: This part mainly consists of the source and load conditions
of the circuit block. Possible load and source conditions are the impedances of the

source and the load (cf. Section 2.3).

circuit block circuit block
layout layout
process environment process environment
technology @ of circuit blocl technology ﬁ of circuit blocl

circuit block model circuit block model

4 ]

performance performance
figures figures

(a) (b)

Figure 2.3: Two different operation modes for a model structure.

Furthermore, two different relationships between the parts of the model were established.
In Figure 2.3(a) the usual flow of model development is depicted. Given the input param-

eters, the performance of the circuit can be computed.
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But a more efficient or more natural way of designing a circuit is, that the designer pre-
scribes certain performances that he/she wants to achieve. Then, the task is to compute
the design parameters corresponding to this performance figures. This flow of modeling is
displayed in Figure 2.3(b) and it is designated as reverse modeling. As explained already

in Chapter 1 reverse modeling is the topic of this thesis.

2.3 Design and Performance Specifications of Low-Noise Am-

plifiers

In the following we will give a short summary of possible input(design) parameters and
output parameters(performance figures) of LNAs. For more details on LNA design see
chapter 12 of |Lee04]. Besides, typical values are presented for the parameters. Note, that
in the framework of RSMs, a typical value for the design parameter is chosen. Then, the
considered range covers a variation of one or two decades from this typical value. First,

we will state some possible design (circuit) parameters:

e Frequency f. The frequency of the signal is determined by the application. It influ-
ences the magnitude of certain impedances (complex resistance), since the impedance

of an ideal capacitor C and of an ideal inductor L are given by

1

Zr, = jwL and o= ——,
jwC

(2.1)
where w = 27 f denotes the radial frequency, j the imaginary unit, and L and C
denote the inductance and the capacitance of the components respectively. In this

work, a frequency of 5 GHz is considered.

o Width of the transistors W. Typically W is in the range of 200 um. Note, that those
values are representative for LNAs, which are analog circuits. As noted above, the

scales for digital transistor widths are up to a factor 1000 smaller.

e Inductor Lg, used for source degeneration. In amplifier design there are two different
relations. The power transfer and the noise transfer. They determine the ratio
between the power and noise, respectively, at the output and the input. In order to
obtain optimal power transfer and near optimal noise transfer, the input impedance
of the LNA needs to match the source impedance (usually 50€2). Ly is used in source
degenerated LNAs*(cf. Figure 2.5(a) for the narrowband LNA, which is used for
further considerations). It should drive the real part of the input impedance to the
desired value. In standard source-degenerated LNAs we are considering L to be in

the range 250 pH for our purposes.

o Inductor L,,, used for input matching. The introduction of the inductor L, drives

the real part of the input impedance to a desired value. L,, is used to compensate

4The ’s’ in the notation Ls arises from the term “source”
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the occurring imaginary parts for a certain frequency. The values of L,, are in the
range of 2.5nH. In Figure 2.5(b) a simple model, corresponding to the LNA shown
on the left hand side of Figure 2.5, is depicted. Below we will compute the input
impedance Zj, for this circuit, and by means of Z;, we will see the purpose of the

inductors Lg and L,,.

Load impedance Z;. An imaginary resistance is called impedance. Its imaginary part
corresponds to a phase shift of the signal. Ideal inductors and capacitors have purely
imaginary impedances. Since every real load is not merely resistive, it has to be
modeled in a general way. It is assumed that the magnitude of Z; lies in between

20 €2 and 20 k2.

In the following we will discuss some output variables, i.e. performance figures:

Power consumption P. The power consumption determines the overall power con-

sumption of the circuit. Usually P should be minimal. It is given in mW.

Available Power Gain G 4 is a measure of the power gain of the amplifier; usually
Ga > 10dB.

Voltage gain A, is the ratio of output voltage divided by input voltage in a logarithmic
scale. In typical applications A, is greater than 18 dB.

Input reflection I'y. 'y is the ratio between the reflected and transmitted signal at
the input of the amplifier. Preferably it is as small as possible, hence the constraint
', < —10dB is typical.

Noise figure NF. Every electronic device adds noise to the signal, even a simple
wire. The ratio between total output noise power and the output noise due to the
input source is termed the noise factor F. NF is I expressed in decibels. For a
typical LNA we have NF < 3dB.

Intermodulation 11 P3. Ideally, an amplifier does not change the frequency behavior
of a signal. Its only use is to amplify the signal to a certain extend, i.e. the transfer
function should be linear in the signal v. In reality it is not. When expanding
the transfer function with respect to v, especially the third order terms are very
important. That is, because this term is responsible for a perturbation in frequencies
close to the signals frequency. The input-referred third-order intercept point I1P3 is a
measure for the magnitude of this third order coefficient and it is usually greater than
0dBm. In Figure 2.4 the determination of the I1P3 is sketched. Due to the power
coefficient 3, the third-order terms grow faster than the first-order terms for increasing
input, i.e. they have slope 3 compared to the slope 1 of the first order terms, if
everything is viewed in logarithmic scales. Hence, the I1P3 is the intersection point

of both terms for varying input power. For more details see Subsection 12.6 of [Lee04].
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Figure 2.4: Illustration of the LNA performance parameter 11 P3 concerning linearity.

o [ntermodulation I1P2. Similar to I1P3, it determines the second-order nonlinearity.
Since, the second order terms do not cause perturbations in close-by frequencies, they

are not of main interest for the circuit designer. 11 P2 > 0dBm is usually required.

As indicated above, we will now compute the input impedance of the source degenerated

LNA shown in Figure 2.5. Using the ohmic law® and (2.1), we obtain

. . 1 . .
Vin = in <JWLm + - + JWL5> + gmVgs JWLS 5 (22)
JwClys
where Cys and vgs denote the gate-source capacitance of the transistor and the voltage
along this capacitor respectively. Furthermore, g, terms the amplification factor of the
voltage controlled current source. Using the relation

iin

Vgs — T~
gs . 3
JwCys

we get for the input impedance Z;, the following value:

Vin ) 1 Ly

Zin = = Jw(Lm + Ls) + joC + gmc—gs : (2.3)
In (2.3) we see, that the last term of the sum is real. Hence by adjusting Ls we can trim
the real value of the input impedance to the desired value. In addition, L., can then be
used to drive the imaginary part of Z;;, for a certain frequency f,. to zero. Since for other
frequencies, the input match and in addition the circuit’s transfer function is not optimal

any more, inductively source degenerated LNAs are mainly narrowband amplifiers.
Finally bear in mind, that Figure 2.5(b) is the most simple model for the depicted

amplifier. In reality this model contains much more components.

5The ohmic law states, that the voltage v of a circuit is given by the current i times its resistance, i.e.
impedance Z. Speaking in terms of formulas we have v = ¢ Z.
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Figure 2.5: Narrowband low-noise amplifier with inductive source degeneration(left, cf.
|[Lee04] p. 378). Furthermore a simple model for this LNA is depicted on the right hand
side.

2.4 Chapter Summary

In this chapter we briefly summarized and explained the electrotechnical background. We
outlined the design flow of semiconductor devices. Furthermore, we pointed out, why there
is a need for compact models for RF-circuit blocks. Additionally the basic parts of a model
were explained. For our sake, we will use response-surface models, which map the design
parameters to the electrical representation, from which the performance figures are derived
analytically.

Furthermore, we also introduced the flow of reverse modeling in circuit design. This prob-
lem will be treated in the following chapters mathematically. Finally, some design and
performance parameters for low noise amplifiers(LNAs) were discussed. Compact models

for LNAs will be used in Chapter 6 to show numerical results of the introduced methods.
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Chapter 3

Theory of Multiobjective

Optimization

In Chapter 1 we introduced the problem of design space exploration(see Problem 1.1).
Furthermore, we pointed out, that it is advisable to transform this problem into a mul-
tiobjective design space exploration problem, or in other words, into a multiobjective
optimization problem, i.e. Problem 1.2. Furthermore, we outlined the electrotechnical
reasoning behind this problem in the previous chapter. Now, we want to investigate on
the theoretical background of multiobjective optimization. First, we will reformulate our
problem into another form, i.e. we have to assume some constraint functions corresponding
to the feasible design domain D of Problem 1.2. This will lead to the formulation given in

Problem 3.1, which is the basis for all further investigations.

Note, that it is not clear at all, which feasible performances should be considered to be
optimal and which of them are not optimal in some certain sense. This difficulty will be
treated later. There, order relations will be defined, which will finally lead to the important
definition of the so-called Pareto optimality. In this work, we will consider a solution to
Problem 1.2 and Problem 3.1 respectively, as optimal, if it is Pareto optimal.

Furthermore, we will investigate on the existence of Pareto optimal solutions and for com-
pleteness, some first-order optimality conditions based on the Lagrangian formulation are
listed. Finally, the important definitions of trade-off and trade-off rate will be introduced.
They are very important in the framework of optimization along a trade-off front, since
they determine the rate of drawback of one performance variable if we want to improve

another one. The hard task for the circuit designer is then to balance this trade-off.

3.1 Introduction

To be able to state some analytical results, we have to assume that we are given the

constraint functions that determine the sets D and Y, additionally to the requirements
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made in Problem 1.2. That is, we are focused with a so-called multiobjective optimization
problem (MOP). Formally it is defined by

Problem 3.1 (Multiobjective Optimization Problem). Letk, I, m,n € N, p: R" —
R*, e:R" — R! and & : R* — R™. A general MOP includes n parameters (design
variables) d, k objective functions (performance figures) p, | design space constraints e

and m objective constraint functions €. The optimization problem reads as

min p :=p(d) = (pi(d), ., p(d))” (3.1)
eRrn
subject to

d € Di={xeR"|e(x)<0,i=1,...,1},

p € Y:i={peR' (P <0,i=1 ..., m}

Comparing Problem 1.2 with Problem 3.1 we see, that the performance figures not used
for optimization, are transferred to the constraint functions e. Additionally, the set Y
has to be customized, i.e. the dimension of Y decreases from t to k. We assume that
the feasible design and performance domains are defined by continuously differentiable
functions, i.e. e € C*(R™, R!) and & € C'(R*, R™). We mentioned already in Section 1.1.2,
that the performance function is smooth due to its origin. Hence, it is feasible to expect
p € C"(R", R¥) for some r > 1. It is therefore safe to state, that for our situation
Problem 1.2 reduces to Problem 3.1. In Figure 3.1 a schematic picture of the relation
between the sets and functions occurring in Problem 3.1 is depicted. For simplicity we

assumed linear constraint functions e; and ;.
In the following, we define the set of feasible input parameters d and attainable perfor-

mances p:

Definition 3.2. The feasible set Xy of the MOP, given by Problem 3.1, is defined by
Xy:={deD|pd)eY}. (3.2)
The set of attainable performance vectors P, is given by

Py = {p(d)|d € X/} . (3:3)

The sets Xy and P, are defined to simplify the treatment in the next chapters. This is,
because each vector d € X is feasible and there exists a y € P, such that p(d) = y.
The other way around, we have similarly, that for every y € P, there exists at least one

corresponding d € Xy.

In the following we will basically limit ourselves, especially for the theory, to convex func-
tions and domains. For completeness, those definitions will be stated. Furthermore, the
definition of a convex hull will be given, since it will be needed for the treatment of the

normal-boundary intersection approach, which will be introduced in Section 5.2.
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Figure 3.1: Hlustration of the problem setting of a general MOP.

Definition 3.3. Let n € N. A function f : R™ — R is called convex if for all x, y € R"
F(Bx+ (1= B)y) < BF(x)+ (1 — B)f(y) holds true for all 0 < 3 < 1.

A set S C R™ is convex if x,y € S implies that fx+ (1 — )y € S for all0 < 3 < 1.
Furthermore, the convex hull co(S) of a finite set S is given by

co(S) ={fx+(1-PBylx, yeS, B€[0,1]}.

Convexity of functions and sets is important in optimization, since for a convex function
defined on a convex set, the terms local and global minimum of a single objective optimiza-
tion problem(SOP) coincide. Hence, if any solution method yields a stationary point, it is
a global minimum, and hence the (numerical) solution process is simplified tremendously.
For multiobjective problems the effects of convexity are similar, since then, the optimal

front(see Definition 3.12) is connected.

3.2 Basic Concepts in Multiobjective Optimization

The problem we are concerned with, when dealing with performance vectors is, that it
is not clear at all how to assess different vectors in comparison to each other. Generally
speaking this means, that it is not obvious which order relation should be applied. If
we would use lexicographic order, for instance, each element is comparable to each other.
But this would imply that we rank the entries of the vectors, i.e. we would prefer single
performance figures to others. But without preferring any performance function to another,
we might get several solutions that cannot be compared to each other. Or in other words,
the set P, is not totally ordered by this relation. This leads to the terminology of Pareto
optimality, which will be defined in Subsection 3.2.2.

But before, in the following subsection we have to introduce the concepts of reference and
dominance relations, which are needed to set up the terminology of Pareto optimality. We
will mainly follow [SNT85]. It deals with the theoretical background of multiobjective

optimization problems.
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3.2.1 Preference and Domination Relations

As mentioned above we want to define some order relation for the performance vectors or
the corresponding design parameters. Before being able to order the elements of a set X

in any way, we have to define the preference relation <.

Definition 3.4. The binary relation < is called strict preference relation on the set X.
If ¢ <y for some x,y € X, we say x is preferred to y. Consequently, we can define the

relations = and ~ as

x~y & a(y<x) A (x<y)

x2Jy & x<yVx~y

The relation ~ is called indifference (x is indifferent to y) and = is called preference-

indifference relation (y is not preferred to x).

X can be any vector space. Later on, X will be the design space, i.e X = R". Usually the
preference (indifference) relation is an order relation. We use now these general definitions
of relations to introduce order relations. But first we have to state some fundamental

definitions for binary relations, which are used below to define the different order relations.

Definition 3.5. Let R be a binary relation on the set X. Then R is said to be

e irreflexive, if ~yRy, Vy € X,

transitive, if Vo, y, 2z € X: xRy ANyRz = Rz,

negatively transitive, if Va, y, z € X: -z Ry A ~yRz = -z Rz,

asymmetric, if Vx, y € X: xRy = —yRz,

weakly connected, if tRyV yRz, Ve, y € X, x #y.
In order to show the relations between the order relations, which will be defined below, we
have to show, the following relations:
Lemma 3.6. 1. wrreflexivity and transitivity imply asymmetry,
2. asymmetry, transitivity and weak connectedness imply negative transitivity,
3. asymmetry implies irreflexivity,
4. negative transitivity and asymmetry imply transitivity.

In [SNT85| no proof for this lemma and no reference for a proof can be found. Hence, we

show it in here.

Proof. Throughout the proof let x, y, z € X arbitrary but fixed. Furthermore, let R be

the order relation on the set X.
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1. Let xRy hold. Additionally assume yRxz. Then, with transitivity we obtain z Rz,

what contradicts the irreflexivity. Hence —yRx holds.

2. Let mx Ry and —yRz hold. With the weak connectivity, we get xRy and yRz. Hence,

with transitivity we obtain zRx. Asymmetry implies ~zRz.
3. Assume yRy. Then with asymmetry we get -y Ry, what contradicts the assumption.

4. We will show this implication by contradiction. We assume —zRy. Thus we have to
show ~zRy V —yRz. Therefore, we firstly assume yRz. Hence, with asymmetry we
get 7zRy. With negative transitivity mx Ry holds. Secondly, if xRy holds, we get

similarly ~yRz.
O
Now we are able to introduce the order relations. In general, there are three different types

of orders(cf. [SNT85] p. 26 ff.), namely

Definition 3.7. Let R be a binary relation on a set X. R is said to be a

(i) strict partial order if it is irreflexive and transitive,
(i) weak order if R is asymmetric and negatively transitive, and a

(iii) (strict) total order if it is irreflexive, transitive, and weakly connected.

The following connection between these order relations holds:

Corollary 3.8. Let R be an order relation on a set X. The following holds:

e R is a weak order if it is a total order,

o if R is a weak order, it is a strict partial order too.

Proof. The corollary follows from Lemma 3.6. O

Furthermore, if a set X is totally ordered by a relation R, then each element is comparable
to each other. Additionally, we get that a bounded totally ordered set has a unique maximal
(or respectively minimal) element. In the case of such a setting, there would exist a unique
“optimal” value. As mentioned before, we are usually not confronted with this case in the
framework of MOPs.

For MOP’s especially the so-called Pareto order, or the weak Pareto order respectively,
are of interest(see [SNT85] p. 30), since they are the most natural form of introducing
a neutral order. Thereby the term neutral is related to variable preferences. The Pareto

orders are defined by
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Definition 3.9. The Pareto order is defined by <:=<, i.e. for x, y € R¥
x<y & x<y:& <y Vi=1l,....k AN x#y,
and the weak Pareto order is defined by <:=<, i.e. forx, y € RF

X<y & <y Yi=1 ..., k.

When solving an MOP, we want the optimal solutions p to be preferred to or indifferent to
others in the performance space. But the constitutive values are the corresponding design
vectors d € Xy, such that p(d) = p. Therefore we have to adapt the definition of Pareto

order, and define the (weak) Pareto dominance.

Definition 3.10. Let x,y € Xy. Then based on Problem 3.1, the Pareto dominance
relation is defined by

x <y (x dominates y) = p(x)<p(y)
Analogously to the Pareto dominance we can define the weak Pareto dominance
x <y (x weakly dominatesy) <= p(x) < p(y)
The indifference of two elements always depends on the used dominance relation, i.e.

x ~y (x is indifferent toy) & xAy ANy £X

Note, that in the previous definition, we are using the same symbol for Pareto and weak
Pareto dominance. The used domination relation always follows from the context, namely
it depends which Pareto order is used, either the weak or the normal Pareto order. Addi-
tionally bear in mind, that the set of weakly dominated elements of an element is smaller

than the set of dominated elements.

3.2.2 Pareto Optimality

Above we defined the preference relation, which led to the different types of order relations.
Then we introduced the (weak) Pareto order, which was extended to the (weak) Pareto
dominance relation. Using this setup, we are now able to define an optimal solution of
Problem 3.1.

Definition 3.11. A point d € X ¢ s said to be a (weak) Pareto optimal solution to
Problem 3.1 if there is no d € Xy such that d < d, i.e. if all points d € Xy do not
(weakly) dominate d (cf. Definition 3.10).

The previous definition was stated for Pareto optimal and weak Pareto optimal solutions.

Again, it depends on the used relation < (compare to Definition 3.10). Note, that for an
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optimal front with some constant performance variables, only the minimum of the other
variables will be accepted when Pareto optimality is used, while we consider all solutions
along this front to be weakly optimal. An example to illustrate the difference between

these definitions is shown in Figure 3.2(a).

The definitions 3.10 and 3.11 are also quite often used for vectors in the range of the
performance functions. That is, a vector p € Y (weakly) dominates p € Y, if p < p
(P < p). Similar we define the optimality of two performance vectors p, p € Y.

In Definition 3.11 we defined global Pareto optimal solutions. Additionally, there exists the
local (weak) Pareto optimality. Intuitively its definition is clear, since a decision vector
x*, i.e. design vector, is called locally (weak) Pareto optimal if it is (weak) Pareto optimal
in DN B(x*, §) for some § > 0, where B(x*, §) denotes the sphere with center x* and
radius §. Note the relation between local and global optimal points for single objective
optimization. As mentioned previously, the terms coincide for convex functions which are
defined on convex domains. Similar, we obtain equivalence of Pareto and local Pareto
optimal solution, if the attainable set P, is convex. An additional similarity is, that
we cannot expect the solutions obtained by (especially deterministic) numerical solution

methods to be global Pareto optimal®.

In general, the task is to compute all Pareto optimal solutions. The set of all optimal

solutions is called the Pareto front.

Definition 3.12. The Pareto optimal front (or in short Pareto front) is defined to be the

set of all feasible (weak) Pareto optimal solutions, i.e.

Pr={peY|3de X, : p(d)=pA Ad e X; : p(d) <p(p(d) < p)} (3.4)

The Pareto front can vary if either the weak Pareto or the Pareto optimality condition is
used (cf. Figure 3.2(a)). We will basically focus on weak Pareto optimal solutions, since in
the framework of design space exploration we are more interested in the trade-off between
certain design parameters than on the strict Pareto optimal solutions. In Figure 3.2(b) a

typical example of a convex Pareto front is depicted for a two-dimensional objective space.

3.3 Existence and Optimality Conditions

In this section, we will first investigate the existence of Pareto optimal solutions. We will see
below that the existence of at least one Pareto optimal point is guaranteed. Afterwards, in
Subsection 3.3.2 we will bridge the gap to single objective optimization. We will state some
first-order necessary and sufficient optimality conditions for multiobjective optimization
problems, which are the counterpart to the optimality conditions based on the Lagrangian

formulation for SOPs. Note, that this section was only added for completeness.

1This holds true for the method that will be introduced in Section 5.2. An exception of this fact is the
weighting method(see Subsection 5.1.1), where the obtained solution is always global Pareto optimal.
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Figure 3.2: Illustration for Pareto optimal and weak Pareto optimal solutions(left). On
the right, a typical example for a convex Pareto front is shown.

3.3.1 Existence of a Pareto Optimal Point

First of all, the question arises whether there exists a Pareto optimal front Py, i.e. Py # (.
For Theorem 3.14, which states existence of a Pareto optimal solution of the multiobjective

optimization problem, we need the definition of lower semicontinuity.

Definition 3.13. A function p; : R" — R is lower semicontinuous (l.s.c.), if for any

a € R p; H(a, 00)) is an open set.

Similarly we could define upper semicontinuity. Note, that continuity of a function implies
semicontinuity. Now, we are able to state the theorem (cf. Corollary 3.2.1 of [SNT85| (p.
59)).

Theorem 3.14. Let p = (py, ..., pk)T be a vector valued function from R™ into R¥. Let
Xy be a nonempty compact set in R™ and each p; (1 =1, ..., n) be lower semicontinuous
on Xy. Then the Multiobjective Optimization Problem 5.1 has a Pareto optimal solution
de Xf.

