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Abstract

This thesis describes a performance analysis method developed for obtaining upper bounds
on delay and buffering requirements in a SoC architecture. These upper bounds are ob-
tained via static analysis. Several traffic models and network calculi available in the litera-
ture are analyzed. The method of Stiliadis (Latency-Rate servers) is selected as foundation
for the performance analysis method to characterize traffic and model interconnect.

The method of Stiliadis is not directly applicable for the performance analysis of SoC
architectures, due to specific SoC characteristics. Therefore, it is adapted and extended
to meet specific SoC requirements and to increase the accuracy. First of all, the upper
bound for the delay of multiple packets is determined and a model of a memory system
with suitable characteristics is added. Furthermore, the ability to express request-response
streams and pipeline degrees of traffic streams are added. Several arbitration policies are
added to model a variety of SoC communication infrastructures. Finally, regulators are
added and the minimum latency of streams are determined to reduce the upper bound on
the buffer requirements.

Complementary methods are required to obtain requirements and periodic timing sched-
ules for the traffic. By using periodic timing schedules, dependencies between traffic
streams are overcome. Backpressure is prevented by using buffers, large enough to re-
ceive all packets. Flow control is not possible in the performance analysis method at the
cost of larger queues.

The applicability of the performance analysis method is illustrated by analyzing several
schedule and interconnect variants for a multi-channel DVB-T set-top box case study.
The influence of the frequency of the memory system and the pipeline degree of the traffic
streams is shown in the multi-channel DVB-T set-top box case study. Furthermore, the
influence of the packet size on the buffering requirements is shown in the results of the
performance analysis method. Because the analysis method requires a small amount of
execution time to analyze the performance of a SoC architecture, it is possible to analyze
large numbers of SoC architecture variants.

The results of this performance analysis method give insight into the influences of several
design decisions, like the frequency, the pipeline degree, the communication infrastructure
and the packet size on the performance of the SoC. Therefore, this performance analysis
method is useful to make architectural design decisions for SoC architectures.
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1.1. Introduction

1.1 Introduction

Designing a chip becomes more and more complex. One of the reasons is that the number
of transistors on a chip increases steadily. Intel’s co-founder Gordon Moore predicted in
1965 that “the number of transistors on a chip doubles about every two years” [3]. Until
now, his prediction has been proved to be valid [3] (see figure 1.1). Currently, we have
processors with more than 1,000,000,000 transistors on a single chip. The problem is that
the rate of the increase of the number of transistors per chip is higher than the rate of the
increase of the number of transistors a designer can use in a design per time unit (see figure
1.2). The gap between both rates is called the “Design Productivity Gap” [7] and this gap
is increasing. This means, there is a growing gap between what a process technology can
offer and the ability to design in that process technology. It becomes harder to exploit all
the functionality a chip may offer in newer process technologies.

Figure 1.1: Moore’s Law applied to Intel’s processors [3]

Figure 1.2: Design Productivity Gap [7]

9



1.2. System-on-Chip

1.2 System-on-Chip

Currently, some (embedded) systems are implemented by making use of complex chips
that are typically referred to as System-on-Chips. A System-on-Chip (SoC) integrates
components of an electronic system into a single chip. A SoC is composed of hardware
blocks and software. A SoC can consist of hardware blocks like [5]

• one or more microcontrollers, microprocessors or Digital Signal Processors (DSP)
• one or more functional units, like a Video Processing unit
• memory blocks, like RAM, ROM or flash
• external interfaces

These hardware blocks are connected by interconnect. A block diagram of an example of
a SoC is shown in figure 1.3

Figure 1.3: A block diagram of an example of a SoC, composed of hardware blocks [5]

Designing a SoC is a labour intensive and therefore expensive task. It requires large hard-
ware and software design teams. The bulk of the effort of SoC design resides not in the
design of the hardware blocks or the software, but in their integration of reused blocks
into a working whole. Verifying that integrated hardware blocks and the software behave
correctly with the required functionality and real-time performance is the bottleneck in
current SoC design [12].

In order to address the complexity of SoC integration, a divide and conquer approach has
been proposed [23]. Future SoCs can be built in a modular way by integrating subsystems.
A subsystem is a major part of a system, which itself has the characteristics of a system. An
example of a subsystem is a multi-standard modem or a media processing subsystem (see
figure 1.4). Usually, these subsystems consist of several hardware blocks. These subsystems
are coarse-grain, pre-integrated, pre-validated and autonomous.
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1.3. SoC communication infrastructure

Figure 1.4: Example of a SoC, composed of subsystems [19]

1.3 SoC communication infrastructure

Subsystems interact with each other via the communication infrastructure. This commu-
nication infrastructure consists of (see figure 1.5)

• interconnect (consisting of e.g. links and arbiters)
• memory system(s)

The interconnect consists of the wires (also called the links) that connect different parts
of the chip. Furthermore, in case a set of wires has to be merged, an arbiter (also called a
scheduler) is used. An arbiter determines the interleaving of the data (i.e. the order of the
data transfers) and is used when a resource (e.g. a memory system) is shared by multiple
subsystems.

A memory system can be used to store private code of the subsystems as well as to store
data. A memory system can be on-chip, as well as off-chip. In case that large amounts
are required (e.g. for media processing) an off-chip memory system is cheaper than an
on-chip memory system. In the case of an off-chip memory system several subsystems will
probably share this resource. Then, this off-chip memory system can become a bottleneck
for the performance of the SoC communication infrastructure.

Figure 1.5: Example of a SoC communication infrastructure

In this thesis, we will focus on the traffic between the subsystems and the communication
infrastructure.
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1.4. Traffic

1.4 Traffic

A SoC communication infrastructure is used by the subsystems connected to it to send
and to receive data. This traffic can have different characteristics. One of the character-
istics that determines the traffic is the rate of the traffic (i.e. the amount of data that is
transferred per time unit). Also the moment in time and the length of the period of time
of the data transfer determine the characteristics of the traffic. These characteristics of
the traffic affect the requirements for the communication infrastructure. For example, the
rate of the traffic determines the minimum rate of the interconnect.

On its turn, the performance of the SoC communication infrastructure impacts the per-
formance of the subsystems. This is the case if a subsystem is waiting for data from the
communication infrastructure. Then, the delay of the traffic (i.e. the time it takes to access
data from a memory system) determines the amount of time the subsystem has to wait
for its data.

Furthermore, the performance of a subsystem depends also on the actual traffic. This
is the case when a resource in the communication infrastructure is shared by several
subsystems (e.g. several subsystems use the same memory system). Then, the traffic of
these subsystems to the shared resource has to be interleaved. This means that the traffic
of one subsystem impacts the performance of another subsystem.

1.5 Problem definition

This master’s thesis focuses on the integration of a set of subsystems with a communication
infrastructure. Each subsystem has its own requirements. These include requirements on
the SoC communication infrastructure for transferring data to and from the subsystem.
As has become clear in the previous section, for a given communication infrastructure, the
traffic characteristics have an impact on the performance of the subsystems.

Today, there is not enough support for a performance analysis method of SoC architec-
tures. Nowadays, this is done by simulating a large number of scenarios. This approach
is time consuming and does not give guarantees. To overcome these problems, a perfor-
mance analysis method is required to give guarantees about the performance of a SoC
communication infrastructure, without simulating all possible scenarios. The input of the
performance analysis method (see figure 1.6) will be

• a model of the communication infrastructure
• the traffic of the subsystems

The output of the analysis method will be

• the cost of the SoC (e.g. the required area or the required amount of memory)
• the delay of the traffic
• the utilization of the SoC (e.g. of the memory or of the interconnect)

Making a performance analysis method for different types of traffic and different commu-
nication infrastructures is one of the research targets, this thesis is part of. The focus is
not on the synthesis of the SoC communication infrastructure.

For the performance analysis method, the communication traffic has to be specified first.
This can be done by a few characteristics, like the (minimum) rate. Then, several classes
of traffic with corresponding characteristics can be defined.

In this thesis, we will address the following questions

12



1.5. Problem definition

Figure 1.6: Model of the performance analysis method

1. Which characteristics determine the traffic, which are important, how can traffic
(formally) be characterized and which traffic classes can be determined?

2. Which traffic classes are used by a concrete set of subsystems when executing a
particular use case?

3. What are the characteristics of different communication infrastructures?
4. How can the characteristics of communication infrastructures be modeled?
5. What is computed (metrics) by the performance analysis method?
6. Which (combinations of) communication infrastructures are suitable for which traf-

fic classes and what is the efficiency?
7. How can the performance analysis method be validated?
8. How can the system be checked whether it meets the required traffic requirements?

The final wish is to find a way to make traffic contracts between the subsystems and the
communication infrastructures, such that if all parties adhere to the traffic contracts, and
the combination of the traffic contracts is valid, then the systems always meet its required
performance, even in the worst case. By that, simulations are no longer needed. Then, it is
easier to add a new subsystem to a chip. Only the traffic contracts have to be checked. Also,
subsystems can be developed (designed and validated) independently. So, the complexity
of the integration of a set of subsystems with a communication infrastructure is strongly
reduced.

For this thesis, the following assumptions are made

• The system and the transmission of the traffic are error-free
• There are no dependencies between the traffic of each subsystems
• The requirements of the traffic are derived by a complementary method
• The tasks, running on the subsystems, do not depend on each other (e.g. this may

be the case if the tasks are periodic)

1.5.1 Application scope

The application scope of this thesis is video applications. Video applications require high
rates of traffic and have tight delay constraints. Furthermore, large amounts of memory
are required, caused by the large amounts of data that are transferred and need to be
buffered.
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1.6. Outline of Thesis

1.6 Outline of Thesis

This thesis is structured as follows. In chapter 2 several traffic models available in the
literature are explained. In chapter 3 two network calculi are described in more detail
and one is selected as basis for the SoC performance analysis method. Then, in chapter
4 some improvements and extensions of the performance analysis method are explained.
In chapter 5 a small case study is presented and the results are described and discussed.
In chapter 6 a large case study is discussed. Finally, conclusions are drawn in chapter 7.
In appendix A the validation of the performance analysis method is given. In appendix B
several traffic classifications are discussed. Finally, in appendix C an overview is given of
the Mathematica model of the performance analysis method.

1.7 Related work

In the context of SoC performance analysis, several techniques are available in the litera-
ture, but none has been found that is specific for SoC communication infrastructures. Cruz
has pioneered a network calculus (see [9], [10]). He has made a mathematical framework
for deriving worst-case bounds on the performance, like the delay. He assumed that the
traffic can be bounded by a monotonously increasing function. His model is explained in
more detail in the next chapter.

Based on the model of Cruz, Stiliadis and Varma (see [22], [21]) have created a model
for “Latency-Rate servers” (i.e. an abstraction of the schedulers). They claimed that their
performance bounds are tighter than the bounds of Cruz. More details can be found in
the next chapters.

Chakraborty and Thiele used a task interaction approach in [8]. They defined bounds for
arrival curves and service curves of the traffic. Their technique is related to the worst-case
execution time of the tasks of a system. In this thesis, the focus is on the traffic between
the subsystems and the communication infrastructure and not on the interaction of tasks.

Richter, Jersak and Ernst have looked in [18] to the shared resources that influence the
performance. Their technique expresses the behavior of tasks (worst-case execution time)
and local scheduling policies in a formalism for reasoning. Again, the focus in this thesis is
on the traffic between the subsystems and the SoC communication infrastructure instead
of on the behavior of tasks.

No SoC performance analysis has been found that is specific for SoC communication
infrastructures.
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2.1. General definitions and notations

2.1 General definitions and notations

In this section we define traffic models, that can be used in the SoC performance analysis
method.

2.1.1 Traffic stream

First, a traffic stream is defined.
Definition A traffic stream is the flow of related data that has the same source and the
same destination
A traffic steam is also known as a “stream” or a “session”.

It is assumed that a packet is the unit of data transport. A packet is defined as a block of
related data. The size of the packets can be uniform (all packets of all streams have the
same size), but this is not required. It is assumed that the size of all packets of a single
stream is the same.
Definition A word is a fixed-sized group of bits that are handled together
Definition Let Li be the size in words of the packets of stream i, where Li ≥ 1 and
Li ∈ N
Furthermore, it is assumed that if a packet is transmitted, the rate of the transmission is
equal to the maximum rate, or capacity, of the communication infrastructure. This means
that the communication infrastructure is transmitting data at its maximum rate, or it is
not transmitting data. So, it is not possible to transfer data at a different rate than the
maximum rate.
Definition Let C be the maximum rate, or capacity, in words

sec of the communication
infrastructure, where C ≥ 0 and C ∈ R

Figure 2.1: Graphical representation of a traffic stream

An example of a traffic stream is shown in figure 2.1. B(t) is the amount of data transferred
on a link at time t ≥ 0, for t ∈ R. B(t) is a strictly non-decreasing function, because a
decrease of the amount of transferred data is not possible. As is shown in the figure and
explained above, the instantaneous rate of B(t) is equal to either 0 or C.
Definition A burst is a number of packets in series, that are transferred at rate C

The packets of a traffic stream can be sent in bursts. The number of transferred words
in figures 2.1 and 2.2 is not equal for each period of time. Also the number of words per
burst is not uniform, as is indicated in figures 2.1 and 2.2. This means that the length of
all bursts is not the same.
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2.1. General definitions and notations

Figure 2.2: Graphical representation of bursts of a traffic stream. Each arrow represents
the arrival of a packet

2.1.2 Interconnect

The above definitions are used to define properties of the interconnect. The interconnect
is represented in this thesis as the connection of basic building blocks, called network
elements. Most network elements have one or more input or arriving streams and one or
more output or departing streams. Let Ai(t) denote the number of arrived words of stream
i at time t ≥ 0, for t ∈ R, and Bi(t) denote the number of departed words of stream i at
time t ≥ 0, for t ∈ R. Assume that no words are added by the network element to stream
i. Then for all streams i (

∀t ∈ R : t ≥ 0 : Ai(t) ≥ Bi(t)
)

(2.1)

Figure 2.3: Graphical representation of Ai(t), Bi(t), Qi(t) and Di(t)

Definition The backlog is the amount of data that has arrived in a network element, but
has not departed yet. Let backlog Qi(t) represent the number of words of stream i queued
in the network element at time t ≥ 0, t ∈ R, that is

Qi(t) = Ai(t)−Bi(t) (2.2)

Definition The delay is the amount of time between the arriving and departing of the
data of a stream in a network element. Let Di(t) denote the delay in sec of stream i in
the network element at time t ≥ 0, t ∈ R, that is

Di(t) = min
∆ : ∆≥0 ∧ ∆∈R ∧ Ai(t)=Bi(t+∆)

{
∆
}

(2.3)

The above definitions are indicated in figure 2.3. The delay is the horizontal distance be-
tween the arriving and the departing stream. The vertical distance between both represents
the backlog.
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2.2. Selection criteria

Please note that in this thesis, t ≥ 0, t ∈ R is used to represent the time in sec. In the
case that several moments of time have to be indicated, tj , tj ∈ R and j ∈ N, will be used
such that

t0 = 0 and tj ≤ tj+1 (2.4)

Using these notations and definitions, the selection criteria for the traffic model for a SoC
performance analysis method are presented in the next section.

2.2 Selection criteria

Before we explain several ways of characterizing traffic, it is important to know what the
selection criteria are.

Compositionality is a must for the performance analysis method. This means that a com-
plex expression (i.e. all the traffic of a SoC transferring over the communication infrastruc-
ture) is determined by the meanings of its constituent expressions (i.e. individual streams
and network elements) and formulas are used to combine them. So, it should be possible to
look to individual streams and network elements. Formulas should be available to combine
them. Those formulas must give upper bounds for the delay and the required amount of
memory in the communication infrastructure as required for the SoC performance analysis
method.

Finally, it is assumed that the traffic of a SoC will use packets and bursts. Therefore, it
should be possible to express these in the traffic model.

With these requirements in mind, the literature has been studied for traffic models. Only a
few traffic models meet (partially) the selection criteria. Those traffic models are explained
in the next sections.

2.3 (σ, ρ)

Cruz represents a traffic stream by a nonnegative function R(t) as follows [9]

Definition R(t) represents the instantaneous rate in words
sec of traffic for the stream flow-

ing on a link at time t. For any t1 and t2,
∫ t2
t1

R(t)dt is the number of data in words of the
stream that is transmitted on a link of the communication infrastructure in the interval
[t1, t2]

Just as before, R(t) can take on only two values, namely 0 and C.

2.3.1 Traffic stream

Cruz characterizes in [9] and in [11] a traffic stream using two different parameters, namely
σ and ρ, such that

Definition Given σ in words, σ ≥ 0 and σ ∈ R, and ρ in words
sec , ρ ≥ 0 and ρ ∈ R , R(t)

is bounded by (σ, ρ) if and only if for all t1 and t2∫ t2

t1

R(t)dt ≤ σ + ρ · (t2 − t1) (2.5)

This is denoted as R(t) ∼ (σ, ρ) or R ∼ (σ, ρ)
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2.3. (σ, ρ)

Figure 2.4: (σ, ρ) characterization of a traffic stream, the traffic of which is upper bounded
by the diagonal line

Thus, if R ∼ (σ, ρ), then there is an upper bound to the amount of traffic transmitted in
any interval that is equal to a constant σ plus a quantity proportional to the length of the
interval (see figure 2.4).

This means that ρ is the rate at which the traffic is transmitted and σ represents the
burstiness constraint of the traffic [9]. Please note that ρ is upper bounded by C i.e.

0 ≤ ρ ≤ C (2.6)

Furthermore, σ is lower bounded by [9]

L ·
(
1− ρ

C

)
≤ σ (2.7)

This is the case, because the minimum burst is equal to one packet. Because the size of
the packets is L and R(t) ∈ {0, C} for all t, then [9]∫ t+L/C

t
R(t)dt ≤ L (2.8)

This means that it is possible to send a packet of length L in L
C sec. In that period of time,

ρ can characterize the transfer of only ρ · L
C words of the packet. Therefore to transfer L

words, σ is lower bounded by L · (1− ρ
C ) words.

A more general characterization than (σ, ρ) can be used, by making use of a non-decreasing
function b(t), such that [9] ∫ t2

t1

R(t)dt ≤ b(t2 − t1) (2.9)

for all 0 ≤ t1 ≤ t2. Now, (σ, ρ) traffic can be represented by R ∼ b, where b(t) = (σ +ρ · t),
for some σ ≥ 0, ρ ≥ 0, σ ∈ R and ρ ∈ R. Then, R is (σ, ρ)-smooth or b-smooth [9].

As has described above, Cruz has defined traffic by making use of (σ, ρ). Then, it is possible
to derive properties like the backlog and the delay.

2.3.2 Backlog

The above definition (see equation 2.9) can be used to determine the backlog of the network
elements. Assume that a network element receives data at a rate described by Rin(t) and
sends that data at rate ρ, ρ ≥ 0 and ρ ∈ R (see figure 2.5).

Then, according to Cruz [9], the next property is defined.
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Figure 2.5: A network element receives data at a rate described by Rin(t) and sends data
at rate ρ

Property Qρ(R)(t) represents the backlog in words in the network element at time t ≥ 0.
Then,

Qρ(Rin)(t) = max
t1:0≤t1≤t

{∫ t

t1

Rin(t)dt− ρ · (t− t1)
}

(2.10)

2.3.3 Delay

The above definition (see equation 2.9) can also be used to determine the delay of a network
element. Assume that a network element receives data at a rate described by Rin(t) and
outputs its data according to (σout, ρ), for some σout ≥ 0, ρ ≥ 0, σout ∈ R and ρ ∈ R.

Then, according to Cruz [11]

Property D(t) represents the delay in sec in the network element at time t ≥ 0. Then,

D(t) ≤ Qρ(Rin)(t) + σout

ρ
(2.11)

In case that Rin ∼ (σin, ρ), for σin ≥ 0 and σin ∈ R, then

D(t) ≤ σin + σout

ρ
(2.12)

In [11], also a delay constraint is derived for a communication infrastructure, consisting
of H arbitrary network elements in a chain, with H ≥ 1 and H ∈ N. Let Rin describe
the input traffic of the chain and let Rh−1(t) describe the traffic entering network element
h, with 1 ≤ h ≤ H, for h ∈ N and Rin ∼ (σin, ρ), for σin ≥ 0, ρ ≥ 0, σin ∈ R and
ρ ∈ R. Suppose that network element h outputs its data according to (σh

out, ρ), for each h,
σh

out ≥ 0 and σh
out ∈ R. Then, the total delay at the output of network element H at time

t ≥ 0 is upper bounded by [11]

DH(t) ≤
σin +

∑H
h=1 σh

out

ρ
, (2.13)

for all t ≥ 0.

So, the delay is determined by making use of σin of the input traffic and of σh
out of each

network element. Moreover, ρ holds for the input and the output traffic.

2.3.4 Extra properties

Not all traffic streams will be (σ, ρ)-smooth by their own. A (σ, ρ) regulator can be used
to transform an arbitrary traffic stream into a (σ, ρ)-smooth stream. The main task of a
(σ, ρ) regulator is to buffer (i.e. temporarily store) the packets if needed and to output the
packets such that Rout(t) of the regulator is (σ, ρ)-smooth, for some σ ≥ 0, ρ ≥ 0, σ ∈ R
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and ρ ∈ R. Assume that the regular receives data at a rate described by Rin(t). Then, its
output is according to [11]

Rout(t) =

{
C if

(
Q(t) > 0 ∨Rin(t) > 0

)
and Qρ(Rout)(t) < σ

0 otherwise
(2.14)

So, a packet will depart from the (σ, ρ) regulator at time t if there is a packet available at
time t (i.e. a packet is stored, Q(t) > 0, or a new packet just arrived, Rin(t) > 0) and if
the output has not yet produced at time t a burst equal to or larger than σ.

2.3.5 Applicability of the method of Cruz

The method of Cruz, as partly described in the previous section, can be evaluated using
the selection criteria of section 2.2.

First of all, it is possible to look to individual traffic streams and to get bounds for
individual traffic streams. The delay and the backlog can be calculated, after the stream
is characterized by (σ, ρ).

Secondly, it is also possible to determine the delay in a chain of multiple network ele-
ments. This is important for the performance analysis method to manage the complexity.
Furthermore, the backlog can be determined for a single network element. For calculating
the backlog in a chain of multiple network elements, there has been no general rule or
definition found in the literature.

Finally, the method makes use of the length of the packets, and it is possible to express
the burstiness of the traffic.

Summarizing, the method of Cruz meets the selection criteria of section 2.2. Unfortunately,
no applications to practical examples of this method have been found in the literature.

2.4 Latency-Rate Servers

As an addition to the traffic model presented in the previous section, Stiliadis and Varma
focused in [21] and [22] more on the latency and the rate of a system. They used a notation
similar to Cruz in [9] and [11].

Please note that Stiliadis used different terms than Cruz. First of all, a “traffic stream”
in the method of Cruz is called a “session” in the method of Stiliadis. Furthermore, the
“amount of departed data of a stream” in the method of Cruz is called the “amount of
service that stream received” in the method of Stiliadis.

In the method of Stiliadis the focus is more on schedulers. Multiple input sessions of a
scheduler share a common output link of the scheduler (see figure 2.6). These sessions
receive service by the scheduler. The next definition is used.

Figure 2.6: 3 sessions share a common output link of the scheduler

22



2.4. Latency-Rate Servers

Definition Ai(t1, t) and Wi(t1, t) denote the number of arrived data in words of session
i by a scheduler and respectively the number of service in words session i received by a
scheduler during the interval (t1, t), where 0 ≤ t1 ≤ t

In [22] it is assumed that V sessions, V ≥ 1 and V ∈ N, share a common output link of a
scheduler. ρi is the (service) rate the scheduler allocate to session i, for ρi ≥ 0 and ρi ∈ R.
The schedulers are noncut-through devices, meaning that a packet has to be received
completely, before it can be transmitted. Finally, it is assumed in [22] that all links and
schedulers have a maximum rate (i.e. capacity) of C words

sec , for C ≥ 0 and C ∈ R.

Then, Qi(t) represents the number of words of session i queued in the scheduler at time
t ≥ 0, such that [22]

Qi(t) = Ai(0, t)−Wi(0, t) (2.15)

The sessions receive service by the scheduler. If the arrival rate of a session in a period of
time is not lower than the service rate of that session, a busy period occurs.

Definition A busy period is the maximum interval of time (t1, t2] such that at any time
t ∈ (t1, t2], the accumulated arrivals of session i since the beginning of the interval do not
fall below the total service received during the interval at a rate of exactly ρi, ρi ≥ 0 and
ρi ∈ R, i.e. Ai(t1, t) ≥ ρi · (t− t1)

This definition is shown in figure 2.7. The intervals (t1, t2) and (t3, t4) are the maximum
intervals of time such that the amount of arrived data (i.e. the solid line) in these intervals
is more than the service received (i.e. the dashed line) in the same intervals. Please note
that during a busy period, there is always data on the output link, because there is enough
arriving data. Furthermore, the data on the output link has at least a rate of ρi.

Figure 2.7: Two busy periods of session i

Please note that Stiliadis assumes in [22] that packet departures are considered as impulses
(i.e. events).

Then, the total amount of received service of a session can be defined.

Definition WS
i,j(t1, t) is the total service in words provided by server S to the traffic of

session i arrived during the jth busy period, j ≥ 1 and j ∈ N, that started at t1, until time
t, where 0 ≤ t1 ≤ t

Please note that a busy period has an unique starting point in time.

The above definition is used to define a general class of schedulers, called Latency-Rate
servers [22]. An LR server makes use of the service rate of a session and the latency of
the session. The latency of a session is defined as the maximum amount of time between
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the moment the first packet of a busy period of that session has arrived completely in the
scheduler and the moment that packet has left the scheduler completely.
Definition Let t1 be the starting time of the jth busy period, j ≥ 1 and j ∈ N, of session
i in server S, t2 be the time at which the last bit of the session arrived during the jth busy
period leaves the scheduler and ρi be the allocated rate by server S to session i, for ρi ≥ 0
and ρi ∈ R. Then a scheduler S is called an LR server (i.e. a Latency-Rate server) if and
only if a nonnegative constant CS

i can be found such that for every t ∈ (t1, t2]

WS
i,j(t1, t) ≥ max

{
0, ρi ·

(
t− t1 − CS

i

)}
(2.16)

The minimum nonnegative constant CS
i satisfying the above inequality (over all busy pe-

riods) is defined as the latency in sec of session i of the scheduler S, denoted by ΘS
i

This means that the scheduler S guarantees a service rate of at least ρi, a maximum of
ΘS

i sec later than the busy period for session i starts.

