
 Eindhoven University of Technology

MASTER

Context awareness in ambient intelligence surroundings

van den Heuvel, H.A.C.

Award date:
2007

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a7907c79-51dd-4b24-99c2-bc04c6c0ca63

Philips Research

University of Technology Eindhoven | Computer Science department

Philips Research | Media Interaction group

Context Awareness in
Ambient Intelligence Surroundings

Student: Herjan van den Heuvel | 508407

Philips supervisor: Mark van Doorn

TU/e supervisors: Jeen Broekstra

Lynda Hardman

Eindhoven, August 8, 2007

 2

A Abstract

In most ambient intelligence scenarios systems need to be aware of their context. This

paper reports on the development of a context awareness component for the

DreamScreen project. This component includes a context model that will be used by the

existing Ambient Narrative system, which activates and deactivates output fragments

(beats) depending on the context of the system.

In the first part we present an extensive overview of context usage in future ambient

intelligence scenarios and existing systems within the home and retail domains. This

broad list of context information not only shows us that the current context of a system is

important but also that the context of the past is valuable information.

In the second part we describe the design of a context model that captures all the

identified context requirements. We come up with a new way to store and use context

history in an effective way. Next to this we propose a new format for the preconditions of

beats, in order to be compatible with our context model. Finally we design a software

component that checks these preconditions on the context model and context history.

In the third part we deliver an implementation of the design of our context model, context

history model and software component, in order to be integrated in the Ambient Narrative

system. Test results show that our context model is a powerful and expressive model that

covers a broad area of ambient intelligence scenarios.

 3

B Contents

A ABSTRACT..2

B CONTENTS ...3

1 INTRODUCTION..5

1.1 BACKGROUND... 5
1.1.1 Ambient intelligence .. 5
1.1.2 Context awareness.. 6
1.1.3 DreamScreen project... 6
1.1.4 Ambient Narrative system ... 7

1.2 PROBLEM STATEMENT ... 8
1.2.1 Research questions... 8

1.3 SCOPE ... 9
1.4 PREVIOUS WORK... 9
1.5 STRUCTURE OF THIS REPORT... 10
1.6 ABBREVIATIONS AND DEFINITIONS .. 11

2 REQUIREMENTS ..12

2.1 CONTEXT MODEL... 12
2.1.1 General requirements.. 12
2.1.2 Literature study.. 13
2.1.3 Scenario analysis .. 13
2.1.4 Brainstorm ... 14
2.1.5 Taxonomies ... 14
2.1.6 Overview.. 17

2.2 CONTEXT HISTORY .. 20
2.2.1 Previous work .. 20
2.2.2 General requirements.. 20

2.3 SYSTEM REQUIREMENTS.. 22
2.3.1 Functionality .. 22
2.3.2 Operating environment .. 22
2.3.3 Design/implementation constraints ... 22
2.3.4 Interfaces ... 23
2.3.5 Non-functional requirements ... 23

2.4 ASSUMPTIONS... 23

3 DESIGN ...25

3.1 CONTEXT MODEL... 25
3.1.1 Modelling issues .. 25
3.1.2 Conceptual model.. 29
3.1.3 Formal aspects .. 32
3.1.4 Coverage ... 33
3.1.5 Stored parameters... 34
3.1.6 Derived parameters ... 34
3.1.7 Extensibility.. 35

 4

3.2 CONTEXT HISTORY .. 35
3.2.1 Modelling solution.. 35
3.2.2 Conceptual model.. 36

3.3 PRECONDITIONS MODEL .. 36
3.3.1 Modelling issues .. 37

3.4 SOFTWARE COMPONENT.. 41
3.4.1 Precondition checking ... 41
3.4.2 Position computations ... 44
3.4.3 Relations and variables ... 46
3.4.4 Extensibility.. 46