The proof of Theorem 3.14, as carried out in [SNT85], uses several definitions and lemmas
and therefore, it is not so easy to follow. But the proof can also be carried out in a different
way. Thereby, use is made of the properties of compact sets and lower semicontinuous

functions. The proof is as follows:

Proof. Since we are dealing with finite dimensional domains, compactness is equivalent to

boundedness and closeness. Since, Xy is compact and p; is lower semicontinuous we have
Ixo; € X¢: pi(x0:) = inf{pi(x) : x € X¢}. (3.5)

x € Xp}, Apy o= {x € Xy : pi(%) < ai+ 3}

This holds true since with a; := inf{p;(x) :
is closed. Now assume, that ﬂ;?’;lAj’i = (). This would imply that Agi = X¢\A,,; is an
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open cover of X;. Hence, there would exist a finite subcover? Agk. Due to the finiteness
of the ny, this cover cannot contain all elements of X; which contradicts the assumption.
Therefore we get for each ¢ € {1, ..., k} the so-called individual minima xg ;. All of them
are already weak Pareto optimal points. If two individual minima xo; and xq ; have the
same value in the performance space in either the i-th or the j-th component, we have to
discard either x; or x;. The elements left over are a subset of the Pareto optimal front
with respect to the Pareto dominance. At least one element “survives” this elimination

procedure. ]

Note as general rule of thumb, that we need closeness and boundedness of Xy and continuity
of the performance figures p to guarantee the existence of Pareto optimal points. The
problems we are dealing with in this work are assumed to fulfill these requirements and

hence we always suppose the existence of at least one Pareto optimal point.

Another question, that might arise is, if the Pareto optimal solution is unique. This is
only for special cases true, i.e. in cases where the Pareto optimal solution lies in an acute
corner. Therefore, we will not perform further investigations on this question.

In the following we will turn our concentration on first-order optimality conditions for

(weak) Pareto optimal points.

3.3.2 First-Order Optimality Conditions

For the investigations of this subsection we will follow [Mie99|, which treats nonlinear
multiobjective optimization problems and states several deterministic solution methods for
the solution of Problem 3.1. We will outline necessary and sufficient first-order conditions
for (weak) Pareto optimality based on the Lagrangian description of the optimization
problem. Thereby, the terminology first-order means as in the context of SOPs, that first
derivatives are used to set up the conditions. This shows the relation to single objective
optimization, where the optimality conditions are often used to set up solution approaches

for those problems.

Since the general description of an MOP, needed for establishing optimality conditions,
does not contain any restriction on the vector p, i.e. the constraint p € Y, we have
to customize our problem. In other words, we have to shift the constraints on p, i.e.
the functions €, into the set D. Hence, for the sake of optimality conditions our main

Problem 3.1 has to be rewritten in the equivalent form:

Problem 3.15. Let k, [, m, n,p,e and € be defined as in Problem 3.1. Problem 3.1 can

be rewritten as

min p:=p(d) = (pi(d), -, pr(d))” (3.6)

2The general definition of compact sets is, that for each cover A,, n € N of a compact set A, there
exists a finite subcover Ay, , such that UA,, D A.
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subject to

d € Di={xeR"|(e(x)<0,i=1,...,)A(&(p(x)) <0,i=1,...,m)}

The so-called active constraints are very important in constrained optimization and they
always need a special treatment. The active constraints are the ones, that fulfill the
constraint (e;(x*) < 0) with equality. That is, for continuous non-redundant constraints
x* lies on the boundary of D. Similarly we can define the active performance constraints.
We denote the sets of active constraints at a point x* by J(x*) and J(x*). They are

defined as follows

J(x*) = {Fefl, ... 1}]e(x*) =0} (3.7)
J(x) = {Ge{L ... m}|é(p(x")) = 0}. (3.8)

In the following we will give necessary and sufficient conditions of first-order for (weak)
Pareto optimality. For our problem Theorem 3.1.1 of [Mie99] has to be customized and
additionally we combine it with Corollary 3.1.2, which claims that the conditions hold for

weak Pareto optimality too.

Theorem 3.16 (Fritz John necessary condition for (weak) Pareto optimality).
Let the objective and constraint functions p, e and € of Problem 3.15 be continuously
differentiable and furthermore, let x* € D. A necessary condition for x* to be (weak)
Pareto optimal is that there exist vectors 0 < X\ € Rk, 0<ue R and 0 < o€ R™ for
which (A, p, ) # (0, 0, 0) such that

Z)\sz +Z,uJVej )+ Vp(x Z“J p€i(p(x*)) | =0,

pie;(x*) =0 forall 7=1,...,1,
fi€j(p(x*)) =0 forall j=1,...,m.

For the proof [Mie99| refers to other sources. Note, that the additional constraints € do
not change the problem. We stated them explicitly to point out the additional constraints
on the performances. In the following theorems this holds true again, since € can always
be appended to the “normal” constraints e. The gradients in Theorem 3.16 are assumed
to be row vectors and Vp is defined by (Vp(x));; := ggl (x).

Beside the Fritz John optimality conditions for single objective optimization, the Karush-
Kuhn-Tucker optimality conditions are quite common as well. Their difference to the Fritz
John conditions for single objective optimization problems(SOPs) is, that the multiplier
A is assumed to be positive. This should emphasize the important role of the objective
function for optimization. To guarantee the positivity of A some regularity constraints are
needed.

Similarly the Karush-Kuhn-Tucker optimality conditions for MOPs guarantee A to be not
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equal to zero. For this sake we need again some so-called constraint qualifications. We
will follow [Mie99| and define the Kuhn-Tucker constraint qualification. Due to the special

form of our constraints, we have to adapt this definition as follows:

Definition 3.17. Let the objective and constraint functions p, € and € of Problem 3.15 be
continuously differentiable at x* € D. The problem satisfies the Kuhn-Tucker constraint
qualification at x* if for any d € R™ such that Ve;(x*)Td < 0 for all j € J(x*) and
Vpé;(p(x*)TVp(x*)d < 0 for all j € J(x*), there exists a function a: [0, 1] — R™ which

is continuously differentiable at 0, and some scalar o« > 0, such that

a(0) = x*
e(a ())S and &(p(a(t))) <0  forall 0<t<1 and

'(0) = ad.

o

Now, let us have a closer look on the previous definition. Therefore, we assume for sim-
plicity linear constraints. The gradient Ve; points outwards of the feasible set D, or Xy
respectively. Furthermore, the hypersurface defined by e; is perpendicular to Ve;. Hence,
d points to the interior. This is at least valid for an arbitrary small distance and therefore
we get non-positive constraint functions e; in this area. In this case the function a is given
by a = x* 4 tad with some suitable «.

They are also fulfilled, if we assume x* to lie on a corner of D, then there is an infeasible
region within this 180° domain. But this infeasible domain is discarded by the other active
constraints. For an illustration of two different points fulfilling the Kuhn-Tucker constraint
qualification see Figure 3.3. Additionally note, that the conditions of Definition 3.17 are
satisfied, if the constraints are polynomials, or convergent power series. Hence, the Kuhn-

Tucker constraint qualification are satisfied for problems with smooth constraint functions.

D1

Figure 3.3: Example of two points x*! and x*? satisfying the Kuhn-Tucker constraint
qualification.

By assuming some regularity of the constrained domain in x*, given by Definition 3.17, we

are able to state stricter necessary conditions, i.e.
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Theorem 3.18 (Karush-Kuhn-Tucker necessary condition for (weak) Pareto op-
timality). Let the assumptions of Theorem 3.16 be satisfied by the Kuhn-Tucker constraint
qualification defined in Definition 3.17. Theorem 3.16 is then valid with the addition that
A#D0.

The proof of the Pareto optimality is given in [Mie99|(p. 39). A reference for the proof of
the weak Pareto optimality is quoted therein. So far, we considered necessary conditions
for weak Pareto and Pareto optimality. Additionally it is desirable to have some sufficient
optimality conditions. In the following theorem they will be alleged. It is obvious, that

the restrictions have to be tightened again to guarantee an optimal solution.

Theorem 3.19 (Karush-Kuhn-Tucker sufficient conditions for Pareto optimal-
ity). Let the objective functions p and the constraint functions e and € of Problem 3.15 be
convez and continuously differentiable at a decision vector x* € D. A sufficient condition
for x* to be Pareto optimal is that there exist multiplier 0 < X € R¥, 0 < p € R! and
0 < e R™ such that

Z/\sz —i—Zu]Vej )+ Vp(x Z“J p€i(p(x*)) | =0,

pie;(x*) =0 forall j=1,...,1,
fi€j(p(x*)) =0 forall j=1,...,m.

The necessary Fritz John conditions and Karush-Kuhn-Tucker first-order optimality con-
ditions presented in Theorem 3.16 and Theorem 3.18 do not distinguish between weak
Pareto and Pareto optimality, i.e. the conditions hold for the weak and strong optimality
term. Hence, especially for the Pareto optimality the restrictions are not as tight as they
probably could be. To the contrary, the sufficient conditions differ for the two terms. While
the stricter requirements for Pareto optimality are stated in Theorem 3.19, the sufficient

qualification for x* € D to be weak optimal is given by

Theorem 3.20 (Karush-Kuhn-Tucker sufficient conditions for weak Pareto op-
timality). The condition in Theorem 3.19 is sufficient for a decision vector x* € D to be
weakly Pareto optimal for 0 < A with A # 0.

The proofs of theorems 3.19 and 3.20 can be found in [Mie99|. Furthermore we remark, that
due to the convexity condition we obtain global optimal solutions, while the theorems 3.16

and 3.18 are valid for locally as well as for globally optimal points.

Additionally to the first-order optimality conditions, there exist second-order requirements
as well. Therefore, the objective and constraint functions have to be twice continuously
differentiable. On the one hand they reduce the set of candidate solutions produced by the
first-order solutions, but on the other hand they prescribe stronger regularity conditions
to the problem. In [Mie99](p. 42 ff.) necessary and sufficient second-order conditions for

Pareto optimality are mentioned. We do not treat them here, since they are not of main
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concern for our problem, especially because this subsection should only provide additional

information to fill some gaps.

3.4 Trade-Offs

In the way we are dealing with multiobjective optimization problems, namely the approx-
imation of the Pareto optimal front, it is of big interest to know about the trade-off of
one performance p; corresponding to a change of another one, e.g. p;. Therefore, different
terms were introduced in the past. Following [Mie99| (p. 26 ff.) we introduce the partial
and the total trade-off.

Definition 3.21. Let d' and d? € Xy be two feasible design vectors corresponding to
Problem 3.1. We denote the ratio of change between the functions p; and p; by

Aij = Ay(dh, d%) = (3.9)
where p;j(dl) — p;(d?) # 0.

Now, A;; is called a partial trade-off, involving p; and p; between d! and d? if py(dt) —
p(d®) =0 foralll =1,.... k L #1, 5. If p(d') # pi(d?) for at least one l =1, ..., k,
and I # 1, j, then A;j is called a total trade-off, involving p; and p; between d' and d2.

Note, that the desired case is the partial trade-off, because then the performance depends
only on one other objective, while a total trade-off is quite hard to survey due to the
dependence on other performance variables. Note that for a two dimensional performance
space these terms coincide. Emanating from the definition of the total trade-off a similar
terminology can be introduced. Let d* € X and let d be a direction emanating from d*,
then the total trade-off rate at d* is given by

Nij = Aij(d*, d) = lim Aq;(d* + ad, d*). (3.10)
a—0
If foralll =1,...,k, | # 4,7 p; is constant in direction d in a vicinity of d*, then

we call \;; partial trade-off rate. Furthermore, if the objective function is continuously
differentiable, we have 3
B Vpi(d*)Td
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]
where again, the denominator differs from zero. Finally in the case of continuously differ-

entiable functions, we can define the partial trade-off rate as follows.

Definition 3.22. Let the performance functions p be continuously differentiable at a de-

cision vector d* € Xy. Then a partial trade-off rate at d*, involving p; and pj, is given

by
Op;(d™)
Aij = i (d¥) = . (3.12)
J J apj
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For investigations on the trade-off in the case of DSE we will use Definition 3.22. Note,
that for a numerical treatment we have to exploit Definition 3.21 because we are not given
an analytical expression for the derivative of RSMs with respect to other performances and

hence, the trade-off has to be computed numerically.

3.5 Summary

In this chapter we presented the basic theory for multiobjective optimization. The general
MOP, we are dealing with, was stated in Problem 3.1. Thereby, we introduced the con-
straint functions e and €, which limit the sets D and Y. This definition of the multiobjective
optimization problem(MOP) serves as the basis for further mathematical investigations.
Furthermore, we defined the relations for multi objectives, the Pareto dominance and
Pareto optimal solutions. Subsequentially, the existence of at least one Pareto optimal
solution was treated and additionally necessary and sufficient first order optimality condi-
tions were listed. These conditions align on the optimality conditions for single objective
optimization problems, which are based on the Lagrangian description of the nonlinear
constraint optimization problem.

Finally, we introduced the term trade-off rate. This is an important expression for dealing
with MOPs, because it gives an impression of the drawback of one performance figure with

respect to an improvement of another objective function.
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Chapter 4

Evolutionary Algorithms for
Multiobjective Optimization

Problems

In principle, there exist two totally different approaches to solve any kind of optimization
problems, namely deterministic and probabilistic approaches. There is a big variety of
deterministic methods available in literature. Most of them were established for single
objective optimization, like Trust-Region methods or Line Search with different choices of
the search direction. In general, probabilistic solution methods are termed evolutionary

algorithms.

As outlined in Chapter 1, our aim is to explore the design space of an RSM. Therefore,
we stated and explained the transformation of Problem 1.1 to a general multiobjective
optimization problem, i.e. Problem 3.1. In the following we want to choose a deterministic
and a probabilistic method to solve Problem 3.1. Furthermore we want to compare these

methods to each other by means of the application.

In this chapter we will state the setting of evolutionary algorithms. First, the standard
approach, which is the application to single objective optimization problems, will be ex-
plained. We will outline the basic concepts of fitness, mutation, recombination and selec-
tion. Afterwards, we will point out the differences and give remedies for the difficulties,
when applying evolutionary algorithms to multiobjective problems. Furthermore, the used
method will be explained in detail and additionally convergence of this method under cer-
tain assumptions is shown. Especially, we could not find any analytical investigation on
the convergence of the used probabilistic method for MOPs in the literature. Therefore,
we will adapt existing results and we will apply them to our approach. Finally, a summary

will conclude this chapter.
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4.1 General Framework of Evolutionary Algorithms

In most of the modern applications certain quantities have to be optimized. Therefore,
most often deterministic approaches are utilized. They usually make use of the gradient of
the sought function and hence it is possible to obtain faster than linear convergence. Using
some knowledge about the smoothness, it is even possible to succeed in finding an optimum
without knowing the function of concern analytically. But sometimes these methods fail,
because they get captured in stationary points or they cannot override stationary points
between the actual iteration point and the global optimum. In such cases a wise choice of
the initial solution can help to remedy these problems. But quite often it is very difficult or
even impossible to find a suitable initial solution, e.g. if the constraints on the performances
are very strict and if there are additionally very weak or almost no constraints on the design

variables.

Especially the mentioned problems caused various scientists to investigate different ways
to solve optimization problems (cf. [Gol89, B96, ZT98, HNG94, SD94, ...]). Motivated by
natural incidents, methods based on probabilistic considerations were developed. Nowa-
days, there exist a multitude of different types of them. Basically all these variations are
termed evolutionary algorithm (EA). The basic concept of EAs is, that an initial popula-
tion, also called generation, changes through recombination and mutation. Afterwards in
a selection step, the best or fittest individuals of the new population survive. This helps,
since a fitter individual indicates a smaller distance to an optimal value. From this short
explanation we can already imagine the vast number of variations of evolutionary algo-
rithms. We will focus on those that are suitable for the task of design space exploration.
In general it is not possible to make any statements about the best method, since they all
have their advantages and disadvantages. Usually it depends on the application which one

to choose.

In the following we will give a brief introduction to evolutionary algorithms. Furthermore,

basic definitions are presented. They are mainly based on [B96].

Definition 4.1 (General Evolutionary Algorithm). An Evolutionary Algorithm (EA)
is defined as an 8-tuple
EA=(I, f,Q, VU, s, 7, N, \)

where I is the space of individuals. f : I — R denotes a fitness function. Q is a set of
probabilistic genetic operators we, : I — I, which are controlled by specific parameters
summarized in the set ©;. s denotes the selection operator, which may change the number
of individuals from X\ or A+ N to N with A\, N € N. N is the number of parent individ-
uals, while X denotes the number of offspring individuals. Furthermore is T a termination
criterion, and W : IV — IN describes the complete process of transforming a population

into a subsequent one, by applying the operators s and we, .

As mentioned previously, EAs are population based approaches. An initial population Py

transforms due to the overall operator W to a subsequent one P; and so on. Thereby
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denotes the subscript ¢t the generation index. In the following we will denote by P; the set
of individuals at generation ¢, also called population at time t. The number of individuals
in P; equals N. In general, the behavior of EAs is determined by the operators f, s and
the probabilistic genetic operators weg,, but we have to bear in mind, that Definition 4.1
is based on single-objective optimization problems. In Figure 4.1 the flow of a general
evolutionary algorithm is depicted. The operator weg, generates A offspring. Then they are
assessed by the fitness assignment f. Afterwards, the operator s selects IV individuals to
form the next generation.

In the next subsections, the three steps within the main loop will be investigated. Later
on, in Section 4.2, we will adapt the occurring ingredients of this definition to our purpose
of MOPs.

| Generate initial population P |
t=0

)

| Assign fitness value to Fp |

s stopping criterion

retum  ayes 7(P,) fulflled?

no
A 4

IApply the probabilistic genetic
operator WE,

which subdivides into:

- recombination 7@, and

- mutation Mg,

\

| Assign fitness values to Pf |

I

Select N individuals for mating
byuseof S.

I

Figure 4.1: Flow chart of a general evolutionary algorithm.

There are a lot of different possibilities to choose the operators to the single steps. Which
one is the best, always depends on the specific problem. Three different basic concepts to
choose these operators and the space of individuals I were developed(cf. [B96]), namely ge-
netic algorithms(GAs), evolution strategies(ES) and evolutionary programming(EP), which
will be introduced in Subsection 4.1.4. The only thing we need to know now is, that the
set of individuals I can be discrete or continuous, i.e. it can either be a binary string
(I ={0, 1}!, 1 € N) or I is given by I = R™.

Before going into more detail, we need to have a closer look on each step of the flow sketched
above. We start with an arbitrary initial population Fy. This can be generated through
any available method. For more details see Section 6.1. Then we assess this population by
means of the fitness assignment. Afterwards we proof if the stopping criterion! is fulfilled.

If the requirements are not met by now, we enter the loop. The single steps of the loop,

!see again Section 6.1
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will be investigated in more details below.

4.1.1 Probabilistic Genetic Operators

The first operator that is applied in the loop, is the probabilistic genetic operator we,.
Note, that for the choice of wg, we distinguish between combinatorial and continuous
optimization. Furthermore consist probabilistic genetic operators of two different steps,

which are recombination and mutation:

Recombination

The first step in the procedure is recombination. The recombination operator rg, is usually
a probabilistic operator.

For continuous problems it is basically a linear combination of two individuals. First two
individuals x, y € P, are chosen at random and then the new individual is generated
by a random linear combination xx + (1 — x)y, with x being uniformly distributed, i.e.
X ~ U([a, b]), where typically @ = 0 and b = 1. Thereby it is also possible to choose
different coefficients x; for the different dimensions i. Additionally, the probability p. can
be introduced. Then, recombination is only conducted with probability p.. On the other
hand, with probability 1 — p. no recombination is executed. Then, an individual of P; is

selected randomly and passed on to the next step of the procedure.

For discrete problems the so-called crossover is usually used. With some probability p.
two individuals? x and y are chosen. Then, one or several distinct ordered points p; €
{1, ..., 1 — 1} are randomly selected®. Up to the first point p;, inclusive it, the bits from
the first candidate are copied to the new individual. From the first to the second point, or
to the end if it is only a one-point crossover, the bits of the second candidate are copied
to the new one. Then the bits of the first individual are used again, and so on.

As an example, consider a one-point crossover with x = 10100110, y = 00011110 and
p1 = 3. Then the new individual z is given by z = 101|11110. Note, that with this
method, using suitable points, almost every possible combination can be generated, i.e.

from all zeros to all ones.

Mutation

Also in the second step of the genetic probabilistic operator, the mutation, discrete and
continuous methods differ. In general, the mutation of an individual, in the continuous
case, is to add an arbitrary vector z to the existing one x,)q, i.e. the new individual Xpew
is given by

Xnew = Xold 1 Z.

2If only one individual is chosen, no crossover is applied. p. € [0.6, 0.95] is suggested in [B96](p. 114).
3] denotes the length of the binary string.
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We can choose almost every distribution for the random variable z. But some of them are
advantageous to others. In the following we will examine three different possibilities. They
are chosen according to literature(cf. [B96, MSV93| and the references given therein). The

considered possibilities are

1. z can be a uniform distribution, i.e. z ~ U([—A, A]), whereby the range A of the

distribution has to be defined in dependence of the domain of interest.

2. Another possibility is to choose a normal distribution z ~ N (0, X). In that case the
choice of the covariance matrix Y is very crucial, and has to be done in a smart way

to obtain optimal results.

3. The third method was introduced in [MSV93|. The algorithm is called Breeder Ge-
netic Algorithm (BGA)*. It uses a special type of mutation, which looks for contin-

uous problems as follows:

First, we have to determine a typical value A; for the range in each direction i.
Furthermore we have to constitute an integer k, typically £ = 15. Then the algorithm
chooses one of the 2(k + 1) points

+(27%4;, ..., 2°4;)

for each direction i. The probability of a point to be chosen is uniform, i.e. 1/2(k+1).
Note, that you can only achieve an accuracy of 27%A4; in each direction. But after

an adaption of the A; it is possible to achieve any accuracy we want.

Another important fact is the influence of k. The higher we choose k the more smaller

mutations are preferred and especially, we obtain
lim P(z € B(0,¢)) =1,
k—o0

for all € > 0. The last considerations imply, that the higher k the lower is the

expected value of the mutation in every direction .

Later on, the adapted normal distributed and Breeder mutation procedures will be applied
to MOPs. The quite natural uniformly distributed mutation will not be used, since it is
more important to choose a suitable A in dependence of the distance to the optimum, than
to choose ¥ of the normal distribution or A in the case of Breeder-mutation. Furthermore,

uniform distribution is uncommon in literature.

On the other hand, the mutation approach used for combinatorial problems is, to invert
every bit with a probability of p,,, the so-called mutation probability. Often p,, = 1/l is
suggested® as a guideline, but also explicit values are mentioned, i.e. p,, € [0.001, 0.01]
(cf. [BY6], p. 113).