In other words, assume that at t1 the busy period of session i starts. Then, in the time
period t1 +ΘS

i until t, the output rate of scheduler S is at least ρi. Therefore, the amount
of service received by session i in this period is at least ρi · (t− t1 −ΘS

i ).

Examples of LR servers are given in the next chapter.

Using this definition, an upper bound for the service provided by a network chain of m
LR servers, m ≥ 1 and m ∈ N, is derived in [22]. Let t1 be the starting time of the jth

busy period, j ≥ 1 and j ∈ N, of session i and ρi the minimum rate allocated to session i
in the network chain. The service provided to the traffic of the jth busy period of session
i after the kth LR server, 1 ≤ k ≤ m and k ∈ N, during the interval (t1, t] is

WSk
i,j (t1, t) ≥ max

{
0, ρi ·

(
t− t1 −

k∑
j=1

Θ(Sj)
i

)}
(2.17)

where t1 ≤ t and Θ(Sj)
i the latency of the jth server in the network chain for session i.

2.4.1 Traffic stream

Stiliadis assumed in [22] that the input traffic of a network element is token-bucket-shaped.
Definition The arrivals of session i at the input of a scheduler in the interval (t1, t],
where 0 ≤ t1 ≤ t, are “token-bucket-shaped” if

Ai(t1, t) ≤ σi + ρi · (t− t1) (2.18)

for the parameters σi ≥ 0 and ρi ≥ 0, where σi ∈ R and ρi ∈ R denote the burstiness
constraint and the average rate of session i, respectively
A regulator is used to shape the incoming traffic (see figure 2.8). Tokens are generated at
a rate of ρi. A token represents a word of a packet. A packet can only be released from
the buffer of the regulator after removing the required number of tokens (i.e. the length
of the packet) from the token bucket. The queue for the incoming traffic is finite and
the token bucket has a maximum of σi tokens. The output of the regulator is connected
to the input of the network. The traffic that enters the network can be characterized as
token-bucket-shaped.

Please note that this definition is analog to the definition of (σ, ρ) of Cruz (see equation
2.5).

As has become clear above, Stiliadis defined LR servers to model schedulers and defined
traffic by σ and ρ. Then, it is possible to derive properties like the backlog and the delay.
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Figure 2.8: Regulator [17]

2.4.2 Backlog

Assume that input session i of a chain of m LR servers, m ≥ 1 and m ∈ N, is token-
bucket-shaped with the parameters σi ≥ 0 and ρi ≥ 0, σ ∈ R and ρ ∈ R, and Θ(Sj)

i is the
latency of the jth LR server, 1 ≤ j ≤ m and j ∈ N, for session i.

Assume that at t1 session i sends its maximum burst (i.e. σi) to the first LR server and
after that sends data with a rate of ρi. In the worst case, the first packet of session i leaves
the first LR server Θ(S1)

i sec later. Then, this first LR server should be able to store the
burst as well as the data that arrives in the period t1 until t1 + Θ(S1)

i . Therefore, the first
LR server of the chain has a backlog of at most σi + ρi · Θ(S1)

i . For the next LR server,
the backlog requirement increases with ρi ·Θ(S2)

i .

According to Stiliadis in [22], the next property is defined.

Property The backlog Q
(Sk)
i in words in the kth LR server, 1 ≤ k ≤ m and k ∈ N, of

the chain of m LR servers of a session i is upper bounded by

Q
(Sk)
i ≤ σi + ρi

k∑
j=1

Θ(Sj)
i (2.19)

This formula represents an upper bound of the required buffer size of an LR server in the
chain of the LR servers.

So, the backlog is defined by making use of the characteristics of the input traffic (i.e. σ
and ρ) and the latency of the session in the LR servers.

2.4.3 Delay

Assume that the input session i of LR server S is token-bucket-shaped with the parameters
σi ≥ 0 and ρi ≥ 0, σi ∈ R and ρi ∈ R, and that the latency of the server for session i is
ΘS

i ≥ 0. Then, according of Stiliadis in [22], the next property can be defined.

Property The maximum delay DS
i in sec of any packet of session i in S is upper bounded

by
DS

i ≤ σi

ρi
+ ΘS

i (2.20)

Assume that at t1 session i sends its maximum burst (i.e. σi) to the LR server S. In the
worst case, the first packet of session i leaves this LR server ΘS

i sec later. After that,
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the burst is serviced (i.e. output) with a rate of at least ρi. Therefore, the delay is upper
bounded by σi

ρi
+ ΘS

i sec.

The maximum delay Di in sec of session i in a chain of m LR servers, m ≥ 1 and m ∈ N,
is according to [22] upper bounded by

Di ≤
σi

ρi
+

k∑
j=1

Θ(Sj)
i (2.21)

where Θ(Sj)
i is the latency of the jth LR server, 1 ≤ j ≤ m and j ∈ N, for session i.

Please note that this end-to-end delay is determined by the burstiness and the rate of the
input session and the latencies of the individual servers on the path of the session.

2.4.4 Extra properties

As proved in [22], the traffic of a session i after the kth node, 1 ≤ k ≤ m and k ∈ N, in
a chain of m LR servers, m ≥ 1 and m ∈ N, conforms to the token-bucket model for the
parameters

σi + ρi

k∑
j=1

Θ(Sj)
i and ρi (2.22)

if the input traffic was characterized by σi ≥ 0 and ρi ≥ 0, σi ∈ R and ρi ∈ R, and the
latency for session i of the jth LR server, 1 ≤ j ≤ m and j ∈ N, is Θ(Sj)

i .

2.4.5 Applicability of the method of Stiliadis

The method of Stiliadis, as described in the previous section, can be evaluated again using
the selection criteria of section 2.2.

First of all, it is possible to look to individual traffic sessions and to get bounds for
individual traffic sessions. The delay and the backlog can be calculated per LR server, if
the input session is token-bucket-shaped with σ and ρ as parameters.

Secondly, the method is compositional. It is possible to determine the latency for every
LR server in isolation. Then, the delay and the backlog can be calculated for a chain of LR
servers. This is important for the performance analysis method to manage the complexity.

Finally, since we only explained a part of the method of Stiliadis, it is not yet clear how to
make use of the length of the packets. This is discussed in the next chapter. For traffic that
is token-bucket-shaped, it is possible to express the burstiness constraint of the traffic.

Summarizing, also the method of Stiliadis meets the selection criteria of section 2.2. Un-
fortunately, no applications to practical examples have been found in the literature.

2.5 (ρmax, ρmin)

Wang introduced in [25] a completely different way to characterize traffic. He looked to
the arriving and departing traffic of a server. First we will introduce two definitions, to be
used for the parameters defined by Wang to characterize traffic.
Definition ai and di represent the arrival and the departure time in sec of the ith packet
of a server, respectively, for i ≥ 1 and i ∈ N
Definition A(t1, t2) denotes the number of packets arrived at a server in the interval
[t1, t2)
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2.5.1 Traffic stream

Using the above definitions, the traffic parameters ρmin and ρmax can be defined [25].
Definition

ρmin = min
{

X2, ..., XM

}
and

ρmax = max
{

Y2, ..., YM

}
where

Xm =
A(a1, am)
am − a1

and
Ym =

1
am − am−1

for 2 ≤ m ≤ M , m ∈ N and M ∈ N
ρmin is equal to the lowest rate in #packets

sec of arrived packets in the interval (a1, aM ). This
means, ρmin represents the highest rate in #packets

sec at which the server is never idle in the
interval (a1, aM ). ρmax is the highest rate in #packets

sec of the incoming traffic in the interval
(a1, aM ), see figure 2.9.

Figure 2.9: Graphical explanation of ρmin and ρmax [25]

To express the burstiness of the traffic, the definition of “synchronization unit” is required
[25]. A “synchronization unit” G represents a group of M packets, for M ≥ 2 and M ∈ N.
Definition A synchronization unit G conforms to (ρmax, ρmin) (denoted by G ∼ (ρmax, ρmin))
if Xm ≥ ρmin and Ym ≤ ρmax, for 2 ≤ m ≤ M and m ∈ N
Using this definition, the bounds for the arrival time of a packet m of a synchronization
unit G of M packets are derived in [25]. Assume that G ∼ (ρmax, ρmin). Then

a1 +
m− 1
ρmax

≤ am ≤ a1 +
m− 1
ρmin

(2.23)

for 2 ≤ m ≤ M and m and M ∈ N.

This defines the interval in which packet m will arrive. These bounds are determined by
the minimum and the maximum rate.

Using these bounds, the burstiness is defined [25].
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Definition Burstiness (bm) is the amount of time in sec between the upper bound of the
mth packet’s arrival interval and the actual arrival time of packet m, i.e.

bm = a1 +
m− 1
ρmin

− am (2.24)

for packet 1 ≤ m ≤ M and m ∈ N
This means that at time a1 + m−1

ρmin
the server starts to process the mth packet, if the server

has a rate of ρmin. bm can be interpreted as the amount of time that the mth packet has
to wait in a queue before it is served, assuming that the server works at a rate of ρmin.

A bound for the burstiness of traffic is derived in [25]. If G ∼ (ρmax, ρmin), 2 ≤ m ≤ M ,
m ∈ N and M ∈ N, then

bm ≤ m− 1
ρmin

·
(

1− ρmin

ρmax

)
(2.25)

This means that if ρmin and ρmax become closer to each other, the upper bound of bm

decreases.

As is described above, (ρmax, ρmin) is used in this method to characterize traffic.

2.5.2 Backlog

Unfortunately, no information has been found in the literature on how to determine the
backlog, using this method.

2.5.3 Delay

Assume that a server is work-conserving (i.e. the server is never idle when there is backlog)
and the flow is served at rate µ ≥ ρmin in #packets

sec , µ ∈ R. Let dm be the time in sec when
the mth packet departs from a server. The delay experienced by the first packet depends
on the backlog of packets left over from the previous synchronization unit. Suppose D,
D ≥ 0 and D ∈ R, is the time in sec that the first packet has to wait before being served.
Then, according to [25]

d1 = D +
1
µ

+ a1 (2.26)

Furthermore, according to [25], packet m departs from the server at

dm = max
{

dm−1, am

}
+

1
µ

(2.27)

for 2 ≤ m ≤ M , m ∈ N and M ∈ N.

Unfortunately, no information has been found in the literature on how to determine D for
this method.

2.5.4 Extra properties

The relation between the input traffic and the output traffic of a server is determined in
[25]. Assume that a server receives traffic, that conforms to (ρmax, ρmin). Assume that the
traffic is served at rate µ ≥ ρmin, µ ∈ R. Then the output traffic of the server conforms to
(µ, ρmin).
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2.5.5 Applicability of the method of Wang

The (ρmax, ρmin) method, as described in the previous section can be evaluated, using the
same selection criteria as before.

First of all, it is possible to analyze individual traffic streams and to get bounds for
individual traffic streams. Unfortunately, it is not completely clear how to calculate the
delay and the backlog for a stream. This is a main disadvantage of this method.

Secondly, the method is not proved to be compositional. No information has been found
on how to combine network elements.

Finally, it is not clear how to make use of the length of the packets. This is not explained
in [25] and no more information has been found in the literature on how to express the
length of the packets in this method.

Summarizing, the (ρmax, ρmin) method does not meet the selection criteria of section 2.2.
Also, no applications to practical examples have been found in the literature.

2.6 Conclusion

As has become clear in the previous sections, the methods of Cruz and Stiliadis are rather
similar. Until now, both methods do not have insuperable disadvantages. This, in contrast
to (ρmax, ρmin).

For (ρmax, ρmin), no information has been found on how to determine the delay and the
backlog. There is not sufficient evidence to classify (ρmax, ρmin) as a promising technique.

Looking to the properties of Cruz and Stiliadis, these methods are the best applicable for
the SoC performance analysis method. Especially the compositionality and the ability to
express the length of the packets and the burstiness are important.

Therefore, the method of Cruz and Stiliadis are selected to characterize traffic for the
SoC performance analysis method. In the next chapter, the focus is on SoC design and
the application of the methods of Cruz and Stiliadis for the SoC performance analysis
method.
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3.1. Introduction

3.1 Introduction

SoCs have specific communication behavior that needs to be captured in the models of
the system components for the performance analysis method. This behavior is related
to characteristics of the traffic, of the memory system and of the interconnect. After
introducing these characteristics, we will investigate how well the methods of Cruz and
of Stiliadis can be used to model SoC communication infrastructures and to analyze the
performance.

3.1.1 Traffic characteristics

Communication in SoCs exhibits specific characteristics that need to be represented ap-
propriately for analyzing the performance of SoCs.

First of all, the communication can use a request-only stream or a request-response stream
(see figure 3.1). In the first case, the requests flow from one subsystem to the SoC com-
munication infrastructure. No responses are sent back. In the case of a request-response
stream, a subsystem sends requests to the SoC communication infrastructure and receives
responses from the SoC communication infrastructure. This behavior can be used to model
the traffic of a memory system. In the case data have to be loaded, first a load request,
including address data, is sent to the memory system. After that, a load response is sent
back to the subsystem together with the requested data.

Figure 3.1: A request-only stream and a request-response stream

Secondly, for most subsystems the number of requests or packets in flight (i.e. the number
of outstanding requests) is limited. This is called the “pipeline degree”. That means that
if the pipeline degree has been reached, the next request can only be sent after having
received a response. This is the case, because a response lowers the number the outstanding
requests. So, a session is not only bounded by its σ and ρ characteristics, but also by its
pipeline degree.

So, for SoCs some specific traffic characteristics influence strongly the modeling. In the
next section, the characteristics of a memory system to be modeled are described.

3.1.2 Memory system characteristics

In the case a memory system is used, some specific characteristics are important for the
analysis.

Firstly, the size of a load request in words is not equal to the size of a load response. The
size of a load request is much smaller than the size of a response (see figure 3.2). This
means that the packets change in size while they travel from a subsystem via a memory
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Figure 3.2: The size of a load request in words is much smaller than the size of a load
response (i.e. Lreq << Lresp)

system back to the subsystem, if one traffic stream is used to model the requests and the
responses.

Another characteristic of a memory system is the refresh requirement. When a DRAM is
used as memory system, the memory has to be refreshed frequently. Otherwise, data will
be lost. Therefore, the memory subsystem needs to reserve a part of its time to refresh its
content.

Finally, a memory system has a delay. It takes some time to process a request. But,
this delay is not constant. It depends on the kind of the request. For example, a store
request will need more time than a load request [16]. Since this difference is substantial,
the analysis has to be able to model this behavior.

Not only the memory system, but also the interconnect has some specific characteristics
that are relevant for the analysis.

3.1.3 Interconnect characteristics

The interconnect is modeled by several network elements, connected by wires. These net-
work elements can be buffers, multiplexers, demultiplexers, regulators and so on. For these
elements, two characteristics are important.

First of all, a multiplexer combines several input streams. The order of combining is
determined by the arbitration policy of the multiplexer. These arbitration policies differ
significantly in performance. Therefore, it should be possible to model this policy such
that the influence of the arbitration policy of the schedulers (i.e. the multiplexers) can be
taken into account.

Finally, to handle the complexity of chip design, it should be possible to combine the
network elements easily. Therefore, compositionality is a requirement for the analysis.

In the next sections, the methods of Cruz and Stiliadis are explained in more detail. The
above characteristics are used as selection criteria to select one method as foundation of
the performance analysis method.

3.2 (σ, ρ)

First of all, an overview of the notation used by the method of Cruz [9] is given. After that,
the method of Cruz is further explained and analyzed, using the characteristics described
in the previous section.
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3.2.1 Notation

The following notation is used:
Term Definition

R(t) The instantaneous rate in words
sec for a stream flowing on the

link at time t
R(t) ∼ (σ, ρ) if and only if for all t1 and t2∫ t2
t1

R(t)dt ≤ σ + ρ · (t2 − t1)
σ The burstiness constraint in words

σ ≥ 0 and σ ∈ R
ρ The rate in words

sec at which the traffic is transmitted
ρ ≥ 0 and ρ ∈ R

b A non-decreasing function, with b(t) = (σ + ρ · t)
R(t) ∼ b if and only if for all t1 and t2

∫ t2
t1

R(t)dt ≤ b(t2− t1)
Lk Length of packet k in words

Lk ∈ N
C Maximum rate in words

sec of a network element or a link
C ≥ 0 and C ∈ R

Qρ(R)(t) Represents the backlog in words of a network element at
time t, which accepts the data at a rate of R(t) and transmits
the data at a rate of ρ

D(t) Delay in sec of a network element at time t

Furthermore, the following notation is used:
Term Definition
IA(t) Indicator function of the truth of statement A

IA(t) =
{

1 if A(t)
0 if ¬A(t)

Di Represents the maximum delay in sec for stream i

dj Represents the maximum delay in sec of packet j

3.2.2 Traffic characteristics

The traffic characteristics of section 3.1.1 are used to explain the method of Cruz in more
detail. Unfortunately, Cruz does not describe how to model a request-response stream, nor
how to express the pipeline degree of a stream.

3.2.3 Memory system characteristics

The memory system characteristics of section 3.1.2 are used to explain the method of
Cruz. Unfortunately, Cruz does not describe how to model these characteristics.

3.2.4 Interconnect characteristics

In this section, the interconnect characteristics of section 3.1.3 are used to explain the
method of Cruz in more detail. First, a number of relevant network elements are described.
After that, we explain how to combine those network elements.

3.2.5 Network elements

In [9], Cruz describes the properties of several network elements.
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FIFO

Figure 3.3: FIFO

The first relevant network element is the FIFO-buffer (see figure 3.3). Assume that
Cin ≥ Cout and let the jth packet, j ≥ 1 and j ∈ N, arrive at sj ≥ 0, sj ∈ R, and depart at
tj , such that sj < tj . Furthermore, assume that Rin(t) and Rout(t) represent the rate of
the input respectively the rate of the output stream of the FIFO at time t. Then, according
to [9], the rate of the output stream is

Rout(t) = Cout ·
∞∑

k=1

I{tk≤t<tk+
Lk

Cout
} (3.1)

This means that the rate of the output stream at time t is equal to Cout if at time t a
packet is sent (i.e. there is a packet j such that tj ≤ t < tj + Lj

Cout
). So, at time tj the

output of the jth packet starts. Then, the output rate is equal to its maximum output rate
(i.e. Cout).

Lj

Cout
sec later, the jth packet has been transmitted.

The size of the backlog in the FIFO at time t is denoted by [9]

QCout(Rin)(t) = max
t1:0≤t1≤t

{∫ t

t1

Rin(t)dt− Cout · (t− t1)
}

(3.2)

Finally, the delay of the jth packet (i.e. dj) in the FIFO is determined in [9] as

dj =
1

Cout
·
(

QCout(Rin)(sj)
)

(3.3)

So, this means that the delay of the FIFO is modeled by the size of its backlog.

Multiplexer

The second relevant network element in the method of Cruz is the multiplexer (see figure
3.4). It is assumed that the multiplexer works according to LFCFS (Locally First-Come,
First-Served). This means that for a given input stream, the packets originating from the
input stream are transmitted to the output link in the same order in which they arrive.

Assume that the first input link has a maximum rate of C1, the second one of C2 and the
output link has a maximum rate of Cout, such that C1 = C2 = Cout = C. Furthermore,
assume that R1 ∼ b1 characterizes the input traffic of the first link and R2 ∼ b2 of the
second link. Rout characterizes the output traffic.

Then, the output is determined in [9] by

Rout ∼ bout (3.4)

bout(t) = min
{

Cout · t, b1(t) + b2(t)
}

(3.5)
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Figure 3.4: Multiplexer

Assume that Qi(t) represents the size of the backlog as a result of input stream i in the
multiplexer at time t. Then, the total backlog of the multiplexer at t is according to [9]

Q(t) = Q1(t) + Q2(t) (3.6)

Unfortunately, no information has been found on how to determine Q1(t) and Q2(t) for a
locally FCFS arbitration policy. Only for a general, not locally FCFS type of arbitration
policy, Qi(t) is determined in [9]

Finally, the delay of a multiplexer is determined in [9]. Assume that D1 is the maximum
delay experienced in the multiplexer by the data from input stream 1. Then

D1 ≤
σ2

C − ρ2
+

σ1

C − ρ1
· ρ2

C − ρ2
(3.7)

The proof of it can be found in the appendix of [9]

Arbitration policy of multiplexer

The order of combining several streams is determined by the arbitration policy of the
multiplexer. Therefore, it should be possible to model this arbitration policy.

Unfortunately, no information has been found in the literature on how to express a specific
arbitration policy in the method of Cruz. He only modeled classes of arbitration policies,
like locally FCFS.

Demultiplexer

The next relevant network element is the demultiplexer (see figure 3.5). Assume that data
is “marked” so that the demultiplexer can instantaneously determine via which output
link the input stream has to be transmitted.

Figure 3.5: Demultiplexer

For the demultiplexer, only the output is characterized in [9]. Assume that Rin represents
the input traffic and Ri the output streams. Furthermore, the input link and the output
links have a maximum rate of C. Then,

Rin = R1 + R2 (3.8)
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The propagation delay and the backlog of a demultiplexer are zero, according to [9]

Regulator

The last relevant network element is the (σ, ρ) regulator (see figure 3.6). The working of a
regulator has already been described in section 2.4.1. Assume that the input link and the
output link have equal capacities (i.e. C). Furthermore, assume that the input (i.e. Rin) is
an arbitrary stream. Then, according to [9] and [17], the output (i.e. Rout) is characterized
as

Rout ∼ (σ, ρ) (3.9)

Figure 3.6: (σ, ρ) regulator

The size of the backlog of a regulator is derived in [9] as

Qρ(Rin)(t)− σ = max
t1:0≤t1≤t

{∫ t

t1

Rin(t)dt− ρ · (t− t1)
}
− σ (3.10)

Finally, the delay of the jth packet (i.e. dj) in the regulator, that arrives at sj , is according
to [9]

dj =
1
ρ
·max

{
0,
(
Qρ(Rin)(sj)− σ

)}
(3.11)

So, this means that the delay of a regulator is determined by the size of its backlog.

As has become clear above, the properties of several relevant network elements have already
been determined. These network elements are used to combine into an interconnect. This
is explained in the next section.

3.2.6 Combining elements

To illustrate how to combine the network elements into an interconnect, the next example
is given. Assume the next situation (see figure 3.7) [10].

Figure 3.7: Example of an interconnect
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Assume there are three input streams (i.e. R0
1, R0

2 and R0
3). Traffic from stream 1 and 2

are input to multiplexer 1 (i.e. R0
1 and R0

2), and pass through both multiplexers before
being demultiplexed and exiting the network (i.e. R3

1 and R3
2). Traffic from stream 3 (i.e.

R0
3) enters the network through multiplexer 2 and exits the network (i.e. R2

3) after being
demultiplexed. It is assumed that for k = 1, 2, 3, R0

k ∼ (σk, ρk). Furthermore, all links have
equal capacities (i.e. C).

Then, according to [10] (also see equation 3.4)

R1
1 + R1

2 ∼
(
σ1 + σ2, ρ1 + ρ2

)
(3.12)

Furthermore, let D1 be the upper bound of the delay for stream 1 in multiplexer 1. Then
according to equation 3.7

D1 ≤
σ2

C − ρ2
+

σ1

C − ρ1
· ρ2

C − ρ2
(3.13)

Analog, let D2 be the upper bound of the delay for stream 1 in multiplexer 2. Then
according to equation 3.7

D2 ≤
σ3

C − ρ3
+

σ1 + σ2

C − ρ1 − ρ2
· ρ3

C − ρ3
(3.14)

It is assumed that the demultiplexer has no propagation delay.

Then, the delay for stream 1 is upper bounded by D1 + D2. The delays for the other two
streams can be calculated in a similar way.

Unfortunately, we have not found information in [10] on how to calculate the backlog of
the interconnect of figure 3.7

3.2.7 Applicability of the method of Cruz

The method of Cruz, as partly described in the previous sections, is evaluated using the
characteristics of section 3.1.

As has become clear in the previous sections, no information has been found on how to
model a request-response stream or how to express the pipeline degree of a session.

Furthermore, no information has been found in the literature on how to express the char-
acteristics of a memory system.

Finally, no information has been found on how to express a specific arbitration policy. It is
possible to combine the network elements to model an interconnect. For a specific example,
this is done in the previous section. Unfortunately, only the delays are determined in [10].
No information has been found in [10] on how to determine the backlog.

Concluding, the method of Cruz can be used for the foundation of the performance analysis
method, but the method has to be adapted significantly to meet all requirements.

In the next section, the method of Stiliadis is explained in more detail.

3.3 Latency-Rate Servers

First of all, an overview of the notation used by the method of Stiliadis [22] is given. After
that, the method of Stiliadis is further explained and analyzed, using the characteristics
of section 3.1.
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3.3.1 Notation

The following notation is used (as in section 2.4):

Term Definition
σi The burstiness constraint in words of session i

σi ≥ 0 and σi ∈ R
ρi The rate in words

sec of session i at which the traffic is trans-
mitted
ρi ≥ 0 and ρi ∈ R

Li Length of packet in words of session i
Li ∈ N

C Maximum rate (i.e. capacity) in words
sec of all links and LR

servers
C ≥ 0 and C ∈ R

ΘS
i Latency in sec of session i of server S

Ai(t1, t) The number of arrived data in words of session i in (t1, t)
Wi(t1, t) The number of service in words received by session i in (t1, t)
DS

i Delay in sec of any packet of session i in server S

QS
i (t) Backlog in words of session i in server S at time t

V The number of sessions that share an LR server
V ≥ 1 and V ∈ N

Furthermore, the following notation is introduced:

Term Definition
Lmax The maximum length in words of the packets an LR server

receives

3.3.2 Traffic characteristics

The traffic characteristics of section 3.1.1 are used to explain the method of Stiliadis
in more detail. Unfortunately, in the method of Stiliadis it is not clear how to model a
request-response stream, nor how to express the pipeline degree of a stream.

3.3.3 Memory system characteristics

Just as before, the memory system characteristics of section 3.1.2 are used to explain the
method of Stiliadis in more detail. Again, no information has been found on how Stiliadis
describes these characteristics.

