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Abstract

The minimum distance of cyclic codes is an important parameter that determines how many errors
that code can correct. In general, it is not easy to determine the true minimum distance of cyclic
codes. Let C be an q-ary cyclic code of length n. The easiest way to compute the minimum
distance of C is compute the distance between two codewords in C and take the minimum value.
But this method is inefficient, since it costs a lot of memory, when working with a large C.

In 1960, R.C.Bose, D.K.Chaudhuri and A. Hocquenghem invented an algorithm to determine a
lower bound of the cyclic code by using the set of zeros of C. And in 1972, C.R.P. Hartmann and
K.K. Tzeng, generalized the BCH bound. In 1982, C. Roos generalized the HT bound. In 1986,
J.H. van Lint and R.M. Wilson introduced the Shift bound to determine a lower bound on the
minimum distance of C.

We implemented these bounds using C++. For the BCH, HT, and Roos bounds, the algorithms
follow directly from the definition of the bound itself. For the Shift bound, we implemented a
backtracking algorithm to compute the Shift bound. We give an estimation on the complexity of
the algorithm only for a special case. To speed up the computation process of our backtracking
algorithm, we apply the branch-and-bound technique and the Greedy algorithm. And then com-
pare the results with the Square Root bound for the Quadratic Residue codes. We consider these
bounds for all binary cyclic codes of length 45 and 73.
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1
Introduction

The theory of error-detecting and correcting codes is a branch of engineering and mathematics
which deals with the reliability on transmission and storage of data. Noise of any form of inter-
ference frequently causes data to be distorted. This is an undesirable but inevitable situation. To
solve this problem, add redundancy to the original message in such a way that it is possible for
the receiver to detect the error and correct it, recovering the original message. An effectiveness of
a code for error-detection or error-correction is measured by the minimum distance of a code.

Let C be an q-ary cyclic code of length n. In general, it is not easy to determine the true minimum
distance of cyclic codes. The easiest way to compute the minimum distance of C is compute the
distance between two codewords in C and take the minimum value. But this method is inefficient,
since it costs a lot of memory, when working with a large C.

In 1960, R.C.Bose, D.K.Chaudhuri and A. Hocquenghem invented an algorithm to determine a
lower bound of the cyclic code by using the set of zeros of C. They determine the lower bound
for the minimum distance of a cyclic code by looking at the largest consecutive element set in the
set of zeros of C.

In 1972, C.R.P. Hartmann and K.K. Tzeng, generalized the BCH bound. If the BCH bound
only looking at single consecutive element set, then the HT bound looking at several consecutive
element sets in the set of zeros of C. In 1982, C. Roos generalized the HT bound. In 1986, J.H. van
Lint and R.M. Wilson introduced the Shift bound to determine a lower bound on the minimum
distance of C.

As far as we concerns, we did not find any exact algorithm on how to compute the Shift bound.
So, our contribution is a development on the algorithm to compute the Shift bound as well as
implements the other bounds in our program. We use the high level language C++ to implements
these bounds.

For the BCH, HT, HTR and Roos bounds, the algorithms follow directly from the definition of the
bound themselves. For the Shift bound, we implemented a backtracking algorithm to compute
the Shift bound. We also give an estimation on the complexity of the algorithm only for a special
case, since in general it is quite difficult.

To speeding-up the computation process and improving the efficiency of our program, first we
modified the Shift bound problem and then we apply the Branch-And-Bound procedure. How-
ever, in the case of large n, this was not enough. So to make the computation even faster, we
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implemented the Greedy algorithm.

We provide a comparison of the results with the Square Root bound for the Quadratic Residue
codes. We also consider these bounds for all binary cyclic codes of length 45 and 73.
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2
Linear codes

In this chapter, we will review our basic knowledge on error-correcting codes, particularly about
linear codes and its one most important class, cyclic codes. We borrowed and adapted notations
and definitions from [11], [13], [19], and [21].

2.1. Block codes

Let n be fixed, and let Q be an alphabet of cardinality q. The set of Q-ary n-tuples is denoted
by Qn.

Definition 2.1. The Hamming distance d(x;y) between x = (x1; : : : ; xn) and y = (y1; : : : ; yn) in
Qn is given by

d(x;y) = jf1 � i � n jxi 6= yigj:

In other words, d(x;y) denotes the number of coordinates, where x and y differ.

Definition 2.2. The weight wt(x) of x is defined by

wt(x) = d(x;0);

where 0 = (0; : : : ; 0).

Remark 2.3. Note that the function d(x;y) is a metric and defines a distance in Qn, since it is
always non-negative and satisfies

1. d(x;y) = 0, x = y,

2. d(x;y) = d(y;x) for all x;y 2 Qn,

3. d(x;y) � d(x; z) + d(z;y) for all x;y; z 2 Qn.

A q-ary block code of C of length n is any nonempty subset of Qn. The elements of C are called
codewords. If jCj = 1 or C = Qn, the code is called trivial.

If we use a channel with the property that an error in position i does not influence other positions
and a symbol in error can be each of the remaining q� 1 symbols with equal probability, then the
Hamming-distance is a good way to measure the error content of a received message.
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Definition 2.4. The minimum distance d of a code C, where jCj � 2, is given by

d(C) = minf d(x;y) : x 2 C;y 2 C;x 6= y g:

The minimum weight of C is

minfwt(x) jx 2 C;x 6= 0g:

Define the distance of x not in C by

d(x; C) = minfd(x; c) j c 2 Cg:

Next, we are going to introduce the counterpart of minimum distance called the covering radius.
The covering radius determines how far a received word can be from a closest codeword.

Definition 2.5. If C � Qn, then the covering radius �(C) of C is

maxfd(x; C) jx 2 Qng:

Definition 2.6. The sphere with radius � and center x is defined to be the set

B�(x) = fy 2 Qn j d(x;y) � �g:

If � is the largest integer such that spheres B�(c) with c 2 C are disjoint, then d = 2� + 1 or
d = 2� + 2. The covering radius is the smallest � such that spheres B�(c) with c 2 C cover the
set Qn. If these numbers are equal, then the code C is called perfect.

Remark 2.7. A code C � Qn with minimum distance 2e+1 is called a perfect code if every x 2 Qn

has distance � e to exactly one codeword.

2.2. Linear codes

2.2.1 Definitions

From now on, Q will have the structure of the Galois field Fq, the finite field with q = pr (p prime)
elements. The set of words Fnq can be associated with an n-dimensional vector space over Fq. The
elements of Fnq are vectors, and are also called words.

Now that Qn has the structure of the vector space Fnq , we can define the most important general
class of codes.

Definition 2.8. A linear code C of length n is linear subspace of Fnq . If C has dimension k and
minimum distance d, then C its parameter are denoted by [n, k, d].

Note that a q-ary (n, M , d) code C has cardinality M , while a q-ary [n, k, d] code C is linear and
it has cardinality qk.

4



2.3 Bounds on Codes

2.2.2 Properties of linear codes

One way to describe a linear code is by means of k independent basis vectors.

Definition 2.9. A generator matrix G of a [n; k; d] code C is a k� n matrix of which the rows are
a basis of C. In other words,

C = faG ja 2 Fkqg:

If G is of the form G = (Ik; P ), where Ik is the k � k identity matrix, then the first symbols
of a codeword are called information symbols. The last n � k coordinates are added to the k
information symbols to make error-correction possible.

A second way to describe a linear code is by means of n� k linearly independent equations.

Definition 2.10. A parity check matrix H of an [n; k; d] code C is an (n�k)�n matrix, satisfying

c 2 C if and only if Hct = 0t:

In other words, C is the null space (solution space) of the n � k linearly independent equations
Hxt = 0t.

2.2.3 Minimum distance of linear codes

To determine the minimum distance of a q-ary (n, M , d) code C, we have to compute the distance
between all

�
M
2

�
pairs of codewords. But to determine the minimum distance of a linear code, we

just need to find the smallest weight of all non-zeros codewords.

Theorem 2.11. The minimum distance of a linear code C is equal to the minimum non-zero
weight in C.

Proof.

d(x;y) = d(x� y;0)

= wt(x� y)

and if x;y 2 C and x 6= y, then x� y 2 C and x� y 6= 0.

Corollary 2.12. If a code C has minimum distance d, then C can be used to detect up to d� 1

errors or to correct up to bd�12 c errors in any codeword. Here bxc represents the greatest
integer less than or equal to x.

2.3. Bounds on Codes

We assume that q is fixed and define an (n; �; d) code as a code with length n and the minimum
distance d. We are interested in the maximal number of codewords, i.e. the largest M which can
be put in place of the �.

Definition 2.13. A(n; d) = maxfM j an(n;M; d) code exists g

5



Chapter 2 Linear codes

An (n;M; d) code is called maximal, if M = A(n; d).

Given a channel with certain error probability p. The average number of errors in a received word
is np and hence d must grow at least as fast as 2np is we wish to correct these errors.

Definition 2.14. �(�) = lim sup
n!1

1

n
logq A(n; �n):

We are interested in the inverse function ��1(R), with given rate R. The function A and � are
not known in general. And in this section we will discuss bounds for both of them only.

We define

Vq(n; r) = jBr(x)j =
rX
i=0

�
n

i

�
(q � 1)i:

To study the function �, we need a generalization of the entropy function. We define the entropy
function Hq on [0; �], where � = q�1

q , by

Hq(0) = 0

Hq(x) = x logq(q � 1)� x logq x� (1� x) logq(1� x); for 0 < x � �:

Note that Hq(x) increases from 0 to 1 as x runs from 0 to �.

Lemma 2.15. Let 0 � � � �, q � 2. Then

lim
n!1

1

n
logq Vq(n; b�nc) = Hq(�):

The proof of Lemma 2.15 was taken from [19].

Proof. For r = b�nc the last term of the sum of the right-hand side of Vq(n; r) is the largest.
Hence�

n

b�nc
�
(q � 1)b�nc � Vq(n; b�nc) � (1 + b�nc)

�
n

b�nc
�
(q � 1)b�nc:

By taking logarithms, dividing by n, and then proceeding as in the proof of Theorem 1.4.5 in [19]
the result follows.

2.3.1 Gilbert bound

Theorem 2.16 (the Gilbert-Varshamov bound). For n 2 N, d 2 N, d � n, we have

A(n; d) � qn

Vq(n; d� 1)
:

The proof of Theorem 2.16 was taken from [19].

Proof. Let C be a maximal (n;M; d) code, then C is not contained in any (n;M+1; d) code. This
implies that there is no word in Qn with distance d or more to all words of C. In other words, the
spheres Bd�1(c), with c 2 C, cover Qn. Therefore the sum of their volumes, i.e. jCjVq(n; d � 1)

exceeds qn = jQjn.

6



2.3 Bounds on Codes

The Gilbert-Varshamov bound is a lower bound, which is telling us that there exist codes with
good parameters.

Now, we look at the corresponding bound for �.

Theorem 2.17 (Asymptotic Gilbert bound). If 0 � � � �, then

�(�) � 1�Hq(�):

Proof. By Theorem 2.16 and Lemma 2.15, we have

�(�) = lim sup
n!1

1

n
logq A(n; �n) � lim

n!1
f1� 1

n
logq Vq(n; �n)g

= 1�Hq(�):

Figure 2.1: Asymptotic Gilbert bound with x-axis is � and y-axis is �(�).

2.3.2 Upper bounds

In this sub-section, we give several upper bounds for A(n; d) that are relatively easy to derive.

Theorem 2.18 (Singleton bound). For q, n, d 2 N, q � 2 we have

A(n; d) � qn�d+1:

Proof. Let (n;M; d) be a code. By puncturing d � 1 times, we may obtain an (n � d + 1;M; 1)

code, i.e. the M punctured words are different. Hence M � qn�d+1

As immediate result,

Corollary 2.19. For an [n; k] code over Fq we have k � n� d+ 1.

A code achieving this bound is called an MDS code.

7



Chapter 2 Linear codes

Theorem 2.20 (Asymptotic Singleton bound). For 0 � � � 1, we have

�(�) � 1� �:

Theorem 2.21 (Plotkin bound). For q, n, d 2 N, q � 2 and � = 1� 1
q , we have

A(n; d) � d

d� �n; if d > �n:

Theorem 2.22 (Asymptotic Plotkin bound).
�(�) = 0; if � � � � 1

�(�) � 1� �
� if 0 � � < �:

Theorem 2.23 (Hamming bound). If q, n, e 2 N, q � 2, d = 2e+ 1, then

A(n; d) � qn

Vq(n; e)
:

Proof. The spheres Be(c), where c runs through an (n;M; 2e+ 1) code, are disjoint. Therefore,
M � Vq(n; e) � qn.

And its asymptotic form is as follows;

Theorem 2.24 (Asymptotic Hamming bound). �(�) � 1�Hq

�
1

2
�

�
:

Proof. A(n; d�ne) � A(n; 2
�
1

2
�n

�
� 1) � qn

Vq(n; d 12�ne � 1)
:

The best known upper bound for �(�) is due to R.J. McEliece, E.R.Rodemich, H.C.Rumsey, and
L.R.Welch. We only give the asymptotic form. For detail information, see [19] and [11].

Theorem 2.25 (The McEliece-Rodemich-Rumsey-Welch bound I). For any (n;M; d) code,

�(�) � H2

�
1

2
�
p
�(1� �)

�
:

Theorem 2.26 (The McEliece-Rodemich-Rumsey-Welch bound II). For any (n;M; d) code,

�(�) � min fP (u; �) j 0 � u � 1� 2�g ;

where

P (u; �) = 1 + g(u2)� g(u2 + 2�u+ 2�);

and

g(x) = H2

�
1

2
� 1

2

p
1� x

�
:

8



2.3 Bounds on Codes

Notice that P (1� 2�; �) = H2

�
1
2 �

p
�(1� �)

�
, so

�(�) � H2

�
1

2
�
p
�(1� �)

�
;

and Theorem 2.26 is never weaker than Theorem 2.25. In fact, it turns out that for � � 0:273,
�(�) is actually equal to

H2

�
1

2
�
p
�(1� �)

�
;

and in this range Theorem 2.25 and Theorem 2.26 coincide. For � < 0:273, Theorem 2.26 is
slightly stronger.

Figure 2.2(a) is plots for all asymptotic form of upper bounds. The best lower bound, i.e. Gilbert-
Varshamov bound and upper bound, i.e. McEliece-Rodemich-Rumsey-Welch I bound are plotted
in Figure 2.2(b). These bounds will be our tools for determining a good code in our study on the
minimum distance of cyclic codes.

(a) (b)

Figure 2.2: Plot with x-axis is � = d
n and y-axis is �(�) = k

n .

9
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3
Cyclic codes

In this chapter we will discuss an important class of linear codes. These codes are called cyclic.
It is our main interest in this final project. We borrowed and adapted notations and definitions
from [11], [13], [19] and [21].

3.1. Definitions

We start with the definition of a ring.

Definition 3.1. A ring R is an additive abelian group, together with a multiplication satisfying

ab = ba;

a(b+ c) = ab+ ac;

a(bc) = (ab)c;

and which contains an identity element 1 such that

1a = a:

Our definition of a ring is also called a commutative ring with identity.

Definition 3.2. An ideal I of a ring R is a subgroup of R such that if a 2 I, then so is ba for all
b 2 R.

Definition 3.3. The polynomial ring Fq[x] is the set of all polynomials f(x) with coefficients in Fq.

Definition 3.4. Let R be a ring and let I be an ideal in R. Then R=I is the factor ring or residue
class ring of R modulo I. If R = Fq[x] and I = (xn � 1) is the ideal generated by xn � 1, then
Cq;n is a residue class ring, where

Cq;n = Fq[x]=(x
n � 1):

The residue class ring Cq;n is represented by the set of all polynomial remainders obtained by
long division of polynomial in Fq[x] by xn � 1. Note that, Cq;n can be represented by the set of
polynomials of degree less than n.
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Definition 3.5. Let the cyclic shift �(c) of a word c = (c0; : : : ; cn�1) 2 Fnq be defined as

�(c) = (cn�1; c0; : : : ; cn�2):

Let C be a code of length n in Fnq . A code C is called cyclic if C is linear and for each c 2 C, the
cyclic shift �(c) is also in C.

Definition 3.6. Consider the map ' between Fnq and Cq;n

'(c) = c0 + c1x+ : : :+ cn�1x
n�1:

Then '(c) is also denoted by c(x).

So, instead of writing c is in C, we shall write c(x) is in C. Multiplying c(x) with x gives the
polynomial corresponding to the cyclic shift. After multiplying c(x) with x, we have to reduce
xc(x) modulo xn � 1, i.e replace xc(x) by its remainder after division by xn � 1. So, instead of
considering the set of all q-ary polynomials in x, denoted by Fq[x], we work with the set of the
residues of these polynomials modulo xn � 1.

A cyclic shift in Fnq corresponds to a multiplication by x in Cq;n. And since C is linear by
definition, with c(x) in a cyclic code C, not only xc(x) is in C, but also x2c(x), x3c(x), etc., and
all their linear combinations are in C as well. The most important tool in the description of a
cyclic code is the isomorphism between Fnq and Cq;n. From now on, we identify Fnq with Cq;n.

Proposition 3.7. The map ' is an isomorphism of vector spaces. Ideals in the ring Cq;n

correspond one-to-one to cyclic codes in Fnq .

The proof of Proposition 3.7 was taken from [13].

Proof. The map ' is linear and it maps the i-th standard basis vector of Fnq to the coset xi�1 in
Cq;n for i = 1; : : : ; n. Hence ' is an isomorphism of vector spaces.

Let  be the inverse map of '.

1. Let I be an ideal in Cq;n. Let C =  (I). Then C is a linear code, since  is a linear map.
Let c 2 C. Then c(x) = '(c) 2 I and I is an ideal. So xc(x) is also in I. But,

xc(x) = cn�1 + c0x+ c1x
2 + : : :+ cn�2x

n�1;

since xn = 1. So,  (xc(x)) = (cn�1; c0; c1; : : : ; cn�1) 2 C. Hence, C is cyclic.

2. Conversely, if C is a cyclic code in Fnq , and let I = '(C), then I is closed under addition of
its elements, since C is a linear code and ' is a linear map. If a 2 Fnq and c 2 C, then

a(x)c(x) = '(a0c + a1�(c) + an�1�
n�1(c)) 2 I:

Hence I is an ideal in Cq;n.

12



3.2 Generator polynomial

3.2. Generator polynomial

From the previous section, we know that cyclic codes have a one-to-one relation with an ideal in
the ring Cq;n. So, one way to describe cyclic codes is by its generator polynomial that generates the
corresponding ideal. A cyclic code C considered as an ideal in Cq;n is generated by one element,
but this element is not unique. An ideal that consists of all multiples of a fixed polynomial g(x)
by elements of R is called a principal ideal.

Note that, material on this section was taken from [11], [13], and [21].

Definition 3.8. Let C be a cyclic code of length n. Let g(x) be the monic polynomial of minimal
degree such that g(x) generates C. Then g(x) is called the generator polynomial of C.

Let C be a nonzero ideal in Cq;n, i.e. a cyclic code of length n.

Proposition 3.9. Let g(x) be a polynomial in Fq[x]. Then g(x) is a generator polynomial of a
cyclic code in Fq of length n if and only if g(x) is monic and divides xn � 1.

Proof. We will proof this proposition in two directions.

()) We need to show that there is a unique monic polynomial g(x) of minimal degree in C.
Suppose f(x), g(x) 2 C both are monic and have the minimal degree. But then f(x)�g(x) 2
C has lower degree. This is a contradiction unless f(x) = g(x).

Now, we need to show that g(x) is factor of xn � 1. Write xn � 1 = h(x)g(x) + r(x) in
F[x], where deg(r(x)) < deg(g(x)). In Cq;n, r(x) = �h(x)g(x) 2 C, this contradicts unless
r(x) = 0.

(() We need to show that C = hg(x)i. Suppose c(x) 2 C. Write c(x) = q(x)g(x) + r(x) in Cq;n,
where deg(r(x)) < deg(g(x)). But r(x) = c(x) � q(x)g(x) 2 C since the code is linear, so
r(x) = 0. Therefore, c(x) 2 hg(x)i.

Theorem 3.10. Any c(x) 2 C can be written uniquely as c(x) = f(x)g(x) in F[x], where f(x) 2
F[x] has degree < n� r, r = deg(g(x)). The dimension of C is n� r. Thus the message f(x)
becomes the codeword f(x)g(x).

Proof. Let c(x) be a polynomial in hg(x)i. Then c(x) = q(x)g(x) in Cq;n for some polynomial q(x),
and hence c(x) = q(x)g(x) + d(x)(xn � 1) in F[x] for some polynomial d(x). Since g(x)j(xn � 1),

c(x) =

�
q(x) +

(xn � 1)d(x)

g(x)

�
g(x); in F[x]:

Hence every element of hg(x)i is of form

f(x)g(x) with f(x) 2 F[x] and deg(f(x)) < n� r:

Moreover, the code consists of multiples of g(x) by polynomials of degree < n � r, evaluated in
F[x] not in Cq;n. There are n� r linearly independent multiples of g(x), namely g(x), xg(x), : : :,
xn�r�1g(x). The corresponding vectors are the rows of the generator matrix G of C. Thus the
code has dimension n� r.
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Chapter 3 Cyclic codes

3.3. Factors of xn � 1

The generator polynomial of a cyclic code of length n over Fq must be a factor of xn � 1. For the
existence of an integer m such that qm � 1 mod n, it is necessary and sufficient to assume that n
and q are relatively prime.

Theorem 3.11 (Fermat-Euler Theorem). If a and m are relatively prime, then a'(m) � 1 mod m,
where '(m) is the number of positive integers � m that are relatively prime to m, for any
integer m. Later on, '(m) is called the Euler-totient function

By Theorem 3.11, there is a smallest integer m such that n divides qm � 1. This integer m is
called the multiplicative order of q modulo n.

Then xn�1 divides xq
m�1. Thus, the zeros of xn�1, which are called n-th roots of unity, are in

the extension field Fqm . Let ! be a primitive element in Fqm . If n divides qm � 1 or equivalently
qm = 1 mod n, for some positive integer m, then 1, �, �2, : : :, �n�1 are n mutually distinct zeros
of xn � 1, where � = !(q

m�1)=n. Thus we obtain a complete factorization of xn � 1 into linear
factors over Fqm ,

xn � 1 =

n�1Y
i=0

x� �i:

Since � is a zero of xn � 1 and also generates the other zeros of xn � 1, it is called a primitive
n-th root of unity. Fqm is called the splitting field of xn � 1.

Definition 3.12. The operation of multiplying by q partitions the integers mod n into sets called
the cyclotomic cosets mod n.

The cyclotomic coset containing s consist of

Cs = fs; qs; q2s; : : : ; qms�1sg;

where ms is the smallest positive integer such that qmss � s mod n and s is the smallest number
in the coset. The subscripts s are called the cyclotomic coset representatives modulo n.

In other words, the integers modulo n are partitioned into cyclotomic cosets,

f0; 1; 2; : : : ; n� 1g =
[
s

Cs;

where s runs through a set of cyclotomic coset representatives modulo n. Then the minimal
polynomial of �s is

ms(x) =
Y
i2Cs

(x� �i):

This is a monic polynomial with coefficients from Fq, and is the lowest degree polynomial having
�s as a root. Therefore the complete factorization of xn � 1 into irreducible polynomials over Fq
is as follows,

xn � 1 =
Y
s

ms(x);

where s runs through a set of cyclotomic coset representatives modulo n. For additional informa-
tion about minimal polynomial, see [11], [13], and [21].

14



3.4 The zeros of a cyclic code

3.4. The zeros of a cyclic code

Let g(x) be the generator polynomial of a cyclic code in Fq of length n. By Proposition 3.9, g(x)
divides xn � 1, so its zeros are n-th roots of unity if n is not divisible by the characteristic of Fq.
Instead of describing a cyclic code by its generator polynomial g(x), we can describe it by the set
of zeros of g(x) in the smallest extension field Fqm of Fq that contains n-th roots of unity where
m is a positive integer, such that n divides qm � 1.

From now we choose a fixed � 2 F�qm of order n.

Definition 3.13. A subset I of Zn is called a defining set of a cyclic code C if

C = f c(x) 2 Cq;n j c(�i) = 0 for all i 2 Ig:

The set of zeros of C is called the complete defining set and is defined as follows,

Z(C) = fi 2 Zn j c(�i) = 0 for all c(x) 2 Cg:

Let f(x) be a q-ary polynomial dividing xn � 1 and let �i be a zero of f(x). Then �iq is a zero
of f(x) and by induction �iq

2

; : : : ; �iq
m�1

are also zeros of f(x). These exponents can be reduced
modulo n, since �n = 1. The elements �iq

j

are called cyclotomic conjugates of �i.

A generator polynomial of a cyclic code is the product of some minimal polynomials and the
corresponding defining set of a cyclic code is the union of the corresponding cyclotomic cosets.

Proposition 3.14. The relation between the generator polynomial g(x) of a cyclic code C and
the set of zeros Z(C) is given by

g(x) =
Y

i2Z(C)

(x� �i):

The dimension of C is equal to n� jZ(C)j.
Remark 3.15. Consider Cn;q to be the group algebra of a cyclic group G of order n. The mappings
�a : i 7! a � i, where a is an integer prime to n, form a group G of automorphism of G. An
automorphism of a group G is a mapping � onto itself which preserves multiplication, �(ab) =
�(a)�(b). Thus G permutes the coordinate places Cn;q, and sends cyclic codes into cyclic codes.
G is a multiplicative abelian group, isomorphic to the multiplicative group of integers less than
and prime to n, and has order '(n), where ' is the Euler '-function. And the mapping i 7! a � i,
where a is prime to n, permutes the cyclotomic cosets.

Let G = Zn and G = Z�n, where Z�n is a set of invertible elements in Zn.

For instance, if I1 and I2 are defining sets for the cyclic code C1 and C2, respectively, and

I2 = fa � i j i 2 I1g;

for some a with gcd(a; n) = 1, then C1 and C2 are equivalent codes.

Example 3.16. Let C be the binary cyclic code of length 31. The cyclotomic coset representatives
modulo 31 are f0; 1; 3; 5; 7; 11; 15g. Let C1;5;7 be a cyclic code of length 31 with defining set
f1; 5; 7g. Hence the complete defining set of C1;5;7 is given by

Z(C1;5;7) = f1; 2; 4; 5; 7; 8; 9; 10; 14; 16; 18; 19; 20; 25; 28g:

15



Chapter 3 Cyclic codes

Also let C3;11;15 be a cyclic code of length 31 with defining set f3; 11; 15g. Hence the complete
defining set of C3;11;15 is given by

Z(C3;11;15) = f3; 6; 11; 12; 13; 15; 17; 21; 22; 23; 24; 26; 27; 29; 30g:

As we can see, Z(C3;11;15) = 3 �Z(C1;5;7), and gcd(3; 31) = 1. By Remark 3.15, C1;5;7 and C3;11;15

are equivalent codes.

The complete factorization of 1 + x31 in F2[x] is given by,

x31 � 1 = (1 + x)(1 + x2 + x5)(1 + x3 + x5)(1 + x+ x2 + x3 + x5)(1 + x+ x2 + x4 + x5)

(1 + x+ x3 + x4 + x5)(1 + x2 + x3 + x4 + x5):

If � be a zero of 1 + x2 + x5, then � is an element of F25 of order 31. Hence,

m1(x) = 1 + x2 + x5

m3(x) = 1 + x2 + x3 + x4 + x5

m5(x) = 1 + x+ x2 + x4 + x5

m7(x) = 1 + x+ x2 + x3 + x5

m11(x) = 1 + x+ x3 + x4 + x5

m15(x) = 1 + x3 + x5

Let C1;5;7 be a binary cyclic code of length 31 with defining set f1; 5; 7g. Hence the generator
polynomial of C1;5;7 is given by,

g0(x) = m1(x) �m5(x) �m7(x)

= 1 + x3 + x8 + x9 + x13 + x14 + x15:

And also let C3;11;15 be a binary cyclic code of length 31 with defining set f3; 11; 15g. Hence the
generator polynomial of C3;11;15 is given by,

g1(x) = m3(x) �m11(x) �m15(x)

= 1 + x+ x2 + x6 + x7 + x12 + x15:

By Remark 3.15, binary cyclic codes of length 31 with generator g0(x) is equivalent with a binary
cyclic code of length 31 with generator g1(x). Note that, the order of �i is 31 for i 6= 0. Hence
C1;5;7 and C3;11;15 are equivalent.