4One might associate a discrete method with the name genetic algorithm. But in fact, in this article
the easy generalization to continuous problems of the mutation procedure is explained.
51 denotes the length of the binary string.
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4.1.2 Fitness Function

The fitness function f assigns a so-called fitness value to each individual of the population.
The fitness value expresses the quality of the individual. Without loss of generality a lower
fitness value is better than a higher one. Hence, for minimization problems (SOP) it is
quite common to use the objective function as the fitness assignment or a slight adaption,

e.g. some scaling of the objective function.

4.1.3 Selection Operator

Selection operators may be probabilistic or deterministic. Two typical examples for deter-

ministic selection are the following

e The (N + \)-selection selects the N best individuals out of the union of parents and

offspring to form the next parent generation.

e The (N, \)-selection selects the N best individuals out of the offspring. Therefore
A > N is required. In the case of N = X no selection takes place and the EA acts

like a random walk.

At first glance, the (N + A)-selection seems advantageous against the (N, \)-selection.
But especially because of the better capability to overcome local optima in multimodal
topologies(cf. [B96], p. 79) the (N, A)-selection is recommended.

On the other hand, two possible probabilistic selection schemes are

e The most famous probabilistic selection scheme is the g-tournament selection, with
q € N. Basically, the tournament selection chooses randomly ¢ individuals. There are
two possibilities for the set of possible candidates. Either we can choose only from
the offspring, which are generated by recombination and mutation, or we can select
from the union of parent generation and offspring. Out of this ¢ candidates, only one
individual, namely the best one in terms of the fitness function is copied to the next
population. This procedure is repeated N times, until the next generation contains
N individuals, which are the winners of the g-tournament selection. Note, that for
increasing ¢ the tournament selection converges to an (N +\)- or an (N, A)-selection,

depending on the set we are selecting from.

e Another probabilistic method, called proportional selection, is to introduce a selection
probability depending on the fitness value. For this purpose, a higher fitness value
has to correspond to better individuals. Additionally, the fitness values have to be
positive, i.e. f : I — Ri. The selection probability ps of individual x;; is then
defined by

f(xit)

ps(Xiy) = Zyzl f(Xj,t).
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The probabilistic selection schemes were listed, since they are the most common ones used
in practice. The g-tournament selection is the most common approach used, especially for
continuous methods. Investigations on it were made in [BT95].

On the other hand, the proportional selection is a quite natural one and hence, it is usually
used for discrete problems (cf. [B96] p. 117 ff.).

4.1.4 General Evolutionary Algorithm

In the last subsections, the single steps of a general evolutionary algorithm corresponding
to the flow chart depicted in Figure 4.1 were discussed. Thereby, the focus was on SOPs.
Summarizing the previous investigations, we are able to state a general evolutionary algo-

rithm:

Algorithm 4.2 (General Evolutionary Algorithm).
Input: N  population size
©  parameters for termination, selection, recombination and mutation

Output: P;  final population that fulfills the stopping criterion T
t=0;
initialize Py = {X1,0, ..., XN0};
evaluate fitness of Po: {f(x1,0), ---, f(xXNn0)};
while 7(P;) # true

recombine P} = ro, (P;);

mutate P/ = me,, (P});

evaluate fitness of Py': {f(x74), -+, F(xX )}

select: Py = s(P/ UQ);

t=t+1;

end while

Note, that the set @ in the selection step can be the parent generation P; (e.g. for (A4 N)-

selection), or the the empty set (for (A, N)-selection for instance).

Above, we introduced the three different concepts of evolutionary algorithms, namely Ge-
netic Algorithms(GA), Evolution Strategies(ES) and Evolutionary Programming(EP). But
up to now, we did not explain these terms. We only outlined the difference in the space of
individuals, namely that for GAs I = {0, 1}, I € N, while for ES and EP I = R™. Hence,
genetic algorithms are usually used for discrete optimization problems. But notice, that
every continuous MOP can be transformed through discretization of I to a combinatorial
problem. Hence, the set I is no limitation in general. Nevertheless bear in mind, that
for continuous optimization problems a discretization is usually avoided, since it limits
the accuracy of the approximation. That is why we insist on the distinction between the
discrete GA and the continuous ES and EP.

Following [B96], the continuous methods ES and EP differ essentially in the selection and

the probabilistic genetic operators from each other. Basically both use the same fitness
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assignment and the same mutation operator, namely some kind of normal distribution.
But they differ in the selection and recombination steps. While the evolution strategies
use deterministic selection operators and a kind of linear combination for recombination,
in EP no recombination is used at all, hence A = N. Furthermore, usually tournament
selection is used in evolutionary programming, where the candidates are chosen from the

union of parents and offspring.

In genetic algorithms the proportional selection together with crossover and the special

mutation method for discrete problems, which was introduced above, is used most often.

Of course, due to the big amount of people that were, and that still are, investigating on
evolutionary algorithms, all kinds of combinations of these operators were tried out. In
general, it is possible to combine all different operators to set up an evolutionary algorithm.
But the ones mentioned previously are the most common in literature (cf. [B96, BT95,
MSV93, ...]).

4.2 Adaption of Evolutionary Algorithms to Multiobjective

Optimization Problems

In this section we will show, how evolutionary algorithms have to be adapted to be appli-
cable to multiobjective optimization problems, and which concepts are needed to obtain a

suitable solution method.

First of all bear in mind, that evolutionary algorithms are population-based approaches.
That is, we try to obtain N approximations to Pareto optimal points. The first task is to

define the goals we have. Basically there are two important aims.

e Firstly, we want to approximate the Pareto front as accurate as possible. In other
words this means, that it is desired to obtain a population, of which all points are as

close as possible to the Pareto optimal front Py.

e Secondly, the population that we obtain by the method should cover most of the
desired front, i.e. the in some sense most outer individuals should be close to OF.
Furthermore, the approximated points should exhibit a certain distribution. To be
more precise, they should be uniformly distributed over the Pareto front. It should

be avoided, that the resulting set accumulates around certain points.

To achieve this aims, we want to apply an evolutionary approach. Thereby, we encounter
an additional goal. Namely, the solution method should be as fast as possible. Usually the
speed of an algorithm is determined by the computational complexity. In the framework
of evolutionary algorithms, the complexity is usually given by O(c¢(N)NP), with some
exponent p € Ry and a value ¢ that might depend on N again. This value is then usually
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of lower order in N than the term NP. The complexity as given above means, that the

number of basic calculations® Bo(N) is limited by
Bo(N) < ae(N) NP, (4.1)
for N — oo with some av € R .

First of all, we exclude the goal of low complexity. Hence, for now the goals are to achieve
accurate and diverse approximations. For this task, especially the fitness assignment of
evolutionary algorithms has to be redesigned in order to be capable of MOPs. It has to
be altered anyway, because the assignment as used for SOPs deals with only one objective
function.

In the following we will introduce two concepts which are important for a successful MOEA.

To obtain a certain diversity of the individuals, it is necessary to apply the so-called fitness
sharing, first suggested by Goldberg (|Gol89]). Thereby, the function values of several
individuals are used to compute the fitness values. The typical approach is to degrade the
fitness of individuals that have a large number of individuals in a certain vicinity. For a
typical fitness assignment that applies fitness sharing see Subsection 4.3.1 and for more
details [SD94, HNG94, FF95, Zit99, ...].

Additionally to the concept of fitness sharing, use is made of the Pareto dominance relation
to set up the fitness values for each generation. Thereby, individuals that dominate others
get a better fitness value than the dominated individuals. For the implementation of this
strategy, a lot of different approaches were developed (cf. [SD94, HNG94, FF95, ZLT01,

).

Another strategy, called elitism is quite common in MOEAs (cf. |Zit99, ZLT01, DAPMOO,
CKOO00]). Originally, elitism is the concept to use the b fittest individuals of generation ¢ in
the next generation t+ 1 again. Clearly, the (A+ p)-selection as introduced in Section 4.1.3
applies elitism.

This approach could be easily transferred to MOEAs, if we are given a suitable fitness
assignment procedure. Note, that it is sometimes implemented (cf. [DAPMO00]). Another
quite popular strategy to apply elitism, is to maintain an external set, also called archive,
in which the nondominated individuals of the union of archive and actual generation are
stored.

Note, that the concept of elitism aims in faster convergence of the procedure, what corre-
sponds to more accurate approximations of Pareto optimal points. Faster convergence is
obtained, since nondominated individuals corresponding to the actual best approximations

cannot be deleted, what might happens if elitism is not used.

Additionally to the fitness assignment, the selection step to fill the mating pool is sometimes
adapted. Especially, if an archive is sustained.
In the following section we will introduce some available methods, that are aware of the

two concepts of fitness sharing and elitism.

5Usually addition, multiplication and logical operators are denoted as basic calculations.
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4.3 Multiobjective Evolutionary Algorithms

Now, we want to outline some existing multiobjective evolutionary algorithms (MOEA).
Since most of them are basically defined by one or two steps, we will only mention the

important ones. Usually, the difference of these methods lies in the fitness assignments.

In Subsection 4.3.1 the Niched Pareto GA will be outlined. Afterwards, in Subsection 4.3.2
the Pareto Envelope-Based Selection Algorithm PESA will be explained. The Elitist Non-
dominated Sorting Genetic Algorithm NSGA-IT will be discussed in Subsection 4.3.3. Fi-
nally, in the concluding subsection of this part, we will summarize the properties of these
methods. Furthermore, they will be compared by means of available literature and their ad-
vantages and disadvantages will be outlined. Then, the conclusion will be to use another
evolutionary algorithm called the Strength Pareto Evolutionary Algorithm 2 (SPEA2),
which will be discussed in detail in the Sections 4.4 and 4.5.

4.3.1 The Niched Pareto Genetic Algorithm - NPGA

This approach was introduced in [HNG94] and it is a typical representative of MOEA. It
uses the Pareto domination tournament, a method similar to tournament selection. First,
2 individuals are picked at random. Then, ¢4, individuals are chosen at random to form
the comparison set. The winner of this tournament is the individual that is dominated
by less elements of the comparison set compared to the other candidate. In the case of
equality in the Pareto domination tournament, fitness sharing, as generally explained in
Section 4.2, is applied.

Thereby, the objective fitness f; (it can be any fitness value as long as higher fitness
indicate better individuals) is divided by the niche count m; of the individual i. m; counts
the individuals in the neighborhood (determined by the niche radius oghare) of the element,
i.e.

mi =Y s(d(i, j)),
JjeP;
where d(i, j) is the distance” between the individuals i and j. Furthermore, the sharing

function s is defined by

1- d a, fd< share »
S(d) :_{ O (Ushare) 1 Osh

, otherwise .

This means that points close to other points have a lower fitness than individuals in sparsely
populated areas. Note, that the fitness sharing as explained here is the standard approach
used in this context.

Finally note, that elitism is not used in this algorithm.

"Usually the distance of individuals is calculated in the objective space, since we are mainly interested
in diversity at the Pareto front. But it is also possible to choose the design space. Then, diversity is
obtained there.
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4.3.2 Pareto Envelope-Based Selection Algorithm - PESA

This algorithm was suggested in [CKOO00]. The algorithm is purely based on elitism.
Thereby the nondominated individuals are stored in an external set EP. Note, that the basic
concept of this algorithm is the same as the one used in the Strength Pareto Evolutionary
Algorithm 2 (SPEA2), which will be introduced in Section 4.4.

The terminology purely based on elitism means, that the algorithm does not contain any

concrete fitness assignment and, or selection. The basic algorithm of PESA is as follows:

1. Generate initial ’internal’ population (IP) of P individuals and set the ’external’

population (EP) to the empty set.

2. Incorporate nondominated elements from IP into EP, i.e. afterwards, EP contains
the nondominated elements of /P U EP.

3. If termination criterion is fulfilled, then stop and return EP.

4. Delete the current content of IP and repeat the following steps until P; new candi-

dates are generated:

e Apply recombination with probability p. on EP and then mutate the obtained

elements((see Subsection 4.1.1).

5. Return to Step 2.

4.3.3 Elitist Nondominated Sorting Genetic Algorithm - NSGA-II

The Nondominated Sorting Genetic Algorithm NSGA was introduced in [SD94|. The only
difference to other GAs is in the fitness assignment and selection. The individuals are
chosen by stochastic proportional selection to fill the mating pool. But before a fitness
assignment has to be applied. This is realized in the following way: The nondominated
individuals are determined and a high ’dummy’ fitness value is assigned to them. Note,
that in this case the better the individual is, the higher the fitness value. Afterwards, with
fitness sharing diversity is obtained, i.e. the fitness is divided by a quantity proportional to
the number of individuals around it (compare with Subsection 4.3.1). The nondominated
values form the first front. Then this first front is temporarily ignored and the second front
is identified and the fitness is again assigned. The new dummy fitness has to be smaller
than the smallest fitness value of the previous front. The procedure continues, until all
individuals were treated. Then the selection is carried out.

Although this algorithm is maintaining diversity and shows acceptable convergence results
(due to preferring dominating individuals), it has a too high complexity and furthermore

no elitism is implemented.

The Elitist NSGA-II, introduced in [DAPMO00|, improves in the way of a faster sorting

procedure to obtain the dominating front in the fitness assignment step. But contrary the
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memory consumption increased. Additionally, the fitness sharing was exchanged by a faster
method. Moreover, the selection operator changed too. To apply elitism, (A+ N)-selection

is used.

4.3.4 Summary and Conclusion

In this section we outlined three different MOEAs, namely NPGA, PESA and NSGA-II.
The NPGA contains the strategy of fitness sharing but no elitism. Contrary, the Pareto-
Based Envelope Selection Algorithm PESA is a purely elitism based approach, where no
fitness assignment was implemented. Since it was shown in literature ([TLKO02, ZLT01,
BEAGO04|), that algorithms which use these concepts converge faster than the ones that
do not, we will not use NPGA and PESA for our purpose, i.e. the multiobjective design

space exploration.

Hence, NSGA-II seems to be the best choice. It has a complexity of O(kN?), where N is
the number of individuals in each generation. Additionally it requires O(N?) of memory.

Especially, the computational complexity is the same as for NPGA and PESA.

But nevertheless, we chose another approach for our aims, namely the Strength Pareto
Evolutionary Algorithm 2 (SPEA2, |ZLT01]), which incorporates both important strate-
gies. Due to comparative studies like [TLK02, ZLT01, BEAG04] SPEAZ2 is at least as good
as NSGA-II to meet our requirements. Although the computational complexity of SPEA2
is O(k log(N) N?), we expect almost the same runtime, since the constant « in (4.1) is
expected to be higher for NSGA-II.

Summarizing the previous considerations, both methods, SPEA2 and NSGA-II, are equally
suitable. But nevertheless, we chose SPEA2 for our sake. This method will be introduced

in detail in the next section.

4.4 The Strength Pareto Evolutionary Algorithm 2

In [ZT98] and in [Zit99] the first version of the Strength Pareto Evolutionary Algorithm
(SPEA) was presented. After further investigations, an improved version of this algorithm
was presented in [ZLTO01|, called SPEA2. The SPEA2 method was compared to other
available methods in several papers. Since it showed a satisfying behavior, we choose this
algorithm to compute an approximation to the Pareto optimal front. In the following
we will explain this approach in detail by discussing the specific choices of the operators
introduced in Section 4.1. As mentioned previously, the major differences to evolutionary
algorithms for single optimization problems are the fitness assignment and the selection

step.

First, we will point out the two basic concepts used, which apply elitism and fitness sharing.
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o Environmental Selection/ Elitism. In Section 4.2, we mentioned already the concept
of elitism. SPEA2 uses this idea. There, an archive or external set is maintained,
which contains a representation of the nondominated front among all individuals

treated so far during the whole simulation run.

A member of this archive is only removed if

— it is dominated by a new individual. In this case the new individual is copied

to the archive.

— if the archive exceeded its maximum size. In that case, the external set is too
crowded and some individuals have to be properly chosen, to be removed from
the archive. The selection of the individuals is very crucial to guarantee diversity

maintenance of the external set.
This procedure is called environmental selection or clustering.

e Mating Selection/ Fitness Sharing. In Section 4.2 the very important concept of
fitness sharing was introduced. Additionally to a Pareto dominance based so-called
raw fitness, a different version of fitness sharing compared to the one shown in Sub-

section 4.3.1 is used. For more details see Subsection 4.4.1.

Following the definition of the normal (internal) population P, and its size N, we will
denote the external set or archive at generation ¢ by P,. The number of individuals in P,
is defined by N. Before going into further details, we introduce the framework of SPEA2.
Therefore, remember our goal, which is to compute approximations to the Pareto front
P;. Thus, the return value of the algorithm is a set A that contains only nondominated

individuals. The algorithm is given by

Algorithm 4.3 (SPEA2).
Input: N population size
N archive size
e parameters for termination, selection, recombination and mutation
Output: A nondominated set
t=0;
mitialize PQ = {Xl,(), “ooy XN70};
initialize Py = ();
while 7(P;, P;, t) # true

Fitness assignment of P, U P, f={f(x1t), -, f(xmp)};
Environmental selection (clustering): P11 = c¢(P; U Py);
Mating selection: P/, = s4(P.UP,fT);
Recombination: v =re, (Ply);
Mutation: P11 =meg,,( {;1);
t=t+1;

end while

A:{Xept’ /Hyeptiy<x};
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On the next pages, we will investigate the single steps of Algorithm 4.3 in more detail.
First, the fitness assignment used in SPEA2, will be presented. Then, the environmental
selection step will be outlined. After that, selection, recombination and mutation are

explained. Finally, the stopping criterion of this method will be discussed.

4.4.1 Fitness Assignment

The fitness assignment of SPEA2 comprehends two important basic concepts. On the one
hand, use is made of the Pareto dominance order and on the other hand fitness sharing,
i.e. diversity maintenance is applied. Hence, it is executed in two steps. First, the set of
individuals is ranked using the the Pareto dominance order, according to Definition 3.10.
Afterwards, in a second step, diversity information is incorporated into the fitness values.

The final fitness is given by
f@) :==r@d) +d3d), (4.2)

where 7 (1) is the so-called raw fitness incorporating Pareto dominance relation. The density

d(i) contains diversity information, i.e. it incorporates fitness sharing.

For calculating the raw fitness, the so-called strength S of all individuals i € P, U P; is

determined before. That is the number of individuals each element dominates, i.e.
SGE)=[{je RLUP|i<j}], (4.3)

where the the (weak) Pareto dominance relation < is given by Definition 3.10. As already
mentioned before, we will use the weak Pareto dominance, since the trade-off front is

desired. In the following the raw fitness of the elements is defined by

ri)= > S3). (4.4)

jEPtUpt/\j-<i

It is the sum of all strengths of the individuals j dominating i. Note, that non-dominated
individuals have the raw fitness value 0. This task has a complexity of O(M?), where the
total number of individuals M is defined by

In Figure 4.2 an example to illustrate the raw fitness assignment is shown. There, the
values in brackets are the strength values S. The nondominated individuals are marked by
a ring. In this figure, we can see that individuals who are dominated by a larger number
of points have a higher fitness value. This incorporates already the concept of diversity

maintenance.

In the second step, a new kind of fitness sharing is applied. In [ZLTO01]| this is done by

introducing the density d via
d(i) := (4.6)
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A2

,,,,,,,,,,,,,,,,,,,
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Pareto front :
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Figure 4.2: Example of raw fitness values. The numbers of the points denote the raw
fitness r and the numbers in the brackets the strength S. The points marked by a ring
are the nondominated individuals and the filled ones are the dominated ones. The dashed
lines denote the domination ranges.

In (4.6) of denotes the distance of i to the k-th closest individual in the set P, U P;. Note,
that the distance of individuals could be measured either in the design space(parameter
space) or in the performance space(objective space). Since we want to obtain diversity in
the objective space, the distance is measured there. According to [ZLT01]|, k& should be
chosen around v/ M to obtain best distributed results. Higher k leads to a smoother char-
acteristics, while a lower k leads to sharper behavior, what could lead to disadvantages(cf.
[ZLT01] and the references given there). The complexity of the density computation is
O(M?1og M), i.e. this part of the algorithm mainly determines the runtime of the algo-

rithm.

Note, that f(i) < 1 for nondominated individuals i, where individuals with smaller f are
preferred.

At a first glance, the density value does not seem to be very important, since the raw fitness
can assume values up to® M (M — 1)/2. But if many individuals of an actual population
are indifferent to each other, only very little information can be obtained from the raw
fitness assignment. In that cases, the density function plays the decisive role in the fitness

assignment.

4.4.2 Archive Truncation - Clustering

The concept of elitism was already mentioned above. In SPEA2 it is implemented by
storying the nondominated elements in an external set P;, also called archive. We prescribe
a certain size of this set N. In difference to early approaches (cf. [Zit99]), where the size
of P; was at most IV, in SPEA2 the size of the archive is held constant to N. The so-called
clustering algorithm limits the number of individuals in P, to N or it fills P, up. The

method works as follows.

8That is the case if the individuals are totally ordered by the Pareto dominance relation <.
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First, the new external set is defined by
Pt+1:{i€PtUPt|f(i)<1}» (4.7)

where the fitness f is given by (4.2). If the nondominated set has size N, nothing else
has to be done. Otherwise, if [Py 1| < N the external set is filled up. Therefore, the
individuals are sorted by their fitness and then the first N — | P, ;1| individuals with fitness
F(i) > 1 are copied to the archive. On the other hand, if |P11| > N P, — N individuals

are removed by using the order i <; j. Thereby, an element i is chosen for removal, if
i<qj Vi€ P, (4.8)
where the total order <, on ]5t+1 is defined by

i<qj & VO<k<|Pt+1|ZUik:O'f \Y

30 < k < |Piy1] - [(V0<l<k:0£20§)/\0i]€<oﬂ. (4.9)

In the definition of the order <4, i.e. (4.9), aik denotes, like in the definition of the fitness
assignment (4.6), the distance of the individual i to the k-th closest element in P,1. Again,
the distance is measured in the performance space, since we want to prevent the boundary
elements in the objective space from being deleted. We have to bear in mind, that the
minimal distance occurs always at least two times. Hence, the element with the closest
distance to other individuals is deleted. Moreover, this drop-out differs from the density

approach of fitness assignment, since it discards the individual that is closest to the others.

