
 Eindhoven University of Technology

MASTER

Hydragen
an implementation of Hera-S

Singh, Balpreet

Award date:
2007

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/fde30a3e-cda5-4e10-96b8-18fc43a0a57f

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

MASTER THESIS

Hydragen: An implementation of Hera-S

by Balpreet Singh

Supervisors: Prof. dr. ir. Geert-Jan Houben

ir. Kees van der Sluijs

Eindhoven, August 2007

Contents

Contents i

1 Introduction 5
1.1 Web Information Systems . 5
1.2 Semantic Web . 5
1.3 Web Design Methodologies . 6

1.3.1 OOHDM/SHDM . 7
1.3.2 OntoWeaver . 7
1.3.3 OO-H . 8
1.3.4 WSDM . 8
1.3.5 Web-ML . 8

1.4 Document Overview . 9

2 Hera-S: Motivation 11
2.1 Hera Implementations: Limitations 13
2.2 Sesame : RDF store . 14
2.3 Project Assignment . 14
2.4 Project Benefits . 16

3 Hera-S: Design 17
3.1 Methodology . 17
3.2 Application Metamodel . 18

3.2.1 AmBasicElement . 18
3.2.2 ExtendedElement . 23
3.2.3 Query . 27

4 Hydragen: Implementation 29
4.1 Software Architecture . 29

4.1.1 Static Structure . 30
4.1.2 Dynamic Structure . 32

i

ii CONTENTS

4.2 Supporting technologies . 40
4.3 Design and Implementation Choices 42

4.3.1 Metamodel enhancements 42
4.3.2 Implementation related . 43
4.3.3 Sesame related . 47
4.3.4 Performance related . 51
4.3.5 Adaptation related . 52
4.3.6 Presentation Layer related 52

4.4 Presentation Generation . 53
4.5 IMDB example . 56

5 Hydragen: Usage 59
5.1 Creating new application . 59
5.2 Usage Caveats . 64
5.3 Extension possibilities . 65

6 Hydragen: Analysis 67
6.1 Performance . 67

6.1.1 Algorithm Complexity . 68
6.1.2 Statistical Analysis . 68

7 Conclusion and Suggestions for Future Work 73
7.1 Suggestion for future work . 74

Bibliography 77

A Application Metamodel 81

B IMDB Example 85
B.1 Imdb server configuration . 85
B.2 Imdb application model . 85

C UML Diagrams 103

List of Figures 107

Abstract

This thesis, along with the Hydragen application, is the result of my graduation
project at the Hera research group of the Technische Universiteit Eindhoven dur-
ing the 2006-2007 academic year. The Hera research group focuses on research in
the area of Web Engineering and Web-based Information Systems (WIS). Hera
project aims to develop and implement a methodology for the design and engi-
neering of WIS. Hera-S is the latest version of the Hera methodology on which
the Hydragen implementation is based. It defines a layered approach based on
modeling for the task of creating a Web Information System.

The Hera-S methodology distinguishes three parts in the design of a WIS:
domain modeling, application modeling and presentation generation. The domain
modeling step requires defining relations between various domain elements and
provides the basis for queries in application model to operate on. The application
modeling part is concerned with describing the dynamic navigation structure of
a Web application. It uses RDF queries to retrieve elements from domain data
and embed the results in the overall navigation structure to create an instance.
Adaptation and presentation aspects of the application are modeled in a context
model. The presentation generation part transforms the generated instance into
a format suitable for viewing e.g. HTML or WML.

This document covers my work on implementation of a prototype framework
to support the Hera-S methodology. The starting point for me was the descrip-
tion of the methodology and an initial version of Application metamodel, which
dictates the structure of a valid application model. In addition to developing
Hydragen (which is the name given to the engine implementing Hera-S), an ex-
tensive example was developed which demonstrated the features and the strength
of the methodology as well the implementation.

Hydragen is completely implemented in Java as a Web application and as-
sumes Sesame RDF store as database for domain model, context model, applica-
tion model and the data content itself.

1

Preface

This master thesis concludes the studies I have been doing at the Department of
Mathematics and Computer Science at the Eindhoven University of Technology
(TU/e).

I would like to thank my supervisors Geert-Jan Houben and Kees van der
Sluijs for their support and valuable input during my project. Their continuous
guidance and constructive feedback was crucial for the success of this project.
I would also like to thank Jeen Broekstra who supported me by answering the
technical questions about the Sesame framework.

Finally I would like to thank my fellow graduate students located in room HG
5.38 for a nice and constructive environment in which it was pleasant to work.

3

Chapter 1

Introduction

1.1 Web Information Systems

Information Systems (IS), in general, are typified by being data-intensive and
by the presence of heavy interaction with object systems (like business processes
etc). Usage of the Web as front-end or as a data source of an Information System
brings us to the realm of Web Information Systems (WIS). The Web introduces
additional characteristics like information sources that are not under the direct
control of WIS, heterogeneity and support for many (heterogeneous) users. So
it is not just a front end. WIS is generally exposed to highly volatile informa-
tion (distributed and heterogeneous), variety of system interfaces with varied
capabilities and is expected to provide a personalized/adaptive end-user access.
Some examples of Web Information Systems include Digital libraries, Reservation
Systems, Virtual marketplaces, Electronic TV guides etc.

1.2 Semantic Web

As the complexity of Information Systems grow, it is virtually impossible to keep
treating each system as a self-containing island. The strength of modern Infor-
mation System is in interaction, collaboration and distribution. Would it not be
convenient if your PDA agenda program could collaborate with the agenda of
your dentist to find a common time slot and if accepted cancel the restaurant
reservation you made a month ago. Here we are talking about potentially three
different IS’s from different vendors talking to each other. Semantic Web[18] is
a step in making this possible. The technologies that support Semantic Web in-
clude information modeling languages (XML, RDF, OWL, ...)[8], transformation
languages (XSLT, ...)[8] , reasoning tools (racer[3], pellet[10], ...), visualization
tools (protege[2], swoop,...) and standard development APIs (Jena[1], Sesame[6],

5

6 CHAPTER 1. INTRODUCTION

Redland[4], ...). Using Semantic Web, end user applications can provide features
like syntactic and semantic inter-operability, recommendation services, data in-
tegration from heterogeneous sources, personalization, querying and reasoning
support.

1.3 Web Design Methodologies

As has been observed in fields like embedded systems, mechanical design etc,
standardization of design and implementation methodologies and domain spe-
cializations are the first signs that a domain/field is maturing. Although the
Web technologies and related development tools/languages have been around for
more than a decade now, but the credit of bringing Web Design into the realm of
Engineering goes to the development of Web Information Systems and the advent
of Semantic Web. Until a few years ago, the Web was more or less an organically
grown collection of HTML pages and media contents: mostly disconnected and
without any serious business application. This trend has altered recently.

A Web interface has become a ”must have” for a number of information sys-
tems such as project management tools, time writing tools, Enterprise Resource
Planning packages etc. More and more companies are adopting the E-business
model: using data-intensive Web sites to sell their products and services varying
from books and travel tickets to electronic gadgets and house hold appliances.
The immense amount of data that needs to be managed and presented by these
Web Information Systems creates a unique challenge for creation and maintenance
of these sites. For example, information must be updated, stored and retrieved
for presentation in a user-friendly manner. The size of the data set makes keeping
the look and feel of the site consistent an arduous job. Furthermore, the role of
end users needs to be augmented, which allows Web sites to be responsive to the
needs of individual users. This makes the situation more difficult, as appropriate
customization support needs to be provided which allows the specialization of a
general purpose of Web site towards the profiles of user groups or individuals.

Given the challenges mentioned above, most of the current Web Engineering
Methods propose a layered approach to development of complex systems. Several
dimensions of methods [11][16] used for development of data intensive Web sites
are:-

• Domain data structure, which describes the information that is to be man-
aged and presented by the target Web site.

• Navigation, which concerns the facilities that allow end users to browse and
navigate across the target Web site. Most recent WIS not only deal with
Navigation aspects but also support advanced application logic.

1.3. WEB DESIGN METHODOLOGIES 7

• User Interface, which describes the composition structure of the contents
of Web pages that allow dynamic access to underlying data sources.

• Presentation, which expresses the look and feel (i.e. presentation styles and
layouts) of user interface elements.

• Customization, which describes the way to specialize a general purpose of
Web site towards the profiles of user groups or individuals.

The methods described in this section, address one or more of these dimen-
sions. Although all these approaches have more or less the same basis, they differ
in details and focus on slightly different issues. The key idea behind these ap-
proaches is use of Model Driven Architecture to support these aspects of Web
Application design.

1.3.1 OOHDM/SHDM

In OOHDM [13], a hypermedia application is built in a four-step process support-
ing an incremental or prototype process model. Each step focuses on a particular
design concern, and an object-oriented model is built. Classification, aggregation
and generalization/specialization are used throughout the process to enhance
abstraction power and reuse opportunities. The Object-Oriented Hypermedia
Design Method (OOHDM) uses abstraction and composition mechanisms in an
object oriented framework to, on one hand, allow a concise description of com-
plex information items, and on the other hand, allow the specification of complex
navigation patterns and interface transformations.

The SHDM (Semantic Hypermedia Design Method) design approach, is an
extension of the OOHDM (Object Oriented Hypermedia Design Method) ap-
proach. SHDM is targeted for the design of Web applications for the Semantic
Web, replacing the conceptual models of OOHDM with Semantic Web ontologies.
The applications designed using the SHDM method keep a relational database
in the backend and use ontologies to structure the metadata used for navigating
the data.

1.3.2 OntoWeaver

OntoWeaver [15] is an ontology-based approach, which provides high level sup-
port for Web site design and development. It relies on the following major com-
ponents to achieve its task: i) a site view ontology, which provides fine-grained
modeling support for user interfaces and navigation structures of the target Web
site, ii) a presentation ontology, which provides high level support for the speci-
fication of layouts and presentation styles for user interface elements, iii) a cus-
tomization framework, which exploits the declarative specification of the target
Web site and provides comprehensive customization support at design time as

8 CHAPTER 1. INTRODUCTION

well as run time, and iv) an OntoWeaver tool suite, which facilitates site design-
ers to achieve tasks of Web site design, including defining ontologies, specifying
the target Web site, and defining customization requirements.

A typical design process in OntoWeaver proceeds by iterating the following
steps: i) designing the domain ontology; ii) specifying navigation structures and
composing user interfaces; iii) defining layouts and presentation styles, and iv)
expressing customization requirements.

1.3.3 OO-H

Object-Oriented Hypermedia[17] methodology uses an Object-Oriented approach
to capture all the relevant properties involved in the modeling and implementa-
tion of Web Application Interfaces. The design process involves the construction
of two additional views, complementary to those captured in traditional, UML-
compliant, conceptual modeling approaches. These are, namely, the Navigation
View, which extends a class diagram with hypermedia navigation features, and
the Presentation View, in which the different elements regarding interface appear-
ance and behavior are modeled by a series of interconnected template structures,
expressed in XML. As a result, a language-independent front-end specification is
obtained. From there a Web interface, which may be integrated with pre-existent
logic modules and/or Web services, can be generated in an automated way.

1.3.4 WSDM

WSDM[14] is an audience-driven design method, meaning that the requirements
of the intended users form the starting point for the method, in contrast with
most design methods, which are data-driven. The different phases of the WSDM
design process include Mission Statement, Audience Modeling, Conceptual De-
sign, Implementation Design and final Implementation. The models of each of
these phases have an explicit formalization which use ontologies.

1.3.5 Web-ML

WebML (Web Modeling Language) [21] is a visual notation for designing complex
data-intensive Web applications. It provides graphical, yet formal, specifications,
embodied in a complete design process, which can be assisted by visual design
tools, like WebRatio. Note that this is currently the only commercial tool avail-
able in this domain.

This method has five models: structure, derivation, composition, navigation
and presentation. These models are developed in an iterative process.

1.4. DOCUMENT OVERVIEW 9

1.4 Document Overview

This document consists of seven chapters, every chapter starts with a summary.
Most of the details of the implementation that was carried out in the project are
explained in chapter 4 but other related information can be found in rest of the
document.

Chapter 2 provides motivation for the thesis providing background informa-
tion on the existing status at the moment project was started and explaining
limitations of previous implementations of Hera. The overview of Hera-S method-
ology and the detailed application meta-model which forms the basis of the appli-
cation model is explained in Chapter 3. The implementation details of Hydragen
(which implements Hera-S) and the design decisions get covered in Chapter 4.
Chapter 5 outlines step-by-step process of developing a Web application based
on Hera-S. Chapter 6 dwells upon the performance analysis of the current im-
plementation. Finally, the conclusion and ideas for future work are described in
Chapter 7.

Chapter 2

Hera-S: Motivation

As part of the Hera program, a number of tools have been developed, these
include multiple versions of Hypermedia Presentation Generator (HPG-XSLT,
HPG-Java), HPG Builders (to create Hera Models visually) etc. These tools
implement the basic Hera methodology and its variants. Hera-S is the next
version of Hera methodology, which makes more use of the SeRQL language to
manipulate the RDF data in the models. This chapter aims at describing the
motivation for Hera-S.

Hera is a method for Web information systems (WIS) design that found its
origins in an approach for hypermedia presentation generation[16]. It was also
this focus on hypermedia presentation generation that gave the first engine com-
plying with this method its name HPG (Hypermedia Presentation Generator).
The method distinguishes three main models that specify the generation of hyper-
media presentations over available content data. With a model for the content,
an application model for application logic and hypermedia navigation structure,
and a model for the presentation structure, the method enables the creation of
a hypermedia-based view over the content. Originally, in the first generation of
the method and its toolset, the models specified a static transformation from the
content to the presentation. The engine that was compliant with this definition
was based on XSLT and is therefore known as HPG-XSLT.

One of the characteristic aspects that HPG-XSLT supported was adaptation.
As an illustrative example, figure 2.1 shows how different presentations could
be produced by the engine out of a single design in which the ”translation” to
formats such as HTML, SMIL, and WML was dealt with.

Characteristic for the Hera models was not only their focus on user- and
context-adaptation support, but also the choice to base the models on the Re-
source Description Framework (RDF) and RDF Schema (RDFS). The use of Web
standards such as RDF and RDFS as a modeling paradigm facilitates easy de-

11

12 CHAPTER 2. HERA-S: MOTIVATION

Figure 2.1: Hera Architecture

ployment on very heterogeneous data sources: the only assumption made is that
a semi-structured description (in RDF) of the domain is available for processing.
Not only is such a representation less costly to develop than any alternative, it
also enables reuse of existing knowledge and flexible integration of several sepa-
rate data sources in a single hypermedia presentation.

During the further research into the development of the method, the support
was extended for more advanced dynamics. The first XSLT-based approach pri-
marily transformed the original content data into a hypermedia document, with
which the user could interact through following links with a Web browser. The
subsequent engine version allowed the inclusion of form processing, which led to
the support of other kinds of user-interaction. This Java-based version of the
engine (HPG-Java) used RDF-queries to carry out actions specified as part of
Form processing (select input elements etc.).

2.1. HERA IMPLEMENTATIONS: LIMITATIONS 13

2.1 Hera Implementations: Limitations

HPG-XSLT and HPG-Java have both their advantages and disadvantages. In
HPG-XSLT, focus was on static generation of hypermedia presentation, which
can be customized by adaptation to user/platform profiles and by supporting
various output formats. It is characterized by the use of XSLT stylesheets for the
data transformations and by the full and static generation of a Web presentation.
Due to this lot of flexibility is lost. In contrast, HPG-Java generates one-page-
at-a-time in order to better support the dynamic Web applications.

The generation of the full presentation in HPG-XSLT requires usually a long
time for computing the whole presentation. If one decides to deploy the resulted
pages on a Web server this high computational time does not influence the system
response time to a user. Given current state of technology, the user can browse the
presentation at a incredible speed because there is no computation performed on
the server. The generation of one page at-a-time in HPG-Java has as consequence
a longer response time than for a presentation generated with HPG-XSLT. It has
less of a startup-penalty, but this comes with a per page penalty because of the
computation on runtime.

The resulted Web pages from HPG-XSLT can be deployed on any Web server.
Due to its dynamic nature, HPG-Java can be deployed only on Web servers that
support Java Servlets. HPG-XSLT has no support for user interaction besides
simple navigation. The user of a generated presentation cannot influence the
content of the presentation. HPG-Java does allow for more advanced forms of
user interaction (e.g., forms) as a way to let the user influence the content of the
presentation. This is an useful feature in case the application will be used for
example as a shopping site or as a review system.

Since HPG-Java implementation used Jena as RDF API and Sesame for static
content storage, it was limited in data integration possibilities. Besides, there
were performance issues identified with it. From an application model point of
view there were a few limitations as well. For example, queries included in the
Application Model (AM) are associated to slices or slice relationships to select
the data that will populate the next slice to be presented or to perform updates
as a query side effect. There are four cases in which queries are used. In the
first case queries are associated to slices to express user-independent updates
(e.g., creation of a check-out trolley). In the second case queries are associated
to forms (forms and form input fields are also slices) to express user-dependent
updates (e.g., create order and add it to the trolley). In the third case, queries
are used to get values for a form input field (e.g., select paintings names). In the
last case, queries are used in form conditions, to enable/disable a certain form
(e.g., if the user has already selected posters for all paintings, there is no painting
poster left to be offered to the user for the next selection, and therefore the form
is disabled). Basically, queries are not used to retrieve elements from the data

14 CHAPTER 2. HERA-S: MOTIVATION

set itself. The link between content and application is via explicitly referring to
elements from the content model. This is very limited and does not allow any
constraints or conditions to be set for selection of the value of an attribute.

Another problem in the HPG was also that a specific vocabulary for domain,
context and user profile was used. This had some drawbacks since this restricts
the type of data that can be modeled and makes it format specific. This was
improved upon in Hera-S by dropping vocabulary definitions for domain and
context models. User is allowed to define his/her own domain and context model
in RDFS/OWL which can be serialized in any of the formats such as XML, Turtle,
Trix, N3 etc as long as they are supported by Sesame.

2.2 Sesame : RDF store

Sesame is a framework for storage, query and inferencing of RDF and RDF
Schema. It can be used as a java library as part of any application for handling
RDF or as a database server for remote access of repositories of RDF data.
It supports highly expressive query and transformation languages: SeRQL and
SPARQL. Although SPARQL is going to be a W3C standard, it is not really
mature yet. SeRQL, in contrast, is more flexible and has been defined for use
with Sesame. The server version allows native storage, main memory storage
or a RDBMS as backend for RDF data. In addition, reasoning support allows
inferred relations between elements to be used in queries.

Sesame 2.0 supports the concept of ”context”, which basically allows cluster-
ing of sets of RDF statements so that they can be handled together. It is pos-
sible to indicate for each statement or a set of statement which ”context” they
belong to. Each context is expressed as a URI. The main advantage of ”context”
is provenance; it allows identifying the source of a set of RDF statements and
modifying only those statements if needed. In addition, it allows querying on
statements that belong to a certain context, maintaining multiple versions of a
set of statements etc.

As compared to Sesame 2.0, the first version of Sesame was inflexible in terms
of query and storage model, which led to poor performance by construction. In
Sesame 2.0 (which has be built from scratch) these limitations are not there;
although in current beta version of Sesame 2.0 the observed performance was
worse that of Sesame 1.0. This issue is currently being worked on by Aduna
Software, responsible for maintenance of Sesame.