3.5. Mattson-Solomon polynomial

There are several ways of representing cyclic codes other than the standard way which was already
discussed in Section 3.1. We shall now introduce a discrete analog of the Fourier transform, which
in coding theory is also referred to as the Mattson-Solomon polynomial.

Definition 3.17. Let � 2 F�qm be primitive n-th root of unity. The Mattson-Solomon (MS) polyno-
mial A(Z) of

a(x) = a0 + a1x+ a2x
2 + : : :+ an�1x

n�1
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3.5 Mattson-Solomon polynomial

is defined by

A(Z) =

nX
i=1

AiZ
n�i; where Ai = a(�i) 2 Fqm

The Mattson-Solomon polynomial A(Z) is the discrete Fourier transform of a(x). Therefore,
we need to compute inverse discrete Fourier transform in order to get the coefficient of a(x) in
terms of the A(Z).

Lemma 3.18. Let � 2 Fqm be a zero of xn � 1. Then

nX
i=1

�i =

�
n; if � = 1;

0; if � 6= 1:

Proof. It is easy to prove this lemma, by considering two cases.

Case 1 If � = 1, then
Pn

i=1 �
i = n.

Case 2 If � 6= 1, then apply the sum of a geometric series to
Pn

i=1 �
i. This yields

nX
i=1

�i =
�n � 1

� � 1
:

Hence,
Pn

i=1 �
i = 0, since � is a zero of xn � 1.

Proposition 3.19. The inverse transform is given by

ai =
1

n
A(�i):

Proof. By definition of A(�i),

A(�i) = a(�)(�i)n�1 + a(�2)(�i)n�2 + : : :+ a(�n�1)(�i) + a(1);

where

a(�)(�i)n�1 = a(�)��i

a(�2)(�i)n�2 = a(�2)(�2)�i

...
...

a(�n�1)(�i) = a(�n�1)(�n�1)�i

a(1) = a0 + a1 + : : :+ an�1:

Thus,

a(�)(�i)n�1 = ai + ai+1�+ : : :+ ai�1�
n�1

a(�2)(�i)n�2 = ai + ai+1�
2 + : : :+ ai�1�

2(n�1)

...
...

a(�n�1)(�i) = ai + ai+1�
n�1 + : : :+ ai�1�

(n�1)(n�1)

a(1) = ai + ai+1 + : : :+ ai�1:

17



Chapter 3 Cyclic codes

Apply Lemma 3.18, and we can conclude that

A(�i) = ain+ ai+1

Pn�1
j=1 (�)

j + : : :+ ai�1
Pn�1

j=1 (�
n�1)j

= ain:

So,

A(�i) = ain

ai = 1
nA(�

i)

And this proves the assertion.

Proposition 3.20. A(Z) is the Mattson-Solomon polynomial of a codeword c(x) of the cyclic
code C if and only if Aj = 0 for all j 2 Z(C) and Ajq = A

q
j for all j = 1; : : : ; n.

Proof. We will proof this proposition in two directions.

()) Let A(Z) be the MS polynomial for codeword c(x) 2 C, where C is a cyclic code. Hence by
definition,

A(Z) =

nX
i=1

AiZ
n�i; where Ai = c(�i) 2 Fqm :

For all j = 1; : : : ; n,

Aj = c(�j)

= c0 + c1�
j + c2(�

j)2 + : : :+ cn�1(�
j)n�1

and

(Aj)
q = c

q
0 + (c1�

i)q + : : :+ (cn�1(�
j)n�1)q

= c0 + c1�
jq + : : :+ cn�1(�

jq)n�1

= Ajq;

since cqi = ci for i = 1; : : : ; n. Thus for all j 2 Z(C), we have Aj = c(�j) = 0.

(() Let A(Z) be a polynomial over Fqm with Ajq = A
q
j for all j = 0; 1; : : : ; n� 1 and Aj = 0 for

all j 2 Z(C). Let

A(Z) =

nX
i=1

AiZ
n�i:

Let c(x) 2 Fqm [x]=(xn � 1) with

cj =
1

n
A(�j):

Then

c
q
j =

�
1

n
A(�j)

�q
=

�
1

n

�q �
A(�j)

�q
=

1

n

nX
i=1

A
q
i�

jq(n�i)
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3.5 Mattson-Solomon polynomial

Multiplication by q modulo n is a permutation of Zn, since gcd(n; q) = 1. Hence,

c
q
j =

1

n

X
i=1

Ai�
j(n�i) =

1

n
A(�j) = cj :

Hence, cj 2 Fq. Therefore, c(x) 2 Fq[x]=(xn � 1). Furthermore, c(�i) = Ai = 0, for all
i 2 Z(C), where Z(C) is the complete defining set of C. Hence, c(x) 2 C.

Now we use the MS polynomial in terms of cyclic codes.

Lemma 3.21. Let C be a cyclic code over Fq generated by

g(x) =
Y
k2K

(x� �k);

where � 2 Fqm is a primitive n-th root of unity. Suppose f1; 2; : : : ; d � 1g � K and c 2 C.
Then the degree of the Mattson-Solomon polynomial A of a word c is at most n� d.

Proof. c(�j) = 0 for 1 � j � d � 1 since c(x) is divisible by g(x). The result follows from
Definition 3.17.

Suppose the vector a = (a0; a1; : : : ; an�1), ai 2 Fq, has non-zero components

ai1 ; ai2 ; : : : ; aiw

and no others, where w = wt(a). We associate with a the following elements of Fqm

X1 = �i1 ; X2 = �i2 ; : : : ; Xw = �iw ;

called the locators of a, and the following elements of Fq,

Y1 = ai1 ; Y2 = ai2 ; : : : ; Yw = aiw ;

giving the values of the non-zero components. Thus a is completely specified by the list (X1; Y1),
(X2; Y2), : : :, (Xw; Yw). If a is a binary vector, then the Yi’s are 1. Note that,

a(�j) = Aj =

wX
i=1

YiX
j
i :

Definition 3.22. The locator polynomial of the vector a is

�(z) =

wY
i=1

(1�Xiz)

=

wX
i=0

�izi;
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Chapter 3 Cyclic codes

The roots of �(z) are the reciprocals of the locators. Thus the coefficients �i are the elementary
symmetric function of the Xi:

�0 = 1

�1 = �(X1 +X2 + : : :+Xw)

�2 = X1X2 +X1X3 + : : :+Xw�1Xw

�
�w = (�1)wX1X2 � � �Xw:

Theorem 3.23. If there are r n-th roots of unity which are zeros of the Mattson-Solomon
polynomial A of a word c, then wt(c) = n� r.

Proof. This is immediate consequences of Proposition 3.19

Corollary 3.24. If c has Mattson-Solomon polynomial A(Z), then wt(c) � n� deg(A(Z)).

We will use these results to prove the BCH bound and its generalization the Hartmann-Tzeng
bound.

3.6. Parity check and the minimum distance

In the previous chapter, we described a cyclic code by its generator polynomial. Cyclic codes are
linear codes. Therefore, they are given by a set of homogeneous linear equations, i.e. by the null
space of a matrix.

Let C be a cyclic code of length n. Let g(x) be the generator polynomial of C and from Proposition
3.9, g(x) divides xn � 1. Then

h(x) =
xn � 1

g(x)

=

kX
i=0

hix
i; where hk 6= 0;

is called the check polynomial of C. If

c(x) =

n�1X
i=0

cix
i = f(x)g(x)

is any codeword of C, then

c(x)h(x) =

n�1X
i=0

cix
i �

kX
j=0

hjx
j

= f(x)g(x)h(x)

= 0 in Cq;n:

The coefficient of xj in this product is

n�1X
i=0

cihj�i; for j = 0; 1; 2; : : : ; n� 1; (3.1)
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where the subscripts are taken modulo n. Thus the equations 3.1 are parity check equations
satisfied by the code.

Let C be a linear code with parameter [n, k, d]. Suppose the matrix H is an m� n matrix with
entries in Fq. If C be the null space of H, then C is the set of all c 2 Fnq such that Hct = 0t.
Hence, we get n�m homogeneous linear equations. They are called parity check equations. The
dimension of C is at least n�m. If there are dependent rows in the matrix H, where k < n�m,
then delete few row until we get an (n � k) � n matrix H 0 with independent rows and with the
same null space as H. So rank(H 0) is equal to n� k.
Definition 3.25. A parity check matrix H of an [n,k,d] code C is an (n� k)� n matrix, satisfying

c 2 C , Hct = 0t:

In other words, C is the null space of matrix H of rank n� k.

The parity check matrix of a linear code can be used to detect errors during the transmission.
Suppose that the minimum distance of C is equal to d and H is the parity check matrix of code
C. Suppose that the codeword c is transmitted and r = c + e is the received codeword. Then
e is called the error vector and wt(e) is called the number of errors that occurs during the
transmission.

Theorem 3.26. Consider Fnq with gcd(q; n) = 1. Let m satisfy qm � 1 mod n and let ! be a
primitive element in Fqm . Then � = !(q

m�1)=n is a primitive n-th root of unity.

Let I = fi1; i2; : : : ; ilg be a subset of f0; 1; : : : ; n � 1g. Let I be a defining set of the q-ary,
cyclic code C(I) of length n. Then C(I) can be described in the following way:

C(I) = fc 2 Fnq jHct = 0tg;

where

H =

0BBB@
1 �i1 �2i1 : : : �(n�1)i1

1 �i2 �2i2 : : : �(n�1)i2

...
...

...
1 �il �2il : : : �(n�1)il

1CCCA
Definition 3.27. We denote by C�(I), the code over Fqm with H as parity check matrix.

An important parameter of a code C, besides its length and dimension, is the minimum distance
between its codewords. As already discussed in the previous chapter, the minimum distance
determines how many errors a code C can correct, see Section 2.1. In this chapter, we will discuss
the parity check matrix of a cyclic code, and its relation with the minimum distance of the code.
For additional reading, see [13] and [21].

Theorem 3.28. A linear code C has minimum distance d if and only if d is the maximum
number such that any d� 1 columns of its parity check matrix are linearly independent.

Proof. Let C be a linear code and u be a codeword such that wt(u) = d(C) = d. Since u 2 C
if and only if Hut = 0 and u has d non-zeros components, some d columns of H are linearly
independent. Any d � 1 columns of H must be linearly independent, or else there would exist a
non-zero codeword in C with weight d� 1.
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Chapter 3 Cyclic codes

Let us explain Theorem 3.28 in more detail way. Let h1; : : : ;hn be the columns of H. Let c be a
nonzero codeword of weight w.

Definition 3.29. Let the support of codeword c be denoted by supp(c) is defined as follows

supp(c) = fj1; j2 : : : ; jwg;

where 1 � j1 < j2 < : : : < jw � n, such that cj1 , cj2 , : : :, cjw are not equal to 0.

Since H is the parity check matrix of code C, then Hct = 0. We can re-write Hct = 0 in the
following term;

cj1hj1 + : : :+ cjwhjw = 0;

for all i = 1; : : : ; w. Thus, the columns hj1 ; : : : ;hjw are dependent. Conversely, if hj1 ; : : : ;hjw are
dependent, then there exist constant a1; : : : ; aw, not all zero, such that

a1hj1 + : : :+ awhjw = 0:

Let c be the word defined by cj = 0 if j 6= ji for all i, and cj = ai if j = ji for some i. Then
Hct = 0t. Hence c is a nonzero codeword of weight at most w.

Let H be the parity check matrix of a code C. As consequences, the minimum distance of C is
equal to 1 if and only if H has a zero column. If H has no zero column, then the minimum distance
of a code C is at least 2. Theorem 3.28 is an important tool to find the minimum distance of linear
codes. Since cyclic codes are linear, then we can use Theorem 3.28 to determine its minimum
distance.

Let C be a cyclic code with generator polynomial g(x) and check polynomial h(x) = (xn�1)=g(x).
Theorem 3.30. The dual code C? is cyclic and has generator polynomial

g?(x) = xdeg(h(x))h(x�1):

3.7. Idempotents

The subject of this section mainly taken from [11].

Definition 3.31. A polynomial �(x) of Cq;n is an idempotent if

�(x) = �(x)2:

Theorem 3.32. A cyclic code C = hg(x)i contains a unique idempotent �(x) such that C =

h�(x)i. Also �(x) = p(x)g(x) for some polynomial p(x), and

�(�i) = 0, g(�i) = 0:

Proof. Let g(x) be the generator polynomial of C and h(x) the parity check polynomial of C,
where g(x) and h(x) are relatively prime. As a consequence of the Euclidean algorithm, there
exist polynomial p(x) and q(x) such that

p(x)g(x) + q(x)h(x) = 1; in Fq[x]:
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Let �(x) = p(x)g(x). Then,

p(x)g(x) (p(x)g(x) + q(x)h(x)) = p(x)g(x);

i.e.

�(x)2 + 0 = �(x); in Cq;n;

so �(x) is an idempotent. An n-th root of unity is a zero of either g(x) or h(x), but not both.
Since p(x)g(x) + q(x)h(x) = 1 in Fq[x], hence p(x) and h(x) are relatively prime. So if there is
an n-th root of unity which is a zero of p(x), it must also be a zero of g(x). Since p(x) does not
introduce any new zeros, hence �(x) and g(x) generate the same code. To show that �(x) is the
unique idempotent which generates C, suppose #(x) is another idempotent that generates C, then
from the following theorem, #(x)�(x) = �(x) = #(x).

Theorem 3.33. c(x) 2 C , c(x)�(x) = c(x):

Proof. If c(x) = c(x)�(x), then clearly c(x) 2 C. Conversely, if c(x) 2 C, then c(x) = b(x)�(x),
and c(x)�(x) = b(x)�(x)2 = b(x)�(x) = c(x).

Lemma 3.34. �(x) is an idempotent if and only if �(�i) = 0 or 1 for i = 0; 1; 2; : : : ; n� 1.

To proof Lemma 3.34, we need the following theorem from the finite field theory;

Lemma 3.35. If n, r, s are integers with n � 2, r � 1, s � 1, then

ns � 1jnr � 1, sjr:

Proof. Write r = as+ b, where 0 � b < s. Then

nr � 1

ns � 1
= nb � n

as � 1

ns � 1
+
nb � 1

ns � 1
:

Term nas � 1 is always divisible by ns � 1. Term nb � 1 is less than 1 and so is an integer if and
only if b = 0.

Theorem 3.36. Fqr contains a subfield isomorphic to Fqs if and only if s divides r.

Proof. If sjr, then Fqr contains a subfield isomorphic to Fqs . Conversely, let � be a primitive
element of Fqs . Then

�q
s�1 = 1; and �q

r�1 = 1:

So, qs � 1 divides qr � 1, and s divides r by Lemma 3.35.

Theorem 3.37 (Fermat Theorem). Every element � of a field F of order qm satisfies the identity

�q
m

= �;

or equivalently is a root of the equation

xq
m

= x:
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Thus,

xq
m � x =

Y
�2F

(x� �):

Theorem 3.38. If � 2 Fqr , then � is in Fqs if and only if �q
s

= �. In any field if �2 = �, then
� is 0 or 1.

Proof. The first statement is an immediate consequence of Theorem 3.37. The second statement
is obvious.

Proof of Lemma 3.34 Let �(x) be an idempotent. Then by Theorem 3.38, �(�i)2 = �(�i). So
�(�i) = 0 or 1 for i = 0; 1; 2; : : : ; n� 1. Conversely, let

�(x) =

n�1X
i=0

�ix
i:

Since �(�i) is 0 or 1, hence �(�2j) = �(�j)2 = �(�j). By the inversion formula,

�i =

n�1X
j=0

�(�j)��ij =
X
s

X
j2Cs

��ij ;

where s runs through a subset of the cyclotomic cosets. Thus, �i = �2i, and �(x) is an idempotent.
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4
Lower Bounds for the Minimum Distance of

Cyclic Codes

In this chapter, we will discuss lower bounds on the minimum distance of cyclic codes, due to
the BCH bound, Hartmann-Tzeng bound, Roos bound, and the AB-method. We borrowed and
adapted notations and definitions from [11], [13], [19] and [21].

4.1. The BCH bound

A very general class of cyclic codes with a guaranteed minimum distance is given by BCH codes.
They are named after R.C.Bose, D.K.Chaudhuri and A. Hocquenghem, the inventors of these
codes.

Definition 4.1. A cyclic code of length n over Fq with generator polynomial g(x) is a BCH code
of designed minimum distance �, if, for some integer b � 0,

g(x) = l:c:mfmb(x);mb+1(x); : : : ;mb+��2(x)g:

In other words, g(x) is the lowest degree monic polynomial over Fq having fb; b+1; : : : ; b+ �� 2g
as its defining set. Therefore,

c 2 C if and only if c(�b) = c(�b+1) = : : : = c(�b+��2) = 0:

Which means this code has � � 1 consecutive elements in its defining set.

Theorem 4.2. Let C be a cyclic code with designed minimum distance �. Then the minimum
distance of the code is at least �.

We will give three different proofs of Theorem 4.2. The first proof was taken from [11] and [13].

First Proof. Let Z(C) contain the consecutive elements fb � i � b + � � 2g for certain b. Then
the parity check matrix H of a Fqm -linear code C� that has C as its subfield sub-code is

H = (�ij jb � i � b+ � � 2; 0 � j � n� 1):
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Let

H 0 =

0B@ �bi1 : : : �bit
...

�b+��2i1
: : : �b+��2it

1CA
be a square sub-matrix of size t = � � 1 of H. Then H 0 is a Vandermonde matrix. Therefore

det(H 0) = �bi1 : : : �
b
it

Y
1�r<s�t

(�is � �ir ) 6= 0:

Since the �i are nonzero and mutually distinct. So any � � 1 columns of H are independent.
Hence by Theorem 3.28, the minimum distance of C is at least �.

The second proof is the application of the Mattson-Solomon polynomial in cyclic codes. As
immediate result of Lemma 3.21.

Second Proof. Let c(x) be any nonzero codeword in C. Let c(x) be a nonzero codeword in C. By
hypothesis, c(�j) = 0, for b � j � b+ � � 2. Let A(Z) be the MS-polynomial of c(x). Then

A(Z) = c(�)Zn�1 + : : :+ c(�b�1)Zn�b+1 + c(�b+��1)Zn�b��+1 + : : :+ c(�n):

Let

Â(Z) = Zb�1A(Z)� (c(�)Zb�2 + : : :+ c(�b�1))(Zn � 1)

= c(�b+��1)Zn�� + : : :+ c(�n)Zb�1 + c(�)Zb�2 + : : :+ c(�b�1):

Clearly, the number of n-th roots of unity which are zeros of A(Z) is the same as the number
which are zeros of Â(Z). This number is at most deg(Â(Z)) � n� �. Thus the weight of c is at
least � by Theorem 3.23.

The third proof was from [8] on BCH bound. Instead of the parity check matrix approach, they
use the locator polynomial to prove the BCH bound. They used this approach to proof the
generalization of the BCH bound.

Third Proof. Let c(x) be a code polynomial of weight w < �. Since C is a cyclic code, we may
assume without loss of generality that

c(x) = 1 + c1x
t1 + c2x

t2 + : : :+ cw�1x
tw�1 ;

where ci 6= 0, ci 2 Fq and ti are mutually distinct positive integers less than n. Let

Xi = �ti ;

and

Sj = c1X
j
1 + c2X

j
2 + : : :+ cw�1X

j
w�1:

Then

Sj = c(�j)� 1

= �1;
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4.1 The BCH bound

for all j such that g(�j) = 0, in other words Sj = �1 if j is an element of the complete defining
set of C. Now let

�(x) =

w�1Y
i=1

(x�Xa
i )

= xw�1 + �1x
w�2 + : : :+ �w�2x+ �w�1:

Now 0 < ti < n and gcd(n; a) = 1. Hence Xi 6= 1 and Xa
i 6= 1. So, if we substitute x = 1, then

�(1) 6= 0.

In the equation

w�1Y
i=1

(x�Xa
i ) = xw�1 + �1x

w�2 + : : :+ �w�2x+ �w�1;

substitute x = Xa
i . And we get

X
a(w�1)
i + �1X

a(w�2)
i + : : :+ �w�2X

a
i + �w�1 = 0:

Multiply both side with ciXb
i , and we get

ciX
b
iX

a(w�1)
i + ciX

b
i �1X

a(w�2)
i + : : :+ ciX

b
i �w�2X

a
i + ciX

b
i �w�1 = 0:

Summing on i = 1; : : : ; w � 1 gives,

Sb+(w�1)a + �1Sb+(w�2)a + : : :+ �w�2Sb+a + �w�1Sb =

w�1X
i=1

ciX
b
i �(X

a
i )

= 0:

Since Sb+ia = �1 for all i = 0; 1; : : : ; � � 2 and w < �, the above equation implies that �(1) = 0,
which is a contradiction. Therefore, there does not exist any codeword of weight less than �.
Hence the minimum distance of C is greater than or equal to �.

Definition 4.3. For a subset I of Zn. Let dBCH(I) be the largest number � such that I contain a
subset of the form fb+ i � a j 0 � i � � � 2g with gcd(a; n) = 1.

Proposition 4.4 (The BCH bound). Let Z(C) be the complete defining set of a cyclic code of
length n. Then the minimum distance of C is at least dBCH(Z(C)). Let C be a cyclic code
of length n. Then dBCH(Z(C)) is denoted by dBCH(C).

Proof. Immediate result of Theorem 4.2 and Remark 3.15.

We deduce that the minimum distance of a cyclic code of length n over Fq with defining set
fb; b+ 1; : : : ; b+ � � 2g is greater than or equal to the designed distance �.

Remark 4.5. If b = 1, then these codes are called narrow-sense BCH codes. If n = qm � 1, (so
if � is a primitive element of GF(qm)), then the BCH code is called primitive. BCH codes with
n = q � 1, i.e. m = 1, and � 2 GF(q), are called Reed-Solomon codes.
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4.2. The Hartmann-Tzeng bound

The BCH bound considers only one set of � � 1 consecutive elements in the complete defining
set. But in reality, there exist many cyclic codes whose complete defining sets possess more than
one set of � � 1 consecutive elements. It has been shown by C.R.P. Hartmann and K.K. Tzeng
[8] that when considerations are given to these multiple sets of � � 1 consecutive elements, much
improvement over the BCH bound can be obtained.

Hartmann-Tzeng (HT) presented the bound for the minimum distance for cyclic codes generated
by polynomials with more than one set of consecutive elements in its complete defining set. We
borrowed and adapted notations and definitions from [8].

Theorem 4.6. Let g(x) 2 Fq[x] be the generator polynomial of a cyclic code, C, of length n. If

g(�b+i1a1+i2a2) = 0

for i1 = 0; 1; 2; : : : ; � � 2 and i2 = 0; 1; : : : ; s where gcd(n; a1) = 1 and gcd(n; a2) = 1, then the
minimum distance of C is at least � + s.

The proof of this theorem is basically an extended version of the proof of the BCH bound. Instead
of considering one set of consecutive roots, this theorem considers multiple set of consecutive roots.
And the proof is taken from [8].

Proof. By Theorem 4.2, the minimum distance of C is greater than or equal to �. Let c(x) be a
codeword polynomial of weight w such that � � w < � + s. Since C is a cyclic code, c(x) can be
written as follows;

c(x) = 1 +

w�1X
i=1

cix
ti ;

where ci 6= 0, ci 2 Fq and ti are distinct positive integers less than n. Let

Xi = �ti ;

and

Sj =

w�1X
i=1

ciX
j
i :

Then

Sj = c(�j)� 1

= �1;
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for all j such that g(�j) = 0. Now let

�1(x) =

��2Y
i1=1

(x�Xa1
i1
)

= x(��2) + �
(1)
1 x��3 + : : :+ �

(1)
��3x+ �

(1)
��2;

�2(x) =

w�1Y
i2=��1

(x�Xa2
i2
)

= x(w��+1) + �
(2)
1 xw�� + : : :+ �

(2)
w��x+ �

(2)
w��+1;

�(x) = �1(x)�2(x):

Since ti 6= 0, gcd(n; a1) = 1, gcd(n; a2) = 1, then Xi 6= 1, Xa1
i1
6= 1, and Xa2

i2
6= 1. These yields

�(1) 6= 0.

Before we continue, we need to do some trick here. First, in equation �1(x), substitute x with
Xa1
i for i = 1; 2; : : : ; � � 2. Hence we get

�1(X
a1
i ) = X

a1(��2)
i + �

(1)
1 X

a1(��3)
i + : : :+ �

(1)
��3X

a1
i + �

(1)
��2 = 0:

Also in equation �2(x), substitute x with Xa2
i for i = � � 1; : : : ; w. Then

�2(X
a2
i ) = X

a2(w��+1)
i + �

(2)
1 X

a2(w��)
i + : : :+ �

(2)
w��X

a2
i + �

(2)
w��+1 = 0:

Note that, �(Xi) = �1(X
a1
i )�2(X

a2
i ) = 0 for i = 1; : : : ; w. Multiply both sides with ciXb

i and then
summing the result on i = 1; 2; : : : ; w. We get�

Sb+(��2)a1+(w��+1)a2 + �
(1)
1 Sb+(��3)a1+(w��+1)a2 + : : :+ �

(1)
��2Sb+(w��+1)a2

�
+�

(2)
1

�
Sb+(��2)a1+(w��)a2 + �

(1)
1 Sb+(��3)a1+(w��)a2 + : : :+ �

(1)
��2Sb+(w��)a2

�
+ : : :+ �

(2)
w���1

�
Sb+(��2)a1 + �

(1)
1 Sb+(��3)a1 + : : :+ �

(1)
��2Sb

�
=

w�1X
i=1

ciX
b
i �1(X

a1
i )�2(X

a1
i )

= 0

Since Sb+i1a1+i2a2 = �1 for i1 = 0; 1; : : : ; � � 2 and i2 = 0; 1; : : : ; s and � � w < � + s, we have
�(1) = 0 which is contradiction. Therefore, there dos not exist any codeword of weight less than
� + s. Hence d � � + s.

Definition 4.7. For a subset I of Zn. Let dHT (I) be the largest number 
 such that there exists a
subset of I of the form fb+i1�a1+i2�a2 j 0 � i1 � ��2; 0 � i2 � sg with gcd(a1; n) = gcd(a2; n) = 1

and 
 = � + s. Let C be a cyclic code of length n. Then dHT (Z(C)) is denoted by dHT (C).

Theorem 4.8 (The HT bound). Let Z(C) be the complete defining set of a cyclic code of length
n. Then the minimum distance of C is at least dHT (Z(C)).

Proof. As immediate consequence of Definition 4.8 and Theorem 4.6.

Proposition 4.9. Let I be a subset of Zn. Then dHT (I) � dBCH(I).
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Proof. Take A = fb + i � a1 j i = 0; 1; : : : ; � � 2g and B = f0g, where a1 = 1 in the HT bound,
then we get the BCH bound.

Remark 4.10. In the Hartmann-Tzeng (HT) bound, if a1 = 1, there are s+ 1 of � � 1 consecutive
elements in the complete defining set, Z(C), of a q-ary cyclic code C of length n.

C. Roos improved the HT bound as follows;

Proposition 4.11. Let g(x) 2 Fq[x] be the generator polynomial of a cyclic code, C, of length n.
If

g(�b+i1a1+i2a2) = 0

for i1 = 0; 1; 2; : : : ; � � 2 and i2 = 0; 1; : : : ; s where gcd(n; a1) = 1 and gcd(n; a2) < �, then the
minimum distance of C is at least � + s.

The proof of Proposition 4.11 can be found in [15]. He showed that the HT bound can be
strengthened by choosing a2 with gcd(n; a2) < � instead of gcd(n; a2) = 1.

Definition 4.12. For a subset I of Zn. Let dHTR(I) be the largest number 
 such that there exists
a subset of I of the form fb + i1 � a1 + i2 � a2 j 0 � i1 � � � 2; 0 � i2 � sg with gcd(a1; n) = 1,
gcd(a2; n) < � and 
 = � + s. Let C be a cyclic code of length n. Then dHTR(Z(C)) is denoted
by dHTR(C).