Finally it has to be mentioned that in the case of missing elements, the auxiliary addition
of elements helps to maintain a focus on the dominating front. Because in the case of only
one or very few dominating elements, it is very likely, that individuals far away from the
dominating element(s) are chosen for recombination and mutation and hence, the method

would show a very slow convergence.

4.4.3 Selection

For the selection operator s a g-tournament selection (see Subsection 4.1.3) is chosen in
|[ZLT01], where usually ¢ = 2, i.e. binary tournament. In the selection step, the operator
s chooses N individuals from the candidate set P, U P;. The selected N individuals form
the so-called mating pool. As the name indicates, these individuals will be used in the

following steps for mating in terms of recombination and mutation.

4.4.4 Recombination and Mutation

Now we introduce the operators for recombination rg, and mutation me,, used in our

approach. In [ZLTO01] it is only mentioned to use standard recombination and mutation,
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while in this work it was chosen to use a discrete version with 1-point crossover and
point mutations. Since we are dealing with continuous problems and due to the lack of
information available in literature on the best choices for these operators, we will use

standard approaches, which were already investigated in Subsection 4.1.1.

For recombination we use a linear combination with x ~ #([0, 1]). Usually the probability

for recombination p, = 1, since it shows better behavior as will be outlined in Section 6.2.

It is more difficult to determine a satisfactory mutation operator. As outlined in Subsec-
tion 4.1.1, according to [B96], usually normally distributed mutation operators are used,
i.e. me,, ~N(0, X) with ¥ being the covariance matrix. Different possibilities to choose

Y exist:

1. Choose the same standard deviation o for each direction. Hence, we obtain
Y=o’ (4.10)

with I being the identity matrix of suitable dimension n. The corresponding domain

can be expressed as a hypersphere.

2. A step further would be to introduce different standard deviations in each direction,
but without any correlation between them. Consequently the covariance matrix ¥ is
given by

¥ = diag(o?, ..., 02) (4.11)

n

and can be viewed as an ellipsoid with non-rotated main directions.

3. One can choose an arbitrary covariance matrix 3. The determined region can be

depicted as an arbitrary ellipsoid.

Firstly, we will focus on the first two cases, especially on the second, since the scale of each
variable can differ. Note, that after a scaling of the design variables, the first and second
possibility usually coincide. Moreover, we do not use the third possibility, since it is too
complex. Especially a suitable choice is very difficult. For more information see [B§6] p-
68 ff.

The problem is now, how to choose ¢ or ¢;,¢7 = 1, ..., n to achieve optimal progress
toward the dominating Pareto front. In [MSV93] this task was investigated by means of
single optimization problems. The measure, that was used to compare the results, is the
expected progress. It is, according to its name, the integral over the domain where the
individual is not discarded? is achieved of the progress times the probability density. We

will further discuss this issue in Section 4.5, Subsection 6.1.2 and Subsection 6.2.3.

For comparison, we will additionally use the Breeder mutation, which was introduced in

Subsection 4.1.1. For more details on implementation and numerical results see Chapter 6.

9Basically this domain is given by the domain of individuals x € Xy, that are not dominated by an
individual y € P;.
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4.4.5 Stopping Criterion

In general optimization problems, the ideal stopping criterion would be to measure the
error of the actual approximated solution and to stop if a desired accuracy is reached.
Since, it is typically not possible to measure the error, i.e. the distance of the actual
approximation to the solution, a relative measure is usually used. This means that the
iteration is stopped, if the change in the objective function value is smaller than some ¢.

This approach is quite common in deterministic numerical solution methods for SOPs.

The problem in the framework of evolutionary algorithms is, that the Pareto front is not
known beforehand. Hence an absolute error measure cannot be applied. Additionally it
is not clear at all how to set up a relative error term corresponding to the explanations
given above. Therefore, the most common stopping criterion in evolutionary algorithms
is to prescribe a maximum number of generations 7', what is of course not optimal, since
there is no guarantee at all, that the procedure is already close enough at the solution.
Hence, also other concepts are suggested in literature. For instance, another possible
termination criterion could be the existence of an individual with sufficient fitness, or a
sufficient behavior. But since we want to compute an approximation for the whole Pareto
dominant front, this is not a useful alternative. Furthermore, we could stop the process
if a stagnation in the nondominating front has established. This approach is the pendant
to the criterion that watches the relative function change, which was mentioned above. In
[PGO2| this method was treated in more detail. First, the coverage function fo is defined
by

_ ’{p// c Pl/ . Elp/ c P/ . I)I < p//}’

fo(P', P") P (4.12)

It represents the ratio of points in P” that are dominated by at least one point in P’. Using

(4.12) we can define the convergence indez g:
a(i, G) := fc(Pia, Bi) = fc(Pi, Piva) - (4.13)

Note, that as long as the evolutionary process improves the solution, we continue the
process. Improving the solution corresponds to the relation fo(]5i+(;, -[57,) > f C(Pm PH—G);
ie. q(i, G) > 0. For the application of this approach, we have to compute every G
iterations the convergence index. If ¢(i, G) < T¢ we stop the process. Thereby, T¢
(corresponding to ¢) is some predefined threshold value. Additionally the step size G has
to be chosen properly. We will use this criterion or the maximum iteration criterion in our

implementation (see Subsection 6.1.2 for details on the choice of T¢ and G).

4.5 Investigations on the Convergence Properties of SPEA2

In the following the convergence behavior of the Strength Pareto Evolutionary Algorithm
2 will be investigated. First we will give some references to other convergence proofs, since

at least one of them is used as a guideline for our proof. Afterwards, in Subsection 4.5.2 the
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route of the proof will be outlined. We are dealing with a probabilistic approach therefore
the term convergence has to be defined. Furthermore, the theorem stating the convergence
will be quoted there. Afterwards, in Subsection 4.5.3 the assumptions needed to show
convergence will be listed and justified.

For the proof of this theorem, the single steps of SPEA2 have to be studied. This will be
done in the subsections 4.5.4 to 4.5.8. Finally, the calculations of Subsection 4.5.6 will be

verified by numerical tests.

4.5.1 Previous Results Available in Literature

Now, we want to outline some convergence results available in literature. There are several
approaches, which show convergence for algorithms or a class of algorithms under certain
assumptions. But unfortunately, no analytical results on the convergence of SPEA2 is
available. Therefore, the literature was searched to get an idea how to prove convergence

of SPEA2. Available results are:

In [Rud98] convergence of a (1 + 1)-selection MOEA is examined. Especially convergence
is exemplarily shown, but with the decisive restriction, that the range of the mutation
operator is related to the distance to the optimal solution.

In [RA00] convergence of EA is shown for a large class of discrete evolutionary algorithms!C.
Since we are dealing with continuous problems, i.e. the domains are uncountable, those

considerations are not useful for us.

In another article ([Han99]) convergence is shown for so-called efficiency preserving algo-
rithms. Those are algorithms, for which the individuals that dominate the actual nondomi-
nated individuals of P,41 are a subset of the ones dominating the nondominated individuals
in P;. That is, algorithms for which Dom(P;41) € Dom(P;), where Dom(P;) is defined
by Dom(F;) := Uacp(p, pyPom(a), with Dom(a) := {x € X : x < a}, i.e. the set of
feasible individuals x that dominate the actual point a. Thereby contains F(P;, p) the
nondominated individuals of P, with respect to the objective function p.

Note the fact, that SPEA2 does not have this property. For instance, if a new point a is in-
different to all existing points x, i.e. Dom(a) € Dom(x) for all x. For illustration imagine
a boundary point. If the new point extends the front to the external, then the efficiency
preserving property is not fulfilled. Especially we have to mention, that algorithms with
this intrinsic property cannot extend the range of their actually approximated front any

more, which is not desirable in general.

In [BY6] a convergence proof for evolution strategies applied to SOPs is depicted for (A4N)-
selection. But in this proof the crucial step of recombination was neglected. Furthermore,
we have to mention, that SPEA2 is not a evolution strategy in the sense of [B96] due to
the additional clustering step, which does not fit in the general concept outlined therein.
This fact and the immanent difficulty of multiobjective optimization problems due to the

absence of a total order of X; make it impossible to adapt this proof to MOPs.

0There, the behavior of the algorithms is expressed by use finite Markov chains.
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The previously listed results were not useful, except [Rud98|. We will exploit the ideas of

this proof to show convergence of SPEA2 in the worst case under certain assumptions.

4.5.2 Preliminaries and Definitions

In this part, we will introduce the necessary basics for the proof of convergence of SPEA2.
Below, the definition of the term convergence in the framework of random variables will
be introduced and furthermore, the key theorem of the proof will be stated. Additionally

a structure of the proof is outlined below.

We are dealing with probabilistic algorithms. Hence, the populations P, are random vari-
ables. Since there are several definitions for convergence of random variables, we will repeat

the two we are using:

Definition 4.4. Let {X;}, i € N be a sequence of random variables. The sequence {X;} is
said to converge in probability to a random variable X (denoted by X; LN X ) if for every
e>0

lim P(d(X;, X)<e)=1, (4.14)

17— 00
with D being a suitable nonnegative distance measure. Furthermore, the sequence {X;}
converges almost surely (a.s.) to a random variable X (denoted by X; 5 X ) if

lim P (d(X;, X)=0)=1. (4.15)

1— 00

Almost sure convergence implies the convergence in probability. In other words, almost
sure convergence means that with probability one the sequence {X;} converges to the
limit X. On the other hand, convergence in probability does have the meaning that with
probability one we can come as close as we want to the limit X, but nothing can be
said about the limit ¢ — 0. Therefore, additional requirements are needed to follow a.s.
convergence from convergence in probability.

In an almost general framework, we will show almost sure convergence of the approximated
front to the Pareto front for a worst case example. Moreover, it is worth noticing, that we
will only show convergence in terms of distance to P;. No information on the distribution

of the approximations can be concluded.

First of all, we have to define the distance measure. There are various possibilities to define
D needed for Definition 4.4. If we assume the reference set X = P; to be known, we could

use one of the following distance function

- 1
2], = ~ > d(pi, Py) (4.16a)
pi€P;

_ 1
[Pl = ~ > d(pi, Py)? (4.16D)
picb;

HEHOO = glg};}i d(pi, Py) , (4.16¢)
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with the distance function d, being defined by
d(pi, Pr) :== inf [[pi—p|. (4.16d)
pEPf

Note, that almost sure convergence is the desired property. For this sake we will use a
customized version of Theorem 6.3 of [BJ68| (p. 84). In [Rud98| (Theorem 1, p. 514) this
theorem was adapted and applied. If we customize it further to the use of a whole front,

which is no restriction, the theorem is given by

Theorem 4.5. Let (D, : t > 0) be a sequence of nonnegative random wvariables, i.e.
distance measures related to random sets Py, and let v : Ry — R4 be a continuous function
vanishing only at the origin. Furthermore, let Fy be an event induced by the previous
states'' Py, ..., Pr_y. If E(D;) < oo and

E(Dy11]F) < Dy — (D) (4.17)

for all t > 0, then the sequence (D : t > 0) converges to zero with probability one as

t — 00.

The population P, at time ¢ only depends on P,_; and not on the previous ones, and
therefore F; is usually stated as Pt = P. FE denotes the (conditional) expected value. In
Hk, k =1, 2, co defined by (4.16a),
(4.16b) or (4.16¢) of the actual approximated nondominated front to the Pareto optimal
front Py.

the used relation, D; denotes the distance measure Hpt

If we are able to show that (4.17) is fulfilled, then convergence follows immediately from the
theorem. Hence, we have to find a ~ satisfying the conditions of Theorem 4.5. Therefore

we can rewrite condition (4.17) in the following form
E(Dya|Py = P) < Dy =v(Dy) & Di—e(Dy) <Dy —v(Dy),
and hence, we have to find v : Ry — Ry, such that
e(d) > ~(d) (4.18)

holds, for all d € Ry. e(d) denotes the expected progress for the dominating and the
indifferent area for an arbitrary population P; with distance d. The dominated area is not
regarded, because a new individual is discarded if it is dominated by the old one, what is
equivalent to zero progress. For our sake, the expected progress e(x, d) of an individual x

with distance d is schematically given by
e(x, d) = / progress(y) probability,(y) dy , (4.19)
D(x)UI(x)

where D(x) denotes the the individuals that dominate x and I(x) designates the indifferent

" The states P, combine the originally considered regular generation P, and the archive P;.
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individuals. Both sets lie in the parameter space.

It turns out, that we have to investigate the single steps of Algorithm 4.3, which are in the

order we will treat them:

—_

Mating selection (Subsection 4.5.4)
Recombination (Subsection 4.5.5)
Mutation (Subsections 4.5.6)

Environmental selection - Clustering (Subsection 4.5.7)

Finally the results will be summarized in Subsection 4.5.8. But first of all, we have to

make some assumptions to be able to show convergence according to Theorem 4.5. They

will be listed in the next paragraph.

4.5.3 Assumptions

First of all, we assume the feasible performances Y to be bounded and hence F(D;) < oo

can be guaranteed. In the following we have to investigate the condition (4.17). For this

sake, we want to mention the assumptions we have to make in order to be able to prove

convergence.

e Due to the big amount of possible combinations of n and k£ we choose n = k for

simplicity. Note, that always the space of smaller dimension determines the behavior
of the function in general. If n < k, p(D) is a surface of dimension less or equal
to n in the objective space. Otherwise if n > k, for most of the objective vectors
there exist a (n — k)-dimensional surface corresponding to this vector. Therefore, the
space of lower dimension determines the behavior and hence, our assumption is not

too restrictive.

Additionally we have to make some assumptions on the performance function p. We
choose p := I, i.e. p is the identity mapping from R” to R™. The feature in this
context is, that design domains with equal volume are mapped to performance areas
of the same size. Note, that if a parameter set corresponding to a dominating domain
in the performances of nonzero measure would have measure zero, with probability
one the algorithm would not reach this areas and hence we would expect no conver-
gence at all to those areas. Therefore, we need that p exhibits a “nice” behavior as

mentioned before.

Furthermore, we choose N = 1 and N € N. This is done, since it is too hard to
handle the effect of interference between several new points. N > 1 implies then
faster convergence, but not proportional to N, since some of the new points might

be excluded through other new ones.
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e Additionally, we suppose the archive P; to be completely filled with nondominated
points. This is not very severe, because with recombination of two dominating indi-

viduals we obtain already a point, which is indifferent to both parents.

e Another restriction we have to suppose is, that the optimal front is convex. Thus,
it reaches from a straight line to a corner. In our special case, we show convergence
only for a special case, depicted in Figure 4.3. We are regarding only the front on the
left and not on the bottom. This is done, since the additional front at the bottom
would yield a higher expected progress. But in the case that p is already very close
to the front, the distance to the bottom front would be, considered relatively to the
distance, very large. Hence, this worst case has to be assumed and the assumption
is justified.

Note, that this sketch can be applied to any straight Pareto front by use of a coor-

dinate transformation.
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Figure 4.3: Pareto front assumed for the convergence proof.

This assumption is not as severe, as one might think. It is only stated, because then,

the front depicted in Figure4.3 is the worst case.

e Finally, we have to assume for the mutation step, that we know the distance rq, given
by 4.16d, of each individual to the Pareto optimal front P;. This is necessary, since
a wrong choice of the mutation parameters ©,, can lead to an expected regress in

distance. For the approaches, that will be used in reality see Subsection 6.1.2.

The case depicted in Figure 4.3 is the worst case in terms of the expected progress, when
a normally distributed mutation operator is used, because the lower bound would limit
the maximal regress after mutation. But especially, as will be explained later, this worst
case assumption is satisfied since we consider all distances in terms of multiples of the
distance to the front. And when the chosen individual’s distance converges to zero all

other distances relative to the determining one converge to infinity.

Now, we are able to investigate the single steps of SPEA2 to prove the existence of a

function v which fulfills the requirements of Theorem 4.5.
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4.5.4 Mating Selection

The first step is the mating selection. We want to consider the cases of improvement, i.e.
the cases when the newly generated individual is not discarded. Thus we try to select a
nondominated element, because it has the best chances to result in an improvement. That
is, x € P, will not be considered. The distance measure D; of P, is given by (4.16a), (4.16b)
or (4.16¢). Thereby any possible distribution of P; with distance D; is possible.

The extremal case in terms of distance and furthermore, in terms of expected progress, is,
whenever N —1 individuals have distance zero and one has the distance N - D, (if (4.16a) or
(4.16b) are used) to the Pareto front. Furthermore, it might happen that this individual

has the worst fitness above alll2

, including x € P,. Therefore, we have to select this
individual ¢ times in order to guarantee, that this individual is chosen by the tournament.
In the following we will compute a v which is linear in d, i.e. e(d) > (d with ¢ > 0. Hence,
the assumed case is indeed the worst case. The selection probability is then given by

Ps,d = ( = (4.20)

N+ 1)’
The distance to the optimal front r; is given by r; = N - D; (for (4.16a) and (4.16b)).
When using (4.16¢) 1 = D, and hence we obtain a different (. From now on, we will carry
out the computations for (4.16b) without loss of generality. For the other two possibilities,

only the positive constant ¢ would change.

4.5.5 Recombination

Now, let us assume we selected the desired element of P,. Since we chose N = 1, no re-
combination is carried out. In almost all convergence proofs for EAs provided in literature,
recombination was neglected (cf. [B96] p. 89 or [Rud98]). It is difficult to be taken into
account, since under certain circumstances the distance of the generated new individual to
the Pareto front can become arbitrarily large compared to the distances of the parents. An
example for such a case is depicted in Figure 4.4. There, the individuals x and y are Pareto
optimal points, i.e. they have distance 0. Thus, the generated linear combination has an
infinitely high distance to Py compared to the parents distances. But nevertheless, it is
advisable to perform recombination, because a high diversity of the contour is designated

as well, what then might lead to a decrease of the convergence speed.

4.5.6 Mutation

The next step is mutation. This step is a very crucial step in terms of convergence properties
as will be outlined below. Therefore, we need some preliminary investigations on the
mutation step. Afterwards, rates for the expected progress will be derived by means of the

assumptions made above.

2Tn the assumed case the fitness is merely determined by the density D(see (4.6)) as outlined in Sub-
section 4.4.1.
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Figure 4.4: Example for a “bad” recombination in terms of convergence.

Preliminary Considerations for the Mutation Step

We will only consider the normal distribution, but for the other mutation operators intro-

13 The n-dimensional normal

duced in Subsection 4.1.1 similar conclusion can be drawn
distribution N (p, X) is given by the following probability density function, but for the
other mutation operators introduced in Subsection 4.1.1 similar conclusion can be drawn.
The n-dimensional normal distribution AV (i, X) is given by the following probability den-

sity function
exp (—3(x— )X (x — p))
(27)/2(det X2)1/2

p(x) =

(4.21)

with the expectation u, which is 0 in the case of mutation, and the covariance matrix . For
the investigations on the expected progress of the mutation step, we assume the simplest

case for ¥, i.e. ¥ = ¢?I. This restriction is not so severe, as outlined in Subsection 4.4.4.

In Figure 4.3 the shape of the considered front was introduced. As already mentioned
previously, we have to consider the expected progress. It is outlined in equation (4.19),
and it is given by the integral over the feasible set, i.e. the feasible domain except the
dominated area, of the progress times the probability. Note that it is possible for the
progress to become negative in indifferent areas. In Figure 4.5 the worst case in terms of
the expected progress is sketched for n = 2. If the height of the indifferent area is bigger
than r1, then the optimal expected progress (related to an optimal o) will be higher, since
for any point in this domain we obtain a progress in distance. Of course, the height of this
area can also be smaller up to zero. This case will be treated later on.

Note, that the expected progress will decrease for do — oo, because the expected progress
is negative in this indifferent area. Furthermore, we assume §; — 0o too, since otherwise
for some regions we would have a smaller distance to the front at the bottom than to the
considered one-sided front. This would lead to an increased expected progress. Hence, the

assumption ;7 — oo completes the worst case scenario.

13See [MSV93] for the treatment of the uniform distribution, the normal distribution and the mutation
used in the Breeder Genetic Algorithm, explained in Subsection 4.1.1, for single objective mutation.
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Figure 4.5: Sketch of the assumed worst case. d; and d9 are the determining values for the
distance of p to the boundaries of the domain. The point p has distance r1 to the Pareto
front and furthermore, the circle with radius o denotes the “1 — ¢” domain of the mutation
operator.

For the sake of computing the worst case of the expected progress, we have to bear already
the next step of the algorithm in mind, namely the environmental selection. In general

there are the following possibilities for the new individual to be located

1. The new individual dominates the parent individual. In this case, the parent will be
discarded of the archive P;.

2. The generated element is indifferent to the parent individual. Since there are N — 1
other nondominated elements in the approximated front, two different possibilities

for this new element arise:

(a) The new individual is dominating at least one other individual of the set P;.

(b) Tt is indifferent to all other elements of the set P;.

Additionally to this enumeration we have to state several remarks.

The case depicted in the figures 4.3 and 4.5 is the worst case in terms of the expected
progress, except this small distance to the top of the domain which will be treated later.
The distance to the top can also be limited by another nondominated individual. Fur-
thermore, if there would be some more elements of P; in the lower indifferent area, they
would limit the considered domain, since only nondominated regions are of interest. If
the new individual would be dominated by another one, it would be discarded and hence
the progress in those areas is zero. Additionally note, that we assume the parent to be
discarded in the case of indifference of the new individual too, because the lower indifferent
area causes a decrease of the expected progress. That is, since we are dealing with the

worst case.

Summarizing the previous considerations, we are treating the whole dominating and in-
different domain. The upper indifferent domain is considered for convergence reasons and

with the other indifferent areas we are dealing due to the regress in those areas.
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Compare our investigations with [Han99|, where efficiency preserving algorithms are inves-
tigated as indicated in Subsection 4.5.1. To be able to apply those results, we would have
to discard indifferent individuals to fulfill the requirements stated there. Therefore, these

results are completely out of scope to show convergence of SPEA2.

Mutation - The Standard Case
First we will compute the probability to obtain a feasible point for given distance rq
and a given standard deviation o. We will limit ourselves to the two—dimensional case.

Additionally the n-dimensional (n > 2) case will be sketched afterwards. This is possible

due to our simple test problem, which reduces to a two-dimensional problem.