3.3.4 Interconnect characteristics

In this section, the interconnect characteristics of section 3.1.3 are used to explain the
method of Stiliadis in more detail.

3.3.5 Network elements

First, the properties of an LR server are mentioned. After that, several arbitration policies
are explained.
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LR servers

In [22], Stiliadis uses LR servers as network elements. An LR server consists of a multi-
plexer that operates using a specific arbitration policy (see figure 3.8). Each input session
has a queue on its input port of the multiplexer. Multiple LR servers can be connected in
a chain.

As shown in the example of figure 3.8, three producers generate data, that is sent to the
multiplexer. Each producer has a queue (i.e. “Q”) on the input of the multiplexer. The
output of the multiplexer is demultiplexed, before it is sent to one of the four consumers.
Each consumer has a queue on its input to store the input packets temporarily in case the
consumer cannot process the packets immediately.

Figure 3.8: A system consisting of a Latency-Rate server, 3 producers and 4 consumers
[22] (“Q” denotes a queue)

Each input session i of the LR server is represented by a ρi and a σi. Please note that the
sum of the input ρi’s cannot exceed the capacity of the LR server (i.e. C). So,

V∑
i=1

ρi ≤ C (3.15)

The order of forwarding packets of several sessions is determined by the arbitration policy
of the multiplexer. In [22] for several arbitration policies the latency has been determined.
This latency is required to determine the upper bounds for the backlog and the delay.
Therefore, we are looking to the worst case scenario. Please note that in the worst case,
all input sessions of the LR server are transferring the maximum amount of data that is
allowed by their σ and ρ. This worst case scenario is used to determine the latency of a
session. Please note that Stiliadis defined the latency of a session as the maximum amount
of time between the moment the first packet of a busy period of that session has arrived
completely in the scheduler and the moment that packet has left the scheduler completely.

Arbitration policy of a multiplexer

For several arbitration policies the latency has been determined in [22]. These are explained
in this section.
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Round Robin

Round Robin is the basis of several arbitration policies explained below. Round Robin
consists of rounds. In each round, a session gets an amount of service (it is called a “slot”).
The total amount of service of all sessions together in one round is called a “frame”. The
following definitions are used (see figure 3.9).

Definition F is the total number of service in words assigned in a round

Definition φi is the number of service in words assigned to session i in a round

Figure 3.9: Graphical explanation of F and φi. Three sessions receive service. The size of
the blocks represents the amount of service assigned to a particular session

Please note that F =
∑V

i=1 φi.

First-Come, First-Served

First-Come, First-Served (FCFS) is a simple scheduling algorithm. Each packet that ar-
rives at the LR server gets a time-stamp assigned. This time-stamp is the arrival time of
the packet. The packets are serviced according to their arrival times. The problem of this
arbitration policy is that it does not offer any isolation. No finite deterministic bounds in
terms of delay or backlog, independent of the network state and the traffic characterization
of the sessions can be determined [22]. Therefore, no latency can be determined.

Virtual Clock

The Virtual Clock arbitration policy [26] was inspired by Time Division Multiplexing.
This arbitration policy assigns to each packet a “virtual” transmission time, based on the
measured arrival rate of the previous packets of the session and the average arrival rate
of that session. Let AT be the real time in sec a packet arrives. Then, each packet gets
a time stamp (i.e. TSk

i is the time stamp in sec of the kth packet, k ≥ 1 and k ∈ N, of
session i).

To be more specific, the time stamp of the kth packet of session i is calculated using [21]

TSk
i := max

{
AT k

i , TSk−1
i

}
+

Lk
i

ρi
(3.16)

Then, the packets are ordered according to their time stamp values. If the packet arrives
later than expected (i.e. AT > TSk−1

i ), it leaves after a maximum of Lk
i

ρi
sec. If it arrives

earlier (i.e. AT < TSk−1
i ), it leaves at time TSk−1

i + Lk
i

ρi
in the worst case.
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The latency of this arbitration policy is according to [22]

ΘV C
i =

Lmax

C
+

Li

ρi
(3.17)

Please note that for session i a bandwidth of ρi is reserved by the scheduler.

Deficit Round Robin

In the scheduling algorithm Deficit Round Robin (DRR), each session has its own “deficit
counter” [20]. Initially, those values are 0. When a packet arrives, it is added to the queue
of its session. The nonempty queues are served in a Round Robin fashion. Each time a
particular queue is being served, its deficit counter increases by some given value called
the “quantum”. Then, Deficit Round Robin serves a packet at the head of a nonempty
queue if the deficit counter is not smaller than the size of the packet. The deficit counter
decreases by the size of the packet that is served.

If the size of the packet is larger than the deficit counter, the packet is served the next
round. If the queue is empty, the deficit counter is set back to 0.

In order to determine F and φi, the following formulas are used [14], [22]

ρmin = min
i:1≤i≤V

{
ρi

}
(3.18)

wi =
ρi

ρmin
(3.19)

φi = wi · Lmax (3.20)

F =
V∑

i=1

φi (3.21)

Session i gets each round a quantum of φi words. φi is determined by the ratio of ρi and
the minimum ρ of the sessions the LR server receives and by Lmax. The sum of the φ’s is
the size of a single frame.

Please note that the size of the frames and the slots are not equal each round.

Then, as determined in [22], the latency is

ΘDRR
i =

3 · F − 2 · φi

C
(3.22)

Please note that for session i a bandwidth of φi

F · C is reserved by the scheduler.

Weighted Round Robin

Weighted Round Robin (WRR) is a special case of Round Robin. In each round, session
i is allowed to sent φi words. φi is always an integer multiple (i.e. wi) of the size of a cell
(i.e. Lc) [21]. In Weighted Round Robin a cell is a packet of fixed size. Please note that in
contrast to Deficit Round Robin, wi ∈ N.

Therefore, the following formulas are used [22]

φi = wi · Lc (3.23)

F =
V∑

i=1

φi (3.24)
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This means that in each round, session i is allowed to send φi words. The sessions are
serviced in a Round Robin fashion.

Then, the latency is according to [22]

ΘWRR
i =

F − φi + Lc

C
(3.25)

Please note that for session i a bandwidth of φi

F · C is reserved by the scheduler.

3.3.6 Combining LR elements

Combining the LR servers is done by making use of the formulas of section 2.4.

Figure 3.10: Traffic modeling of a combination of LR servers

Assume that b1 is the input traffic of session i of LR server 1 and that this traffic is
token-bucket-shaped. This means that it can be characterized by (σi, ρi), such that

Ai(t1, t) ≤ σi + ρi · (t− t1) (3.26)

for 0 ≤ t1 ≤ t. Furthermore, assume that b2 is the output of LR server 1 and the input of
LR server 2. Finally, b3 is the output of LR server 2 (see figure 3.10). The jth LR server,
j ≥ 1 and j ∈ N, has a latency of Θj

i that depends on the arbitration policy of the LR
server and characteristics of the input session (see [22]). Please note that Stiliadis assumed
in [22] that packet departures are considered as impulses (i.e. events).

c1 is the upper bound of the input session b1 (see equation 3.26). Therefore, c1 is also the
upper bound for b2 and b3. Furthermore, b1 is lower bounded by c2 because a busy period
is assumed (see section 2.4). LR server 1 has a latency of Θ1

i , so by definition of an LR
server, b2 is lower bounded by c3. For the same reason, b3 is lower bounded by c4.

Then, the delay can be seen as the difference in time between the output and the input
(see figure 3.10). In case of LR server 1, this is the horizontal difference between b1 and b2.
The maximum delay of LR server 1 is the horizontal difference between the upper bound
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of b1 (i.e. c1) and the lower bound of b2 (i.e. c3). So, the maximum delay for session i in
LR server 1 (i.e. D1

i ) is upper bounded by

D1
i ≤ horizontal distance between c1 and c3 (3.27)

= horizontal distance between c1 and c2

+ horizontal distance between c2 and c3 (3.28)

=
σi

ρi
+ Θ1

i (3.29)

Adding another LR server increases the maximum delay with the latency of the extra LR
server.

The backlog can be seen as the vertical distance between the input and the output (see
figure 3.10). The maximum backlog for session i of LR server 1 is the vertical difference
between the upper bound of b1 (i.e. c1) and the lower bound of b2 (i.e. c3). So, the maximum
backlog of session i in LR server 1 (i.e. Q1

i ) is upper bounded by

Q1
i ≤ vertical distance between c1 and c3 (3.30)

= vertical distance between c1 and c2

+ vertical distance between c2 and c3 (3.31)
= σi + ρi ·Θ1

i (3.32)
= ρi ·D1

i (3.33)

Adding another LR server will increase the required amount of backlog as follows. For the
extra LR server with latency Θ2

i the backlog is upper bounded by σi + ρi ·Θ1
i plus ρi ·Θ2

i .

Finally, adding an LR server increases the burstiness constraint. Whereas b1 is bounded
by c1 and c2, b2 is bounded by c1 and c3. So, the burstiness constraint of b2 is bounded
by the maximum backlog of LR server 1. The output of session i of LR server 1 can be
characterized as

(σi + Θ1
i · ρi, ρi). (3.34)

Adding another LR server will increase the burstiness constraint with the product of the
latency of the extra LR server and ρi.

In general, for a chain of m LR servers, m ≥ 1 and m ∈ N, with a total latency of∑m
j=1 Θ(Sj)

i , the following formulas are derived [22]
• Delay for session i in the chain of LR servers

Di ≤
σi

ρi
+

m∑
j=1

Θ(Sj)
i (3.35)

• Backlog for session i in the kth LR server, 1 ≤ k ≤ m and k ∈ N, in the chain of
LR servers

Q
(Sk)
i ≤ σi + ρi ·

k∑
j=1

Θ(Sj)
i (3.36)

• Output of session i after the kth LR server, 1 ≤ k ≤ m and k ∈ N, in the chain of
LR servers

(σi + ρi ·
k∑

j=1

Θ(Sj)
i , ρi) (3.37)
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In [22], Stiliadis claimed that the end-to-end delay bounds, compared to the method of
Cruz, are tighter. This is claimed to be the case, because the arbitration policy of the
schedulers is used to determine the delay, instead of only the property of LFCFS as Cruz
did. Unfortunately, no proof has been found for this claim.

As has become clear above, in the method of Stiliadis it is easy to combine several LR
servers. Now, we describe some improvements and extensions by Stiliadis of the above
formulas.

Improved delay bounds

Latencies of LR servers are determined by the assumption that a packet has been serviced
when its last word has left the server. Because of this assumption (i.e. that a packet
leaves as an impulse) it is allowed to model the arrival of the packet in the next server
as an impulse as well. To compute the end-to-end delay of a session, only the time at
which the last word of a packet leaves the last server is interesting. So, an improved delay
bound can be determined. For a chain of m LR servers, m ≥ 1 and m ∈ N, with a total
latency of

∑m
j=1 Θ(Sj)

i , the offered service is bounded in the first m − 1 servers using the
normal method. For the last server, the delay is calculated based on the moment a packet
completes service.

Then, according to [22], the total delay of session i is

Di ≤
σi

ρi
+

m∑
j=1

Θ(Sj)
i − Li

ρi
. (3.38)

Figure 3.11: Improved delay bounds

This is indicated in figure 3.11. b1 represents the input traffic of the first LR server, b2

the output traffic of the first LR server and the input traffic of the second LR server.
b3 represents the output of the second LR server. c4 indicates the lower bound of the
guaranteed service of the second LR server. That means that the input, that is received
between c1 and c2, has to be serviced (i.e. sent) before c4. The last moment that the first
packet of figure 3.11 can be serviced by the second LR server is at t1 and not at t2. This is
because c4 is the lower bound of the service of the LR server. Therefore, the delay bound
can be reduced by Li

ρi
.
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3.4. Conclusion

Propagation Delay

Until now, it is assumed that the propagation delay in the network is zero. If this is not
the case, then according to [22], the total delay of session i is

Di ≤
σi

ρi
+

m∑
j=1

Θ(Sj)
i − Li

ρi
+

m−1∑
j=1

pj
i , (3.39)

where pj
i is the propagation delay between LR server j and j + 1.

3.3.7 Applicability of the method of Stiliadis

The method of Stiliadis, as partly described in the previous sections, is evaluated using
the characteristics of section 3.1.

As has become clear in the precious sections, no information has been found on how to
model a request-response stream or how to express the pipeline degree of a session.

Furthermore, no information has been found in the literature on how to express the char-
acteristics of a memory system.

Finally, several arbitration policies can be expressed in the method of Stiliadis. Using these,
it is possible to combine the LR servers into an interconnect. Formulas to determine the
backlog, as well as the delay and the output of the LR servers are available.

So, the method of Stiliadis can be used for the foundation of the required performance
analysis method, but the method has to be adapted significantly to meets all requirements.

3.4 Conclusion

As has become clear in the previous sections, none of the methods can be used for the
performance analysis method without adaptation.

Looking to the traffic characteristics, both methods do not have the ability to model a
request-response stream. Furthermore, in both methods it is not clear how to express the
pipeline degree of a session.

In both methods, no information is available on how to model the change of packet sizes,
a memory refresh or the processing time of a request. This should be done by applying a
method in a smart way or by making some changes.

Looking to combining the network elements, for both methods general formulas are avail-
able. In both methods combining elements is possible, but the method of Stiliadis is of a
higher aggregation level. Stiliadis looks to the combination of a multiplexer with an ar-
bitration policy, queues and a demultiplexer, whereas Cruz looks to individual, fine-grain
network elements.

Furthermore, in the method of Stiliadis, the properties of several policies of scheduling
have already been determined. By that, it is possible to model the influence of different
policies of a scheduler. This is not the case in the method of Cruz.

For both methods, formulas are available how to combine the elements into an interconnect.
Because Stiliadis looks at a higher aggregation level, he claims in [22] that his bounds
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3.4. Conclusion

are tighter. Because of the utilization of the interconnect, this can be very important.
Unfortunately, we have not found a proof of that claim.

Finally, the method of Stiliadis gives by definition of an LR server bandwidth guarantees
for the sessions. This is important for the compositionality of the analysis.

So, we have decided to use the method of Stiliadis as foundation for the required per-
formance analysis method. Compositionality is very important for the analysis. Future
interconnects of SoCs will become more and more complex and will consist of many dif-
ferent elements. By using Stiliadis, it is easy to combine several (different) schedulers.

Unfortunately, still some characteristics of a SoC have not been fulfilled, like

• The modeling of a request-response stream
• The use of a pipeline degree
• The modeling of memory system characteristics (the change of packet sizes, a

memory refresh and the processing time of a request)

In the next chapter, some changes and extensions are made to the method of Stiliadis to
fulfill the above requirements. Furthermore, several ways to improve the delay bounds and
the maximum queue sizes are explained.
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4.1. Introduction

4.1 Introduction

For the performance analysis method of SoC architectures, the method of Stiliadis has
been selected as a foundation. However, this method has to be adapted and extended to
meet all requirements described in chapter 3. First, some general characteristics are in-
troduced into the method of Stiliadis. After that, the traffic characteristics, the memory
system characteristics and the interconnect characteristics described in the previous chap-
ter are introduced into the performance analysis method. Then, a number of improvements
are introduced to make the performance bounds tighter. Finally, the applicability of the
performance analysis method is explained (see section 3.3).

In appendix A the validation of the adaptations and extensions described in this chapter,
is given. The notation and definitions of Stiliadis are used for the performance analysis
method.

Furthermore, the following notation is used:

Notation Explanation
x The number of words that have to be transmitted

x ≥ 1 and x ∈ N
m The length of a chain of LR servers

m ≥ 1 and m ∈ N
k One of the LR servers of the chain of m LR servers

1 ≤ k ≤ m and k ∈ N
m′ The length of another chain of LR servers

m′ ≥ 1 and m′ ∈ N
k′ One of the LR servers of the chain of m′ LR servers

1 ≤ k′ ≤ m′ and k′ ∈ N
Dproc The processing delay of a request of an LR server

Dproc ≥ 0 and Dproc ∈ R
n The pipeline degree

n ≥ 1 and n ∈ N
V The number of sessions (producers), that share a scheduler

V ≥ 1 and V ∈ N

4.2 General characteristics

To introduce the traffic characteristics, the memory system characteristics and the inter-
connect characteristics into our performance analysis method, some general characteristics
have to be introduced. First, the calculation of the delay bound is changed. After that,
the impulse assumption of Stiliadis is dropped.

4.2.1 Total delay

In the method of Stiliadis, the delay is determined for a packet entering a chain of LR
servers. This is equivalent to the delay for σ words. In practice, the delay has to be
calculated for more than σ words.

Assume that x words have to be transmitted. The data is sent through a chain of m LR
servers with a total latency of

∑m
j=1 Θ(Sj). Assume that the input session (produced by

subsystem 1) of the chain is represented by b1 and that the output session (consumed by
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4.2. General characteristics

Figure 4.1: Delay for x words

subsystem 2) is represented by b2 (see figure 4.1). Please note that b1 is upper bounded
by c1 and lower bounded by c2, and b2 is lower bounded by c3.

The x words are transmitted by making use of packets of size L. The delay of the LR
servers can be calculated by

D ≤ t1 − t0 (4.1)

= t2 −
L

ρ
(4.2)

=
x

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
(4.3)

≤
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
(4.4)

This is proved in lemma A.1.1 of appendix A.

The formula is similar to formula 3.38, but now d x
Le ·

L
ρ is used instead of σ

ρ , to determine
the delay of multiple words. Please note that d x

Le ·
L
ρ is used for the case that x words is

not an integer multiple of the size of the packets. Furthermore, the last packet cannot be
processed after t1. Otherwise, b2 would cross c3. By definition of an LR server, this is not
allowed.

Also note that the backlog can still be calculated by formula 3.36.

As has become clear, to send x words the delay is no longer determined by σ.

4.2.2 The impulse assumption

In the method of Stiliadis, it is assumed that packet arrivals and departures are considered
as impulses. His analysis starts when a packet has completely arrived in the LR server.
Because the delay is required for sending packets from subsystem 1 via a chain of LR
servers to subsystem 2, the arriving time of the first packet in the first LR server is part
of the total delay.
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4.2. General characteristics

Furthermore, by dropping the impulse assumption, the influence of the capacity can be
shown in the graphs. By selecting a smaller capacity, the delay will increase and this should
be visible in the graphs.

Therefore, the impulse assumption is dropped. The consequences are analyzed and taken
care of. The result is explained below.

As explained in the previous section, the delay for x words is (see figure 4.1 and equation
4.4)

D ≤
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
(4.5)

Stiliadis assumed in [22], in contrast to Cruz in [9], that a packet is not considered as
departed the scheduler until its last bit has left the scheduler. He considered the packet
arrivals and departures as impulses. To be more general, for our performance analysis
method it is assumed that this is not the case. That means that it takes some time to send
or receive a packet.

Figure 4.2: Delay for x words, without the impulse assumption

Then, the situation of figure 4.2 is applicable. Subsystem 1 sends packets (represented by
b1) via a chain of m LR servers, with a total latency of

∑m
j=1 Θ(Sj), to subsystem 2. b2

represents the output traffic of the chain. Please note that t1 − t0 = t1 = L
C .

Furthermore, a distinction has been made between the first bit and the last bit of a packet.
This means that the arriving and departing time of a packet is included in the analysis.
The starting point in the analysis of Stiliadis is the moment the first packet has arrived
completely. In our performance analysis method, the arriving time of the first packet is
included.

The latency of a session has not been changed, due to this adaptation. It is still the
maximum amount of time between the moment the first packet of that session has arrived
completely in the scheduler and the moment that packet has left the scheduler completely.
Then, the arriving time of a packet has to be taken into account only once for the total
delay.
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Then, the total delay for the x words is

D ≤ t4 − t0 (4.6)
= (t5 − t0)− (t5 − t4) (4.7)
= (t2 − t0) + (t5 − t2)− (t5 − t4) (4.8)

=
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) −
(

L

ρ
− L

C

)
(4.9)

=
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(4.10)

This is proved in lemma A.1.2 of appendix A.

Dropping the impulse assumption increases the delay for sending x words with L
C (see

equation 4.4).

Please note that the backlog of the kth LR server in a chain of LR servers can still be
calculated by

Qk ≤ σ + ρ ·
k∑

j=1

Θ(Sj) (4.11)

4.2.3 Determine σ and ρ

To use the method of Stiliadis, for each session σ and ρ have to be determined.

Assume that a session transmits periodically x words and that the length of the period
is ∆t ≥ 0 sec. Furthermore, assume that the schedulers have a capacity of C. Finally,
assume that x words is an integer multiple of the length of the packets. Then, the input
can be as is shown in figure 4.3.

Figure 4.3: x words are sent in one burst

Please note that in figure 4.3, x words are sent in one burst. This will not always be the
case. It is also possible that x words are sent in several smaller bursts (see figure 4.4).

Even a different σ and ρ can be used, for the same input traffic (see figure 4.5).

To determine ρ, x
∆t ≤ ρ ≤ C is used. Because C is the capacity of the LR servers, it is not

possible that ρ > C. Furthermore, if x
∆t > ρ, then σ goes to ∞ to be able to characterize

the session. This is the case, because x words are sent every ∆t sec.
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4.3. Traffic characteristics

Figure 4.4: x words are sent in multiple small bursts

Figure 4.5: x words are sent in multiple small bursts, using a different σ and ρ

To determine σ, the next bounds can be used

L− ρ · L

C
≤ σ ≤ x− ρ · x

C
(4.12)

This is the case, because at t0 (see figure 4.3), x words can be sent. If x words are sent
directly in one burst, the last word is sent at time x

C (i.e. at t1). C is the maximum rate of
the schedulers, so a higher rate is not possible. Then, σ is upper bounded (see figure 4.3)

σ + ρ · (t1 − t0) ≤ C · (t1 − t0) (4.13)
σ + ρ · (t1 − t0) ≤ x (4.14)

σ + ρ · x

C
≤ x (4.15)

σ ≤ x− ρ · x

C
(4.16)

Cruz already proved in [9] that L− ρ · L
C ≤ σ (see equation 2.7).

Please note that if ρ ≈ C, σ ≈ 0.

So, the value of σ is lower bounded by L − ρ · L
C and upper bounded by x − ρ · x

C . This
means that C impacts the minimum and the maximum value of σ.

4.3 Traffic characteristics

In the previous section, some general characteristics are introduced into our performance
analysis method. In this section, the traffic characteristics of section 3.1 are introduced
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into our performance analysis method.

4.3.1 Request-response stream

Until now, all communication was restricted to request-only streams. This means that the
requests flow from one subsystem (the producer), via the communication infrastructure
to another subsystem (the consumer). In some cases, a subsystem sends requests via the
communication infrastructure to a subsystem and receives responses from that subsystem
via the communication infrastructure. An example of this are the load requests and the
load responses of a memory system. Therefore, the total delay of a request-response stream
has to be determined.

Assume the next situation (see figure 4.6). Subsystem 1 produces requests. These requests
are sent via a chain of m LR servers, with a total latency of

∑m
j=1 Θ(Sj)

req , to subsystem
2. Subsystem 2 produces responses to the requests and sends these responses via a chain
of m′ LR servers, with a total latency of

∑m′

j=1 Θ(Sj)
resp, back to subsystem 1. Furthermore,

assume that subsystem 2 has a delay of Dproc to produce a response, after a request is
received. Finally, for each request exactly one response is generated.

Figure 4.6: Request-response stream

Assume that the request flow (i.e. the input of the first chain of the LR servers) is charac-
terized by b1, σreq, ρreq and Lreq. Assume that the maximum rate of the communication
infrastructure is C. Furthermore, assume that the response flow (i.e. the input of the sec-
ond chain of LR servers) is characterized by b3, σresp, ρresp and Lresp. Finally, assume
that Lreq

ρreq
= Lresp

ρresp
. Because L denotes the length of a packet in words and ρ represents the

number of words per sec, ρreq and ρresp represent the same number of packets per time
unit.

Please note that in figure 4.6 data is expressed in number of packets.

The request flow is bounded by c1 and c2. By definition of LR server, these requests
arrive at subsystem 2 before c4. Then, at most Dproc later, the responses are sent back
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to subsystem 1. Therefore, the response session b3 is lower bounded by c6. Finally, the
responses arrive at subsystem 1 before c8, because of the definition of LR servers.

To determine the total delay, assume that x words of requests have to be sent. Please note
that the number of requests is equal to the number of responses. Then, the total delay is
the period of time between the first request is sent (i.e. t0) and the last response is received
at subsystem 1 (i.e. t5). So,

Dtotal ≤ t5 − t0 (4.17)
= (t1 − t0) + (t5 − t1) (4.18)

=
⌈

x

Lreq

⌉
· Lreq

ρreq
+

m∑
j=1

Θ(Sj)
req − Lreq

ρreq
+

Lreq

C
+ (t5 − t1) (4.19)

=
⌈

x

Lreq

⌉
· Lreq

ρreq
+

m∑
j=1

Θ(Sj)
req − Lreq

ρreq
+

Lreq

C
+ (t2 − t1) + (t5 − t2) (4.20)

=
⌈

x

Lreq

⌉
· Lreq

ρreq
+

m∑
j=1

Θ(Sj)
req − Lreq

ρreq
+

Lreq

C
+ Dproc + (t5 − t2) (4.21)

=
⌈

x

Lreq

⌉
· Lreq

ρreq
+

m∑
j=1

Θ(Sj)
req − Lreq

ρreq
+

Lreq

C
+ Dproc

+ (t5 − t4) + (t4 − t2) (4.22)

=
⌈

x

Lreq

⌉
· Lreq

ρreq
+

m∑
j=1

Θ(Sj)
req − Lreq

ρreq
+

Lreq

C
+ Dproc

+
Lresp

C
+

m′∑
j=1

Θ(Sj)
resp (4.23)

As has become clear, the total delay consists of three parts. First of all, a normal delay of
sending x words (see equation 4.10). After that, the last request packet has to be processed
by subsystem 2. This takes at most Dproc. Finally, the last response has to be sent back
to subsystem 1. This is equal to the delay of sending one packet.