Theorem 4.13 (The HT-Roos bound). Let Z(C) be the complete defining set of a cyclic code of
length n. Then the minimum distance of C is at least dHTR(Z(C)).

Proof. As immediate consequence of Definition 4.12 and Proposition 4.11.

The following example was taken from [15]. This example shows the improvement of HT bound.

Example 4.14. Let C be the cyclic code of length 51 with defining set f1; 5; 9g. The complete
defining set

Z(C) = f1; 2; 4; 5; 7; 8; 9; 10; 13; 14; 15; 16; 18; 20; 21; 26; 28; 29; 30; 32; 33; 36; 40; 42g:

By the BCH bound with b = 7 and a = 1, the minimum distance of C is dBCH � 5. By the HT
bound with b = 1, a1 = 1, a2 = 14, s = 2, and � = 3, hence dHT = 5. Based on the HT bound,
the minimum distance of C is at least 5. By the HT-Roos bound with b = 7, a1 = 1, a2 = 6,
s = 1, and � = 5, we get dHTR = 6. Based on the HT-Roos bound, the minimum distance of C is
at least 6.

4.3. The Roos bound

In this section, we will discuss a lower bound on the minimum distance of a cyclic code based on
the paper by C.Roos [16].

Let Y = [y1;y2; : : : ;yn] be any matrix over a finite field F with n columns yi. Let C be the linear
code over the field F with Y as parity check matrix:

C = fc 2 Fn jYct = 0g:
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The minimum distance of C will be denoted as dY.

Let X be any m � n matrix, with nonzero columns xi = (x1i; x2i; : : : ; xmi) 2 Fm for 1 � i � n,
we define the matrix X �Y as

X �Y =

0BB@
x11y1 x12y2 : : : x1nyn
x21y1 x22y2 : : : x2nyn
� � : : : �

xm1y1 xm2y2 : : : xmnyn

1CCA :

Theorem 4.15. If dY � 2 and every m � (m + dY � 2) sub matrix of X has full rank, then
dX�Y � dY +m� 1.

Proof. The proof is by contradiction. Suppose that dX�Y < dY+m�1, then there exist dY+m�2
columns of the matrix X �Y which are linearly dependent over field F. Let us denote the i-th
column of X �Y as zi, and let fzi j i 2 Ig be such a set of dX +m� 2 columns. Then there exist
element �i 2 F not all zeros such thatX

i2I

�izi = 0:

This impliesX
i2I

�ixr;iyi = 0; (4.1)

for r = 1; 2; : : : ;m.

Now consider the sub-matrix of X consisting of the columns xi, i 2 I. This sub-matrix has size
m� (dB +m� 2), and by hypothesis, it will contain a non-singular m�m sub-matrix.

Let J be an m-subset of I such that the columns xj , j 2 J , form such a non-singular square
sub-matrix of X, and let det(J) denote the determinant of this matrix. For j 2 J and i 2 I, let
deti;j(J) denote the determinant which is obtained by replacing column xj in det(J) by xi.

Multiplication both members of 4.1 by the cofactor of the element xr;j in the determinant det(J),
and then taking the sum over r yields the following identity:X

i2I

�ideti;j(J)yi = 0; j 2 J: (4.2)

It is clear that deti;j(J) vanishes if i 2 J n fjg. Hence the sum 4.2 contains at most (dX +m �
2) � (m � 1) = dX � 1 nonzero terms. However, since any dX � 1 columns in the matrix X are
linearly independent, it follows that every term in this sum must vanish. So we have

�ideti;j(J) = 0; i 2 I; j 2 J: (4.3)

If i = j 2 J in 4.3, then �i = 0 for each j 2 J . Therefore, at most dX � 2 of the elements �i
are nonzero. Using again that any dX � 2 columns in the matrix X are linearly independent, we
deduce from 4.1 that

�ixr;i = 0; i 2 I; r = 1; 2; : : : ;m: (4.4)

We assumed that some �i is nonzero. From 4.4, it follows that the corresponding column xi in X
must vanish element-wise. This is a contradiction. So, dX�Y � dY +m� 1.
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Now, we will discuss the application of Theorem 4.15 to cyclic codes. Let C be a cyclic code of
length n over Fq, and let m be the multiplicative order of q modulo n. Let B = fj1; j2; : : : ; jlg
be any subset of Zn. We shall say that B is a consecutive set of length l if there exist a nonzero
integer j such that B = fj; j + 1; : : : ; j + l� 1g.
If A = fi1; i2; : : : ; itg � Zn and � is a primitive n-th root of unity in Fqm , then

HA =

0BBB@
1 �i1 �2�i1 : : : �(n�1)�i1

1 �i2 �2�i2 : : : �(n�1)�i2

...
...

1 �it �2�it : : : �(n�1)�it

1CCCA ;

is a t � n matrix over Fqm . Clearly, HA is the parity check matrix for the cyclic code C over Fq
having A as defining set of zeros.

Recall Definition 3.27, let C�(A) be the cyclic code over Fqm with HA as parity check matrix,
and let this code have minimum distance dA. Since C is a subfield sub-code of C�(A), hence the
minimum distance of C is at least dA.

Definition 4.16. Let N and M be subset of Zn. Define N + M = fx + y jx 2 N; y 2 Mg. If
M = fi1; i2; : : : ; itg, where i1 < i2 < : : : < it, then M is defined as the consecutive set with i1 as
the first element and it as last element.

Theorem 4.17. Let C be cyclic code of length n. If A is defining set of C with minimum
distance dA and if B is a subset of Zn such that jBj � jBj + dA � 2, then the minimum
distance of C is at least � � jBj+ dA � 1.

Proof. Using the notation of Theorem 4.15, define Y = HA and X = HB . Then X �Y = HB+A.
Since A is non-empty, dA � 2. Hence, by Theorem 4.17 follows from Theorem 4.15, if in the
matrix HB every jBj � (jBj + dA � 2) sub-matrix has full rank. To complete the proof, we need
to show that the matrix HB has full rank if jBj � jBj + dA � 2 for some consecutive set B
containing B. Note that HB is a sub-matrix of HB , and that in the matrix HB every jBj � jBj
is non-singular, since the determinant of such a matrix is of Vandermonde type. Hence it is clear
that every jBj � jBj sub-matrix of HB has full rank. Since jBj � jBj + dA � 2, this implies that
also every jBj � (jBj+ dA � 2) sub-matrix of HB has full rank.

As immediate result,

Corollary 4.18. Let A, B, and B be as in Theorem 4.17. If A is consecutive, then jBj < jBj+jAj
implies � � jBj+ jAj.

Proof. If A is consecutive set, then dA = jAj + 1. The result follows from Theorem 4.17, by
substitute dA into � � jBj+ dA � 1. This yields � � jBj+ jAj.
Definition 4.19. Let I be a subset of Zn. Let dRoos(I) be the largest number 
 such that there exist
non-empty subsets A and B = fi1; : : : ; itg of Zn and let �B be a consecutive set such that its first
element is i1 and its last element is it with B � B, A + B � Z(C), where A + B = fa + b j a 2
A; b 2 Bg, and jBj � jBj+ dA � 2 = 
 � 1. Let C be a cyclic code of length n. Then dRoos(C) is
denoted by dRoos(I).

Theorem 4.20 (The Roos bound). The minimum distance of a cyclic code C of length n is at
least dRoos(C).
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Proof. This is an immediate consequence of Definition 4.19 and Theorem 4.17.

Proposition 4.21. Let I be a subset of Zn. Then dRoos(I) � dHT (I).

Proof. Let A and B be non-empty consecutive subsets of Zn of size � � 1 and s, respectively. To
be precise, the HT bound is the Roos bound with A = fb+i�a1 j 0 � i � ��2g and B = fj �a2 j 0 �
j � sg. Now dA � 2, and since A is not empty. By Theorem 4.17, dRoos(J) � jBj+ dA� 2. Hence
dRoos(J) � dHT (J).
Remark 4.22. The BCH bound follows from Corollary 4.18 by taking for B the set f1g. Similarly,
the HT bound follows by taking for B a consecutive set. Observe also that Corollary 4.18 improves
HT bound by allowing in the set B the occurrence of jAj�1 holes, instead of B being consecutive.

The following example was taken from [16],

Example 4.23. Let C be the binary cyclic code of length 21 with defining set f1; 3; 7; 9g. The
complete defining set of C is

Z(C) = f1; 2; 3; 4; 6; 7; 8; 9; 11; 12; 14; 15; 16; 18g:

Now take A = f2; 3; 4g. Then dA � 4. Let B = f4j j j = 0; 1; 3; 5g = f0; 4; 12; 20g. Then

A+B = f2; 6; 14; 1g [ f3; 7; 15; 2g [ f4; 8; 16; 3g;

which gives A+B � Z(C), in other words A+B is in the set of zeros of C. So, we have j �Bj = 6 �
jBj+ dA � 2. Thus by the Roos bound, the minimum distance of C is dRoos � jBj+ dA � 1 = 7.

Note that, by the BCH bound, the minimum distance of C is dBCH = 5 and by the HT bound
with b = 6, a1 = 1, a2 = 16, s = 1, and � = 5, the minimum distance of C is dHT = 6.

Theorem 4.24. Let C be a q-ary cyclic code of length n with I � Zn as defining set and let
dBCH , dHT , dHTR, and dRoos be the lower bounds on the minimum distance of C by the BCH
bound, HT bound, HT and Roos bound, and Roos bound, respectively. Then

dBCH(I) � dHT (I) � dHTR(I) � dRoos(I):

Proof. As a consequence of Theorem 4.9, dBCH(I) � dHT (I). As consequence of Proposition
4.11, dHT (I) � dHTR(I). And as a consequence of Theorem 4.21, dHT (I) � dRoos(I).

4.4. AB method

In this section, we will discuss a method of estimating the minimum distance of a cyclic code. The
method is due to J.H. van Lint and R.M. Wilson [20]. Consider a product operation of matrices,

A �B =

0BB@
a11b1 a12b2 : : : a1nbn
a21b1 a22b2 : : : a2nbn
� � : : : �

am1b1 am2b2 : : : amnbn

1CCA ;

where A is a matrix of size m � n with entries aij , for 1 � i � m, 1 � j � n and B is a matrix
with columns b1, b2, : : :, bn. Note that, if a = (a1; a2; : : : ; an) and b = (b1; b2; : : : ; bn), then
a � b = (a1b1; a2b2; : : : ; anbn). Therefore, A �B is a matrix with its rows all the products a � b,
where a is a row of matrix A and b is a row of B.
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Theorem 4.25. If a linear combination, with nonzero coefficients, of the columns of A �B is
0, then

rank(A) + rank(B) � n:

The proof of Theorem 4.25 is due to [19].

Proof. If the coefficients in the linear combination are �j for j = 1; : : : ; n, then multiply column j
by B by �j for j = 1; : : : ; n. This yields a matrix B0 with has the same rank as B. The condition
of the theorem states that every row of A has inner product 0 with every row of B0. Since this
implies that rank(A) + rank(B0) is at most n. And this proves the theorem.

Next, we are going to give a theorem to find the minimum distance of a large number of cyclic
codes. If c is a codeword in a cyclic code, then the support J of c is the set of coordinate positions
j such that cj 6= 0.

Definition 4.26. If M is a matrix with n columns and J � f1; 2; : : : ; ng, then MJ is the sub-matrix
of M consisting of the columns indexed by elements of J .

The following theorem is an immediate corollary of Theorem 4.25.

Theorem 4.27. Let A and B be matrices with entries from the field F, and let A�B be a parity
check matrix for the code C over F. Let c be a codeword. If J is the support of a codeword
c, then

rank(AJ) + rank(BJ) � jJ j:

In particular, C has minimum distance � � if rank(AJ) + rank(BJ) > jJ j for every subset J
of f1; 2; : : : ; ng for which jJ j < �.

Proof. This is an immediate corollary of Theorem 4.25.

For additional reading and proofs of Theorem 4.25 and Theorem 4.27, see [20].

Now, we would like to apply those theorems for the analysis of the minimum distance of cyclic
codes. If I = fi1; : : : ; ilg � Zn and � is a primitive n-th root of unity such that a cyclic code C
of length n

c(x) 2 C , 8j 2 I : c(�j) = 0;

then I is a defining set for C. If I is the maximal defining set for C, then I is called complete.

Definition 4.28. Let � be a primitive n-th root of unity. Let us denote by M(I) be the matrix of
size l by n that has 1, �ik , �2ik , : : :, �(n�1)ik as its k-th row, that is

M(I) =

0BB@
1 �i1 �2i1 : : : �(n�1)i1

1 �i2 �2i2 : : : �(n�1)i2

� � � : : : �
1 �il �2il : : : �(n�1)il

1CCA :

We consider the matrix M(I) as a parity check matrix for a cyclic code C� over Fqm . Now, let
A = M(I1) and B = M(I2). If I1 and I2 are subsets of Zn, then every row of M(I1) �M(I2) is
also a row of M(I1 + I2), see Definition 4.16 for notation I1 + I2.
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Lemma 4.29. If jI2j = � � 1, then M(i; i+ 1; : : : ; i+ � � 2)I2 has rank � � 1.

As a consequence of Lemma 4.29, we have the following corollary,

Corollary 4.30. If i1 < i2 < : : : < ik = i1 + t� 1, and jJ j = t, then M(fi1; : : : ; ikg)J has rank k.

Hence, by Corollary 4.30, if gcd(b; n) = 1 and S = fi1; i2; : : : ; ikg \ fbi; b(i+ 1); : : : ; b(i+ t� 1)g
and jJ j � t, then rank(M(I)J) � jSj. If R is the defining set of a cyclic code, we try to find
suitable sets I1 and I2 such that I1 + I2 � R.

How the above theory can be implemented to determine a lower bound of a cyclic codes is answered
in the following lemma.

Remark 4.31. For J � f1; 2; : : : ; ng,

rank(M(i1; : : : ; ik)J) = rank(M(i1 + j; : : : ; ik + j)J):

Lemma 4.32. Let C be a code with defining set R, and let c 2 C be a codeword with support
contained in I such that c does not belong to the code with defining set R [ fjg. Then for
any set fi1; : : : ; ikg � R we have

rank(M(i1; : : : ; ik; j)I) = 1 + rank(M(i1; : : : ; ik)I):

The proof of Lemma 4.32 can be found in [20]. Using Lemma 4.32, we determine a lower bound of
the minimum distance of cyclic codes based on its defining set. The following example was taken
from Example 6 of [20].

Example 4.33. Let C be the binary cyclic code of length 51 with generator g(x) = m1(x)m3(x)m19(x).
The complete defining set of code C is

R = fi j i = 1; 2; 3; 4; 6; 8; 12; 13; 16; 19; 24; 25; 26; 27; 32; 35; 38; 39; 43; 45; 47; 48; 49; 50g:

We wish to show that C has minimum distance of d � 9.

(1) Suppose we add zero to the set R, then we have nine consecutive elements in R. By the BCH
bound, we get that the minimum distance of the even weight subcode of C is at least 10.

(2) The set R contains A = fi j i = 1; 2; 3; 4g and B = fj j j = 0; 23; 46g. Hence by the HT
bound, we get the minimum distance d � 7. We will show this by contradiction. Suppose jJ j = 7

and let J be the support of a codeword in C of minimum weight. Note that, if we add 5 into
R, then we have to add 5 � 25 mod 51 = 7 into R. It means that in R, we have eight consecutive
elements. And by the BCH bound, it yields that J is not the support of the codeword with R[f5g
as defining set.

We will apply Lemma 4.32 and Remark 4.31;

rank(M(1; 2; 3; 4; 24)J) = rank(M(2; 3; 4; 5; 25)J)

= 1 + rank(M(2; 3; 4; 25)J)

= 1 + rank(M(3; 4; 5; 26)J)

= 2 + rank(M(3; 4; 26)J)

= 2 + rank(M(4; 5; 27)J)

= 3 + rank(M(4; 27)J)

= 5:
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If we take A = fi j i = 1; 2; 3; 4; 24g and B = fj j j = 0; 23; 46g, then rank of M(B)I is equal to 3
by Lemma 4.29. Hence, we have rank(M(A)J) + rank(M(B)J) = 5 + 3 = 8 > jJ j = 7. This is
a contradiction with Theorem 4.27. It means that there is a codeword in C of minimum weight
strictly greater than 7. If a codeword has weight 8, then it is an element of the even weight
subcode. We know that the even weight subcode has minimum distance d � 10 by (1). So, the
minimum distance is at least 9.

Example 4.33 shows us a method to determine the lower bound of minimum distance of cyclic
codes. This method called shifting.

4.5. Algorithms computing the bounds

In this section, we discuss the algorithm that we implemented in C++ to compute the bounds.
Let C be a q-ary cyclic code of length n with complete defining set Z(C).

4.5.1 The BCH bound

Recall the Definition 4.1 that a cyclic code C of length n and designed distance � is the largest
possible cyclic code having zeros �b, �b+1, : : :, �b+��2, where � 2 Fqm is a primitive n-th root of
unity, b is a non-negative integer, and m is the multiplicative order q modulo n. The minimum
distance of C is at least �.

The algorithm to compute the lower bound on the minimum distance of cyclic codes based on the
BCH bound is follows directly from Definition 4.3 and Theorem 4.4. The following algorithm has
been implemented in C++ and tested on q-ary cyclic codes of various length.

Algorithm 1 BCH bound
1: procedure BCH(n; q; Z(C))
2: dBCH  0;
3: for b 2 Z+n do
4: for a, where gcd(a; n) = 1 do
5: i 0;
6: repeat
7: tmp n b+ i � a;
8: i i+ 1;
9: until tmp 62 Z(C) AND i � n ;

10: �  i+ 1;
11: if � � 1 > dBCH then
12: dBCH  � � 1;
13: end if
14: end for
15: end for
16: return dBCH . The BCH bound
17: end procedure

4.5.2 The HT bound

Given Z(C), compute tmp = b + i � a1 + j � a2 such that tmp 2 Z(C) for i = 0; 1; 2; 3; : : : ; � � 2

and j = 0; 1; 2; : : : ; s with gcd(n; a1) = 1 and gcd(n; a2) = 1, where b 2 Z+n . The algorithm to
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compute lower bound on the minimum distance of cyclic codes based on the HT bound follows
directly from Definition 4.7 and Theorem 4.8. The following algorithm has been implemented in
C++ and tested on q-ary cyclic codes of various length.

Algorithm 2 HT bound
1: procedure HT(n; q; Z(C))
2: dHT  0;
3: for b 2 Z+n do
4: for a1, where gcd(a1; n) = 1 do
5: i 0;
6: repeat
7: tmp n b+ i � a1;
8: i i+ 1;
9: until tmp 62 Z(C) AND i � n ;

10: �  i+ 1;
11: while � > 2 do
12: for a2, with gcd(a2; n) = 1 do
13: vtmp ;;
14: while vtmp � Z(C) do
15: j  0

16: for i 0; 1; 2; : : : ; � � 2 do
17: tmp n b+ i � a1 + j � a2;
18: vtmp vtmp [ ftmpg;
19: end for
20: j  j + 1;
21: end while
22: s j � 1;
23: if � + s > dHT then
24: dHT  � + s;
25: end if
26: end for
27: �  � � 1;
28: end while
29: end for
30: end for
31: return dHT . The HT bound
32: end procedure

4.5.3 The HT-Roos bound

The HT-Roos bound is an improvement of the HT bound by C. Roos in [15]. The original HT
bound considers that a1 and a2 must relatively prime to n. In the HT-Roos bound considers
that gcd(n; a1) = 1, but gcd(n; a2) < �. The algorithm to compute lower bound on the minimum
distance of cyclic codes based on the HT-Roos bound follows directly from the Definition 4.12 and
Theorem 4.13. The following algorithm has been implemented in C++ and tested on q-ary cyclic
codes of various length.
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Algorithm 3 HTR bound
1: procedure HTR(n; q; Z(C))
2: dHTR  0;
3: for b 2 Z+n do
4: for a1, where gcd(a1; n) = 1 do
5: i 0;
6: repeat
7: tmp n b+ i � a1;
8: i i+ 1;
9: until tmp 62 Z(C) AND i � n ;

10: �  i+ 1;
11: while � > 2 do
12: for a2, with gcd(a2; n) < � do
13: vtmp ;;
14: while vtmp � Z(C) do
15: j  0

16: for i 0; 1; 2; : : : ; � � 2 do
17: tmp n b+ i � a1 + j � a2;
18: vtmp vtmp [ ftmpg;
19: end for
20: j  j + 1;
21: end while
22: s j � 1;
23: if � + s > dHTR then
24: dHTR  � + s;
25: end if
26: end for
27: �  � � 1;
28: end while
29: end for
30: end for
31: return dHTR . The HT-Roos bound
32: end procedure

4.5.4 The Roos bound

Let A be subset of Zn, and let HA be a parity check matrix for C having A as defining set of
zeros. The minimum distance of C will be denoted as dA.

Let B = fi1; i2; : : : ; itg be another subset of Zn and let �B be a consecutive set with the first element
of �B is equal to i1 and the last element of �B is equal to it, i.e. �B = fi1; i1+1; : : : ; i1+ t� 1 = itg.
By Theorem 4.17, if B � Zn and there exist a consecutive set �B with j �Bj � jBj + dA � 2, then
the minimum distance of C is at least jBj+ dA � 1.

In general, to compute dA is not an easy task. We need to build the parity check matrix HA

and then compute the rank of HA. The rank of the parity check matrix determined how many
columns of the matrix that are linearly independent. Let dA be the maximum number such that
dA � 1 columns of HA are linearly independent. By Theorem 3.28, the minimum distance of C
with defining set A is dA.
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Our implementation on the Roos bound is based on Corollary 4.18, which is assuming that A is
a consecutive defining set. By the BCH bound, dA = jAj+ 1. Given Z(C), compute consecutive
element set A. And for each A, compute B such that A + B � Z(C) with j �Bj � jBj + dA � 2,
where �B is a consecutive element set with its first element is the first element of B and its last
element is the last element of B, in other words, �B is a consecutive element set such that B � �B.
By the Roos bound, the minimum distance of C is dROOS � jBj + dA � 1. Note that, since we
take A such that A is consecutive, this means dROOS is the lower bound of the Roos bound. The
algorithm to compute the minimum distance of cyclic codes based on the Roos bound is directly
follows from Definition 4.19 and Theorem 4.20.
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Algorithm 4 Roos bound
1: procedure Roos(n; q; Z(C))
2: dROOS  0;
3: for b 2 Z(C) do
4: for a1, where gcd(a1; n) = 1 do
5: i 0;
6: dA  0;
7: A ;;
8: repeat
9: tmp n b+ i � a1;

10: A A [ ftmpg;
11: i i+ 1;
12: until tmp 2 Z(C) AND i � n ;
13: while A 6= ; do
14: dA  jAj+ 1;
15: for a2, where gcd(a2; n) = 1 do
16: B  ;;
17: J  ;;
18: j  0;
19: while j < n do
20: for a 2 A do
21: tmp2 n j � a2;
22: tmp3 n a+ tmp2;
23: if tmp3 2 Z(C) then
24: B  B [ ftmp2g;
25: J  J [ fjg;
26: end if
27: end for
28: j  j + 1;
29: end while
30: if J = ; then
31: dROOS  dA;
32: else
33: 4 maxfJg �minfJg;
34: if 4 � jBj+ dA � 2 AND jBj+ jAj > dROOS then
35: dROOS  jBj+ dA � 1;
36: end if
37: end if
38: end for
39: Remove the last element of A;
40: end while
41: end for
42: end for
43: return dROOS ; . The Roos bound
44: end procedure
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5
The Shift bound

In this chapter, we discuss a different approach on determining a lower bound on the minimum
distance of the cyclic codes due to T. Kasami [9], J.H. van Lint and R.M. Wilson [20]. In their
paper [20], they proposed two methods on determining a lower bound on the minimum distance
of cyclic codes, namely the AB method which is already discussed in Chapter 4 and the Shift
bound, which will be discussed in this chapter. Also we give our contribution on an algorithm to
compute the Shift bound.

5.1. Independent set

We describe the concept of an independent set.

Definition 5.1. Let Z be a subset of an abelian group (G, +). Inductively we define a family of
subsets of G, which we call independent with respect to Z, as follows:

1. ; is independent with respect to Z.

2. If A is independent with respect to Z, and A � Z, with b 62 Z, then A[ f bg is independent
with respect to Z.

3. If A is independent with respect to Z, and c 2 G, then c+A is independent with respect to
Z, where c+ A = f c+ a j a 2 Ag.

Remark 5.2. In the third item A is shifted to c+ A.

Theorem 5.3. Let f(x) 2 F[x]=(xn � 1) be a polynomial with coefficients in F, and let Z(f) =
f i 2 Zn j f(�i) = 0g, where � is primitive n-th root of unity in an extension field of F. Then
the weight of f(x) satisfies

wt(f(x)) � jAj;

for every subset A of Zn that is independent with respect to Z(f).

The proof was taken from [20].
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Proof. Let f(x) be a polynomial with coefficients in F and let be written as follows:

f(x) = �1x
i1 + : : :+ �kx

ik ;

where �i 6= 0 for all 1 � i � k, hence wt(f(x)) = k. Define the set of vectors

V (A) = f(ai1 ; : : : ; aik) j a = �i; i 2 Ag:

To prove the theorem, we will show that if A is an independent set with respect to Z, then the
vectors in the set V (A) are distinct and linearly independent over F. We will use induction to
show it.

1. By definition of independent set, if A = ;, then A is independent with respect to Z. So, the
assertion is true if A = ;.

2. Suppose the vectors in V (A) are linearly independent with respect to Z and A � Z. Let
j 62 Z and b = �j . By definition, the set A [ fjg is an independent set with respect to Z.
Note that, f(�i) = 0 for all i 2 A and f(�j) 6= 0 since j 62 Z.

The inner product of the vector (�1; : : : ; �k) with the vectors in V (A) is equal to zero, but
the inner product of the vector (�1; : : : ; �k) with (�j�i1 ; : : : ; �j�ik) is equal to f(�j) and not
zero. Hence, vector (�j�i1 ; : : : ; �j�ik) is not in the span of V (A), and thus the vectors in
V (A [ fjg) are linearly independent.

3. Suppose the vectors in V (A) are linearly independent. Let i 2 Zn and c = �i. By the
linear transformation of V (A) with matrix diag(ci1 ; : : : ; cik), shows that V (i+A) consists of
linearly independent vectors.

Remark 5.4. Let I be a subset of Zn. The Fqm -linear code C�(I) is defined by

C�(I) =

(
(c0; c1; : : : ; cn�1) 2 Fnqm

���� n�1X
k=0

ck�
j�k = 0 for all j 2 I

)
:

Let C(I) be the Fq-linear subfield subcode with C(I) = C�(I) \ Fnq . The codes C�(I) and C(I)

are cyclic with defining set I. The code C(I [ fjg) is contained in C(I) for every j 2 Zn. Let
I� be the union of the cyclotomic cosets of j 2 I. Then C(I) = C(I [ fjg) for all j 2 I�. Hence
I � I� and C(I) = C(I�). Then I� is the complete defining set of C(I), and we call I complete if
I = I�.

Definition 5.5. For a subset R of Zn, let n(R) be the maximal size of a set which is independent
with respect to R. Define the shift bound for a subset J of Zn as follows :

dshift(J) = minfn(R) j J � R � Zn and R� = R 6= Zng;

where R� follows from definition in Remark 5.4.

Theorem 5.6. The minimum distance of C(J) is at least dshift(J).

Proof. This is an immediate consequence of Definition 5.5 and Theorem 5.3.

42
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To understand how the Theorem 5.3 works, we will illustrate how to find the shift bound given
the zeros of the codewords, i.e. how to construct a sequence of independent sets. For simplicity,
we will consider binary cyclic codes. The example was taken from [20], but the sequence of
independence sets is a result of our program.