The probability to obtain a feasible point, i.e. a nondominated one according to Figure 4.5,

in 2D is given by

527”1 71 (527”1 T1
p2(r1, 0, 01, 02) = / / p(z, y) dydw—/ / p(z, y)dydz
—01m1
d2r1 d2r1 = +y2
R
2702 S1r1
dor1
02 d 02 d
27ra2 {/_51”6 ’ y/—rl ¢ hde
T1 y2 d2r1 22
—/ e 202 dy/ e 222 dx
0 0
1 T1 51T1 >:| /627’l _ a2
= erf + erf 202 d
2¢2m{[r <\/§o> ' (ﬁa I
dor1 2
—erf (n) / e 202 dx}
V2a/ Jo
; o)) L (7)o (350
= —< |erf + erf erf + erf
4{[ <f0> (fa V20 V2o
1 dary
—erf [ —— | erf , 4.22
(755) = (5)) 2
where erf(x) denotes the so-called error function, which is defined by

erf(x) : \F/ e ds. (4.23)

The limit of (4.22) for 6; — oo and J; — oo is given by

1+erf<fa>+ f(\[0_>2] (4.24)

Now, we want to compute the expected progress e, and especially the optimal o depending

pg(?“l, O’) = hm pg(?"l, g, (51, (52)

01,02—00

on the distance r; resulting in a maximal progress, which can help us to increase the

convergence speed of the algorithm. Since our relative starting point is 0 and the front is
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situated at x = —ry, the progress is given by —x. Thus, the expected value is given by

0271 0271
ea(ry, o, 01, d2) = / /5 —zp(z,y dyd:v—/ / —zp(x, y)dydx
171
0271 y
= dyd
27r02 {/ /5m ver
0271
/ / st dydz:}
= ! {[erf( " > + erf ( o )} /(SW1 —xe_zzi? dx
22 o V20 V20 —r
0271 22
—erf (Tl)/ —xe 272 da:}
V2a) Jo
1 511"1 >:| /62741 d < 2 TZ)
= ——{ |erf + erf ——|o%e 22 | dx
2\/27r0'{[ <\f0'> (\fo —py dz
0271 2
—%ﬂf( " >(/‘ d<02€%-) dx}
\/50‘ 0 dx
= g {[662521 —e 2T%2] [erf( 1 >+erf<51r1 >]
V2o V2o
ézﬁi ™ ) }
1—e 202 | erf , 4.25
[ } (ﬁa (4.25)

whereas its limit for 6; — oo and d9 — o0 is given by

ea(ri, o) = 5. 161;200 ea(ry, o, 01, 02)

_ 2% { [1 - 6_22%2] [erf <\/%10> n 1] - 1} . (4.26)

Note, that for all r; > 0, there exists a o > 0, such that ey(r1, o) is bounded away from

zero, which is very important to be able to apply Theorem 4.5. Furthermore, ps and e
depend only on the ratio o := o /71, except that ey is additionally multiplied by a o what
shows the linear convergence character. In Figure 4.7(a) on p. 58 pa(r1, o) and ey(ry, o)
are shown for varying the ratio a. Due to the multiplicative factor ¢ in es we set r1 = 1.
In this picture we can clearly see the positive part of eo. We want to obtain the maximal
expected progress €x(r1). Therefore the root of the derivative of (4.26) with respect to o
for fixed rq is needed. It turns out, that the the derivative depends just on « and hence,
the optimal parameter &92(r1) is linear in r;. The optimal ratio &o cannot be calculated
analytically due to the complexity of the derivative. A numerical computation of the root
yields

g = 0.431735, (4.27)

with a maximum expected progress given by

52 = €9 (’1”1, dg 7"1) = 0.0726904 T1 . (4.28)
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The scheme of the Pareto front as depicted in Figures 4.3 and 4.5 can be easily extended
to higher dimensions. Similar to the two dimensional case, we assume the point p to have
a distance to the other boundaries in x;-direction, ¢ = 2,..., n of at least r1. We omit the
detour of introducing d;, i = 1, ..., n and calculate directly the limit for J; — oo. The
probability of the new individual for not being discarded, either because it is infeasible or

because it dominates the parent, is given by

pulr, o) = /:/_:~/_:p<x>dx—/0°°/0”---/O”p<x>dx

n—1 times n—1 times
0o T 1 «Tx
= 5 / / 202 dx — / / e 202 dx
27T n/ o™ 0 0 0
~—_———
n tlmes n—1 times

= @il ()]
R () = (L

o (ETCS) T B

The progress in the considered case is given by —xz1 of the new point, and hence, the

expected progress e, in the limiting case can be computed as follows:

1 1 " Ty
en(r1, o) = (2m)n2 on _/_m"'/_w—ww 202 dx
N—_———
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o0 T1 T1 xTx
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<2w>n/zon{ [\/i} [m (ﬁa)] /oo e man
n—1 n—1 o0 x2
_ [\/\/7?;} erf( & ) / —x1 e_ﬁ dxl}
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r

T 202 1—|—erf<

=t

on— 1\/%{

For a later use, we define [(r1, o) via the relation e,(ri, o) = B(r1, o)o, in which 3

depends exclusively on the ratio a.
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Exploiting (4.30) it is possible to compute its derivative with respect to o. In Figure 4.6
the optimal ratios & are shown for n =1, ..., 15. We find out, that the optimal expected
progress €, (1)(depicted on the right-hand side) is positive, but it decreases exponentially

by a factor of two for increasing n.

&n &n(1)

1

0.8 0.1

oef ° 0.01

0.4 . 0.001

0.2 Tt e e e 0.0001

n n
2 4 6 8 0 12 14 2 4 6 8 0 12 14

Figure 4.6: Optimal ratio &, (left) for different n in the worst case sketched in the figures
4.3 and 4.5. The dots on the right hand side denote the corresponding optimal expected
progress €,(1).

Since the 3-dimensional case is additionally to the 2-dimensional case of special interest,
we quote the optimal ratio as:

dg = 0.371733, (4.31)

which leads to a maximal expected progress rate of
é3(7“1) = 63(7“1, 6[3 7‘1) = 0.0325971 1. (4.32)

In Figure 4.7(b) p3(ri, ari) and ez(r1, ary) are shown for varying ratio a. Due to the

linear dependency of eg on o we choose again r; = 1 and vary «, i.e. respectively o.

p2(1,0) 0.8 — p3(1l.o)
o _M 0.6 — :;1.0)'
0.4
0.2 0.4
” 0.2
2 3 4
-0.2 I
-04 -0.2
-0.6 -04
-0.8

(a) (b)

Figure 4.7: Success probability p, (1, o) and the expected progress e, (1, o) for the assumed
front for n = 2 (left) and n = 3 (right).

Reconsidering (4.30) and Figure 4.6 respectively, we find an exponential decrease of é,(r1).
That is, because the probability to obtain a dominating individual converges to 1/2™ if the
ratio « converges to infinity, which is expected, because the volume of the dominated do-
main is in general, for the n-dimensional case, (’)(2%) with @ — co. Hence, the probability

to obtain a feasible point, either dominating or indifferent, increases logarithmically with
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n. Especially since the volume of the so-called indifferent domain is of the order 1 — 2,%1,

we expect an logarithmic decrease of the expected progress.

Mutation - A Special Case

Before finalizing the calculations on the expected progress, we have to deal with the special
case, in which the selected point p has a distance less than r; in at least one of the directions
Zo, ..., n. The worst case is again if the distance is equal to zero. Then we obtain for
o > 0 e, < 0. In this case we have to adapt the algorithm, to be able to still guarantee
a positive expected progress in distance. We change the algorithm in the way, that we
discard all new generated points if they do not dominate the parent. The only thing we
have to know is, if we are close to the boundary of the feasible performance domain'4
or not. On the other hand, this situation can also occur if another individual, which is
indifferent to the parent, has a smaller distance to the actual selected individual than r;
in at least one of these specific directions. If so, the domain of improvement is limited by
this individual. Hence, we are able to treat this case in the same way as the one described

before.

By using the same setting as above, i.e. according to Figure 4.5 but with neglecting

z;, 1 =1, ..., n, we get for the selection probabilities in the limit
1 ogn—lg(n=1)/2 (0 o3
= 207
pms(rlg U) /r1 / / (27[‘)”/2 on 5(n-1)/2 /T1 e 2 dxl
n— 1 times

- 2iﬂerf (\gg) . (4.33)

Furthermore the expected progresses for the n-dimensional case are given by

r?
en.s(T1, - 1—e 202 ). 4.34
n,s\I'l /_Tl/ / 1p 2n 1@( ) ( )

n— 1 times

In that case, we obtain an optimal ratio &, = &,(r1)/r1 of
an = 0.630835, (4.35)
which result in the optimal expected progress given by

é275(7”1) = 62,5(7’1, dg 7'1) = 0.09001267’1 (436)
é375(7”1) = 63,3(7’1, dg 7'1) = 0.04500637’1 . (437)

4Note, that we have to make the important assumption to have some measure for the distance of a
point to the boundary of the feasible domain. It is needed for both domains, for the design domain as well
as for the performance space, to be able to obtain convergence of infeasible points to the feasible domain.
This was explained in Subsection 4.4.1.
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Note that due to (4.34) the expected progress decreases also exponentially with the factor 2
for increasing n. This is due to the exponential decrease of the probability to obtain a new
individual in the dominating domain. Note, that €, s is still positive, but the improvement

factor becomes very small too.

After this small adaption due to convergence problems note, that for further discussions
we can neglect this case, because the optimal expected progress in the n-dimensional case,
given by (4.36) and (4.37) for instance, is higher than in the “standard” case (cf. (4.28),
(4.32) and Figure 4.6).

4.5.7 Environmental Selection - Clustering

Finally the selection step is performed. If the new point x dominates the parent individual,
then the parent is discarded. Furthermore we assume as explained above, that the new
individual is only not added to the archive if it is dominated by the parent. As mentioned
previously too, we do not consider other limiting individuals, since they would only limit

the valid domain, which would result in an increased expected progress.

4.5.8 Summarizing the Convergence

Summarizing the previous results, using ps 4 given by (4.20), €, and &, respectively, given
by (4.28), (4.32), (4.27) and (4.31), or depicted in Figure 4.6, we find that under the

assumptions made in Subsection 4.5.3 the following holds:

1

e(d) = |IBll> = BE(Dea| P = P) = |[Pilla = [|E(Pesal Py = P)lla > d = 5/ d(Pwe, Pr)?
_ 1 G sy L = oo Blan)
= ﬁps,d en(Nd, 6(Nd)) = ﬁp&d én(Nd) = m ) (4.38)
with ||P|| = d. pwc denotes the new computed individual in the worst case as assumed in
the previous chapters and therewith, by defining ~ as
- : _ Blaw)

we fulfill condition (4.18) and therefore we obtain almost sure convergence for this special
worst case due to Theorem 4.5. In (4.38) and (4.39) 3 denotes the factor corresponding to
€n, 1.e. ép(r1) = B(ay) 1.

Note, that we assumed an optimal standard deviation ¢ depending on the distance d, but
the worst case in terms of the setting with respect to the made assumptions. Additionally
bear in mind, that linear convergence is the best we can obtain if no gradient information
is used, since then no further information about the behavior of the function except its

values is used.

Furthermore note, that this worst case lower bound decreases quadratically with N, due

to the mating selection step. We will compare the results derived in this section with
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numerical tests in Subsection 6.2.2. To compare the convergence rate, we compute several

values of ¢, for n = 2, ¢ = 2 and different N. They are shown in Table 4.1.

N G2
1 | 0.0181726
5 | 0.0020192
10 | 0.0006007
20 | 0.0001648
30 | 0.0000756
40 | 0.0000432

Table 4.1: The worst case expected progress factor (a3, given by (4.39), for ¢ = 2 and
different archive sizes N.

4.5.9 Experimental Verification of the Convergence Considerations

In this short part we want to verify the convergence rates computed in the previous section.
Thereby, the expected rates of the mutation operator are of special interest. For this sake,
we arrange an experimental setting. For a certain dimension n and o, we generate nexp
vectors by means of the (0, 02 I) distribution with some o > 0. First of all we are dealing
with the case depicted in the Figures 4.3 and 4.5 with r; = 1. Therefore, we say that a

generated point d is feasible, if it lies in the domain of interest, i.e. if
d € Pr:={[-1, o] x [—o0, 1]" "1} \ {[0,00] x [0, 1]* "1} . (4.40)

From the generated vectors {dzg}izl, . we compute the following values

-y Nexp

d”UGP[:izl,...,nx
Prexp(l, 0) = s exe | and (4.41)
TNexp

Zde{dZUGPI 1i=1, ..., Nexp } _dl

enexp(l, 0) = (4.42)

Nexp
In other words, py, exp denotes the relative frequency of the event to obtain a feasible point
and e, exp indicates the corresponding progress of the feasible points.
For all experiments, we used nexp = 5000 and for o a step size of 0.02 was chosen. Fur-
thermore, the experiments were performed for o € [0, 2]. In Figures 4.8(a) and 4.8(c)
Pn.exp(l, 0) is compared to py(1,0), derived in (4.24) and (4.29), for n = 2 and n = 3.
Figures 4.8(b) and 4.8(d) show e, exp(1, o) in relation to e,(1,0), computed in (4.26) and
(4.30), again for n =2 and n = 3.
Furthermore, in Figures 4.8(e) and 4.8(f) the success probability pasexp(1, o) and the
expected progress eg s exp(l, o) for the special case are compared to the derived values
p2,s(1, o) and ez 4(r1, o) (cf. (4.33) and (4.34)) for n = 2. For this case, the defini-
tions (4.40), (4.41) and (4.42) have to be adapted to the different domain of interest.

For nexp, — oo the graphs obtained by the experiments would converge with probability
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Figure 4.8: Experimental Investigations on the the mutation operator. On the left side
the exact and experimental obtained success probabilities are shown. The corresponding
expected progresses are depicted on the right hand side. The dimensionality of the exper-
iments is n = k = 2, 3. Furthermore, in last row, the special case, where only dominating

individuals are allowed, is depicted for n = 2.

one to the exact curves. Note, that due to a rule of thumb!'® we can expect an accuracy
107185 because 5000 ~ 10370, The proof of this rule needs some knowledge about the

normal distribution and probabilistic theory, but we will skip it in here.

15Tt states, that if we want to achieve an accuracy of the relative frequency compared to the exact
probability of 107%, we have to carry out 10** random experiments.
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4.6 Summary

In this chapter we first introduced the basic concepts of evolutionary algorithms. It was
explained, that EAs are population based algorithms where the population changes due
to deterministic or probabilistic selection, recombination and due to probabilistic muta-
tion. These concepts orientate on incidents occurring in nature. The basic properties and
ideas concerning evolutionary algorithms were explained. Furthermore, the components of
these algorithms were listed and explained. In the beginning, the focus was still on single

objective optimization problems. Three different kinds of EAs were introduced.

Afterwards, the adjustments of evolutionary algorithms to multiobjective optimization
problems were treated. First, the aims of multiobjective evolutionary algorithms were pre-
sented, which are to obtain accurate and uniformly distributed approximations. Moreover,
the basic concepts fitness sharing and elitism were introduced. They are important for an
efficient MOEA. Then, other algorithms available were shortly summarized. Subsequently,
SPEA2 was introduced in detail. It was preferred to the other methods, since it showed
promising results in literature and because no drawbacks compared to other efficient meth-
ods could be determined.

Basically, SPEA2 is an Evolution Strategy, since recombination and mutation with normal
distribution are used, although the additional step of environmental selection contradicts
this definition.

Finally, almost sure convergence of this approach was shown under some assumptions. This
was carried out by means of the worst case with respect to the prescribed assumptions. The
convergence was shown in terms of an expected improvement of the population’s distance
to the Pareto front for every generation. The rate is linear, what is the best we can expect
if no gradient information is used. Finally, the derived convergence rates for the mutation

operator were verified by the help of probabilistic experiments.
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Chapter 5

A Deterministic Approach for
Multiobjective Optimization

Problems

In this chapter we will investigate on deterministic numerical solution methods for MOPs
with focus on so-called Normal-Boundary Intersection(NBI) method, which was introduced
in [DD98] and further investigated in [Das98]. Moreover, in [Ste05] NBI was used to execute

the design space exploration, which was termed performance space exploration there.

The task of multiobjective optimization is to determine the Pareto optimal front P;. Since
this is usually impossible to achieve, numerical solution methods aim to determine a finite
set of Pareto optimal solutions instead. Basically there are two different goals when dealing
with multiobjective optimization. Either one single or final optimal solution is desired, or
we want to stress the trade-off between the different objectives. For the former goal a so-
called decision maker, a person who has better insight in the background of the problem,
has to pick one solution from the computed solution set, which fulfills his/her requirements
best!. Since this case is not of importance for the sake of design space exploration we turn
to the second goal. Thereby, the important task is to achieve a certain distribution of
the optimal points. Usually it is desired to get a uniform distribution of optimal solutions

along P.

The idea of most MOP solution methods is to transform the problem into parameterized
nonlinear single optimization problems (SOP). Firstly, in Section 5.1 two traditional ap-
proaches are presented and their disadvantages will be outlined. Afterwards, in Section 5.2

we will deal with the NBI approach.

!For more details see [Mie99] for instance.
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5.1 Other Deterministic Solution Methods

Before we will introduce the normal-boundary intersection, two other quite common meth-
ods to solve MOPs will be presented, namely the weighting method and the e-constraint
method. Furthermore, their relation to each other will be outlined and their disadvantages

will be discussed.

5.1.1 Weighting Method

In the weighting method the multiobjective optimization problem is transformed into a
single objective problem parameterized by some vector w. The scalar cost function is ob-
tained by assigning non-negative weights w; to each performance variable and by summing

up the weighted performances. The problem reads then as follows

k
i pi(d) =w'p(d 5.1
gggpf;wzpz( )=w'p(d), (5.1)
with w; > 0, i = 1,..., k and 3% w; = 1. In [Mie99] the following results on the

weighting approach can be found as well as their proofs (cf. p. 78 ff.). Summarizing the

statements in one theorem we obtain

Theorem 5.1. The solution of the weighting problem (5.1) is weakly Pareto optimal.

Furthermore the solution is Pareto optimal

e if the weighting coefficients are positive, i.e. w; >0 for alli =1, ..., k.

e or if the solution of the weighting problem (5.1) is unique.

Furthermore, after some investigations, the following quite obvious result can be stated:

Theorem 5.2. Let the multiobjective optimization problem be convex. If d* € Xy is Pareto
optimal, then there exists a weighting vector w (w; >0, i =1, ..., k, Zle w; = 1) such

that d* is a solution of the weighting problem (5.1).

The proof is given in [Mie99] (p. 79). The standard procedure of the weighting method,
for approximating the trade-off front, is to choose different weights, usually uniformly
distributed, and to solve for each of them the single objective optimization problem (5.1).
In that way we obtain several optimal points that can be used to set up an approximation
for the Pareto front. Furthermore, for single w; = 1 we obtain the individual minima,
which limit the Pareto front.

It is worth noticing, that Theorem 5.2 states the existence of a weight w for each optimal
point if the problem is convex. But we cannot make any conclusion about the distribution

of those weights.

In [DD97| the disadvantages of the weighting method are investigated. Following the

previous reasoning, the main weaknesses of this approach are
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e [f the Pareto curve is not convex, there does not exist any w for which the solution

to problem (5.1) lies in the nonconvex part.

e Even if the Pareto curve is convex, an even spread of weights w does not necessarily

produce an even spread of points on the Pareto curve.

In this article the two arguments mentioned above are investigated and additionally proven

by means of examples.

5.1.2 e-Constraint Method

Another interesting and often used MOP solution method is the e-constraint method. The
interesting intrinsic peculiarity of this approach will be pointed out later .
For some s € {1, ..., k} and ¢ € R¥™! the e-constraint method corresponding to Prob-

lem 3.1 consists of the following optimization problem

in ps(d 2
greggfp() (5.2)

subject to p;j(d) <e; forallj=1,...,k j#s.

In [Mie99] it is shown, that the solution of the e-constraint problem (5.2) is weakly Pareto

optimal (Theorem 3.2.1, p. 85). Furthermore the following theorem is proven therein:

Theorem 5.3. A decision vector d* € Xy is Pareto optimal if and only if it is a solution
of the e-constraint problem (5.2) for every s = 1,..., k, where ¢; = p;(d*) for j =
1, ..., k, j#s.

Finally it is shown, that if the solution of problem (5.2) is unique for any s and any e,
the solution is Pareto optimal. In Figure 5.1 an example for several solutions of a two-
dimensional problem for different ¢ is depicted. We can clearly see, that for ! no solution
exists, while for the other €/, j = 2, 3, 4 we obtain the distinct solutions p’. Hence by

adjusting the bounds ¢; it is possible to obtain solutions along the whole Pareto front.

When reviewing this method, we find that also this method has the disadvantage, that a
uniform distribution of the points cannot be achieved in general, since no relation between
different € and the distribution of the corresponding Pareto optimal solutions can be drawn.

Therefore, this approach is not the method of choice too.

Under certain assumptions the equivalence between the different solution methods for
multicriteria optimization can be established. In the following we will state the results on
the relation between the weighting method presented in the previous subsection and the

e-constraint method, that are again derived in [Mie99| (p. 88).

Theorem 5.4. Let d* € Xy be a solution of weighting problem (5.1) and let 0 < w € R

be the corresponding weighting vector. Then
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W P2

4

Figure 5.1: Different constraints for the e-constraint problem (5.2). The bold line denotes
the Pareto front Py corresponding to the attainable set F,.

1. if wy > 0, d* is a solution of the e-constraint problem for the objective function ps
and 5 = p;(d*) forj=1,..., k, j#s. Or,

2. if d* is a unique solution of the weighting problem (5.1), then d* is a solution of
the e-constraint problem when €; = p;j(d*) for j =1, ..., k, j # s and for every

ps, S=1, ..., k, as the objective function.

Furthermore note the fact, that for convex problems, there exists a weighting vector 0 <
w € R¥, 3% w; = 1, such that d* is a solution to problem (5.1) if d* is a solution to
problem (5.2) for some p,s to be minimized and e; = p;(d*) for j =1, ..., k, j #s.

Summarizing we find the equivalence of e-constraint problem and the weighting method

for convex problems.

We mentioned above, that this method has an interesting property. To point this out, we

assume that the objective and constraint functions are twice continuously differentiable.

Suppose that a feasible point d*, which satisfies the e-constraints, fulfills the second order

sufficient solutions with the Karush-Kuhn-Tucker multipliers Ay; for the e-constraints?.