4 IMPLEMENTATION ...47

4.1 MODELLING LANGUAGE ... 47
4.2 CONTEXT MODEL... 48
4.3 CONTEXT HISTORY .. 49
4.4 SOFTWARE ... 50

5 EVALUATION ..52

5.1 USER TEST ... 52
5.1.1 Experiment .. 52
5.1.2 Results... 54

5.2 SOFTWARE TEST ... 55
5.2.1 Test scenario ... 55
5.2.2 Test tool ... 57
5.2.3 Results... 59

6 CONCLUSIONS...60

6.1 CONTEXT.. 60
6.2 CONTEXT MODEL... 60
6.3 FUNCTIONALITY... 61
6.4 FUTURE WORK .. 62

C REFERENCES...63

C.1 REFERENCES.. 63
C.2 AMBIENT INTELLIGENCE SCENARIOS ... 67

D APPENDICES..69

D.1 BRAINSTORM RESULTS .. 69
D.2 MOVIE SCRIPTS ANALYSIS.. 71
D.3 HOME SCENARIOS... 73
D.4 RETAIL SCENARIOS ... 74
D.5 XML SCHEMA ... 75
D.6 USER TEST SCENARIOS ... 78
D.7 SOFTWARE TEST SCENARIOS ... 80

 5

1 Introduction

User system interaction is an important research topic nowadays. One of the aspects of

this research is focused on implicit interaction. This includes sensing users, user needs,

environmental variables and situations, and with this knowledge adapting computer

systems and environments to the user, without asking for explicit input from this user.

Applications can be found in many fields like at home, in the office, in retail, hospitality,

health care, learning, travel and sports. A very simple example of implicit input is a light

connected to a motion detector, that is switched on for a moment when someone is

nearby. This technology of systems sensing what is happening around them can be

referred to as context awareness.

The work described in this report is taking place in the DreamScreen project. This project

explores ambient intelligence in the retail domain and tries to find ways to realize large

varieties of ambient intelligence surroundings in a simple and fast way. The project is

focused on interactive solutions with augmented windows and is guided by a single

carrier application which is the intelligent shop window. Context awareness is a key

characteristic of this application and therefore an extensive model is needed to store all

kinds of context information in.

1.1 Background

1.1.1 Ambient intelligence

The term ambient intelligence was coined by Philips to express their vision on the future

of human computer interaction. They believe that “in the year 2020, people will relate to

electronics in more natural and comfortable ways as we do now. Current inventions will

make electronics smart and technological breakthroughs will allow us to integrate these

smart electronics into more friendly environments.” [Philips 07]

This is the vision of ambient intelligence: “In an ambient intelligence world, devices work

in concert to support people in carrying out their everyday life activities, tasks and rituals

in easy, natural way using information and intelligence that is hidden in the network

connecting these devices. As these devices grow smaller, more connected and more

integrated into our environment, the technology disappears into our surroundings until

only the user interface remains perceivable by users.” [Wiki: AmI]

Close to the term ambient intelligence are the terms pervasive computing and ubiquitous

computing. The goal of pervasive or ubiquitous computing is to bring computer usage into

the real physical world and allow users to interact with these computers in a more natural

way by talking, moving, pointing and gesturing. [Meyer 03] [Coen 98] This is the

technological side, while ambient intelligence is focused more on the design side.

 6

1.1.2 Context awareness

In the ambient intelligence vision, systems have to be “sensitive to people's needs”,

“anticipatory of their behaviour” and “responsive to their presence”. These statements are

all examples of context awareness. A context aware system knows what is happening in

its environment; its context. This context is not limited to users or devices, but also

includes other environmental variables like temperature, time and light conditions.

Dey defines context as “any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves.” [Dey 01]

A context aware system will use this information to respond to situations and adapt to

users’ needs, without explicit input from these users.

1.1.3 DreamScreen project

In the DreamScreen project at the Media Interaction group of Philips Research

Eindhoven, research is done on how to realize a large variety of ambient intelligence

surroundings in a relatively fast and cost effective way. Such a fast and cost effective

method is necessary to produce large amounts of customized solutions both for

professional (hotels, shops, airports) as well as consumer domains (home).