Example 5.7 (the Binary Golay Code). See Example 7 of [20]. Consider the binary cyclic code C
of length 23 with generator g(x) = m1(x). The complete defining set is

Z(C) = f 1; 2; 3; 4; 6; 8; 9; 12; 13; 16; 18g:

Observe,

x23 � 1 = (x� 1)m1(x)m5(x):

Let f(x) 2 C, and let Z(f) = f i 2 Z23jf(�i) = 0g. If m5(x) divides f(x), then either f(x) = 0 or
f(x) = m1(x)m5(x), which has weight 23. Therefore, we may assume that m5(x) does not divide
f(x), hence Z(f) does not contain the zeros of m5(x). Construct a sequence A0, A1, A2, : : : of
subsets of Z23 that are independent with respect to Z(C). A sequence of independent sets is as
follows : for each i > 0, ai + Ai � Z(C), bi 62 Z(C), and Ai+1 = (ai + Ai) [ f big :

A0 = ;
a0 = 0 ; b0 = 0 �! A1 = f 0 g
a1 = 1 ; b1 = 0 �! A2 = f 1; 0 g
a2 = 1 ; b2 = 5 �! A3 = f 2; 1; 5 g
a3 = 7 ; b3 = 22 �! A4 = f 9; 8; 12; 22 g
a4 = 4 ; b4 = 0 �! A5 = f 13; 12; 16; 3; 0 g
a5 = 13 ; b5 = 22 �! A6 = f 3; 2; 6; 16; 13; 22 g

So, n(Z(C)) � 6. In fact the algorithm of Section 5.2 gives that equality holds.

Let C0 be a sub-code of C by adding 0 into Z(C), i.e. ZC0 = Z(C) [ f0g. Construct a sequence
of independent sets as follows : for each i > 0, ai + Ai � Z(C0), bi 62 Z(C0), and Ai+1 =

(ai + Ai) [ f big :

A0 = ;
a0 = 0 ; b0 = 5 �! A1 = f 5 g
a1 = 1 ; b1 = 5 �! A2 = f 6; 5 g
a2 = 19 ; b2 = 5 �! A3 = f 2; 1; 5 g
a3 = 11 ; b3 = 5 �! A4 = f 13; 12; 16; 5 g
a4 = 11 ; b4 = 10 �! A5 = f 1; 0; 4; 16; 10 g
a5 = 2 ; b5 = 7 �! A6 = f 3; 2; 6; 18; 12; 7 g
a6 = 6 ; b6 = 5 �! A7 = f 9; 8; 12; 1; 18; 13; 5 g

So, n(Z(C0)) � 7. In fact the algorithm of Section 5.2 gives equality.

Let C5 be a sub-code of C by the cyclotomic coset C5 into Z(C), i.e. ZC5 = Z(C)[C5. Construct
a sequence of independent sets as follows : for each i > 0, ai + Ai � Z(C5), bi 62 Z(C5), and
Ai+1 = (ai + Ai) [ f big . And we get, bi = 0 and ai = 1, for i = 0; : : : ; 22. So, n(Z(C5)) = 23.

By Definition 5.5,

dshift(C) = minfn(Z(C)); n(Z(C0)); n(Z(C5))g;
= minf6; 7; 23g
= 6:
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By Theorem 5.6, the minimum distance of C is at least 6.

It follows from theorem 5.3, that wt(f(x)) � jA6j = 6. If wt(f) = 6, then (x � 1)jf(x), i.e.
0 2 Z(f). Next, construct a sequence of independent sets with respect to Z(C) [ f0g of size 7,
then A7 is an independent set with respect to Z(f), which contradicts Theorem 5.3. It follows
that wt(f) � 7. In fact, the true minimum distance of this code is d = 7, and this code is called
the binary Golay code and has parameters [23,12,7].

Theorem 5.8. dHT � dshift:

Proof. We refer to [12] Proposition 2.8.

Example 5.9. Let C be a binary cyclic code of length 23 with defining set f1g. From Example 5.7,
we get dshift = 7. Let A = f1; 2; 3; 4g, hence dA = 5. Let choose a2 = 1 and B = fa2 � j j j = 0g,
hence �B = f0g which satisfy j �Bj � jBj+ dA� 2. By the Roos bound, the minimum distance of C
is dRoos � 1 + 5� 1 = 5.

In this case, we have dshift > dRoos.

We refer to Example 26.7 of M. van Eupen and J.H. van Lint [18].

Example 5.10. Let C be a ternary cyclic code of length 26 with the complete defining set Z(C) =

f0; 13; 14; 16; 17; 22; 23; 25g. Construct a sequence of independent set with respect to Z(C) as
follows : for each i > 0, ai + Ai � Z(C), bi 62 Z(C), and Ai+1 = (ai + Ai) [ f big,

A0 = ;
a0 = 0 ; b0 = 1 �! A1 = f 1 g
a1 = 25 ; b1 = 1 �! A2 = f 0; 1 g
a2 = 25 ; b2 = 2 �! A3 = f 25; 0; 2 g
a3 = 14 ; b3 = 4 �! A4 = f 13; 14; 16; 4 g
a4 = 9 ; b4 = 1 �! A5 = f 22; 23; 25; 13; 1 g

So, the maximum size of independent set with respect to Z(C) is at least 5. Our algorithm gives
that it is exactly 5. We also compute the maximum size of independent sets for all sub-codes
of C. As summary, the minimum distance of C based on the Shift bound is dshift = 5. Let
A = f13; 14g, hence dA = jAj + 1. Let choose a2 = 3, and B = fa2 � j j j = 0; 1; 3; 4g, hence
�B = f0; 1; 2; 3; 4g, which satisfies j �Bj � jBj+ dA � 2. By the Roos bound, the minimum distance
of C is dRoos � 3 + 4� 1 = 6. In this case, we have dshift < dRoos.

Example 5.11. Let C and D be 7-ary cyclic codes of length 6 with defining sets f2; 4g and f0; 2; 4g,
respectively. Construct sequences of independent sets with respect to Z(C) as follows; for each
i > 0, ai + Ai � Z(C), bi 62 Z(C), and Ai+1 = (ai + Ai) [ f big,

A0 = ;
a0 = 0 ; b0 = 0 �! A1 = f 0 g
a1 = 2 ; b1 = 0 �! A2 = f 2; 0 g
a2 = 2 ; b2 = 1 �! A3 = f 4; 2; 1 g

So, n(C) � 3. Construct sequences of independent sets with respect to Z(D) as follows; for each
i > 0, ai + Ai � Z(D), bi 62 Z(D), and Ai+1 = (ai + Ai) [ f big,

A0 = ;
a0 = 0 ; b0 = 1 �! A1 = f 1 g
a1 = 1 ; b1 = 1 �! A2 = f 2; 1 g
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So, n(D) � 2. We have n(C) > n(D), but D � C. Hence it is necessary to take the minimum in
Definition 5.5.

The complete factorization of x6 � 1 over F7[x] is given by

(1 + x)(2 + x)(3 + x)(4 + x)(5 + x)(6 + x):

Let � be the primitive of 7-th of unity and it is the zero of minimal polynomial 2+ x. Then �2 is
the zero of minimal polynomial 3+ x and �4 is the zero of minimal polynomial 5+ x. Hence, the
generator polynomial of C is (x+ 3)(x+ 5) = x2 + x+ 1, which has weight 3, and the generator
polynomial of D is (x+ 6)(x+ 3)(x+ 5) = x3 + 6, which has weight 2.

Another example that it is necessary to take the minimum in Definition 5.5.

Example 5.12. Let C be the binary cyclic code of length 21 with defining set f1; 3; 7; 9g. Construct
sequences of independent sets with respect to Z(C) as follows; for each i > 0, ai + Ai � Z(C),
bi 62 Z(D), and Ai+1 = (ai + Ai) [ f big,

A0 = ;
a0 = 0 ; b0 = 0 �! A1 = f 0 g
a1 = 14 ; b1 = 0 �! A2 = f 14; 0 g
a2 = 14 ; b2 = 0 �! A3 = f 7; 14; 0 g
a3 = 1 ; b3 = 0 �! A4 = f 8; 15; 1; 0 g
a4 = 1 ; b4 = 5 �! A5 = f 9; 16; 2; 1; 5 g
a5 = 6 ; b5 = 5 �! A6 = f 15; 1; 8; 7; 11; 5 g
a6 = 1 ; b6 = 0 �! A7 = f 16; 2; 9; 8; 12; 6; 0 g
a7 = 16 ; b7 = 17 �! A8 = f 11; 18; 4; 3; 7; 1; 16; 17 g
a8 = 11 ; b8 = 20 �! A9 = f 1; 8; 15; 14; 18; 12; 6; 7; 20 g

So, n(Z(C)) � 9. Our algorithm gives that it is exactly 9. Let C0 be the sub-code of C by adding
0 into the defining set of C. Construct sequences of independent sets with respect to Z(C) as
follows; for each i > 0, ai + Ai � Z(C), bi 62 Z(D), and Ai+1 = (ai + Ai) [ f big,

A0 = ;
a0 = 0 ; b0 = 5 �! A1 = f 5 g
a1 = 7 ; b1 = 5 �! A2 = f 12; 5 g
a2 = 4 ; b2 = 5 �! A3 = f 16; 9; 5 g
a3 = 20 ; b3 = 13 �! A4 = f 15; 8; 4; 13 g
a4 = 20 ; b4 = 5 �! A5 = f 14; 7; 3; 12; 5 g
a5 = 9 ; b5 = 13 �! A6 = f 2; 16; 12; 0; 14; 13 g
a6 = 2 ; b6 = 10 �! A7 = f 4; 18; 14; 2; 16; 15; 10 g
a7 = 14 ; b7 = 20 �! A8 = f 18; 11; 7; 16; 9; 8; 3; 20 g

So, n(Z(C0)) � 8. Our algorithm gives that it is exactly 8. We n(Z(C)) > n(Z(C0)), but C0 � C.
Hence by Definition 5.5, dshift = minfn(Z(C)); n(Z(C0)); n(Z(C5)); n(ZC0;5)g = 8. In fact, the
minimum distance of C is 8.
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5.2. Algorithm to compute the Shift bound

5.2.1 Problem formulation

Now, we give an explanation on how to construct a sequence of independent sets. Let C be a
cyclic code of length n with complete defining set Z(C), where

Z(C) = fi 2 Zn j c(�i) = 0 for all c(x) 2 Cg:
Definition 5.13. Let

N(C) = fi 2 Zn j c(�i) 6= 0 for some c(x) 2 Cg = Zn n Z(C):

Then

Zn = Z(C) [N(C):

Our goal is to determine the lower bound dshift on the minimum distance for cyclic codes C using
Theorem 5.6. As already explained in Section 5.1, we will use the concept of independent set,
which is the same as shifting. Recall and rewrite Definition 5.1 of independent set in terms of
cyclic codes.

Definition 5.14. Let Z(C) be a subset of an abelian group (G, +). Inductively we define a family
of subsets of G, which we call independent with respect to Z(C), as follows:

1. ; is independent with respect to Z(C).

2. If A is independent with respect to Z(C), and A � Z(C), with b 2 N(C), then A [ f bg is
independent with respect to Z(C).

3. If A is independent with respect to Z(C), and c 2 G, then c+A is independent with respect
to Z(C), where c+ A = f c+ a j a 2 Ag.

In order to determine the lower bound on the minimum distance of a cyclic codes, we need to find
a sequence (A0; A1; A2; : : : ; Ai), where A0; A1; A2; : : : ; Ai, with jA0j = 0 and jAk+1j = jAkj+1 for
k = 1; 2; : : : ; i, are independent sets with respect to Z(C) for each i > 0. Furthermore, we are
searching for the maximum size of the sequence of independent sets.

Definition 5.15. Let C be a cyclic code of length n with complete defining set Z(C). Let A be an
independent set with respect to Z(C). We define SA as the set of shift elements of set A by

SA = fx 2 Zn jx+ A � Z(C)g:

The idea of constructing a sequence of independent sets is as follows;

Step 1. If A = ;, then by Definition 5.14 point 1, A is an independent set. And since A = ; �
Z(C). If b 2 N(C), then by Definition 5.14 point 2, A [ fbg = fbg is an independent set
with respect to Z(C).

Step 2. If A 6= ; is an independent set, and A 6� Z(C), then in order to extend the sequence, we
can not directly apply Definition 5.14 point 2. There are two cases to consider;
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1. If SA = ;, then there is no a 2 SA, such that a + A � Z(C). So, we can not apply
Definition 5.14 point 2 to extend A. In this case, A is maximal.

2. If SA 6= ;, then there is a 2 SA, such that a + A � Z(C). By Definition 5.14 point 3,
a + A is an independent set with respect to Z(C). And then we can apply Definition
5.14 point 2, such that (a+ A) [ fbg is also an independent set with respect to Z(C),
where b 2 N(C).

Lemma 5.16. S�a+X = a+ SX

Proof. Let Y = �a+X. Then

s 2 SY , s+ Y � Z(C);

, s+ (�a+X) � Z(C);

, (s� a) +X � Z(C);

, s� a 2 SX ;

, s 2 a+ SX :

So, SY = a+ SX . And hence, S�a+X = a+ SX

Lemma 5.17. Let C be a cyclic code of length n with complete defining set Z(C). Let A be an
independent set with respect to Z(C). If a 2 SA, b 62 Z(C), then A and eA are independent
sets with respect to Z(C), where A = (a + A) [ fbg and eA = A [ fb � ag. Furthermore,
S �A = (SA � a) \ Sfbg and SeA = SA \ (Sfbg + a).

Proof. If A is an independent set with respect to Z(C), then by Definition 5.14 point 3, set a+A
is also an independent set with respect to Z(C), with a 2 SA such that a + A � Z(C). And
since a + A is an independent set with respect to Z(C), hence by Definition 5.14 point 2, for all
b 62 Z(C),

A = (a+ A) [ fbg

is also an independent set with respect to Z(C). We can write the above equation as

A� a = A [ fb� ag = ~A:

Hence eA is also an independent set with respect to Z(C). And by Lemma 5.16, we have that

S ~A = a+ S �A:

And since ~A = A [ fb� ag, obviously,

SeA = SA \ Sfb�ag
= SA \ (Sfbg + a):

Remark 5.18. There are several important points here to be made;

1. If A is an independent set with respect to Z(C) with SA is the set of shift element of A,
then eA is also an independent set with respect to Z(C) with SeA = SA \ Sfb�ag.
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2. Because A is an independent set with respect to Z(C), hence A = (a + A) [ fbg, a 2 SA,
b 62 Z(C) is the only way to make an independent set from A. Moreover, we can get A fromeA, by A = eA+ a, where a 2 SA.

To construct a sequence of independent set with respect to Z(C), we start with a set A0 = ;, and
then we apply Lemma 5.17 iteratively. We summarize the statement in the following Table 5.1;

A0 = ;
a0 2 SA0

b0 62 Z(C) A1 = (a0 + A0) [ fb0g
a1 2 SA1

= SA0
\ Sb0 b1 62 Z(C) A2 = (a1 + A1) [ fb1g

a2 2 SA2
= (SA1

� a1) \ Sb1 b2 62 Z(C) A3 = (a2 + A2) [ fb2g
a3 2 SA3

= (SA2
� a2) \ Sb2 b3 62 Z(C) A4 = (a3 + A3) [ fb3g

...
ai�2 2 SAi�2

= (SAi�3
� ai�3) \ Sbi�3 bi�2 62 Z(C) Ai�1 = (ai�2 + Ai�2) [ fbi�2g

ai�1 2 SAi�1
= (SAi�2

� ai�2) \ Sbi�2 bi�1 62 Z(C) Ai = (ai�1 + Ai�1) [ fbi�1g
SAi

= ;

Table 5.1: Construction of a sequence of independent sets.

Thus, the sequence A0; A1; A2; A3; : : : ; Ai�1; Ai is a sequence of independent sets with respect to
Z(C).

Remark 5.19. From now on, instead of giving Table 5.1 in constructing a sequence of independent
sets, we will use the following diagram to show a sequence of independent sets:

; fa0;b0g�����! : : :
fak�1;bk�1g��������! Ak = (ak�1 + Ak�1) [ fbk�1g fak;bkg�����! : : :

fai�1;bi�1g�������! Ai;

for all k = 1; 2; : : : ; i.

To understand how to find sequence of independent set, we will illustrate the above explanation
in an example. We will try to show the above result in the following example. See also Example
7 of [20] and Example 5.7.

Example 5.20. Let C be a binary cyclic code of length 23 with defining set {1}. Then the complete
defining set is

Z(C) = f1; 2; 4; 6; 8; 9; 12; 13; 16; 18g:

Hence, the non-zeros of C is

N(C) = Z23 n Z(C) = f0; 3; 5; 7; 10; 11; 14; 15; 17; 19; 20; 21; 22g:

We start with an empty set. By Definition 5.14 point 1, A0 = ; is an independent set with respect
to Z(C).

Since A0 � Z(C), hence by applying Definition 5.14 point 2 to set A0, we try to extend our
sequence. Choose b0 = 0 2 N(C). Thus A1 = A0 [ fb0g = f0g.
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Since A1 6� Z(C), we must first apply Definition 5.14 point 3 to shift A1. For A1 = f0g, the set
of shift elements set of A1 is determine by

SA1
= f1; 2; 3; 4; 6; 8; 9; 12; 13; 16; 18g:

By Definition 5.14 point 3, if A1 is an independent set, then a1 + A1 is also an independent set.

Choose a1 = 1 2 SA1
, hence a1+A1 = 1+ f0g = f1g � Z(C). Then we can apply Definition 5.14

point 2 to extend our sequence. Choose b1 = 0 2 N(C). Thus, we get A2 = (a1 + A1) [ fb1g =
f1; 0g.
With the same treatment as A1, set A2 6� Z(C), so first we must apply Definition 5.14 point 3 to
shift A2. For A2 = f1; 0gZ(C), the set of shift elements set of A2 is

SA2
= (SA1

� a1) \ Sb1
= f0; 1; 2; 3; 5; 7; 8; 11; 12; 15; 17g \ f1; 2; 3; 4; 6; 8; 9; 12; 13; 16; 18g
= f1; 2; 3; 8; 12g:

Choose a2 = 1 2 SA2
, hence a2 + A2 = 1 + f1; 0g = f2; 1g � Z(C). Next, we apply Definition

5.14 point 2, and choose b3 = 5 2 N(C), hence A3 = (a2 + A2) [ fb3g = f2; 1; 5g.
For A3, the set of shift elements is

SA3
= (SA2

� a2) \ Sb2 = f1; 7; 11g:

Choose a3 = 7 2 SA3
, hence a3 + A3 = f9; 8; 12g � Z(C). Choose b3 = 22 2 N(C), we get

A4 = (a3 + A3) [ fb3g = f9; 8; 12; 22g.
For A4, the set of shift elements is

SA4
= (SA3

� a3) \ Sb3 = f4; 17g:

Choose a4 = 4 2 SA4
, hence a4 + A4 = f13; 12; 16; 3g � Z(C). Let b4 = 0 62 Z(C), then

A5 = (a4 + A4) [ fb4g = {13, 12, 16, 3, 0}.

For A5, then the set of shift elements is

SA5
= (SA4

� a4) \ Sb4 = f13g:

Let a5 = 13 2 SA5
, hence a5 + A5 = f3; 2; 6; 16; 13g � Z(C). Let b5 = 22 2 N(C), we get

A6 = (a5 + A5) [ fb5g = {3, 2, 6, 16, 13, 22}. For A6, the set of shift elements is

SA6
= (SA5

� a5) \ Sb5 = ;:

Since SA6
= ;, we can not continue. So the maximum size of independent set in the sequence is

6.

5.2.2 Backtracking algorithm

Recall the construction of a sequence of independent sets, as can be seen in Table 5.1. Let S be the
solution space for the Shift bound problem. A solution for the Shift bound problem for the cyclic
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code C is a sequence A0; A1; A2; : : : ; Ai�1; Ai, of independent sets with respect to Z(C). Different
choices of ai’s in SAi

and bi’s in N(C) lead to different independent sets. Different independent
sets yields different sequences of independent sets. An algorithm that is suitable for this kind of
problem is a backtracking algorithm. Because a backtracking algorithm systematically searches
solutions through all possible options in the solution space.

Assume that a solution can be formulated as a vector of independent sets. Let (A1; : : : ; Ai) be a
vector where each independent set Ai is selected from a finite set Si, where Si is a subset of S.
If Si is the domain of Ai, then S = S1 [ S2 [ : : : [ Sm is the solution space of the problem, see
Figure 5.1. A backtracking algorithm runs by traversing the domain of the vectors until it finds
the solutions. When invoked, the algorithm starts with an empty vector. And at each stage, the

Figure 5.1: Solution space

algorithm extends the partial vector with a new independent set by applying Lemma 5.17. Upon
reaching a partial vector (A1; A2; : : : ; Ai), if this vector does not represents a partial solution, then
the algorithm removes the trailing independent set from the vector and then proceeds by trying
to extend the vector with new alternative independent set.

The following is a general backtracking algorithm as mentioned in [7].

Algorithm 5 A general backtracking algorithm
1: procedure Backtrack(x = (A0; A1; A2; : : : ; Ai�1; Ai))
2: if (A0; A1; A2; : : : ; Ai�1; Ai) is solution then
3: return (A0; A1; A2; : : : ; Ai�1; Ai)

4: end if
5: for each v do
6: if (A0; A1; A2; : : : ; Ai�1; Ai) is a sequence of independent sets then
7: solution = backtrack( (A0; A1; A2; : : : ; Ai�1; Ai; v) )
8: if solution 6= ; then
9: return solution

10: end if
11: end if
12: end for
13: end procedure

We introduce a notion directed graph.
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Remark 5.21. We borrowed notation from [4], and [6]. A directed graph or digraph is a pair
D = (V;A), where V the set of vertices and A consists of ordered pairs (u; v) of vertices. We call
them arcs and denote them by ~uv. We say the arc goes from u to v, leaves u, enters v, and call u
the tail and v the head of the arc ~uv. There may be more than one arc from a vertex u to a vertex
v. For each subset U � V, �in(U) = f ~uv 2 A ju 62 U; v 2 Ug, and �out = f ~uv 2 A ju 2 U; v 62 Ug.

Adapting Remark 5.21 into the Shift bound problem as follows;

Remark 5.22. Each node in the digraph represents an independent set with respect to Z(C).

Remark 5.23. Each arc in the digraph is defined as the following relation (see also Figure 5.2);

Ai+1 = (ai + Ai) [ fbig; where ai 2 SAi
; bi 62 Z(C)

SAi+1
= (SAi

� ai) \ Sbi ,

Table 5.2: Definition of arc in the Shift bound problem.

Figure 5.2: Arc

Let D = (V;A) be a directed graph that has properties as mentioned in Remark 5.22 and Remark
5.23. Let e = (u; v) be an arc in A where u; v 2 V. By Remark 5.23, u is a tail of e that contain
Ai and v is a head of e that contain Ai+1. As consequence of Remark 5.22 and Remark 5.23, the
Shift bound problem can be modeled as a directed acyclic graph. A directed acyclic graph or
DAG is a directed graph with no directed cycle. It is also a generalization of tree.

Remark 5.24. We borrowed notations and definition from [17] and [10]. A tree is a computer data
structure that emulates a tree structure with a set of linked nodes. Each node has zero or more
child or successor node. A node that has a child is called the child’s parent or predecessor node.
The top most node in a tree is called the root node. Being the top most node, the root node will
not have parent. Nodes at the bottom most level of the tree are called leaf nodes. Since they are
at the bottom most level, they will not have any children. Since a tree does not contain a cycle
and every child has at most one parent, hence it is a special case of a graph.

In the Shift bound problem, we will see that a node have predecessor more than one, except the
root node. So instead of using the tree as a model for the Shift bound problem, we will use DAG
as a model to the Shift bound problem. We also adapt terms that mentioned in Remark 5.24 for
the DAG of the Shift bound problem.

Each node in DAG represents a partial solution to the Shift bound problem. By Remark 5.22,
each node represents an independent set with respect to Z(C). So, if A0 = ; is an independent
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set with respect to Z(C), then A0 can be represented by the root node. Similarly, in the Shift
bound, there is unique root node.

To solve the Shift bound problem, we must construct a sequence of independent sets A0, A1, : : :,
Aw for w > 0 such that Saw = ;, by applying Lemma 5.17 recursively. When SAw

= ; for w > 0,
Aw is represented by a leaf node. So, a solution is a direct path from the root node to a leaf node.
Therefore, the solution space S will consist of directed paths from the root node to leaf nodes.
Note that, the objective of the Shift bound problem is searching for maximum size of directed
path in the DAG.

The traversal of the DAG can be represented by a depth-first or breadth-first search traversal.
In our implementation of the backtracking algorithm for the Shift bound problem, we use the
depth-first for the traversal of the DAG.

For efficiency, it is unnecessary to store the entire graph in the algorithm. Instead, store only a
directed path from a root node to the current working node. The backtracking algorithm creates
and destroy the nodes dynamically as it explores the solution space S. As we illustrated in Figure
5.1, the filled nodes are nodes that we store in the algorithm. The blank nodes are either unvisited
nodes or visited nodes, which we do not store them in the algorithm.

Let x = (A0; A1; A2; : : : ; Ai�1; Ai) be a vector solution where each element Ai is selected from a
finite set Si, where Si is a subset of solution space S, see Figure 5.1. It is clear that x is a partial
solution. And it is represents a sequence of independent sets A0, A1, : : :, Ai.

If SAi
= ;, then there is no ai 2 SAi

= ; such that (ai + Ai) � Z(C). Since Ai 6� Z(C), hence
Definition 5.14 point 2 can not be applied. Moreover, the sequence x can not be extended. So,
x is maximal sequence of independent sets. Maximum sequence is the largest sequence amongst
these maximal sequences. And in order to solve the Shift bound problem, we need to find such
sequence.

Let dmax be denoted the largest maximal sequence of independent sets. Let xmax be the vector
solution to store temporary maximum size of maximal sequence of independent sets. When a
backtracking invoked, dmax = 0. During the computation process, we will obtained maximal
sequences of independent sets. Let x = (A0; A1; A2; : : : ; Ai�1; Ai) be a maximal sequence of
independent sets. If jxj > dmax, then update dmax = jxj and xmax = x.

When x is maximal, remove Ai from x, and the backtracking algorithm will search for another
alternative independent set Anewi = (anewi�1 + Ai�1) [ fbnewi�1 g, where anewi�1 2 SAi�1

, ai�1 6= anewi�1 ,
and bnewi�1 62 Z(C). This process is called backtrack.

The algorithm will continue until all possible ai’s and bi’s to construct a sequence of indepen-
dent sets considered. And when the algorithm terminates, xmax will be the largest sequence of
independent sets.

We summarize the above explanation of the backtracking algorithm for finding the maximum size
of sequence of independent sets in the following algorithm.
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Algorithm 6 Backtracking algorithm for Shift bound
1: procedure Backtrack(x = (A0; A1; A2; : : : ; Ai�1; Ai))
2: A Ai
3: for a 2 SA AND b 62 Z(C) do
4: A (a+ A) [ fbg
5: x x [ fAg
6: SA  (SA � a) \ Sb
7: if SA = ; then
8: if jxj > jxmaxj then
9: xmax  x

10: end if
11: backtrack( x x n A )
12: end if
13: backtrack( x )
14: end for
15: end procedure

Example 5.25. Figure 5.3 illustrates the solution space S of the Shift bound problem for the binary
cyclic code of length 7 with defining set f1g. The complete defining set of this code is given by
Z(C) = f1; 2; 4g, and the non-zeros set will be N(C) = Z7 n Z(C) = f0; 3; 5; 6g.

Figure 5.3: Directed acyclic graph of the Shift bound for Hamming code [7, 4, 3]2.
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5.2.3 Complexity

In this sub-section, we estimate the complexity of our implementation of a backtracking algorithm
on the Shift bound problem. And to be able to tell about the complexity, we need to count the
number of nodes in the solution space. Since it is hard in general case, we consider a special case.

Let C be a cyclic code of length n. And let the complete defining set of C be defined by

Z = f0; 1; 2; : : : ; � � 2g:
Definition 5.26. Define Lee metric on Zn by

d(i; j) = dL(i; j) = minfji� jj; n� ji� jjg;

where i; j 2 Zn, 0 � i; j < n.

Let A � Zn. We define the minimum distance as follows,

d(A) = dL(A) = minfd(a; b) j a; b 2 A; a 6= bg;

and the maximum distance as follows

�d(A) = maxfd(a; b) j a; b 2 Ag:
Proposition 5.27. Let Z = f0; 1; 2; : : : ; � � 2g � Zn and A � Zn, and A 6= ;. Suppose � � n

2 + 2.