Thereby, the index s denotes the choice of the minimization function. Then, if the multi-

pliers are strictly positive, we get for the trade-off rates, introduced in Definition 3.22,
Ips(d”)

Asj = “op for all j # s, (5.3)

i.e. the Lagrange-multipliers Ay; determine the trade-off rate involving p, and p;.

5.2 Normal-Boundary Intersection Method

In the previous section, we pointed out the disadvantages of the weighting method and

the e-constraint method. Therefore, we will introduce the normal-boundary intersection

2For more information see [Mie99], p. 92.
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(NBI) method, which aims to remedy the problems of the previously explained methods.

As mentioned above, the normal-boundary intersection method was introduced in [DD9S].
In the following we will explain the method and its background. In the next subsection
the required general definitions, and the basic idea of NBI will be worked out. In Subsec-
tion 5.2.2 further investigations on the normal-boundary intersection are shown and the
basic properties of the approach are mentioned. Furthermore in Chapter 6 some imple-
mentation issues are discussed (see Subsection 6.1.3) and the NBI is applied to a problem

concerning the design space exploration of compact models.

5.2.1 Central Ideas of NBI

First of all, we have to define the so-called individual minima p; of the performances corre-
sponding to the MOP 3.1. They are obtained by the following single objective optimization
problem:

p; = ({reli)?fpi(d) i=1,..., k, (5.4)

where the feasible set X is given by Definition 3.2. The p; form the shadow minimum or

utopia point p*, i.e.

P
p*
pli=| (5.5)
P
Henceforth, we assume the existence of an individual minimizer p] for each i =1 ..., k.

This is guaranteed because we suppose Xy to be compact, i.e. closed and bounded, and p to
be at least continuous. Additionally, let x; be the minimizer corresponding to p;. Clearly,
the x7 do not have to be unique, but for the first considerations this is not decisive, since

*

especially p(x]

*) is of interest. Furthermore observe, that the shadow minimum cannot be

attained in general, but one of the goals could be to come as close as possible to p*.

Let us define the k x k pay-off matriz ® by
(Pij)ij=1,...k = pi(X}) — P} , (5.6)

i.e. the matrix whose j-th column consists of p(x;‘) — p*. Note the special structure of ®,

namely

d,; = 0 foralli=1,..., k and
o > 0 foralli, j=1,..., k, i #£j. (5.7)

This structure can be exploited in the way that a negative entry ®;; signifies that x; is

not the global minimizer of p; because then X;‘f results in a smaller value.

Now we are able to define the convez hull of individual minima(CHIM?3). As the name

#Note, that we use the terminology introduced in [DD9S].
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indicates, it is defined by

k
CHIM := {@ﬂ . B eRF, Zﬂi =1, g >0forali=1,..., k} . (5.8)
i=1
An example of a Pareto front including its corresponding C HIM is depicted in Figure 5.2.
Similar to the CHIM, we can define CHIM,,, the affine subspace of lowest dimension
containing the CHIM. It is given by CHIM,, := {q)ﬂ : B €RF, Zle G = 1}. Fi-
nally, using the definitions 3.2 and 3.3, we are able to set up CHIM,, which is given by
CHIMy := co(0P, NCHIM,), where 0P, denotes the boundary of the attainable per-
formances P,. We have, that CHIM = CHIM, for k = 2, but for general k > 2 CHIM

P3

Figure 5.2: The Pareto optimal front Py and the CHIM for an example with k = 3. The
red points denote the individual minima pJ.

is usually not equal to CHIM,. As an example, Figure 5.2 shows a typical CHIM. We
can see, that 0P, does not touch the CHIM at all points of its boundary, and hence
CHIM # CHIM, in this case. Note, that all points of 9P, lying below CHIM are
Pareto optimal if the surface is not “too concave” there. Furthermore we have to remind
our original aim, which is to compute a trade-off front that does not have to be equal to
the Pareto front. Py is usually a subset of this trade-off front. For the sake explained
before, it is desirable to have the CHIM,. This is almost impossible and hence we are

content with the approximation given by CHIM.

In the next step of the method several Pareto optimal points are computed in the following
way:

We determine the normal vector n of the CHIM pointing towards p*. Then, we choose an
arbitrary point on this convex set corresponding to a vector 3 € [0, 1]¥ with Zle G; = 1.
In consequence we want to compute the feasible point p(d), which has the largest distance

t of the point ®f in direction n. In other words, we want to solve the following single
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objective optimization problem

min  —t (5.9)
(t,d)ERX X}
subject to
p(d) —p*=®F+1tn. (5.10)

Note, that d has to be feasible, i.e. d € X;. Furthermore, for fixed 3 we refer to this
subproblem with NBIg. Hence, the next task to do, is to choose the vectors 3 to obtain an
as accurate as possible approximation of the front. The most simple choice is a uniform dis-
tribution. That is, given a certain positive integer ng, we choose 3 € {% |s=0,...,ng}

and the remaining ; are chosen from the set {% |s=0,...,n8 A s<ng(l- 23;11 i)}

-1
The number of subproblems NBIg with uniform distribution is given by ( ntng )
ng

In Figure 5.3 a sketch of the normal-boundary intersection method is depicted. Therein,
we see the almost uniform distribution of the obtained points along the Pareto front P;.

Furthermore observe that the shadow minimum p* cannot be assumed in this example.

Figure 5.3: Sketch of the NBI method. The uniform distribution of the obtained points
can be observed.

Concluding this treatment on NBI note, that NBI remedies the problems of the weighting
and e-constraint method, i.e. the obtained solutions are expected to be uniformly dis-
tributed along the trade-off front and moreover, it is possible to obtain non-Pareto optimal

points, what is especially in the design space exploration desired.

5.2.2 Further Considerations on NBI

Since for general k it is quite tricky to set up the normal vector n, the quasinormal n = —®e
is often used instead, with e being the vector containing only ones. In [DD98| (p. 645 ff.)
it is shown, that using the quasinormal n the obtained point is independent of any scaling

of the performances for a particular (.
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In Figure 5.4 a sketch of the normal-boundary intersection method is depicted, where n
was replaced by n. Therein, we see again the almost uniform distribution of the obtained
points along the Pareto front P; (compare to Figure 5.3), although the quasinormal was
used. Hence, we see that for smooth objective functions p the normal n can be replaced
by the quasinormal n. Clearly, the steeper the slope of the CHIM becomes, the worse the

results are.

Figure 5.4: Sketch of the NBI method with the quasinormal n.

We mentioned above, that originally the desired set would be CHIM,. This set would
cover the whole trade-off front. The big advantages of the CHIM are its simple pa-
rameterization by means of the barycentric coordinates 3, and the sufficiency in terms of
recovering the trade-off front. It is worth noticing that in general design space exploration
applications these boundary terms of the front are not of interest. But to extend the solu-
tions we could apply the general principle of NBI to the (k — 1)-dimensional subproblem at
the boundary surfaces of the CHIM. There, we have one degree of freedom to choose the
normal vector n. Therewith it would be possible to obtain all the points left over in the
boundary regions. Since these points are not of main interest in the framework of design

space exploration, we do not pursue this topic further.

Now, we consider the necessary first order Karush-Kuhn-Tucker optimality conditions for
the subproblem NBIg, that is Problem (5.9). For a feasible pair (¢*, d*) there have to exist
the multipliers A} € R¥, 0 < A3 € R and 0 < A\ € R™ such that

—Vap(d)'A] + Vae(d) A3 + Vaé(p(d)" A5 = 0 (5.11)
~1+n"); = 0. (5.12)

Additionally Ag; e;(d*) = 0 and Ay ; &;(p(d*)) = 0 have to hold for every i =1, ..., [ and

every j =1, ..., m. In [DD98§]| it is shown, that if Zle Al; # 0 and 0 < A7, then d* is

the solution of the weighting method, introduced in Subsection 5.1.1, with the weights
Aéthj

Zi:l >\1,i
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We can conclude that at least one of the weights A] corresponding to a solution of NBIg
in a concave region has to be negative, because it is not possible to obtain points at 0P,
in concave regions with the weighting method. On the other hand, from the previous
statements it cannot be concluded that the multipliers have to be positive in convex areas.
This is an interesting question. Nevertheless this statement can be assumed, since the
Lagrange-multipliers always indicate the sensitivity of the corresponding value to a change

in the input variables.

In order to save computation time, in [Ste05](p. 42-43) it is recommended to change the

equality constraints (5.10) into inequality constraints, i.e. the following setting is suggested:
p(d) —p* < @5 +tn. (5.14)

It is said, that this change improves the number of function evaluations between 5% and
20% for typical applications. We have to bear the effects of this change in mind. Reconsid-
ering the equivalence between the weighting method and the normal-boundary intersection
we find out, that the conditions mentioned above do not change except the fact that AT > 0
has to hold if (5.10) is replaced by (5.14). This implies, that all solutions to the adapted
NBIg are also solutions to the weighting method with w given by (5.13). Hence, we do not
obtain any points on 0P, in concave regions. Since our task is to compute the trade-off

front, this property is not desired.

The equivalence of NBI and the e-constraint method is additionally shown in [DD9§|. The
conditions for equivalence are again that the A ; >= 0 and that there has to be at least

one positive one.

5.3 Summary

In this chapter we introduced deterministic solution approaches to deal with multiobjective
optimization problems. First, we introduced the weighting and the e-constraint method.
Furthermore, we mentioned the relation between these methods under certain assumptions.
But since these methods have some disadvantages we do not apply them to MOPs. The
main disadvantages of the weighting method are the impossibility to obtain solutions in
concave regions and that the solutions are usually not uniformly distributed along the
Pareto front. On the other hand the main disadvantage of the e-constraint method is the

difficult choice of the constraints to obtain uniformly distributed solutions.

To remedy these problems the normal-boundary intersection was investigated instead.
Thereby, we first compute the individual minima, which limit the Pareto front. After-
wards, the normal vector to the convex hull of the individual minima is set up. Moreover,
for a choice of a point on this convex hull we compute a Pareto optimal solution by com-
puting a feasible point that has a maximal distance to the chosen point along the normal
vector. Then by a uniform distribution of the weighting vector, we get an close-to uni-

form distribution of the solutions. This method overcomes all the weaknesses of the other
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two presented methods and therefore, we will apply NBI to the design space exploration

method in the next chapter.
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Chapter 6

Applications of the Evolutionary and
the Deterministic Method

In the previous two chapters, the probabilistic approach SPEA2 and the deterministic
method NBI were introduced and explained in detail. In this chapter we will emphasize

on the practical side of both approaches.

Therefore, the issues and details concerning the implementation of SPEA2 and NBI will
be explained. Afterwards, both methods will be assessed by means of a simple example.
Furthermore, we will apply SPEA2 and NBI to a compact performance model of a low-noise
amplifier. Thereby, a possible flow of designing a circuit to obtain the design parameters
corresponding to desired performance figures will be outlined. Finally, the considerations

and observations of this chapter will be summarized.

6.1 Implementation

In this section we will make, additionally to the already stated considerations in the previ-
ous Sections 4.4 and 5.2, some remarks concerning the implementation of SPEA2 and NBI.
First we will point out general issues of implementing a MOP according to Problem 3.1.
Afterwards, SPEA2 and NBI will be treated in detail.

6.1.1 General Considerations on the Implementation

We implemented both methods in MATLAB@l7 but basically they can be implemented
in any programming language. Due to the various possibilities of visualization, the big
amount of available vector manipulation functionalities and the function fmincon, which

is an optimization algorithm for SOPs, we chose this program.

'for more information see [Mat].
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First of all remember that in general we have ¢ performance variables and k& objectives
to optimize. Thus, we introduce the vector optimize of length ¢, whose elements are in
{—1, 0, 1}. These values determine, whether we want to maximize the performance, to
use it as a constraint or to minimize the objective, respectively. k elements of optimize
are not equal to zero. Furthermore, we assume that the domains D and Y of Problem 3.1
are given by hypercubes, i.e. we are given arrays 1imitDS and 1imitPF of the size 2 X n
and 2 x t, which contain the upper and lower bounds for the single design and performance
parameters. We assumed this for simplicity? and since it is convenient for the general
procedure of designing a RF-circuit by means of RF-circuit block models, which will be
explained in Section 6.3. We summarized all the settings of an MOP in the framework of

design space exploration in the class Blockmodel _RSM.

In Subsection 6.1.2 we will introduce the difficulties when implementing SPEA2 and in
Subsection 6.1.3 the NBI approach will be investigated.

6.1.2 Implementation of SPEA2

Now, we want to elucidate the details on the implementation of SPEA2 as explained in
Subsection 4.4. First of all note that not all steps need special treatment additionally to
the already discussed items. Especially the mating selection, which chooses N individuals
by means of the g-tournament selection, and the recombination step are straightforward

to implement.

Initial Population

An important task for a fast success of SPEA2 is to make a good choice for the initial

population Py. There are three different possibilities to generate Py:

1. Random generation. Randomly generate N points in the range of the design space,
given by 1imitDS. Of course, not all individuals have to be in X;. Actually, for
problems with severely constrained performances it can be almost impossible, to
generate any feasible initial individual. The treatment of infeasible points will be

explained below.

2. Precomputed data. We could reuse the results of a previous optimization run, that
maybe had similar constraints on the data. Note, that in the case of circuit design,
as will be explained later, the designer restricts the problem more and more, until
he/she obtains a unique solution. Thereby, the data of the previous computation

could be used as an initial population for the next step.

3. Reference table. Another possibility is to pre-compute a table of performances p

with a large number of different design parameters. To get N initial values, we

2In the following, we need to know the distance of infeasible points to the closest feasible one. This
measure is needed in both spaces.
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discard the infeasible points. Then we choose the | % | minimal/maximal points of
each performance p;, 7« = 1,..., k — 1 that is to be optimized. For the last one,
we choose N — kL%J optimal individuals. This should result in an excellent initial
population. Especially due to recombination, we will reach a uniformly distributed
coverage of the whole front very fast, if the chosen points are situated close enough
at the individual minima.

Of, course, selecting a uniformly distributed approximation of the front would be

even better. But this is much more complicated too. Hence it is not used.

Stopping Criterion

The stopping criterion is a very crucial point in SPEA2. We implemented two different
convergence criteria. The first one is the quite obvious maximum number of generations T’
and the second criterion was introduced in Subsection 4.4. It uses the convergence index
q(t,G) defined by (4.13). Thereby, the difficult task is to choose a suitable bound T and

step size G. For the choice of Ty observe the following considerations:

In order to determine optimal settings we will investigate the probability ps(7), to obtain j
new dominating individuals, by neglecting recombination for simplicity. It can be computed
as follows:

3 would

First of all we assume, that N > N, since otherwise the so-called selection pressure
be very high. This means, that it is very likely that a certain element is selected. This
likelihood should not be too high, i.e. close to 1, because then the probability that an
individual survives several generations is high. Such a property is not desired in order to
obtain a fast convergence. Hence, this setting is justified. We are given the probability*
p 2%, that the new individual dominates the old one. Note, that there are several
possibilities to choose the moments g, ..., ;1 when an individual x of the set FP; is
chosen. Furthermore, if an individual x € P; was already chosen, then it is considered
to yield no improvement any more. Hence, the probability to obtain a progress, after ¢

individuals of P; have already been considered, is given by

N —1

ps(l): N—i—Np'

The probability to obtain no progress, after considering i individuals with progress, is

determined by

pns(i) =1 _ps(i) = N+Z+]s—[1_;]1\)[)(N — Z) .

This means, that we do not obtain a dominated individual, firstly, if the mutation of a

nondominated individual results in no progress, what happens with probability 1 — p, or

3Compare [Zit99] p. 24. There the selection pressure is related to the takeover time. For this definition
we have to assume that Py has one optimal individual. The takeover time is the time ¢ it takes until P,
or P; respectively, is completely filled with this single optimum, if no probabilistic genetic operators are
used. That is, P; contains only this optimum individual N times. A high selection pressure corresponds
to a low takeover time, since then it is very likely that the optimum is selected.

4 Assuming again, as in Section 4.5, a uniformly distributing performance function p.
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secondly, if we select an element of P, or of P; that was already chosen. From this, we get

the probability to generate j new dominating individuals:

PN, N, p, j) = Y o D pas(0)0 pas(1) 0T pg(j = 1) T2
i0=1 ij,1=ij72+1
pHS(j)Niijfl ps(0) - ps(i — 1) (6.1)

Using (6.1), we are now able to compute the expected number of new dominating individ-

uals . It is given by
N

E(N)Nv p):ij(NvN’ pvj)' (62)
=0

The coverage function fc ((4.12) on p. 46) is defined by the number of dominated indi-
E(N,_N, p) with
N )

N = aN, numerically for k = 2, 3, several a and N. The results are depicted in Table 6.1.

viduals divided by the size of the set. Therefore we computed the value
We will exploit this table to get an impression of the stopping criterion. This will be car-
ried out in Subsection 6.2.4. Note, that although we only computed these values for N up
to 15, those ranges are valid for higher N, since the change between different N decreases
%, for some 8 € R. Additionally note the
supposed assumption that no individual of P, g is dominated by an element of P;, what

asymptotically. We want to use T =

is quite realistic.

dimension | « | lower bound | upper bound
k=2 1 0.117 0.1250

2 0.080 0.0833

3 0.060 0.0625

4 0.048 0.0500
k=3 1 0.0600 0.06250

2 0.0408 0.04167

3 0.0307 0.03125

4 0.0247 0.02500

Table 6.1: The range of w, N =aN for several a =1,2,3,4and N =1, ..., 15.
Furthermore, the values are computed for £ = 2 and k = 3.

Nevertheless, when using this stopping criterion, there still exists a certain probability,
that the algorithm stops too early. This observation is especially for smaller N valid, or
if the feasible performance space Y is very small, compared to p(D). To prevent this, we
could start to test this criterion after some preiterations, e.g. 40 or higher. Furthermore
note, that the numerical results in Subsection 6.2.4 will show that this stopping criterion
when recombination is used, is not efficient. Nevertheless, in the case of used recombina-
tion, To = 0 and G = 8 seem to be the best choice. The same setting can be used, if
no recombination is applied. Bu then, this criterion makes much more sense as will be
explained in Subsection 6.2.4.

Summarizing, if accurate results are desired, we should stop after T' generations, whereby

T = 200 or even higher is suitable. Especially, we will see later, that the stopping criterion
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based on the coverage function should not be used if recombination is applied.

Fitness

The fitness step is quite straightforward to implement as explained in Subsection 4.4. But
we have to make one additional remark. Infeasible individuals have to be treated separately,
since they might dominate all other individuals. Therefore the standard fitness assignment
is carried out on the set of feasible individuals. Then, we compute the distances dg and d,,

of the infeasible individuals to the feasible domains D and Y, i.e.

dg(x) = (riniBHd—xH and (6.3)
€
Bx) = minlp— b9 (6.4)

The fitness of an infeasible individual x is now given by
f(x) :=0(da(x) + dp(x)) , (6.5)

where § denotes the penalty term. We chose § = 1000, which worked very well for the
tested constrained as well as unconstrained problems. This kind of punishment has the

meaning, that closer individuals are preferred to ones that are farther away.

Environmental Selection - Clustering

Basically, this step was implemented according to Subsection 4.4. We have only to be
aware of the normal case, namely if N > N. Then, in the first step where P, = ), we
have to copy several individuals more often than once into the archive. This is done in the
following way:

Copy {%J—times the set P, and paste it into the set P;. Finally, the N — L%J individuals

of P; with the lowest fitness value are copied to P;.

Note, that such a setting, i.e. N > N, can be useful, since then the selection pressure is

decreased, which was already outlined above.

Mutation

The mutation is the most crucial step of this evolutionary algorithm, as we already no-
ticed in Subsection 4.5, where we investigated the convergence behavior of SPEA2. As
stated in this section, when using the optimal standard deviation o, we will expect linear
convergence. This will be verified in Section 6.2. However, in general we do not know
the distance of the single individuals to the Pareto front Py. As we saw in the previous
investigations, a too high ¢ may lead to an increase of the distance D;. But on the other

hand, a too small ¢ can lead to arbitrary small convergence speed.
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The implemented mutation procedure, which uses the normal distribution, works as follows:
First, we determine the ranges r; = maxxep, ||, @ = 1, ..., n of the initial population Py.
All r; are then multiplied by some mutation factor p,,, which according to Subsection 6.2.3
equals 0.5—0.7. In the mutation step itself, we are using the same ranges for all individuals
of the current set P}’ ; according to Algorithm 4.3 on p. 41. The ranges r; are adapted every
G, steps, i.e. r; = apr; with a,, < 1, depending on the convergence index ¢(t,G,) <
T (ctf. (4.13)) with T, = % with 3, = 3. o is to be decreased, since we assume
the algorithm to converge. Furthermore, this procedure is based on the observation, that
a too large o would imply, that too many infeasible individuals are generated and hence,
q(t,Gy,) would be smaller in that case. Typically we choose G, = 2 and a,, € [0.9, 1)

depending on N and N. Especially, a,,, is chosen via

1/2
am(N) == 0.95(30)

(6.6)
This formula will be justified through numerical experiments, that will be performed in
Subsection 6.2.3. There we will determine 0.95 to be optimal for NV = 30. Since we assume
linear convergence and additionally adapt the values at most in every second step, we
conclude (6.6). Furthermore, the assumption that for higher N SPEA2 should converge
faster proportional to the increase of N is applied. Summarizing, note that this formula is
based on numerical experiments. The square root in the exponent was added to slow down
the decrease of a,;, for higher N, since then the progress is not expected to be proportional
to N larger, than for N = 30.

Due to the vast number of uncertainties we are faced with, originating from the large
number of parameters, when dealing with normal distributed mutation, we implemented a
second mutation type, namely the Breeder mutation (cf. [MSV93]), which was introduced
in Section 4.1.1. Therefore, we only have to choose the A; which are chosen as the r; in the
normal distributed mutation, but with a higher mutation factor p,, (usually p,, € [1, 5]).
Furthermore, we choose k = 15 as suggested in [MSV93|. Additionally, we adapt the A;
as in the case of normal distributed mutation via the factor

N)I/Q

am(N) == 0.96(30 (6.7)

The factor 0.96 will be determined in Subsection 6.2.3 too. Anticipatory bear in mind,

that the Breeder mutation will turn out to work very well in the framework of SPEA2.