In the DreamScreen project research is done on different areas. These areas include

research on sensors, like position tracking and gaze detection, research on user

interaction, with augmented windows, and research on end-user programming. [Aarts 06]

Figure 1: The intelligent shop window.

 7

An intelligent shop window in the Philips ExperienceLab is used as a carrier application to

physically test the concepts developed in this project. This shop window is equipped with

different kinds of sensors to detect for example people passing by or people looking at

certain products. At the output side, the shop window has transparent video screens,

localized audio speakers and lots of lights to respond to these situations, for example by

lighting up a product or by showing product information on the window.

1.1.4 Ambient Narrative system

As a solution to realize a large variety of ambient intelligence surroundings in the desired

fast and cost effective way, a mass customization method is developed.

To this end the ambient intelligence experience, that is the output of the system, is

broken up in a large amount of small related fragments which are assembled in a custom

experience, based on the current situation, i.e. the current context. These small

fragments are called “beats” and have a precondition and an action part. The

precondition part can put constraints on the context like “there have to be at least two

persons in this area” or “the sun has to shine”. The action part defines what happens

when the beat is activated. These beats are read by the Ambient Narrative system.

The Ambient Narrative system is the engine that manages all the beats, checks their

preconditions on the current context and if a precondition holds, executes the action parts.

An action part can contain statements that trigger output devices such as displays, audio

speakers, lights, and etcetera. To this end a “Physical Markup Language” is under

development that, in the near future, will enable us to control any electronic device. In

figure 2 the Ambient Narrative system is shown as the core of the DreamScreen

architecture.

Figure 2: The DreamScreen architecture with its Ambient Narrative system.

When the Ambient Narrative system starts, an initial set of beats is loaded. The Ambient

Narrative system continuously checks the preconditions of these beats. The action part of

a beat can not only contain output actions, but it can also contain statements that cause

other beats to be added or retracted from the beat set. Now beats can trigger other beats

and this way beats can be hierarchically linked. The ambient intelligence experience can

now be seen as an interactive narrative that people explore, or a hypermedia network

that people browse through, by interacting with their environment.

 8

1.2 Problem statement

The Ambient Narrative system continuously uses context information, so one of the most

important aspects involved in this system is context awareness, i.e. the collecting and

representing of context information.

To represent this context information, a model is used. In the current model it is possible

to describe several different situations, but not as much as desired. Aspects like a user’s

orientation or the distance between devices and a user are not supported, for example.

The object of our project within the DreamScreen project is to find a better context model

which makes it possible to specify in more detail where users, objects and devices are

and what their relationships are.

To come to this new context model, we first have to find out what the criteria are and

which context information has to be represented by the model. This will be done by the

analysis of literature, scenarios and examples of ambient intelligence surroundings and

existing systems. With these criteria and the knowledge of the Ambient Narrative system,

we will construct a new extensive context model that fits in the existing system.

1.2.1 Research questions

To guide this context representation problem we formulate three research questions. First

we will try to find out which context information aspects are necessary for ambient

intelligence scenarios and therefore have to be in our context model.

 Q1: What kind of context information is needed in ambient intelligence surroundings?

Knowing which information has to be represented by our model, we have to come up with

an efficient but also simple design for this model:

 Q2: How can we efficiently represent this context information in a model?

Now what is the best way to implement this design so that it can easily be integrated in

the existing system:

 Q3: How can this model be used in the existing Ambient Narrative system?

 9

1.3 Scope

To answer the research questions presented in the previous section, our research project

focuses on context awareness in ambient intelligence surroundings. This report is written

as a record of our search for a new context representation model, including its

requirements, design, and implementation plus the implementation of a tool to test this

model.

We limit our research to context representation for ambient intelligence in the home and

the retail domains. We choose the home domain because most existing ambient

intelligence scenarios are written for this domain. We choose the retail domain because it

is expected that companies in this domain will be among the first adopters of ambient

intelligence concepts.