1. A is independent set with respect to Z if and only if there is a b 2 A such that �d(A n
fbg) < �.

2. jSAj = � � 1� �d(A).

To prove Proposition 5.27, we need several definitions and lemmas.

Lemma 5.28. If A � B, then �d(A) � �d(B).

Proof. �d(A) = maxfd(x; y) jx; y 2 Ag � maxfd(x; y) jx; y 2 Bg = �d(B);

since A � B.

Lemma 5.29. �d(Z) = � � 2:

Proof. By Definition 5.26,

�d(Z) = maxfd(a; b) j a; b 2 Z; a 6= bg
= d(0; � � 2)

= minf� � 2; n� � + 2g
= � � 2;

since � � n
2 + 2 and d(a; b) = minfb� a; n� b+ ag = b� a � � � 2 for all 0 � a < b � � � 2.

Lemma 5.30. �d(A) � � � 2 if and only if a+ A � Z for some a 2 Zn.

Proof. We will prove this lemma in two directions;
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( This is a direct consequences of Lemma 5.28 and Lemma 5.29. Note that �d(a+A) = �d(A).

) Conversely, let �d(A) � � � 2. Without loss of generality, assume that A = fa1; a2; : : : ; aig
with 1 = a1 < a2 < : : : < ai�1 � � � 2 < ai = � � 1. Choose a = �1 2 Zn. Then after the a
shift of A, a+ A = fa1; a2; : : : ; aig with 0 = a1 < a2 < : : : < ai�1 � � � 3 < ai = � � 2, in
which a+ A � Z.

Lemma 5.31. A is independent and is not maximal if and only if �d(A) � � � 2.

Proof. We will prove the lemma in two directions;

( If �d(A) � � � 2, then by Lemma 5.30 a + A � Z for some a 2 Zn. Apply Definition 5.14
point 2 to a + A. As a result, �A = (a + A) [ fbg for b 62 Z, which is independent set with
respect to Z. Clearly that j �Aj � jAj. Hence, A is not maximal.

) Conversely, if A is independent set with respect to Z and is not maximal, then for some a 2 SA,
a+ A � Z. From Lemma 5.28 and 5.29, �d(a+ A) � � � 2.

Lemma 5.32. A is independent and is maximal if and only if �d(A) > ��2 and �d(Anfbg) � ��2
for some b 2 A.

Proof. We will prove the lemma in two directions;

) If A is an independent set with respect to Z and is maximal, then there is no a 2 Zn such
that a + A � Z. By Lemma 5.30, �d(A) > � � 2. Since A is an independent set, hence
A = (a+ �A)[fbg with a+ �A and b 62 Z. Hence Anfbg = a+ �A � Z. So, �d(Anfbg) � ��2.

( If �d(A n fbg) � �� 2, then by Lemma 5.28 and Lemma 5.29, A n fbg � Z. By Definition 5.14,
A is an independent set with respect to Z. Since �d(A) > �� 2, then by Lemma 5.30, there
is no a 2 Zn such that a+ A � Z. So, A is maximal.

Lemma 5.33. If �d(A) > � � 2, then SA = ;.

Proof. As a consequence of Lemma 5.32. If �d(A) > � � 2, then A is an independent set and is
maximal. If A is maximal, then SA = ;.

Remark 5.34. If �d(A) � � � 2, then after a shift of A, we may assume without loss of generality
that A = fa1; a2; : : : ; aig with 0 = a1 < a2 < : : : < ai � � � 2. Then �d(A) = ai and SA =

f0; 1; : : : ; � � 2� aig. Hence jSAj = � � 1� ai = � � 1� �d(A).
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Proof of Proposition 5.27. As a consequence of Lemma 5.32 and Remark 5.34.

Now, we are going to estimate the number of nodes in the DAG for the backtracking algorithm
on Shift bound problem. Recall the idea on constructing a sequence of independent sets. If A is
an independent sets, then �A = (a+ A) [ fbg where a 2 SA and b 62 Z is also an independent set.
We are going to counting the number of nodes for the Shift bound on C with complete defining
set Z = f0; 1; 2; : : : ; � � 2g.
We start with A0 = ;, the number of independent set of size 0 is 1. The number of independent
set of size 1 is equal to the number of non-zeros of C times the number of ways to pick 0 element
of Z or

(n� jZj)�
�
� � 1

0

�
:

The number of independent set of size 2 is equal to the number of non-zeros of C times the number
of ways to pick 1 element of Z or

(n� jZj)�
�
� � 1

1

�
:

The number of independent set of size 3 is equal to the number of non-zeros of C times the number
of ways to pick 2 elements of Z or

(n� jZj)�
�
� � 1

2

�
:

Without loss of generality, assume that A = fa1; a2; : : : ; aig be an independent set with respect to
Z of size i that is not maximal. As a consequence of Lemma 5.31, 0 = a1 < a2 < : : : < ai � �� 2.
And the number of independent set of size i that are leaves is equal to the number of non-zeros
of C times the number of ways to pick i� 1 elements of Z or

(n� jZj)�
�
� � 1

i� 1

�
: (5.1)

Without loss of generality, assume that A = fa1; a2; : : : ; aig be an independent set with respect
to Z of size i that is maximal. As a consequence of Lemma 5.32 and Lemma 5.33, 0 = a1 < a2 <

: : : < ai�1 � � � 2 < ai < n+ ai�1 � � � 2. In this case, the number of independent sets is equal
to

(n� jZj)�
�
� � 1

i� 1

�
:

So, let A0, A1, A3, : : :, Ai be a sequence of independent sets and maximal, then the number of
nodes in the tree equals to

1 + (n� jZj)�
iX

j=1

�
� � 1

j � 1

�
: (5.2)

Note that,�
� � 1

i

�
� 2�;

where limn!1
1
n logq Vq(n; b�nc) = Hq(�). See Section 2.3.
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5.2 Algorithm to compute the Shift bound

Example 5.35. Let C be a 5-ary cyclic code of length 4 with the complete defining set Z = f0; 1g.
Hence, � = 3. Note that N(C) = Z4 n Z = f2; 3g. The number of independent sets of size 1 is

jN(C)j �
�
� � 1

0

�
= (4� 2)�

�
2

0

�
= 2:

The number of independent sets of size 2 is

jN(C)j �
�
� � 1

1

�
= (4� 2)�

�
2

1

�
= 4:

And the number of independent sets of size 3, which in this case are maximal, is

jN(C)j �
�
� � 1

2

�
= (4� 2)�

�
2

2

�
= 2:

So, indeed the total number of independent sets is

1 + jN(C)j �
3X

j=1

�
� � 1

j � 1

�
= 1 + 4 � (1 + 2 + 1) = 9:

See Figure 5.4 for the complete description of the solution space.

Figure 5.4: Directed graph of the Shift bound for a 5-ary cyclic code of length 4.
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5.3. Improvements of the algorithm

5.3.1 Modification of the algorithm

The reason of using a backtracking algorithm for solving the Shift bound problem has been ex-
plained in the previous section. Now, we are going to explain the implementation of the backtrack-
ing algorithm for solving the Shift bound problem. We are going to explain about the modification
that we made in order to implement the Shift bound problem into C++.

In the previous section, the successor of A, namely A, was determined by the combination of
a 2 SA and b 62 Z(C), which is quite a large number of successors. In this section, we reduce
the number of unnecessary successors of A. The successor nodes for A are determined only by
elements in the set CA defined as follows;

Definition 5.36. Let define

CA = N(C)� SA = f b� a j for all b 2 N(C); for all a 2 SAg;

where N(C) the set of non-zeros of C.

Edges will consist of the following properties; for each c 2 CAi
, and a 2 SAi

eAi+1 = Ai [ fcg
SeAi+1

= SAi
\ Sc

Table 5.3: Arc properties.

The following algorithm is our modified backtracking algorithm to find the maximum size of
sequence of independent sets;

Algorithm 7 Backtracking algorithm for the modified Shift bound Part 1
1: procedure backtrack(x = (A0; A1; A2; : : : ; Ai�1; Ai))
2: A = Ai
3: for c 2 CA do
4: eA = A [ fcg
5: SeA = SA \ Sc
6: A = eA� a, for a 2 SA
7: x = x [ fAg
8: if SeA = ; then
9: if jxj > jxmaxj then

10: xmax = x
11: end if
12: backtrack( x = x n A )
13: end if
14: SA = SeA � a
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Algorithm 8 Backtracking algorithm for the modified Shift bound Part 2
15: CA = fb� a j a 2 SA; b 62 Z(C)g
16: backtrack( x )
17: end for
18: end procedure

Example 5.37. Figure 5.5 illustrates the solution space S of the Shift bound problem for the binary
cyclic code of length 7 with defining set f1g. The complete defining set of this code is given by
Z(C) = f1; 2; 4g, and the non-zeros set will be N(C) = Z7 n Z(C) = f0; 3; 5; 6g. But in this
example we apply the Definition 5.36 to determine the successor of nodes.

Figure 5.5: Directed graph of the modified Shift bound for Hamming code [7, 4, 3]2.

5.3.2 Branch-And-Bound technique

While searching for the best solution, a backtracking algorithm visits all nodes in the solution
space, i.e. it does the tree traversal. Sometimes we can determine that a given node in the solution
space does not lead to the optimal solution, either because the given solution and all its successors
are infeasible or because we have already found a solution that us guaranteed to be better than
any successor of the given solution. In such cases, the given node and its successors need not be
considered. In effect, we can prune the solution tree, hereby reducing the number of solutions
to be considered, i.e reducing the number of nodes to be visited. A backtracking algorithm that
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Chapter 5 The Shift bound

prunes the search space is called a branch-and-bound algorithm.

Let A be an independent set with respect to Z(C). Extend A by adding A with the element from
CA = N(C)�SA. Hence ~A = A[fb�ag = A[fcg, where c = b�a for all b 2 N(C) and a 2 SA.
Since a+ ~A = (a+ A) [ fbg, hence a 62 S ~A. So,

jS ~Aj < jSAj:

This means that A can be extended at most jSAj times.

If SA = fa(1); a(2); : : : ; a(r)g, then an independent set A can be extend at most

Â = A [ fb(1) � a(1); b(2) � a(2); : : : ; b(r) � a(r)g;

where b(1), b(2), : : :, b(r) 2 N(C).

So, let

m(A) = maxf jÂ j j Â � A; Â independent g;

then

m(A) � jAj+ jSAj:

Let x be a vector of independent sets, where x = (A0; A1; : : : ; Ai), for i > 0. Let xmax be a vector
of independent sets of maximum size. Note that, our working vector is x. When backtracking
algorithm gets to the independent set A, then compute jAj and jSAj, which yields m(A). If
jxmaxj > m(A), then backtracking does not have to extend the sequence, because we will not find
any sequence larger than xmax. Instead, the algorithm should have backtrack, to find another
alternative options.

5.3.3 Speeding-up the calculation process

Initially when our backtracking algorithm invoked, we start with an empty set. Let Ai be an
independent set with respect to Z. Hence Ai+1 = (ai + Ai) [ fbig, where ai 2 SAi

and bi 62 Z is
also independent set with respect to Z. In the original algorithm, for all ai 2 SAi

and bi 62 Z are
considered. In the modification algorithm, only ai 2 SAi

and bi 62 Z such that bi � ai 2 CAi
are

considered.

Without loss of generality, we may assume that A0 = ; and choose b0 62 Z(C) such that A1 = fb0g.
For instance, in Example 5.37 we may choose A1 = f0g.
Now, we introduce a new selection function, such that we do not have to consider all ais and bis
in both algorithms. This new selection function is part of the so called Greedy algorithm.

The function is defined as follows; choose ai 2 SAi
and bi 62 Z(C) such that maxfjSAi+1

jg, where
SAi+1

= (SAi
� ai) \ Sfbig.
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5.3 Improvements of the algorithm

Example 5.38. Recall Example 5.35. If we apply the Greedy algorithm, then nodes that contain
independent sets f0; 2g and f1; 3g will not be considered.

Figure 5.6: Directed graph of the 5-ary cyclic code of length 4 after Greedy algorithm implemented
on the original algorithm.

Example 5.39. Let C be a ternary cyclic code of length 45 with defining set f1; 3; 5; 15g. In this
example, we will show that our algorithm encounter a case where one really has to backtrack to
find the optimal solution. The complete defining set of C is

Z(C) = f1; 2; 3; 4; 5; 6; 8; 10; 12; 15; 16; 17; 19; 20; 23; 24; 25; 30; 31; 32; 34; 35; 38; 40g :

Construct sequences of independent sets with respect to Z(C) as follows; for each i > 0, ai+Ai �
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Z(C), bi 62 Z(C), and Ai+1 = (ai + Ai) [ f big,

A0 = ;
a0 = 0 ; b0 = 0 �! A1 = f 0 g
a1 = 15 ; b1 = 0 �! A2 = f 15; 0 g
a2 = 15 ; b2 = 0 �! A3 = f 30; 15; 0 g
a3 = 1 ; b3 = 0 �! A4 = f 31; 16; 1; 0 g
a4 = 3 ; b4 = 7 �! A5 = f 34; 19; 4; 3; 7 g
a5 = 12 ; b5 = 0 �! A6 = f 1; 31; 16; 15; 19; 0 g
a6 = 15 ; b6 = 0 �! A7 = f 16; 1; 31; 30; 34; 15; 0 g
a7 = 1 ; b7 = 0 �! A8 = f 17; 2; 32; 31; 35; 16; 1; 0 g
a8 = 3 ; b7 = 7 �! A9 = f 20; 5; 35; 34; 38; 19; 4; 3; 7 g
a9 = 12 ; b7 = 18 �! A10 = f 32; 17; 2; 1; 5; 31; 16; 15; 19; 18 g

So n(Z(C)) = 10. By backtrack to A9, the algorithm then choose a9 = 27 and b9 = 0, which leads
to larger sequence of independent sets.

A0 = ;
a0 = 0 ; b0 = 0 �! A1 = f 0 g
a1 = 15 ; b1 = 0 �! A2 = f 15; 0 g
a2 = 15 ; b2 = 0 �! A3 = f 30; 15; 0 g
a3 = 1 ; b3 = 0 �! A4 = f 31; 16; 1; 0 g
a4 = 3 ; b4 = 7 �! A5 = f 34; 19; 4; 3; 7 g
a5 = 12 ; b5 = 0 �! A6 = f 1; 31; 16; 15; 19; 0 g
a6 = 15 ; b6 = 0 �! A7 = f 16; 1; 31; 30; 34; 15; 0 g
a7 = 1 ; b7 = 0 �! A8 = f 17; 2; 32; 31; 35; 16; 1; 0 g
a8 = 3 ; b7 = 7 �! A9 = f 20; 5; 35; 34; 38; 19; 4; 3; 7 g
a9 = 27 ; b7 = 0 �! A10 = f 2; 32; 17; 16; 20; 1; 31; 30; 34; 0 g
a10 = 30 ; b7 = 11 �! A10 = f 32; 17; 2; 1; 5; 31; 16; 15; 19; 30; 11 g

We get n(Z(C)) = 11.
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6
The Quadratic Residue Codes

In this chapter, we will discuss one type of cyclic code for which the word length n is an odd prime,
and the field Fq satisfy condition such that q be a quadratic residue (mod n), i.e. q

n�1
2 � 1 mod n.

We consider the Square Root bound of the quadratic residue codes and we compare the Square
Root bound with the BCH, HT, HT-Roos, Roos and the Shift bounds. Let � be denote a primitive
n-th root of unity in an extension field of Fq.

6.1. Definition

We are going to define the quadratic-residue (QR) codes of prime length n over Fq, where q is
prime power which is a quadratic-residue modulo n.

Definition 6.1. Let R0 be the set of the quadratic residues in Fn, that is

R0 = fi2 j i 2 Fn; i 6= 0g;

and let R1 be the set of non-squares in Fn, such that

R1 = F
�
n nR0:

Clearly, if i is a primitive element of the field Fn, then ie 2 R0 if and only if e is even, while
ie 2 R1 if and only if e is odd. Thus R0 is a cyclic group generated by i2. Since q 2 R0, the set
R0 is closed under multiplication by q. Thus R0 is a disjoint union of cyclotomic cosets modulo
n. Hence

g0(x) =
Y
r2R0

(x� �r);

and

g1(x) =
Y
r2R1

(x� �r):

have coefficients from Fq, where � is a primitive n-th root of unity in some field containing Fq.
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Since q mod n is in R0, the polynomials g0(x) and g1(x) have coefficients in Fq. Furthermore

xn � 1 = (x� 1)g0(x)g1(x):

Let Cq;n be the ring Fq[x]=(xn � 1).

Definition 6.2. The quadratic-residue codes D, D, N, N are cyclic codes of ring Cq;n with generator
polynomials

g0(x); (x� 1)g0(x); g1(x); (x� 1)g1(x)

respectively.

Clearly D � D and N � N. In the binary case, D is the even weight subcode of D, and N is the
even weight subcode of N.

The permutation �j : i 7! ij mod n acting on the position of the codewords maps the code
generator g0(x) into itself if j 2 R0 resp. into the code generator g1(x) if j 2 R1. So the codes
with generators g0(x) resp. g1(x) are equivalent. If n � �1 mod 4, then �1 2 R1 and in that case
the transformation x ! x�1 maps a codeword of the code with generator g0(x) into a codeword
of the code with generator g1(x).

D and N have dimension 1
2 (n+ 1), and D and N have dimension 1

2 (n� 1).

6.2. The Square Root (SQRT) bound on the minimum distance

Theorem 6.3. If c = c(x) is a codeword in the quadratic-residue (QR) code with generator
g0(x) and if c(1) 6= 0 and wt(c) = �, then the following hold.

1. �2 � n,
2. if n = 4k � 1, then 1 can be strengthened to �2 � � + 1 � n,
3. if n = 8k � 1 and q = 2, then � � 3 mod 4.

Proof. Since c(1) 6= 0, the polynomial c(x) is not divisible by (x� 1). By a suitable permutation
�j we can transform c(x) into a polynomial c(x) which is divisible by g1(x) and of course again
not divisible by (x� 1).

1. Let c(x) be a codeword of minimum nonzero weight � in D. If r1 is a non-residue, c(x) =
c(xr1) is a codeword of minimum weight in N. Then c(x)c(x) must be in D \ N, i.e. is a
multiple of

Y
r02R0

(x� �r0)
Y

r12R1

(x� �r1) =
n�1Y
j=1

(x� �j) =
n�1X
j=0

xj :

Thus c(x)c(x) has weight n. Since c(x) has weight �, the maximum number of nonzero
coefficients in c(x)c(x) is �2, so that �2 � n.

2. If n = 4k� 1, we may take r1 = �1. Now in the product c(x)c(x�1) there are � terms equal
to 1, so the maximum weight of the product is �2 � � + 1.
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3. Let

c(x) =

dX
i=1

xli ;

c(x) =

dX
i=1

x�li :

If li� lj = lk � ll, then lj � li = ll� lk. Hence, if terms in the product c(x)c(x) cancel, then
they cancel four at time. Therefore, n = �2 � � + 1� 4 � a for some a � 0.

To say something about the minimum distance of QR codes, we need a powerful tool such as the
idempotent of a cyclic code and the analysis on the automorphism group of the extended binary
QR codes.

Theorem 6.4. Let C be a binary QR code of length n and let choose � be a primitive n-th root
of unity so that the idempotent of D, �D, N, �N are

�(x) =
X
r2R0

xr;

#(x) = 1 +
X
r2R1

xr;

��(x) =
X
r2R1

xr;

�#(x) = 1 +
X
r2R0

xr;

respectively.

Proof. Since 2 is a quadratic residue modulo n, hence

(�(x))2 = �(x);

(#(x))2 = #(x);

(��(x))2 = ��(x);

( �#(x))2 = �#(x);

so these polynomials are idempotent. Thus �(�i) = 0 or 1 by Lemma 3.34. For any quadratic
residue s,

�(�s) =
X
r2R0

�rs =
X
r12R0

�r1 = �(�);

independent of s. Similarly,

�(�t) =
X
r2R0

�rt =
X
r2R0

��r = �(��1);

for any non-residue t. Since �(�) + �(��1) = 1, either

�(�s) = 0 for all s 2 R0 and �(�t) = 1 for all t 2 R1; (6.1)
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or

�(�s) = 1 for all s 2 R0 and �(�t) = 0 for all t 2 R1

depending on the choice of �. Choose � such that 6.1 holds. Then �(x) is the idempotent of D.
Also

��(�t) =
X
r2R1

�rt =
X
r2R1

�r = 0 for t 2 R1;

and ��(�s) = 1 for s 2 R0. Thus ��(x) is the idempotent of N. Finally, #(�s) = 0 for s 2 R0 and
#(1) = 0, so #(x) is the idempotent of �D. Similarly for �N.

With the help of the idempotent, we are going to show that the extended QR code D̂ is fixed
under the large permutation group PSL(2,n). First we need to determine the dual of the QR
codes.

Theorem 6.5. We have the following;

D? = �D; N? = �N; if n = 4k � 1; (6.2)

D? = �N; N? = �D; if n = 4k + 1: (6.3)

In both cases,

D is generated by �D and 1; (6.4)

N is generated by �N and 1: (6.5)

Proof. Suppose n = 4k� 1. The zeros of D are �r for r 2 R0. Hence by Theorem 3.30, the zeros
of D? are 1 and ��r for r 2 R1. But �r 2 R0, so D? = �D. From Theorem 6.4,

�(x) = #(x) +
1

n

n�1X
i=0

xi;

which implies 6.4. Similarly for the case n = 4k + 1.

Let

#(x) =

n�1X
i=0

fix
i;

be the idempotent of �D, given by Theorem 6.4. Then a generator matrix for �D is the n � n
circulant matrix

�G =

0BB@
f0 f1 : : : fn�1
fn�1 f0 : : : fn�2
� � � �
f1 f2 : : : f0

1CCA (6.6)

= (gij); 0 � i; j � n� 1; with gij = fj�i; (6.7)
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and with subscripts taken modulo n. A generator matrix for D is

G =

�
�G

1 1 1 : : : 1

�
(6.8)

and similarly for N and �N. Note that �G has rank 1
2 (n� 1).

QR codes can be extended by adding overall parity check in such a way that,

(D̂)? = D̂; (N̂)? = N̂; if n = 4k - 1;
(D̂)? = N̂; if n = 4k + 1.

(6.9)

If a = (a0; a1; : : : ; an�1) is a codeword of D (or N) and n = 4k � 1, then the extended code is
formed by appending

a1 = �y
n�1X
i=0

ai;

where 1 + y2n = 0. Since (yn)2 = �n = !2, it follows that y = �!
n , where � = �1 and ! as

defined in Remark 6.9. Note that y is chosen such that the codeword (1; 1; : : : ; 1;�yn) of D̂ (or
N̂) is orthogonal to itself. Thus the generator matrix of D̂ is obtained by adding column to 6.8,
and is given by

Ĝ =

�
�G ct

1 1 1 : : : �yn
�
;

with c = (0; 0; : : : ; 0).

It follows from Theorem 6.4 that the rows of Ĝ generate the extended binary QR code, D̂, of
length n+1. Let us number the coordinate places of codewords in D̂ with points of the projective
line of order n, i.e. 1, 0, 1, 2, : : :, n� 1. The overall parity check is in front and it has number
1.

Definition 6.6. Let n be a prime of the form 8m� 1. The set of all permutations of f0; 1; 2; : : : ; n�
1;1g of the form

x! ax+ b

cx+ d
;

with a; b; c; d 2 Fn and ad � bc = 1, forms a group called the projective special linear group
PSL(2,n).

Theorem 6.7. PSL(2,n) has the following properties;

1. PSL(2,n) is generated by three permutations

S : x! x+ 1

T : x! � 1

x

V : x! �2x

with � is a primitive element of Fn.
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2. PSL(2,n) consists of 1
2n(n

2 � 1) permutations

V iSj : x! �2ix+ j

V iSjTSk : x! k � (�2ix+ j)�1

with 0 � i < 1
2 (n� 1), 0 � j; k < n.

3. If n � �1 mod 8, the generators S; V; T satisfy

Sn = V
1
2
(n�1) = T 2 = (V T )2 = (ST )3 = 1;

and

V �1SV = S�
2

:

4. PSL(2,n) is doubly transitive.

Clearly S is a cyclic shift on the positions different from 1 and it leaves 1 invariant. By the
definition of a QR code, S leaves the extended code invariant. It remains to show that D̂ is also
fixed by T . Only the case n = 8m� 1 is treated. To show that T is fixed the D̂, we need to show
that each row of Ĝ is transformed by T into another codeword of D̂ and T maps a row of Ĝ into
a linear combination of at most three rows of Ĝ.

1. Consider the first row of Ĝ as follows,

row(0) = j1 +
X
r2R1

xrj0j:

Then

T (row(0)) = j
X
r2R0

xrj1j = row(0) + 1;

which is in D̂.

2. Suppose s 2 R0, and the s+ 1-th row of Ĝ is

row(s) = jxs +
X
r2R1

xr+sj0j:

We shall show that T (row(s)) = row(� 1
s )+row(0)+1 is in D̂. T (row(s)) has 1’s in coordinate

places � 1
s and � 1

r+s for r 2 R1, which comprise 1 if r = �s, 2m � 1 residues and 2m

non-residues. Also

row(�1

s
) = jx� 1

s +
X
r2R1

xn�
1
s j0j

has 1’s in places � 1
s and r � 1

s for r 2 R1, which comprise 2m residues and 2m non-
residues. Therefore the sum T (row(s)) + row(� 1

s ) has a 1 in place 1 and a 0 in place
� 1
s . If � 1

r+s 2 R1, then � 1
r+s = r0 � 1

s for some r0 2 R1, and the 1’s in the sum cancel.
Thus the non-residue coordinate places in the sum always contain 0. On the other hand, if
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� 1
r+s 2 R0, then � 1

r+s 6= r0 � 1
s for all r0 2 R1, and so the sum contains 1 in coordinate

places which are residues. So,

T (row(s)) + row(�1

s
) = j

X
r2R0

xrj1j = row(0) + 1:

Similarly if t 2 R1,

T (row(t)) = row(�1

t
) + row(0):

These show that T maps a row of Ĝ into a linear combination of at most three rows of Ĝ. Therefore
S and T leave the extended QR code invariant, which proving the following theorem.

Theorem 6.8 (Gleason and Prange). The automorphism group of the extended binary QR code
of length n+ 1 contains PSL(2,n).

Remark 6.9. The modified definition of extended code ensures that Theorem 6.8 is also true for the
non-binary case. For the non-binary case, the idempotent will be define as the Gaussian sum

! =

n�1X
i=1

�(i)�i;

where the Legendre symbol �(i) is defined by,

�(i) =

8<:
0; if i is a multiple of n ;
1; if i is a quadratic residue mod n ;
�1; if i is a non-residue mod n.

Also �(i)�(j) = �(ij). Note also, !q = !, ! 2 Fq. If n = 4k � 1, then !2 = �n. For additional
information, see [11].

Remark 6.10. A group G of of permutations of the symbols f1; 2; : : : ; ng is transitive if for any
symbols i; j there is a permutation � 2 G such that i� = j. More generally, G is t-fold transitive
if given t distinct symbols i1, i2, : : :, it, and t distinct symbols j1, j2, : : :, jt, there is a � 2 G such
that i1� = j1, : : :, it� = jt.

Corollary 6.11. If �C is fixed by a transitive permutation group, then

1. deleting any coordinate place gives an equivalent code C,

2. and if all weight in �C are even, then C has odd minimum weight.

Corollary 6.12. A word of minimum weight in a binary QR code satisfies the conditions 1, 2,
and 3 of Theorem 6.3.

Proof. Use the fact that PSL(2,n) is transitive. And as immediate consequence of Remark 6.10
and Corollary 6.11. An equivalent code D is obtained no matter which coordinate place of D̂ is
deleted.

Definition 6.13. Let dQR be the minimum positive integer d that satisfies Theorem 6.3 point 1, 2,
and 3.

Theorem 6.14 (The Square Root (SQRT) bound). Let C be the QR code of length n. Then the
minimum distance of C is at least dQR.