2.3 Project Assignment

The experience out of these HPG-based versions and the aim for further exploita-
tion of the RDF-based nature of the models have led to a further refinement of the

2.3. PROJECT ASSIGNMENT 15

Figure 2.2: Sesame Overview

approach in what is termed Hera-S. The Hera-S compliant models do combine the
original hypermedia-based spirit of the Hera models with more extensive use of
RDF-querying and storage. Realizing this RDF data processing using the Sesame
framework and its query language SeRQL caters for extra flexibility and inter-
operability. As compared to HPG-Java where data elements had to be extracted
explicitly by name from a content model instance, Hera-S allows using query
for this purpose making it less dependent on the exact name of a data element.
Partially and optionally specified RDF paths and pattern matching for nodes in
SeRQL queries makes development of AM independent of minor modification in
Domain model (DM). Besides, RDF is a standard format, any tool that can gen-
erate RDF can add/modify content of AM /DM and CM (Context Model) on the
fly. Similarly, any tool that can read RDF can consume the Application model
page (an instance of AM which is emitted in RDF format, see 3.1 for details)
and modify it. This contributes to the dynamic nature of the methodology and
makes it easy to create extensions over the basic implementation.

Goals

The purpose of Hera-S project is to develop an engine (named Hydragen), which
can be used for model based development of Web Information Systems as defined
by the Hera-S methodology. This project is a follow-up of HPG-XSLT and HPG-
Java projects. The Engine should behave as described in [24]. Globally, the
Engine should meet the following constraints: -

• The product is supposed to be scalable and be efficient (this was not the
case with the HPG-Java version of product).

• The Engine would be extendible for future changes or additions.

• Product must be developed in a modular manner to allow usage in different
scenarios for example as a standalone tool as well as a Web server. Besides,
the API for the product must be well defined. This is needed to provide
flexibility and to support updating of models in real time without affecting

16 CHAPTER 2. HERA-S: MOTIVATION

Figure 2.3: Hera Modeling

execution. In addition, standard API allows extending Hera-S with new
features such as support for business logic.

• It should be possible for multiple users to access a Web application devel-
oped with Hera-S models without unexpected side effects.

• The product would potentially be considered to be developed into an open
source project. This implies clean coding style and code documentation.

2.4 Project Benefits

Implementation of Hydragen is meant to be a proof of concept for Hera-S method-
ology. It is required to scale up for practical application both in terms of mag-
nitude of data and application complexity and in terms of extensibility as well.
In particular, Hydragen is expected to be used for further exploration such as
support for Aspect-oriented adaptation, and support for presentation generation
using engines like Amacont. In this context, a project (SeAL) has already been
carried out in Vrije Universiteit Brussel with focus on implementing Aspect-
oriented adaptation as described in Hera-S specification[24]. Note though this
puts specific requirements on the implementation of Hydragen (which already
covered above), the integration of SeAL and Hydragen is not part of this thesis.

Chapter 3

Hera-S: Design

Hera-S allows designers the plain use of the Semantic Web languages RDFS and
OWL for designing the domain model and the context data model, thus enabling
re-use of existing data models and opening up the RDF instance data to queries
and updates via the Sesame RDF framework. Furthermore, Hera-S provides an
increased flexibility by integrating server-side scripting availabilities (e.g. for the
integration of web services) and capabilities for adding specific code constructs
as often used in manually crafted Web applications (e.g. JavaScript). In this way
it is able to seamlessly integrate existing solutions, without losing the complexity
reduction features necessary for rapid, easy and error-free Web application design
and deployment.

3.1 Methodology

Hera-S design methodology uses a Domain model as a starting point. The Domain
model (DM) captures relations between various elements in the data content
over which the Web Application is expected to operate. Based on this DM, the
designer creates an application model (AM) that describes a hypermedia-based
navigation structure over the content for the sake of delivering and presenting the
content to the user. Hera-S also supports dynamic personalization and adaptation
by maintaining context information, which is updated on the basis of user profile
and interactions. The Context model (CM) describes the structure of the context
information. For each request, an AM is instantiated to create an Application
Model (instance) Page (AMP). Hence, AMP creation in Hera-S is pull-based,
in contrast to HPG-XSLT, which does the whole instantiation of the AM at
once. By navigating (link-following) and forms submission the user triggers the
Hera-Ss feedback mechanism, which results in internal updating/querying of the

17

18 CHAPTER 3. HERA-S: DESIGN

website navigation or context data and creation of a new AMP. AMP is not
directly suitable for a browser but it can be converted to presentable form using
direct AMP to HTML conversion (e.g using XSLT) or external engines such as
AMACONT[20].

Figure 3.1: Hera-S Architecture

Hera-S methodology is explained in detail in Hera-S paper [24] and a chapter
on Hera in a book on Web Engineering [12].

3.2 Application Metamodel

Web Applications built using Hera-S design methodology must comply to the
Application metamodel (See AM-Metamodel). The Hera-S Application meta-
model is subdivided in two main parts, namely a part for the basic constructs:
AmBasicElement (units, attributes and relationship) and ExtendedElement (the
rest of the am-constructs). An additional class is made for fundamental impor-
tant notion of Query, that makes the connection between AM-elements and data
in the database. The following sections go into depth on the several constructs
in the AM-metamodel.

3.2.1 AmBasicElement

As shown in figure 3.2, main elements here are NavigationalUnit, Attribute and
Relationship. Note that FormUnit is specialization of a NavigationalUnit, with
specific subelements (i.e. FormElements). Similarly, LogicUnit is also a subclass
of NavigationalUnit which is slightly different interpretation.

http://wwwis.win.tue.nl/~hera/Hera-S/am-metamodel.owl

3.2. APPLICATION METAMODEL 19

Figure 3.2: AM Elements

NavigationalUnit

A NavigationalUnit is a composite unit of information that can be linked to-
gether in a web of cross references to form a complete Web Application. One
of the sub-classes of NavigationalUnit is called LogicUnit. In contrast to a Nav-
igationalUnit which results in visual elements of a Web Application, LogicUnit
contains only logical elements. Though structure wise LogicUnit is exactly the
same a NavigationalUnit, it only makes sense to contain non-visual elements like
ConditionalRelationship, Form queries, Update Queries etc in a LogicUnit. If
visual elements (for eg Attributes etc) are encountered in LogicUnit, they will
be ignored. LogicUnits make provision for form processing without having to
write scripts. It is especially useful when user input is needed to decide which
unit should be displayed next. As soon as a LogicUnit is handled, the engine
will automatically determine a uniquely defined referred NavigationalUnit and
process that Unit. E.g. consider a LoginUnit : it contains a login form with input
field for User and Password and a Submit button. As soon as the user fills in the
input fields and submits the form, depending on whether his credentials are valid
or not the engine must display the LoginUnit again or proceed to next unit such

20 CHAPTER 3. HERA-S: DESIGN

Figure 3.3: AM Elements Relations

as SearchUnit. This checking of credentials and choice of next unit to follow is
typically something which gets handled in a LogicUnit.

A NavigationalUnit has the following possible properties:

hasAttribute: NavigationalUnits can have multiple attributes. Attributes are the
elements that are shown to the user.

hasInput: A NavigationalUnit can have multiple incoming variables. These vari-
ables are called the InputVariables. The variables can be used for adaptation and
personalization.

hasUnit: The hasUnit is used to specify some unit to be a subunit of another
unit. The subUnit construction can be used to group related elements (e.g.
having the same relationship).

The hasUnit property links to the SubUnit class. This is necessary to be able
to specify which data should be selected. In some respect this is very similar to
the Relationship, as also a query can defined, denoting which information should

3.2. APPLICATION METAMODEL 21

be conveyed to the subunit. It differs, as subunits will be shown as part of unit,
while relationships will cause navigation from some unit to another unit.

hasFormUnit: Indicates a FormUnit subunit. This kind of subunit does not nec-
essarily need an incoming query, as its elements are usually only input-elements,
and so there is (usually) no need to go back to the database.

hasRelationship: NavigationalUnits are linked via Relationships. The hasRela-
tionship property is used to indicate the Relationship connected to the containing
Unit. See more about relationships in Section 3.2.1.

onLoadQuery: The onLoadQuery indicates an action that should be executed
during loading the Unit. The unit will be shown to the user after execution of
the query. onLoadQuery is actually only one example of a query to be executed
on a certain event. Many events can eventually be specified that will lead to
execution of some action. These events may be added later as part of future
work.

hasScript: NavigationalUnit can contain multiple scripts which are executed
when a unit is loaded. See more about Scripts in Section 3.2.2

hasWebService: It is possible to involve a Web Service external to Hera-S ap-
plication and display its results as part of the requested NavigationalUnit. Web-
Service element is explained in more detail in Section 3.2.2

FormUnit

The FormUnit is similar to a normal unit, except that it also allows input-
elements. These input-elements will be described in FormElement (Section 3.2.2).

Note that for the case of a FormUnit the relationship attached to it not only
indicates the next unit, but usually also contains an update query to process the
input of the form.

Attribute

An attribute is an element that is shown to the user; for example, the title of a
specific movie. An attribute has the following properties:

hasQuery: The Query of an attribute indicates the element in the content database
that constitutes the attribute.

The hasQuery property is the simple variant of the hasQueryObject and the
value of this property consists of the query in the default query language, i.e.
SeRQL.

22 CHAPTER 3. HERA-S: DESIGN

hasQueryObject: The hasQueryObject is the complex variant of hasQuery. It
points to a Query object (See Section 3.2.3). The Query object can be used to
specify a more complex query type, e.g. by specifying a different query language,
a conditional query or an update query.

hasConditionalQuery: A conditional query specifies that an attribute is only
shown under specific conditions. The condition itself is specified by means of
query and is specified in an if-then-else construct via the ConditionalQuery con-
struct (see Section 3.2.3).

Relationship

NavigationalUnits are linked via Relationships. Basically a NavigationalUnit has
only one relationship, and clicking on any one of the visible elements within the
unit will result in that one relationship being followed.

Subunits of a unit can have a different relationship than their parent. In this
way SubUnits can be used to group elements that link to the same destination-
unit.

Note that if you want to have a Relationship originating from one attribute
only, you can create a containing unit for that attribute.

refersTo: The refersTo element indicates the target-unit of a Relationship.

hasQuery: A Relationship can have a hasQuery property. The result of the
query is passed as a variable to the target Unit. This can for instance be used
to indicate a specific instance for within the target Unit, so if the target Unit is
about a ”movie”, the query can indicate about which specific movie the unit will
be instantiated, for instance ”The Matrix”.

The hasQuery property in a relationship is for the rest equal to the hasQuery
property in Section 3.2.1.

hasQueryObject: The hasQueryObject property has the same function as the
hasQuery, and is equal to the hasQueryObject property in Section 3.2.1.

hasConditionalQuery: The hasConditionalQuery property has the same function
as the hasQuery, and is equal to the hasConditionalQuery property in Section
3.2.1.

hasAssignment: In some situations, it is useful to pass a fixed value as bind-
ing to a variable to the target unit instead of using result from a query. The
hasAssignment property allows support for such a case. For example, a Logout

3.2. APPLICATION METAMODEL 23

relationship can refer to a LoginUnit unit or HomePage unit with User Variable
bound to GuestUser.

sourceUnit: The sourceUnit indicates the starting-unit of a relationship. By
default, the starting-unit will be the top-level unit of the current displayed unit.
This means that the entire current page will navigate to the target unit. However,
sometimes one might want to only let a part of the page navigate. This is similar
to the HTML notion of frame.

The SubUnit that should navigate can therefore be indicated with the source-
Unit property. This SubUnit may be different from the (Sub)Unit that contains
the actual relationship. This could for instance be utilized to create a menu-
structure.

ConditionalRelationship: ConditionalRelationship is a subclass of Relationship
which allows creating a conditional link to a NavigationalUnit. Multiple Con-
ditionalRelationships can be used to choose one of many relations depending on
the attached condition. For example, depending on if a user login passes or fails,
the next unit must be a search unit or user must be shown the login unit again.
In addition to the properties mentioned for Relationship, ConditionalRelationship
has the following elements:-

hasCondition: The hasCondition properties contains a boolean condition
which must evaluate to true, in order to select the NavigationalUnit indicated in
corresponding refersTo clause as the referred unit for the enclosing unit.

hasDefaultCondition: If none of the ConditionalRelationships with has-
Condition property is valid (their hasCondition does not evaluate to true), then
the ConditionalRelationship with hasDefaultCondition clause is used to derive
the referred unit. The value of hasDefaultCondition property itself is irrelevant.
Note that though the hasDefaultCondition is optional, its always safe to provide
one.

3.2.2 ExtendedElement

Extended elements are all non-vital elements of the AM, plus additional con-
structs that can be needed by the basic elements.

FormElement

FormElements are input elements other than plain links. Examples of FormEle-
ments are TextInputs, Buttons, ChoiceInputs. Many others exist that are not
subscribed here, but might be added to the am-metamodel later. As Forms are

24 CHAPTER 3. HERA-S: DESIGN

very similar to the HTML and XForms notion of Forms, one could get inspired
by their specification for additional form constructs.

hasBinding: The hasBinding property can be used to specify that the input for a
certain element should be bound to a certain variable. An AM could for instance
couple the user input for a ”User Name” field to a variable ”$name$”. This
variable can be used on submission of the form (so already in the relationship or
update query), and in the units to come as a bound variable.

hasFormType: A FormElement is a generic element that has to be typed as
one of the more specific types like button, choiceinput, textinput, etc (at least, as
long as the formElement should not be abstract). This specialization can be done
with the hasFormType property. A specialized FormElement can have additional
specific properties.

Button: A button in general displays some text, and if clicked submits the form,
according to the relationship attached to the form. Currently we keep button
rather simplistic, but later this can easily be extended by attaching scripts to be
executed when associated to a button.

ChoiceInput: A ChoiceInput can be used to let a user make a selection between
items. ChoiceInput can in the presentation be visualized as radiobuttons, check-
boxes, dropdownlist, or whatever variant the designer wants to use. However,
which of these possibilities the designer wants the use is basically irrelevant in
this phase and should not be specified here but in the presentation phase. An
item can be added via the option property.

TextInput: TextInput elements stand for all possible Textual Input elements.
Concrete examples are TextField, TextArea, PasswordFields, but also pure Text
Fields, Rich Text Fields, etc. The concrete kind of those fields is again irrelevant
at this point.

UnitElement

UnitElement is the general group of helper-elements that are needed can be used
within a unit. This is an abstract class and is only used for hierarchical reasons
but will not appear in an actual AM.

SubUnit: SubUnit is a construction to denote the Unit that is the subUnit of
some other unit. The SubUnit construction can be used to denote a special kind
of subUnit (they have a specific semantics that differs from regular subUnits),

3.2. APPLICATION METAMODEL 25

namely a SetUnit or TourUnit. The SubUnit construction can also be used for
identification of SubUnit by the sourceUnit property of Relationships.

The SubUnit class is necessary in order to specify the relationship between the
containing unit and its referring subunit. This is expressed by a query. In many
ways the SubUnit construct is very similar to the navigation-construct with the
semantic difference that the referring unit will be defined as a substructure of the
containing unit rather that specifying a navigation between the units. Consider
for instance the Unit Movie that has a subUnit that will display the leadActor
(including some additional information about that actor). The subUnit leadActor
than typically refer to an Actor Unit, where the query in the subUnit specification
will identify which specific actor to be shown (namely the lead actor of the movie
displayed in the current Unit). Note that this query will typically has no more
than one result.

Note that SubUnit is only a placeholder, so a SubUnit nor its descendants
SetUnit and TourUnit - contain concrete elements. Instead they have a reference
to the NavigationalUnit that will be used to provide content for the SubUnit.

SetUnit: Sometimes in a unit we want to contain subunits for each of the ele-
ments of a set. For example, in a MovieUnit we might want to provide information
for all actors from the movie (and not just the lead actor). We specify similarly
to a normal SubUnit with the difference that the query for the information to
be displayed by the SetUnit will typically have a resultset larger than one. For
every result in the resultset the SetUnit will display the defined attributes.

As an example consider the MovieUnit that should display information about
every actor in that movie (e.g. name, photo, age). This can be done by creating
a Unit called Actor that contains attributes for some actor (i.e. the name, photo
and age attributes). Then within the MovieUnit a SetUnit is defined that refers
to the Actor unit and as a query defines the actors that play in the movie currently
displayed in the MovieUnit. This results that for every actor that plays in the
current movie an Actor SubUnit is generated with the requested attributes.

TourUnit: A TourUnit is similar to the SetUnit. Only now the SubUnit will only
display one element, namely the first element of the resultset of the TourUnit
query. Furthermore it provides navigation primitives to navigate through the
rest of the resultset in the order of that resultset.

This primitive can be used for example for a slideshow or a set process where
the order of navigation is of importance (consider for instance a check-out pro-
cedure).

Variable: A variable is similar to a variable in a programming language. Cur-
rently there is only a simple notion of variable that is global throughout the AM.

26 CHAPTER 3. HERA-S: DESIGN

Later it might be expanded to also discern local variables (i.e. local to the current
unit and its subunits).

A variable has a name, a type and a default value. To give a variable a value
it should be bound (regard the binding property that can be used in several
places, see for instance Section 3.2.2 for binding a variable via a form). Binding
a variable that already has a value results in overwriting it. The default value is
used as the original binding of a variable, i.e. if it does not get reassigned then
this value would be used.

Script

Current Web applications offer users a wider range of client-side functionality
by different kinds of scripting objects, like Javascript and VBscript, stylesheets,
HTML+TIME timing objects etc. Even though WIS methods like Hera-S con-
centrate more on the creation of a platform-independent hypermedia presentation
over a data domain, and these scripts are often (but not always) browserplatform
specific, we still provide the designer a hook to insert these kind of scripting
objects.

The designer can specify within a scripting object whatever code he wants, as
this will be left untouched in generating the AMPs out of the AM. Furthermore,
the designer can add an hasTargetFormat property to specify one or more target-
formats for format-specific code, e.g. HTML or SMIL. This allows later in the
process to filter out certain format-specific elements if these are not wanted for
the current presentation. The scripting objects can use the variables that are
defined within the scope of the units. Scripting objects can be defined as an
element within any other element (i.e. units and attributes). Furthermore, it can
be specified if the script should be an attribute of its super-element or not (e.g.
similar to elements in HTML that have attributes and a body).

Scripting objects are still very basic containers in Hera-S, and might later on
be extended.

WebService

An application designer might want to use additional functionality that cannot
be realized by a client-side object, but which involves the invocation of external
server-side functionality. Therefore, we provide so-called WebService objects to
support Web services in the AM. The use of a service object and the reason to
provide support for it is similar to that of scripting objects. The designer is
responsible for correctness and usefulness of the WebService object.

As an example, think of utilizing a Web service from a Web store selling
DVDs in order to be able to show on a movie page an advertisement for buying
the movies DVD. A service object needs three pieces of information:

3.2. APPLICATION METAMODEL 27

• a URL of the Web service one wants to use,

• a SOAP message that contains the request to the Web service, and

• a definition of the result elements.

A service object declaration can be embedded as a part of every other element.
If a unit is navigated to created, first the service objects will be executed. The
results of the service object will either be directly integrated into the AM and
treated as such, or the result can be bound to variables. WebService objects can
use unit variables in their calls (meaning that variables will be initialized before
WebService calls will be executed). This allows support for usecases such as
determining the location of cinema hall in which user’s favorite movie is playing
and using the Google Map service to locate it on a map. As the zoom factor of
the Map is increased more cinema halls showing more of the personal favorites
can be displayed.

3.2.3 Query

Queries are used to connect AM-navigation structures to data in the content
database. Queries are by default expected to be stated in the SeRQL language,
as that is a mature query language. However, the Hera-S implementation will not
depend on specific SeRQL or Sesame features, so also other RDF query languages
or databases can be quite simple be implemented and added later on.