The backlog is determined on the standard way. For the request session, the backlog of
the kth LR server in the first chain of LR severs is bounded by

Qk
req ≤ σreq + ρreq ·

k∑
j=1

Θ(Sj)
req (4.24)

For the response session, the same formula can be used. The backlog of the k′th LR server
in the second chain of LR severs is bounded by

Qk′
resp ≤ σresp + ρresp ·

k′∑
j=1

Θ(Sj)
resp (4.25)

So, the total delay for a request-response stream is the combination of the delay of two
sessions and the processing time (i.e. Dproc) of a request. The formulas for the backlog do
not change.
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4.3.2 Pipeline degree

Until now, there was no limitation on the number of packets in flight (i.e. the number of
outstanding requests). But, for most subsystems the number of packets in flight is limited.
Most subsystems are not capable of having a large number of outstanding requests. They
have a maximum number of outstanding requests. This maximum number of requests or
packets of a subsystem in flight is called the “pipeline degree”. This is an extra char-
acteristic of the traffic and can have a significant impact on the delay and the backlog.
Please note that the requests of a particular subsystem can be distributed over a chain
of LR servers. Furthermore, a higher pipeline degree can be used to lower the delay of a
session. In this section, the influence of the pipeline degree for the delay and the backlog
is determined.

Assume that subsystem 1 outputs a session (see figure 4.7). This session is characterized
by b1, σ, ρ and L. The packets of this session are sent via a chain of m LR servers, with a
total latency of

∑m
j=1 Θ(Sj), to subsystem 2. Subsystem 2 processes the packets. Assume

that b2 represents the input traffic of subsystem 2. Finally, assume that no packets are
sent back.

Figure 4.7: Pipeline degree for a request-only stream

For this example, assume that the pipeline degree is equal to 3. That means that when
the first packet has been received by subsystem 2 (worst case at t1), the fourth packet can
be sent by subsystem 1, but not sooner.

For the first three packets, b2 is lower bounded by c3. By definition of LR servers, these
packets cannot arrive later than c3. When the first packet is received by subsystem 2 (i.e.
worst case at t1), the fourth packet can be sent. This process continues until all packets
are sent.

Please note that the burstiness constraint of b1 depends on the pipeline degree. In the
case that the pipeline degree is equal to one, then at most one packet can be in flight (i.e.
σ ≤ L · (1− ρ

C )). In general, if n is the pipeline degree, then

σ ≤ n · L ·
(
1− ρ

C

)
(4.26)

56



4.3. Traffic characteristics

This is the case, because at most n packets can be sent in one burst (see section 4.2.3).

Assume that x words have to be sent, using packets of size L. Furthermore, assume that
n is the pipeline degree. Then, the first packet is received at

D1 ≤ t1 − t0 (4.27)

=
L

C
+

m∑
j=1

Θ(Sj) (4.28)

In case that n = 1, the second packet departs at subsystem 1, when the first packet arrives
at subsystem 2. So, the first two packets are received at

D2 ≤ 2 ·D1 (4.29)

In case that n ≥ 2, the maximum delay can be optimized (see figure 4.7). Then, the first
two packets are received at

D2 ≤ (t1 − t0) +
L

ρ
(4.30)

= D1 +
L

ρ
(4.31)

In case that n = 3, the fourth packet can be sent after receiving the first packet. Then,
b1 is lower bounded by c′2 and a second period of D1 starts. So, the first five packets are
received at (see figure 4.7)

D5 ≤ t3 − t0 (4.32)
= (t1 − t0) + (t3 − t1) (4.33)
= D1 + (t2 − t1) + (t3 − t2) (4.34)

= D1 + D1 +
L

ρ
(4.35)

In general, assume that n is the pipeline degree and x words have to be received. Then,
the maximum delay is

Dtotal ≤
⌈

x

n · L

⌉
·
(

L

C
+

m∑
j=1

Θ(Sj)

)

+
(⌈

x

L

⌉
− n ·

(⌈
x

n · L

⌉
− 1
)
− 1
)
· L

ρ
(4.36)

=
⌈

x

n · L

⌉
·D1 +

(⌈
x

L

⌉
− n ·

(⌈
x

n · L

⌉
− 1
)
− 1
)
· L

ρ
(4.37)

This is the case, because x words have to be sent. A maximum of n packets of L words
(i.e. n ·L words) can be in flight. Then, there are d x

n·Le periods of D1. In total, d x
Le packets

have to be received. After d x
n·Le periods of D1, at least n · (d x

n·Le − 1) + 1 packets have
been received. This is the case, because at the end of the mth period of D1, n · (m− 1)+1
packets have already been received, otherwise the next period could not start. Then, at
most d x

Le − n · (d x
n·Le − 1)− 1 packets still have to be received. This takes at most L

ρ for
each packet.
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Please note that d x
Le−n ·

(
d x

n·Le− 1
)
− 1 < n. This means that after d x

n·Le periods of D1,
at most (n−1) packets have to be received. This is proved in lemma A.1.3 of appendix A.

If n is large, Dtotal converges to d x
Le ·

L
ρ +

∑m
j=1 Θ(Sj) − L

ρ + L
C (see equation 4.10). This

is proved in lemma A.1.4 of appendix A.

In the case that

D1 =
L

C
+

m∑
j=1

Θ(Sj) < n · L

ρ
(4.38)

the period of D1 is not long enough to send n packets at rate ρ. Then, formula 4.10 has
to be used to calculate the delay.

Finally, the upper bound for the backlog can still be calculated by equation 4.11.

The above formulas are derived for a request-only stream. In case of a request-response
stream, the same analysis can be applied.

Assume the same situation as in the previous section (see figure 4.6), only this time the
number of packets in flight is limited (see figure 4.8).

Figure 4.8: Pipeline degree for a request-response stream

Assume that n ≥ 2 is the pipeline degree for both chains together (i.e. the number of
requests that can be issued depends on the number of responses that have been received).
Then, the first request and response have a delay of

D1 ≤ t1 − t0 (4.39)

=
Lreq

C
+

m∑
j=1

Θ(Sj)
req + Dproc +

m′∑
j=1

Θ(Sj)
resp +

Lresp

C
(4.40)

The first two packet requests and responses have a delay of

D2 ≤ Lreq

C
+

m∑
j=1

Θ(Sj)
req +

Lreq

ρreq
+ Dproc +

m′∑
j=1

Θ(Sj)
resp +

Lresp

C
(4.41)

= D1 +
Lreq

ρreq
(4.42)

This means that at t0, the first request is sent. The response to this request is received by
subsystem 2 at t1 or earlier. The time between t0 and t1 is equal to D1. Then, the next
response is received within Lreq

ρreq
= Lresp

ρresp
sec.
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4.4. Memory system characteristics

Assume that n is the pipeline degree. Then, x words of requests and responses to the
requests have a maximum delay of (see equation 4.36, using equations 4.40 and 4.42)

Dtotal ≤
⌈

x

n · Lreq

⌉
·
(

Lreq

C
+

m∑
j=1

Θ(Sj)
req + Dproc +

m′∑
j=1

Θ(Sj)
resp +

Lresp

C

)

+
(⌈

x

Lreq

⌉
− n ·

(⌈
x

n · Lreq

⌉
− 1
)
− 1
)
· Lreq

ρreq
(4.43)

=
⌈

x

n · Lreq

⌉
·D1 +

(⌈
x

Lreq

⌉
− n ·

(⌈
x

n · Lreq

⌉
− 1
)
− 1
)
· Lreq

ρreq
(4.44)

Please note that D1 is equal to t1 − t0 in figure 4.8.

In case that

D1 =
Lreq

C
+

m∑
j=1

Θ(Sj)
req + Dproc +

m′∑
j=1

Θ(Sj)
resp +

Lresp

C
< n · Lreq

ρreq
(4.45)

the period of D1 is not long enough to send n request packets at rate ρreq. Then, formula
4.23 has to be used to calculate the delay.

The formulas for the backlog (see equations 4.24 and 4.25) do still apply.

As has become clear above, the delay may change significantly by introducing the pipeline
degree. This in contrast to the backlog.

4.4 Memory system characteristics

In this section, the memory system characteristics of section 3.1 are introduced into our
performance analysis method. A memory system is modeled as is shown in figure 4.9.
First, the influence of the change of the packet size from a request packet to a response
packet is discussed. After that, the refresh requirement of DRAM is discussed. Finally, the
influence of the processing time of a request is discussed.

Figure 4.9: Write and read requests (of size Lreq) enter the memory system and responses
(of size Lresp) leave the memory system

4.4.1 Packet size change

When a load request is sent to a memory system, the memory system sends one load
response back. This is a request-response stream, as explained in section 4.3.1. But, the
size of a request packet is not equal to the size of a response packet. The derived delay
bound of section 4.3.1 has already anticipated this situation. Therefore, the formulas of
the request-response stream can be used without any adaptation.
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4.4.2 Refresh requirement

In case a DRAM is used as memory system, the data stored in the DRAM has to be
refreshed frequently. Therefore, time has to be reserved periodically to refresh the content
of the memory system.

A DRAM memory system consists of two parts, the DRAM memory cells and the DRAM
controller. The memory cells of a DRAM consist of capacitors. These capacitors leak
charge. To overcome this problem, the capacitors have to be recharged periodically.

A DRAM controller is the scheduler that determines the order of the memory requests. So,
the DRAM controller should periodically sent a refresh request to the DRAM, to recharge
the capacitors. Therefore, an extra traffic session for the DRAM controller is introduced.
Assume that a refresh request packet has a size of Lrefresh and the memory system has a
maximum rate of C. Furthermore, assume that each Trefresh ≥ 0 sec a refresh has to be
executed by the DRAM. This refresh session has the following characteristics (see section
4.2.3)

σrefresh ≥ Lrefresh ·
(
1−

ρrefresh

C

)
(4.46)

ρrefresh ≥
Lrefresh

Trefresh
(4.47)

Then, periodically a refresh request is sent to the DRAM.

4.4.3 Packet stretcher

In the method of Stiliadis, the delays depend on the size of the packets. Unfortunately,
the time a memory system requires to process a request does not depend on the size of
the request, but on the kind of the request. A write request will take more time than
a read request [16]. Also, a read request for 128 bytes will take more time than a read
request for 32 bytes. Assume that the size of a request is L and the maximum rate of the
DRAM memory system is C. Then, L

C sec are reserved by the DRAM controller to process
the request without any adaptations to the derived formulas. Assume that Treq sec are
required by the DRAM to process the request. Then, L

C sec should be equal to Treq sec,
but L

C sec is usually much smaller than Treq sec. Therefore, the DRAM memory controller
is not an LR server. So, our performance analysis method has to be adapted.

There are several ways to overcome this problem.

One option is to use a propagation delay (see figure 4.10). Unfortunately, this is not correct.
A propagation delay only represents the delay between two subsystems. The problem is
that the DRAM cannot be seen as a pipeline, and therefore the DRAM is not long enough
reserved by making use of a propagation delay. This means that the next request is already
sent by the DRAM controller to the DRAM, although the DRAM has not processed the
previous request completely. So, the next request does not wait long enough, before the
DRAM is available again.

Another possibility is to change the maximum rate of the memory (i.e. C ′), such that L
C′

is equal to the processing time of the request (i.e. Treq). This is also not a good option,
because load and store requests do not scale with the same coefficient, although these have
the same packet size. A store request requires more processing time than a load request
[16]. Using this adaptation, the delay and queue bounds are too relaxed.

An alternative is to increase the size of a request, when it is sent. Then, the requests are
enlarged, such that the size (i.e. L′) represents the processing time of the memory system
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4.4. Memory system characteristics

Figure 4.10: Multiplexer of the DRAM controller (“D” denotes a propagation delay)

(i.e. L′

C = Treq). Then, the calculated delays and queue sizes for all LR servers are not
tight anymore. This is the case, because for all schedulers L′

C sec are reserved to send the
request, instead of L

C sec. So, it should be the case that the packets are only enlarged with
regard to a DRAM controller. If it is a regular scheduler, the normal packet size should
be used.

So, a packet stretcher [13] is introduced. A packet stretcher temporarily changes the size of
the request packets, such that the time reserved for the request is equal to the processing
time of the request. Then, the output request packets of the packet stretcher have a length
of L′ = C · Treq instead of L. Please note that by changing the size of the request packets,
the latency of this session in the DRAM controller changes. Now, enough time is reserved
to process the request by the DRAM, before the DRAM controller sends the next request
to the DRAM.

Please note that by changing the size of the request packets, the σ and the ρ of the request
session also change (see table 4.1). This is the case because the number of packets per time
unit remains constant, but the size of the packets changes. Then, ρ scales with the ratio
between L and L′ (this is proved in lemma A.1.5 of appendix A). For the burstiness
constraint of the session, it is more complicated. First, the original maximum burst size is
determined (i.e. σ

1− ρ
C

). After that, the new burstiness constraint is calculated by making

use of the new packet size (i.e. L′

L ) and the adapted ρ (i.e. L′

L · ρ). This is proved in lemma
A.1.6 of appendix A.

Stretcher in Stretcher out

Packet size L L′

Rate ρ ρ · L′

L

Burstiness constraint σ σ
1− ρ

C
· L′

L ·
(
1−

L′
L
·ρ

C

)
Table 4.1: Influence of a packet stretcher on the L, ρ and σ of a session

To use the packet stretcher, every input session of the DRAM controller gets a stretcher.
These are located between the queues and the multiplexer (see figure 4.11). The memory
controller (i.e. the DRAM controller) receives the requests. Then, the arbitration policy of
the multiplexer of the controller determines the order in which the requests are performed
by the DRAM. The requests are forwarded to the DRAM. There, a response can be
generated and sent back.

Please note that the size of the request packet in the packet stretcher is only virtually
changed. Also note that by making use of a packet stretcher, only the latencies of the
DRAM controller change, such that the next request is forwarded to the DRAM as soon
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Figure 4.11: DRAM memory system (“P” denotes the arbitration policy, “S” denotes a
stretcher, “Q” denotes a queue, “R” denotes the refresh session)

as the DRAM is available. This means that the output of the packet stretcher is only used
for determining the latency of the DRAM controller.

So, by adding a packet stretcher, enough time is reserved for each request to be processed
by the DRAM. Then, the DRAM controller can be seen as an LR server.

4.5 Interconnect characteristics

The interconnect consists, according to the model of Stiliadis, of LR servers. These LR
servers can easily be combined in a chain. Stiliadis has introduced a number of arbitration
policies for the LR servers. Unfortunately, some typical arbitration policies of schedulers
for a SoC have not been introduced into the method of Stiliadis. Therefore, Round Robin
(two variants), TDMA and Fixed Priority are introduced into our performance analysis
method in this section. After that, an overview of the properties of all arbitration policies
described in this thesis is given.

Figure 4.12: A system consisting of a Latency-Rate server, 3 producers and 4 consumers
[22] (“Q” denotes a queue)
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Please remember the working of an LR server (see figure 4.12). Several producers generate
data, that is sent to the LR server. The arbitration policy of the LR server determines
the order of the output packets. The latency of a session is the maximum amount of time
between the moment the first packet of a busy period of that session has arrived completely
in the scheduler and the moment on which that packet has left the scheduler completely.
This latency is used to determine the upper bounds for the delay and the backlog. So,
the worst case scenario is required. Please note that in the worst case scenario, all input
sessions of the LR server are transferring the maximum amount of data that is allowed by
their σ and ρ.

4.5.1 Round Robin Time based

A typical arbitration policy for SoC schedulers is Round Robin. Several variants of Round
Robin are available. In this section, the latency for Round Robin Time based is determined.

A Round Robin Time based scheduler assigns equal parts of its time to each session. This
means that all sessions get the same amount of service (i.e. φ) and no session gets priority.
As defined before, the number of service in words assigned to session i in a round is called a
“slot” (i.e. φi) and total number of service in words assigned in a complete round is called
a “frame” (i.e. F ). Please note that for Round Robin Time based (∀i : 1 ≤ i ≤ V : φi = φ),
if V sessions (producers) share the scheduler.

The amount of time each session gets per round is determined by the largest packet. This
is the case because packets cannot be split. Therefore,

F = V · φ (4.48)
φ ≥ Lmax (4.49)

Then, for each session a time slot of φ
C sec per round is reserved. This means that a session

with smaller packets than φ can send one or more packets per round.

Let assume that V sessions share the scheduler and the scheduler has a capacity of C.
Then, each session gets a maximum service rate of 1

V ·C. By definition of LR servers, the
rate of each session (i.e. ρi) should not be larger than its maximum assigned service rate
by the scheduler, i.e. (

∀i : 1 ≤ i ≤ V : ρi ≤
1
V
· C
)

(4.50)

Assume that a particular packet of session i is at the head of its queue. Because Round
Robin is used, in the worst case scenario the packet is sent the next round. This means
that the packet has to wait at most F−φ

C sec before the session is serviced again. Then,
the packet at the head of the queue is sent. So, the latency is

ΘRRTB
i =

F − φ + Li

C
(4.51)

More formally, a server with Round Robin Time based as arbitration policy is an LR
server, because the first packet of session i has a maximum delay equal to ΘRRTB

i and
after the first packet of that session has left the LR server, a service rate of ρi is guaranteed.
Therefore, requirement 4.50 is necessary. This is proved in lemma A.1.7 of appendix A.
Furthermore, the latency is as tight as possible (see corollary A.1.8 of appendix A).
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4.5.2 Round Robin Packet based

An alternative of the previous scheduling policy is a Round Robin scheduler that allows
each session to send at most one packet per round (i.e. Round Robin Packet based).

Assume that V sessions share the scheduler and the scheduler has a capacity of C. Then,
a session i gets a slot equal to the size of its packet (i.e. φi = Li). Then, the size of a frame
is equal to

F =
V∑

i=1

Li (4.52)

Assume that a particular packet of session i is at the head of its queue. Because Round
Robin is used, in the worst case scenario the packet is sent the next round. This means
that the packet has to wait at most F−φi

C sec before the session is serviced again. Then,
the packet at the head of the queue is sent. So, the latency for session i is

ΘRRPB
i =

F − φi + Li

C
(4.53)

Because φi = Li, this can be simplified to

ΘRRPB =
F

C
(4.54)

Please note that the LR server allocates a maximum service rate of Li
F · C to session i.

Therefore, the following requirement is needed.(
∀i : 1 ≤ i ≤ V : ρi ≤

Li

F
· C
)

(4.55)

More formally, a server with Round Robin Packet based as arbitration policy is an LR
server, because the first packet of session i has a maximum delay equal to ΘRRPB

i and
after the first packet of that session has left the LR server, a service rate of ρi is guaran-
teed. Therefore, requirement 4.55 is necessary. This proof goes similar as lemma A.1.7 of
appendix A.

4.5.3 TDMA

A TDMA1 scheduler is similar to Round Robin. In TDMA, a session can send multiple
packets per round.

Assume that V sessions share the scheduler and the scheduler has a capacity of C. A
session gets a fixed amount of time per round to process packets. This amount of time is
determined in advance. So, in advance the number of packets (i.e. wi, wi ≥ 1 and wi ∈ N)
session i is allowed to send each round is determined. Then, the size of a slot (i.e. φi) and
a frame (i.e. F ) are calculated by

φi = wi · Li (4.56)

F =
V∑

i=1

φi (4.57)

1. Time Division Multiple Access
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Assume that a particular packet of session i is at the head of its queue. Because Round
Robin is used, in the worst case scenario the packet has to wait at most F−φi

C sec before
the session is serviced again. Then, the packet at the head of the queue is sent. So, the
latency is

ΘTDMA
i =

F − φi + Li

C
(4.58)

Just as in the previous section, the LR server allocates a maximum service rate of φi

F ·C to
session i. Therefore, the rate of session i (i.e. ρi) should not be larger than its maximum
assigned service rate by the scheduler, i.e.(

∀i : 1 ≤ i ≤ V : ρi ≤
φi

F
· C
)

(4.59)

Please note that in TDMA, in contrast to Round Robin, unused slots are not skipped.

More formally, a server with TDMA as arbitration policy is an LR server, because the first
packet of session i has a maximum delay equal to ΘTDMA

i and after the first packet of that
session has left the LR server, a service rate of ρi is guaranteed. Therefore, requirement
4.59 is necessary. This is proved in lemma A.1.9 of appendix A. Furthermore, the latency
is as tight as possible (see corollary A.1.10 of appendix A).

4.5.4 Fixed Priority

A completely different arbitration policy is Fixed Priority. Using this arbitration policy,
the priorities of the sessions determine the order of the output.

For a Fixed Priority scheduler, priorities are assigned to the sessions. That means that a
session with a higher priority has a smaller latency, than a session with a lower priority.
Assume that non-preemptive schedulers are used. This means that it is not possible that a
packet that is sent, is interrupted. Furthermore, assume that V sessions share a scheduler
with a capacity of C and that session 1 has the highest priority, session 2 has the next
highest priority and so on.

Then, the first packet of session 1 has a latency of

ΘFP
1 = effective processing time of current packet

+ effective processing time of first packet of session 1 (4.60)

=
Lmax

C
+

L1

C
(4.61)

Please note that Lmax is the maximum length of a packet the LR server can receive.

So, it takes at most Lmax
C sec to send the current packet, because a non-preemptive sched-

uler is used. After that, because session 1 has the highest priority, the first packet of session
1 is sent.

For session 2, it is always possible that a packet of session 1 arrives. Therefore, a service
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rate of ρ1 has to be reserved for session 1. Then, session 2 has a latency of

ΘFP
2 = effective processing time of current packet

+ effective processing time of burst of session 1
+ effective processing time of first packet of session 2 (4.62)

=
Lmax

C − ρ1
+

σ1

C − ρ1
+

L2

C
(4.63)

=
Lmax + σ1

C − ρ1
+

L2

C
(4.64)

The current packet has a maximum size of Lmax. After sending that packet, in the worst
case scenario, the maximum burst of session 1 (i.e. σ1) has to be sent. The maximum
guaranteed rate to send the current packet and this burst is C − ρ1. This is the case,
because ρ1 has to be reserved for new packets of session 1, that arrive during sending the
current packet and the burst of session 1. After that, the first packet of session 2 can be
sent. Then, it takes L2

C sec to send the first packet of session 2.

So in general, the latency for session i is

ΘFP
i = effective processing time ofcurrent packet

+ effective processing time of bursts

+ effective processing time of first packet of session i (4.65)

=
Lmax

C −
∑i−1

j=1 ρj

+

∑i−1
j=1 σj

C −
∑i−1

j=1 ρj

+
Li

C
(4.66)

=
Lmax +

∑i−1
j=1 σj

C −
∑i−1

j=1 ρj

+
Li

C
(4.67)

It takes at most Lmax
C sec to process the current packet. But, in the meanwhile, packets of

sessions with a higher priority than session i can arrive. In that case, these packets have
also to be processed before a packet of session i can be processed. So a rate of

∑i−1
j=1 ρj is

reserved. Then, the maximum guaranteed rate to send the current packet is C −
∑i−1

j=1 ρj .
In the worst case scenario, all sessions with a higher priority than session i send their
maximum bursts. That means that those packets have to be processed, before packets of
session i can be processed. During that period, only a rate of C −

∑i−1
j=1 ρj can be used,

because a rate of
∑i−1

j=1 ρj has to be reserved for the new packets of the sessions with a
higher priority than session i. Finally, the first packet of session i can be sent. This takes
Li
C sec.

Fixed Priority is a valid LR-server, because after ΘFP
i , the complete bursts of all sessions

with a higher priority than i and the first packet of session i are sent. Then, a rate of
ρi is guaranteed, because

∑i−1
j=1 ρj is reserved for the sessions with a higher priority and∑i

j=1 ρj ≤ C. This is proved in lemma A.1.11 of appendix A. Furthermore, the latency is
as tight as possible (see corollary A.1.12 of appendix A).

4.5.5 Overview schedulers

In this section, an overview of the properties of the schedulers of sections 3.3.5 and 4.5 is
given.
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In table 4.2, the properties of the LR servers are mentioned. The LR servers are charac-
terized by the following five categories:

• Size of slots, meaning if all slots are equal or not
• Unused slots, meaning if the unused slots are skipped or not
• Order per round, meaning if the order of the slots is fixed or dynamic
• Size per round, meaning if the amount of data to be processed per round is fixed

or dynamic
• Number of packets per round, meaning if one or more packets per session can be

sent in a single round
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FCFS x x x x x Not an LR server

VC x x x x x

DRR x x x x x Extra constraint

WRR x x x x x Extra constraint

RRTB x x x x x Extra constraint

RRPB x x x x x Extra constraint

TDMA x x x x x Extra constraint

FP x x x x x

Table 4.2: Overview of the properties of the arbitration policies of LR servers

In the sections above, some typical arbitration policies of schedulers for SoCs are intro-
duced into our performance analysis method. In the next section, some improvements for
the performance bounds are discussed.

4.6 Improvements

In this section, two improvements for the backlog bounds are discussed, namely the use of
a regulator and the use of a minimum latency.

4.6.1 Regulator

The size of the backlog of an LR server depends on the burstiness constraint of the input
session of the LR server. To reduce the size of the queues needed, the maximum burst
should be as small as possible. Unfortunately, the input session of a chain of LR servers
determines the value of σ. A regulator can be used to enforce a lower σ value and thereby
reduce the queues in the LR servers.

Assume that subsystem 1 produces packets (i.e. b1) of size Li, with parameters σ and ρ.
These packets are sent via a chain of m LR servers, with a total latency of

∑m
j=1 Θ(Sj),

to subsystem 2 (see figure 4.13). Note that b1 is bounded by c1 and c2 and that b2 (the
output of the chain of LR servers) is bounded by c1 and c3. Furthermore, assume that no
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pipeline degree or a very high pipeline degree is used. Then, according to section 4.2.2,
the delay and the backlog are calculated by the following formulas.

Figure 4.13: Chain of LR servers, without a regulator

The total delay for the x words is (see equation 4.10)

D ≤
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(4.68)

The backlog of the kth LR server in the chain of m LR servers is (see equation 4.11)

Qk ≤ σ + ρ ·
k∑

j=1

Θ(Sj) (4.69)

From the above formula of the backlog can be concluded that every LR server has to be
able to store the maximum burst of the input session. The backlog of the first scheduler
is

Q1 ≤ σ + ρ ·Θ(S1) (4.70)

and the backlog for the second scheduler is

Q2 ≤ σ + ρ · (Θ(S1) + Θ(S2)) (4.71)

By adding a regulator (see figure 4.14) before the traffic enters the chain of LR servers,
the burstiness constraint of the input session of the chain of LR servers can be reduced.
The regulator works as described in section 2.4.1. So, the input traffic of the regulator has
a burstiness constraint of σ and a rate of ρ. Then, the regulator can output the packets
with a minimum burstiness constraint (see section 4.2.3)

σreg = L ·
(
1− ρ

C

)
(4.72)

Then, b1 is bounded by c′1 and c2 and b2 by c′1 and c3 (see figure 4.14).
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Figure 4.14: Chain of LR servers, with a regulator

Using a regulator, the backlog of the kth LR server in the chain of LR servers is reduced
to

Qk ≤ σreg + ρ ·
k∑

j=1

Θ(Sj) (4.73)

Please note that this backlog is the vertical distance between c′1 and c3.