Proof. For the binary case, this theorem is an immediate consequences of Corollary 6.12 and
Definition 6.13. For the non-binary case, we should consider Remark 6.9.
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6.3. Minimum distance of Quadratic Residue codes

6.3.1 Examples

In this section, we will analyze the minimum distance of the Quadratic Residue (QR) codes based
on Theorem 6.3 and compare the result with others bounds, i.e. the BCH bound, the HT bound,
the HT-Roos bound, Roos bound and especially with the Shift bound.

Example 6.15. Let C be the binary cyclic code of length n = 7 with defining set f1g. This code
satisfy 2

7�1

2 � 1 mod 7. Thus q is a quadratic residue mod 7. The complete defining set

Z(C) = f1; 2; 4g = fi2 mod 7 j i 2 Z7; i 6= 0g

is the quadratic residue in Z7, and the non-zeros set

N(C) = Z
�
7 n Z(C) = f3; 5; 6g

is the set of non-squares in Z7.

Let � be the primitive 7-th root of unity. We find that

x7 � 1 = (x� 1)g0(x)g1(x);

where g0(x) =
Q

r2Z(C)(x� �r) and g1(x) =
Q

r2N(C)(x� �r).
Since 7 � 3 mod 4 and 7 � 7 mod 8, hence by Theorem 6.3, the minimum weight of a codeword
must satisfy d2QR � dQR + 1 � 7 and dQR � 3 mod 4. This yield, dQR � 3.

There is one consecutive set in the complete defining set, namely f1; 2g. Hence, by the BCH
bound, the minimum distance of C is dBCH � 3. The minimum distance of C based on the HT
bound is dHT � 3, with b = 1, a1 = 1, a2 = 2, s = 0, and � = 3.

Take A = f1g and let a2 = 3. Take B = fa2 � j j j = 0; 1g. Hence, by the Roos bound, the
minimum distance of C is dRoos � 3.

Next we need to construct a sequence of independent sets, in order to determine the lower bound
on the minimum distance of C using the Shift bound. For each i > 0, ai+Ai � Z(C), bi 62 Z(C),
and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! f0g f1;0g����! f1; 0g f1;0g����! f2; 1; 0g:
So, we get n(Z(C)) = 3, where n(Z(C)) is the maximum size of independent sets with respect to
Z(C).

Let C0 be the subcode of C by adding 0 into Z(C) or Z(C0) = Z(C) [ f0g. Again, we construct
the sequence of independent sets as follows; for each i > 0, ai + Ai � Z(C0), bi 62 Z(C0), and
Ai+1 = (ai + Ai) [ f big :

; f0;3g����! f3g f1;3g����! f4; 3g f4;3g����! f1; 0; 3g f1;3g����! f2; 1; 4; 3g:
So, we get n(Z(C0)) = 4. By Definition 5.5,

dshift(Z(C)) = minfn(Z(C)); n(Z(C0))g = minf3; 4g = 3:

and by Theorem 5.6, the minimum distance is dshift � 3. In fact, this is the perfect binary
Hamming code with parameters [7, 4, 3].
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Example 6.16. Let C be the binary cyclic code of length n = 23 with defining set f1g. Since
2
23�1

2 � 1 mod 23, hence q is quadratic residue mod 23. The complete defining set of C

Z(C) = f1; 2; 3; 4; 6; 8; 9; 12; 13; 16; 18g = fi2 mod 23 j i 2 Z23; i 6= 0g;

is the quadratic residues in Z23, and the non-zeros set

N(C) = Z
�
23 n Z(C) = f5; 7; 10; 11; 14; 15; 17; 19; 20; 21; 22g;

is the set of non-squares in Z23.

Let � be the primitive 23-th root of unity. We find that

x23 � 1 = (x� 1)g0(x)g1(x);

where g0(x) =
Q

r2Z(C)(x��r) and g1(x) =
Q

r2N(C)(x��r). By Theorem 6.3, the corresponding
QR code C has minimum distance dQR � 7. By the BCH bound, it has minimum distance
dBCH � 5. From the Example 5.7, the minimum distance of this code based on the Shift bound
is dshift � 6.

Since
P3

i=0

�
23
i

�
= 211 and jCj = 212, it follows that d is equal to 7. In fact, the corresponding

QR code is a perfect cyclic code called the binary Golay code.

Example 6.17. Let C be the binary cyclic code of length n = 31 with defining set f1; 5; 7g. Since
2
31�1

2 � 1 mod 31, hence q is quadratic residue mod 31. The complete defining set of C

Z(C) = f1; 2; 4; 5; 7; 8; 9; 10; 14; 16; 18; 19; 20; 25; 28g = fi2 mod 31 j i 2 Z31; i 6= 0g;

is the quadratic residues in Z31, and the non-zeros set

N(C) = Z
�
31 n Z(C) = f3; 6; 12; 17; 24; 11; 13; 21; 22; 26; 15; 23; 27; 29; 30g;

is the set of non-squares in Z31.

Let � be the primitive 31-th root of unity. We find that

x31 � 1 = (x� 1)g0(x)g1(x);

where g0(x) =
Q

r2Z(C)(x��r) and g1(x) =
Q

r2N(C)(x��r). And the codes generated by g0(x)
resp. g1(x) are equivalent.

Since 31 � 3 mod 4 and 31 � 7 mod 8, hence by Theorem 6.3, the minimum weight of a codeword
must satisfy d2QR � dQR + 1 � 7 and dQR � 3 mod 4. This yield, dQR � 7.

There is one consecutive set in Z(C), namely f7; 8; 9; 10g. By the BCH bound, the minimum
distance of C is dBCH � 5. The minimum distance of C based on the HT bound is dHT � 5 with
b = 18, a1 = 1, a2 = 21, s = 1, and � = 4. Take A = f8; 9; 10g, and B = f10 � j j j = 0; 1; 3g, hence
by the Roos bound, the minimum distance of C is dRoos � 7.

Next, we need to construct a sequence of independent sets, in order to determine the lower bound
on the minimum distance of C using the Shift bound. For each i > 0, ai+Ai � Z(C), bi 62 Z(C),
and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f4;0g����! A3
f14;11g�����! A4

f14;0g����! A5
f7;0g����! A6

f1;0g����! A7:
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So, n(Z(C)) = 7.

Let C0 be the subcode of C by adding 0 into Z(C) or Z(C0) = Z(C) [ f0g. We construct a
sequence of independent sets as follows : for each i > 0, ai + Ai � Z(C0), bi 62 Z(C0), and
Ai+1 = (ai + Ai) [ f big :

; f0;3g����! A1
f1;3g����! A2

f4;3g����! A3
f11;11g�����! A4

f17;3g����! A5
f28;11g�����! A6

f7;3g����! A7

f1;3g����! A8:

So, n(Z(C0)) = 8.

Let C3 be the subcode of C by adding cyclotomic coset C3 into Z(C) or Z(C3) = Z(C) [ C3. We
construct a sequence of independent sets as follows : for each i > 0, ai+Ai � Z(C3), bi 62 Z(C3),
and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f1;0g����! A3
f1;0g����! A4

f1;0g����! A5
f1;0g����! A6

f1;0g����! A7

f1;0g����! A8
f1;0g����! A9

f1;0g����! A10
f1;0g����! A11:

So, n(Z(C3)) = 11.

Let C11 be the subcode of C by adding cyclotomic coset C11 into Z(C) or Z(C11) = Z(C) [ C11.
We construct a sequence of independent sets as follows : for each i > 0, ai + Ai � Z(C11),
bi 62 Z(C11), and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f7;0g����! A3
f13;0g����! A4

f1;0g����! A5
f14;0g����! A6

f14;0g����! A7

f22;3g����! A8
f16;0g����! A9

f7;0g����! A10
f7;0g����! A11:

So, n(Z(C11)) = 11.

Let C15 be the subcode of C by adding cyclotomic coset C15 into Z(C) or Z(C15) = Z(C) [ C15.
We construct a sequence of independent sets as follows : for each i > 0, ai + Ai � Z(C15),
bi 62 Z(C15), and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f4;0g����! A3
f5;0g����! A4

f23;12g�����! A5
f13;3g����! A6

f5;0g����! A7

f10;0g����! A8
f10;0g����! A9

f10;0g����! A10
f9;0g����! A11:

So, n(Z(C15)) = 11.

Let C0;3 be the subcode of C0 by adding the cyclotomic coset C3 into Z(C0), i.e. Z(C0;3) = Z(C0)[
C3. We construct a sequence of independent sets as follows : for each i > 0, ai + Ai � Z(C0;3),
bi 62 Z(C0;3), and Ai+1 = (ai + Ai) [ f big :

; f0;11g����! A1
f1;11g����! A2

f5;11g����! A3
f8;23g����! A4

f24;15g�����! A5
f23;21g�����! A6

f10;21g�����! A7

f19;11g�����! A8
f1;11g����! A9

f28;11g�����! A10
f1;11g����! A11

f27;11g�����! A12:

So, n(Z(C0;3)) = 12.

Let C0;11 be the subcode of C0 by adding the cyclotomic coset C11 into Z(C0), i.e. Z(C0;11) =

Z(C0) [ C11. We construct a sequence of independent sets as follows : for each i > 0, ai + Ai �
Z(C0;11), bi 62 Z(C0;11), and Ai+1 = (ai + Ai) [ f big :

; f0;3g����! A1
f1;3g����! A2

f5;3g����! A3
f2;17g����! A4

f11;3g����! A5
f28;6g����! A6

f7;3g����! A7

f15;3g����! A8
f4;3g����! A9

f18;3g����! A10
f19;3g����! A11

f19;3g����! A12:
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So, n(Z(C0;11)) = 12.

Let C0;15 be the subcode of C0 by adding the cyclotomic coset C15 into Z(C0), i.e. Z(C0;15) =

Z(C0) [ C15. We construct a sequence of independent sets as follows : for each i > 0, ai + Ai �
Z(C0;15), bi 62 Z(C0;15), and Ai+1 = (ai + Ai) [ f big :

; f0;3g����! A1
f1;3g����! A2

f1;3g����! A3
f28;11g�����! A4

f27;17g�����! A5
f3;21g����! A6

f15;21g�����! A7

f14;17g�����! A8
f10;3g����! A9

f1;6g����! A10
f10;3g����! A11

f11;3g����! A12:

So n(Z(C0;15)) = 12.

Let C3;11 be the subcode of C3 by adding the cyclotomic coset C11 into Z(C3), i.e. Z(C3;11) =

Z(C3) [ C11. We construct a sequence of independent sets as follows : for each i > 0, ai + Ai �
Z(C3;11), bi 62 Z(C3;11), and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f1;0g����! A3
f1;0g����! A4

f1;0g����! A5
f1;0g����! A6

f1;0g����! A7

f1;0g����! A8
f1;0g����! A9

f1;0g����! A10
f1;0g����! A11

f1;0g����! A12
f1;0g����! A13

f1;0g����! A14

f1;0g����! A15:

So, n(Z(C3;11)) = 15.

Let C3;15 be the subcode of C3 by adding the cyclotomic coset C15 into Z(C3), i.e. Z(C3;15) =

Z(C3) [ C15. We construct a sequence of independent sets as follows : for each i > 0, ai + Ai �
Z(C3;15), bi 62 Z(C3;15), and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f1;0g����! A3
f1;0g����! A4

f2;0g����! A5
f5;0g����! A6

f10;0g����! A7

f10;0g����! A8
f5;0g����! A9

f3;0g����! A10
f2;0g����! A11

f10;0g����! A12
f18;0g����! A13

f2;0g����! A14:

So, n(Z(C3;15)) = 14. We stop here, because the other subcodes of C give larger on size of
maximal sequence of independent sets.

By Definition 5.5,

dshift(Z(C)) = minfn(R) jZ(C) � R � Z31 and R� = R 6= Z31g
= minfn(Z(C)); n(Z(C0)); n(Z(C3)); n(Z(C11)); n(Z(C15)); n(Z(C0;3)); n(Z(C0;11));

n(Z(C0;15)); n(Z(C3;11)); n(Z(C3;15))g
= minf7; 7; 11; 11; 11; 12; 12; 12; 15; 14g
= 7

and by Theorem 5.6, the minimum distance of C based on the Shift bound is dshift � 7.

Example 6.18. Let C be a 9-ary cyclic codes of length 17 with defining set f1g. The complete
defining set of C can be written as,

Z(C1) = f1; 2; 4; 8; 9; 13; 15; 16g;

which is quadratic residue over F9.

Since 17 � 1 mod 4 and 17 � 1 mod 8, hence by the Square root bound, the minimum distance of
C is dQR � 5. By the BCH bound, the minimum distance of C is dBCH � 3. Observe that Z(C)

contains f1; 2g+ f0; 7; 14g; therefore, the minimum distance of C by the HT bound is dHT � 5.
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We would like to apply Definition 5.5 and Theorem 5.6. We need to compute the maximal size
independent set of C1. And as a result of our program, the sequence of independent sets is as
follows : for each i > 0, ai + Ai � Z(C1), bi 62 Z(C1), and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f1;11g����! A3
f7;14g����! A4

f7;14g����! A5:

So n(Z(C)) = 5. We would like to compute its lower bound on the minimum distance using
the Shift bound by applying Definition 5.5 and Theorem 5.6. Therefore we need to compute the
largest independent sets of all subcodes of C.

Let C0 be the subcode of C by adding 0 into defining set of C. Hence the complete defining set
of subcode C0 is Z(C0) = Z(C) [ f0g. Observe that

Z(C0) = f0; 1; 2; 4; 8; 9; 13; 15; 16g:

By the BCH bound, the minimum distance of C0 is dBCH � 6. Note that, Z(C0) contains
f0; 1g+ f0; 1; 7; 14; 15g. Thus, by the HT bound, the minimum distance of C0 is dHT � 7.

Next, we will compute the maximal size independent set of C0. The sequence of independent sets
is as follows : for each i > 0, ai + Ai � Z(C0), bi 62 Z(C0), and Ai+1 = (ai + Ai) [ f big :

; f0;3g����! A1
f1;3g����! A2

f5;6g����! A3
f10;3g����! A4

f14;6g����! A5
f2;14g����! A6:

So n(Z(C0)) = 6.

Let C3 be the subcode of C by adding the cyclotomic coset C3 into Z(C). And for C3, we get a
maximal independent set of size n(Z(C3)) = 17. By Definition 5.5,

dshift(Z(C1)) = minfn(Z(C1)); n(Z(C1;0)); n(Z(C1;3))g = minf5; 6; 17g = 5:

Thus, by Theorem 5.6, the minimum distance of C with defining set f1g is dshift � 5.

Example 6.19. Let C be a 9-ary cyclic codes of length 19 with defining set f1g. The complete
defining set can be written as,

Z(C) = f1; 4; 5; 6; 7; 9; 11; 16; 17g;

which is quadratic residue over F9.

Since 19 � 3 mod 4 and 19 � 3 mod 8, hence by the Square root bound, the minimum distance
of C is d2QR � dQR + 1 � 19. This yield dQR = 5. By the BCH bound, the minimum distance of
C is dBCH � 5.

We would like to apply Definition 5.5 and Theorem 5.6. Therefore, we need to compute a maximal
size of independent set of C1. The sequence of independent sets is as follows : for each i > 0,
ai + Ai � Z(C), bi 62 Z(C), and Ai+1 = (ai + Ai) [ f big :

; f0;0g����! A1
f1;0g����! A2

f6;18g����! A3
f18;12g�����! A4

f11;0g����! A5
f7;18g����! A6:

So n(Z(C)) = 6.

We would like to compute a lower bound of C using the Shift bound by applying Definition 5.5
and Theorem 5.6. Therefore we need to compute the largest independent sets of all subcodes of
C. Let C0 be the subcode of C by adding 0 into defining set of C. The complete defining set
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of subcode C0 is Z(C0) = Z(C) [ f0g. The sequence of independent sets is as follows : for each
i > 0, ai + Ai � Z(C0), bi 62 Z(C0), and Ai+1 = (ai + Ai) [ f big :

; f0;2g����! A1
f2;2g����! A2

f2;3g����! A3
f3;18g����! A4

f10;2g����! A5
f7;18g����! A6:

So n(Z(C0)) = 6. Let C2 be subcode of C by adding the cyclotomic coset C2 into Z(C). And for
C2, we get n(Z(C2)) = 19. By Definition 5.5,

dshift(Z(C)) = minfn(Z(C)); n(Z(C0)); n(Z(C2))g = minf6; 6; 19g = 6:

Thus, by Theorem 5.6, the minimum distance of C with defining set f1g is dshift � 6.

6.3.2 Tables

n roots d dBCH dHT dRoos dshift dQR
7 f1g 3 3 3 3 3 3
17 f1g 5 4 5 5 5 5
23 f1g 7 5 5 5 6 7
31 f1; 5; 7g 7 5 5 6 7 7
41 f3g 9 6 7 7 8 7
47 f1g 11 5 6 6 8 8
71 f1g 11 7 7 7 10 9
73 f1; 3; 9; 25g 13 5 7 7 10 9
79 f1g 15 7 7 7 11 10
89 f1; 5; 9; 11g 17 5 6 7 11 9
97 f1g 15 7 8 8 12 10
103 f1g 19 8 8 8 12 11
113 f1; 9g 15 6 7 7 13 11

Table 6.1: Table of the minimum distance for 2-ary quadratic residue codes.

n roots d dBCH dHT dRoos dshift dQR
11 f1g 5 4 4 4 4 4
13 f1; 4g 5 3 3 4 5 4
23 f1g 8 5 5 5 6 6
37 f1g 10 5 6 6 8 7
47 f5g 14 5 6 6 8 7
59 f1g 17 6 6 6 9 9
61 f1; 4; 5g 11 6 7 7 10 8
71 f1g 17 7 7 7 10 9
73 f1; 2; 4g 17 5 7 7 10 9

Table 6.2: Table of the minimum distance for ternary quadratic residue codes.
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n roots d dBCH dHT dRoos dshift dQR
5 f1g 3 2 2 3 3 3
11 f1g 5 4 4 4 4 4
13 f1g 5 3 3 4 5 4
19 f1g 7 5 5 5 6 5
29 f1g 11 5 6 6 7 6
37 f1g 11 5 6 6 8 7
41 f3; 6g 9 6 7 7 8 7
43 f1; 6; 9g 13 6 6 6 8 7
53 f1g 13 4 5 6 9 8
59 f1g 13 6 6 6 9 8

Table 6.3: Table of the minimum distance for quaternary quadratic residue codes.

n roots d dBCH dHT dRoos dshift dQR
11 f1g 5 4 4 4 4 4
19 f1g 7 5 5 5 6 5
29 f1g 11 5 6 6 7 6
31 f1; 2; 4; 8; 16g 9 5 5 6 7 6

Table 6.4: Table of the minimum distance for quinary quadratic residue codes.

n roots d dBCH dHT dRoos dshift dQR
19 f1g 8 5 5 5 6 5
29 f1; 4g 11 5 6 6 7 6
31 f1; 4; 5g 12 5 5 6 7 6

Table 6.5: Table of the minimum distance for 7-ary quadratic residue codes.

n roots d dBCH dHT dRoos dshift dQR
7 f1g 4 3 3 3 3 3
17 f1g 7 3 4 5 5 5
19 f1g 9 5 5 5 6 5
29 f1g 11 5 6 6 7 6
31 f1g 11 5 5 6 7 6

Table 6.6: Table of the minimum distance for 9-ary quadratic residue codes.
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n roots d dBCH dHT dRoos dshift dQR
7 f1g 4 3 3 3 3 3
13 f1; 3; 4g 7 3 3 4 5 4
17 f1g 9 3 4 5 5 5
23 f1g 11 5 5 5 6 6

Table 6.7: Table of the minimum distance for 25-ary quadratic residue codes.

n roots d dBCH dHT dRoos dshift dQR
5 f1g 3 2 2 3 3 3
11 f1g 6 4 4 4 4 4
13 f1g 6 5 5 5 5 4
17 f1g 9 4 5 5 5 5
23 f1g 11 5 5 5 6 6

Table 6.8: Table of the minimum distance for 49-ary quadratic residue codes.

Remark 6.20. Notice that dshift � dQR for all cases considered. Except for the binary cyclic code
of length 23.
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7
Computational results

In this chapter, we give a result based on the computation by our minimum distance program.

k, the dimension of the code equals to n� Z(C), where Z(C) is the complete defining set of C.

dBCH , lower bound on the minimum distance based on the BCH bound.

dHT , lower bound on the minimum distance based on the HT bound.

dHTR, lower bound on the minimum distance based on the HTR bound.

dRoos, lower bound on the minimum distance based on the Roos bound.

n(Z), the maximum size of the sequence of independent sets with Z � Zn.

dshift, lower bound on the minimum distance based on the Shift bound.

dbrouwer, bound on the minimum distance of linear codes from Brouwer’s table [1].

7.1. Binary cyclic codes of length 45

Coset representatives are :
( 0 1 3 5 7 9 15 21 )
The cyclotomic cosets are :
( 0 )
( 1 2 4 8 16 17 19 23 31 32 34 38 )
( 3 6 12 24 )
( 5 10 20 25 35 40 )
( 7 11 13 14 22 26 28 29 37 41 43 44 )
( 9 18 27 36 )
( 15 30 )
( 21 33 39 42 )

Table for the lower bounds on the minimum distance of
2-ary Cyclic codes of length 45