In order to already facility this the queryType can be used to indicate the
query language if this differs from the default language. Furthermore special
kind of queries can be specified, namely conditional and update queries.

queryBody

The QueryBody contains the actual query statement that will send to the config-
ured database. Queries may contain variable statements denoted by the ”$var-
name$” pattern (that is not in use by the Sesame-engine). This is not in the
SeRQL specification but a Hera-S extension. The variables will be evaluated
before the query is sent to the database.

queryType

The queryType denotes the query language of the query in the queryBody. If
the concerning queryType is registered within the Hera-S engine it will deal with
sending it to the correct engine, knowing that the engine can deal with the spec-
ified kind of queries, for example SeRQL or SPARQL.

28 CHAPTER 3. HERA-S: DESIGN

ConditionalQuery

Conditional queries can be used to let the result of a query depend on another
query or a boolean condition. This can be useful for selecting some element based
on the context. Then you first specify a query for the context and based on the
result you can specify one element or another one.

The conditional query has an if-then-else form. The ”if” part contains the
condition. If the ”if” part produces some result, then ”then” part of the if-query is
executed. If there is no result from the ”if” part the ”else” part will be executed.

The ConditionalQuery is used for personalization and adaptation. For more
extensive examples of how this powerful construct can be used see the bookchap-
ter [12].

UpdateQuery

For the sake of adaptation we need to maintain an up-to-date context model.
In order to do so, we need to perform updates to this data. For this, we have
the functionality to specify an update query. Update query can for instance be
executed upon certain events (see for instance Section 3.2.1).

An update query is typically an insert statement that inserts or modifies data
in the context database that conforms the general context model. Note however,
that UpdateQuery could potentially also be used to update the actual content
(i.e. like in a content management system).

Chapter 4

Hydragen: Implementation

4.1 Software Architecture

Hydragen is composed of two main components: the HydragenCore and Hy-
dragenWeb. HydragenCore encapsulates the core engine functionality. For each
request of a NavigationalUnit it is able to generate a new AMP. HydragenWeb on
the other hand is a Java Servlet, which forwards requests to HydragenCore and
transforms the generated AMP by applying XSLT transformation into HTML
response. In that respect, HydragenWeb acts as the implementation for presenta-
tion model. In principle, the format of response is decided by XSLT specification
used for presentation generation. Though within the scope of this project, XSLT
has been used for the purpose of presentation generation, it is also possible to
use more advanced system such as AMACONT [20], [23].

Setup

HydragenWeb is deployed as a Web application on a servlet container such as
Apache Tomcat Server. In addition, the Sesame server and Sesame Web-client
also need to be installed on a Web container (potentially different from the one
used for HydragenWeb). The Sesame server must be loaded with RDF data
on which the application is expected to operate along with the corresponding
domain model and context model. The RDF models and content are loaded
into a Sesame Repository which can later be access using a URI to the server
and repository name over an HTTP Connection. All paths to application, data
and context servers and initialization options can be configured by using the
Hydragen Configuration File (for eg. imdb server setup file. See Appendix B.1.
The path to hydragen setup file itself must be indicated in the Web application
configuration file of HydragenWeb (i.e. web.xml). Sesame allows setting up of

29

30 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

several properties of the repository such as use of inference layer, type of storage
(in-memory, native, or RDBMS), persistence etc. The details of installation
instructions for Hydragen can be found in [22] while explanation about setup of
Sesame RDF store as Server can be found at http://www.openrdf.com.

Figure 4.1: Hydragen Architecture

4.1.1 Static Structure

Deployment Diagram

As is shown in Figure 4.2, user access, HydragenWeb application and Sesame
data and model server can all be on separate physical machines, only connected
via network connection. In fact, in principle DM, CM and Data Content can also
be hosted on separate Sesame Repositories. This scenario can be useful in case
application is built over data source provided by a third party. But this scenario
has not been explored in the context of this project since it requires support
for distributed queries. Feasibility of distributed queries with Sesame has been
studied earlier and presented in Distributed RDF Queries [19].

Hydragen access Sesame as RDF server for DM, CM and RDF Content. As
for application model, an explicit choice was made to use Sesame in-memory
repository instead of remote access variant due to the performance drop that was
observed in the latter case (See 4.3 for detailed analysis).

Class Diagram

HydragenCore consists of the following packages (Appendix C.3) :-

• nl.tue.heras.core: This package contains the main controller class namely
CoreEngine which is responsible for initialization of hydragen engine and
handling of requests for a Navigational Unit. The CoreEngine class imple-
ments the interface defined in abstract class IEngine. It is also responsible
for checking consistency of Domain Content against the Domain Model,

file:www.openrdf.com

4.1. SOFTWARE ARCHITECTURE 31

Figure 4.2: Hydragen Deployment

Context Data against the Context Model and Application Model against
the Application Meta-model.

• nl.tue.heras.parser : The parser package contains the Application Model
handle class i.e. the AMParser, which responsible for generating an instance
of an Application Model Page based on the loaded Application Model. The
AMParser uses SeRQL queries to identify and extract various AM elements
(as explained in A), process Select, Construct and Delete SeRQL queries as
part of various query elements and generate RDF statement based on the
acquired results. AMParser uses the DbManager class which encapsulates
operations on the Sesame RDF store, for all the query processing and access
to AM, DM, CM and Content Repositories.

• nl.tue.heras.backend : The backend package contains classes such as Db-
Manager which manages all accesses to the RDF store including setup,
querying, adding and deletion of statements.

• nl.tue.heras.datatypes: This package contains the basic datatypes that are
used within Hydragen. Classes such as DbHandle provide a ”handle” to
the RDF Repository and can be used to instantiate AM, DM, CM and
Content repositories. The exact attributes of a repository are stored in
an instance of the class DbInfo. SysConfig provides operations to parse
Hydragen Configuration File.

• nl.tue.heras.utils: Utility classes such as exception related classes and H2Utils
belong to the utils package. There are three main exception types supported
within HydragenWeb in addition to the standard Java exception classes:-

32 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

– AMException: This exception is raised for any inconsistency de-
tected in the Application Model. Though most of the errors in Appli-
cation Model should be detected during consistency check with respect
to Application Meta-model, some explicit checks are made within the
AMParser. These include situations such as when the data queries
within an AM are malformed or if the value of an input variable is not
defined for a Unit etc.

– CfgException: Hydragen Configuration File syntax errors result in
this exception to be raised. In addition, if paths to RDF models are
incorrect then CfgException is reported.

– DbException: All errors encountered during access of RDF store are
reported as DbException, including the ones generated by Sesame.

4.1.2 Dynamic Structure

There are two distinct phases in the execution of Hydragen. The initialization
phase which is needed only when HydragenWeb is installed as a Web application
and the execution phase which involves the request-generate-respond cycle.

As part of Servlet initialization step (Appendix C.1), HydragenWeb invokes
the initialization function initEngine() of the HydragenCore library. Depending
on the setting in the server configuration file, HydragenCore either loads various
models from a local file or the engine (HydragenCore is configured to setup an
HttpRepositoryConnection to a given remote repository address. HydragenWeb
then loads the presentation model which in our case is an XSLT file with some
predefined variables.

In the execution phase (Appendix C.2), the HydragenWeb servlet receives an
HttpServletRequest everytime user executes a navigation action (e.g. click a link,
submit a form etc). HydragenWeb implements both GET and POST methods
as required by HTTP protocol for HTML response and for form submission.
The GET method is meant to be used for calls with no side effects, for example
modifications to a database etc. and also has a limit on amount of data that
can be passed as parameter value. In contrast, POST method is usually used for
forms which can send quite some data to the server. Internally, the doGet method
invokes the doPost method. The request is in the form of a URI along with a
set of parameters. The parameters passed with the request are retrieved, and
stored in an internal data-structure (a TreeMap which keeps the parameter names
sorted in alphabetical order to make sure that the AM variables with longest
match are replaced) along with their corresponding values. The URI of the
requested NavigationalUnit comes as value of a predetermined HttpServletRequest
parameter - URI. Since during generation of HTML response, some encoding is
done for URI’s that are generated as part of response, the parameters need to

4.1. SOFTWARE ARCHITECTURE 33

Figure 4.3: Hydragen Class Diagram

be decoded before being stored and passed on to the CoreEngine for request
handling. Encoding of URI’s is done to remove any special characters like angle
brackets that are not allowed to occur in a URI. A typical example of a URL
request for NavigationalUnit would appear as follows:-

34 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

http://localhost:8080/herasWeb/HydragenWeb?

URI=http://wwwis.win.tue.nl/~hera/Hera-S/imdb_am.owl^LoginUnit

The generateAMP() method from CoreEngine class is responsible for process-
ing the request for a specific NavigationalUnit and generating the corresponding
Application Model Page in a session specific file. The CoreEngine forwards the
generateAMP request to the AMParser class which initializes query transactions
with the AM, DM and Content repositories before processing the request fur-
ther. AMParser then initializes the AMP output file as an RDF file. Although a
request is always for a specific NavigationalUnit or LogicUnit, application meta-
model allows a NavigationalUnit to contain more NavigationalUnit and in order
to distinguish between handling of the root NavigationalUnit and the internal
NavigationalUnit, the handleRootUnit method is called. As can be seen in the
Activity Diagram, figure 4.4, root NavigationalUnit is processed only once for
per request, while internal NavigationalUnit can potentially be processed several
times depending on the Application Model.

Since Hydragen support creation of new nodes, deletion and update of state-
ments, the statements that are generated/modified during processing of a Navi-
gationalUnit are captured in a set of internal lists: add list, delete list, amp list.
As a last step before dumping the AMP to a file, these modifications are submit-
ted. The addition and deletions (from add list and delete list) are submitted to
the Data RDF store, while the AMP statements (from amp list) are first stored
in the session specific context of the AMP Repository. After that the contents of
that session context of AMP repository are then dumped to file in RDF/XML for-
mat. The reason for dumping it to a file are two folds: firstly it allows easy XSLT
processing which takes a XML file as starting point and another is it facilitates
writing XSLT by looking at generated AMP.

Handling a NavigationalUnit involves processing all AM elements contained
within it which includes:-

OnLoadQuery

The onLoadQuery is executed first during processing of a NavigationalUnit. Since
it has to be an UpdateQuery, it does not generate any AMP statements. On-
LoadQuery can be used to handle submit queries from FormUnit from previous
NavigationalUnit or do some preprocessing before displaying the next Unit (for
eg. updating the visit counter).

Input Variables

Variables play an important role in supporting dynamism and reuse in Hydragen.
A NavigationalUnit can generate completely different result for a different values
of certain variables. All the queries specified in an AM, can refer to a variable.

4.1. SOFTWARE ARCHITECTURE 35

Figure 4.4: Handle Root Unit

This variable can either be initialized with a default value or from the result of
another query. It can also be passed as a request parameter from one Navigation-
alUnit to another. Variables have a global scope in Hydragen. They are never
deleted, their values can just be over-ridden with new ones. The consequence of
this choice is described in Section 5.2.

36 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

After on-load queries have been processed, next step is to check if all input
variables defined for the requested NavigationalUnit have a valid value and if
not assign the DefaultValue as defined in the AM. In case, an input variable is
undefined and no default value has been defined for the variable, an AMException
is generated.

Attributes

As described in Section 3.2, attributes are individual elements of information that
need to be displayed as part of the generated Unit. Attributes are allowed to be
constants, result of a query or result of conditional query. Handling attributes
requires determining the label, the value and the mime-type of an Attribute. An
Attribute can occur as part of root NavigationalUnit or as part of NavigationalU-
nit referred by a Sub/Set/Tour Unit. In case of Set/Tour Unit, AMP statements
must be generated for attribute of each element in a Set/Tour Unit.

Form Unit

Hydragen supports generation of a unit containing a FormUnit. FormUnit is a
sub-class of a NavigationalUnit which implies that it can contain all elements
allowed in NavigationalUnit in addition to some FormElements such as Button
elements, Choice elements, Input elements etc. All these elements are gener-
ated as part of the AMP. In addition, a relationship within a FormUnit needs
to be handled differently as compared to that of a NavigationalUnit. In case of
a NavigationalUnit, a relationship is translated to a hyper-link to another Navi-
gationalUnit. For FormUnit, usually a query needs to be run as part of submit
action of the form. Since only after the form is submitted are all the input, choice
parameters known, running this query only makes sense when the target Navi-
gationalUnit is processed. In order to facilitate this, the form relationship query
is encoded as part of the URI that is generated for the relationship to next unit.
When the form is submitted, the HTTP request gets the Query variable as a
request parameter and gets handled as rest of the parameters. Processing of this
query is the first action that is taken by Hydragen engine even before handling
the root NavigationalUnit.

Relationship

As described in Section 3.2.1, Navigational Relationship uses the refersTo prop-
erty to indicate which NavigationalUnit, current NavigationalUnit or FormUnit
points to. In order to support choice between multiple relationships depending
on boolean conditions, AM supports ConditionalRelationship which has the has-
Condition and hasDefaultCondition properties. Depending on the boolean value
of the conditions specified in hasCondition property, the corresponding refersTo

4.1. SOFTWARE ARCHITECTURE 37

property is used to determine the linked NavigationalUnit. In case none of the
conditions evaluate to true, the unit specified by the default condition is used.

A Relationship can also contain a Query object, the result of which is used
to determine the value of a binding variable to be encoded as part of the link.
This variable is then later used to instantiate the referred NavigationalUnit. It
is also possible to pass a fixed assignment of a variable using the hasAssignment
property. For example, in case of an application based on IMDB movie database,
it is possible to generate a actor page which contains a set of movies in which
a particular actor acted and each such movie name links to the corresponding
movie page. This would be possible using the hasAssignment property in the
AM.

Finally, it is also possible to model the target frame of a relationship by
defining the sourceUnit property, in case of multi-frame setup (see section 3.2.1).

SubUnit

A NavigationalUnit is allowed to contain SubUnits which refer to another Nav-
igationalUnit. A SubUnit can be embedded into the parent NavigationalUnit.
From implementation point of view, the Query element in a SubUnit is executed
to retrieve the value of binding variable. The referred NavigationalUnit is then
processed with retrieved value as value of one of its input variables.

As explained in Section 3.2.2, SubUnit has two variants namely: SetUnit and
TourUnit. While in case of SubUnit the query is expected to return a single value,
for SetUnit and TourUnit multiple results are possible. For eg. in case of the
IMDB example, the set of movies in which an Actor played role can be modeled as
SetUnit. Similar to SubUnit, SetUnit (since its a subclass of SubUnit) also refers
to a NavigationalUnit which basically defines the attributes and relationship for
every element of SetUnit query result. In order to keep the uniqueness of all
generated AMP statements, an auto-incrementing postfix is used for all elements
in the referred NavigationalUnit. TourUnit is handled similar to the SetUnit. The
ordering of elements in the TourUnit is decided in the presentation generation
step.

ScriptObject

Hydragen supports scripts by just instantiating any known variables from the
”current” environment and pass the replaced ScriptObject as it is.

WebService

WebService’s in general can be accessed using one for the following two ways:

• As Representational State Transfer (REST) requests

38 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

• As SOAP requests

Currently, Hydragen only supports the REST request based access. This is due to
the ease of implementation since REST uses HTTP as its underlying transport.
REST commands and options are passed to a WebService by using URL query
parameters; the WebService returns an XML document containing the result.
This process makes it possible to invoke WebService using a URI. For example
in order to retrieve the price and related information about a DVD of Movie
’Titanic’ from Amazon, following request URI would be sufficient:

http://webservices.amazon.com/onca/xml?

Service=AWSECommerceService&

SubscriptionId=xxxx&

Operation=ItemLookup&

ItemId=B00000JLWW

with the xxxx replaced by an Amazon Subscription ID (a unique subscription
ID is needed before using any WebService; this can be acquired by registering at
a Service Provider’s site). This would return the following XML as result:-

<?xml version="1.0" encoding="UTF-8"?>

<ItemLookupResponse

xmlns="http://webservices.amazon.com/AWSECommerceService/2005-10-05">

<OperationRequest>

<HTTPHeaders>

<Header Name="UserAgent"

Value="Mozilla/5.0 ..."/>

</HTTPHeaders>

<RequestId>1695HNYXPWDQZXAD7FQ8</RequestId>

<Arguments>

<Argument Name="ItemId" Value="B00000JLWW"/>

<Argument Name="Service" Value="AWSECommerceService"/>

<Argument Name="SubscriptionId" Value="XXXX"/>

<Argument Name="Operation" Value="ItemLookup"/>

</Arguments>

<RequestProcessingTime>0.0367751121520996</RequestProcessingTime>

</OperationRequest>

<Items>

<Request>

<IsValid>True</IsValid>

<ItemLookupRequest>

<ItemId>B00000JLWW</ItemId>

</ItemLookupRequest>

4.1. SOFTWARE ARCHITECTURE 39

</Request>

<Item>

<ASIN>B00000JLWW</ASIN>

<DetailPageURL>

http://www.amazon.com/gp/redirect.html

%3FASIN=B00000JLWW%26tag=ws%26l

code=xm2%26cID=2025%26ccmID=165953%26

location=/o/ASIN/B00000JLWW%253FSubscriptionId=XXXX

</DetailPageURL>

<ItemAttributes>

<Actor>Lewis Abernathy</Actor>

<Actor>Suzy Amis</Actor>

<Actor>Jason Barry</Actor>

<Actor>Kathy Bates</Actor>

<Actor>Nicholas Cascone</Actor>

<Creator Role="Primary Contributor">Winslet, Kate</Creator>

<Manufacturer>Paramount</Manufacturer>

<ProductGroup>DVD</ProductGroup>

<Title>Titanic</Title>

</ItemAttributes>

</Item>

</Items>

</ItemLookupResponse>

Hydragen extracts the Items element from the response XML and adds it
to the AMP as value of the WebService node. It is the responsibility of the
Presentation Model to retrieve the relevant information from the XML embedded
in the AMP and display in the suitable form.

Query

Queries are the backbone of an AM. As explained in 3.2, Hydragen supports
multiple types of queries: simple query, conditional query and query objects.
Besides update query, regular queries retrieve information from the application
data as well as context data store and pass it around. The way this is achieved
is by binding the result of a query to a binding variable. In Hydragen, the
binding variable is not explicitly defined but extracted from the query itself. The
variable-value binding retrieved from the SELECT clause of a SeRQL query is
used to define a variable-value binding for the AM. This only works since all
Select queries in the AM are expected to have single variable. Before a query is
executed, all variables are substituted. Note at this moment only SeRQL queries

40 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

are supported in Hydragen, though extending the support to other RDF query
languages is rather straightforward.

LogicUnit

As described in Section 3.2, LogicUnit is a subclass of NavigationalUnit. Since
the purpose of LogicUnit is only to handle form queries and similar actions which
do not generate visual content, at the end of processing a LogicUnit the generated
AMP is cleared and the engine navigates to a unique next NavigationalUnit. Since
Hydragen must browse to the next NavigationalUnit automatically in case of a
LogicUnit, application developer must take care that there is only one unique
choice of NavigationalUnit. There is no guarantee, which one will be picked in
case multiple relations turn out to be valid. This is due to the fact that several
links are supported by using ConditionalRelationship and if multiple of them are
valid at the same time the first one encountered is taken.

4.2 Supporting technologies

• Sesame: As described in Section 2.2, Sesame is a framework for storage,
query and inferencing of RDF and RDF Schema. The choice for Sesame
for Hydragen is motivated by following factors:-

– Support for SeRQL which is a powerful and easy to use RDF query
language.

– Support for ”Context” for provenance.

– Support for RDF inferencer

– Close working relationship between TU/e and Aduna Software, which
maintains Sesame.

Sesame offers a high level Repository API to that offers a large number
of developer-oriented methods for handling RDF data. The main goal of
this API is to make the life of application developers as easy as possible.
It offers various methods for uploading data files, querying, and extracting
and manipulating data.