The price to pay is the regulator. The regulator requires a queue. The size of the backlog
of a regulator is upper bounded in [9] by the difference between the burstiness constraint
of the input traffic and the burstiness constraint of the output traffic of the regulator. To
be precise, the backlog of the regulator (i.e. Qregulator) is

Qregulator ≤ σin − σout (4.74)
= σ − σreg (4.75)

Please note that the size of the backlog of the regulator is the vertical distance between
c1 and c′1 in figure 4.14. This is proved [9].

So, the total required queue size in a chain of m LR servers (Qtotal) without a regulator is

Qtotal ≤ Qschedulers without regulator (4.76)

=
m∑

k=1

(
σ + ρ ·

k∑
j=1

Θ(Sj)

)
(4.77)

= m · σ +
m∑

k=1

(
ρ ·

k∑
j=1

Θ(Sj)

)
(4.78)
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and with regulator

Qtotal ≤ Qregulator + Qschedulers with regulator (4.79)

= (σ − σreg) +
m∑

k=1

(
σreg + ρ ·

k∑
j=1

Θ(Sj)

)
(4.80)

= (σ − σreg) + m · σreg +
m∑

k=1

(
ρ ·

k∑
j=1

Θ(Sj)

)
(4.81)

= σ + (m− 1) · σreg +
m∑

k=1

(
ρ ·

k∑
j=1

Θ(Sj)

)
(4.82)

Therefore, by adding a regulator, the total reduction in required queue size in a chain of
m LR servers is (m− 1) · (σ − σreg). So, the required queue size of the LR servers can be
reduced by adding a regulator.

The formula for the delay (see equation 4.10) does still apply. This is proved in lemma
A.1.13 of appendix A.

4.6.2 Minimum latency

The latency of a session is defined as the maximum amount of time between the moment
the first packet of that session has arrived completely in the scheduler and the moment
on which that packet has left the scheduler completely. A stricter bound on the backlog
can be given, if the minimum delay of a packet in a scheduler is taken into account.

The latency of a scheduler is determined by two components: the arbitration time (i.e.
Θarb) and the processing time (i.e. Θproc). The arbitration time represents the time between
the moment the first packet of that session has arrived completely in the LR server and the
moment the first packet of that session is the next packet to be serviced. The processing
time is used to process and send the particular packet. Therefore, the processing time
is lower bounded by L

C , if C is the capacity of the LR server and L the length of the
particular packet.

In the case that all queues of the LR server are empty, the first packet of a session that
arrives is sent immediately. In that case, the arbitration time is 0. So, the minimum delay
of the session is

D ≥ min
{

Θarb
}

+ min
{

Θproc
}

(4.83)

= 0 +
L

C
(4.84)

=
L

C
(4.85)

The minimum amount of time between the moment the first packet of a session has arrived
completely in the LR server and the moment on which that packet has left the scheduler
completely is called the minimum latency (indicated by Θmin).

This is shown in figure 4.15. Assume that b1 (with σin and ρ as parameters) represents the
input session of the first LR server, with latency Θ. Furthermore, assume that the first
packet of this session arrives at t0. So, this packet can be serviced as soon it is received
completely (i.e. at t1). It is not possible that this packet is serviced earlier. Then, the packet
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can be serviced completely at t2. This means that the LR server cannot service between c1

and c′1. Therefore, the LR server transmits between c′1 and c3. So, the burstiness constraint
of the session the next LR server can receive is not equal to the vertical distance between
c1 and c3, but between c′1 and c3. So, this is a reduction of ρ · (t1 − t0) = ρ · L

C .

Figure 4.15: Reduction of the burstiness constraint of the output of the LR server by
making use of the minimum latency

More general, assume that an LR server receives a session with the parameters σin and ρ.
Furthermore, assume that Θ and Θmin represents the latency respectively the minimum
latency of the LR server for this session. Then, the burstiness constraint of the output
session of the LR server (i.e. σout) is reduced to (see formula 3.34)

σout ≤ σin + ρ ·Θ− ρ ·Θmin (4.86)

This is proved in lemma A.1.14 of appendix A.

Assume a chain of m LR servers. Furthermore, assume that the kth LR server has a latency
of Θ(Sk) and a minimum latency of Θ(Sk)

min for this session. Then, the backlog of the first
LR server has not changed.

Q(S1) ≤ σin + ρ ·Θ(S1) (4.87)

The burstiness constraint of the output session of the first LR server is upper bounded by

σin + ρ ·Θ(S1) − ρ ·Θ(S1)
min (4.88)

Then, the backlog of the second LR server is

Q(S2) ≤ σin + ρ ·Θ(S1) − ρ ·Θ(S1)
min + ρ ·Θ(S2) (4.89)

and the burstiness constraint of the output session of the second LR server is upper
bounded by

σin + ρ ·Θ(S1) − ρ ·Θ(S1)
min + ρ ·Θ(S2) − ρ ·Θ(S2)

min (4.90)
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In general, the backlog of the kth LR server in the chain of LR servers is bounded by

Q(Sk) ≤ σin + ρ ·
k∑

j=1

Θ(Sj) − ρ ·
k−1∑
j=1

Θ(Sj)
min (4.91)

= σin + ρ ·
k−1∑
j=1

(
Θ(Sj) −Θ(Sj)

min

)
+ ρ ·Θ(Sk) (4.92)

Please note that the burstiness constraint of the output session of the kth LR server of
the chain of LR servers (i.e. σout) is bounded by

σout ≤ σin + ρ ·
k∑

j=1

(
Θ(Sj) −Θ(Sj)

min

)
(4.93)

In general, the total required queue size for the chain of m LR servers (Qschedulers) is

Qschedulers ≤
m∑

k=1

(
σin + ρ ·

k−1∑
j=1

(
Θ(Sj) −Θ(Sj)

min

)
+ ρ ·Θ(Sk)

)
(4.94)

= m · σin +
m∑

k=1

(
ρ ·

k−1∑
j=1

(
Θ(Sj) −Θ(Sj)

min

)
+ ρ ·Θ(Sk)

)
(4.95)

= m · σin + ρ ·
m∑

k=1

( k−1∑
j=1

(
Θ(Sj) −Θ(Sj)

min

)
+ Θ(Sk)

)
(4.96)

As has become clear, a stricter bound on the required queue size can be given, if the
minimum latency of a session in a scheduler is taken into account.

4.7 Application to SoC performance analysis

A SoC consists of subsystems, connected to a communication infrastructure. These subsys-
tems communicate directly, or by making use of a memory system. Three different types
of communication can be distinguished, namely

• Sending data from one subsystem via the interconnect to another subsystem
• Sending data from a subsystem via the interconnect to a memory system
• Sending data from a memory system via the interconnect to a subsystem

The first one is direct communication between two subsystems. The second one and the
third one are communications between a subsystem and a memory system. In this section,
the performance analysis method as described in this chapter is used for these types of
SoC communication.

4.7.1 Direct communication between subsystems

The first type of communication is direct communication between two subsystems. One
subsystem (the producer) sends packets via the interconnect to another subsystem (the
consumer). Our performance analysis method is used for this type of traffic.
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Assume a producer outputs a session, characterized by (σp, ρp) and L (see figure 4.16).
This data is sent to a regulator. The regulator outputs the session with the parameters
(σreg, ρp), such that σreg ≤ σp. Then, the data is sent via a chain of m LR servers with
capacity C, to the consumer with a rate of ρp. Assume that the kth LR server has a latency
of Θ(Sk) and a minimum latency of Θ(Sk)

min for this session. Furthermore, assume that n is
the pipeline degree of the session and x words have to be sent to the consumer. Finally,
assume that the x words have to be at the consumer side within Dmax ≥ 0 sec.

Figure 4.16: Direct communication

Please note σp is upper bounded by (see section 4.3.2)

σp ≤ n · L ·
(

1− ρp

C

)
(4.97)

Then, the total delay for x words (i.e. Dtotal) is by applying formula 4.36

Dtotal ≤
⌈

x

n · L

⌉
·
(

L

C
+

m∑
j=1

Θ(Sj)

)

+
(⌈

x

L

⌉
− n ·

(⌈
x

n · L

⌉
− 1
)
− 1
)
· L

ρp
(4.98)

The deadline is met if Dtotal ≤ Dmax.

The required queue size of the regulator (i.e. Qregulator) and all LR servers together (i.e.
Qschedulers) are (see formulas 4.74 and 4.96)

Qregulator ≤ σp − σreg (4.99)

Qschedulers ≤ m · σreg + ρp ·
m∑

k=1

( k−1∑
j=1

(
Θ(Sj) −Θ(Sj)

min

)
+ Θ(Sk)

)
(4.100)

The consumer is not always ready to process the received packets. Therefore, the consumer
needs a queue (i.e. Qconsumer) to temporarily store the bursts of the input session of the
consumer. The size of this queue is determined by the burstiness constraint of the input
session of the consumer (i.e. σp′). According to formula 4.93, σp′ is upper bounded by

σp′ ≤ σreg + ρp ·
m∑

j=1

(
Θ(Sj) −Θ(Sj)

min

)
(4.101)
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The consumer has to be able to store the maximum burst of its input session. Therefore,

Qconsumer ≤ σreg + ρp ·
m∑

j=1

(
Θ(Sj) −Θ(Sj)

min

)
(4.102)

So, the total required queue size (i.e. Qtotal) is bounded by

Qtotal ≤ Qregulator + Qschedulers + Qconsumer (4.103)

As has become clear above, our performance analysis method can be used for direct com-
munication between two subsystems.

4.7.2 Indirect communication between subsystems

In the second type of communication, data is stored in a memory system. Therefore, data
is sent from one subsystem via the interconnect to a memory system. There, the data is
temporarily stored. After that, a subsystem can request for data stored in the memory
system. Then, the data is sent from the memory system via the interconnect to that
subsystem. Please note that this can be the same subsystem, i.e. the subsystem that has
stored the data in the memory system. The first part of the communication is called the
“store” and the second part the “load”. These data transfers are discussed in the section
below.

Store

The first part of indirect communication is the store communication. One subsystem (the
producer) sends packets via the interconnect to a memory system to temporarily store
this data. Our performance analysis method is used for this type of traffic.

The same assumptions are made as in the previous section, only since the DRAM controller
is an LR server itself, the mth LR server is the DRAM controller (see figure 4.17). As
explained in section 4.4.3, a packet stretcher is placed before the multiplexer of the DRAM
controller. Therefore, the latency of the DRAM controller (i.e. Θmem) is calculated by
making use of the adapted packet size.

Figure 4.17: Indirect communication - store
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Assume that no acknowledgment is sent back via the interconnect. Then, this type of
traffic is a request-only stream. Furthermore, assume that Treq ≥ 0 sec is required to
process a store request in the DRAM. Then Θmem can be calculated by making use of a
packet stretcher, as explained in section 4.4.3.

After that, the total delay and the required queue size can be calculated in the same way
as in section 4.7.1. There are only two differences, namely

• Θ(Sm) = Θmem. This is the case, because the mth LR server is the DRAM controller.
• Qconsumer = 0. This is the case, because the DRAM controller does not forward the

next request to the DRAM before the DRAM is available. Therefore, no queues in
the DRAM are required.

So, the same formulas as in section 4.7.1 can be used.

Load

The second part of indirect communication is the load communication. One subsystem
sends request packets via the interconnect to a memory system to request for data. The
memory system sends response packets back via the interconnect to the subsystem. Our
performance analysis method is used for this type of traffic.

Assume that a subsystem (the producer) outputs a session, characterized by (σp, ρp) and
Lreq (see figure 4.18), such that ρp = ρreq. This data is sent to a regulator. The regulator
outputs the session with the parameters (σreg, ρp), such that σreg ≤ σp. Then, the data is
sent via a chain of (m−1) LR servers, with capacity C, to the memory system with a rate
of ρp. Assume that the kth LR server has a latency of Θ(Sk)

req and a minimum latency of
Θ(Sk)

min,req. The mth LR server is the DRAM controller, with a latency of Θmem. A packet
stretcher is used with Treq ≥ 0 sec as processing time of the request. Then the memory
system sends responses back, characterized by (σc, ρc) and Lresp, such that ρc = ρresp.
These responses are sent to the second regulator. This regulator outputs the responses
with the parameters (σ′reg, ρc), such that σ′reg ≤ σc. Then, these responses are sent via a
chain of m′ LR servers, with capacity C, to the subsystem (the consumer) with a rate
of ρc. Assume that the kth LR server has a latency of Θ(Sk)

resp and a minimum latency of
Θ(Sk)

min,resp. Furthermore, assume that n is the pipeline degree for both chains together.
Finally, assume that responses on the x words of requests have to be at the consumer side
within Dmax ≥ 0 sec, which needs to be determined by complementary methods.

Please note that σp is according to formula 4.26 bounded by

σp ≤ n · Lreq ·
(
1− ρreq

C

)
(4.104)

Then, σc is bounded by

σc ≤ n · Lresp ·
(
1− ρresp

C

)
(4.105)

Furthermore, the request and the response session are related. The number of request
packets per time unit is equal to the number of response packets per time unit. This is
the case, because for each request exactly one response is generated. Then,

ρresp =
Lresp

Lreq
· ρreq (4.106)
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Figure 4.18: Indirect communication - load

Please note that this type of traffic is a request-response stream, so formula 4.43 can be
used to calculate the total delay for x words of requests and responses to the requests.

Dtotal ≤
⌈

x

n · Lreq

⌉
·
(

Lreq

C
+

m∑
j=1

Θ(Sj)
req + Dproc +

m′∑
j=1

Θ(Sj)
resp +

Lresp

C

)

+
(⌈

x

Lreq

⌉
− n ·

(⌈
x

n · Lreq

⌉
− 1
)
− 1
)
· Lreq

ρreq
(4.107)

Dproc = 0 because by making use of a packet stretcher, enough time is reserved by the
DRAM controller to process a request by the DRAM, before the next request to the
DRAM is sent. So,

Dtotal ≤
⌈

x

n · Lreq

⌉
·
(

Lreq

C
+

m∑
k=1

Θ(Sk)
req +

m′∑
k=1

Θ(Sk)
resp +

Lresp

C

)
+
(⌈

x

Lreq

⌉
− n ·

(⌈
x

n · Lreq

⌉
− 1
)
− 1
)
· Lreq

ρreq
(4.108)

with Θ(Sm)
req = Θmem.

Then the required queue size can be calculated. The required queue size of the first regu-
lator and the first chain of LR servers are (see formulas 4.74 and 4.96)

Qregulator ≤ σp − σreg (4.109)

Qschedulers ≤ m · σreg + ρreq ·
m∑

k=1

( k−1∑
j=1

(
Θ(Sj)

req −Θ(Sj)
min,req

)
+ Θ(Sk)

req

)
(4.110)

with Θ(Sm)
req = Θmem for the same reason as above.

Furthermore, the required queue size of the second regulator and the second chain of LR
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servers can be calculated by the same formulas.

Qregulator′ ≤ σc − σ′reg (4.111)

Qschedulers′ ≤ m′ · σ′reg + ρresp ·
m′∑
k=1

( k−1∑
j=1

(
Θ(Sj)

resp −Θ(Sj)
min,resp

)
+ Θ(Sk)

resp

)
(4.112)

The subsystem (the producer & consumer) is not always ready to process the received
responses. Therefore, the subsystem needs a queue (i.e. Qconsumer) to temporarily store
the bursts of the input session of the consumer. The size of this queue is determined by the
burstiness constraint of the input session of the consumer (i.e. σc′). According to formula
4.93, σc′ is upper bounded by

σc′ ≤ σ′reg + ρresp ·
m′∑
j=1

(
Θ(Sj)

resp −Θ(Sj)
min,resp

)
(4.113)

The consumer has to be able to store the maximum burst of its input session. Therefore,

Qconsumer ≤ σ′reg + ρresp ·
m′∑
j=1

(
Θ(Sj)

resp −Θ(Sj)
min,resp

)
(4.114)

So, the total required queue size (i.e. Qtotal) is bounded by

Qtotal ≤ Qregulator + Qschedulers + Qregulator′
+ Qschedulers′

+ Qconsumer (4.115)

We have derived the formulas to determine the total delay and the total required queue
size for accessing data in a memory system. Therefore, our performance analysis method
can be used for direct communication as well as for indirect communication between two
subsystems.

In the next chapters, we will use these formulas for the case studies.
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5.1 Introduction

In [13], a Video Playback case study has been defined. In this chapter, we use this case
study to compare the arbitration policies described in sections 3.3.5 and 4.5.

5.2 Description

The Video Playback case study is defined as follows. There are four processing elements
(see figure 5.1). All communication between the processing elements goes via the shared
DRAM memory system. The ARM reads a multimedia bitstream from a flash memory via
a dedicated link (not shown), demultiplexes it and writes the video part into the DRAM.
The TriMedia runs a video decoder. It reads the video part of the multimedia bitstream
from the DRAM, decodes it and writes the raw video data back into the DRAM. Then, the
Scaler reads the raw video data from the DRAM, scales it and writes the video data back
into the DRAM. Finally, the Display Controller reads the video data from the DRAM and
sends it to the display via a dedicated link (not shown) [13].

Please note that a refresh session is required to model the refresh of the DRAM. Further-
more, the responses of the DRAM are sent via a shared bus. No arbitration is required for
this bus, because the DRAM controller is the only master.

Figure 5.1: Block diagram of Video Playback case study [13]

A request denotes either the address information for the DRAM for reading data or the
address and data information for writing data. A response denotes the data read from
the DRAM. Please note that no acknowledgment is sent for a write request, because an
error-free system is assumed.

On the inputs and the outputs of the DRAM controller, regulators (i.e. “R”) are placed
to shape the traffic, if necessary.
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5.3 Traffic characteristics

In [13], the traffic characteristics are determined. For the ARM and the TriMedia, the
characteristics are estimated based on the clock frequency, the cache miss rates and the
basic characteristics of bitstream demultiplexing and video decoding. The characteristics
of the traffic from the scaler and the display controller are determined based on the frame
rate, the resolution and the pixel formats. The traffic characteristics are determined in
[13] as listed in table 5.1. We assume a packet size of 8 bytes for a memory read request.

Session Type Max burst length Rate Lreq Lresp Treq

(#packets) (#packets
msec ) (B) (B) (cc)

1 Read (ARM) 4 190 8 32 10
2 Write (ARM) 2 31.3 32 - 13
3 Read (TriMedia) 4 320 8 128 22
4 Write (TriMedia) 18.4 243 128 - 25
5 Read (Scaler) 1 243 8 128 22
6 Write (Scaler) 1 750 128 - 25
7 Read (DC) 1 750 8 128 22
8 Refresh 1 128 8 - 10

Table 5.1: Traffic characteristics of the Video Playback case study

In table 5.1, the columns denote:

• Number of the session
• Type of the session
• Maximum number of packets in one burst
• Rate of the session, expressed in number of request or response packets per msec

• The size of a request packet
• The size of a response packet
• The worst case required processing time in the DRAM, expressed in clock cycli

Please note that for reading from the DRAM, first a read request is sent to the DRAM
controller (of length Lreq). After that, the DRAM responses by sending the requested data
(of length Lresp).

Assume that the frequency of the DRAM is 100 MHz with a bus width of 8 bytes. Then,
the maximum rate of the DRAM controller is

C = 100 · 8 = 800 MBps (5.1)

Please note that this maximum rate is the raw capacity. Because of all the overhead in
the DRAM, this rate is never reached.

Using the traffic characteristics of table 5.1, the session characteristics for our perfor-
mance analysis method are determined. The session characteristics are calculated using
(see sections 4.2.3 and 4.4.3)

ρi = ratei · Li (5.2)

σi = (max burst length)i · Li ·
(
1− ρi

C

)
(5.3)

L′i = Treq · bus width (5.4)
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Please note that in our performance analysis method, there is a distinction between a read
request and a read response. Furthermore, L′ represents the length of the output packets
of the packet stretcher in the model of the DRAM controller (see section 4.4.3).

Table 5.2 gives the session characteristics for the performance analysis method.

Session Type σ (B) ρ (MB
s ) L (B) L′ (B)

1a Read request (ARM) 31.9 1.52 8 80
1b Read response (ARM) 127 6.08 32 -
2 Write (ARM) 63.9 1.00 32 104
3a Read request (TriMedia) 31.9 2.56 8 176
3b Read response (TriMedia) 486 41.0 128 -
4 Write (TriMedia) 2264 31.1 128 200
5a Read request (Scaler) 7.98 1.94 8 176
5b Read response (Scaler) 123 31.1 128 -
6 Write (Scaler) 113 96.0 128 200
7a Read request (DC) 7.94 6.00 8 176
7b Read response (DC) 113 96.0 128 -
8 Refresh 7.99 1.02 8 80

Table 5.2: Session characteristics of the Video Playback case study

After characterizing the sessions, the performance analysis method is performed. There-
fore, the SoC communication infrastructure as indicated in figure 5.1 is used. The DRAM
controller is modeled as explained in section 4.4.3. Please note that for each session a
packet stretcher is used in the DRAM controller to calculate the latency of the DRAM
memory system.

5.4 Mathematica

To perform the performance analysis method, we have created a Mathematica model. In
this model, we use the formulas derived in section 4.7 to determine the upper bounds for
the delay of the sessions and queue size. Mathematica is used, because of its capability to
calculate with vectors. The bounds for a single session can be determined by the same set
of formulas as for multiple sessions. Therefore, we have used Mathematica, instead of a
standard programming language. More details can be found in appendix C.

5.5 Results

Using the above characteristics, the delays are calculated using different schedulers.

For each session, the delay is calculated for only the first packet. The following arbitration
policies are used (see table 5.3).

• Virtual Clock (VC) (see section 3.3.5)
• Deficit Round Robin (DRR) (see section 3.3.5)
• Weighted Round Robin (WRR) (see section 3.3.5, using Lc = 200 B)
• Round Robin Time Based (RRTB) (see section 4.5)
• Round Robin Packet Based (RRPB) (see section 4.5)
• TDMA (see section 4.5), such that in each round one packet per session is serviced
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• Fixed Priority (FP) (see section 4.5), using the following order of priority (first one
has highest priority)
– Write (ARM)
– Refresh
– Read (ARM)
– Read (Scaler)
– Write (TriMedia)
– Read (TriMedia)
– Read (DC)
– Write (Scaler)

Please note that all used arbitration policies are non-preemptive.

Session VC DRR WRR RRTB RRPB TDMA FP

Read (ARM) 5.56 103 34.2 1.90 1.54 1.54 0.64
Write (ARM) 32.3 105 34.2 1.92 1.53 1.53 0.42
Read (TM) 3.55 97.3 31.3 2.14 1.66 1.66 1.59
Write (TM) 4.53 98.5 31.9 2.16 1.65 1.65 1.27

Read (Scaler) 4.54 99.4 32.4 2.14 1.66 1.66 0.99
Write (Scaler) 1.74 82.9 24.1 2.16 1.65 1.65 2.70

Read (DC) 1.75 85.6 25.5 2.14 1.66 1.66 1.96
Refresh 8.08 104 34.6 1.86 1.50 1.50 0.49

Table 5.3: Delay in µsec of first packet of the sessions

The total required queue size of the regulators and of the scheduler in the DRAM controller
are calculated and shown in table 5.4.

Policy Qtotal (B)
VC 3352

DRR 15309
WRR 6695
RRTB 3270
RRPB 3199
TDMA 3199

FP 3285

Table 5.4: Total required queue size

For the above results, the following conclusions can be drawn.

First of all, there is a big difference in delay among the arbitration policies.

Virtual Clock is much better than Deficit Round Robin and Weighted Round Robin in
this example, although the difference with TDMA, RRTB, RRPB and Fixed Priority is
significant.

Deficit Round Robin and Weighted Round Robin are very poor compared to the other
arbitration policies. The problem of these arbitration policies is the way the latency is
calculated. Deficit Round Robin makes use of the ratio between ρi and ρmin (see section
3.3.5). Furthermore, the smallest slot has a size equal to the largest packet (i.e. 200 B).
Therefore, too much time is reserved for some sessions per round. Weighted Round Robin
also makes use of the largest packet to determine the size of the slots. For sessions with
small packets (like Read (ARM)) too much time is reserved per round.
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Round Robin Time Based has a very good delay performance in this case study compared
to the other arbitration policies. But, each session gets the same amount of service per
round. Therefore, still too much time is reserved for the sessions with small packets.

Round Robin Packet Based and TDMA even have a better delay performance than Round
Robin Time Based. Because at most one packet per session is serviced during a round,
these arbitration policies have a small delay for the first packet. Please note that TDMA
is a generalization of Round Robin Packet Based, but in TDMA unused slots are not
skipped. In the worst case scenario, all slots are used. Because in this case study in each
round one packet is served per session for TDMA, the results of TDMA and RRPB are
identical.

Finally, Fixed Priority has the best delay performance in this case study. Unfortunately,
the spread in delays for different sessions is much bigger, compared to TDMA.

More or less the same remarks are applicable for the buffer requirements, although the
differences among the arbitration policies are not very large. Again, Round Robin Time
Based, TDMA and Fixed Priority require the less buffers in this case study.

So, TDMA and Fixed Priority are the best arbitration policies in this case study, if we
look to the delay bound and the buffer requirements.

In the next chapter, a larger case study is discussed.
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6.1 Introduction

This chapter reports about a case study we used to assess the usefulness of our performance
analysis method. Therefore, a sufficiently diverse and complex case study is required. We
have selected a multi-channel DVB-T set-top box case study with several different traffic
characteristics. First, we explain the case study. After that, we apply the performance
analysis method to the case study, to obtain results. Finally, we present these results, to
indicate the usefulness of our performance analysis method.

6.2 Description

DVB-T is the abbreviation of “Digital Video Broadcasting - Terrestrial”. With this tech-
nology, digital video signals are broadcast through the air. Since DVB-T proceeds largely
in the digital domain, error correction is possible. If the signal is strong enough, the quality
of the video can be good. Another advantage is that less energy is needed, compared to
analog broadcasting [2].