# k d_BCH d_HT d_HTR d_Roos n(Z) root(s)
1 0 46 46 46 46 46 { 0 1 3 5 7 9 15 21 }
2 1 45 45 45 45 45 { 1 3 5 7 9 15 21 }
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3 2 30 30 30 30 30 { 0 1 3 5 7 9 21 }
4 3 15 15 15 15 15 { 1 3 5 7 9 21 }
5 4 24 24 24 24 24 { 0 1 3 5 7 9 15 }
6 4 18 18 18 18 18 { 0 1 3 5 7 15 21 }
7 4 24 24 24 24 24 { 0 1 5 7 9 15 21 }
8 5 21 21 21 21 21 { 1 3 5 7 9 15 }
9 5 9 9 9 9 9 { 1 3 5 7 15 21 }
10 5 21 21 21 21 21 { 1 5 7 9 15 21 }
11 6 18 18 18 18 18 { 0 1 3 5 7 9 }
12 6 18 18 18 18 18 { 0 1 3 5 7 21 }
13 6 18 18 18 18 18 { 0 1 5 7 9 21 }
14 6 10 10 10 10 10 { 0 1 3 7 9 15 21 }
15 7 15 15 15 15 15 { 1 3 5 7 9 }
16 7 9 9 9 9 18 { 1 3 5 7 21 }
17 7 15 15 15 15 15 { 1 5 7 9 21 }
18 7 10 10 10 10 15 { 1 3 7 9 15 21 }
19 8 12 12 12 12 12 { 0 1 3 5 7 15 }
20 8 10 10 10 10 10 { 0 1 3 7 9 21 }
21 8 9 10 11 12 12 { 0 1 5 7 9 15 }
22 8 12 12 12 12 12 { 0 1 5 7 15 21 }
23 9 9 9 9 9 15 { 1 3 5 7 15 }
24 9 5 5 5 5 5 { 1 3 7 9 21 }
25 9 9 10 11 12 15 { 1 5 7 9 15 }
26 9 9 9 9 9 15 { 1 5 7 15 21 }
27 10 12 12 12 12 12 { 0 1 3 5 7 }
28 10 6 6 6 6 6 { 0 1 5 7 9 }
29 10 12 12 12 12 12 { 0 1 5 7 21 }
30 10 10 10 10 10 18 { 0 1 3 7 9 15 }
31 10 10 10 10 10 18 { 0 1 3 7 15 21 }
32 10 10 10 10 10 18 { 0 1 7 9 15 21 }
33 11 9 9 9 9 9 { 1 3 5 7 }
34 11 6 6 6 6 15 { 1 5 7 9 }
35 11 9 9 9 9 9 { 1 5 7 21 }
36 11 10 10 10 10 16 { 1 3 7 9 15 }
37 11 8 9 9 9 15 { 1 3 7 15 21 }
38 11 10 10 10 10 16 { 1 7 9 15 21 }
39 12 8 8 8 10 16 { 0 1 3 7 9 }
40 12 10 10 10 10 12 { 0 1 3 7 21 }
41 12 6 6 6 6 6 { 0 1 5 7 15 }
42 12 8 8 8 9 15 { 0 1 7 9 21 }
43 12 8 8 8 8 8 { 0 1 3 5 9 15 21 }
44 12 8 8 8 8 8 { 0 3 5 7 9 15 21 }
45 13 5 5 5 5 15 { 1 3 7 9 }
46 13 5 5 5 5 12 { 1 3 7 21 }
47 13 6 6 6 6 9 { 1 5 7 15 }
48 13 5 5 5 5 15 { 1 7 9 21 }
49 13 8 8 8 8 21 { 1 3 5 9 15 21 }
50 13 8 8 8 8 19 { 3 5 7 9 15 21 }
51 14 6 6 6 6 6 { 0 1 5 7 }
52 14 8 9 9 10 12 { 0 1 3 7 15 }
53 14 8 9 9 10 11 { 0 1 7 9 15 }
54 14 8 9 9 10 12 { 0 1 7 15 21 }
55 14 8 8 8 8 13 { 0 1 3 5 9 21 }
56 14 8 8 8 8 14 { 0 3 5 7 9 21 }
57 15 3 3 3 3 3 { 1 5 7 }
58 15 8 8 8 8 12 { 1 3 7 15 }
59 15 8 9 9 10 11 { 1 7 9 15 }
60 15 8 8 8 8 12 { 1 7 15 21 }
61 15 7 7 7 7 7 { 1 3 5 9 21 }
62 15 7 7 7 7 7 { 3 5 7 9 21 }
63 16 8 8 8 8 10 { 0 1 3 7 }
64 16 6 6 6 6 9 { 0 1 7 9 }
65 16 8 8 8 8 10 { 0 1 7 21 }
66 16 8 8 8 8 16 { 0 1 3 5 9 15 }
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67 16 8 8 8 8 12 { 0 1 3 5 15 21 }
68 16 8 8 8 8 16 { 0 1 5 9 15 21 }
69 16 8 8 8 8 16 { 0 3 5 7 9 15 }
70 16 8 8 8 8 12 { 0 3 5 7 15 21 }
71 16 8 8 8 8 16 { 0 5 7 9 15 21 }
72 17 5 5 5 5 10 { 1 3 7 }
73 17 5 5 5 5 9 { 1 7 9 }
74 17 5 5 5 5 10 { 1 7 21 }
75 17 7 8 8 8 12 { 1 3 5 9 15 }
76 17 7 8 8 8 11 { 1 3 5 15 21 }
77 17 8 8 8 8 12 { 1 5 9 15 21 }
78 17 8 8 8 8 12 { 3 5 7 9 15 }
79 17 7 8 8 8 12 { 3 5 7 15 21 }
80 17 7 8 8 8 12 { 5 7 9 15 21 }
81 18 6 6 6 6 6 { 0 1 7 15 }
82 18 8 8 8 8 13 { 0 1 3 5 9 }
83 18 8 8 8 8 10 { 0 1 3 5 21 }
84 18 7 7 7 7 13 { 0 1 5 9 21 }
85 18 7 7 7 7 13 { 0 3 5 7 9 }
86 18 8 8 8 8 10 { 0 3 5 7 21 }
87 18 8 8 8 8 13 { 0 5 7 9 21 }
88 18 6 6 6 6 6 { 0 1 3 9 15 21 }
89 18 6 6 6 6 6 { 0 3 7 9 15 21 }
90 19 6 6 6 6 10 { 1 7 15 }
91 19 7 7 7 7 13 { 1 3 5 9 }
92 19 7 7 7 7 10 { 1 3 5 21 }
93 19 7 7 7 7 13 { 1 5 9 21 }
94 19 7 7 7 7 13 { 3 5 7 9 }
95 19 7 7 7 7 10 { 3 5 7 21 }
96 19 7 7 7 7 13 { 5 7 9 21 }
97 19 6 6 6 6 15 { 1 3 9 15 21 }
98 19 6 6 6 6 15 { 3 7 9 15 21 }
99 20 6 6 6 6 8 { 0 1 7 }
100 20 8 8 8 8 10 { 0 1 3 5 15 }
101 20 6 6 6 6 10 { 0 1 3 9 21 }
102 20 7 7 7 7 8 { 0 1 5 9 15 }
103 20 7 7 7 7 10 { 0 1 5 15 21 }
104 20 7 7 7 7 10 { 0 3 5 7 15 }
105 20 6 6 6 6 10 { 0 3 7 9 21 }
106 20 7 7 7 7 8 { 0 5 7 9 15 }
107 20 8 8 8 8 10 { 0 5 7 15 21 }
108 21 3 3 3 3 6 { 1 7 }
109 21 7 7 7 7 11 { 1 3 5 15 }
110 21 5 5 5 5 5 { 1 3 9 21 }
111 21 7 7 7 7 11 { 1 5 9 15 }
112 21 7 7 7 7 11 { 1 5 15 21 }
113 21 7 7 7 7 11 { 3 5 7 15 }
114 21 5 5 5 5 5 { 3 7 9 21 }
115 21 7 7 7 7 11 { 5 7 9 15 }
116 21 7 7 7 7 11 { 5 7 15 21 }
117 22 8 8 8 8 8 { 0 1 3 5 }
118 22 6 6 6 6 8 { 0 1 5 9 }
119 22 6 7 7 7 8 { 0 1 5 21 }
120 22 6 7 7 7 8 { 0 3 5 7 }
121 22 6 6 6 6 8 { 0 5 7 9 }
122 22 8 8 8 8 8 { 0 5 7 21 }
123 22 6 6 6 6 12 { 0 1 3 9 15 }
124 22 6 6 6 6 12 { 0 1 3 15 21 }
125 22 6 6 6 6 12 { 0 1 9 15 21 }
126 22 6 6 6 6 12 { 0 3 7 9 15 }
127 22 6 6 6 6 12 { 0 3 7 15 21 }
128 22 6 6 6 6 12 { 0 7 9 15 21 }
129 23 7 7 7 7 7 { 1 3 5 }
130 23 6 6 6 6 7 { 1 5 9 }
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131 23 6 6 6 6 8 { 1 5 21 }
132 23 6 6 6 7 7 { 3 5 7 }
133 23 6 6 6 6 7 { 5 7 9 }
134 23 7 7 7 7 8 { 5 7 21 }
135 23 6 6 6 6 9 { 1 3 9 15 }
136 23 6 6 6 6 9 { 1 3 15 21 }
137 23 6 6 6 6 9 { 1 9 15 21 }
138 23 6 6 6 6 9 { 3 7 9 15 }
139 23 6 6 6 6 9 { 3 7 15 21 }
140 23 6 6 6 6 9 { 7 9 15 21 }
141 24 6 6 6 6 10 { 0 1 3 9 }
142 24 6 6 6 6 10 { 0 1 3 21 }
143 24 4 4 4 4 4 { 0 1 5 15 }
144 24 5 6 6 6 10 { 0 1 9 21 }
145 24 5 6 6 6 10 { 0 3 7 9 }
146 24 6 6 6 6 10 { 0 3 7 21 }
147 24 4 4 4 4 4 { 0 5 7 15 }
148 24 6 6 6 6 10 { 0 7 9 21 }
149 24 3 4 4 4 4 { 0 3 5 9 15 21 }
150 25 5 5 5 5 10 { 1 3 9 }
151 25 5 5 5 5 10 { 1 3 21 }
152 25 4 4 4 4 11 { 1 5 15 }
153 25 5 5 5 5 10 { 1 9 21 }
154 25 5 5 5 5 10 { 3 7 9 }
155 25 5 5 5 5 10 { 3 7 21 }
156 25 4 4 4 4 11 { 5 7 15 }
157 25 5 5 5 5 10 { 7 9 21 }
158 25 3 4 4 4 15 { 3 5 9 15 21 }
159 26 4 4 4 4 8 { 0 1 5 }
160 26 4 4 4 4 8 { 0 5 7 }
161 26 6 6 6 6 8 { 0 1 3 15 }
162 26 6 6 6 6 8 { 0 1 9 15 }
163 26 6 6 6 6 8 { 0 1 15 21 }
164 26 6 6 6 6 8 { 0 3 7 15 }
165 26 6 6 6 6 8 { 0 7 9 15 }
166 26 6 6 6 6 8 { 0 7 15 21 }
167 26 3 4 4 4 10 { 0 3 5 9 21 }
168 27 3 3 3 3 5 { 1 5 }
169 27 3 3 3 3 5 { 5 7 }
170 27 5 5 5 6 9 { 1 3 15 }
171 27 6 6 6 6 9 { 1 9 15 }
172 27 6 6 6 6 9 { 1 15 21 }
173 27 6 6 6 6 9 { 3 7 15 }
174 27 6 6 6 6 9 { 7 9 15 }
175 27 5 5 5 6 9 { 7 15 21 }
176 27 3 4 4 4 5 { 3 5 9 21 }
177 28 6 6 6 6 6 { 0 1 3 }
178 28 5 5 5 5 6 { 0 1 9 }
179 28 5 5 5 5 6 { 0 1 21 }
180 28 5 5 5 5 6 { 0 3 7 }
181 28 5 5 5 5 6 { 0 7 9 }
182 28 6 6 6 6 6 { 0 7 21 }
183 28 3 4 4 4 6 { 0 3 5 9 15 }
184 28 3 4 4 4 6 { 0 3 5 15 21 }
185 28 3 4 4 4 6 { 0 5 9 15 21 }
186 29 5 5 5 5 7 { 1 3 }
187 29 5 5 5 5 7 { 1 9 }
188 29 5 5 5 5 7 { 1 21 }
189 29 5 5 5 5 7 { 3 7 }
190 29 5 5 5 5 7 { 7 9 }
191 29 5 5 5 5 7 { 7 21 }
192 29 3 4 4 4 9 { 3 5 9 15 }
193 29 3 4 4 4 9 { 3 5 15 21 }
194 29 3 4 4 4 9 { 5 9 15 21 }
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195 30 4 4 4 4 4 { 0 1 15 }
196 30 4 4 4 4 4 { 0 7 15 }
197 30 3 4 4 4 8 { 0 3 5 9 }
198 30 3 4 4 4 8 { 0 3 5 21 }
199 30 3 4 4 4 8 { 0 5 9 21 }
200 30 2 2 2 2 2 { 0 3 9 15 21 }
201 31 4 4 4 4 9 { 1 15 }
202 31 4 4 4 4 9 { 7 15 }
203 31 3 4 4 4 7 { 3 5 9 }
204 31 3 4 4 4 7 { 3 5 21 }
205 31 3 4 4 4 7 { 5 9 21 }
206 31 2 2 2 2 15 { 3 9 15 21 }
207 32 4 4 4 4 6 { 0 1 }
208 32 4 4 4 4 6 { 0 7 }
209 32 3 4 4 4 4 { 0 3 5 15 }
210 32 2 2 2 2 10 { 0 3 9 21 }
211 32 3 4 4 4 4 { 0 5 9 15 }
212 32 3 4 4 4 4 { 0 5 15 21 }
213 33 3 3 3 3 3 { 1 }
214 33 3 3 3 3 3 { 7 }
215 33 3 4 4 4 9 { 3 5 15 }
216 33 2 2 2 2 5 { 3 9 21 }
217 33 3 4 4 4 9 { 5 9 15 }
218 33 3 4 4 4 9 { 5 15 21 }
219 34 3 4 4 4 6 { 0 3 5 }
220 34 3 4 4 4 6 { 0 5 9 }
221 34 3 4 4 4 6 { 0 5 21 }
222 34 2 2 2 2 8 { 0 3 9 15 }
223 34 2 2 2 2 6 { 0 3 15 21 }
224 34 2 2 2 2 8 { 0 9 15 21 }
225 35 3 4 4 4 5 { 3 5 }
226 35 3 4 4 4 5 { 5 9 }
227 35 3 4 4 4 5 { 5 21 }
228 35 2 2 2 2 7 { 3 9 15 }
229 35 2 2 2 2 3 { 3 15 21 }
230 35 2 2 2 2 7 { 9 15 21 }
231 36 2 2 2 2 6 { 0 3 9 }
232 36 2 2 2 2 6 { 0 3 21 }
233 36 2 2 2 2 2 { 0 5 15 }
234 36 2 2 2 2 6 { 0 9 21 }
235 37 2 2 2 2 5 { 3 9 }
236 37 2 2 2 2 6 { 3 21 }
237 37 2 2 2 2 9 { 5 15 }
238 37 2 2 2 2 5 { 9 21 }
239 38 2 2 2 2 6 { 0 5 }
240 38 2 2 2 2 4 { 0 3 15 }
241 38 2 2 2 2 4 { 0 9 15 }
242 38 2 2 2 2 4 { 0 15 21 }
243 39 2 2 2 2 3 { 5 }
244 39 2 2 2 2 5 { 3 15 }
245 39 2 2 2 2 5 { 9 15 }
246 39 2 2 2 2 5 { 15 21 }
247 40 2 2 2 2 4 { 0 3 }
248 40 2 2 2 2 2 { 0 9 }
249 40 2 2 2 2 4 { 0 21 }
250 41 2 2 2 2 3 { 3 }
251 41 2 2 2 2 5 { 9 }
252 41 2 2 2 2 3 { 21 }
253 41 2 2 2 2 3 { 21 }
254 42 2 2 2 2 2 { 0 15 }
255 43 2 2 2 2 3 { 15 }
256 44 2 2 2 2 2 { 0 }
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# k d_shift d_brouwer
1 0 46

-----------------------------
2 1 45 45

-----------------------------
3 2 30 30

-----------------------------
4 3 15 25

-----------------------------
5 4 24 23
6 4 18
7 4 24

-----------------------------
8 5 21 22
9 5 9
10 5 21
-----------------------------
11 6 18 22
12 6 18
13 6 18
14 6 10
-----------------------------
15 7 15 20
16 7 9
17 7 15
18 7 10
-----------------------------
19 8 12 20
20 8 10
21 8 12
22 8 12
-----------------------------
23 9 9 18-19
24 9 5
25 9 12
26 9 9
-----------------------------
27 10 12 18
28 10 6
29 10 12
30 10 10
31 10 10
32 10 10
-----------------------------
33 11 9 16-18
34 11 6
35 11 9
36 11 10
37 11 9
38 11 10
-----------------------------
39 12 10 16
40 12 10
41 12 6
42 12 10
43 12 8
44 12 8
-----------------------------
45 13 5 16
46 13 5
47 13 6
48 13 5
49 13 8
50 13 8
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-----------------------------
51 14 6 16
52 14 10
53 14 10
54 14 10
55 14 8
56 14 8
-----------------------------
57 15 3 14-15
58 15 9
59 15 10
60 15 9
61 15 7
62 15 7
-----------------------------
63 16 10 13-14
64 16 6
65 16 10
66 16 8
67 16 8
68 16 8
69 16 8
70 16 8
71 16 8
-----------------------------
72 17 5 12-14
73 17 5
74 17 5
75 17 8
76 17 8
77 17 8
78 17 8
79 17 8
80 17 8
-----------------------------
81 18 6 12-13
82 18 8
83 18 8
84 18 8
85 18 8
86 18 8
87 18 8
88 18 6
89 18 6
-----------------------------
90 19 6 12
91 19 7
92 19 7
93 19 7
94 19 7
95 19 7
96 19 7
97 19 6
98 19 6
-----------------------------
99 20 6 12
100 20 8
101 20 6
102 20 8
103 20 8
104 20 8
105 20 6
106 20 8
107 20 8
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-----------------------------
108 21 3 12
109 21 8
110 21 5
111 21 8
112 21 8
113 21 8
114 21 5
115 21 8
116 21 8
-----------------------------
117 22 8 11
118 22 6
119 22 8
120 22 8
121 22 6
122 22 8
123 22 6
124 22 6
125 22 6
126 22 6
127 22 6
128 22 6
-----------------------------
129 23 7 10
130 23 6
131 23 7
132 23 7
133 23 6
134 23 7
135 23 6
136 23 6
137 23 6
138 23 6
139 23 6
140 23 6
-----------------------------
141 24 6 9-10
142 24 6
143 24 4
144 24 6
145 24 6
146 24 6
147 24 4
148 24 6
149 24 4
-----------------------------
150 25 5 8-10
151 25 5
152 25 4
153 25 5
154 25 5
155 25 5
156 25 4
157 25 5
158 25 4
-----------------------------
159 26 4 8-9
160 26 4
161 26 6
162 26 6
163 26 6
164 26 6
165 26 6
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166 26 6
167 26 4
-----------------------------
168 27 3 8
169 27 3
170 27 6
171 27 6
172 27 6
173 27 6
174 27 6
175 27 6
176 27 4
-----------------------------
177 28 6 8
178 28 6
179 28 6
180 28 6
181 28 6
182 28 6
183 28 4
184 28 4
185 28 4
-----------------------------
186 29 5 7-8
187 29 5
188 29 5
189 29 5
190 29 5
191 29 5
192 29 4
193 29 4
194 29 4
-----------------------------
195 30 4 6-7
196 30 4
197 30 4
198 30 4
199 30 4
200 30 2
-----------------------------
201 31 4 6
202 31 4
203 31 4
204 31 4
205 31 4
206 31 2
-----------------------------
207 32 4 6
208 32 4
209 32 4
210 32 2
211 32 4
212 32 4
-----------------------------
213 33 3 6
214 33 3
215 33 4
216 33 2
217 33 4
218 33 4
-----------------------------
219 34 4 5
220 34 4
221 34 4
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222 34 2
223 34 2
224 34 2
-----------------------------
225 35 4 4
226 35 4
227 35 4
228 35 2
229 35 2
230 35 2
-----------------------------
231 36 2 4
232 36 2
233 36 2
234 36 2
-----------------------------
235 37 2 4
236 37 2
237 37 2
238 37 2
-----------------------------
239 38 2 4
240 38 2
241 38 2
242 38 2
-----------------------------
243 39 2 3
244 39 2
245 39 2
246 39 2
-----------------------------
247 40 2 2
248 40 2
249 40 2
-----------------------------
250 41 2 2
251 41 2
252 41 2
253 41 2
-----------------------------
254 42 2 2
-----------------------------
255 43 2 2
-----------------------------
256 44 2 2

Remark 7.1. For n = 45, dBCH � dHT � dHTR � dRoos � dshift = d.

7.2. Binary cyclic codes of length 73

Coset representatives are :
( 0 1 3 5 9 11 13 17 25 )
The cyclotomic cosets are :
( 0 )
( 1 2 4 8 16 32 37 55 64 )
( 3 6 12 19 23 24 38 46 48 )
( 5 7 10 14 20 28 39 40 56 )
( 9 18 36 41 57 65 69 71 72 )
( 11 15 21 22 30 42 44 47 60 )
( 13 26 29 31 43 51 52 58 62 )
( 17 33 34 45 53 59 63 66 68 )
( 25 27 35 49 50 54 61 67 70 )
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Table for the lower bounds on the minimum distance of
2-ary Cyclic codes of length 73