Underlying the Repository API is the Storage And Inference Layer (Sail)
API which is a low level System API (SPI) for RDF stores and inferencers.
Its purpose is to abstract from the storage and inference details, allowing
various types of storage and inference to be used. The Sail API is mainly
of interest for those who are developing Sail implementations, for all others
it suffices to know how to create and configure one. There are several
implementations of the Sail API, for example the MemoryStore which stores

4.2. SUPPORTING TECHNOLOGIES 41

RDF data in main memory, and the NativeStore which uses dedicated on-
disk data structures for storage.

• Apache Tomcat : Although it is primarily a concern for end Application de-
veloper, it was required to choose a suitable web server for the purpose of
demonstration of Hydragen as well as for the development and test environ-
ment. Speed, scalability, support for Java Servlet and ease of deployment
were the key factors that influenced the decision here. The candidates that
were considered for this include:

– Apache Tomcat

– Resin

– Sun Java Application Server

Out of these, during development Apache Tomcat was the preferred choice
due to its ease of deployment, native Java support and integration in Eclipse
development environment. Some of features supported by Apache Tomcat
include native support for Java Servlet, XSLT transformation, etc. It is
also the supported Web container for Sesame.

• Java: Hydragen has been implemented in Java mainly due to the extensive
amount of support libraries available in Java for example Sesame API,
Pellet, Saxon etc.

• Pellet : Pellet[10] is an open source, OWL DL reasoner in Java, originally
developed at the University of Marylands Mindswap Lab. It ensures that
an ontology does not contain any contradictory facts. The OWL Seman-
tics standard provides the formal definition of ontology consistency used by
Pellet. In the context of Hydragen, Pellet is used to determine if all the
models are compliant to their schemas and are consistent. Pellet was se-
lected mainly because it was the only freely available reasoner with a decent
quality. It can, in fact, be used in future to debug and repair models.

• Xerces: Xerces2[9] Java Parser is an XML parser, which is used to parse
the XSLT presentation model and add some XSLT variable definition nodes
to parsed DOM3 structure. The updated version of XSLT is then written
out as an XML file. Xerces is also used to parse Hydragen configuration
file.

• Saxon: SaxonB[5] is a XSLT 2.0 processor whose native API is used to
apply XSLT transformation on generated AMP to create HTML output.

• Beanshell : BeanShell is a small, embeddable Java source interpreter with
object scripting language features, written in Java. BeanShell dynamically

42 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

executes standard Java syntax and extends it with common scripting con-
veniences such as loose types, commands, and method closures like those
in Perl and JavaScript. Beanshell is used to evaluate the boolean condi-
tion expressions and update query expressions in AMParser. An external
interpretor like BeanShell is needed since these boolean expressions are ex-
tracted from the AM as strings, and it is not possible to evaluate strings
as Java expression in Java.

• log4j : With log4j it is possible to enable logging at runtime without mod-
ifying the application binary. The log4j package is designed so that these
statements can remain in shipped code without incurring a heavy perfor-
mance cost. Logging behavior can be controlled by editing a configuration
file, without touching the application binary.

One of the distinctive features of log4j is the notion of inheritance in loggers.
Using a logger hierarchy it is possible to control which log statements are
output at arbitrarily fine granularity but also great ease. This helps reduce
the volume of logged output and minimize the cost of logging.

4.3 Design and Implementation Choices

During the course of the project, quite a few issues were found. In order to
overcome these issues, some design decisions and implementation choices were
made. The section below give a background on the modifications made in order
to solve the related issues. In addition, it provides insight into the working of the
Hydragen.

4.3.1 Metamodel enhancements

At the start of the project, the initial AM metamodel was given based on the
HeraS paper[24]. During the creation of example application, I discovered some
limitations that needed to be improved. After discussion with the supervisors
a selection of modifications were accepted and brought back into the AM meta-
model. The metamodel enhancements which came out of these discussions ex-
plained below:-

• LogicUnit: Initial version of Application meta-model did not have the
concept of LogicUnit. During implementation of FormUnit, it was realized
that since the processing of the form query needs the information entered
by the user, the query must be executed in the following unit. Moreover,
it is possible that the choice of following unit depends on the result of this
query for example in case of a login form, if login succeeds user goes to
the content page otherwise he must be requested to try to login again or

4.3. DESIGN AND IMPLEMENTATION CHOICES 43

register. All this ”logic” processing does not completely comply with the
idea of NavigationalUnit which is intended to capture navigational aspects
of the application. Hence, the concept of LogicUnit was introduced which
although is a sub-class of NavigationalUnit, but it is not meaningful for it
to contain any visual elements. It should typically be used to model form
query, conditional relationships, update queries etc.

• Conditional Relationship: In order to handle situations where choice
between referred NavigationalUnit has to be made based on a certain con-
dition, the concept of conditional relationship was introduced. The has-
Condition and hasDefaultCondition properties were added to Conditional-
Relationship to specify boolean conditions, for choosing between multiple
NavigationalUnit ’s if one of the condition evaluates to ”true” or the default
one if none of them is valid. ConditionalRelationship itself is a sub-class of
the Relationship concept.

• Relationship: Original Application meta-model allowed only queries to
define variable bindings for referred NavigationalUnit. During the project,
additional hasAssignment property was added for explicit variable assign-
ment.

• Boolean Expressions in Conditions: Boolean conditions occur in multi-
ple places in an AM such as ConditionalRelationship and ConditionalQuery.
According to the original specification, a condition had to be formulated as
a Query which the connotation that if the query generated a result then con-
dition evaluates to true otherwise false. During implementation of IMDB
database example with Hydragen, it was soon evident that in some situa-
tions the definition of condition needs to be extended to include boolean
expressions. For example, in order to check if user wants to search for a
movie or an actor in the SearchUnit, the value of choice made by the user
can be stored in a searchCategory variable and later the value of this vari-
able can be used in a ConditionalRelationship to decide which unit to refer
to (since the ActorResultUnit would be different from a MovieResultUnit).

• Variable: The hasDefaultValue property was added to AM variables to
indicate default values for a variable if it does not have a value at the
moment of use.

4.3.2 Implementation related

How is validating models supported?

The models loaded in the engine need to be checked for validity. This requires
syntactic check as well as semantic consistency with provided schemas. Hence,

44 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

an Application Model must correspond to the AM-metamodel, the Domain data
must correspond to the Domain model and the Context data must be consistent
with its Context model. For syntax check, Hydragen relies on Sesame to report
any errors in the models or in Domain content. On the other hand, semantic
consistency is checked by using Pellet as an OWL-DL reasoner. Since, Pellet
needs to load the models and corresponding data before it can inform it is con-
sistent or not, consistency check is only implemented for data loaded from a file
in Hydragen. Hence, only AM is checked against the AM-metamodel since the
rest are pre-loaded and are only accessible via the Sesame RDF server.

How are Data and Model repositories setup?

Since the Application Model can have queries, which go across Context Model
and Domain Model, and since Sesame currently does not allow cross-repository
queries, it is required to use same Sesame Repository at least for Context and
Domain models. The Application Model itself can be maintained in a separate
repository. Within the repository for CM and DM, the Sesame ”context” infor-
mation can be used to localize the scope a query or an update request.

In some cases, it could be required to have separate DM and CM , for example
if we don’t have control over data set itself. If required this restriction can be
overcome by using distributed querying or introducing a mediator as described
for example in [19].

The generated AMP is stored in a separate repository and a new context is
generated for every new session in order to separate data from multiple users.
The reason for using separate repository is performance. Normally, the AM,
DM and CM repositories can be setup with inference in order to facilitate query
construction. But this is has consequence on overall speed of the system. In case
of AMP, repository is just a temporary store before its dumped to a file. There
are no queries executed on the AMP itself hence it does not make sense to turn
on inferencing for AMP. Hence, choice was made to setup AMP in a separate
repository. Note that in future, it might be useful to directly access AMP from
repository for presentation generation using extended XSLT. (See Section 4.3.6).
It might be needed to reconsider this choice then.

How is inferencing used to handle a request?

RDF/OWL inferencing uses RDF and OWL entailment rules to extend a set
of RDF/OWL statements with additional logically derivable statements. For
example, if an OWL class A has property B and another class C is a sub-class
of A, then property B also holds for C. Hence, the statement that the property
B holds for C can be derived by RDF entailment and added to the original set.

As is evident from the structure of AM meta-model, quite a few elements in
an AM are sub-classes of another element. For example, FormUnit and LogicU-

4.3. DESIGN AND IMPLEMENTATION CHOICES 45

nit are a type of NavigationalUnit. This implies that whatever property holds
for a NavigationalUnit also holds for FormUnit. This fact has been used in the
implementation of Hydragen by setting up the AM repository with RDF Schema
Inferencing SAIL layer from Sesame. In particular, when a FormUnit or a Log-
icUnit is encountered in a NavigationalUnit, after handling elements specific to
these units, the function to handle NavigationalUnit is called recursively. Same
holds for SubUnit, SetUnit and TourUnit as well since they all refer to a Navi-
gationalUnit which needs to be handled as part of current request. This works
only because due to inference following query evaluates true for all sub-classes of
NavigationalUnit :-

SELECT DISTINCT onload, input, attribute, formunit,

relation,unit, scriptObject, webService

FROM {<reqNavUnit>} rdf:type {ams:NavigationalUnit};

[ams:onLoadQuery {onload}];

[ams:hasInput {input}];"

[ams:hasAttribute {attribute}];

[ams:hasFormUnit {formunit}];

[ams:hasRelationship {relation}];

[ams:hasUnit {unit}];

[ams:hasScript {scriptObject}];

[ams:hasWebService {webService}]

In addition, it is useful to setup DM and CM repositories with inference in
order to simplify some of the AM queries. For example, the following query:-

SELECT A

FROM {A} rdf:type {imdb_dm:Actor};

rdfs:label {X}

WHERE X Like "*$searchTerm$*"

and the following DM :-

Figure 4.5: Inference

would normally only return the actors from the Domain model and not the
stage actors. Although useful, care should be taken in using inference for Content
repository since the performance penalty can be huge, during the initial setup of
the database as well as when any modification is made to the database. Inference

46 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

SAIL would cause recalculation of derived statement whenever there is modifi-
cation in the database. Sesame 1 supported ”Custom inferencer”, which allowed
control over what rules must be used during inferencing so that user can do ”data-
dependent RDF inferencing”, but this feature still needs to be implemented for
Sesame 2.

How is multiple user access supported?

As specified in the Hera-S methodology description[24], the context data for an
Hera-S application can be categorized into three types: session data, user data
and global data.

Concurrency was one of the important requirements of the engine. This is real-
izable by providing support for session management and serialization of database
access. The concurrency control at database level is realized with the help of
Sesame (and choosing relevant SAIL layers within Sesame). Session Manage-
ment deals with primarily two concerns:-

1. Identifying which request belongs to which Session.

2. Maintaining Session state across request.

HTTP is a session-less protocol. Each GET request is handled by

• Open a connection to the Web server

• Download the document

• Drop the connection

In the context of Hera-S, we intend to make a ”stateful server”, which implies
that, most of the state information is stored as part of Context repository. The
kind of state-information per session the Context repository can store includes:-

• SessionID

• Application specific context data such as contents of a shopping cart, flight
selection etc.

The Hydragen engine does not handle any of this information directly. It all
depends on the Context model and Application Model itself. The exact details
of how to manage Session data are explained in Section 5.1.

How is debugging supported?

Debugging Web application is usually very difficult due to the dynamic nature
and involvement of multiple components. In order to facilitate debugging of

4.3. DESIGN AND IMPLEMENTATION CHOICES 47

HydragenCore and HydragenWeb, support for logging has been added to the ap-
plication. For this purpose log4j library is used. It is possible to configure the
level of logging by setting it in log4j.properties file of the HydragenWeb instal-
lation directory. The traces include information such as timing of events, data
queries and Application model queries and flow of application handler etc.

4.3.3 Sesame related

As mentioned before, during development of Hydragen multiple versions of Sesame
were used. Due to the fact that Sesame is still in a beta state, quite a few limita-
tions were determined and resolved: some in Sesame and for some a workaround
was found. Below some of such issues are described:-

Update Queries

Although there is support for SELECT and CONSTRUCT queries in SeRQL,
it does not support update or delete queries. Since at AM level, updates and
deletion are required in quite a few use cases and we do not want to rely on the
programmable solution to support this (in order to simplify expression this within
the AM framework), this was a serious limitation. In order to overcome this
limitation, support for UPDATE and DELETE queries was added to Hydragen.

UPDATE and DELETE clauses were added with a specific syntax in order
to facilitate the translation of these queries to SeRQL/Sesame constructs. For
UPDATE queries, Hydragen allows support for at most one update expression in
a query. The update expression must be encapsulated within eval function. Be-
sides, within the update expression, the original node which needs to be updated
must be placed between ”%” signs. In order to update a node, first the current
value and datatype of the node is retrieved, then the selected tuple with current
value of node is deleted, update expression is evaluated and a new statement is
created with the updated node. Note that Update query needs an RDF path to
update, just providing the update expression for relevant node does not work.
For example, the following update query which updates the number of times a
user has viewed a Movie page:-

UPDATE {V} imdb_cm:hasNoOfViews {eval(%views%+1)}

FROM {U} rdf:type {imdb_cm:RegisteredUser};

imdb_cm:hasMovieViews {V} imdb_cm:hasNoOfViews {views};

imdb_cm:hasViewsOfMovie {M}

is translated to a sequence of steps:-

1. Get current value of node to be updated

48 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

SELECT views,datatype(views)

FROM {U} rdf:type {imdb_cm:RegisteredUser};

imdb_cm:hasMovieViews {V} imdb_cm:hasNoOfViews {views};

imdb_cm:hasViewsOfMovie {M}

2. Select and delete tuples with current value of the node.

delete_nodes = CONSTRUCT {V} imdb_cm:hasNoOfViews {}

delete delete_nodes

3. Evaluate update expression.

VALUE = eval(%views%+1)

4. Add Tuple with new VALUE

CONSTRUCT {V} imdb_cm:hasNoOfViews {VALUE}

Creating new node

In Hydragen, application scenario such as registering of a new user are also han-
dled within AM, but this requires creation of new RDF statements about user-
name, password, age etc. The only way to identify a subject in RDF is by
assigning a unique URI to it. This turned out to be little bit of challenge in the
beginning, since in order to add a new node, one needs to determine a unique
URI, which does not already exist in the RDF store. The solution was found
in the handling of blank nodes in CONSTRUCT query by Sesame. Basically,
Sesame creates a unique name (not URI) for a blank node in a Construct query
with the blank node specified in empty curly brackets. The Hydragen engine is
then able to convert the unique name into a URI in the AMP namespace, and
this URI is used to create the new statements and add them to the RDF store.
For example in the following RegisterLogicUnit :-

<am-metamodel:LogicUnit rdf:about="&imdb_am;RegisterLogicUnit">

<am-metamodel:onLoadQuery rdf:resource="&imdb_am;newUserQuery"/>

<am-metamodel:hasRelationship

rdf:resource="&imdb_am;RegisterLoginRelationship"/>

</am-metamodel:LogicUnit>

<am-metamodel:UpdateQuery rdf:about="&imdb_am;newUserQuery">

<am-metamodel:queryBody rdf:datatype="&xsd;string">

4.3. DESIGN AND IMPLEMENTATION CHOICES 49

Construct {} rdf:type {imdb_cm:RegisteredUser};

imdb_cm:hasName {"$userName$"};

imdb_cm:hasLoginName {"$loginName$"};

imdb_cm:hasLoginPassword {"$loginPassword$"};

imdb_cm:age {$userAge$};

imdb_cm:gender {"$userGender$"}

<am-metamodel:queryType

rdf:datatype="&xsd;string">SERQL</am-metamodel:queryType>

</am-metamodel:UpdateQuery>

<am-metamodel:Relationship rdf:about="&imdb_am;RegisterLoginRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;LoginUnit"/>

</am-metamodel:Relationship>

The specified UpdateQuery is a Construct query which creates a ”new” node
using curly brackets in the RDF path of Construct clause. This Construct query
will result in RDF like shown below.

<rdf:Description rdf:nodeID=

"http://wwwis.win.tue.nl/~hera/Hera-S/amp-schema#node12g10iogqx2">

<rdf:type rdf:resource=

"http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#RegisteredUser"/>

<imdb_cm:hasName>New</imdb_cm:hasName>

<imdb_cm:hasLoginName>new</imdb_cm:hasLoginName>

<imdb_cm:age rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">26

</imdb_cm:age>

<imdb_cm:gender>Male</imdb_cm:gender>

</rdf:Description>

Nested queries

Although Sesame 2.0 supports nested queries, they currently seem to have quite
some performance issues. Nested queries could have been useful in implemen-
tation of AMParser, since for SetUnit, AMParser first collects all the results of
a Set query and then for each result, execute a query to find the value of its
attributes. A cleaner implementation would have been to handle the following
SetUnit using Nested queries. Consider the following NavigationalUnit which is
meant to create a menu of Favorite movies for a particular user:-

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;MovieMenuNavigationUnit">

<am-metamodel:hasUnit rdf:resource="&imdb_am;SearchRefUnit"/>

<am-metamodel:hasSetUnit

50 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

rdf:resource="&imdb_am;MovieUnitUserFavoritesSetUnit"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:SetUnit rdf:about="&imdb_am;MovieUnitUserFavoritesSetUnit">

<rdfs:comment rdf:datatype="&xsd;string">Favorites</rdfs:comment>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieUnitUserFavoritesUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT MovieFavElement

FROM {U} imdb_cm:hasFavorite {MovieFavElement} ...

</am-metamodel:hasQuery>

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit

rdf:about="&imdb_am;MovieUnitUserFavoritesUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;FavMovieName"/>

<am-metamodel:hasRelationship

rdf:resource="&imdb_am;MovieFavSetRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;FavMovieName">

<rdfs:label rdf:datatype="&xsd;string">Movie Name</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT T

FROM {$MovieFavElement$} rdf:type {imdb_dm:Movie};

rdfs:label {T} ...

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Relationship rdf:about="&imdb_am;MovieFavSetRelationship">

<am-metamodel:hasAssignment>M=$MovieFavElement$</am-metamodel:hasAssignment>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieMainUnit"/>

<am-metamodel:sourceUnit rdf:resource="&imdb_am;MovieReferredSubUnit"/>

</am-metamodel:Relationship>

The above unit finds all the Favorite movies of a user and then for each movie,
the name and the relationship are retrieved. This results in execution of 2n+1
queries where n is the number of Favorite movies retrieved for a user. Instead, if
the same situation can be transformed to two nested queries:-

SELECT T

FROM {FavMovie} rdf:type {imdb_dm:Movie};

4.3. DESIGN AND IMPLEMENTATION CHOICES 51

rdfs:label {T}

WHERE FavMovie IN {

SELECT DISTINCT MovieFavElement

FROM {U} imdb_cm:hasFavorite {MovieFavElement}

}

SELECT FavMovie

FROM {FavMovie} rdf:type {imdb_dm:Movie}

WHERE FavMovie IN {

SELECT DISTINCT MovieFavElement

FROM {U} imdb_cm:hasFavorite {MovieFavElement}

}

But when these queries were tried out the Sesame, the resulting performance was
worse than the 2n+1 queries. Hence, this transformation is not implemented in
the current version of Hydragen.

4.3.4 Performance related

Dynamic generation of Web pages, bring with it the risk of performance penalty.
Hence from the beginning, performance of Hydragen was a key requirement.
Several design decision have been influenced by this requirement.

The choice that all generated AMP are kept in an internal data-structure
before submitting is influenced by the fact that open/closing a transaction for
every query consumes additional time, hence it is wise to open a transaction,
completely handle a NavigationalUnit, submit the modifications and then close
the transaction. Implementation was modified to follow this scheme.