In our case study, the signals are received by an antenna (see picture 6.1). RF is the “Radio
Frequency Front-End”, which includes the tuner to select the data channel. The resulting
analog signal is transformed into a digital signal. This digital signal is sent to the DVB-T
Channel Decoders (DVB-T CDs).

The digital signal is encoded. The functionality of the DVB-T CDs is to decode this
signal. Therefore, OFDM -symbols1 are used. OFDM -symbols are blocks of data of 20 kB,
used during the decoding. After decoding the signal, the DVB-T CD also performs error
correction.

Figure 6.1: Multi-channel DVB-T set-top box functional overview, the numbers indicate
the link numbers

In this case study, four different data channels can be distilled from the input signals.
So, the signals of the RF are demultiplexed and divided among four DVB-T CDs. Each
DVB-T CD needs memory for the decoding of the channel. The four output streams of the
DVB-T CDs are MPEG-2 multiplex transport streams. An MPEG-2 multiplex transport
stream is a combination of audio and video. Audio is outside the scope of this thesis.
Video can be an H.264 bitstream. Two of these streams are sent to Storage. The other
two signals are sent to H.264 decoders. The latter two signals are decoded, such that they
can be displayed. These signals can be used for dual screen or dual window functionality.

1. Orthogonal Frequency-Division Multiplexing symbols
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Please note that for the video decoding, memory is required because of the spatial and
temporal dependencies among the different frames of the video stream.

The implementation architecture and the mapping of the tasks to subsystems is according
to figure 6.2. As you can see, there is one central (off-chip) memory system. Small buffers
can be located on-chip in each subsystem. Furthermore, the four DVB-T CDs are combined
into one subsystem. The two H.264 decoders are sharing a single subsystem. The Video
Out system is responsible for displaying the union of the two output streams of the 2xH.264
decoder on the display(s). Finally, the traffic of all connections of figure 6.1 is implemented
by a single interconnect. Details of the interconnect are mentioned later.

Figure 6.2: Multi-channel DVB-T set-top box block diagram

Now the case study has been defined, the traffic among the components can be defined.

6.3 Traffic

In this section, the traffic between the different components is defined. This is done in the
order indicated by the numbering of figure 6.1.

6.3.1 From RF to the 4xDVB-T CD

See the links 1a and 1b of figure 6.1.

The digital version of the signals received by the antenna are sent from the RF to the
4xDVB-T CD. For each channel 20 MBps is needed [6]. Hence, for four channels, 80 MBps
in total is required. The delay is not really important, as long as the rate is high enough.
Therefore, the main constraint is related to the rate of the link.

The DVB-T CD performs the decoding. Therefore, a control link between the DVB-T CD
and the RF is needed to adjust the settings of the RF. To reduce the complexity of this
case study a bit, the traffic between the RF and the 4xDVB-T CD is left out of this case
study.

6.3.2 Between the 4xDVB-T CD and the Memory System

The four Channel Decoders are implemented on a single processor. This means that the
shared processor divides its time among the four Channel Decoders. Time is divided in
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time slots of OFDM -periods2. Then, each OFDM -period is split into four equal parts.
In each 1

4 OFDM -period, one Channel Decoder is active.

To perform the decoding, a Channel Decoder needs OFDM -symbols. Each OFDM -
symbol has a size of 20 kB. For each Channel Decoder, the four most recent OFDM -
symbols have to be stored, but not all symbols are used all the time. Because the OFDM -
symbols are large, it is cheaper to store the four OFDM -symbols per Channel Decoder in
an off-chip memory system, than in an on-chip memory system. When a symbol needs to
be processed, it is copied to the local on-chip memory. Each 1

4 OFDM -period only two
OFDM -symbols are required. Furthermore, in each 1

4 OFDM -period one OFDM -symbol
is produced. This means that in each 1

4 OFDM -period two reads from and one write to
the off-chip memory have to be performed.

The flow graph of one DVB-T Channel Decoder is shown in figure 6.3. Because we are
only interested in the communication behavior, only a part of the complete flow graph
is shown. Each circle denotes an operation. The arrows indicate the data dependencies.
Furthermore, a “8192” represents a buffer for an OFDM -symbol.

Please note that the three dotted squares indicate the same buffers. This means that in
the implementation, these buffers will be shared. A corresponding number indicates the
same buffer.

Number 0 is the output of the FFT (i.e. Fast Fourier Transform) (see figure 6.3), using
the digital signal of the RF . The FFT will take 13,540 cycles to perform an 8K FFT .
So, it needs 45.1 µsec to produce an OFDM -symbol, if a 300 MHz EV P 3 is used.

Furthermore, number 0 is used by (see figure 6.3)
• the Mult of the Scat sync (i.e. A)
• the Mult of the Coarse freq (i.e. C)
• the Continual pilots extraction of the Fine freq & Sampling (i.e. B)
• the Scat pilots extraction of the Demod + eq (i.e. D)
Number 1 is only used by the Mult of the Coarse freq (i.e. C).

Number 2 is not used this 1
4 OFDM -period.

Number 3 is used by
• the Mult of the Scat sync (i.e. A)
• the Equalize of the Demod + eq (i.e. D)
The two Mult’s perform 8K multiplications. With an EV P that can do 16 multiplications

cycle ,
for a Mult 512 cycles are required. So, it takes 1.7 µsec to execute each Mult. The
Continual pilots extraction and the Scat pilots extraction produce output instanta-
neously. Finally, the Equalize needs 26 µsec per OFDM -symbol, if the same EVP is
used.

The OFDM -symbols are stored in a cyclic off-chip buffer (see figure 6.4). First, number
1 and 3 of a specific Channel Decoder, stored in the off-chip memory, are needed for the
coarse frequency, scattered synchronization, fine frequency and sampling, demodulation
and the equalization. Therefore, the two read request address registers (i.e. d1 and d2,
see figure 6.4) are filled with addresses. The requests are sent to the memory system.
The memory system responses by sending the requested data back. The requested data
is temporarily stored in a1 and b1 of the on-chip memory. After that, all tasks of the

2. An OFDM -period takes 896 µsec
3. An EV P is an Embedded Vector Processor developed by NXP and specialized to operate on vectors
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Figure 6.3: Part of the DVB-T CD Flow Graph
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Channel Decoder are performed. Then, buffer number 0 of the off-chip memory has to
be replaced by the output of the FFT . This data is first temporarily stored in c1 of the
on-chip memory. Therefore, a write action transports this data to the off-chip memory (to
number 0 of the selected Channel Decoder).

Figure 6.4: Memory for decoding, a square represents a buffer

Then, the next Channel Decoder gets active. This means that its required data (i.e. its
number 1 and 3) is loaded to the on-chip memory. And again, at the end of his period its
number 0 is replaced.

After one round, all OFDM -symbols are shifted one place, such that number 0 (just
produced) becomes number 1 and so on (the number represents the age, so the OFDM -
symbols become older). Number 3 is no longer needed. Because a circular buffer is used,
this happens only virtually, i.e. by moving the references rather than by physically moving
the OFDM -symbols.

When the first Channel Decoder gets active again, number 1 and 3 stored in the off-chip
memory are required. At the end of his period, number 0 has to be replaced by the output
of the FFT . This process continues.

To optimize the performance, ping pong buffers are used. When a1 and b1 are used, a2 and
b2 can already be filled for the next Channel Decoder. Then, the next Channel Decoder
does not have to wait for its data after it gets active. The write buffers (i.e c1 and c2)
are used in the same way. First, c1 is filled. When the next Channel Decoder gets active,
the content of c1 is sent to the off-chip memory. At the same time, c2 can be filled by the
output of the FFT of the current Channel Decoder. This process is repeated constantly.

In the next sections, three schedule variants are described that are applicable to the traffic
between the on-chip and the off-chip memory. Please note that we make use of periodic
schedules in which four complete OFDM -symbols are processed. Therefore, the decoding
takes place on complete OFDM -symbols, and not on parts of symbols. That means that a
complete OFDM -symbol has to be produced, before it can be sent to the memory system.
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By using periodic schedules, we do not have to synchronize between tasks. The schedules
guarantee when the data is available.

Schedule 1

In the first schedule variant, the read requests for the two OFDM -symbols are sent since
the beginning of the previous 1

4 OFDM -period (see the “S”’s in figure 6.5). The deadline
(i.e. “D”) is just before the Channel Decoder gets active. So, for Channel Decoder 2, the
requests are sent when Channel Decoder 1 is active. The read operations have a time span
of a 1

4 OFDM -period to be processed. This means that when Channel Decoder 2 gets
active, the requested data has to be available. During the period that Channel Decoder 2
is active, the received data is used (i.e. “Use”) and the data for the next Channel Decoder is
read. When the next Channel Decoder gets active, this requested data has to be available.

When Channel Decoder 1 gets active, the read request address registers (i.e. d1 and d2

of figure 6.4) are filled with the addresses of the OFDM -symbols needed for Channel
Decoder 2. Then, a1 and b1 are filled with the requested data. When Channel Decoder 2
gets active, a1 and b1 should contain OFDM -symbol 1 and 3, such that they can be used.
Meanwhile, d1 and d2 can be filled with the addresses of OFDM -symbol 1 and 3 for the
next Channel Decoder, to be loaded into a2 and b2.

Figure 6.5: Repeating pattern of schedule 1, “S” represents sent read or write request,
“D” represents deadline of request, the read buffers are used during “Use” and the write
buffers are filled during “Create”

The write action is processed when the particular Channel Decoder gets inactive. So, the
data produced when Channel Decoder 2 is active, begins to send to the off-chip memory
when Channel Decoder 2 gets inactive. Again, there is a deadline after 1

4 OFDM -period.
During the period the Channel Decoder is active, the data is created (i.e. “Create”). This
means that for Channel Decoder 2, buffer c2 is filled with OFDM -symbol 0 by the FFT
when Channel Decoder 2 is active. When Channel Decoder 3 gets active, the content of c2

is sent to the off-chip memory system. This has to be completed, before Channel Decoder
4 gets active. Meanwhile, c1 is used by Channel Decoder 3 for its output.

So, the number of buffers needed is
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• 2 registers for the read request addresses (as you can see in figure 6.5, these registers
can be reused)

• 4 buffers for the read data (there are 2 read actions per 1
4 OFDM -period, but two

buffers are already in use when the read actions are processed)
• 2 buffers for the write action (there is 1 write action per 1

4 OFDM -period, but one
buffer is already filled when the write action is processed)

Looking to the amount of time, one OFDM -period takes by definition 896 µsec. This
means that within 224 µsec, one Channel Decoder has to do all its work. All the blocks of
figure 6.3 are performed by one EV P . So, this means that the Mult of the Scat sync (i.e.
1.7 µsec), the Mult of the Coarse freq (i.e. 1.7 µsec), the FFT (i.e. 45.1 µsec) and the
Equalize of the Demod + eq (i.e. 26 µsec) will need 2 ·1.7+45.1+26 = 74.5 µsec. Then,
224 − 74.5 = 149.5 µsec are left for the rest of the flow graph. This is sufficient, because
the Mult’s and the FFT are the most time consuming tasks of the Channel Decoder.

Schedule 2

In the second schedule variant, the period a Channel Decoder is active is split into two
parts (see figure 6.6). In the first part, the data for the write action is generated. This
means that in this part, the FFT has to produce its output. In the second part, the
requested data is used. Now, more buffers can be reused than in the previous variant.

Figure 6.6: Repeating pattern of schedule 2, “S” represents sent read or write request, “D”
represents deadline of request, the read buffers are used during “Use” and the write buffer
is filled during “Create”

At the beginning of the period a Channel Decoder is active, its read requests are sent. So,
for channel 1, the requests are sent at the beginning of the period of Channel Decoder 1.
The read actions have a deadline of 1

8 OFDM -period. Furthermore, the requested data is
only used during the second half the particular Channel Decoder is active.

The write action is executed halfway the period, a Channel Decoder is active. A 1
8 OFDM -

period is reserved to generate the data to be sent. The deadline is a 1
8 OFDM -period later

(see figure 6.6).

To be more precise, when Channel Decoder 1 gets active, d1 and d2 (see figure 6.4) are
filled with addresses. Then, 1

8 OFDM -period later, a1 and b1 should be filled with the
requested data (i.e. OFDM -symbol 1 and 3). In the meanwhile, FFT produces its outputs
(i.e. OFDM -symbol 0) and stores it at c1. FFT only needs 45.1 µsec, so that should not be
a problem. After 1

8 OFDM -period, the read buffers are filled. So, OFDM -symbol number
0, 1 and 3 are available for Channel Decoder 1. Because the Mult’s and the Equalize need
less time than 1

8 OFDM -period, it should be possible to schedule everything.
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When Channel Decoder 2 gets active, a1 and b1 are no longer used by Channel Decoder 1.
This means that these buffers can be reused by Channel Decoder 2. The same holds for c1.
The content of c1 should have been sent to the memory system within 1

8 OFDM -period.
Then, c1 can be reused by the next Channel Decoder.

Using this schedule, the number of buffers needed is
• 2 registers for the read requests addresses (see figure 6.6)
• 2 buffers for the read data, because these can be reused
• 1 buffer for the write action, because it can be reused

Schedule 3

In the last schedule variant, there is more time reserved to execute the read and the
write actions. Again, the period a Channel Decoder is active is split into two parts. In
the second part, the requested data is used (see figure 6.7). The read requests are sent
3
8 OFDM -period before the data is required.

The data for the write action is determined in the first half of the period a specific Channel
Decoder is active. It starts sending halfway the period the Channel Decoder is active. Then,
it has 3

8 OFDM -period to perform the write action.

Figure 6.7: Repeating pattern of variant 3, “S” represents sent read or write request, “D”
represents deadline of request, the read buffers are used during “Use” and the write buffers
are filled during “Create”

Using this schedule, the number of buffers needed is
• 4 registers for the read request addresses (see figure 6.7)
• 4 buffers for the read data
• 2 buffers for the write action
Schedule 3 has longer deadlines than schedule 1, although the buffer requirements are
almost the same.

By making use of our performance analysis method, the results of the performance analysis
method should show which delays can worst case be expected, and hence which schedule
should be used. Please note that the schedules have different deadline constraints for the
read and write actions.
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Traffic characterization

Now, we characterize the traffic.

A read request contains the address information for the off-chip memory to read data. The
off-chip memory responses by sending the requested data back.

Let b1a (i.e. b1a ∼ (σ1a, ρ1a) with pipeline degree n1) represent the read requests of the
OFDM -symbols, b1b the responses on b1a, and b2 represent the write actions.

We assume that all read request packets have a size of 8 bytes, and all read responses
and write actions have a size of 128 bytes. Furthermore, we assume that the address
information for a write action is sent via separate wires. Finally, for each read request, one
read response is sent back by the memory system.

Please remember that an OFDM -period takes 896 µsec.

Then, for the first schedule we have (see section 4.2.3 and equation 4.26)

ρ1a ≥ requests for 2 streams of 20 kB per
1
4

OFDM period (6.1)

= requests for 313 responses of 128 B per
1
4

OFDM period (6.2)

= 313 requests of 8 B per
1
4

OFDM period (6.3)

= 11.2 MBps (6.4)

σ1a = n1 · 8 ·
(
1− ρ1a

C

)
(6.5)

So, this means that 2 times 20 kB has to be read within 1
4 OFDM -period. 2 times 20 kB

is equivalent to 313 requests of 128 bytes. Because each read request has a size of 8 bytes,
this session requires at least 11.2 MBps.

ρ1b ≥ 313 responses of 128 B per
1
4

OFDM period (6.6)

= 179 MBps (6.7)

σ1b = n1 · 128 ·
(
1− ρ1b

C

)
(6.8)

ρ2 ≥ write actions for 1 stream of 20 kB per
1
4

OFDM period (6.9)

= 157 write actions of 128 B per
1
4

OFDM period (6.10)

= 89.7 MBps (6.11)

σ2 = n2 · 128 ·
(
1− ρ2

C

)
(6.12)

• The deadline is 1
4 OFDM -period for 313 requests and responses

• The deadline is 1
4 OFDM -period for 157 write actions
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For the second schedule, we will have

ρ1a ≥ requests for 2 streams of 20 kB per
1
8

OFDM period (6.13)

= requests for 313 responses of 128 B per
1
8

OFDM period (6.14)

= 22.4 MBps (6.15)
ρ1b ≥ 358 MBps (6.16)

ρ2 ≥ write actions for 1 stream of 20 kB per
1
8

OFDM period (6.17)

= 179 MBps (6.18)

• The deadline is 1
8 OFDM -period for 313 requests and responses

• The deadline is 1
8 OFDM -period for 157 write actions

Please note that σ1a, σ1b and σ2 do not change by selecting a different schedule.

For the third schedule, we have

ρ1a ≥ requests for 2 streams of 20 kB per
3
8

OFDM period (6.19)

= requests for 313 responses of 128 B per
3
8

OFDM period (6.20)

= 7.45 MBps (6.21)
ρ1b ≥ 119 MBps (6.22)

ρ2 ≥ write actions for 1 stream of 20 kB per
3
8

OFDM period (6.23)

= 59.8 MBps (6.24)

• The deadline is 3
8 OFDM -period for 313 requests and responses

• The deadline is 3
8 OFDM -period for 157 write actions

Please note that for the third schedule, b1a, b1b and b2 cannot be used by all Channel
Decoders. This is the case, because the communication parts of the four Channel Decoders
overlap. It is possible that more than three sessions are active simultaneously. Therefore,
another three sessions have to be added with the same characteristics to model the sessions
for the overlapping communication traffic. The deadlines for these sessions are the same.

6.3.3 From the 4xDVB-T CD to the 2xH.264 decoder

See link 2 of figure 6.1.

The output of a DVB-T CD is an MPEG-2 multiplex transport stream, with an H.264
video bitstream. This stream has a bitrate of 31.67 Mbps per channel4, according to [6].
Please note that because of the large amount of data to be transferred and the variations
in the consumption rate of the 2xH.264 decoder, the communication takes place via the
(off-chip) memory system.

4. Using 8 MHz channels and 64-QAM Modulation
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Traffic characterization

Assume that b3 represents the write actions of the Channel Decoders, b4a the read requests
of the H.264 decoders and b4b the read responses on b4a. Then,

ρ3 ≥ 31.67 Mbps per channel (6.25)
= 3, 547 B per channel per OFDM period (6.26)
= 28 write actions of 128 B per channel per OFDM period (6.27)
= 28 · 128 B per channel per OFDM period (6.28)
= 4 · 28 · 128 B per OFDM period (6.29)
= 16.0 MBps (6.30)

σ3 = n3 · 128 ·
(
1− ρ3

C

)
(6.31)

ρ4a ≥ requests for 28 responses of 128 B per channel

per OFDM period (6.32)
= 28 · 8 B per channel per OFDM period (6.33)
= 2 · 28 · 8 B per OFDM period (6.34)
= 0.500 MBps (6.35)

σ4a = n4 · 8 ·
(
1− ρ4a

C

)
(6.36)

ρ4b ≥ 28 · 8 B per channel per OFDM period (6.37)
= 2 · 28 · 128 B per OFDM period (6.38)
= 8.00 MBps (6.39)

σ4b = n4 · 128 ·
(
1− ρ4b

C

)
(6.40)

• The deadline is 1
4 OFDM -period for 28 write actions

• The deadline is 1
2 OFDM -period for 28 read requests and responses

6.3.4 From the 4xDVB-T CD to the Storage

See link 3 of figure 6.1.

The output of a DVB-T CD is an MPEG-2 multiplex transport stream, with an H.264
video bitstream. Each MPEG-2 multiplex transport stream can be stored. In this case
study, we assume that two streams are stored.

Traffic characterization

The write actions of the Channel Decoders are already characterized by b3. Therefore,
only the read requests (b5a) and responses (b5b) of the Storage have to be characterized.
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ρ5a ≥ requests for 28 requests of 128 B per channel

per OFDM period (6.41)
= 28 · 8 B per channel per OFDM period (6.42)
= 2 · 28 · 8 B per OFDM period (6.43)
= 0.500 MBps (6.44)

σ5a = n5 · 8 ·
(
1− ρ5a

C

)
(6.45)

ρ5b ≥ 28 · 128 B per channel per OFDM period (6.46)
= 2 · 28 · 128 B per OFDM period (6.47)
= 8.00 MBps (6.48)

σ5b = n5 · 128 ·
(
1− ρ5b

C

)
(6.49)

• The deadline is 1
2 OFDM -period for 28 read requests and responses

6.3.5 Between the 2xH.264 decoder and the Memory System

H.264 decoding consists of several tasks. One of the tasks with high traffic requirements
is motion compensation. In motion compensation, the frames are partitioned into blocks
of pixels (e.g. macroblocks of 16x16 pixels). Each block is predicted from a block of the
same size in a reference frame. The blocks are not transformed in any way apart from
being translated to the position of the predicted block. This translation is represented by
a motion vector [4].

We assume a resolution of 720x576 with decoding at a rate of 30 frames
sec (upscaling to a

higher frame rate may occur after the H.264 decoder). Then, we have to perform motion
compensation for 45 · 36 · 30 = 48, 600 macroblocks

sec .

In YUV 4:2:0 color resolution, each macroblock contains 16x16 bytes Y data, 8x8 bytes U
data, and 8x8 bytes V data. We assume Y data to be stored in a line-based frame memory.
Furthermore, U and V data are stored together in an interleaved fashion in a line-based
frame memory of size 720x288 bytes.

H.264 employs different block sizes. We assume that for each macroblock, we have 16
motion vectors: e.g. 8 forward predictions to 8 8x4 or 4x8 blocks and 8 backward predictions
to 8 8x4 or 4x8 blocks. Furthermore, we assume that in accessing the unaligned blocks we
have an overhead of a factor 4. Then, per macroblock we have to fetch 8 · 8 · 4 · 2 · 4 bytes
of Y data (i.e. 2048 bytes). UV data is half the size. For simplicity we assume the same
efficiency in accessing the unaligned data. Then, we have to fetch 1024 bytes of UV data
per macroblock.

So, the total required rate is

rate =
macroblocks

sec
· bytes

macroblok
per video decoder (6.50)

= 48, 600 · (2048 + 1024) Bps per video decoder (6.51)
= 149 MBps per video decoder (6.52)
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Traffic characterization

Assume that b6a represents the read requests of the 2xH.264 decoders and b6b the read
responses on b6a.

ρ6a ≥ 149 MBps per video decoder (6.53)
= 4.976 MB per frame per video decoder (6.54)
= 38, 880 requests for response of 128 B

per frame per video decoder (6.55)
= 38, 880 requests of 8 B per frame per video decoder (6.56)
= 18.7 MBps (6.57)

σ6a = n6 · 8 ·
(
1− ρ6a

C

)
(6.58)

ρ6b ≥ 38, 880 responses of 128 B per frame per video decoder (6.59)
= 299 MBps (6.60)

σ6b = n6 · 128 ·
(
1− ρ6b

C

)
(6.61)

• The deadline is 1
60 sec for 38,880 requests and responses

Please note that for the 2xH.264 decoders we have made the following assumptions

• Both H.264 decoders are executed by the same processor core. We assume that this
is possible by a (future) TriMedia core

• We assume task switching on frame boundaries. By that, the data cache miss rate
is low

• We assume that both decoders have the same code. Then, the instruction cache
miss rate is low

• The upscaling from 30 Hz to 50 Hz is not modeled

6.3.6 From the 2xH.264 decoder to the Video Out system

See links 4a and 4b of figure 6.1.

To calculate the required rate, we use the following formula

rate =
bits

pixel
· pixels

frame
· frames

sec
(6.62)

We assume an SD output resolution of 720x576 pixels, using a frequency of 50 Hz (pro-
gressive) and 8 bits per pixel. Therefore, we will need a rate of

rate = 8 · (720 · 576) · 50 bps (6.63)
= 20.7 MBps. (6.64)

This traffic is implemented in the following manner. First, the output of the 2xH.264
decoder is written to the memory system. After that, the Video Out system reads this
data from the memory system.

We assume that the two streams are used for dual screen or dual window functionality. So,
the two streams are interleaved. Therefore, the total required rate is 2 ·20.7 = 41.5 MBps.
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Traffic characterization

Assume that b7 represents the write actions of the 2xH.264 decoder and b8b the read
responses on the read request b8a of the Video Out system.

ρ7 ≥ 2 frames of 720 · 576 B per
1
50

sec (6.65)

= 2 · 720 · 576 B per
1
50

sec (6.66)

= 6, 480 write actions of 128 B
1
50

sec (6.67)

= 6, 480 · 128 · 50 B per sec (6.68)
= 41.5 MBps (6.69)

σ7 = n7 · 128 ·
(
1− ρ7

C

)
(6.70)

ρ8a ≥ requests for 2 · 720 · 576 B per
1
50

sec (6.71)

= requests for 6, 480 responses of 128 B per
1
50

sec (6.72)

= 6, 480 · 8 · 50 B per sec (6.73)
= 2.59 MBps (6.74)

σ8a = n8 · 8 ·
(
1− ρ8a

C

)
(6.75)

ρ8b ≥ 6, 480 · 128 · 50 B per sec (6.76)
= 41.5 MBps (6.77)

σ8b = nb · 128 ·
(
1− ρ8b

C

)
(6.78)

• The deadline is 1
50 sec for 6,480 write actions

• The deadline is 1
50 sec for 6,480 requests and responses

6.3.7 From the Video Out system to the Display

See link 5 of figure 6.1.

This traffic is not mapped on the interconnect, but a dedicated link is used.

6.3.8 Refresh

According to [16], every 7.8125 µsec a refresh has to be processed by the Memory System.
We assume that a refresh request will have a packet size of 8 bytes.

Traffic characterization

Assume that b9 represents the refresh requests.

ρ9 ≥ 1 · 8 B per 7.8125 µsec (6.79)
= 1.02 MBps (6.80)

σ9 = n9 · 8 ·
(
1− ρ9

C

)
(6.81)

• The deadline is 7.8125 µsec for 1 refresh

6.3.9 Overview

The traffic characteristics of all sessions are summarized in table 6.1.
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6.4. Mathematica

For the performance analysis method, we have made the following general assumptions:

• All read requests have a size of 8 bytes

• All read responses and write actions have a size of 128 bytes

• A packet does not have any overhead (no packet header)
• No acknowledgment of a write action is sent
• The interconnect propagation delay is 0 sec

• The arbitration policy is TDMA

Furthermore, we have made the following assumptions for the Memory System (see [13])

• The size of a refresh request is 8 bytes

• A read request for 128 bytes will take 22 cycles to process (including all overhead)
• A write action of 128 bytes will take 25 cycles to process (including all overhead)
• A refresh action will take 10 cycles to process (including all overhead)

Using these traffic characteristics and assumptions, our performance analysis method can
be performed.