Finally notice, that we do not further decrease the r; and A; respectively, if they are below
a certain threshold, i.e. 10713, We would not have any noticeable impact for smaller r;

and A;, because the double-machine-precision is around 10715,

6.1.3 Implementation of the NBI

After the previous investigations on the implementation of SPEA2, we will now look into
the details of the NBI implementation. As already mentioned above, the MATLAB-

approach is based on the single objective optimization algorithm fmincon, which works
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properly for our task. In the following, several practical issues concerning this method are

examined in more detail.

Initial Solutions

We have the same possibilities as for SPEA2 to choose the initial guess for the individual
minima. Either we can generate it randomly, reuse some data from previous investigations,
or we can choose a suitable point from a precomputed table. In all cases, we choose for
each direction ¢ the point which is optimal in this certain direction. This should result in a
best possible behavior. Note, that even in the case of a random generation it can be useful

to produce more points and to choose the most suitable one afterwards.

For the choice of the initial solution for the single optimization problem NBIg, the following
promising method is suggested by [DD98|:

Assume, that (t*, d*) is a solution to NBIg. Then for a feasible 3 with ||3 — G| < € in
a certain norm for some small € > 0, we expect the solution of NBIB to be “as close at
(t*, d*) as the distance € of 5 and 3”. Hence, by using (t*, d*) as an initial guess for NBI;
we expect a faster convergence of the procedure, compared to a random generation of an
initial solution. Therefore, we start close to an individual minima and continue further
by solving always near-by problems. This approach has some similarities to continuation

methods, which are used to solve nonlinear equations.

On the other hand, we could use the following rule to set the initial solutions for NBIg.
According to the linear combination of the individual minima in the performance space to

set up NBIg, xo can be chosen as

k
Xp = Zwixf . (6.8)
i=1

This setting aligns on the assumption of a linear objective function in at least the di-
mensions, in which it is optimized. We introduced this setting, since in Section 6.3 this

approach will be used, since at outperforms the previously introduced method slightly

Individual Minima

The correct computation of the individual minima x}, ¢ =1, ..., k is very important for
a successful application of NBI. The constraints, that is the restriction to feasible points

d € Xy, are implemented in the form of inequality constraints c. They are given by

[ da(d)
o(d) = ( a ) <0. (6.9)

Hence, the optimization procedure gets some feedback about the position of the points,

i.e. c1, co decrease for points that approach to the feasible domains D and Y respectively.
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If the function fmincon fails to produce a correct solution, we have to abort the method,
because they are absolutely necessary for a proper functionality of NBI. In the case where
only the maximum number of iterations or function evaluations was reached, we compute
randomly a new initial guess and double these maximum bounds. Then the optimization
procedure is started again. We continue this procedure, until a feasible individual minima
is found. Otherwise, if the maximum number of function evaluations exceeds a certain
bound, i.e. 4000, then we stop the procedure with an error message.

This is necessary, since incorrect individual minima x; may lead to a completely misleading
trade-off front.

Normal Vector n

Only for k = 2, the normal vector is computed exactly. Thereby, n is given by

n= ( 0 -1 ) (x} —x3). (6.10)

1 0

For higher dimensions we use the quasi-normal vector instead, i.e. n = —®e, as was
introduced in [DD98| (as outlined in Subsection 5.2.2) due to the increasing complexity of
this issue for higher k. The influence on the obtained approximated points is negligible, as
stated before.

Computation of

We mentioned above, that we want to use the computed solutions (t3, dg) as a starting
value for a close-by problem. For this we are using the following procedure to choose the

vector (3:

Algorithm 6.1 (Determination of next (3).
Input:  ng number of intervals in each direction, i.e. ng+ 1 is the number of points
I} with 3; € {0, ..., ng}
Output: (™" new
belose  indicates, if the next problem is a close-by problem or not
determine the highest index i for which B; # 0 holds;
prew = 3.
betose = true;
if i £ 1AN(BY =ng—1Ni=2)
g = r - 1;
Bt = By +1;
if 3y =ng
grew — q;
Brey =1;
B =y~ 1;
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betose = false;
else
forj=itok—1
Brew = 0;
end for
end if
else
Error: We cannot compute further G!;
end if

Every time, when the inner if-condition is fulfilled, we generate a new ( that differs too
much from its predecessor. Hence, the previous result should not be used as an initial

guess. To remedy this, we proceed as follows.

We store the solution of the first subproblem, i.e. with 8 = %(0, ..., 0,1, ng—1). Then,
when bejge 18 false for the first time, with gV = %(O, ..., 0,1,0,ng — 1), we use the

stored value as an initial guess. Afterwards, we store the solution of NBIg and use it
the next time, when bcose = false. Otherwise, we always use the result of the previous

computation as the initial value.

The Subproblems NBIjg

Although it seems, that the implementation of the subproblems NBIg is easy, there are

two points to mention.

The first important fact is, that the fmincon sometimes fails to produce a solution to NBIg.
This can happen if the maximum number of function evaluations or iterations is reached,
or if it simply fails to produce an optimum. In this case, we will discard the produced
solution. We do not extend the range of the maximum number to rerun the procedure as
would be done when computing the individual minima x*?, because it is quite likely to fail

again. We proceed in this way, since our method should not be too time consuming.

The next noticeable remark is the one mentioned already in Subsection 5.2.2; that we could
exchange the equality constraints (5.10) by the inequality constraints (5.14), as suggested
in [Ste05]. However, both constraints were implemented. Anticipatory, they did not exhibit
an obviously different behavior for the simple test problems. In the framework of RSMs
for RF-circuit blocks (Section 6.3) both possibilities do not work satisfactory, what might
come from the behavior of the RSM. But nevertheless, the equality constraints behaved

slightly better than the inequalities.

6.2 Application to a Simple Example

In the previous section, we implemented the two methods. Now, in this section, we want

to asses these methods by means of a simple example. First, we will investigate the con-



84 Abbreviations and Notation.

vergence of SPEA2. Therefore, we will exemplarily verify the results obtained in Subsec-
tion 4.5. Afterwards, we will examine some specific parameters for SPEA2. Furthermore,
the two mutation methods of SPEA2 will be compared and finally, we will compare the
two implemented methods SPEA2 and NBI.

6.2.1 Test Environment

Before we are able to asses the methods we have to state our test problem. It was chosen,
because it is a standard example used for testing EAs in literature (e.g. [HNG94, SD94]).

Throughout this section, we assume the following multiobjective optimization problem:

min y(x) = (|x|*, |x —=|*)" (6.11)
xeR

subject to

r € D:=[-5 5,
y € Y :=[0,10]?,

with z = (2, 0)7. In Figure 6.1 the function y, defined in (6.11), is depicted. It can be
easily seen, that for our choice of z, the Pareto front is given by

Pr={peR"|3z 0,2 : p=(2? (z -2}, (6.12)
with the corresponding design parameter set Xp

Xp =y '(Py) ={(t,0)" |t €0, 2]}. (6.13)

Figure 6.1: Function y used to assess the methods. The gray area designates the attainable
domain F,.

For the evaluation of the quality of a solution set, the lo-distance measure defined by
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equation (4.16b) (on p. 48) is used. Note, that for the simple test function (6.11) the
optimal point corresponding to the distance function (4.16d) can be calculated analytically.

First, we substitute the test function into the distance function and obtain

) _ ol = i (42 (r— 2T

d(p;, P) inf [lp; - p ngég]\\pz (2%, (x=2)%)" |
= i i) “— 2 — i 2 —-2)2 - i 2 6.14
i fa ) = /(2 =P + (=27 —pia)? (614)

Hence, we have to solve

B g B 4o (2% — pi1) +4(x —2)((z — 2)? — 29) .

0=z~ (6.15)
Oz 2\/(a2 = pin)? + ((x — 2)2 = pi2)?
After solving this equation, we find, that there is only one real solution given by
z = 1+ Pi,1 T Pi2 - N
61/3 (Q(Pz’,l —pi2) + \/3\/27(pi’1 — pi,2)2 —2(pi1 + Piz — 6)3)
1/3
(9(p¢,1 = Pi2) + V3y/2T(Pi1 = Pi2)” = 2(Pit + Pi2 — 6)3) (6.16)
6.16

62/3

We will exploit (6.16) to compute the distance measure ||Pll2 of a set of approximate

vectors.

Moreover bear for the following subsections in mind, that we chose, except for the first
part, N = N, since this setting showed the best results and furthermore, it is suggested in
|[ZLTO01]. N was always chosen as high as possible to obtain the results still in reasonable
time. Additionally note the important remark, that SPEA2 is a probabilistic method.
Therefore, a single run has no evidence and hence, several simulations have to executed.
For each test case, we chose the highest possible (in terms of computation time) value

according to V.

6.2.2 SPEA2 with Exact Knowledge of Distance

We showed in Subsection 4.5, that under certain assumptions the Strength Pareto Evo-
lutionary Algorithm 2 with normal distributed mutation is expected to converge linearly.
For this special case, we computed expected convergence factors, which are given by (4.26)
for k = n = 2. Remember, that this rates were computed for N =1 and N € N under the
assumption p = I. Furthermore, we listed the lower bounds of the expected progresses in

Table 4.1, for k = n = 2 and several archive sizes N.

For the reasons explained above, we chose 20 simulation runs. The minimal(blue), maxi-
mal(green) and the average(red) distance measure of the simulation runs are depicted in
Figure 6.2. We chose N = 1, N = 20 and the maximum number of iterations 7" = 5000
for Figure 6.2(a). For the right picture N = N = 20 and T = 1000 iterations were chosen.

Furthermore, we used the exact distance of the single individuals. That is, we computed
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the distance of each point to the closest one in Xp, corresponding to (6.16). The distance
was computed in the design space, because there the mutation is executed. Furthermore,

we multiplied the distances by 0.6 aligning on the results in (4.27) and (4.35).

Quality using exact knowledge of the distance (M =1, N_, = 20) - no recombination was used Guality using exact knowledge of the distance (N = 20, N, = 20) - no recombination was usec
5
10

min. guality of all 20 runs
rnax. quality of all 20 runs
average guality of all 20 uns 0

rmin. guality of all 10 runs
rnax. quality of all 10 runs
average guality of all 10 runs

L L L I L I I I L I L I L L L I L I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 s000 0 100 200 300 400 500 BOO 70D 800 G900 1000
1 1

(a) (b)

Figure 6.2: For 20 simulations runs the minimal(blue), maximal(green) and the aver-
age(red) distance measure of the test example (6.11) with exact knowledge of the distance
are depicted for N = 1, N = 20 and T = 5000 iterations (left). For the picture on the
right hand side 10 runs with N = N = 20 and T = 1000 were executed. No recombination
was applied.

Summarizing the results of Figure 6.2, we can see the convergence, but especially for
the left picture with N = 1, the improvement factor is very low. The average distance
measures are || Pyll2 = 5.456 for the initial population and || Psggol/2 = 5.618 - 10~ for the
generation ¢ = 5000. Therefore, we obtain an average factor for the expected progress
(o = 1.834 - 1073, This value aligns with the value derived in Subsection 4.5.8, where in
Table 4.1 we derived (3 = 1.648 - 1073 for N = 20. When comparing these results bear in
mind that the results in Section 4.5 were computed with p = I. But still, the considered
problem (6.11) does not differ that much from the identity in terms of distribution, as

explained in Subsection 4.5.3.

For the second graph, N = N = 20 was chosen and no recombination was applied. We
introduce this picture to show, that for higher N and fixed N we obtain faster convergence
in terms of iterations, but the number of iterations does not decrease proportional to IV,
due to possible interferences of the newly produced individuals. In Figure 6.2 this can be
seen, since (21 = 1.834 - 1073 for N = 1 (left picture) and (320 = 2.879 - 1072 for N = 20
(right picture), while (390 = 1 — (1 —(2,1)*° = 3.606 - 1072 is expected when neglecting the

influence of interference (see Section 4.5.

Summarizing the results, we verified the theoretical results on convergence. Furthermore
we conclude that doubling of N for fixed N leads to a convergence that is only almost twice
as fast. Additionally note, that we expect less interferences the closer we are at the Pareto
front, because then the mutation is limited to smaller domains and only recombination can

cause interfering individuals.
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6.2.3 A Closer Look at the Mutation Parameters of SPEA2

In the previous subsection, we verified the results derived in Section 4.5. Since the distance
of the individuals to the Pareto front is not available in general, the previous results cannot
be applied. In Subsection 6.1.2 we mentioned, that we implement two different mutation
operators, namely the normally distributed mutation and the Breeder mutation. In the
following we compare the two and we will investigate on the parameters needed for those

operators.

For this sake, the distance (4.16b), i.e. |Prl2, of the archive Pr for T = 300 to Pf
was computed. The simulations were executed for both mutation approaches for different
settings of a,,, and p,, according to Subsection 6.1.2. We chose N = N = 30 since this is
an acceptable value in terms of accuracy and time consumption, especially when looking
forward to the design space exploration.

For each parameter setting 10 computation runs were performed, due to the probabilistic
character of the method. The average values of these computations for the different settings
are depicted in Table 6.2. For all computations the same initial population Py was used.

It was randomly generated before.

Breeder mutation
Pm

Ay 1 2 3 4 5 7
0.90 | 0.033936 | 0.000035 | 0.000026 | 0.033379 | 0.034304 | 0.063672
0.92 | 0.000028 | 0.000038 | 0.036501 | 0.000057 | 0.000033 | 0.000065
0.94 | 0.034760 | 0.000056 | 0.000073 | 0.020638 | 0.038576 | 0.000092
0.96 | 0.000135 | 0.038686 | 0.000286 | 0.000307 | 0.000694 | 0.000736
0.98 | 0.035397 | 0.056777 | 0.035591 | 0.001078 | 0.088688 | 0.001147
Normally distributed mutation
Pm
A 0.1 0.3 0.5 0.7 0.9 1.1
0.65 | 0.000059 | 0.000070 | 0.000045 | 0.000039 | 0.000042 | 0.000050
0.75 | 0.000469 | 0.000056 | 0.000037 | 0.000046 | 0.000016 | 0.000017
0.85 | 0.000979 | 0.000032 | 0.020621 | 0.000033 | 0.000018 | 0.000051
0.90 | 0.000227 | 0.000043 | 0.000017 | 0.000021 | 0.000040 | 0.031107
0.95 | 0.000322 | 0.000019 | 0.000035 | 0.000017 | 0.000068 | 0.000021

Table 6.2: Comparison of || Pr||2 after T = 300 iterations for N = N = 30 for different
values of oy, and p,, for Breeder mutation and normally distributed mutation. 10 runs
were performed for each setting.

When having a closer look at Table 6.2 we find that Breeder mutation seems to have a larger
variation, since for slightly different settings we obtain completely different distances. For
verification compare the values of (v, = 0.94, p,, = 4) and (o, = 0.94, p,, = 5). There
|| Psoo|| differs by more than two decades. Of course, this can be explained by means of the
low number of simulation runs, i.e. 10. But still, by simply counting these big variations,
we get the impression that the Breeder mutation varies more than the normally distributed

mutation, at least in the considered ranges of the parameters.

When choosing the parameters «,, and p,, we have to bear in mind, that too low values may
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lead to no convergence, while contrary too high values can lead to very slow convergence or
even an stagnation. Nevertheless, it is usually more dangerous to choose too small values
than too high ones. Taking these considerations into account, we suggest for N = N = 30
the following typical values:

mutation method ‘ Ay, ‘ P

Breeder
Normal distribution

Table 6.3: Typical values for Breeder and normally distributed mutation for N = N = 30.

Since, we expect a faster convergence in terms of iterations for higher NV, N, we have to
decrease the factor «,,. Contrary, for less individuals, the proportionality factor has to
be increased. This and the expected linear convergence leads to the rules presented in
Subsection 6.1.2.

6.2.4 Stopping Criterion of SPEA2

In this paragraph, we will have a closer look on the stopping criterion as introduced in
the subsections 4.4.5 and 6.1.2. There, we saw that the two parameters T and G have
to be chosen properly in order to reach some desired accuracy. Basically, for higher G we
would expect a higher convergence index ¢, because we expect a certain progress in each
iteration step and hence, the progress should increase with each step. But contrary bear
in mind, that for a small distances of the individuals to Py compared to the distances to
the other elements of P;, we expect a significant decrease of this convergence indicator
due to recombination. Therefore, we might expect the existence of a lower bound for the
achievable accuracy when using this stopping criterion. It is obvious, that this bound

depends on N.

Based on these considerations, we will determine suitable values for the parameters T and
G. This is done by comparing the accuracy ||P||2 for different settings of these parameters.
Table 6.4 compares the distance || P;||o after the iteration stopped for G € {4, 8, 12, 16}
and To € {g, %, g, g, 0, %’8, %ﬁ} The results were computed for Breeder mutation
(upper row) and normally distributed mutation (lower row). Additionally, the number of
iterations is shown on right-hand side of the corresponding distance value. 20 simulation
runs were performed for each setting. The listed values are the averages of the obtained
results.

We chose N = N = 40, because it is a typical setting in 2D. Moreover, it is still possible
to obtain results in acceptable time. The mutation parameters «,, and p,, were chosen

according to Table 6.3 together with Subsection 6.1.2.

From Table 6.4 we can see, that for the used settings, the Breeder mutation stops much
earlier than SPEA2 with normally distributed mutation. Nevertheless, the accuracy with
Breeder mutation is on average higher than with normal distribution. But this can be

due to experimental variation, because we only performed 20 runs. But still, the iteration
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Tc 4 8 12 16

8/3 | 0.00124 43 | 0.02793 49 | 0.02806 65 | 0.01428 65
0.03065 44 | 0.00573 53 | 0.02988 78 | 0.04997 107
8/5 1 0.01712 49 | 0.01473 61 | 0.01451 92 | 0.00137 87
0.05049 53 | 0.01612 73 | 0.03638 117 | 0.07148 140
B8/7 | 0.04058 53 | 0.01757 70 | 0.00143 71 | 0.04265 86
0.01294 52 | 0.03260 79 | 0.02859 116 | 0.03681 138
0 0.01551 53 | 0.05460 64 | 0.01538 80 | 0.00876 74
0.01545 50 | 0.00378 78 | 0.01624 135 | 0.06905 178
—5£/9 | 0.04522 111 | 0.02928 103 | 0.02447 166 | 0.05023 114
0.11604 373 | 0.11684 313 | 0.06996 345 | 0.07319 340
—06/5 ] 0.04239 146 | 0.04284 125 | 0.02759 129 | 0.07532 153
0.10503 329 | 0.07464 364 | 0.06614 321 | 0.09306 319

Table 6.4: Comparison of || P;|| after the iteration stopped by using the convergence index.
The tests were performed with N = N = 40 for different values of «,, and p,, for Breeder
mutation(upper row) and normally distributed mutation(lower row). 20 runs were per-
formed for each setting. The left values indicate the average accuracy when the algorithm
stopped after on average ¢ iterations(right value).

count seems to be lower. This might be due to the discrete character of Breeder mutation,
because a typical performance of SPEA2 with Breeder mutation is, that it stagnates for
several iterations and then it performs a big step towards the Pareto front. Therefore, in

the regions of stagnation the criterion is quite easily fulfilled.

Additionally note, that the doubts we mentioned above were verified. Due to the used
recombination, the progress in terms of the coverage function fc (4.12) and convergence
index ¢ (4.13) is not a practicable measure, since we do not obtain accurate results at all.
No matter which parameter setting is used. It turns out, that if no recombination would be
used, the needed iterations would increase decisively. But since SPEA2 with recombination
outperforms the approach without recombination, as will be shown in Subsection 6.2.5, we

will not further investigate on it.

Summarizing the results we obtain the fact, that for SPEA2 with recombination, the stop-
ping criterion based on the convergence index ¢ is certainly not the optimal stopping cri-
terion. If we apply this criterion, distances of smaller 10~2 cannot be expected. Therefore,
it seems that we achieve best results for T = 0 and G = 8 in the case of N = N = 30.

Finally bear in mind, that this stopping criterion is not suitable and therefore, we will use

the maximum iteration count as a stopping criterion.

6.2.5 Normal Application of SPEA2

After the previous investigations, where the theoretical calculations were verified, the pa-
rameters for mutation were examined and the alternative stopping criterion was treated,

we will now investigate on the convergence behavior of SPEA2 in the typical case.

For this purpose, we will consider the distance function (4.16b) for the generations ¢ =

{0, ..., T} with 7" = 500. In Figure 6.3(a) the results are shown. The computations were
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executed for four different settings, which are Breeder mutation(denoted by SPEA2-B)
and normally distributed mutation(SPEA2-N) together with(-R) or without(-N) recombi-
nation. For the simulations the typical setting N = N = 30 together with the mutation
settings as depicted in Table 6.3 were used.

For each configuration 20 simulations were performed and the average of the obtained

distances was plotted.

Comparison of quality of SPEA2 (N =30, Nex‘ =30 Comparison of quality of SPEAZ (N = 40, Nex‘ =40
10’ . . ‘ ‘ . ‘ ‘ . 10’ . . ‘ ‘ . ‘ ‘ .
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Figure 6.3: For 20 simulations runs the distance measure of the test example (6.11) with
exact knowledge of the distance is depicted for N = N = 30 and T = 500 iterations
(left). The picture on the right-hand side was computed with N = N = 40 through 10
simulation runs. The results show SPEA2 with Breeder mutation with/without recombi-
nation (SPEA2-B-R/SPEA2-B-R) and additionally SPEA2 with normal distribution and
with/without recombination (SPEA2-N-R/SPEA2-N-R) is depicted.

For comparison, Figure 6.3(b) shows the distance for N = N = 40. Therefore, 10 simula-
tion runs were performed. Furthermore, the parameters «,,, were chosen according to (6.6)
and (6.7). In this figure, we can clearly see, the nice behavior of the approach using the
normally distributed approach. Contrary, the Breeder mutated SPEA2 shows bad perfor-
mance. This shows the probabilistic character of this approach. The iteration in this case

got caught in a bad setting and then it takes a long time to get out of this situation.

The example depicted in Figure 6.3(a) was set up to investigate on two points. First, we
wanted to know more about the impact of recombination and second, the performance
difference between Breeder and normally distributed mutation should be pointed out in

more detail.

The algorithm works significantly better with recombination, than without. One reason
might be, that especially for higher N and N respectively, the archive P; is then filled with
only nondominated individuals much faster. Moreover note, that an external set P; that
does not contain dominated points is the base for a fast converging SPEA2 approach.