AMParser uses SeRQL queries to extract the structure of AM. Initial imple-
mentation, executed around 500 queries for a NavigationalUnit of around 100
elements (including attributes, subunit, setunit etc). Hence, it took around 38
seconds to display the resulting page! The reason for this poor performance and
the steps taken to optimize it are listed below:-

• Initially, the AMP was stored in the same RDF store as the AM although
in a different context. But as discussed earlier, due to the fact that AM
repository was setup with inference, it took quite some time to submit an
AMP to the repository. Later, a separate in-memory repository without
RDFS inference SAIL was setup for the AMP.

• Some queries were replaced by Sesame API calls. For example, originally
a query was used to determine if the requested NavigationalUnit existed.
This was replaced by a call to Repository.hasStatement(). This is supposed
to be more efficient.

52 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

• SeRQL supports pattern matching on nodes found in a query by using
LIKE clause. In case of AMParser, an exact match was needed in most
cases hence using LIKE was costlier and irrelevant. This was resolved.

• As we saw in the handleRootUnit flow, in order to parse a NavigationalUnit
all sub-elements need to be processed. A check was added for each element
to be processed only if it exists.

• Maximum number of queries were being generated from the SetUnit, since
for each retrieved element a NavigationalUnit must be parsed. In order
to reduce this, the results of the Set query were stored and the referred
NavigationalUnit was parsed once. During this parsing, for each result,
attributes were queried and generated. This reduced the number of queries
from AM quite a bit.

• Lastly, setting up AM on a server caused additional delay in parsing of
AM. Hence, it was decided to use in-memory repository to store it instead.

After all these exercises, the response time for the NavigationalUnit in ques-
tion went down from 14 sec to 3 sec. In this duration, around 200 queries were
being run, generated AMP was being submitted and dumped to a file and finally
XSLT transformation was generating the final HTML output. The current per-
formance is considered sufficient for now due to the performance limitations of
Sesame (like in case of nested queries).

In the end, all the application level bottlenecks have been removed from the
implementation. Still there is potential for improvement by more optimization
at the Sesame side. For example, improving the performance of nested queries
would open opportunity for more efficient implementation.

4.3.5 Adaptation related

All the elements in Hydragen are dynamic in the sense that during execution of
an application based on Hera-S models, contents of these models can be modified.
This fact can be used to modify the Application Model and the Domain model
on the fly to add new attributes to the application. In addition, the Aspect-
Orientation feature of Hera-S requires that the queries within an Application
model can be modified during execution.

4.3.6 Presentation Layer related

The AMP generated from HydragenCore is in RDF in XML serialization. This
choice of serialization (instead of turtle, trix, n3 etc.) was made since it made the
use of XSLT as transformation language easier. It must be noted that although
XSLT does the job here, it is not the most effective transformation language for

4.4. PRESENTATION GENERATION 53

RDF. This is due to the fact that there are multiple possible XML serializations
for RDF. Moreover, XPath expressions, which are used extensively in XSLT rely
on the XML tree structure while RDF is a graph. Though this made writing
XSLT more cumbersome, no serious alternative could be found during the course
of the project which would not need considerable effort. Some options that were
considered include Treehugger and RDFTwig. These solutions make an attempt
to add RDF specific Path expressions to XSLT. In addition to these options, a
proposal was made to use XSLT extension points to allow SeRQL queries instead
of XPath to retrieve RDF nodes. This option does look feasible but due to the
scope of project, it was not followed up. These solutions should better be explored
in future work.

4.4 Presentation Generation

Although the presentation layer of Hera-S methodology was not the core focus
of this Master Thesis, still it was needed to prove the working of Hera-S flow
and in order to develop a fully functional prototype. In fact, even before the
design and implementation of Hydragen was started, a separate exercise was
carried out to manually generate an AMP from an AM and also write an XSLT
transformation to generate HTML result. Later on, the work from this exercise
was used as starting point for implementation of Presentation Layer. Key point to
note here is that presentation generation is not handled within the HydragenCore
but instead is a part of HydragenWeb.

Figure 4.6: HydragenWeb Class Diagram

As is shown in 4.6, the TransformXslt class is responsible for-

54 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

• parsing the XSLT input

• creating an internal DOM3 structure

• defining some application specific XSLT variables

• generating the Presentation Model Instance

• transformation of AMP to HTML using the PM

In XSLT description, a separate template can be created for each Naviga-
tionalUnit for which an AMP is generated. XSLT uses XQuery to find specific
nodes within the RDF/XML and generate HTML code using the contents of
these nodes. Since, there is no unique XML serialization of RDF, xsl:variable
must be used extensively to reach a specific node in smaller steps and then its
value must be extracted. For example, following XSLT extract shows how to
define a template to generate HTML only for a LoginUnit.

<xsl:template match=

"/node()[rdf:Description[ends-with(@rdf:about,’LoginUnit’)]]">

<xsl:call-template name="LoginTemplate"/>

</xsl:template>

<xsl:template name="LoginTemplate">

<HTML>

<HEAD>

<META http-equiv="Content-Script-Type"

content="text/javascript"/>

</HEAD>

<BODY style="...">

<div id="header">...

</div>

<div id="body">...

</div>

</BODY>

</HTML>

</xsl:template>

In order to determine, the value of an element (LoginUnit Title and the
corresponding FormUnit query in this case) generated in the AMP following
XSLT code can be used.

<!-- Show LoginUnit Title -->

<xsl:variable name="thisTitle">

4.4. PRESENTATION GENERATION 55

<xsl:value-of select=

"//rdf:Description[ends-with(@rdf:about,’LoginUnit’)]/

amp:hasAttribute/text()[ends-with(.,’LoginLabel’)]"

/>

</xsl:variable>

<xsl:variable name="thisForm">

<xsl:value-of select=

"//rdf:Description[ends-with(@rdf:about,’LoginUnit’)]/

amp:hasFormUnit/@rdf:resource[ends-with(.,’LoginForm’)]"

/>

</xsl:variable>

<xsl:variable name="thisFormQuery">

<xsl:value-of select=

"//rdf:Description[ends-with(@rdf:about,string($thisForm))]/

amp:hasQuery/text()"

/>

</xsl:variable>

In the above XSLT code, XPath expression is used to extract the complete
URI of a RDF object, which ends with ’LoginForm’ and stored as an XSLT
variable. After all elements have been extracted and stored in XSLT variables,
these variables can be used within HTML to generate presentation elements.

<table border="0" cellpadding="5" cellspacing="0">

<form method="post" action="{$thisFormRefersTo}">

<tr><td>ID:</td>

<td><input type="text" size="20"

name="{$thisLoginUserNameInputBindingVar}"

value=""/>

</td>

</tr>

<tr><td>Password:</td>

<td><input type="password" size="20"

name="{$thisLoginPasswordInputBindingVar}"/>

</td>

<td><input type="submit"

value="{$thisButtonText}"/>

</td>

<td>|</td>

56 CHAPTER 4. HYDRAGEN: IMPLEMENTATION

<td><A href="{$thisRefersTo}"

onMouseover="register.src=’./images/Registerover.png’"

onMouseout="register.src=’./images/Registerup.png’">

<img src="./images/Registerup.png"

border="0"

name="register"

padding-left="50px"/>

</td>

</tr>

</form>

</table>

4.5 IMDB example

As a demonstration of the capabilities of the Hydragen, an extensive Web appli-
cation was built using the Hera-S methodology. This example application was
motivated by the IMDB Web site which provides information regarding movies,
actors etc. A considerably large sub-set of movie database was used for this
application. Moreover all the relevant models, namely AM, DM and CM were
constructed to create a full-fledged application.

The detailed AM used for this application can be found in B.2. In brief, it
support the following flow:-

• Display login screen, with option to enter user credentials and submit the
login form or Register a new user.

• Register form for new user which takes user back to Login screen after
registration.

• If login fails, user is sent back to Login form with a login failure message.
After successful logging in, user is presented with a personalized welcome
message and a Search Form.

• Search Form allows user to input a key word and select whether he/she
wants to search for movie or actor.

• Depending on choice of user, he/she is shown a Movie result page or an
Actor result page.

• User can click on the entity he/she was searching on and he is presented
with a page about movie or actor as the case be.

4.5. IMDB EXAMPLE 57

• A movie unit shows various attributes of the movie/actor, some pictures of
the movie and a table of actors/actresses who were part of the movie cast.
Besides, an Ajax based side menu is displayed with list of Top 10 movies
and Favorite movies as indicated by the User. The page also displays a
button to add current displayed movie to users favorites. Similar structure
is also followed for the Actor unit.

Figure 4.7 is a capture of an MovieUnit as created by Hydragen.

Figure 4.7: IMDB - Hera-S demo

Chapter 5

Hydragen: Usage

Application of Hera-S methodology sub-divides the task of creating a Web appli-
cation into smaller manageable steps motivated by separation of concerns. This
section describes the steps needed to develop an example application based on
IMDB movie database. Besides, some of caveats that need to be avoided for are
mentioned as well.

Figure 5.1: IMDB Application Model

5.1 Creating new application

1. Create DM : Since Hera-S targets data intensive application, the starting
point for any Web application developed based on Hera-S methodology is

59

60 CHAPTER 5. HYDRAGEN: USAGE

the domain model. The domain model captures the relationship between
elements in the data over which the application needs to operate. For
example, the figure 5.2 shows relation between various properties of a Movie
that are captured in the data content.

2. Create CM : While DM deals with modeling of data content, context model
captures relations between information related to personalization and adap-
tation of content delivery. The main difference between DM and CM is that
context data is typically under direct control of Hera-S. For example, the
UpdateQuery in the AM is mostly expected to deal with elements from
CM. This includes:-

• User data i.e. personal information for the purpose of maintaining
a user profile in the application. For e.g. user name, login name,
password, favorites, personal rating etc can be modeled as part of the
Context model. Figure 5.3 shows the Context model for user specific
data such as favorite movies of a RegisteredUser.

• Session data i.e. information that is valid only till a session is alive.
As soon a session expires (by default after half an hour of inactivity),
the related data is deleted. Examples of such data include contents
of a shopping cart if there is no user logged in, or choice of travel
destinations saved for later etc. Since there is no user to which this
information can be related, the current sessionID is used as an anchor.
The AM should store all session specific data in a Session specific con-
text within the Data repository. HydragenWeb passes the current Ses-
sionID to HydragenCore as a parameter so that the AM can identify
which SessionID to store the Session data in. The value of SessionID
is used to construct a context URI which is used the value of a pre-
defined AM variable - sessionID. Since before any query, all variables
are replaced by their values, an Construct/Select query which contain
this sessionID variable is also ”instantiated”. An example of such a
Session query is following:-

Construct {} rdf:type {imdb_cm:ShoppingCart};

imdb_cm:hasItem {"$item$"}

imdb_cm:hasCount {"$Number$"}

To Context $sessionID$

Note that SeRQL does not support ”TO CONTEXT” construct. It
is interpreted by Hydragen, and all the statements generated by the
Construct query are added to the specified context URI. If there is not
context existing with the given URI, it is automatically created.
It is the responsibility of the AM creator, that Session data is update
when needed. For each request, HydragenWeb checks if the session

5.1. CREATING NEW APPLICATION 61

corresponding to the request is still valid. In case, the current session
is expired HydragenWeb informs HydragenCore by issuing a request to
a predefined SessionExpiredLogicUnit. Again, it is the responsibility
of the AM creator to provide for such a logic unit whose main purpose
is to delete all Session related data and potentially redirect the user to
”Home” page of the application. The delete query which removes all
Session data corresponding to a specific session will look as follows:-

Delete * from context $sessionID$

• Global data i.e. the information that is relevant at an application level.
Examples of global data include ”most visited link” or ”recommenda-
tion for related items”.

Figure 5.2: IMDB Domain Model

Note all these models can be developed in RDF or OWL using tools such
as Protege, which is an open source ontology editor.

3. Create AM : The core functional and navigational behavior of the Web
Application is described in the Application Model. Its wise to use the Ap-
plication Meta-model i.e. the OWL schema for AM as the starting point

62 CHAPTER 5. HYDRAGEN: USAGE

Figure 5.3: IMDB Context Model

for development of an AM. Using tool like Protege to create instance of
AM elements such as NavigationalUnit and their relevant attributes makes
defining of these navigational structure extremely manageable. For previ-
ous versions of Hera a GUI Builder is available but it has yet not been
adopted to work with Hera-S and this would perhaps be picked up in one
of future Hera projects. In general, the fact that Hera-S relies on standard
formats such as RDF(S) and OWL and that there are several tools that
allow user to create content and visualize it in these formats, makes it less
relevant to develop a Hera-S specific editor.

There are certain caveats that the developer must be aware of while creating
an AM. These are explained in Section 5.2.

4. Create PM : Next step is to describe how each NavigationalUnit would be
presented. The current HydragenWeb setup only allows XSLT description
for the PM and it expect HTML output but in principle other output for-
mats such as SMIL, WML etc can also be supported with minor extensions.

5. Setup Web Server : Both HydragenWeb and Sesame need a Java Servlet
Container such as Apache Tomcat 5.5 to host them. Once Apache Server

5.1. CREATING NEW APPLICATION 63

has been installed, Sesame (version 2.0 beta5) server and client need to
be deployed as instructed in User Manual for Sesame[7]. HydragenWeb
Web application can be installed on a different machine with a separate
installation of Web Server.

6. Setup Sesame Repository : Once the Domain and Context models have been
created, a persistent Sesame RDF repository should be setup for the RDF
models and Data content. The RDF repository for Application data, DM
and CM must be setup as a remote native repository. Then, the content,
DM and CM must be loaded into the server using the Sesame Client in-
terface or programmatically. It is important to setup the Repository as
persistent to preserve the data and context information valid even if the
Server must be brought down for upgrade etc. Native Store as supported
by Sesame 2.0 can be exploited to provide persistence of data.

7. Create Hydragen Configuration File: Hydragen Configuration File (exam-
ple server.xml) specifies the location of various models in XML format. The
configurable items that can be set include:-

• application name : The application root node allows the specification
of a unique name for the application.

• amp context : URI of Sesame Repository context in which generated
AMP is stored.

• app server : URI of the HydragenWeb Servlet. The value here is added
to the PM (XSLT file) as an XSLT variable.

• pmpath : Absolute or relative (to app server path) path to the Pre-
sentation Model.

• amspath : Absolute or relative path to the AM meta-model.

• ampath : Absolute or relative path to the Application Model.

• Server setting : Settings regarding location of Sesame server and
names of repository for DM,CM and Content can be set separately us-
ing dm server path, cm server path and content server path elements.
For each element following two properties need to set:-

– server path : URI of Sesame RDF server

– repository id : Unique name of Repository ID given during setup.

8. Update Hydragen Deployment Descriptor : Deployment Descriptor file (WEB-
INF/web.xml) for HydragenWeb web application defines an initialization
parameter called configPath which defines the path to Hydragen Configu-
ration File. The value of this parameter must be set to the location (ab-
solute or relative to app server) of the example server.xml. After updating
web.xml, HydragenWeb must be reloaded.

64 CHAPTER 5. HYDRAGEN: USAGE

After these steps, the HydragenWeb based application is ready to be used.
Just browse to the app server URI using your browser in order to visit the root
page of your application.

5.2 Usage Caveats

There are certain caveats that the user must look out for while using Hydragen.
These are listed below:-

• AM related

– Use of variables : Since variables in AM have a global scope, they stay
valid across multiple requests. This is useful in most of cases since
variables such as ”logged-in-user” is needed to be defined throughout
the application. But, this also implies that the AM Designer must
be careful with the use of variable names lest some variable defined
in another NavigationalUnit is unintentionally overwritten. Also note
that variables do not need to be explicitly defined, they are also created
as part of query processing. The Select query variable is used as a
binding variable for the result of the query.

The AM meta-model can be extended to provide more flexible support
for variables such as definition of scope of validity etc.

– Single attribute Queries : The data retrieval queries in AM are all
expected to extract a single attribute e.g. following query is illegal :-

SELECT DISTINCT Name, Photo, Cast

FROM {A} rdfs:label {Name};

rdf:type {imdb_dm:Actor};

[imdb_dm:hasMainPhoto {} imdb_dm:photoURL {Photo}];

imdb_dm:actorFilmography {F} imdb_dm:castMovie {M},

{F} imdb_dm:castCharacter {Cast}

Here a single SeRQL query allows retrieval of Name, Photograph URI
and role of an actor in a given movie. But, since an Attribute defini-
tion with AM allows more information to be expressed per Attribute
such as media type and a recognizable RDF label such queries are not
valid in AM. In case such queries are used in AM, a comma separated
concatenation would be returned as result.

– Namespaces in queries : The queries specified in AM should be com-
plete SeRQL queries including the ”USING NAMESPACE” clause.
In future versions of AM meta-model, it should be advisable to allow
these definitions at a global level in order to keep the AM readable.

5.3. EXTENSION POSSIBILITIES 65

– Special Characters : XML has as a set of special character which
need to be encoded before using them as value of any entity. These
include characters such as ’〈’, ’〉’ and ’&’ which should be written
using the corresponding named entity encoding such as ’<’, ’>’
and ’&’. Since RDF and XSLT must comply to XML Schema this
requirement holds for the models and the RDF data as well. This needs
special mention since AM models contain SeRQL queries which use
these characters (especially ’〈’ and ’〉’) for namespace/URI definitions.

– Attributes and Relationships : Current version of AM does not allow
Relationship to be attached to an Attribute directly. This implies
in order attach a link to an Attribute, a dummy SubUnit must be
created which would contain the Attribute and a Relationship to the
referred NavigationalUnit. AM can potentially be simplified to allow
this ”shortcut”.

• PM related

– Frames : XSLT transformation on AMP in general are expected to
generate HTML to stdout which can then be passed to HttpServletRe-
sponse. In case of frames, XSLT ”result-document” clause can be used
to generated multiple HTML output, one per frame and the top level
HTML document must be sent to stdout. At AM level as well, each
frame must be modeled as a SubUnit of an overall main unit in order
to capture the structure. This information can then be utilized by PM
to place each SubUnit in its intended frame. Note here that AM does
not specify frames, only frame-like behavior.

Although, frames used to be popular to divide a unit of display in mul-
tiple regions and only updating the required regions, similar function-
ality can be achieved using CSS, Ajax and using div sections in HTML.
In the IMDB example created using Hydragen, an Ajax based menu is
used for MovieMenuUnit with the users Favorite movies, link to Search
page etc was generated by generating a temporary XML menu struc-
ture based on the Favorite movies Set in AMP for MovieMenuUnit
and using Ajax script to parse and display the menu.

5.3 Extension possibilities

One of the requirements for Hydragen was that it is extensible. The API for Hy-
dragenCore was defined keeping this in mind. The nl.tue.heras.core.IEngine and
the nl.tue.heras.backend.IBackend interfaces were defined to provide extension
points for alternative implementation of the engine.

66 CHAPTER 5. HYDRAGEN: USAGE

In this context, Hera-S support for adaptation using Aspect-oriented concept
(Hera-S [24]) is worth mentioning. Briefly, Hera-S allows dynamic transformation
of AM queries to express a ”cross-cutting” adaptation ”concern” applicable to
a certain set of AM elements. The definition of transformation is called Advice
while Pointcut selects element on which the Advice is applicable. The support
for Aspect-oriented concept was not part of this master project, but it was a
requirement that Hydragen must be built in a way such that these extensions are
feasible.

From a Hydragen perspective, support for advice/pointcut pairs primarily
boils down to being able to extract specific AM elements and transforming the
queries attached to these elements (adding conditions, or nested queries etc). The
HydragenCore API provides access to a ”handle” to Application Model which
can be used to extract elements containing queries from AM by using API calls
such as Collection〈 String 〉 handleQuery(DbHandle handle, String query)from
the nl.tue.heras.DbManager class. The same function can be used to replace
the current SeRQL query with transformed version using the UPDATE query
syntax as explained in Section 4.3. Note the modification are only effective after
a call to submitStatements() function. An alternative solution would be to use
AMhandle to get access to AM repository and use Sesame Repository API to do
the needed transformations . This works since the current AM is parsed on every
Unit request. Thus, it is easy to extend the functionality of Hydragen using the
provided API.