6.4 Mathematica

To obtain results, we use the performance analysis method as described in section 4.7.
Therefore, we have created a Mathematica model.

To use the Mathematica model, we first set the frequency of the DRAM. This is done,
because the DRAM is the shared resource and therefore the bottleneck. After that, we
search for solutions by changing the TDMA wheel (i.e. the set of wi, see section 4.5). Please
note that the service rates provided by the DRAM controller should be at least equal to
the ρ’s of the sessions (see section 4.5). If a correct setting of the TDMA wheel is found, all
pipeline degrees are set to 1 and the delays are determined by executing the Mathematica
model. Then, the degree of a session is increased, until its deadline is met. Each time, the
ρ’s are increased to the maximum service rate provided by the DRAM controller. When
all deadlines are met, the solution is stored. Increasing the pipeline degree more is not
useful, because the deadlines are already met.

Then, the next solutions are determined by changing the TDMA wheel. Finally, the DRAM
frequency is changed and the whole process is repeated.

Only the best solutions (i.e. the less queue size required for each maximum pipeline degree
and for each frequency) are output. More details can be found in appendix C.

6.5 Results

We compare several schedule and interconnect variants using the Mathematica model as
described above.

6.5.1 Schedule variants

In this section, we compare the three schedules defined in section 6.3.2. We use the following
SoC communication infrastructure (see figure 6.8). All subsystems have a private link to
the DRAM controller. The responses of the DRAM controller are sent via the bus. Because
only one master is connected to this bus, no scheduler is required.
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6.5. Results

Figure 6.8: Private links interconnect

On the inputs and the outputs of the DRAM controller, regulators (i.e. “R”) are placed
to shape the traffic, if necessary.

Using schedule 1, we get the results of figure 6.9.

The dimensions of the graph are

• The pipeline degree, which represents the maximum number of allowed outstanding
requests per session

• The frequency of the scheduler(s) (i.e. the DRAM controller)
• The total required queue size of the scheduler(s) and the regulator(s) together

Please note that we have not found a solution with a frequency less than 150 MHz. This
means, we are not able to guarantee that all deadlines were met.

Using schedule 2, we get the results of figure 6.10.

Using schedule 3, we get the results of figure 6.11.
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Figure 6.9: Results of Private Links analysis using schedule 1
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Figure 6.10: Results of Private Links analysis using schedule 2

Comparison

Analyzing the results of the three schedules, we observe the following general trends.
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Figure 6.11: Results of Private Links analysis using schedule 3

By increasing the frequency, it is possible to meet the deadlines with a lower pipeline
degree and smaller queues. The reason for this is simple. By increasing the frequency, the
packets are processed faster. The latencies decrease and the service rates of the sessions
can be higher. Please note that there is no need to increase the number of outstanding
requests, if all deadlines are already met. The lower the pipeline degree is, the smaller the
size of the queues required can be and the less complex the subsystems can be. All three
graphs show monotonicity. If the pipeline degree decreases, or the frequency increases, the
size of the queues required decreases.

Furthermore, all schedules have a low queue size limit. Increasing the frequency starting
at a low frequency results in a significant amount of reduced queue space. The higher the
frequency gets, the less benefit from reducing the pipeline degree and the queue size.

When we look into more detail, it becomes clear that schedule 2 has a higher required
frequency compared to the other two schedules. For a frequency less than 200 MHz, no
solution has been found for schedule 2. The deadlines for the OFDM -symbols of schedule
2 are more strict, so a higher service rate has to be reserved for these sessions. Therefore,
a high frequency or a large TDMA wheel is required. The disadvantage of a large TDMA
wheel is the high latency. The higher the latency, the larger the queues. Therefore, schedule
2 requires significantly more queues compared to the other two schedules. But, the higher
the frequency gets, the smaller the difference in queue size among the schedules is.

Schedule 1 outperforms schedule 2. By using a frequency of 200 MHz, the pipeline degree
and the required queue size of schedule 1 are much less. A higher frequency results in a
further decrease of the pipeline degree and the queue size.

So, comparing schedule 1 and 2, the choice is easy. Schedule 1 is in all aspects (queue size,
frequency and pipeline degree) superior. Please note that we only look to the queues in
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6.5. Results

the regulators and the scheduler. The queues required to store the OFDM -symbols in the
DVB-T CDs are not measured. If these queues are taken into account, schedule 2 has a
much better performance because less queues are required to store the OFDM -symbols,
compared to the other two schedules.

When we look at schedule 3, it becomes clear that schedule 3 is not as good as schedule 1.
It requires larger queues. Although the deadlines of the OFDM -symbols are less strict, in
the worst case scenario it is possible that 4 OFDM -symbols are read at the same moment.
Then, the service rates have to be able to handle this worst case scenario. Therefore, the
frequency and the queue size are larger compared to schedule 1.

So, we conclude that schedule 1 is the most interesting one. It is superior in all aspects,
when we compare it with schedules 2 and 3. In the next section, we look at several inter-
connects and we use schedule 1 to compare different solutions.

6.5.2 Interconnect variants

In this section, we compare three interconnect variants using the same traffic as defined
in section 6.3. As already indicated, schedule 1 will be used.

Private links

With Private Links we have the same analysis as in the previous section. The results are
shown in figure 6.9

Bus

The second interconnect variant is the bus based interconnect as is shown in figure 6.12.
The traffic to and from the memory system goes via a bus. There is a single point of
arbitration in the bus arbiter. The subsystems and the DRAM controller first send a
request to the bus arbiter. Then, the bus arbiter determines the order of the data transfers
on the bus.

Please note that the DRAM controller does not reschedule the requests it receives. Fur-
thermore, each connection to the bus has a regulator (“R”) to shape the traffic if necessary.

Figure 6.12: Bus interconnect

Using this interconnect, we obtain the results of figure 6.13.
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Figure 6.13: Results of Bus analysis using schedule 1

Figure 6.14: NoC interconnect

Network-on-Chip

The third interconnect variant is a Network-on-Chip (NoC), as is shown in figure 6.14.
Compared to the first variant, an extra scheduler (or switch) is added, to send the traffic
from the 4xDVB-T Channel Decoders to Storage directly.
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Please note that only in this interconnect variant, session 5 is not used. This is the case,
because the data is sent directly from the 4xDVB-T Channel Decoder to the Storage,
instead of via the memory system.

Using this interconnect, we obtain the results of figure 6.15.
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Figure 6.15: Results of NoC analysis using schedule 1
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Comparison

Analyzing the results of the three interconnect variants, we observed the following.

The same general remarks as in the previous comparison can be made. Again, it is clear
that by increasing the frequency, the pipeline degree and the queue size can decrease.
Only this time, the differences among the several interconnect variants are larger than
the differences among the schedules. Once again, there is a lower limit on the size of the
queues. By increasing the frequency more and more, the profit of reducing the queues
becomes smaller.

Furthermore, the bus interconnect sends all packets via the same wires. The other two
interconnects make a distinction between the traffic to and from the memory. The bus
interconnect does not make this distinction. Therefore, the frequency has to be higher
for the bus interconnect, compared to the other two interconnects, to guarantee that all
deadlines are met.

Because more traffic is handled via the same wires, more queues are required. The latencies
for a selected frequency are higher (a larger TDMA wheel is required, because more sessions
share the same scheduler), so even more queues are required. Therefore, the size of the
queues required for the bus based interconnect is significantly higher than for the other
two interconnect variants.

Although the bus based architecture has low cost (only one scheduler and one bus are re-
quired), the frequency is high compared to the other two solutions. So the bus architecture
is not an option for this case study. For a low frequency (around 200 MHz), the deadlines
are not guaranteed. For a frequency between 300 MHz and 400 MHz, the queue size and
the pipeline degree are significantly higher compared to the situation that Private Links
or a NoC is used.

The difference between Private Links and NoC is not significant. The NoC needs more
queues for a given frequency and pipeline degree. The main reason is that an extra sched-
uler is required and schedulers simply require queues. Therefore, the NoC requires more
queues than the Private Links variant.

So, for this specific case study, the Private Links are a bit better than the NoC. Using the
same frequency, smaller queues are required. But, the NoC is able to decrease its pipeline
degree at a lower frequency than Private Links. Sometimes it is possible that by using the
same frequency, the NoC can have a smaller pipeline degree than the Private Links. Still,
a NoC requires more queues for the same frequency in this case study.

We expect that if a different case study is used with more direct communication, the NoC
will become better than the Private Links. In this case study, the extra scheduler used by
the NoC has a maximum utilization of only 8%. If more point-to-point communication is
available, this utilization will increase. Then, the DRAM controller can be relieved a bit.
Right now, the cost of the extra scheduler is higher than its benefits.

So, the Private Links interconnect is the best of the three interconnects variants. It requires
significant less queues, and it is cheaper to produce than the NoC interconnect. There is
a break point around a frequency of 333 MHZ. By increasing the frequency, the queue
sizes do not change significantly.

6.5.3 Influence on an individual session

As we saw in the previous sections, the smaller the pipeline degree is or the higher the
frequency is, the smaller the queues can be. In this section, we look into more detail to
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the influence of the pipeline degree and the frequency.

We took the results of section 6.5.1, using Private Links and schedule 1. One of the most
interesting traffic sessions is session 1 (DVB-T CDs reading the OFDM -symbols). This is
the case, because the rate of this session is high and the deadline is very strict. Therefore,
special attention has to be given to this session such that its deadline is met.

The influence of the pipeline degree and the frequency are shown in figure 6.16. For each
solution of figure 6.9, we calculated the amount of time slack per 1

4 OFDM -period for
session 1 (see section 6.3). This means

time slack of session i = Dmax
i −Dtotal

i (6.82)
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Figure 6.16: Results of Private Links analysis using schedule 1

Then, the following general trends can be observed.

There is a general trend that if the frequency or the pipeline degree increases, the time
slack also increases. A higher frequency results in faster servicing of the packets. Using
a higher pipeline degree causes more packets in flight to be serviced. For a frequency of
200 MHz or less, the time slack is almost zero. This means that the deadline is just met.
Using a higher frequency, the session has ample time.

Some results attract attention.

Firstly, at a frequency of 300 MHz and using a pipeline degree of 2, the slack time is
enormous. This is caused by the TDMA wheel. In this situation, session 1 is allowed
to send two packets per round. If this number is decreased to one, the deadline is not
met. Looking to the surrounding results, less time per round is reserved for this session.
Therefore, this result is not according to the general trend.

108



6.5. Results

Furthermore, at a frequency between 300 and 400 MHz and using a pipeline degree of
3, the results are significantly different than the general trend. This is also caused by the
TDMA wheel. Each time a different TDMA wheel is selected. Because the solutions with
the lowest queue requirements are selected, different TDMA wheels are selected. Therefore,
the general trend is not applicable here.

It is also possible to use a fixed TDMA wheel for all solutions. Assume that all sessions
get a service of one packet per round. Then, the results are shown in figure 6.17.
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Figure 6.17: Results of Private Links analysis using schedule 1 and a fixed TDMA wheel

Please note that a negative time slack means that in the worst case scenario the deadline
is not met.

As is shown in figure 6.17, the amount of time slack is monotonically increasing if the
pipeline degree is increased, or the frequency is increased. This result is as expected.

6.5.4 Influence of packet size

Until now, we assumed that the size of all read responses and write actions are 128 bytes.
Assume that the size of theses packets decreases to 64 bytes. Then, the characteristics of
the sessions change a bit, but can still be determined in the same way as is done in section
6.3.

Furthermore, we assume that for the Memory System (see [13])

• A read request for 64 bytes will take 14 cycles to process (including all overhead)
• A write action of 64 bytes will take 17 cycles to process (including all overhead)

Using Private Links and schedule 1, we obtain the results of figure 6.18.

Comparing these results with the results of figure 6.9, several general trends can be ob-
served.
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Figure 6.18: Results of Private Links analysis using schedule 1 and packets of 64 bytes

First all all, using packets of 64 bytes, a higher frequency or a higher pipeline degree is
required. This is the case, because the read requests and write actions have more overhead.
It takes more time per byte to be processed by the DRAM, compared to packets of
128 bytes.

Furthermore, in the case that all deadlines are guaranteed for a particular pipeline degree
and frequency, the queues can be smaller. The same number of packets can be in flight,
but the packets are smaller. Therefore, the size of the queues can be reduced.

So, if it is possible to use packets of 64 bytes (i.e. all deadlines are met), it is better to use
the smaller packets, instead of packets of 128 bytes.

6.6 Conclusion

In this case study several interesting aspects have become visible.

First of all, the case study itself is diverse. The traffic sessions have significantly different
characteristics. This means that not all sessions belong to the same traffic class (see ap-
pendix B). Some sessions (e.g. reading OFDM -symbols) have very strict deadlines, other
sessions have a low priority (e.g. load traffic of Storage). Nevertheless, all sessions can be
characterized and analyzed using the performance analysis method of chapter 4.

Furthermore, the various schedules have quite diverse influences. By only changing the
characteristics of one or two sessions, the results change significantly. Using the perfor-
mance analysis method it is showed that although the deadlines of schedule 3 are less
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strict compared to schedule 1, in the worst case scenario more queues are required. This
is caused by the fact that extra service has to be reserved, because the read and write
sessions of the Channel Decoders are not mutually exclusive anymore. Please note that in
this schedule it is possible that four OFDM -symbols are read at the same time.

Also the influence of different interconnects can be analyzed with the performance analysis
method. By selecting a cheap interconnect like the bus based interconnect, a higher price
has to be paid for the queue sizes and the frequency. Adding an extra scheduler can only
be profitable if the extra scheduler has enough packets to service. Unfortunately, in this
case study not enough direct communication is available to achieve a high utilization of
the extra scheduler.

Furthermore, also the influence of the pipeline degree and the frequency on individual
sessions can be shown by making use of the performance analysis method. Especially the
monotonicity of the slack time with respect to the pipeline degree and the frequency is
important for defining the architecture of a system.

Finally, the influence of the packet size can be shown by making use of the performance
analysis method. In the case that all deadlines are met for a particular pipeline degree and
frequency, it is better to use packets of size 64 bytes instead of packets of size 128 bytes.

Therefore, we can conclude that this case study has interesting architectural aspects that
become visible by our performance analysis method. Furthermore, the value of the perfor-
mance analysis method has been demonstrated by showing an easy analysis of different
solutions. By applying the method, insight is gained in the performance and the bottle-
necks of the architecture.

In the next chapter, we conclude this thesis.

111



Conclusion

112



Conclusion

The literature describes several techniques to characterize traffic (see chapter 2). One
technique to characterize traffic (i.e. the method of Cruz) makes use of two parameters,
namely ρ (i.e. the rate of the traffic) and σ (i.e. the burstiness constraint of the traffic).
With these parameters, an upper bound for traffic can be represented.

As an extension to σ and ρ, Stiliadis introduced an abstract type of schedulers, called
Latency-Rate (LR) servers. The arbitration policy of the scheduler is used to character-
ize the schedulers of the communication infrastructure. These schedulers can easily be
connected in a network to model interconnect. By making use of arbitration policies, the
method of Stiliadis determines an upper bound for the size of the queues required and the
delay of the packets in the schedulers. Because of the high aggregation level of the method
of Stiliadis, the method of Stiliadis has been selected as foundation for the performance
analysis method of SoC architectures in chapter 3.

The method of Stiliadis is not directly applicable to analyze the performance of a SoC
architecture, due to specific SoC characteristics. It does not support the calculation of
the delay of multiple packets of a traffic stream. Also, only request-only traffic streams
are expressible in the method of Stiliadis. Finally, Stiliadis does not take the number of
outstanding requests of a traffic stream into account. Therefore, several extensions and
changes had to be made to the performance analysis method to meet all requirements (see
chapter 4).

A memory system is an important part of a SoC architecture with specific characteristics.
Therefore, we have deployed a model of a memory system with suitable characteristics. Fur-
thermore, we have added specific arbitration policies to the performance analysis method
that are used in the schedulers of SoCs. Finally, we have made two improvements to the
performance analysis method to tighten the bounds of the size of the queues required.
All improvements and additions to the method of Stiliadis are proved to be correct in
appendix A.

Our performance analysis method can handle traffic streams of several traffic classes,
as is shown in a multi-channel DVB-T set-top box case study. All traffic streams are
characterized by the same set of parameters. This flexibility is a valuable property of the
performance analysis method.

Furthermore, it appears to be easy to characterize a traffic stream, to model interconnects
or to set the size of the packets in the performance analysis method. The maximum delay
of the traffic steams and the size of the queues required are calculated by the performance
analysis method within a second. By that, large numbers of variants can be tested in small
amount of time. In the multi-channel DVB-T set-top box case study, several schedule and
interconnect variants are analyzed. The influence of the pipeline degree and the maximum
rate of the communication infrastructure has become visible in the required queue size
and the time slack of the traffic streams. Therefore, the performance analysis method can
be used to select a suitable SoC communication infrastructure for selected use cases.

In future work, the performance analysis method can be made more precise by taking
propagation delays into account. Also the assumptions made in the performance analysis
method can be made more realistic. For example, all schedulers are assumed to be able to
make decisions without delay. In the implementation, this will not be possible.

The performance analysis method also has some limitations. It is not possible to express
backpressure. Backpressure is prevented by using queues large enough to receive all pack-
ets. It is also not possible to express traffic dependencies in the performance analysis
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method. Therefore, all schedules have to be periodic. Complementary methods should be
used to obtain the traffic requirements and schedules. Then, SoC architectures can be
checked by using these traffic requirements. Furthermore, flow control is also not possible
in our performance analysis method at the cost of larger queues.

Finally, it should be possible to extend the performance analysis method to output data
for more metrics. Possible extensions could be generating first order estimations for the re-
quired area size and the power consumption. Furthermore, preemptive arbitration policies
could possibly be added to the performance analysis method.
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Validation

A.1 Lemmas

Lemma A.1.1 Assume a session with parameters (σ, ρ) and packet size L. Then, the
delay for x words in a chain of m LR servers, with a total latency of

∑m
j=1 Θ(Sj) and a

capacity of C, is upper bounded by⌈
x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ

Proof Assume a busy period. Then (see section 2.4)

ρ · (t− t1) ≤ A(t1, t) ≤ σ + ρ · (t− t1) (A.1)

According to [22] (see equation 3.38), the delay for σ words is upper bounded by

σ

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
(A.2)

So, the delay for x words is upper bounded by

x

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
(A.3)

≤
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
(A.4)

This is the case, because it is assumed there is enough input. �

Lemma A.1.2 Assume a session with parameters (σ, ρ) and packet size L. Then, the
delay for x words in a chain of m LR servers, with a total latency of

∑m
j=1 Θ(Sj) and a

capacity of C, including receiving the first packet is upper bounded by⌈
x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C

Proof According to lemma A.1.1, the delay for x words is upper bounded by⌈
x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ

118



A.1. Lemmas

But, the time to receive the first packet is not included. So, the delay for x words including
receiving the first packet is upper bounded by

⌈
x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(A.5)

�

Lemma A.1.3 Assume x ≥ 1, x ∈ N, L ≥ 1, L ∈ N, n ≥ 1 and n ∈ N, then

(⌈
x

L

⌉
− n ·

(⌈
x

n · L

⌉
− 1
)
− 1
)

< n

Proof

⌈x

L

⌉
− n ·

(⌈ x

n · L

⌉
− 1
)
− 1 =

⌈x

L

⌉
− n ·

⌈ x

n · L

⌉
+ n− 1 (A.6)

<
x

L
+ 1− n ·

⌈ x

n · L

⌉
+ n− 1 (A.7)

=
x

L
− n ·

⌈ x

n · L

⌉
+ n (A.8)

≤ x

L
− n · x

n · L
+ n (A.9)

= n (A.10)

�

Lemma A.1.4 Assume a session with parameters (σ, ρ) and packet size L. Further assume
that the delay (i.e. D) for x words in a chain of m LR servers, with a total latency of∑m

j=1 Θ(Sj), a capacity of C and a pipeline degree of n, including receiving the first packet
is upper bounded by

⌈
x

n · L

⌉
·
(

L

C
+

m∑
j=1

Θ(Sj)

)

+

(⌈x

L

⌉
− n ·

(⌈ x

n · L

⌉
− 1
)
− 1

)
· L

ρ
(A.11)

If the pipeline degree is large, D converges to (see lemma A.1.2)

⌈
x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(A.12)
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Proof

lim
n→∞

D = lim
n→∞

(⌈
x

n · L

⌉
·
(

L

C
+

m∑
j=1

Θ(Sj)

)

+
(⌈x

L

⌉
− n ·

(⌈ x

n · L

⌉
− 1
)
− 1
)
· L

ρ

)
(A.13)

= 1 ·
(

L

C
+

m∑
j=1

Θ(Sj)

)
+
(⌈x

L

⌉
− 1
)
· L

ρ
(A.14)

=
L

C
+

m∑
j=1

Θ(Sj) +
(⌈x

L

⌉
− 1
)
· L

ρ
(A.15)

=
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(A.16)

�

Lemma A.1.5 Assume that the input packets of the packet stretcher have a size of L
and a rate of ρ. Furthermore, assume that the output packets have a length of L′. Then,
the output traffic has a rate of

ρ′ = ρ · L′

L
(A.17)

Proof Assume that x words are received in ∆t ≥ 0 sec. Then

ρ =
x

∆t
(A.18)

and

x input words ≡ x

L
input packets (A.19)

≡ x

L
· L′ output words (A.20)

≡ x′ output words (A.21)

So, x′ words are sent in ∆t sec. Then,

ρ′ =
x′

∆t
(A.22)

=
x
L · L

′

∆t
(A.23)

=
x

∆t
· L′

L
(A.24)

= ρ · L′

L
(A.25)

�

Lemma A.1.6 Assume that the input packets of the packet stretcher have a size of L, a
rate of ρ and a burstiness constraint of σ. Furthermore, assume that the output packets
have a length of L′ and a rate of ρ′ = ρ · L′

L . Finally, assume a capacity of C. Then, the
output traffic has a burstiness constraint of

σ′ =
σ

1− ρ
C

· L′

L
·
(

1−
L′

L · ρ
C

)
(A.26)
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Proof Assume n ≥ 0 and n ∈ R, then σ can be written as

σ = n · L ·
(

1− ρ

C

)
(A.27)

Because the number of packets in the burstiness constraint on the input of the packet
stretcher is equal to the number of packets in the burstiness constraint on the output of
the packet stretcher, σ′ can be written as

σ′ = n · L′ ·
(

1− ρ′

C

)
(A.28)

Then,

σ′ = n · L′ ·
(

1− ρ′

C

)
(A.29)

=
σ

L · (1− ρ
C )

· L′ ·
(

1− ρ′

C

)
(A.30)

=
σ

1− ρ
C

· L′

L
·
(

1−
L′

L · ρ
C

)
(A.31)

�

Lemma A.1.7 Assume an LR server with a capacity of C. Then, Round Robin Time
based is an LR server with latency

F − φ + Li

C

Proof Let Wi(t1, t) denote the number of service in words session i receives by the LR
server during the interval (t1, t), for t1 ≤ t. A backlogged period for session i is any period
of time during which traffic belonging to that session is continuously queued in the server.
In the worst case, a packet of session i is transmitted at the end of the round. Let t1, ..., tk
denote the ending times of the k rounds, k ≥ 1 and k ∈ N, after the beginning of a
backlogged period at time t0. Let t be the time during the kth round after the beginning
of a backlogged period for session i that a packet of session i is being serviced. Assume
there are V sessions sharing the LR server. Then,

Wi(t0, t) = Wi(t0, tk−1) + Wi(tk−1, t) (A.32)

= max
{

0, (k − 1) · φ
}

+ 0 (A.33)

= max
{

0, (k − 1) · φ
}

(A.34)

Since session i is continuously backlogged,

tk−1 − t0 ≤ (k − 1) · F

C
(A.35)
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From equations A.34 and A.35, and because φ = F
V and ρi ≤ C

V

Wi(t0, t) ≥ max
{

0, (tk−1 − t0) · φ ·
C

F

}
(A.36)

= max
{

0, (tk−1 − t0) ·
F

V
· C

F

}
(A.37)

= max
{

0, (tk−1 − t0) ·
C

V

}
(A.38)

≥ max
{

0, ρi · (tk−1 − t0)
}

(A.39)

Furthermore, at time t

t ≤ tk−1 +

∑V
n=1,n6=i φn + Li

C
(A.40)

t ≤ tk−1 +
F − φ + Li

C
(A.41)

tk−1 ≥ t− F − φ + Li

C
(A.42)

Combining with equation A.39,

Wi(t0, t) ≥ max
{

0, ρi ·
(
t− t0 −

F − φ + Li

C

)}
(A.43)

See equation 2.16.

�

Corollary A.1.8 Round Robin Time based is an LR server and its latency is equal to

F − φ + Li

C
(A.44)

It is required to show that the calculated latency is as tight as possible. It is sufficient
to give an example. Assume that all sessions become backlogged. Furthermore, assume
that all packets have size Lmax. Session i is the last session that is serviced in the round.
Because Round Robin Time based is used, session i gets serviced after

F − φ

C
(A.45)

So, the first packet of session i is serviced after

F − φ

C
+

Li

C
=

F − φ + Li

C
(A.46)

Lemma A.1.9 Assume an LR server with a capacity of C. Then, TDMA is an LR server
with latency

F − φi + Li

C
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Proof Let Wi(t1, t) denote the number of service in words session i receives by the LR
server during the interval (t1, t), for t1 ≤ t. A backlogged period for session i is any period
of time during which traffic belonging to that session is continuously queued in the server.
In the worst case, the packets of session i are transmitted at the end of the round. Let
t1, ..., tk denote the ending times of the k rounds, k ≥ 1 and k ∈ N, after the beginning of
a backlogged period at time t0. Let t be the time during the kth round after the beginning
of a backlogged period for session i that the jth packet, j ≥ 1 and j ∈ N, of session i is
being serviced. Assume there are V sessions sharing the LR server. Then,

Wi(t0, t) = Wi(t0, tk−1) + Wi(tk−1, t) (A.47)

= max
{

0, (k − 1) · φi

}
+ (j − 1) · Li (A.48)

Since session i is continuously backlogged,

tk−1 − t0 ≤ (k − 1) · F

C
(A.49)

From equations A.48 and A.49, and because ρi ≤ φi

F · C

Wi(t0, t) ≥ max
{

0, (tk−1 − t0) · φi ·
C

F

}
+ (j − 1) · Li (A.50)

≥ max
{

0, ρi · (tk−1 − t0)
}

+ (j − 1) · Li (A.51)

Then, at time t

t ≤ tk−1 +

∑V
n=1,n6=i φn + j · Li

C
(A.52)

t ≤ tk−1 +
F − φi + j · Li

C
(A.53)

tk−1 ≥ t− F − φi + j · Li

C
(A.54)

Combining with equation A.51,

Wi(t0, t) ≥ max
{

0, ρi ·
(
t− t0 −

F − φi + j · Li

C

)}
+ (j − 1) · Li (A.55)

The minimum value of the right-hand side of the above inequality occurs when j = 1.