# k d_BCH d_HT d_HTR d_Roos n(Z) root(s)
1 0 74 74 74 74 74 { 0 1 3 5 9 11 13 17 25 }
2 1 73 73 73 73 73 { 1 3 5 9 11 13 17 25 }
3 9 28 28 28 28 28 { 0 1 3 5 9 11 13 17 }
4 9 28 28 28 28 28 { 0 1 3 5 9 11 13 25 }
5 9 28 28 28 28 28 { 0 1 3 5 9 11 17 25 }
6 9 28 28 28 28 28 { 0 1 3 5 9 13 17 25 }
7 9 28 28 28 28 28 { 0 1 3 5 11 13 17 25 }
8 9 28 28 28 28 28 { 0 1 3 9 11 13 17 25 }
9 9 28 28 28 28 28 { 0 1 5 9 11 13 17 25 }
10 9 28 28 28 28 28 { 0 3 5 9 11 13 17 25 }
11 10 25 25 25 25 31 { 1 3 5 9 11 13 17 }
12 10 25 25 25 27 30 { 1 3 5 9 11 13 25 }
13 10 25 25 25 25 30 { 1 3 5 9 11 17 25 }
14 10 25 25 25 25 31 { 1 3 5 9 13 17 25 }
15 10 25 25 25 26 30 { 1 3 5 11 13 17 25 }
16 10 25 25 25 25 30 { 1 3 9 11 13 17 25 }
17 10 25 25 25 25 30 { 1 5 9 11 13 17 25 }
18 10 25 25 25 25 31 { 3 5 9 11 13 17 25 }
19 18 20 20 20 20 24 { 0 1 3 5 9 11 13 }
20 18 16 16 16 16 22 { 0 1 3 5 9 11 17 }
21 18 18 18 18 18 21 { 0 1 3 5 9 11 25 }
22 18 20 20 20 20 23 { 0 1 3 5 9 13 17 }
23 18 18 18 18 18 22 { 0 1 3 5 9 13 25 }
24 18 22 22 22 22 21 { 0 1 3 5 9 17 25 }
25 18 18 18 18 18 22 { 0 1 3 5 11 13 17 }
26 18 16 16 16 16 22 { 0 1 3 5 11 13 25 }
27 18 16 16 16 17 21 { 0 1 3 5 11 17 25 }
28 18 20 20 20 20 24 { 0 1 3 5 13 17 25 }
29 18 16 16 16 16 20 { 0 1 3 9 11 13 17 }
30 18 22 22 22 22 22 { 0 1 3 9 11 13 25 }
31 18 18 18 18 18 22 { 0 1 3 9 11 17 25 }
32 18 18 18 18 18 22 { 0 1 3 9 13 17 25 }
33 18 20 20 20 20 22 { 0 1 3 11 13 17 25 }
34 18 22 22 22 22 22 { 0 1 5 9 11 13 17 }
35 18 16 16 16 16 21 { 0 1 5 9 11 13 25 }
36 18 20 20 20 20 24 { 0 1 5 9 11 17 25 }
37 18 16 16 16 16 22 { 0 1 5 9 13 17 25 }
38 18 18 18 18 18 22 { 0 1 5 11 13 17 25 }
39 18 20 20 20 20 24 { 0 1 9 11 13 17 25 }
40 18 18 18 18 18 22 { 0 3 5 9 11 13 17 }
41 18 20 20 20 20 24 { 0 3 5 9 11 13 25 }
42 18 20 20 20 20 24 { 0 3 5 9 11 17 25 }
43 18 16 16 16 16 22 { 0 3 5 9 13 17 25 }
44 18 22 22 22 22 22 { 0 3 5 11 13 17 25 }
45 18 16 16 16 16 22 { 0 3 9 11 13 17 25 }
46 18 18 18 18 18 21 { 0 5 9 11 13 17 25 }
47 19 17 17 17 17 21 { 1 3 5 9 11 13 }
48 19 15 15 15 15 20 { 1 3 5 9 11 17 }
49 19 13 13 13 16 21 { 1 3 5 9 11 25 }
50 19 17 17 17 17 21 { 1 3 5 9 13 17 }
51 19 13 13 13 13 21 { 1 3 5 9 13 25 }
52 19 14 15 15 18 19 { 1 3 5 9 17 25 }
53 19 13 13 13 16 21 { 1 3 5 11 13 17 }
54 19 15 15 15 16 20 { 1 3 5 11 13 25 }
55 19 15 15 15 15 21 { 1 3 5 11 17 25 }
56 19 17 17 17 17 21 { 1 3 5 13 17 25 }
57 19 15 15 15 15 21 { 1 3 9 11 13 17 }
58 19 14 15 15 16 19 { 1 3 9 11 13 25 }
59 19 13 13 13 14 21 { 1 3 9 11 17 25 }
60 19 13 13 13 15 21 { 1 3 9 13 17 25 }
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61 19 17 17 17 17 21 { 1 3 11 13 17 25 }
62 19 14 15 15 19 19 { 1 5 9 11 13 17 }
63 19 15 15 15 15 21 { 1 5 9 11 13 25 }
64 19 17 17 17 17 21 { 1 5 9 11 17 25 }
65 19 15 15 15 15 20 { 1 5 9 13 17 25 }
66 19 13 13 13 16 21 { 1 5 11 13 17 25 }
67 19 17 17 17 17 21 { 1 9 11 13 17 25 }
68 19 13 13 13 16 21 { 3 5 9 11 13 17 }
69 19 17 17 17 17 21 { 3 5 9 11 13 25 }
70 19 17 17 17 17 21 { 3 5 9 11 17 25 }
71 19 15 15 15 15 21 { 3 5 9 13 17 25 }
72 19 14 15 15 19 19 { 3 5 11 13 17 25 }
73 19 15 15 15 16 21 { 3 9 11 13 17 25 }
74 19 13 13 13 16 21 { 5 9 11 13 17 25 }
75 27 16 16 16 16 18 { 0 1 3 5 9 11 }
76 27 14 14 14 14 16 { 0 1 3 5 9 13 }
77 27 14 14 14 14 16 { 0 1 3 5 9 17 }
78 27 16 16 16 16 16 { 0 1 3 5 9 25 }
79 27 10 10 10 10 16 { 0 1 3 5 11 13 }
80 27 10 10 10 11 16 { 0 1 3 5 11 17 }
81 27 10 10 10 11 16 { 0 1 3 5 11 25 }
82 27 14 14 14 14 15 { 0 1 3 5 13 17 }
83 27 16 16 16 16 18 { 0 1 3 5 13 25 }
84 27 14 14 14 14 14 { 0 1 3 5 17 25 }
85 27 14 14 14 14 15 { 0 1 3 9 11 13 }
86 27 10 10 10 11 15 { 0 1 3 9 11 17 }
87 27 16 16 16 16 16 { 0 1 3 9 11 25 }
88 27 10 10 10 10 16 { 0 1 3 9 13 17 }
89 27 16 16 16 16 16 { 0 1 3 9 13 25 }
90 27 16 16 16 16 16 { 0 1 3 9 17 25 }
91 27 16 16 16 16 18 { 0 1 3 11 13 17 }
92 27 14 14 14 14 16 { 0 1 3 11 13 25 }
93 27 10 10 10 10 16 { 0 1 3 11 17 25 }
94 27 14 14 14 14 15 { 0 1 3 13 17 25 }
95 27 14 14 14 14 15 { 0 1 5 9 11 13 }
96 27 14 14 14 14 15 { 0 1 5 9 11 17 }
97 27 10 10 10 10 16 { 0 1 5 9 11 25 }
98 27 14 14 14 14 15 { 0 1 5 9 13 17 }
99 27 10 10 10 11 16 { 0 1 5 9 13 25 }
100 27 14 14 14 14 15 { 0 1 5 9 17 25 }
101 27 16 16 16 16 16 { 0 1 5 11 13 17 }
102 27 10 10 10 11 16 { 0 1 5 11 13 25 }
103 27 16 16 16 16 18 { 0 1 5 11 17 25 }
104 27 10 10 10 10 16 { 0 1 5 13 17 25 }
105 27 14 14 14 14 16 { 0 1 9 11 13 17 }
106 27 14 14 14 14 14 { 0 1 9 11 13 25 }
107 27 14 14 14 14 15 { 0 1 9 11 17 25 }
108 27 16 16 16 16 18 { 0 1 9 13 17 25 }
109 27 14 14 14 14 16 { 0 1 11 13 17 25 }
110 27 14 14 14 14 16 { 0 3 5 9 11 13 }
111 27 10 10 10 10 16 { 0 3 5 9 11 17 }
112 27 14 14 14 14 16 { 0 3 5 9 11 25 }
113 27 16 16 16 16 18 { 0 3 5 9 13 17 }
114 27 10 10 10 10 16 { 0 3 5 9 13 25 }
115 27 14 14 14 14 14 { 0 3 5 9 17 25 }
116 27 16 16 16 16 16 { 0 3 5 11 13 17 }
117 27 14 14 14 14 14 { 0 3 5 11 13 25 }
118 27 14 14 14 14 16 { 0 3 5 11 17 25 }
119 27 14 14 14 14 15 { 0 3 5 13 17 25 }
120 27 10 10 10 11 15 { 0 3 9 11 13 17 }
121 27 14 14 14 14 16 { 0 3 9 11 13 25 }
122 27 16 16 16 16 18 { 0 3 9 11 17 25 }
123 27 10 10 10 11 15 { 0 3 9 13 17 25 }
124 27 14 14 14 14 14 { 0 3 11 13 17 25 }
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125 27 16 16 16 16 16 { 0 5 9 11 13 17 }
126 27 16 16 16 16 18 { 0 5 9 11 13 25 }
127 27 14 14 14 14 16 { 0 5 9 11 17 25 }
128 27 10 10 10 11 15 { 0 5 9 13 17 25 }
129 27 16 16 16 16 16 { 0 5 11 13 17 25 }
130 27 10 10 10 10 16 { 0 9 11 13 17 25 }
131 28 13 13 13 13 15 { 1 3 5 9 11 }
132 28 11 11 11 11 15 { 1 3 5 9 13 }
133 28 11 11 11 11 13 { 1 3 5 9 17 }
134 28 11 11 11 11 15 { 1 3 5 9 25 }
135 28 9 9 9 9 9 { 1 3 5 11 13 }
136 28 9 9 9 10 14 { 1 3 5 11 17 }
137 28 9 9 9 11 15 { 1 3 5 11 25 }
138 28 11 11 11 11 15 { 1 3 5 13 17 }
139 28 13 13 13 13 15 { 1 3 5 13 25 }
140 28 14 14 14 14 15 { 1 3 5 17 25 }
141 28 14 14 14 14 15 { 1 3 9 11 13 }
142 28 9 9 9 11 14 { 1 3 9 11 17 }
143 28 11 11 11 11 14 { 1 3 9 11 25 }
144 28 9 9 9 9 9 { 1 3 9 13 17 }
145 28 11 11 11 11 15 { 1 3 9 13 25 }
146 28 11 11 11 11 15 { 1 3 9 17 25 }
147 28 13 13 13 13 15 { 1 3 11 13 17 }
148 28 11 11 11 11 13 { 1 3 11 13 25 }
149 28 9 9 9 9 9 { 1 3 11 17 25 }
150 28 11 11 11 11 15 { 1 3 13 17 25 }
151 28 11 11 11 11 13 { 1 5 9 11 13 }
152 28 14 14 14 14 15 { 1 5 9 11 17 }
153 28 9 9 9 9 9 { 1 5 9 11 25 }
154 28 14 14 14 14 15 { 1 5 9 13 17 }
155 28 9 9 9 11 14 { 1 5 9 13 25 }
156 28 11 11 11 11 13 { 1 5 9 17 25 }
157 28 11 11 11 11 15 { 1 5 11 13 17 }
158 28 9 9 9 11 15 { 1 5 11 13 25 }
159 28 13 13 13 13 15 { 1 5 11 17 25 }
160 28 9 9 9 9 9 { 1 5 13 17 25 }
161 28 11 11 11 11 13 { 1 9 11 13 17 }
162 28 14 14 14 14 15 { 1 9 11 13 25 }
163 28 11 11 11 11 16 { 1 9 11 17 25 }
164 28 13 13 13 13 15 { 1 9 13 17 25 }
165 28 11 11 11 11 16 { 1 11 13 17 25 }
166 28 11 11 11 11 16 { 3 5 9 11 13 }
167 28 9 9 9 9 9 { 3 5 9 11 17 }
168 28 11 11 11 11 14 { 3 5 9 11 25 }
169 28 13 13 13 13 15 { 3 5 9 13 17 }
170 28 9 9 9 9 9 { 3 5 9 13 25 }
171 28 14 14 14 14 15 { 3 5 9 17 25 }
172 28 11 11 11 11 14 { 3 5 11 13 17 }
173 28 14 14 14 14 15 { 3 5 11 13 25 }
174 28 11 11 11 11 13 { 3 5 11 17 25 }
175 28 11 11 11 11 13 { 3 5 13 17 25 }
176 28 9 9 9 11 14 { 3 9 11 13 17 }
177 28 11 11 11 11 13 { 3 9 11 13 25 }
178 28 13 13 13 13 15 { 3 9 11 17 25 }
179 28 9 9 9 11 15 { 3 9 13 17 25 }
180 28 14 14 14 14 15 { 3 11 13 17 25 }
181 28 11 11 11 11 15 { 5 9 11 13 17 }
182 28 13 13 13 13 15 { 5 9 11 13 25 }
183 28 11 11 11 11 16 { 5 9 11 17 25 }
184 28 9 9 9 10 14 { 5 9 13 17 25 }
185 28 11 11 11 11 15 { 5 11 13 17 25 }
186 28 9 9 9 9 9 { 9 11 13 17 25 }
187 36 14 14 14 14 14 { 0 1 3 5 9 }
188 36 10 10 10 10 14 { 0 1 3 5 11 }
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189 36 10 10 10 10 12 { 0 1 3 5 13 }
190 36 10 10 10 10 10 { 0 1 3 5 17 }
191 36 10 10 10 10 10 { 0 1 3 5 25 }
192 36 10 10 10 10 10 { 0 1 3 9 11 }
193 36 8 8 8 8 14 { 0 1 3 9 13 }
194 36 8 8 8 9 12 { 0 1 3 9 17 }
195 36 10 10 10 10 10 { 0 1 3 9 25 }
196 36 8 8 8 9 12 { 0 1 3 11 13 }
197 36 10 10 10 10 14 { 0 1 3 11 17 }
198 36 8 8 8 9 12 { 0 1 3 11 25 }
199 36 10 10 10 10 12 { 0 1 3 13 17 }
200 36 14 14 14 14 14 { 0 1 3 13 25 }
201 36 8 8 8 8 14 { 0 1 3 17 25 }
202 36 8 8 8 9 12 { 0 1 5 9 11 }
203 36 10 10 10 10 10 { 0 1 5 9 13 }
204 36 8 9 9 11 12 { 0 1 5 9 17 }
205 36 8 8 8 9 12 { 0 1 5 9 25 }
206 36 8 8 8 9 12 { 0 1 5 11 13 }
207 36 10 10 10 10 10 { 0 1 5 11 17 }
208 36 10 10 10 10 14 { 0 1 5 11 25 }
209 36 8 8 8 8 14 { 0 1 5 13 17 }
210 36 10 10 10 10 13 { 0 1 5 13 25 }
211 36 8 8 8 9 12 { 0 1 5 17 25 }
212 36 8 9 9 10 12 { 0 1 9 11 13 }
213 36 10 10 10 10 10 { 0 1 9 11 17 }
214 36 8 8 8 8 14 { 0 1 9 11 25 }
215 36 8 8 8 9 12 { 0 1 9 13 17 }
216 36 10 10 10 10 10 { 0 1 9 13 25 }
217 36 14 14 14 14 14 { 0 1 9 17 25 }
218 36 14 14 14 14 14 { 0 1 11 13 17 }
219 36 10 10 10 10 10 { 0 1 11 13 25 }
220 36 10 10 10 10 12 { 0 1 11 17 25 }
221 36 10 10 10 10 12 { 0 1 13 17 25 }
222 36 10 10 10 10 11 { 0 3 5 9 11 }
223 36 10 10 10 10 12 { 0 3 5 9 13 }
224 36 8 8 8 9 12 { 0 3 5 9 17 }
225 36 8 8 8 8 14 { 0 3 5 9 25 }
226 36 8 8 8 8 14 { 0 3 5 11 13 }
227 36 8 8 8 9 12 { 0 3 5 11 17 }
228 36 10 10 10 10 10 { 0 3 5 11 25 }
229 36 14 14 14 14 14 { 0 3 5 13 17 }
230 36 8 8 8 9 12 { 0 3 5 13 25 }
231 36 8 9 9 11 12 { 0 3 5 17 25 }
232 36 10 10 10 10 10 { 0 3 9 11 13 }
233 36 10 10 10 10 14 { 0 3 9 11 17 }
234 36 14 14 14 14 14 { 0 3 9 11 25 }
235 36 10 10 10 10 14 { 0 3 9 13 17 }
236 36 8 8 8 9 12 { 0 3 9 13 25 }
237 36 10 10 10 10 10 { 0 3 9 17 25 }
238 36 10 10 10 10 10 { 0 3 11 13 17 }
239 36 8 9 9 11 12 { 0 3 11 13 25 }
240 36 8 8 8 9 12 { 0 3 11 17 25 }
241 36 10 10 10 10 10 { 0 3 13 17 25 }
242 36 14 14 14 14 14 { 0 5 9 11 13 }
243 36 8 8 8 8 14 { 0 5 9 11 17 }
244 36 10 10 10 10 12 { 0 5 9 11 25 }
245 36 10 10 10 10 10 { 0 5 9 13 17 }
246 36 10 10 10 10 14 { 0 5 9 13 25 }
247 36 10 10 10 10 10 { 0 5 9 17 25 }
248 36 10 10 10 10 10 { 0 5 11 13 17 }
249 36 10 10 10 10 10 { 0 5 11 13 25 }
250 36 14 14 14 14 14 { 0 5 11 17 25 }
251 36 8 8 8 9 12 { 0 5 13 17 25 }
252 36 8 8 8 9 12 { 0 9 11 13 17 }
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253 36 8 8 8 9 12 { 0 9 11 13 25 }
254 36 10 10 10 10 12 { 0 9 11 17 25 }
255 36 10 10 10 10 13 { 0 9 13 17 25 }
256 36 8 8 8 8 14 { 0 11 13 17 25 }
257 37 11 11 11 11 11 { 1 3 5 9 }
258 37 9 9 9 9 14 { 1 3 5 11 }
259 37 9 9 9 9 11 { 1 3 5 13 }
260 37 9 9 9 9 10 { 1 3 5 17 }
261 37 9 9 9 9 9 { 1 3 5 25 }
262 37 9 9 9 9 9 { 1 3 9 11 }
263 37 7 8 8 8 13 { 1 3 9 13 }
264 37 7 7 7 9 10 { 1 3 9 17 }
265 37 5 7 7 7 10 { 1 3 9 25 }
266 37 8 8 8 9 10 { 1 3 11 13 }
267 37 9 9 9 9 13 { 1 3 11 17 }
268 37 7 7 7 9 10 { 1 3 11 25 }
269 37 9 9 9 9 11 { 1 3 13 17 }
270 37 11 11 11 11 11 { 1 3 13 25 }
271 37 7 8 8 8 13 { 1 3 17 25 }
272 37 8 8 8 9 10 { 1 5 9 11 }
273 37 9 9 9 9 11 { 1 5 9 13 }
274 37 8 9 9 11 11 { 1 5 9 17 }
275 37 7 7 7 9 10 { 1 5 9 25 }
276 37 7 7 7 9 10 { 1 5 11 13 }
277 37 9 9 9 9 9 { 1 5 11 17 }
278 37 9 9 9 9 13 { 1 5 11 25 }
279 37 7 8 8 8 13 { 1 5 13 17 }
280 37 9 9 9 9 13 { 1 5 13 25 }
281 37 8 8 8 9 10 { 1 5 17 25 }
282 37 8 9 9 10 11 { 1 9 11 13 }
283 37 9 9 9 9 10 { 1 9 11 17 }
284 37 7 8 8 8 13 { 1 9 11 25 }
285 37 8 8 8 9 10 { 1 9 13 17 }
286 37 9 9 9 9 9 { 1 9 13 25 }
287 37 11 11 11 11 11 { 1 9 17 25 }
288 37 11 11 11 11 11 { 1 11 13 17 }
289 37 9 9 9 9 10 { 1 11 13 25 }
290 37 9 9 9 9 11 { 1 11 17 25 }
291 37 9 9 9 9 11 { 1 13 17 25 }
292 37 9 9 9 9 11 { 3 5 9 11 }
293 37 9 9 9 9 11 { 3 5 9 13 }
294 37 8 8 8 9 10 { 3 5 9 17 }
295 37 7 8 8 8 13 { 3 5 9 25 }
296 37 7 8 8 8 13 { 3 5 11 13 }
297 37 7 7 7 9 11 { 3 5 11 17 }
298 37 9 9 9 9 10 { 3 5 11 25 }
299 37 11 11 11 11 11 { 3 5 13 17 }
300 37 8 8 8 9 11 { 3 5 13 25 }
301 37 8 9 9 11 11 { 3 5 17 25 }
302 37 9 9 9 9 10 { 3 9 11 13 }
303 37 9 9 9 9 14 { 3 9 11 17 }
304 37 11 11 11 11 11 { 3 9 11 25 }
305 37 9 9 9 9 14 { 3 9 13 17 }
306 37 7 7 7 9 10 { 3 9 13 25 }
307 37 9 9 9 9 9 { 3 9 17 25 }
308 37 9 9 9 9 10 { 3 11 13 17 }
309 37 8 9 9 11 11 { 3 11 13 25 }
310 37 8 8 8 9 10 { 3 11 17 25 }
311 37 9 9 9 9 10 { 3 13 17 25 }
312 37 11 11 11 11 11 { 5 9 11 13 }
313 37 7 8 8 8 13 { 5 9 11 17 }
314 37 9 9 9 9 11 { 5 9 11 25 }
315 37 9 9 9 9 9 { 5 9 13 17 }
316 37 9 9 9 9 13 { 5 9 13 25 }
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317 37 9 9 9 9 10 { 5 9 17 25 }
318 37 5 7 7 7 10 { 5 11 13 17 }
319 37 9 9 9 9 9 { 5 11 13 25 }
320 37 11 11 11 11 11 { 5 11 17 25 }
321 37 7 7 7 9 10 { 5 13 17 25 }
322 37 7 7 7 9 10 { 9 11 13 17 }
323 37 8 8 8 9 10 { 9 11 13 25 }
324 37 9 9 9 9 11 { 9 11 17 25 }
325 37 9 9 9 9 14 { 9 13 17 25 }
326 37 7 8 8 8 13 { 11 13 17 25 }
327 45 10 10 10 10 10 { 0 1 3 5 }
328 45 8 8 8 8 8 { 0 1 3 9 }
329 45 6 6 6 7 9 { 0 1 3 11 }
330 45 6 6 6 7 8 { 0 1 3 13 }
331 45 7 7 7 7 10 { 0 1 3 17 }
332 45 8 8 8 8 8 { 0 1 3 25 }
333 45 6 7 7 8 10 { 0 1 5 9 }
334 45 6 6 6 7 9 { 0 1 5 11 }
335 45 7 7 7 7 10 { 0 1 5 13 }
336 45 6 6 6 6 8 { 0 1 5 17 }
337 45 6 6 6 7 9 { 0 1 5 25 }
338 45 6 6 6 6 8 { 0 1 9 11 }
339 45 6 6 6 6 8 { 0 1 9 13 }
340 45 6 7 7 8 10 { 0 1 9 17 }
341 45 8 8 8 8 8 { 0 1 9 25 }
342 45 6 7 7 8 10 { 0 1 11 13 }
343 45 10 10 10 10 9 { 0 1 11 17 }
344 45 7 7 7 7 10 { 0 1 11 25 }
345 45 6 6 6 7 8 { 0 1 13 17 }
346 45 10 10 10 10 9 { 0 1 13 25 }
347 45 6 6 6 7 8 { 0 1 17 25 }
348 45 6 6 6 7 8 { 0 3 5 9 }
349 45 7 7 7 7 10 { 0 3 5 11 }
350 45 6 6 6 7 8 { 0 3 5 13 }
351 45 6 7 7 8 10 { 0 3 5 17 }
352 45 6 6 6 6 8 { 0 3 5 25 }
353 45 10 10 10 10 10 { 0 3 9 11 }
354 45 7 7 7 7 10 { 0 3 9 13 }
355 45 6 6 6 7 9 { 0 3 9 17 }
356 45 8 8 8 8 8 { 0 3 9 25 }
357 45 6 6 6 6 8 { 0 3 11 13 }
358 45 6 6 6 7 9 { 0 3 11 17 }
359 45 6 7 7 8 10 { 0 3 11 25 }
360 45 10 10 10 10 10 { 0 3 13 17 }
361 45 6 7 7 8 10 { 0 3 13 25 }
362 45 6 6 6 6 8 { 0 3 17 25 }
363 45 6 6 6 7 8 { 0 5 9 11 }
364 45 10 10 10 10 10 { 0 5 9 13 }
365 45 6 6 6 6 8 { 0 5 9 17 }
366 45 7 7 7 7 10 { 0 5 9 25 }
367 45 8 8 8 8 8 { 0 5 11 13 }
368 45 8 8 8 8 8 { 0 5 11 17 }
369 45 10 10 10 10 9 { 0 5 11 25 }
370 45 8 8 8 8 8 { 0 5 13 17 }
371 45 6 6 6 7 9 { 0 5 13 25 }
372 45 6 7 7 8 10 { 0 5 17 25 }
373 45 6 7 7 8 10 { 0 9 11 13 }
374 45 7 7 7 7 10 { 0 9 11 17 }
375 45 6 6 6 7 8 { 0 9 11 25 }
376 45 6 6 6 7 9 { 0 9 13 17 }
377 45 6 6 6 7 9 { 0 9 13 25 }
378 45 10 10 10 10 10 { 0 9 17 25 }
379 45 8 8 8 8 8 { 0 11 13 17 }
380 45 6 6 6 6 8 { 0 11 13 25 }
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381 45 6 6 6 7 8 { 0 11 17 25 }
382 45 7 7 7 7 10 { 0 13 17 25 }
383 46 9 9 9 9 9 { 1 3 5 }
384 46 5 5 5 7 8 { 1 3 9 }
385 46 6 6 6 7 8 { 1 3 11 }
386 46 5 5 5 6 9 { 1 3 13 }
387 46 7 7 7 7 9 { 1 3 17 }
388 46 5 5 5 7 8 { 1 3 25 }
389 46 6 7 7 8 9 { 1 5 9 }
390 46 6 6 6 7 8 { 1 5 11 }
391 46 7 7 7 7 9 { 1 5 13 }
392 46 5 5 5 6 8 { 1 5 17 }
393 46 6 6 6 7 8 { 1 5 25 }
394 46 5 5 5 6 8 { 1 9 11 }
395 46 5 5 5 6 8 { 1 9 13 }
396 46 6 7 7 8 9 { 1 9 17 }
397 46 5 5 5 7 8 { 1 9 25 }
398 46 6 7 7 8 9 { 1 11 13 }
399 46 9 9 9 9 9 { 1 11 17 }
400 46 7 7 7 7 9 { 1 11 25 }
401 46 5 5 5 6 9 { 1 13 17 }
402 46 9 9 9 9 9 { 1 13 25 }
403 46 5 5 5 6 9 { 1 17 25 }
404 46 5 5 5 6 9 { 3 5 9 }
405 46 7 7 7 7 9 { 3 5 11 }
406 46 5 5 5 6 9 { 3 5 13 }
407 46 6 7 7 8 9 { 3 5 17 }
408 46 5 5 5 6 8 { 3 5 25 }
409 46 9 9 9 9 9 { 3 9 11 }
410 46 7 7 7 7 9 { 3 9 13 }
411 46 6 6 6 7 8 { 3 9 17 }
412 46 5 5 5 7 8 { 3 9 25 }
413 46 5 5 5 6 8 { 3 11 13 }
414 46 6 6 6 7 8 { 3 11 17 }
415 46 6 7 7 8 9 { 3 11 25 }
416 46 9 9 9 9 9 { 3 13 17 }
417 46 6 7 7 8 9 { 3 13 25 }
418 46 5 5 5 6 8 { 3 17 25 }
419 46 5 5 5 6 9 { 5 9 11 }
420 46 9 9 9 9 9 { 5 9 13 }
421 46 5 5 5 6 8 { 5 9 17 }
422 46 7 7 7 7 9 { 5 9 25 }
423 46 5 5 5 7 8 { 5 11 13 }
424 46 5 5 5 7 8 { 5 11 17 }
425 46 9 9 9 9 9 { 5 11 25 }
426 46 5 5 5 7 8 { 5 13 17 }
427 46 6 6 6 7 8 { 5 13 25 }
428 46 6 7 7 8 9 { 5 17 25 }
429 46 6 7 7 8 9 { 9 11 13 }
430 46 7 7 7 7 9 { 9 11 17 }
431 46 5 5 5 6 9 { 9 11 25 }
432 46 6 6 6 7 8 { 9 13 17 }
433 46 6 6 6 7 8 { 9 13 25 }
434 46 9 9 9 9 9 { 9 17 25 }
435 46 5 5 5 7 8 { 11 13 17 }
436 46 5 5 5 6 8 { 11 13 25 }
437 46 5 5 5 6 9 { 11 17 25 }
438 46 7 7 7 7 9 { 13 17 25 }
439 54 6 6 6 6 6 { 0 1 3 }
440 54 5 5 5 6 6 { 0 1 5 }
441 54 6 6 6 6 6 { 0 1 9 }
442 54 5 5 5 6 6 { 0 1 11 }
443 54 4 5 5 5 6 { 0 1 13 }
444 54 4 5 5 5 6 { 0 1 17 }
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445 54 6 6 6 6 6 { 0 1 25 }
446 54 4 5 5 5 6 { 0 3 5 }
447 54 6 6 6 6 6 { 0 3 9 }
448 54 5 5 5 6 6 { 0 3 11 }
449 54 4 5 5 5 6 { 0 3 13 }
450 54 5 5 5 6 6 { 0 3 17 }
451 54 6 6 6 6 6 { 0 3 25 }
452 54 4 5 5 5 6 { 0 5 9 }
453 54 6 6 6 6 6 { 0 5 11 }
454 54 6 6 6 6 6 { 0 5 13 }
455 54 6 6 6 6 6 { 0 5 17 }
456 54 5 5 5 6 6 { 0 5 25 }
457 54 4 5 5 5 6 { 0 9 11 }
458 54 5 5 5 6 6 { 0 9 13 }
459 54 5 5 5 6 6 { 0 9 17 }
460 54 6 6 6 6 6 { 0 9 25 }
461 54 6 6 6 6 6 { 0 11 13 }
462 54 6 6 6 6 6 { 0 11 17 }
463 54 4 5 5 5 6 { 0 11 25 }
464 54 6 6 6 6 6 { 0 13 17 }
465 54 5 5 5 6 6 { 0 13 25 }
466 54 4 5 5 5 6 { 0 17 25 }
467 55 5 5 5 5 5 { 1 3 }
468 55 5 5 5 6 6 { 1 5 }
469 55 4 5 5 5 7 { 1 9 }
470 55 5 5 5 6 6 { 1 11 }
471 55 4 5 5 5 6 { 1 13 }
472 55 4 5 5 5 6 { 1 17 }
473 55 5 5 5 5 5 { 1 25 }
474 55 4 5 5 5 6 { 3 5 }
475 55 5 5 5 5 5 { 3 9 }
476 55 5 5 5 6 6 { 3 11 }
477 55 4 5 5 5 6 { 3 13 }
478 55 5 5 5 6 6 { 3 17 }
479 55 4 5 5 5 7 { 3 25 }
480 55 4 5 5 5 6 { 5 9 }
481 55 5 5 5 5 5 { 5 11 }
482 55 5 5 5 5 5 { 5 13 }
483 55 4 5 5 5 7 { 5 17 }
484 55 5 5 5 6 6 { 5 25 }
485 55 4 5 5 5 6 { 9 11 }
486 55 5 5 5 6 6 { 9 13 }
487 55 5 5 5 6 6 { 9 17 }
488 55 5 5 5 5 5 { 9 25 }
489 55 4 5 5 5 7 { 11 13 }
490 55 5 5 5 5 5 { 11 17 }
491 55 4 5 5 5 6 { 11 25 }
492 55 5 5 5 5 5 { 13 17 }
493 55 5 5 5 6 6 { 13 25 }
494 55 4 5 5 5 6 { 17 25 }
495 63 4 4 4 4 4 { 0 1 }
496 63 4 4 4 4 4 { 0 3 }
497 63 4 4 4 4 4 { 0 5 }
498 63 4 4 4 4 4 { 0 9 }
499 63 4 4 4 4 4 { 0 11 }
500 63 4 4 4 4 4 { 0 13 }
501 63 4 4 4 4 4 { 0 17 }
502 63 4 4 4 4 4 { 0 25 }
503 64 3 3 3 3 3 { 1 }
504 64 3 3 3 3 3 { 3 }
505 64 3 3 3 3 3 { 5 }
506 64 3 3 3 3 3 { 9 }
507 64 3 3 3 3 3 { 11 }
508 64 3 3 3 3 3 { 13 }
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509 64 3 3 3 3 3 { 17 }
510 64 3 3 3 3 3 { 25 }
511 64 3 3 3 3 3 { 25 }
512 72 2 2 2 2 2 { 0 }

# k d_shift d_brouwer
1 0 74

-----------------------------
2 1 73 73

-----------------------------
3 9 28 32
4 9 28
5 9 28
6 9 28
7 9 28
8 9 28
9 9 28
10 9 28
-----------------------------
11 10 28 32
12 10 28
13 10 28
14 10 28
15 10 28
16 10 28
17 10 28
18 10 28
-----------------------------
19 18 24 24-27
20 18 22
21 18 21
22 18 23
23 18 22
24 18 21
25 18 22
26 18 22
27 18 22
28 18 24
29 18 22
30 18 22
31 18 21
32 18 22
33 18 23
34 18 22
35 18 22
36 18 24
37 18 21
38 18 21
39 18 24
40 18 22
41 18 24
42 18 24
43 18 22
44 18 22
45 18 22
46 18 21
-----------------------------
47 19 21 24-26
48 19 21
49 19 21
50 19 21
51 19 21
52 19 19
53 19 21
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54 19 21
55 19 21
56 19 21
57 19 20
58 19 19
59 19 21
60 19 21
61 19 21
62 19 19
63 19 20
64 19 21
65 19 20
66 19 21
67 19 21
68 19 21
69 19 21
70 19 21
71 19 21
72 19 19
73 19 19
74 19 21
-----------------------------
75 27 18 20-22
76 27 16
77 27 16
78 27 16
79 27 16
80 27 15
81 27 15
82 27 16
83 27 18
84 27 15
85 27 15
86 27 15
87 27 16
88 27 16
89 27 16
90 27 16
91 27 18
92 27 16
93 27 16
94 27 15
95 27 15
96 27 14
97 27 16
98 27 15
99 27 16
100 27 15
101 27 16
102 27 16
103 27 18
104 27 16
105 27 16
106 27 15
107 27 15
108 27 18
109 27 16
110 27 16
111 27 16
112 27 16
113 27 18
114 27 16
115 27 14
116 27 16
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117 27 15
118 27 16
119 27 15
120 27 15
121 27 16
122 27 18
123 27 15
124 27 14
125 27 16
126 27 18
127 27 16
128 27 16
129 27 16
130 27 16
-----------------------------
131 28 15 18-22
132 28 16
133 28 13
134 28 15
135 28 9
136 28 14
137 28 15
138 28 15
139 28 15
140 28 15
141 28 15
142 28 14
143 28 15
144 28 9
145 28 14
146 28 15
147 28 15
148 28 13
149 28 9
150 28 15
151 28 13
152 28 14
153 28 9
154 28 15
155 28 14
156 28 13
157 28 14
158 28 15
159 28 15
160 28 9
161 28 13
162 28 15
163 28 15
164 28 15
165 28 15
166 28 16
167 28 9
168 28 14
169 28 15
170 28 9
171 28 14
172 28 14
173 28 15
174 28 13
175 28 13
176 28 15
177 28 13
178 28 15
179 28 15
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180 28 14
181 28 15
182 28 15
183 28 16
184 28 14
185 28 15
186 28 9
-----------------------------
187 36 14 16-18
188 36 14
189 36 12
190 36 10
191 36 10
192 36 10
193 36 14
194 36 12
195 36 10
196 36 12
197 36 14
198 36 12
199 36 12
200 36 14
201 36 14
202 36 12
203 36 10
204 36 12
205 36 12
206 36 12
207 36 10
208 36 14
209 36 14
210 36 13
211 36 12
212 36 12
213 36 10
214 36 14
215 36 12
216 36 10
217 36 14
218 36 14
219 36 10
220 36 12
221 36 12
222 36 12
223 36 11
224 36 12
225 36 14
226 36 14
227 36 12
228 36 10
229 36 14
230 36 12
231 36 12
232 36 10
233 36 14
234 36 14
235 36 14
236 36 12
237 36 10
238 36 10
239 36 12
240 36 12
241 36 10
242 36 14
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243 36 14
244 36 12
245 36 10
246 36 14
247 36 10
248 36 10
249 36 10
250 36 14
251 36 12
252 36 12
253 36 12
254 36 12
255 36 14
256 36 14
-----------------------------
257 37 11 14-17
258 37 9
259 37 9
260 37 10
261 37 9
262 37 9
263 37 9
264 37 9
265 37 10
266 37 9
267 37 9
268 37 9
269 37 9
270 37 11
271 37 9
272 37 9
273 37 10
274 37 11
275 37 9
276 37 9
277 37 9
278 37 9
279 37 9
280 37 9
281 37 9
282 37 11
283 37 10
284 37 9
285 37 9
286 37 9
287 37 11
288 37 11
289 37 10
290 37 9
291 37 9
292 37 9
293 37 9
294 37 9
295 37 9
296 37 9
297 37 9
298 37 10
299 37 11
300 37 9
301 37 11
302 37 10
303 37 9
304 37 11
305 37 9
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306 37 9
307 37 9
308 37 9
309 37 11
310 37 9
311 37 10
312 37 11
313 37 9
314 37 9
315 37 9
316 37 9
317 37 10
318 37 10
319 37 9
320 37 11
321 37 9
322 37 9
323 37 9
324 37 9
325 37 9
326 37 9
-----------------------------
327 45 9 10-13
328 45 8
329 45 9
330 45 8
331 45 10
332 45 8
333 45 10
334 45 9
335 45 10
336 45 8
337 45 9
338 45 8
339 45 8
340 45 10
341 45 8
342 45 10
343 45 9
344 45 10
345 45 8
346 45 9
347 45 8
348 45 8
349 45 10
350 45 8
351 45 10
352 45 8
353 45 10
354 45 10
355 45 9
356 45 8
357 45 8
358 45 9
359 45 10
360 45 10
361 45 10
362 45 8
363 45 8
364 45 10
365 45 8
366 45 10
367 45 8
368 45 8
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369 45 9
370 45 8
371 45 9
372 45 10
373 45 10
374 45 10
375 45 8
376 45 9
377 45 9
378 45 10
379 45 8
380 45 8
381 45 8
382 45 10
-----------------------------
383 46 9 10-12
384 46 8
385 46 8
386 46 8
387 46 9
388 46 8
389 46 9
390 46 8
391 46 9
392 46 8
393 46 8
394 46 8
395 46 8
396 46 9
397 46 8
398 46 9
399 46 9
400 46 9
401 46 8
402 46 9
403 46 8
404 46 8
405 46 9
406 46 8
407 46 9
408 46 8
409 46 9
410 46 9
411 46 8
412 46 8
413 46 8
414 46 8
415 46 9
416 46 9
417 46 9
418 46 8
419 46 8
420 46 9
421 46 8
422 46 9
423 46 8
424 46 8
425 46 9
426 46 8
427 46 8
428 46 9
429 46 9
430 46 9
431 46 8
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432 46 8
433 46 8
434 46 9
435 46 8
436 46 8
437 46 8
438 46 9
-----------------------------
439 54 6 7-8
440 54 6
441 54 6
442 54 6
443 54 6
444 54 6
445 54 6
446 54 6
447 54 6
448 54 6
449 54 6
450 54 6
451 54 6
452 54 6
453 54 6
454 54 5
455 54 6
456 54 6
457 54 6
458 54 6
459 54 6
460 54 5
461 54 6
462 54 6
463 54 6
464 54 5
465 54 6
466 54 6
-----------------------------
467 55 5 6-8
468 55 6
469 55 6
470 55 6
471 55 6
472 55 6
473 55 5
474 55 6
475 55 5
476 55 6
477 55 6
478 55 6
479 55 6
480 55 6
481 55 5
482 55 5
483 55 6
484 55 6
485 55 6
486 55 6
487 55 6
488 55 5
489 55 6
490 55 5
491 55 6
492 55 5
493 55 6
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494 55 6
-----------------------------
495 63 4 4
496 63 4
497 63 4
498 63 4
499 63 4
500 63 4
501 63 4
502 63 4
-----------------------------
503 64 3 4
504 64 3
505 64 3
506 64 3
507 64 3
508 64 3
509 64 3
510 64 3
511 64 3
-----------------------------
512 72 2 2

Remark 7.2. For n = 73, there is no improvements on the Brouwer’s table. In fact, most of cases
are equal to the lower bound on Brouwer’s table.
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