Similarly, applying Hera-S for development of a Workflow Management Sys-
tem is also feasible. The basic elements of a WfMS are States, Tasks, Guards and
Triggers. It is possible to model all these elements in RDF as part of Domain
model and Context model. The user and state dependent views of tasks that
and possible transitions between them can be modeled using Application Model.
The user specific information like current list of tasks assigned to him/her can
be described in the Context model. The ”business rules” that govern the valid
transitions between different states need to modeled outside HydragenCore po-
tentially using Prolog or OWL specification. Given current state, trigger, and
user input it should be able to generate information about what should be next
state and who should be the owner of the task that needs to be done in that
state. This information can be sent as a request for required NavigationalUnit
with corresponding parameter values like state, user name etc to HydragenCore.

Chapter 6

Hydragen: Analysis

There are several criterion on the basis of which Hydragen and the Hera-S
methodology can be evaluated. These include ease of use, maintainability, ex-
tendibility, debug-ability etc. Most of these non-functional requirements are not
easy to measure but the design decisions that were presented in last chapter ad-
dress these aspects of the application as well. In addition to these, development
time for a new application and time taken to update an existing application, are
also indication of usefulness of Hera-S methodology. In case of a Web applica-
tion which does not use modeling and automatic generation approach, all pages
have to be manually written and maintained. Simple change in data content or
change in presentation template can result in quite some work. Modeling based
design methodologies and Hera-S in particular, saves all this development time
and effort. Though no separate measurements were done in this respect, during
the development of IMDB example, the benefits were immediately evident.

In the following sections, we focus on one important and concretely measur-
able evaluation criteria namely performance.

6.1 Performance

Performance of a Web application based on Hydragen is typically measured by
the response time that a User experiences after he/she issues a request for a link
generated by Hydragen. This is because Hydragen is dynamic and thus runs in
the background all of the time.

There are multiple factors which influence the response time of Hydragen can
be evaluated. Here we will analyze the performance by looking at the algorithmic
complexity of handling a request and also actual response time data retrieved
from example application.

67

68 CHAPTER 6. HYDRAGEN: ANALYSIS

6.1.1 Algorithm Complexity

In order to evaluate the algorithmic complexity of Hydragen, we determine the
number of queries (both data and application queries) needed to be run to gen-
erate an AMP for each request. The number of executed queries are used as
unit of performance since they are the most determining factor in handling of
a unit. For the purpose of complexity evaluation, a typical example with the
request unit that has at least one instance of each type of navigation element was
used. This is not the general case. The number of distinct navigation element
are denoted by n while the number of results retrieved for a SetUnit are denoted
by m. Following the algorithm as depicted in figure 4.4 we observe that although
for SetUnit and TourUnit, a NavigationalUnit must be handled once, for each
result a distinct data query must be run to retrieve the value of attribute and
relationship corresponding to that result(See Section 4.1). Based on this, we get
O(n + m) as an asymptotic upper bound for the algorithm.

In order to give an estimate, a navigation unit with exactly one element of each
type, and a SetUnit which results in k elements and refers to another unit with
one element of each type will execute - 2*k+2*17 queries. The addition factor
comes from the fixed number of AM and data queries that need to be handled per
NavigationalUnit if all elements are present. Since the NavigationalUnit contains
a SetUnit as well, these queries need to run twice, hence the multiplication factor.
The number of queries executed to generate AMP for attribute and relationship
of each element of SetUnit contribute to the 2k factor.

Figure 6.1: Performance Data

6.1.2 Statistical Analysis

The example IMDB application was used to evaluate performance of Hydragen.
In order to avoid network communication overhead, the Sesame Data Server and

6.1. PERFORMANCE 69

Hydragen Application were installed on the same machine and also accessed from
the same machine. A standard PC configuration with 1.73 GHz CPU and 1 GB
RAM, running Windows XP SP2 was used for purpose of this test setup. The
Application Model (Appendix B.2) contains 361 RDF statements with around 20
Navigational/LogicUnit ’s and 46 data queries distributed over various units with
as high as 28 data queries in MovieUnit. The IMDB data itself contained more
than 240000 RDF statements with around 20000 movie titles, 2500 actor names
and related information. Note that in the data set, quite a few movies/actors
dont have all attributes (like hasMainPhoto, movieYear, actorFilmography etc)
filled in. In particular, the number of movies with completed related information
are 100; similarly for actor around 600 have sufficient attributes. Note all this
data is preloaded to a Sesame server, except for Application Model, which is only
loaded when the HydragenWeb application is initialized.

The data collected during this experimental setup is shown in Table 6.1. For
this purpose, the following steps were carried out:-

1. Open the login page of application (LoginUnit)

2. Register new user (RegisterLogicUnit)

3. Search Actor (ActorSearchResultUnit)

4. Select Actor from Result (ActorUnit)

5. Add a Actor to User Favorites (AddToFavoritesUnit)

6. Select Movie from Top 10 list (MovieUnit)

For each of step, the following data was collected:-

• Number of statements in the AM for requested NavigationalUnit

• Number of Data queries in the requested NavigationalUnit

• Total number of queries executed to process the requested NavigationalU-
nit. This includes the parse queries, which are executed to determine the
structure of AM as well as the Data queries that instantiate the AM to
generate AMP. Note that the number of queries in the table vary based on
the content, mostly because of the number elements in a SetUnit.

• Time taken from when the user clicked on a link to the complete generation
of an AMP.

• Time taken to transform generated AMP to HTML and send the response
to user.

Based on this data, the following statistics were derived:-

70 CHAPTER 6. HYDRAGEN: ANALYSIS

• Total time taken to handle a request.

• Ratio of time taken to generate AMP wrt the number of executed queries
in order to normalize the execution times. This would be called TPQ (time
per query).

• Average value of TPQ for each type of NavigationalUnit.

Figure 6.2: Response Time: Movie Unit

Figure 6.3: Response Time: Actor Unit

As is expected and can seen in figure 6.2 and figure 6.3, the response time
for a request increases with number of queries that are executed to handle a
NavigationalUnit. The number of executed queries is itself dependent on the
number of AM statements and the number of results retrieved as part of SetUnit
query. For example the last entry in figure 6.3, corresponds to generation of unit

6.1. PERFORMANCE 71

for Actor ”Tom Arnold” who acted in around 81 movies according to the movie
dataset. The huge number of results returned by SetUnit query explain the high
response time. The time taken for XSLT transformation from AMP to HTML is
mainly dependent on the size of generated AMP.

Figure 6.4: Average Time per Query

Figure 6.4, how average time to handle a query varies from Unit to unit
depending on the type of queries in a unit. As can be observed, the average
query handling time for RegisterUnit is higher than the rest of the units since it
is dominated by a bigger Construct query while rest of the unit have only Select
queries or simple update query. The Construct query creates all RDF statements
corresponding to a User’s profile (name, age, login, password etc). The addition
of these RDF statements back to data repository takes extra time (in addition
to the processing of query).

In addition to the average, the minimum and maximum time for handling a
query for each type of Unit is shown in the graph.

Chapter 7

Conclusion and Suggestions for

Future Work

Within the context of Hera project, we implemented Hydragen to support Hera-
S design methodology. The initial requirements for Hydragen have been met as
good as possible (except for performance problems due to Sesame) and an exam-
ple application was developed to demonstrate the capabilities of the methodology
as well as implementation.

For the methodology perspective, Hera-S was the logical next step in Hera
development. By utilizing the power of standard Semantic languages such as
RDF(S) and expressiveness of SeRQL, Hera-S capitalizes on the availability of
multitude of tools that support model development, verification and visualiza-
tion. If needed, SPARQL can be easily incorporated in Hera-S. In particular, the
availability of Application Metamodel in RDFS makes development of an AM a
simple task of instantiating the various elements with specific values.

During development of Hydragen, it became clear that although Sesame 2.0
provided some promising features; there were still some issues since that it was
in alpha/beta stage. Having started with using Sesame 2.0 alpha4, quite a few
of these issues were resolved in cooperation with Aduna. The work on Hydra-
gen helped making Sesame better. The final Hydragen implementation is using
Sesame 2.0 beta5 release, although still some performance related issues are open.

In compliance with the philosophy of layered development of Hera-S, Hydra-
gen was also implemented modularly. The HydragenCore was implemented first
as a standalone tool and modified to a library for use with HydragenWeb. This
approach motivated the development of a clean API for HydragenCore which can
find use in development of other Web applications.

73

74 CHAPTER 7. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

7.1 Suggestion for future work

The present Hydragen prototype is a working application, which performs within
the given requirements; there is however still room for improvements. In the field
of performance:

• As discussed in Section 4.3, Hydragen can benefit from support of efficient
Nested queries by Sesame. Once this is in place, the algorithmic complexity
can drop from O(n+m) to O(n), since then handling of SetUnit would not
depend on number of results for SetUnit query. Note that the gain in terms
of response time wont be linear since the execution time of a nested query
is expected to more than that of a non-nested query.

• Currently, if a part of NavigationalUnit needs to be updated while keeping
the rest same, it requires complete regeneration of AMP. E.g. in case of
AddToFavorites unit after processing of the update query, application just
needs to return to the currently displayed page (MovieUnit page in this
case), with an updated Favorites menu. In this case, it would have sufficed
to update the Favorites SubUnit only. An approach that allows supporting
this enhancement could be to store each SubUnit in a different context
of AMP store. Then the statements from only a specific context can be
replaced if the requested unit is same as current unit. Of course, then the
SubUnit to be updated must be encoded in the request as well. Though this
is not currently supported in Hydragen, with some effort the implementation
can be made smarter and hence result in improved performance.

In addition, quite a few shortcuts can be supported at the AM level which
would simplify the work of an AM Designer. These include:-

• Global specification of namespace definitions for data queries: Currently,
every data query in AM needs to specify namespace definitions separately,
making the AM unreadable. This can be simplified by making global def-
initions and allowing Hydragen to complete the queries before executing
them.

• Support for relationship in Attributes: Currently, the rule is that each
NavigationalUnit can have a unique relationship. This means in order to
attach a link to an Attribute, one needs to create a SubUnit and place a
Relationship in the NavigationalUnit referred by this SubUnit. Although
a clean approach, this is unnecessarily complicated and can be solved by
supporting Relationship for Attributes.

• Abbreviated queries: In quite a few situations a query is needed only to
retrieve the value of an attribute without an condition to be specified. It is

7.1. SUGGESTION FOR FUTURE WORK 75

possible to simplify the syntax of query to be written just using RDF path
which contains one SeRQL variable. E.g. Instead of

Select x from {x} rdf:type imdb_am:Person using namespace...

it should be possible to write

{x} rdf:type imdb_am:Person

Hence, making AM more readable.

Finally, the Presentation Layer implemented in Hydragen is minimal. It does
not provide any adaptation possibilities apart from these expressed in XSLT itself.
Since the focus of the project was to develop the HydragenCore functionality, little
effort was spent on extending support for Presentation Model. This part can
benefit from already proven possibility of integrating Hera and AMACONT[23].

Bibliography

[1] Jena. http://jena.sourceforge.net/. [cited at p. 5]

[2] Protege. http://protege.stanford.edu/. [cited at p. 5]

[3] Racer. http://www.racer-systems.com/. [cited at p. 5]

[4] Redland. http://librdf.org/. [cited at p. 6]

[5] Saxon. http://saxon.sourceforge.net. [cited at p. 41]

[6] Sesame. http://www.openrdf.com/. [cited at p. 5]

[7] Sesame-User Manual. http://www.openrdf.com/doc/sesame2/users/index.html.
[cited at p. 63]

[8] W3c. http://www.w3c.org/. [cited at p. 5]

[9] Xerces2. http://xerces.apache.org/xerces-j. [cited at p. 41]

[10] Parsia B. and Sirin E. Pellet: An owl dl reasoner. International Semantic Web
Conference, 2004. [cited at p. 5, 41]

[11] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Data-driven, one-to-one
web site generation for data-intensive applications. In The VLDB Journal, pages
615–626, 1999. [cited at p. 6]

[12] Rossi G.; Pastor O.; Schwabe D. and Olsina L. Web Engineering: Modeling and
Implementing Web Applications, volume 12 of Human-Computer Interaction Series.
2007. [cited at p. 18, 28]

[13] Schwabe D. and Rossi G. An Object Oriented Approach to Web-Based Application
Design, volume 4 of Theory and Practice of Object Systems. Wiley and Sons, New
York, 1998. [cited at p. 7]

[14] O. De Troyer and S. Casteleyn. Modeling complex processes for web applications
using wsdm. In Proceedings of the Third International Workshop on Web-Oriented
Software Technologies, 2003. [cited at p. 8]

[15] Lei Y.; Motta E. and Motta J. Modelling Data-Intensive Web Sites with On-
toWeaver, volume 2 of International Workshop on Web Information Systems Mod-
eling. 2004. [cited at p. 7]

77

78 BIBLIOGRAPHY

[16] Balasubramanian P.; Isakowitz T.; Stohr E.A. Rmm: A methodology for structured
hypermedia design. In Communications of the ACM, pages 33–44, 1995. [cited at p. 6,

11]

[17] Jaime Gómez and Cristina Cachero. Oo-h method: extending uml to model web
interfaces. pages 144–173, 2003. [cited at p. 8]

[18] Berners-Lee T.; Hendler J. and Lassila O. The semantic web. Scientific American,
2001. [cited at p. 5]

[19] Stuckenschmidt H.; Vdovjak R.; Broekstra J. and Houben G.J. Towards distributed
processing of RDF path queries, volume 2 of Int. J. Web Engineering and Technology.
2005. [cited at p. 30, 44]

[20] Hinz M. and Fiala Z. AMACONT: A System Architecture for Adaptive Multimedia
Web Applications. Berlin, Germany, October 2004. [cited at p. 18, 29]

[21] Ceri S.; Fratenali P. and Bongio A. Web Modelling Language (WebML): a modelling
language for designing Web sites. Amsterdam, May 2000. [cited at p. 8]

[22] Balpreet Singh. Hydragen: User Manual. [cited at p. 30]

[23] Houben G.; Fiala Z.; Sluijs K. van der and Hinz M. Building Self-Managing Web
Information Systems from Generic Components. June 2005. [cited at p. 29, 75]

[24] Sluijs K. van der; Houben G. J.; Broekstra J. and Casteleyn S. Hera-S: web design
using sesame. ACM Press, 2006. [cited at p. 15, 16, 18, 42, 46, 66]

Appendices

79

Appendix A

Application Metamodel

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xml:base="http://wwwis.win.tue.nl/~hera/Hera-S/am-metamodel.owl"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<!-- Classes -->

<owl:Class rdf:about="#AmBasicElement"/>

<owl:Class rdf:about="#Attribute">

<rdfs:subClassOf rdf:resource="#AmBasicElement"/>

</owl:Class>

<owl:Class rdf:about="#Button">

<rdfs:subClassOf rdf:resource="#FormElement"/>

</owl:Class>

<owl:Class rdf:about="#ChoiceInput">

<rdfs:subClassOf rdf:resource="#FormElement"/>

</owl:Class>

<owl:Class rdf:about="#ConditionalQuery">

<rdfs:subClassOf rdf:resource="#Query"/>

</owl:Class>

<owl:Class rdf:about="#ConditionalRelationship">

<rdfs:subClassOf rdf:resource="#Relationship"/>

</owl:Class>

<owl:Class rdf:about="#ExtendedElement"/>

<owl:Class rdf:about="#FormElement">

<rdfs:subClassOf rdf:resource="#ExtendedElement"/>

</owl:Class>

<owl:Class rdf:about="#FormUnit">

<rdfs:subClassOf rdf:resource="#NavigationalUnit"/>

</owl:Class>

<owl:Class rdf:about="#LogicUnit">

<rdfs:subClassOf rdf:resource="#NavigationalUnit"/>

</owl:Class>

<owl:Class rdf:about="#NavigationalUnit">

<rdfs:subClassOf rdf:resource="#AmBasicElement"/>

</owl:Class>

<owl:Class rdf:about="#Query"/>

<owl:Class rdf:about="#Relationship">

<rdfs:subClassOf rdf:resource="#AmBasicElement"/>

</owl:Class>

<owl:Class rdf:about="#Script">

<rdfs:subClassOf rdf:resource="#ExtendedElement"/>

</owl:Class>

<owl:Class rdf:about="#SetUnit">

<rdfs:subClassOf rdf:resource="#SubUnit"/>

81

82 APPENDIX A. APPLICATION METAMODEL

</owl:Class>

<owl:Class rdf:about="#SubUnit">

<rdfs:subClassOf rdf:resource="#UnitElement"/>

</owl:Class>

<owl:Class rdf:about="#TextInput">

<rdfs:subClassOf rdf:resource="#FormElement"/>

</owl:Class>

<owl:Class rdf:about="#TourUnit">

<rdfs:subClassOf rdf:resource="#SubUnit"/>

</owl:Class>

<owl:Class rdf:about="#UnitElement">

<rdfs:subClassOf rdf:resource="#ExtendedElement"/>

</owl:Class>

<owl:Class rdf:about="#UpdateQuery">

<rdfs:subClassOf rdf:resource="#Query"/>

</owl:Class>

<owl:Class rdf:about="#Variable">

<rdfs:subClassOf rdf:resource="#UnitElement"/>

</owl:Class>

<owl:Class rdf:about="#WebService">

<rdfs:subClassOf rdf:resource="#ExtendedElement"/>

</owl:Class>

<!-- Datatypes -->

<rdfs:Datatype rdf:about="&xsd;boolean"/>

<rdfs:Datatype rdf:about="&xsd;string"/>

<!-- Datatype Properties -->

<owl:DatatypeProperty rdf:about="#buttonText">

<rdfs:domain rdf:resource="#Button"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#else">

<rdfs:domain rdf:resource="#ConditionalQuery"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasAssignment">

<rdfs:domain rdf:resource="#Relationship"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasCondition">

<rdfs:domain rdf:resource="#ConditionalRelationship"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasDefaultCondition">

<rdfs:domain rdf:resource="#ConditionalRelationship"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasDefaultValue">

<rdfs:domain rdf:resource="#Variable"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasMediaType">

<rdfs:domain rdf:resource="#Attribute"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasQuery">

<rdfs:domain rdf:resource="#Attribute"/>

<rdfs:domain rdf:resource="#Relationship"/>

<rdfs:domain rdf:resource="#SubUnit"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasTargetFormat">

<rdfs:domain rdf:resource="#Script"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#if">

<rdfs:domain rdf:resource="#ConditionalQuery"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

83

<owl:DatatypeProperty rdf:about="#option">

<rdfs:domain rdf:resource="#ChoiceInput"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#queryBody">

<rdfs:domain rdf:resource="#Query"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#queryType">

<rdfs:domain rdf:resource="#Query"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#then">

<rdfs:domain rdf:resource="#ConditionalQuery"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#varName">

<rdfs:domain rdf:resource="#Variable"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- Object Properties -->

<owl:ObjectProperty rdf:about="#hasAttribute">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#Attribute"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasBinding">

<rdfs:domain rdf:resource="#FormElement"/>

<rdfs:range rdf:resource="#Variable"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasConditionalQuery">

<rdfs:domain rdf:resource="#Attribute"/>

<rdfs:domain rdf:resource="#Relationship"/>

<rdfs:domain rdf:resource="#SubUnit"/>

<rdfs:range rdf:resource="#ConditionalQuery"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasFormElement">