Wi(t0, t) ≥ max
{

0, ρi ·
(
t− t0 −

F − φi + Li

C

)}
(A.56)

See equation 2.16.

�

Corollary A.1.10 TDMA is an LR server and its latency is equal to

F − φi + Li

C
(A.57)
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It is required to show that the calculated latency is as tight as possible. It is sufficient to
give an example. Assume that all sessions become backlogged. Session i is the last session
that is serviced in a round. Because TDMA is used, session i gets serviced after

F − φi

C
(A.58)

Then, the first packet of session i is serviced after

F − φi

C
+

Li

C
=

F − φi + Li

C
(A.59)

Lemma A.1.11 Assume an LR server with a capacity of C. Fixed Priority is an LR
server with latency

Lmax +
∑i−1

j=1 σj

C −
∑i−1

j=1 ρj

+
Li

C
(A.60)

Proof Let Wi(t1, t) denote the number of service in words session i receives by the LR
server during the interval (t1, t), for t1 ≤ t. A backlogged period for session i is any period
of time during which traffic belonging to that session is continuously queued in the server.
Assume that session 1 has the highest priority, session 2 the next highest priority and so
on. At time t0 the backlogged period of session i starts, i ≥ 1 and i ∈ N. Assume that it is
started by the arrival of the kth packet, k ≥ 1 and k ∈ N, of session i. Now, consider the nth

packet, n ≥ 1 and n ∈ N, of the same backlogged period (i.e. (k + n− 1)th packet). Then,
this packet starts being serviced at time Dk+n−1

i . Assume there are V sessions sharing the
LR server. Please note that in the worst case the (k + n− 1)th packet start transmission
after
• the current packet is processed
• all packets of session i that arrived before the (k + n− 1)th packet are processed
• the bursts of all sessions with a higher priority are processed
• all packets of sessions with a higher priority that arrive during this period are

processed
Then,

Dk+n−1
i ≤ t0 + t (A.61)

t =
1
C
·
(

Lmax +
k+n−1∑

j=k

Li +
i−1∑
j=1

σj +
i−1∑
j=1

t · ρj

)
(A.62)

t ·
(

1−
∑i−1

j=1 ρj

C

)
=

1
C
·
(

Lmax + n · Li +
i−1∑
j=1

σj

)
(A.63)

t ·
(

C −
i−1∑
j=1

ρj

)
= Lmax + n · Li +

i−1∑
j=1

σj (A.64)

t =
Lmax + n · Li +

∑i−1
j=1 σj

C −
∑i−1

j=1 ρj

(A.65)

Consider any time t∗ ≥ t0 during the session backlogged period. Assume that the marked
packet (the (k + n − 1)th packet) was the last packet of session i processed during the
period (t0, t∗). Then, the total service received by session i during (t0, t∗) is

Wi(t0, t∗) = n · Li (A.66)
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But, t∗ is upper bounded by the time at which the (k+n−1)th packet of the session leaves
the LR server.

t∗ ≤ t0 + t +
Li

C
(A.67)

t∗ ≤ t0 +
Lmax + n · Li +

∑i−1
j=1 σj

C −
∑i−1

j=1 ρj

+
Li

C
(A.68)

n · Li

C −
∑i−1

j=1 ρj

≥ t∗ − t0 −
Lmax

C −
∑i−1

j=1 ρj

−
∑i−1

j=1 σj

C −
∑i−1

j=1 ρj

− Li

C
(A.69)

Then, because ρi ≤ C −
∑i−1

j=1 ρj because C ≥
∑V

i=1 ρi

n · Li

ρi
≥ t∗ − t0 −

Lmax

C −
∑i−1

j=1 ρj

−
∑i−1

j=1 σj

C −
∑i−1

j=1 ρj

− Li

C
(A.70)

Combining equation A.66 and A.70, we get

Wi(t0, t∗) = n · Li (A.71)

≥ ρi ·
(

t∗ − t0 −
Lmax

C −
∑i−1

j=1 ρj

−
∑i−1

j=1 σj

C −
∑i−1

j=1 ρj

− Li

C

)
(A.72)

= ρi ·
(

t∗ − t0 −
Lmax +

∑i−1
j=1 σj

C −
∑i−1

j=1 ρj

− Li

C

)
(A.73)

= max
{

0, ρi ·
(
t∗ − t0 −

Lmax +
∑i−1

j=1 σj

C −
∑i−1

j=1 ρj

− Li

C

)}
(A.74)

See equation 2.16.

�

Corollary A.1.12 Fixed Priority is an LR server and its latency is equal to

Lmax +
∑i−1

j=1 σj

C −
∑i−1

j=1 ρj

+
Li

C
(A.75)

It is required to show that the calculated latency is as tight as possible. It is sufficient to
give an example. Assume that session 1 has the highest priority, session 2 the next highest
priority and so on. Assume the LR server is processing a packet of size Lmax and that all
sessions with a higher priority than session i send their bursts. Furthermore, assume that
currently a packet of lower priority than session i is processed. A rate of

∑i−1
j=1 ρj has to

be reserved for packets that arrive during processing the current packet and the bursts.
Then, the first packet of session i is processed after

Lmax +
∑i−1

j=1 σj

C −
∑i−1

j=1 ρj

+
Li

C
(A.76)

Lemma A.1.13 Assume a session with parameters (σ, ρ) and packet size L. Then, the
delay for x words in a chain of m LR servers, with a total latency of

∑m
j=1 Θ(Sj) and

a capacity of C, including receiving the first packet with regulator is equal to the delay
without a regulator.
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Proof The input can be characterized by R(t) (see equation 2.5)∫ t2

t1

R(t)dt ≤ σ + ρ · (t2 − t1) (A.77)

Then, without a regulator, the total delay for x words including receiving the first packet
is upper bounded by (see lemma A.1.2)⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(A.78)

Assume that a regulator is added and the output of the regulator has a burstiness con-
straint of σ′. Then, according to section 3.2.5 and equation 2.10

dj =
1
ρ
·max

{
0,
(
Qρ(R)(sj)− σ′

)}
(A.79)

Qρ(R)(t) = max
t1:0≤t1≤t

{∫ t

t1

R(t)dt− ρ · (t− t1)
}

(A.80)

Please note that dj represents the delay of the jth packet in the regulator, that arrives at
sj . Then,

Qρ(R)(t) = max
t1:0≤t1≤t

{∫ t

t1

R(t)dt− ρ · (t− t1)
}

(A.81)

≤ max
t1:0≤t1≤t

{
σ + ρ · (t− t1)− ρ · (t− t1)

}
(A.82)

= σ (A.83)

dj =
1
ρ
·max

{
0,
(
Qρ(R)(sj)− σ′

)}
(A.84)

≤ 1
ρ
·max

{
0,
(
σ − σ′

)}
(A.85)

=
σ − σ′

ρ
(A.86)

At most σ − σ′ words are in the regulator. Then, the total delay for x − (σ − σ′) words
including receiving the first packet is upper bounded by

D′ ≤
⌈

x− (σ − σ′)
L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(A.87)

Then, the total delay with regulator is

D = dj + D′ (A.88)

≤ σ − σ′

ρ
+
⌈

x− (σ − σ′)
L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(A.89)

≤
⌈

x

L

⌉
· L

ρ
+

m∑
j=1

Θ(Sj) − L

ρ
+

L

C
(A.90)

So, the regulator does not change the total delay. �
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Lemma A.1.14 Assume an LR server, with a capacity of C, receives a session with
parameters (σin, ρ) and packet size L. Then, the burstiness constraint of the output (i.e.
σout) of the LR server, with a latency of Θ and a minimum latency of Θmin, is

σout ≤ σin + ρ ·Θ− ρ ·Θmin (A.91)

Proof The input is token-bucket-shaped. Let c(t) be the number of tokens at time t in
the token bucket shaping the incoming traffic. Let Q(t) be the amount of backlogged data
in the LR server at time t. Then, the maximum possible backlog is

c(t) + Q(t) (A.92)

But, the maximum backlog is upper bounded by

σin + ρ ·Θ (A.93)

So,
c(t) + Q(t) ≤ σin + ρ ·Θ (A.94)

The arrivals A(t1, t), for t1 ≤ t, of the session cannot exceed the number of tokens in the
token bucket at time t1, plus the amount of data arrived in the interval (t1, t), minus the
number of tokens remaining in the bucket at time t.

A(t1, t) ≤ c(t1) + ρ · (t− t1)− c(t) (A.95)

A packet requires at least Θmin sec processing time. Therefore, the service offered to the
session in the interval (t1, t) is

W (t1, t) = Q(t1) + A
(
t1, t−Θmin

)
−Q(t−Θmin) (A.96)

≤ Q(t1) + A
(
t1, t−Θmin

)
(A.97)

≤ Q(t1) + c(t1) + ρ ·
(
t−Θmin − t1

)
− c(t−Θmin) (A.98)

= Q(t1) + c(t1)− ρ ·Θmin + ρ · (t− t1)− c(t−Θmin) (A.99)
≤ σin + ρ ·Θ− ρ ·Θmin + ρ · (t− t1)− c(t−Θmin) (A.100)

≤
(
σin + ρ ·Θ− ρ ·Θmin

)
+ ρ · (t− t1) (A.101)

σout ≤ σin + ρ ·Θ− ρ ·Θmin (A.102)

Therefore
σout ≤ σin + ρ ·Θ− ρ ·Θmin (A.103)

�
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Traffic classes

B.1 Introduction of traffic classes

In chapter 4, we described how to calculate the maximum delay and the required buffer
sizes for a communication infrastructure and a set of traffic streams. The parameters that
we use to characterize traffic are

• rate (ρ)
• burstiness constraint (σ)
• packet size (L)
• pipeline degree (n)

Using these parameters, the traffic streams can be characterized. Furthermore, we use
Dmax to express the amount of time available to send x words.

The literature gives several traffic classifications. In this appendix, we discuss two traffic
classifications and explain the applicability of the traffic parameters of our performance
analysis method.

B.2 ATM-classes

One way to classify traffic is to look at the characteristics of the traffic. For ATM1 several
classes are defined (see [15] and [24]):

• Constant Bit Rate (CBR)
• Variable Bit Rate - Real-Time (VBR-RT)
• Variable Bit Rate - Non-Real-Time (VBR-NRT)
• Available Bit Rate (ABR)
• Unspecified Bit Rate (UBR)

The first category (CBR) is defined for predictable traffic with a static rate. CBR is
intended to support Real-Time applications requiring tightly constrained delays (like video
applications). So, for this traffic class we have to select at least the static rate.

The Real-Time VBR service category is intended for traffic with tightly constrained delays.
Low latencies and small delays are required. This class is used by Real-Time applications.
The subsystems send their data at a rate which varies over time. Therefore, the traffic can
be seen as bursty.

The Non-Real-Time VBR category is intended for traffic with a variable rate. Further-
more, it has weaker requirements on latencies and on delays than the previous two traffic
classes. This class is intended for Non-Real-Time applications which have bursty traffic
characteristics.

1. Asynchronous Transfer Mode
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ABR is intended for traffic characteristics that may change over time. It does not require
a bounding on the delays experienced by a given traffic session. ABR is not intended to
support Real-Time applications. This traffic has loose requirements on the latencies.

Finally, the Unspecified Bit Rate service category is intended for traffic sessions that do not
require tightly constrained delays. UBR does not specify traffic related service guarantees.
It is intended for Non-Real-Time applications. Therefore, it can be seen as traffic with the
lowest priority.

B.2.1 Applicability of ATM-classes

The ATM -classes described above are applied to the traffic parameters of the performance
analysis method described in chapter 4.

In table B.1 an overview is given of the relation between the ATM -classes and the traffic
parameters of the performance analysis method.

σ ρ L n Dmax

CBR low - - - low
VBR-RT high - - - low

VBR-NRT high - - - average
ABR - low - - high
UBR - low - - high

Table B.1: Overview of the relation between the ATM -classes and the traffic parameters
of the performance analysis method

CBR is defined for traffic with a constant bit rate. It is predictable traffic (i.e. the traffic is
not bursty), so σ can be small. Because it is intended to support Real-Time applications
requiring tightly constrained delays, Dmax will be small.

VBR-RT has a variable rate. Because the traffic is bursty, we expect that σ is larger than
for CBR. VBR-RT is intended for traffic with tightly constrained delays, so Dmax will be
small.

VBR for Non-Real-Time applications also represents bursty traffic, so we expect a high
value for σ. Furthermore, because the deadlines are less tight than for CBR and VBR-RT,
Dmax will be average.

ABR does not require constrained delays. Therefore, ρ will be smaller than for the traffic
classes above. For the same reason, Dmax will get a high value.

Finally, UBR also does not require constrained delays. It has no traffic related guarantees.
Therefore, ρ will get a low value and Dmax will be high.

As has become clear, all traffic classes can be expressed in our performance analysis method
using the same set of parameters. Often, no information is available for a few parameters.

B.3 Traffic classes

In [24], traffic classes for programmable processors have been defined according to a set of
traffic attributes.

The first attribute is “cacheability”. This attribute is used to specify whether it is possible
to cache the data. It indicates whether it has benefits to cache. The second attribute is
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“spatial distribution”. This attribute indicates whether the addressing is predictable. If it
is predictable, prefetching is possible. “Temporal distribution” is related to the burstiness
of the traffic. Finally, the “latency sensitivity” indicates whether the deadline is hard or
soft. It the deadline is hard, it also indicates whether the deadline is for a single transaction
or for a set of transactions.

Then, the traffic attributes are defined as follows [24]:

• Cacheability
– 0: Should not be cached
– 1: Permitted to be cached
– 2: Benefits from being cached

• Spatial distribution (addressing)
– 0: Unpredictable
– 1: Predictable (can pre-fetch)
– 2: Regular

• Temporal distribution
– 0: Unpredictable
– 1: Predictable
– 2: Regular (non-bursty)

• Latency sensitivity
– 0: Insensitive (best effort)
– 1: Hard constraint for set of transactions
– 2: Hard constraint for individual transactions

Using these attributes, traffic classes for programmable processors have been defined in
[24] (see table B.2).

Characteristics Latency sensitivity
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Instruction fetch (cached) 2 1 0 1 N/A
Scratch data (local variables) 2 0 0 1 0

Streaming data 2 2 1 1 0
Register I/O (device programming) 0 0 0 1 0

Coherency traffic (messages) 0 0 0 1 0
Interrupts 0 0 0 N/A 2

Table B.2: Traffic classes for programmable processors [24]

B.3.1 Applicability of traffic classes

The traffic attributes as described above are applied to the traffic parameters of the per-
formance analysis method of chapter 4.

In the performance analysis method, it is not possible to express the possibility of caching.
The reason for this is simple. The performance analysis method determines an upper bound
for the delays. Caches are ignored, because the worst case scenario is based upon cache
misses for all memory accesses.
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Spatial distribution is not directly related to a traffic parameter of the performance analysis
method. But for various situations, there is an indirect relation with the pipeline degree.
In case the addressing is known in advance, the pipeline degree can be higher. This is the
case, because if some addresses are known in advance, those packets can already be sent.

The burstiness constraint σ is related to the temporal distribution. If the traffic is regular,
the value for σ can be low. If the traffic is unpredictable, the value for σ should be higher.

Latency sensitivity is related to ρ, n and Dmax. In case of best effort traffic, no traffic
related service guarantees are specified. Therefore, the delay of the traffic is not important.
So, ρ will be small and Dmax will be large. In case of hard constraints on the latency, ρ will
be larger, to reduce the delay. Furthermore, Dmax will be smaller. The difference between
a set of transactions and individual transactions can be expressed using n. In case of an
individual transaction, n is small. Otherwise, n will have a higher value.

In table B.3 an overview is given of the relation between the traffic classes for pro-
grammable processors and the traffic parameters of the performance analysis method.

σ ρ L n Dmax

Instruction fetch (cached) high - - low low
Scratch data (local variables) high - - low low

Streaming data average - - average low
Register I/O (device programming) high - - low low

Coherency traffic (messages) high - - low low
Interrupts high - - low low

Table B.3: Overview of the relation between the traffic classes for programmable processors
and the traffic parameters of the performance analysis method

For programmable processors, the number of outstanding requests is limited. Therefore,
for all traffic classes n will have a low value, except for streaming data. This is the case,
because streaming data has a regular spatial distribution. Therefore, the pipeline degree
can have an average value.

Instruction fetch has an unpredictable temporal distribution. Therefore, σ will be high.
Furthermore, because the deadlines are strict, Dmax will be small.

For scratch data we expect irregular traffic, because of the unpredictable temporal distri-
bution. So, σ should be high. Because of the strict latency requirements, a low value for
Dmax is expected.

Streaming data has a predictable temporal distribution. Therefore, σ will be smaller than
for the other traffic classes. Because of the strict latency requirements, a low value for
Dmax is expected.

Register I/O, coherency traffic and interrupts have an unpredictable temporal distribution.
Therefore, σ will be high. Furthermore, because the deadlines are strict, Dmax will be small.

As indicated above, it is hard to make a clear distinction among the different traffic classes
in this section. Often, no information is available for several parameters. Please note that
still the same set of parameters is used and that all traffic classes can be expressed by the
traffic parameters of the performance analysis method.
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B.4 Conclusion

As has become clear in the previous sections, there is generally not a direct relation between
the different traffic classifications of sections B.2 and B.3 and the traffic parameters of our
performance analysis method. The different traffic classifications only define some coarse
bounds on the values of ρ, σ, Dmax and n. But, all traffic classes defined are expressible
by the traffic parameters of our performance analysis method.
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C.1 Model

To perform the performance analysis method, a Mathematica model has been created. In
this appendix, we will explain how it works.

First, the input has to be defined. The input consists of the following items (see table C.1).

Variable Explanation
RhoIn The rate per session
SigmaIn The burstiness constraint per session
DegreeIn The pipeline degree per session
LPacket The packet size per session
Regulator The option whether a regulator is used per session
Selection The option whether a particular session is used
DPropagation The propagation delay per session
Xtotal The number of words to determine the total delay per ses-

sion
DelayTogether A number per session, to combine sessions (identical num-

ber indicates a combination, needed for a request-response
stream)

Deadline The deadline per (combined) session
ReadMem The option whether a session is a read request session
Subsystems The name per subsystem
From The source per session (number refers to Subsystems)
Targets The destination per session per scheduler (number refers to

Subsystems)
R The maximum rate of all links and schedulers
SchedulerType The arbitration policy per scheduler, the following policies

are used:
0: Virtual Clock
3: Deficit Round Robin
4: Weighted Round Robin
5: Round Robin Time Based
6: Round Robin Packet Based
7: Fixed Priority
8: TDMA
9: No policy (direct connection)

TDMA The number of packets per session in the TDMA wheel per
scheduler

PriorityList The priority per session, only used when Fixed Priority is
the arbitration policy (“1” indicates the highest priority, “2”
indicates the next highest priority and so on)
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S The worst case number of memory cycles needed for a re-
quest per session (including e.g. precharge and activate)

Se The effective number of memory cycles needed for a request
per session

MemControl The option whether a scheduler is a normal scheduler or a
memory controller

Lc The size of the fixed packet (cell) for Weighted Round Robin
(see section 3.3.5)

Table C.1: Input overview of the Mathematica model

Using this information, the Mathematica model can start calculating the delays and the
queue sizes.

First of all, the length of the input is checked. After that, it is checked if the maximum
rate of the schedulers is high enough to process the sessions (i.e.

∑V
i=1 ρi ≤ C) and all

constraints are satisfied. This is done for each scheduler individually. In case that the
scheduler is a memory controller, the ρ’s are adapted using a packet stretcher (see section
4.4.3). If the maximum rate is not high enough, the calculation will stop. Otherwise, the
model will start calculating the delay and the queue sizes.

Finally, the output of the Mathematica model is generated. The generated report consists
of a few parts. First of all, an overview of the input is given (see table C.2).

Name Explanation
#sessions The number of sessions
#schedulers The number of schedulers
Rate The maximum rate of all links and schedulers
Schedulers The sum of the ρ’s per scheduler and the maximum utiliza-

tion per scheduler
Memory The sum of the ρ’s per memory controller and the maximum

utilization per memory controller

Table C.2: Output overview of the Mathematica model

Then, an overview of the size of the regulators is given. After that, for each scheduler the
following information is output (see table C.3).

Name Explanation
Overview An overview of the characteristics per input session
Policy The selected arbitration policy of the scheduler
Phis φi per session (see sections 3.3.5 and 4.5)
Frame F (see sections 3.3.5 and 4.5)
Theta Θi,

∑k
j=1 Θ(Sj)

min,i and
∑k

j=1 Θ(Sj)
i up to this scheduler per

session
Max delay Dtotal up to this scheduler per session
Max queue Qscheduler per session and the total required queue size

Table C.3: Output overview per scheduler
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Finally, a total overview is generated, using the information of all schedulers.

• Overview of the arbitration policies
• Overview of the input sessions
• Overview of the sessions (e.g.

∑m
j=1 Θ(Sj),

∑m
j=1 Θ(Sj)

min and pipeline degree per ses-
sion)

• Overview of the delay (Dtotal, Dmax and whether the deadlines are met)
• Overview of the required queues

C.2 Graphical interface

To improve the usability of the Mathematica model, a “graphical interface” has been
created (see figure C.1). The interface can be started by executing StartConsole. Then,
the following buttons are created (see table C.4).

Button Explanation
New notebook To generate a new notebook sheet
Reset Rhos To set all ρ’s to RhoIn (see table C.1)
Reset Degree To set all pipeline degrees to one
Calculate Auto To start the performance analysis method (a report is

generated)
Set Rate To set the maximum rate of all links and schedulers
Increase Rhos TDMA To set the ρ’s to the service rates of a scheduler
Increase Degrees To increase the pipeline degree if the deadline is not

met
Save To save the output
Save Auto To save the output automatically
Calculate To start the performance analysis method, after set-

ting a few parameters
Find Next To determine the next TDMA-wheel, after setting a

few parameters
Find Next Auto To determine the next TDMA-wheel, using standard

values for the parameters
Find All To determine solutions for several rates and TDMA-

wheels, after setting a few parameters
Find All Auto To determine solutions for several rates and TDMA-

wheels, using standard values for the parameters

Table C.4: Graphical interface overview of the Mathematica model
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Figure C.1: Graphical interface of the Mathematica model

The pseudo code for the buttons can be found in listing C.1. The following functions are
defined:

• Calculate(b) starts the performance analysis method and generates a report if
b is true

• ResetRho() sets all ρ’s to the original RhoIn (see table C.1)
• ResetDegree() sets all ni’s to 1
• ResetTDMAwheel() sets all wi’s to 1
• DetermineRhoTDMA(j) sets all ρ’s to the maximum service rates (i.e. φi

F ·C) of
scheduler j (see section 4.5)

• DetermineDegree(m) increases ni until the deadline of session i is met or ni = m
• DetermineNextTDMA(maxn, maxDegree, nrScheduler) determines the next

TDMA wheel by
– increasing wi if session i has the largest pipeline degree of all sessions
– increasing wi until the service rate of session i is at least equal to ρi or wi

reaches the maximum allowed value
this is repeated until a solution has been found with a maximum of maxn attempts

• FindSolutions(maxn, maxDegree, nrScheduler) searches for solutions
by setting the maximum rate of the schedulers and calling DetermineNextTDMA
a number of times. This is repeated for a list of maximum rates. After that, the
best solution per maximum rate and per pipeline degree is output

Please note that the optimal solution does not have to be found.
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Listing C.1: Pseudocode of the Mathematica model
1 void Calculate (bool b)

#Execute performance analysis method
#if b, then print output

void ResetRho ()
6 #Set Rho[] to RhoIn[]

void ResetDegree ()
#Set n[] to 1

11 void ResetTDMAwheel ()
#Set w[] to 1

void DetermineRhoTDMA (int j)
#Set Rho[] to max service rate of scheduler j

16

void DetermineDegree (int m)
#Increase n[i] until session i meets deadline or n[i] = m

void DetermineNextTDMA (int maxn, int maxDegree, int nrScheduler) {
21 #Find next TDMA wheel

#Max allowed w[i] is set to 20
nr := 0; continue := true;
while (nr < maxn & continue) {
increase w[i] if n[i] = max[n];

26 ResetRho();ResetDegree();
increase w[i] until (Rho[i] <= Phi[i]/F*C or w[i] > 20);
DetermineRhoTDMA(nrScheduler);
DetermineDegree(maxDegree);
Calculate(false);

31 if (Deadlines & Constraints satisfied)
{continue := false;}

else {nr++;}
}

}
36

void FindSolutions (int maxn, int maxDegree, int nrScheduler) {
#Find solutions for range of capacities
#Number of iterations is 10

RateList = {150, 167, ..., 400};
41 nr := 1;

while (nr <= Length[RateList])
Rate := RateList[nr];
ResetTDMAwheel();
nr2 := 1;

46 ResetRho();ResetDegree();DetermineRhoTDMA(nrScheduler);
DetermineDegree(maxDegree);
Calculate(false);
if (Deadlines & Constraints satisfied){Store solution;}
while (nr2 <= 10){

51 DetermineNextTDMA(maxn, maxDegree, nrScheduler);
if (Deadlines & Constraints satisfied){Store solution;}
nr2++;

}
nr++;

56 }
output best solution for each maximum rate and for each pipeline degree;

}
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