Another explanation for this reason could lie in the nature of our problem (6.11). We chose
a parameter domain D, which is symmetric around the optimal xo parameter. Therefore,
half of the points are expected to lie on each side. In the following, with probability 1/2

points with different xo-signs are chosen. In those cases the linear combination leads to an
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improvement in at least xo-direction.
We made this observation for all performed numerical tests on this example and further-
more for RSMs.

Additionally, we can see that in this case the normally distributed mutation performs
approximately as well as the Breeder mutation. In general, throughout all the tests none
of the mutation approaches was able to outperform the other one. This is, because Breeder
mutation converges quite often very fast. But on the other hand it seems to be more
unstable, i.e. sometimes it stagnates for several 100 iterations. Hence, it seems that both

implemented methods work equally well, although Figure 6.3(b) states a counter-example.

6.2.6 Comparison of SPEA2 to NBI

In the previous subsections, we exclusively dealt with SPEA2. This was due to the large
number of parameters that can be adjusted in this approach. Moreover, it is a typical

iterative approach, where easy performance measures are possible.

Now, we will compare SPEA2 and NBI by means of (6.11). Therefore, we will investigate on
the time or objective function evaluations it takes, to reach a certain accuracy. The results
on these considerations are depicted in Figure 6.4. The comparison of time to distance
is depicted in Figure 6.4(a), while the number of function evaluations versus distance
is shown on the right-hand side of this figure. SPEA2 was applied with the Breeder-
mutation(denoted by SPEA2-B) and the normally distributed mutation(SPEA2-N). For
NBI, the two different constraints for the NBlg-subproblems are considered.

For this setting, we ran 6 experiments for each setting and calculated the obtained average.
Furthermore, the same initial set Py with |Py| = N was used for both methods and all
iterations, whereby N = N = 30 was chosen. Additionally, for SPEA2 p,, = 3 in the case
of Breeder-mutation and p,, = 0.5 for the normally distributed mutation was used. The
factors «,, were set according to Subsection 6.1.2.

To guide the accuracy of the NBI approach, we tried to prescribe the thresholds for the
error constraints. But, as can be seen, the accuracy of solutions of such simple examples
by using the fmincon-function is always at least 1077, no matter how high we set this

threshold value. That is, the algorithm converges very fast for this easy example.

As explained before, the NBI method has no problems at all with simple examples and
hence, we do not recognize any difference between the two different cases. To be able to
make a valuable assessment about the differences between equality and inequality con-
straints more complex problems have to be considered.

The other interesting result of this investigation is, that SPEA2 works, at least for the used
setting, for both Breeder-mutation and for normally distributed mutation equally well.
Additionally note, that the computation time and the number of function evaluations are
directly related to each other. For SPEA2, the number of function evaluations per iteration

is N. Therefore, we have N = 30 evaluations per iteration and hence, due to T" = 300
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Figure 6.4: For each 6 runs were performed and the average of the corresponding values
was computed.

the maximal number of evaluations is limited to 9000 in that case. Note, that for an
suitable choice of 7; (0;) and A; we expect (linear) convergence. But, to reach distances
| Ptll2 < 1076 we will usually need more than 300 iterations. This bound was introduced

to limit the computation time to feasible values.

Additionally, Figure 6.5 shows a typical initial population on the left-hand side, containing
N = 20 individuals. Moreover, Figure 6.5(b) depicts the reconstructions of the front
with NBI(green crosses) and SPEA2(red dots). For both methods N = N = 20 points
were computed to avoid overcrowded pictures. For SPEA2, the Breeder mutation with
standard parameters was used. The depicted front is given by Pis50, i.e. the archive after

150 iterations.

To compare the results, the black line in the right picture denotes the Pareto front. After
a detailed look, we recognize a small difference in the approximation of SPEA2. But in
general, the results are accurate.

Additionally recognize the uniform distribution of both approximation sets, which was one

main reason for the choice of both methods.
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Figure 6.5: The initial population for the computation including the Pareto front(left) and
the front determined by SPEA2 with Breeder mutation(red dots) for 7' = 150 iterations
and N = N = 20 and NBI(green crosses) (right) for ng = 19 are shown.

6.3 Application to a Performance Model of an LNA

In the previous chapters and sections we discussed mainly the two methods SPEA2 and
NBI. We treated their analytical aspects, their implementation and in the previous section
we tested them by means of a simple example.

In this section we will close the circle and come back to the original problem, namely the
multiobjective design space exploration (see Problem 1.2 on p. 3) of compact RF-building

block models, which are in our case response-surface models® as outlined in Chapter 2.

6.3.1 Design Space Exploration of a Low-Noise Amplifier

For the following investigations we will limit ourselves to a model for a source degenerated
LNA as depicted in Figure 2.5(a) on p. 14.

The model parameters are the transistor width W, the inductances Lg and L., as well as
the load resistance R;. They were explained in Section 2.3. Therein, typical values of these
parameters for our example are stated. Other possible input parameters were set to fixed
values, e.g. f = 5GHz. Additionally note, that the considered ranges of the parameters
were transformed to [—1, 1].

The performance variables were introduced in Section 2.3 too. In (6.17) a typical setting

®Note, that different approaches for design space exploration are available in literature(cf. [SG03, Ste05,
PGO02]). [SGO03] computes the Pareto front by using circuit simulations for p together with EAs. [Ste05]
uses NBI among other deterministic approaches. In [PG02|, SPEA2 is used to derive local Pareto optimal
points of digital system-on-a-chip(SoC) circuits.
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for the constraints on the performances is depicted.

P as small as possible
'« < —-10dB
Gy > 10dB
A, > 18dB (6.17)
I1IP2 > 0dBm
I1IP3 > —-10dBm
NF < 2dB

In the following we will perform a typical procedure for design space exploration. Therefore,
we will first examine some trade-off fronts with typical, but not too severe, constraints
on the performances. We will accomplish this by prescribing the restrictions given in
(6.17). Then the constraints will be tightened more and more, in order to obtain a desired

performance.

We compare the results of NBI with SPEA2. Since according to the investigations of
the previous section, normally distributed mutation seems to be more stable, it will be
used below. Furthermore, the equality constraints (5.10) are used, since they showed
slightly better performance than the inequality constraints (5.14). Moreover, we used
the linear combination of the individual minima, given by (6.8), as the initial guess for
the NBIg subproblems, since it outperformed the continuation method-like procedure (see
Subsection 6.1.3) in the numerical tests. For both methods ng+ 1= N = N = 30 points
were attempted to be computed. For SPEA2, we chose T' = 800 generations as a stopping

criterion.

Design Space Exploration - Step 1

In Figure (6.6) the computed trade-off fronts are depicted. Thereby, Figure 6.6(a) shows
the trade-offs min P versus max [/ P3 and min P versus min N F'. Moreover, Figure 6.6(b)
depicts the computed front between max A, and max IIP3 and max A, is compared to
min NF'. In the following we will omit the preceding terms min and max, since it is clear
from the context, which optimization direction is used. In the following we will write
P — 11 P3 for instance.

Considering the graphs we recognize several facts:

e With NBI we obtain a larger range of the front compared to the results of SPEA2,
as can be especially seen in Figure6.6(a). Therefore, we could introduce a certain
iteration number 7., from which on, we neglect recombination. This can be advan-
tageous, since recombination does not produce boundary elements, what is desired
in the trade-off P — N F for instance, to extend the range of the approximations. We
chose T, = 500.
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Figure 6.6: The trade-off between P and IIP3 as well as P and NF' is shown in the left
picture, and on the right-hand side, the trade-off between A, and I1P3 as well as A, and
NF is depicted. For all computations NBI (with equality constraints and initial solution
for NBlg according to (6.8)) is compared to SPEA2 (normally distributed, 7" = 800).
N = 30 points were computed. The constraints of the problem are (6.17).

To extend the front, we could attempt to change the restrictions on the performances.
Considering the P — NF front in Figure 6.6(b) for instance, we could tighten the
restrictions, i.e. P > 5.5 and NF < 1.65 to obtain the trade-off in the additional

areas.

e NBI fails quite often to produce feasible points for the NBIz subproblems, or some-
times the obtained solutions are not global optimums, as can be seen in P — ITP3.
In the latter case, the SOP-solution algorithm gets trapped in a stationary point,

which is not optimal.

e The most surprising observation is the time consumption of the two methods. While
SPEA2 needs 60—84 seconds on a normal laptop to return a result, NBI took 150—500
seconds. This is due to the complexity of the optimization algorithm. Although,
SPEA2 performed 24000 function evaluations and NBI computed p 4800 — 14000

times the objective function value, SPEA2 was much faster.

Design Space Exploration - Step 2

Coming back to the procedure of exploring the design space of the considered circuit we
find that the ranges of the performance figures are still quite large. Therefore, we have still
degrees of freedom, which can be used to apply additional constraints to the problem, in
order to obtain a desired performance. Additionally to the constraints (6.17), in the next

step, the following has to hold:

A, > 20dB
IIP3 > 0dBm. (6.18)
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In Figure 6.7 the same trade-off fronts as in Figure 6.6 are depicted. Contrary, the con-
straints (6.17) and (6.18) are investigated. Furthermore, for SPEA2 we increased the
number of iterations to 7' = 1200 , since the more severe the constraints become, the more
careful and accurate we have to be in order to get correct and especially feasible results.

Moreover, we reused the results obtained in the previous computation step, as outlined in
Section 6.1. To guarantee a fair comparison, the previous results of each method served as

an input for the same approach again. In Figure 6.7, we recognize again, that SPEA2 does
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Figure 6.7: The trade-off between P and I1P3 as well as P and NF' is shown in the left
picture, and on the right-hand side, the trade-off between A, and I1P3 as well as A, and
NF is depicted. For all computations NBI (with equality constraints and initial solution
for NBIg according to (6.8)) is compared to SPEA2 (normally distributed, 7" = 1200).
N = 30 points were computed. The constraints of the problem are (6.17) and (6.18).

not cover the whole front, at least after 1200 iterations. But contrary the quite interesting
observation of P — NF' is, that NBI fails to produce solutions in areas where SPEA2 finds
approximations and the other way around. The explanation for this incident is, that the
design vectors used for both methods differ, even in the points that lie close together. This
shows exemplarily the difficulty we are dealing with, namely that the inverse map of p is

not injective.

Design Space Exploration - Step 3

From the trade-off fronts for the constraints (6.17) and (6.18), we see clearly, that there
is still space for further restrictions. Hence, we tighten the constraints further, namely we

prescribe additionally

A, > 20.5dB
1IP3 > 2dBm (6.19)
NF < 1.7dB.

In Figure 6.8 the conditions (6.19) were additionally to (6.17) and (6.17) applied. Therefore,

the same trade-offs as in the previous pictures were investigated. Due to the decreasing
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scales we performed T = 1600 iterations for SPEA2.
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Figure 6.8: The trade-off between P and I1P3 as well as P and NF' is shown in the left
picture, and on the right-hand side, the trade-off between A, and I1P3 as well as A, and
NF is depicted. For all computations NBI (with equality constraints and initial solution
for NBIg according to (6.8)) are compared to SPEA2 (normally distributed, 7" = 1600).
N = 30 points were computed. The constraints of the problem are (6.17), (6.18) and
(6.19).

Having a closer look at Figure 6.8 we see, that there is still enough freedom to restrict the
performances further. But we will not execute this. Instead we will choose one point. For

instance, let us consider

P 5.40mW
r, ~10.42dB
w 153.47 um
. o GA 13.52dB
d=| " | = O with p(d)=| 4, |=| 2090dB
Le 152.70 pH
11P2 16.29 dBm
R, 8.07 k)
11P3 2.76 dBm
NF 1.69dB

(6.20)
It is interesting now, to get an impression of the trade-off between different performances
around this point. Therefore, w finally come back to the definitions of trade-off made
in Section 3.4. We compute exemplarily the partial trade-offs Ay, j, as introduced in
Definition 3.21, along the A, — ITP3 front. They are given by

Au,p —0.76
Aa, 1. —5.92
Aa, ca —4.49
Aaa, |@=] 10 |. (6.21)
A4, 11p2 0.12
Aa, 11P3 —2.35

A4, NF 0.08
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Hence we see, that I'y, GA and IIP3 are most sensitive to improvements in A,. Nev-
ertheless, we have to bear in mind, that this rates are absolute values and therefore, the
magnitudes of these values cannot be compared directly to each other. Furthermore bear
in mind, that since most performance figures are in logarithmic scale, the trade-off val-
ues depend on the treated performance value. To avoid these problems, the performances
should be considered in the original scales and moreover, they should be scaled there to

guarantee a fair comparison of the trade-off values.

After the previous treatments a final remark has to be stated corresponding to the used

response-surface-model.

Remark: This example has only four input parameter. An additional load inductor I;
was neglected®, since when taking L; into account, the performance figures exhibited a very
rapid behavior at the boundary of the considered design space ranges. This influenced the
methods significantly. Therefore bear in mind, that it is desired to avoid the trade-off
fronts of being situated at the boundary of the design space D. Because then, especially
NBI might fail to compute the complete trade-off front, because it gets easily caught in

those boundary points.

6.3.2 Conclusions on the Design Space Exploration

Now, we will shortly summarize the conclusions we can draw from the previous investiga-

tions on design space exploration of a source-degenerated LNA with SPEA2 and NBI.

e For NBI, the equality constraints (5.10) for the NBIg subproblems showed an even
better performance than the inequality constraints (5.14). This is contrary to the

statements made in [Ste05].

e Moreover NBI performed worse if the initial solutions of the subproblems NBIg
were set to the solutions of the previously computed near-by problems (see Sub-
section 6.1.3). The choice of a linear combination of the individual minima xj,

according to (6.8), showed a slightly better performance.

e With SPEA2 we obtained the results much faster as with NBI. This is due to the

high complexity of the SOP solution routine fmincon.

e The results obtained by SPEA2 were accurate enough to provide a good impression
of the occurring ranges especially for the first two steps. On the other side, NBI
failed quite often to provide a suitable solution to the single objective optimization

subproblems.

e But conversely to the previous point, the range of the SPEA2 approximation does
usually not cover the whole Pareto front, as can be seen in Figure 6.6(a) for instance.
Contrariwise, the individual minima p; could always be computed in NBI. Hence,

they give a better impression for the range of the Pareto front.

5This implies a purely resistive load impedance Z;.
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e When dealing with the trade-off P — N F in step 2, i.e. in Figure 6.7(a), we saw, that
NBI obtained approximations in regions where SPEA2 did not detect solutions, and
also the other way around.

The reason for this was, that different design domains were considered by both meth-
ods. Nevertheless, completely different design parameters led to similar performance
figures, which verifies exemplarily the ill-posed character of the problem, i.e. the
non-uniqueness of design parameters d € Xy for attainable performances p € P,.

Furthermore, we cannot expect to get optimal solutions in general, and especially
with NBI. For SPEA2, this might hold true too, since we decrease the mutation
parameters r; and A; continuously (see Subsection 6.1.2). Hence, after some itera-
tions, SPEA2 is not capable to overcome such locally optimal regions too. This was

additionally verified by this trade-off example.

Taking all these considerations into account, we find, that both methods have their ad-
vantages and disadvantages. On the one hand, with NBI we obtain a larger range of the
trade-off front, while SPEA2 is able to produce a lot of uniformly distributed approxima-
tions. But SPEA2 fails in the considered framework to cover the whole range. This all

leads to the following hybrid approach:

1. First, compute the individual minima p; according to the NBI procedure.
2. Use the individual minima to set up an initial population Fp.

3. Apply SPEA2 on the problem with the initial set P.

This method has the advantage, that it covers almost the whole range and furthermore,

the ability of SPEA2 to achieve accurate and fast results is used.

6.4 Summary

In this chapter, we first treated the implementation details of the two methods SPEA2 and
NBI. Especially the mutation operator and the stopping criterion in the SPEA2 approach
needed some extra investigations. Finally, due to numerical tests we found, that the special
stopping criterion, that makes use of the coverage function, is not suitable for our case,
since the recombination operator does not align to this criterion. Hence, a maximal number
of iterations should be used as the stopping criterion.

Furthermore, when dealing with the mutation operator, we found that normally distributed
mutation seems to be more stable than Breeder mutation. On the other hand, for Breeder
mutation it is quite likely to obtain a fast convergence behavior. Nevertheless, stability is

an important issue and hence, normally distributed mutation is preferred.

In the framework of implementation issues for NBI, especially the choice of the initial

guess for the single objective optimization subproblems is important. The numerical tests
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showed that a linear combination of the individual minima performs slightly better than
to use the solutions of the near-by problems. Furthermore, equality constraints for the

subproblems outperform the inequality constraints.

Moreover, we verified the convergence results of SPEA2 by means of numerical results on
a simple example. Additionally, SPEA2 and NBI were compared. For the simple example
we found a very fast and accurate performance of NBI. Furthermore, the results showed,
that recombination should be applied in SPEA2.

In the last part, we treated a typical example of design space exploration. Therefore, we
considered different trade-off fronts to gain insight in the model. Furthermore, the restric-
tions were tightened more and more, in order to obtain a design parameter corresponding
to some optimal performance figures. When dealing with this problem, we encountered
several issues.

The most important observations are, that NBI takes much more time to proceed than
SPEA2 due to the behavior of the model, that SPEA2 obtains sometimes even more ac-
curate results, that NBI fails quite often to produce the single optima to the subproblems
and that due to the individual minima the result of NBI gives at least a good impression

of the range of the trade-off front.

Combining all these considerations, the conclusion is a suggestion for the following ap-
proach: Compute the individual minima according to NBI. Afterwards, incorporate them
into an initial population, which is then passed to SPEA2. The obtained approximations
are expected to cover almost the whole trade-off front and additionally, we expect them to

be uniformly distributed along the front.



101

Chapter 7

Conclusion

In the following we will summarize this work and since there is space for improvements,

we will point out further aims, that could be investigated in the future.

7.1 Conclusions

The aim of this thesis is to explore the design space of a compact model. Therefore, the
problem was originally stated in the following form: For a given set of performance figures
of a compact model, i.e. a black box, determine the corresponding set in the design space,
which is equivalent to detect the inverse map. Since this task is too hard because we do not
know any properties of the function of concern, we reduced the problem to a multiobjective
optimization problem. That is, we choose some objectives to be optimized and transfer

the remaining performances to the constraints of the problem.

In this work, the focus was on RF-circuit block models. The background and the im-
portance of these models was explained. Furthermore, we briefly introduced a low-noise

amplifier, which was used later to perform numerical simulations.

Coming back to the main problem of the work, which is to solve a multiobjective opti-
mization problem, we have to bear in mind, that it is not obvious at all, how to optimize
all objectives, since an improvement in one performance figure may lead to a setback of

another one. Therefore, the aim is to compute the Pareto optimal front.

For the solution of optimization problems, there exist in general two totally different ap-
proaches, namely probabilistic (called evolutionary algorithms) and deterministic ones.
We chose the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the deterministic
Normal-Boundary Intersection (NBI) method.

In the following, the general framework of evolutionary algorithms was introduced. Evo-
lutionary algorithms are population-based methods, in which the population changes due

to fitness assignment, mating selection probabilistic genetic operators. For multiobjective
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evolutionary algorithms mainly the fitness assignment and the selection have to be altered.
Thereby, the concepts of fitness sharing and elitism are important to obtain an efficient
method. These concepts are applied in SPEA2.

Furthermore, almost sure convergence was shown for SPEA2 under certain assumptions.
This was carried out, by computing the expected progress in distance of the population in

the next generation. The obtained rates, could be verified later by numerical experiments.

On the other hand, NBI was implemented. The special procedure guarantees that the
obtained solutions are almost uniformly distributed along the trade-off front. This property
and also that non-optimal solutions can be obtained were the reasons to implement this

deterministic method.

Finally, we outlined the issues we are faced with when implementing both methods. For
SPEA2, the mutation operator needs special treatment. Thereby, its parameters are
adapted during the iteration process according to the expected progress of the method.
Suitable parameter choice rules were established by means of numerical tests. On the other
hand, especially the initial solutions for the single objective optimization subproblems are
very crucial. Numerical tests showed a slightly better performance if the initial solutions
were chosen according to the corresponding linear combination of the design parameters
of the individual minima, than if the solutions of close-by problems are used.

Afterwards, the methods were tested. For simple problems NBI outperformed SPEA2
tremendously. But in the application of the methods to a realistic low-noise amplifier
model, both approaches exhibited advantages and disadvantages. First of all, SPEA2 ex-
ecuted much faster than NBI. Additionally, NBI showed a lot of problems to obtain inner
points along the trade-off curve. On the other hand, while SPEA2 did not have problems
to obtain quite suitable results, the by SPEA2 approximated front did usually not cover
at all the whole Pareto front.

To circumvent the problems of both methods, a hybrid method was suggested, which
seems to combine the advantages of both approaches. But unfortunately it could not be

implemented due to a lack of time.

7.2 Suggestions and Future Work

In this work, we treated and implemented two completely different methods to deal with
multiobjective optimization problems. Furthermore, we investigated several issues con-
cerning these methods. Some of them could be clarified, but others not. Hence, there are

some tasks left to deal with in future.

e We saw, that the availability of the individual minima is essential for a successful
application of NBI. Furthermore, they are of importance, because they limit the
Pareto optimal front. Therefore, we could investigate on some guarantees for a

correct computation of these minima.
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e Investigate suitable stopping criteria for SPEA2. Since the stopping criterion, that
we treated, performed not satisfactory when recombination was used, other methods

except the maximum iteration count should be found.

e We encountered that the algorithms might get trapped around certain performance
values. Such an behavior is well-known for deterministic methods, but since we adapt
the mutation parameter of SPEA2, also this method might get trapped around certain

performances. Therefore, approaches have to be made to remedy this problem.

e The behavior, as described in the previous point is quite likely around points, where
the corresponding design parameters are not unique. Investigations could be made,
how to overcome the problems of non-uniqueness. Remember, that the goal of mul-
tiobjective optimization is to determine some parameters that yield Pareto optimal

points. Thereby, uniqueness-considerations are not an issue.

e It would be interesting to implement the hybrid method, which is expected to result

uniformly distributed approximations that dominate the whole Pareto front.

e In this work, we treated only two-dimensional examples. But also higher dimensional
problems are possible. Therefore, methods have to be developed to visualize the
obtained results in higher dimension. In 3D this could be done by means of a suitable

triangulation of the obtained performances.

e For a circuit designer it would be advantageous to have a graphical user interface in

order to explore the design space of a given compact circuit block model.
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