<rdfs:domain rdf:resource="#FormUnit"/>

<rdfs:range rdf:resource="#FormElement"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasFormType">

<rdfs:domain rdf:resource="#FormElement"/>

<rdfs:range rdf:resource="#Button"/>

<rdfs:range rdf:resource="#ChoiceInput"/>

<rdfs:range rdf:resource="#TextInput"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasFormUnit">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#FormUnit"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasInput">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#Variable"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasQueryObject">

<rdfs:domain rdf:resource="#Attribute"/>

<rdfs:domain rdf:resource="#Relationship"/>

<rdfs:domain rdf:resource="#SubUnit"/>

<rdfs:range rdf:resource="#Query"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasRelationship">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#Relationship"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasScript">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#Script"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSetUnit">

<rdfs:range rdf:resource="#SetUnit"/>

84 APPENDIX A. APPLICATION METAMODEL

<rdfs:subPropertyOf rdf:resource="#hasUnit"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTourUnit">

<rdfs:range rdf:resource="#TourUnit"/>

<rdfs:subPropertyOf rdf:resource="#hasUnit"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasUnit">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#SubUnit"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasWebService">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#WebService"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#onLoadQuery">

<rdfs:domain rdf:resource="#NavigationalUnit"/>

<rdfs:range rdf:resource="#UpdateQuery"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#refersTo">

<rdfs:domain rdf:resource="#Relationship"/>

<rdfs:domain rdf:resource="#SubUnit"/>

<rdfs:range rdf:resource="#NavigationalUnit"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:about="#sourceUnit">

<rdf:type rdf:resource="&owl;ObjectProperty"/>

<rdfs:domain rdf:resource="#Relationship"/>

<rdfs:range rdf:resource="#SubUnit"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#varType">

<rdf:type rdf:resource="&owl;ObjectProperty"/>

<rdfs:domain rdf:resource="#Variable"/>

</owl:FunctionalProperty>

</rdf:RDF>}

Appendix B

IMDB Example

B.1 Imdb server configuration

<?xml version="1.0" encoding="UTF-8"?>

<application name="imdb">

<result_path>imdb_amp.rdf</result_path>

<amp_context>"http://wwwis.win.tue.nl/~hera/Hera-S/amp#"</amp_context>

<app_server>http://localhost:8080/herasWeb/HydragenWeb</app_server>

<pmpath>nl\tue\heras\examples\imdb1\imdb_pm.xsl</pmpath>

<amspath>nl\tue\heras\metamodel\am-metamodel.owl</amspath>

<ampath>nl\tue\heras\examples\imdb1\imdb_am.owl</ampath>

<servers>

<dm_server_info>

<server_path>

http://localhost:8080/openrdf-http-server-2.0-beta5

</server_path>

<repository_id>imdb</repository_id>

</dm_server_info>

<cm_server_info>

<server_path>

http://localhost:8080/openrdf-http-server-2.0-beta5

</server_path>

<repository_id>imdb</repository_id>

</cm_server_info>

<content_server_info>

<server_path>

http://localhost:8080/openrdf-http-server-2.0-beta5

</server_path>

<repository_id>imdb</repository_id>

</content_server_info>

</servers>

</application>

B.2 Imdb application model

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY am-metamodel

"http://wwwis.win.tue.nl/~hera/Hera-S/am-metamodel.owl#">

<!ENTITY imdb_am "http://wwwis.win.tue.nl/~hera/Hera-S/imdb_am.owl#">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

85

86 APPENDIX B. IMDB EXAMPLE

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

<rdf:RDF xml:base="&imdb_am;"

xmlns:am-metamodel="&am-metamodel;"

xmlns:owl="&owl;"

xmlns:rdf="&rdf;"

xmlns:rdfs="&rdfs;">

<!-- LoginUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;LoginUnit">

<am-metamodel:hasInput rdf:resource="&imdb_am;LoginFailure"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;LoginFailureMessage"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;LoginLabel"/>

<am-metamodel:hasFormUnit rdf:resource="&imdb_am;LoginForm"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;RegisterRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:FormUnit rdf:about="&imdb_am;LoginForm">

<am-metamodel:hasFormElement rdf:resource="&imdb_am;LoginButton"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;LoginUserNameInput"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;LoginPasswordInput"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;LoginRelationship"/>

</am-metamodel:FormUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;LoginLabel">

<rdfs:label rdf:datatype="&xsd;string">Log in</rdfs:label>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;LoginFailureMessage">

<rdfs:label rdf:datatype="&xsd;string">LoginFailureMessage</rdfs:label>

<am-metamodel:hasConditionalQuery rdf:resource="&imdb_am;LoginFailureConditionalQuery"/>

</am-metamodel:Attribute>

<am-metamodel:ConditionalQuery

rdf:about="&imdb_am;LoginFailureConditionalQuery">

<am-metamodel:else rdf:datatype="&xsd;string"></am-metamodel:else>

<am-metamodel:if rdf:datatype="&xsd;string">"$LoginFailure$"=="true"

</am-metamodel:if>

<am-metamodel:then rdf:datatype="&xsd;string">"Login failed, please retry!"

</am-metamodel:then>

</am-metamodel:ConditionalQuery>

<am-metamodel:Button rdf:about="&imdb_am;LoginButton">

<am-metamodel:buttonText rdf:datatype="&xsd;string">Login!

</am-metamodel:buttonText>

</am-metamodel:Button>

<am-metamodel:TextInput rdf:about="&imdb_am;LoginUserNameInput">

<am-metamodel:hasBinding rdf:resource="&imdb_am;loginName"/>

</am-metamodel:TextInput>

<am-metamodel:TextInput rdf:about="&imdb_am;LoginPasswordInput">

<am-metamodel:hasBinding rdf:resource="&imdb_am;loginPassword"/>

</am-metamodel:TextInput>

<am-metamodel:Relationship rdf:about="&imdb_am;LoginRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;LoginPassOrFailUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT U FROM {U} rdf:type {imdb_cm:RegisteredUser};

imdb_cm:hasLoginName {name};

imdb_cm:hasLoginPassword {passwd}

WHERE (name LIKE "$loginName$") and (passwd LIKE "$loginPassword$")

USING NAMESPACE

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>,

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Relationship>

<am-metamodel:Variable rdf:about="&imdb_am;loginName">

B.2. IMDB APPLICATION MODEL 87

<am-metamodel:varName rdf:datatype="&xsd;string">loginName

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;loginPassword">

<am-metamodel:varName rdf:datatype="&xsd;string">loginPassword

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Relationship rdf:about="&imdb_am;RegisterRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;RegistrationUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Variable rdf:about="&imdb_am;LoginFailure">

<am-metamodel:varName rdf:datatype="&xsd;string">LoginFailure

</am-metamodel:varName>

<am-metamodel:hasDefaultValue rdf:datatype="&xsd;string">false

</am-metamodel:hasDefaultValue>

</am-metamodel:Variable>

<!-- end LoginUnit -->

<!-- LoginPassOrFailUnit -->

<am-metamodel:LogicUnit rdf:about="&imdb_am;LoginPassOrFailUnit">

<am-metamodel:hasRelationship rdf:resource="&imdb_am;LoginPassRelationship"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;LoginFailureRelationship"/>

</am-metamodel:LogicUnit>

<am-metamodel:ConditionalRelationship rdf:about="&imdb_am;LoginPassRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;SearchUnit"/>

<am-metamodel:hasCondition rdf:datatype="&xsd;string">"U"!=""

</am-metamodel:hasCondition>

</am-metamodel:ConditionalRelationship>

<am-metamodel:ConditionalRelationship rdf:about="&imdb_am;LoginFailureRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;LoginUnit"/>

<am-metamodel:hasDefaultCondition rdf:datatype="&xsd;string">default

</am-metamodel:hasDefaultCondition>

<am-metamodel:hasAssignment rdf:datatype="&xsd;string">LoginFailure=true

</am-metamodel:hasAssignment>

</am-metamodel:ConditionalRelationship>

<!-- RegistrationUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;RegistrationUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;RegisterLabel"/>

<am-metamodel:hasFormUnit rdf:resource="&imdb_am;RegisterForm"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;RegisterLabel">

<rdfs:label rdf:datatype="&xsd;string">

Fill out all the fields below. Hit "Register!"

</rdfs:label>

</am-metamodel:Attribute>

<am-metamodel:FormUnit rdf:about="&imdb_am;RegisterForm">

<am-metamodel:hasFormElement rdf:resource="&imdb_am;RegisterButton"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;RegisterGenderChoice"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;RegisterUserNameInput"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;RegisterLoginNameInput"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;RegisterPasswordInput"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;RegisterAgeInput"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;RegisterFormRelationship"/>

</am-metamodel:FormUnit>

<am-metamodel:TextInput rdf:about="&imdb_am;RegisterUserNameInput">

<am-metamodel:hasBinding rdf:resource="&imdb_am;usernameTerm"/>

</am-metamodel:TextInput>

<am-metamodel:TextInput rdf:about="&imdb_am;RegisterLoginNameInput">

<am-metamodel:hasBinding rdf:resource="&imdb_am;loginNameTerm"/>

</am-metamodel:TextInput>

88 APPENDIX B. IMDB EXAMPLE

<am-metamodel:TextInput rdf:about="&imdb_am;RegisterPasswordInput">

<am-metamodel:hasBinding rdf:resource="&imdb_am;passwordTerm"/>

</am-metamodel:TextInput>

<am-metamodel:TextInput rdf:about="&imdb_am;RegisterAgeInput">

<am-metamodel:hasBinding rdf:resource="&imdb_am;ageTerm"/>

</am-metamodel:TextInput>

<am-metamodel:ChoiceInput rdf:about="&imdb_am;RegisterGenderChoice">

<am-metamodel:option rdf:datatype="&xsd;string">Male</am-metamodel:option>

<am-metamodel:option rdf:datatype="&xsd;string">Female

</am-metamodel:option>

<am-metamodel:hasBinding rdf:resource="&imdb_am;userGender"/>

</am-metamodel:ChoiceInput>

<am-metamodel:Button rdf:about="&imdb_am;RegisterButton">

<am-metamodel:buttonText rdf:datatype="&xsd;string">Register

</am-metamodel:buttonText>

</am-metamodel:Button>

<am-metamodel:Relationship rdf:about="&imdb_am;RegisterFormRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;RegisterLogicUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Variable rdf:about="&imdb_am;usernameTerm">

<am-metamodel:varName rdf:datatype="&xsd;string">userName

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;loginNameTerm">

<am-metamodel:varName rdf:datatype="&xsd;string">loginName

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;passwordTerm">

<am-metamodel:varName rdf:datatype="&xsd;string">loginPassword

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;ageTerm">

<am-metamodel:varName rdf:datatype="&xsd;string">userAge

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;userGender">

<am-metamodel:varName rdf:datatype="&xsd;string">userGender

</am-metamodel:varName>

</am-metamodel:Variable>

<!-- end RegistrationUnit -->

<!-- RegisterLogicUnit -->

<am-metamodel:LogicUnit rdf:about="&imdb_am;RegisterLogicUnit">

<am-metamodel:onLoadQuery rdf:resource="&imdb_am;newUserQuery"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;RegisterLoginRelationship"/>

</am-metamodel:LogicUnit>

<am-metamodel:UpdateQuery rdf:about="&imdb_am;newUserQuery">

<am-metamodel:queryBody rdf:datatype="&xsd;string">

Construct {} rdf:type {imdb_cm:RegisteredUser};

imdb_cm:hasName {"$userName$"};

imdb_cm:hasLoginName {"$loginName$"};

imdb_cm:hasLoginPassword {"$loginPassword$"};

imdb_cm:age {$userAge$};

imdb_cm:gender {"$userGender$"}

USING NAMESPACE

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>,

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:queryBody>

B.2. IMDB APPLICATION MODEL 89

<am-metamodel:queryType rdf:datatype="&xsd;string">SERQL

</am-metamodel:queryType>

</am-metamodel:UpdateQuery>

<am-metamodel:Relationship rdf:about="&imdb_am;RegisterLoginRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;LoginUnit"/>

</am-metamodel:Relationship>

<!-- SearchUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;SearchUnit">

<am-metamodel:hasInput rdf:resource="&imdb_am;UserVar"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;WelcomeLabel"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;SearchLabel"/>

<am-metamodel:hasFormUnit rdf:resource="&imdb_am;SearchForm"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:FormUnit rdf:about="&imdb_am;SearchForm">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;SearchLabel"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;SearchButton"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;SearchInput"/>

<am-metamodel:hasFormElement rdf:resource="&imdb_am;SearchChoice"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;SearchRelationship"/>

</am-metamodel:FormUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;SearchLabel">

<rdfs:label rdf:datatype="&xsd;string">Search</rdfs:label>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;WelcomeLabel">

<rdfs:label rdf:datatype="&xsd;string">Welcome</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT UserName FROM {U} rdf:type {imdb_cm:RegisteredUser};

imdb_cm:hasName {UserName}

using namespace

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>,

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Button rdf:about="&imdb_am;SearchButton">

<am-metamodel:buttonText rdf:datatype="&xsd;string">Go

</am-metamodel:buttonText>

</am-metamodel:Button>

<am-metamodel:TextInput rdf:about="&imdb_am;SearchInput">

<am-metamodel:hasBinding rdf:resource="&imdb_am;searchTerm"/>

</am-metamodel:TextInput>

<am-metamodel:ChoiceInput rdf:about="&imdb_am;SearchChoice">

<am-metamodel:option rdf:datatype="&xsd;string">Movie</am-metamodel:option>

<am-metamodel:option rdf:datatype="&xsd;string">Actor</am-metamodel:option>

<am-metamodel:hasBinding rdf:resource="&imdb_am;searchCategory"/>

</am-metamodel:ChoiceInput>

<am-metamodel:Relationship rdf:about="&imdb_am;SearchRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;SearchResultUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Variable rdf:about="&imdb_am;searchTerm">

<am-metamodel:varName rdf:datatype="&xsd;string">searchTerm

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;searchCategory">

<am-metamodel:varName rdf:datatype="&xsd;string">searchCategory

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;UserVar">

90 APPENDIX B. IMDB EXAMPLE

<am-metamodel:varName rdf:datatype="&xsd;string">U</am-metamodel:varName>

</am-metamodel:Variable>

<!-- SearchResultUnit -->

<am-metamodel:LogicUnit rdf:about="&imdb_am;SearchResultUnit">

<am-metamodel:hasRelationship rdf:resource="&imdb_am;MovieSearchConditionalRelationship"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;ActorSearchConditionalRelationship"/>

</am-metamodel:LogicUnit>

<am-metamodel:ConditionalRelationship rdf:about="&imdb_am;MovieSearchConditionalRelationship">

<am-metamodel:hasCondition rdf:datatype="&xsd;string">"$searchCategory$"=="Movie"

</am-metamodel:hasCondition>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieSearchResultUnit"/>

</am-metamodel:ConditionalRelationship>

<am-metamodel:ConditionalRelationship

rdf:about="&imdb_am;ActorSearchConditionalRelationship">

<am-metamodel:hasCondition rdf:datatype="&xsd;string">"$searchCategory$"=="Actor"

</am-metamodel:hasCondition>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorSearchResultUnit"/>

</am-metamodel:ConditionalRelationship>

<!-- MovieSearchResultUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;MovieSearchResultUnit">

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;MovieSearchResultSet"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:SetUnit rdf:about="&imdb_am;MovieSearchResultSet">

<rdfs:comment rdf:datatype="&xsd;string">Results</rdfs:comment>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieSearchResultElementUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT M FROM {M} rdf:type {imdb_dm:Movie}; rdfs:label {X}

WHERE X Like "*$searchTerm$*" ignore case

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>

</am-metamodel:hasQuery>

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;MovieSearchResultElementUnit">

<am-metamodel:hasInput rdf:resource="&imdb_am;MovieResultInputVar"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitTitle"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitYear"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;MovieUnitResultRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Relationship rdf:about="&imdb_am;MovieUnitResultRelationship">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT M FROM {M} rdf:type {imdb_dm:Movie}

where M = M

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieMainUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Variable rdf:about="&imdb_am;MovieResultInputVar">

<am-metamodel:varName rdf:datatype="&xsd;string">M</am-metamodel:varName>

</am-metamodel:Variable>

<!-- end MovieSearchResultUnit -->

<!-- ActorSearchResultUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;ActorSearchResultUnit">

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;ActorSearchResultSet"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:SetUnit rdf:about="&imdb_am;ActorSearchResultSet">

<rdfs:comment rdf:datatype="&xsd;string">Results</rdfs:comment>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorSearchResultElementUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

B.2. IMDB APPLICATION MODEL 91

SELECT A FROM {A} rdf:type {imdb_dm:Actor};

rdfs:label {X}

where X Like "*$searchTerm$*"

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;ActorSearchResultElementUnit">

<am-metamodel:hasInput rdf:resource="&imdb_am;ActorResultInputVar"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitLabel"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitDob"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;ActorUnitResultRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Relationship rdf:about="&imdb_am;ActorUnitResultRelationship">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT A FROM {A} rdf:type {imdb_dm:Actor}

where A = A

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorMainUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Variable rdf:about="&imdb_am;ActorResultInputVar">

<am-metamodel:varName rdf:datatype="&xsd;string">A</am-metamodel:varName>

</am-metamodel:Variable>

<!-- end ActorSearchResultUnit -->

<!-- ActorMainUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;ActorMainUnit">

<am-metamodel:hasUnit rdf:resource="&imdb_am;ActorReferredSubUnit"/>

<am-metamodel:hasUnit rdf:resource="&imdb_am;ActorMenuSubUnit"/>

</am-metamodel:NavigationalUnit>

<!-- end ActorMainUnit -->

<!-- ActorReferredSubUnit -->

<am-metamodel:SubUnit rdf:about="&imdb_am;ActorReferredSubUnit">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT A FROM {A} rdf:type {imdb_dm:Actor}

where A = A

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorUnit"/>

</am-metamodel:SubUnit>

<!-- ActorReferredUnit -->

<!-- ActorMenuSubUnit -->

<am-metamodel:SubUnit rdf:about="&imdb_am;ActorMenuSubUnit">

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorMenuNavigationUnit"/>

</am-metamodel:SubUnit>

<!-- ActorMenuSubUnit -->

<!-- ActorMenuNavigationUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;ActorMenuNavigationUnit">

<am-metamodel:hasUnit rdf:resource="&imdb_am;SearchRefUnit"/>

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;ActorUnitUserFavoritesSetUnit"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:SetUnit rdf:about="&imdb_am;ActorUnitUserFavoritesSetUnit">

<rdfs:comment rdf:datatype="&xsd;string">Favorites</rdfs:comment>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorUnitUserFavoritesUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT ActorFavElement FROM {U} imdb_cm:hasFavoriteActor {ActorFavElement}

92 APPENDIX B. IMDB EXAMPLE

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;ActorUnitUserFavoritesUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;FavActorName"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;ActorFavSetRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;FavActorName">

<rdfs:label rdf:datatype="&xsd;string">Actor Name</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT T FROM {$ActorFavElement$} rdf:type {imdb_dm:Actor};

rdfs:label {T}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Relationship rdf:about="&imdb_am;ActorFavSetRelationship">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT A FROM {A} rdf:type {imdb_dm:Actor}

where A = $ActorFavElement$

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorMainUnit"/>

<am-metamodel:sourceUnit rdf:resource="&imdb_am;ActorReferredSubUnit"/>

</am-metamodel:Relationship>

<!-- ActorMenuNavigationUnit -->

<!-- Actor Unit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;ActorUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitLabel"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitDob"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitPob"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitCob"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitminiBio"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;ActorUnitPhoto"/>

<am-metamodel:hasInput rdf:resource="&imdb_am;ActorUnitVar"/>

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;ActorUnitMoviesPlayedIn"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;ActorUnitAddToFavorites"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;ActorUnitLabel">

<rdfs:label rdf:datatype="&xsd;string">Name</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT N FROM {A} rdf:type {imdb_dm:Actor};

rdfs:label {N}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;ActorUnitDob">

<rdfs:label rdf:datatype="&xsd;string">Date of Birth</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT D FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:birthDate {D}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

B.2. IMDB APPLICATION MODEL 93

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;ActorUnitPob">

<rdfs:label rdf:datatype="&xsd;string">Place of Birth</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT L FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:birthLocation {} imdb_pl:inPlace {} rdfs:label {L}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb_pl = <http://www.vub.ac.be/place-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;ActorUnitCob">

<rdfs:label rdf:datatype="&xsd;string">Country of Birth</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT L

FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:birthLocation {} imdb_pl:inCountry {} rdfs:label {L}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb_pl = <http://www.vub.ac.be/place-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;ActorUnitminiBio">

<rdfs:label rdf:datatype="&xsd;string">Mini Bio</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT B FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:miniBio {B}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;ActorUnitPhoto">

<rdfs:label rdf:datatype="&xsd;string">Photo</rdfs:label>

<am-metamodel:hasMediaType rdf:datatype="&xsd;string">

image/jpg

</am-metamodel:hasMediaType>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT P FROM {A} imdb_dm:hasMainPhoto {} imdb_dm:photoURL {P}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Variable rdf:about="&imdb_am;ActorUnitVar">

<am-metamodel:varName rdf:datatype="&xsd;string">A</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:SetUnit rdf:about="&imdb_am;ActorUnitMoviesPlayedIn">

<am-metamodel:hasConditionalQuery rdf:resource="&imdb_am;ActorUnitConditionalQuery"/>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorUnitMoviesPlayedInSetElementUnit"/>

</am-metamodel:SetUnit>

<am-metamodel:ConditionalQuery rdf:about="&imdb_am;ActorUnitConditionalQuery">

<am-metamodel:else rdf:datatype="&xsd;string">

SELECT DISTINCT M

FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:actorFilmography {} imdb_dm:castMovie {M}

imdb_dm:hasAgeRating {} rdfs:label {arate}

WHERE arate != "NC-17"

USING NAMESPACE

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

94 APPENDIX B. IMDB EXAMPLE

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:else>

<am-metamodel:if rdf:datatype="&xsd;string">

SELECT * FROM {U} imdb_cm:age {G}

WHERE G > 17

using namespace

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:if>

<am-metamodel:then rdf:datatype="&xsd;string">

SELECT DISTINCT M

FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:actorFilmography {} imdb_dm:castMovie {M}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:then>

</am-metamodel:ConditionalQuery>

<am-metamodel:NavigationalUnit

rdf:about="&imdb_am;ActorUnitMoviesPlayedInSetElementUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitTitle"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitPhoto"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitYear"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;MovieUnitRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Relationship rdf:about="&imdb_am;MovieUnitRelationship">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT M FROM {M} rdf:type {imdb_dm:Movie}

where M = M

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieMainUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Relationship rdf:about="&imdb_am;ActorUnitAddToFavorites">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT A FROM {A} rdf:type {imdb_dm:Actor}

where A = A

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;AddToFavoritesActorUnit"/>

</am-metamodel:Relationship>

<!-- end ActorUnit -->

<!-- MovieMainUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;MovieMainUnit">

<am-metamodel:hasUnit rdf:resource="&imdb_am;MovieReferredSubUnit"/>

<am-metamodel:hasUnit rdf:resource="&imdb_am;MovieMenuSubUnit"/>

</am-metamodel:NavigationalUnit>

<!-- end MovieMainUnit -->

<!-- MovieReferredSubUnit -->

<am-metamodel:SubUnit rdf:about="&imdb_am;MovieReferredSubUnit">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT M FROM {M} rdf:type {imdb_dm:Movie}

where M = M

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieUnit"/>

</am-metamodel:SubUnit>

B.2. IMDB APPLICATION MODEL 95

<!-- MovieReferredUnit -->

<!-- MovieMenuSubUnit -->

<am-metamodel:SubUnit rdf:about="&imdb_am;MovieMenuSubUnit">

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieMenuNavigationUnit"/>

</am-metamodel:SubUnit>

<!-- MovieMenuSubUnit -->

<!-- MovieMenuNavigationUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;MovieMenuNavigationUnit">

<am-metamodel:hasUnit rdf:resource="&imdb_am;SearchRefUnit"/>

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;MovieUnitTenSetUnit"/>

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;MovieUnitUserFavoritesSetUnit"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:SetUnit rdf:about="&imdb_am;MovieUnitTenSetUnit">

<rdfs:comment rdf:datatype="&xsd;string">Top 10 Movies</rdfs:comment>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieUnitTenSetElementUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT MovieSetElement

FROM {MovieSetElement} rdf:type {imdb_dm:Movie};

imdb_dm:hasUserRating {} imdb_dm:averageVote {X}

where X > 6.0 limit 10

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit

rdf:about="&imdb_am;MovieUnitTenSetElementUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieName"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;MovieTenSetRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieName">

<rdfs:label rdf:datatype="&xsd;string">Movie Name</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT T FROM {$MovieSetElement$} rdf:type {imdb_dm:Movie};

rdfs:label {T}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Relationship rdf:about="&imdb_am;MovieTenSetRelationship">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT M FROM {M} rdf:type {imdb_dm:Movie}

where M = $MovieSetElement$

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieMainUnit"/>

<am-metamodel:sourceUnit rdf:resource="&imdb_am;MovieReferredSubUnit"/>

</am-metamodel:Relationship>

<am-metamodel:SetUnit rdf:about="&imdb_am;MovieUnitUserFavoritesSetUnit">

<rdfs:comment rdf:datatype="&xsd;string">Favorites</rdfs:comment>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieUnitUserFavoritesUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT MovieFavElement

FROM {U} imdb_cm:hasFavorite {MovieFavElement}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

96 APPENDIX B. IMDB EXAMPLE

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;MovieUnitUserFavoritesUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;FavMovieName"/>

<am-metamodel:hasRelationship rdf:resource="&imdb_am;MovieFavSetRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;FavMovieName">

<rdfs:label rdf:datatype="&xsd;string">Movie Name</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT T FROM {$MovieFavElement$} rdf:type {imdb_dm:Movie};

rdfs:label {T}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Relationship rdf:about="&imdb_am;MovieFavSetRelationship">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT M

FROM {M} rdf:type {imdb_dm:Movie}

where M = $MovieFavElement$

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieMainUnit"/>

<am-metamodel:sourceUnit rdf:resource="&imdb_am;MovieReferredSubUnit"/>

</am-metamodel:Relationship>

<!-- MovieMenuNavigationUnit -->

<!-- SearchRefUnit -->

<am-metamodel:SubUnit rdf:about="&imdb_am;SearchRefUnit">

<am-metamodel:refersTo rdf:resource="&imdb_am;SearchdummyUnit"/>

</am-metamodel:SubUnit>

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;SearchdummyUnit">

<am-metamodel:hasRelationship

rdf:resource="&imdb_am;SearchUnitRelationship"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Relationship rdf:about="&imdb_am;SearchUnitRelationship">

<am-metamodel:refersTo rdf:resource="&imdb_am;SearchUnit"/>

</am-metamodel:Relationship>

<!-- SearchRefUnit -->

<!-- MovieUnit -->

<am-metamodel:NavigationalUnit rdf:about="&imdb_am;MovieUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitTitle"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitUserRating"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitNoOfVotes"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitPhoto"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitPlot"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitGenre"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitDirector"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitWriter"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieUnitYear"/>

<am-metamodel:hasInput rdf:resource="&imdb_am;MovieUnitVar"/>

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;MovieUnitCastSetUnit"/>

<am-metamodel:hasSetUnit rdf:resource="&imdb_am;MovieUnitPhotoSetUnit"/>

<am-metamodel:onLoadQuery rdf:resource="&imdb_am;MovieUnitOnLoadQuery"/>

<am-metamodel:hasScript rdf:resource="&imdb_am;MovieUnitPhotoScript"/>

<am-metamodel:hasRelationship

rdf:resource="&imdb_am;MovieUnitAddToFavorites"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitTitle">

B.2. IMDB APPLICATION MODEL 97

<rdfs:label rdf:datatype="&xsd;string">Title</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT T

FROM {M} rdf:type {imdb_dm:Movie};

rdfs:label {T}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitUserRating">

<rdfs:label rdf:datatype="&xsd;string">User Rating</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT V

FROM {M} imdb_dm:hasUserRating {} imdb_dm:averageVote {V}

limit 1 offset 1

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitNoOfVotes">

<rdfs:label rdf:datatype="&xsd;string">NoOfVotes</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT V

FROM {M} imdb_dm:hasUserRating {} imdb_dm:nrPeopleVoted {V}

limit 1

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitDirector">

<rdfs:label rdf:datatype="&xsd;string">Directed by</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT Name

FROM {M} imdb_dm:movieDirector {D} rdfs:label {Name}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitWriter">

<rdfs:label rdf:datatype="&xsd;string">Writing Credits</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT Name

FROM {M} imdb_dm:movieWriter {W} imdb_dm:writingWriter {}

rdfs:label {Name}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitPlot">

<rdfs:label rdf:datatype="&xsd;string">Plot</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT P

FROM {M} imdb_dm:moviePlotOutline {P}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

98 APPENDIX B. IMDB EXAMPLE

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitYear">

<rdfs:label rdf:datatype="&xsd;string">Release date:</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT Y

FROM {M} imdb_dm:movieYear {Y}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitTagline">

<rdfs:label rdf:datatype="&xsd;string">Tagline:</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT T

FROM {M} imdb_dm:movieTagline {T}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitGenre">

<rdfs:label rdf:datatype="&xsd;string">Genre:</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT G

FROM {M} imdb_dm:movieGenre {G}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieUnitPhoto">

<rdfs:label rdf:datatype="&xsd;string">Photo</rdfs:label>

<am-metamodel:hasMediaType

rdf:datatype="&xsd;string">image/jpg</am-metamodel:hasMediaType>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT P

FROM {M} imdb_dm:hasMainPhoto {} imdb_dm:photoURL {P}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:SetUnit rdf:about="&imdb_am;MovieUnitCastSetUnit">

<rdfs:comment rdf:datatype="&xsd;string">Cast</rdfs:comment>

<am-metamodel:refersTo rdf:resource="&imdb_am;MovieUnitCastSetElementUnit"/>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT A

FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:actorFilmography {} imdb_dm:castMovie {M}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit

rdf:about="&imdb_am;MovieUnitCastSetElementUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieActorName"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieActorPhoto"/>

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MovieActorRole"/>

<am-metamodel:hasRelationship

rdf:resource="&imdb_am;ActorUnitRelationship"/>

</am-metamodel:NavigationalUnit>

B.2. IMDB APPLICATION MODEL 99

<am-metamodel:Relationship rdf:about="&imdb_am;ActorUnitRelationship">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT A

FROM {A} rdf:type {imdb_dm:Actor}

where A = A

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;ActorMainUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieActorName">

<rdfs:label rdf:datatype="&xsd;string">ActorName</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT Name

FROM {A} rdfs:label {Name};

rdf:type {imdb_dm:Actor}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieActorPhoto">

<rdfs:label rdf:datatype="&xsd;string">ActorPhoto</rdfs:label>

<am-metamodel:hasMediaType rdf:datatype="&xsd;string">

image/jpg

</am-metamodel:hasMediaType>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT P

FROM {A} rdf:type {imdb_dm:Actor},

[{A} imdb_dm:hasMainPhoto {} imdb_dm:photoURL {P}]

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:Attribute rdf:about="&imdb_am;MovieActorRole">

<rdfs:label rdf:datatype="&xsd;string">ActorRole</rdfs:label>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT Cast

FROM {A} rdf:type {imdb_dm:Actor};

imdb_dm:actorFilmography {F} imdb_dm:castMovie {M},

{F} imdb_dm:castCharacter {Cast}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:SetUnit rdf:about="&imdb_am;MovieUnitPhotoSetUnit">

<rdfs:comment rdf:datatype="&xsd;string">Photo Gallery</rdfs:comment>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT P

FROM {M} imdb_dm:moviePhoto {P}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo

rdf:resource="&imdb_am;MovieUnitPhotoSetElementUnit"/>

</am-metamodel:SetUnit>

<am-metamodel:NavigationalUnit

100 APPENDIX B. IMDB EXAMPLE

rdf:about="&imdb_am;MovieUnitPhotoSetElementUnit">

<am-metamodel:hasAttribute rdf:resource="&imdb_am;MoviePhotoes"/>

</am-metamodel:NavigationalUnit>

<am-metamodel:Attribute rdf:about="&imdb_am;MoviePhotoes">

<rdfs:label rdf:datatype="&xsd;string">MoviePhoto</rdfs:label>

<am-metamodel:hasMediaType rdf:datatype="&xsd;string">

image/jpg

</am-metamodel:hasMediaType>

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT DISTINCT PUrl

FROM {P} imdb_dm:photoURL {PUrl}

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>,

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>

</am-metamodel:hasQuery>

</am-metamodel:Attribute>

<am-metamodel:UpdateQuery rdf:about="&imdb_am;MovieUnitOnLoadQuery">

<am-metamodel:queryBody rdf:datatype="&xsd;string">

UPDATE {V} imdb_cm:hasNoOfViews {eval(%views%+1)}

FROM {U} rdf:type {imdb_cm:RegisteredUser};

imdb_cm:hasMovieViews {V} imdb_cm:hasNoOfViews {views};

imdb_cm:hasViewsOfMovie {M}

using namespace

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:queryBody>

<am-metamodel:queryType rdf:datatype="&xsd;string">

SERQL

</am-metamodel:queryType>

</am-metamodel:UpdateQuery>

<am-metamodel:Relationship rdf:about="&imdb_am;MovieUnitAddToFavorites">

<am-metamodel:hasQuery rdf:datatype="&xsd;string">

SELECT M

FROM {M} rdf:type {imdb_dm:Movie}

where M = M

using namespace

imdb_dm = <http://www.vub.ac.be/imdb-schema#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:hasQuery>

<am-metamodel:refersTo rdf:resource="&imdb_am;AddToFavoritesUnit"/>

</am-metamodel:Relationship>

<am-metamodel:Variable rdf:about="&imdb_am;MovieUnitVar">

<am-metamodel:varName rdf:datatype="&xsd;string">M</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;movieName">

<am-metamodel:varName rdf:datatype="&xsd;string">

movieName

</am-metamodel:varName>

</am-metamodel:Variable>

<am-metamodel:Variable rdf:about="&imdb_am;actorName">

<am-metamodel:varName rdf:datatype="&xsd;string">

actorName

</am-metamodel:varName>

</am-metamodel:Variable>

<!-- end MovieUnit -->

<!-- AddToFavoritesUnit -->

<am-metamodel:LogicUnit rdf:about="&imdb_am;AddToFavoritesUnit">

<am-metamodel:onLoadQuery rdf:resource="&imdb_am;AddToFavoritesQuery"/>

<am-metamodel:hasRelationship

rdf:resource="&imdb_am;MovieUnitResultRelationship"/>

</am-metamodel:LogicUnit>

B.2. IMDB APPLICATION MODEL 101

<am-metamodel:UpdateQuery rdf:about="&imdb_am;AddToFavoritesQuery">

<am-metamodel:queryBody rdf:datatype="&xsd;string">

Construct {U} imdb_cm:hasFavorite {M}

FROM {U} rdf:type {imdb_cm:RegisteredUser}

using namespace

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:queryBody>

<am-metamodel:queryType rdf:datatype="&xsd;string">

SERQL

</am-metamodel:queryType>

</am-metamodel:UpdateQuery>

<!-- AddToFavoritesUnit -->

<!-- AddToFavoritesActorUnit -->

<am-metamodel:LogicUnit rdf:about="&imdb_am;AddToFavoritesActorUnit">

<am-metamodel:onLoadQuery

rdf:resource="&imdb_am;AddToFavoritesActorQuery"/>

<am-metamodel:hasRelationship

rdf:resource="&imdb_am;ActorUnitResultRelationship"/>

</am-metamodel:LogicUnit>

<am-metamodel:UpdateQuery rdf:about="&imdb_am;AddToFavoritesActorQuery">

<am-metamodel:queryBody rdf:datatype="&xsd;string">

Construct {U} imdb_cm:hasFavoriteActor {A}

FROM {U} rdf:type {imdb_cm:RegisteredUser}

using namespace

imdb_cm = <http://wwwis.win.tue.nl/~hera/Hera-S/imdb_cm.owl#>,

imdb-cont = <http://www.vub.ac.be/imdb-cont#>

</am-metamodel:queryBody>

<am-metamodel:queryType

rdf:datatype="&xsd;string">SERQL</am-metamodel:queryType>

</am-metamodel:UpdateQuery>

<!-- AddToFavoritesActorUnit -->

</rdf:RDF>

Appendix C

UML Diagrams

Figure C.1: Hydragen init

103

104 APPENDIX C. UML DIAGRAMS

Figure C.2: Hydragen request

105

Figure C.3: Hydragen Package Diagram

List of Figures

2.1 Hera Architecture . 12

2.2 Sesame Overview . 15

2.3 Hera Modeling . 16

3.1 Hera-S Architecture . 18

3.2 AM Elements . 19

3.3 AM Elements Relations . 20

4.1 Hydragen Architecture . 30

4.2 Hydragen Deployment . 31

4.3 Hydragen Class Diagram . 33

4.4 Handle Root Unit . 35

4.5 Inference . 45

4.6 HydragenWeb Class Diagram . 53

4.7 IMDB - Hera-S demo . 57

5.1 IMDB Application Model . 59

5.2 IMDB Domain Model . 61

5.3 IMDB Context Model . 62

6.1 Performance Data . 68

6.2 Response Time: Movie Unit . 70

6.3 Response Time: Actor Unit . 70

6.4 Average Time per Query . 71

C.1 Hydragen init . 103

C.2 Hydragen request . 104

C.3 Hydragen Package Diagram . 105

107

	Contents
	1 Introduction
	1.1 Web Information Systems
	1.2 Semantic Web
	1.3 Web Design Methodologies
	1.3.1 OOHDM/SHDM
	1.3.2 OntoWeaver
	1.3.3 OO-H
	1.3.4 WSDM
	1.3.5 Web-ML

	1.4 Document Overview

	2 Hera-S: Motivation
	2.1 Hera Implementations: Limitations
	2.2 Sesame : RDF store
	2.3 Project Assignment
	2.4 Project Benefits

	3 Hera-S: Design
	3.1 Methodology
	3.2 Application Metamodel
	3.2.1 AmBasicElement
	3.2.2 ExtendedElement
	3.2.3 Query

	4 Hydragen: Implementation
	4.1 Software Architecture
	4.1.1 Static Structure
	4.1.2 Dynamic Structure

	4.2 Supporting technologies
	4.3 Design and Implementation Choices
	4.3.1 Metamodel enhancements
	4.3.2 Implementation related
	4.3.3 Sesame related
	4.3.4 Performance related
	4.3.5 Adaptation related
	4.3.6 Presentation Layer related

	4.4 Presentation Generation
	4.5 IMDB example

	5 Hydragen: Usage
	5.1 Creating new application
	5.2 Usage Caveats
	5.3 Extension possibilities

	6 Hydragen: Analysis
	6.1 Performance
	6.1.1 Algorithm Complexity
	6.1.2 Statistical Analysis

	7 Conclusion and Suggestions for Future Work
	7.1 Suggestion for future work

	Bibliography
	A Application Metamodel
	B IMDB Example
	B.1 Imdb server configuration
	B.2 Imdb application model

	C UML Diagrams
	List of Figures