1.4 Previous work

Mark Weiser was the first to write about pervasive and ubiquitous computing. In 1991

Weiser wrote about “integrating computers seamlessly into the world at large”. [Weiser 91]

After this publication much research is done on these subjects. In [Meyer 03] an overview

of previous research on context awareness in homes is presented.

Location awareness

In [Abowd 00] it is stated that “most context aware systems still do not incorporate

knowledge about time, history, other people than the user, as well as many other pieces

of information often available in our environment.” Indeed a lot of context aware

applications focus solely on position information, i.e. use no other context information.

Examples of location aware systems are [Hansen 04] and [Becker 05]. In [Satoh 05] a

location model is presented and implemented that can work distributed over multiple

computers.

Context fusion

“Context fusion assists in providing reliable context by combining sensors in parallel to

offset noise in the signal, and by combining sensors sequentially to provide greater

coverage.” [Abowd 00] We believe this is true but we will not focus on context fusion in

this project. In [Schmidt 99] some basic experiments are done with context fusion,

showing its importance and strength.

Context reasoning

A lot of work on context awareness is focused on logic-based context reasoning. To this

end most papers propose RDF and OWL based models. Examples are [Kleinhout 03]

and [Wang 04]. Also much research is done on reasoning by artificial intelligence, as

stated in [Meyer 03]. Reasoning is out of the scope of this project, but can be an

important aspect in the Ambient Narrative system in the future.

 10

Context representation

In [Abowd 00] we can read that “the evolution of more sophisticated representations will

enable a wider range of capabilities and a true separation of sensing context from the

programmable reaction to that context.” [Hull 97] is one of the first to propose a context

model using XML. Also [Schmidt 99] and [Schmidt 00] introduce a context model in XML

and a working application of this context aware system. [Dogac 03] proposes the use of

ontologies, but they only focus on security and privacy. [Ferscha 02] proposes the use of

RDF to represent context information because of its simple but powerful syntax definition.

[Shehzad 04] and [Hung 05] describe a context aware middleware architecture including

context fusion, reasoning, context history and domain ontologies. This system uses a

relational database. [Przybilski 05] provides a broadly applicable context representation

and reasoning framework, but does not go into detail on the context model itself.

Adaptive hypermedia

In [Romero 03] a context aware hypermedia system is proposed to implement mixed

reality. [Brusilovsky 96] states that “an adaptive hypermedia system (…) should satisfy

three criteria: it should be a hypermedia system, it should have a user model, and it

should be able to adapt the hypermedia model using this user model.” In [Doorn 05] the

Ambient Narrative system is introduced, having an architecture based on the Dexter

reference model [Halasz 94] for hypermedia systems.

The Ambient Narrative system is an adaptive hypermedia system; it is a hypermedia

system with separate pieces of distributed multimedia output linked together, it has a user

model, being the context model and it adapts its hypermedia by this model. More on the

hypermedia aspects of the Ambient Narrative system and the ambient intelligence

experiences it creates can be found in [Doorn 06].

1.5 Structure of this report

We will give an overview of the report structure here. In section 2 we perform an

extensive search for requirements by analysing literature, ambient intelligence scenarios

and examples of ambient intelligence systems.

Section 3 contains the design of the context model considering the requirements found in

the preceding section. This includes the design process, problems that had to be solved

and the final conceptual model. This section also covers the design of a new precondition

format for the beats and of the software component that does the precondition checking

on the context model.

An implementation of the context representation model, the beat precondition model and

the precondition checking software component is presented in section 4.

In sections 5 we conduct a user test and software test and discuss the results of these

verification and evaluation steps. We will conclude the report in section 6 by answering

the research questions and proposing further research topics.

 11

1.6 Abbreviations and definitions

Often used terms and abbreviations are defined here.

Ambient intelligence: A vision where people live “easily in digital environments in which

the electronics are sensitive to people's needs, personalized to their requirements,

anticipatory of their behaviour and responsive to their presence.” [Philips 07]

Ambient Narrative system: The main software component of the DreamScreen project

that manages a set of beats and activates these beats depending on the current context.

Beat: The smallest unit of a narrative in the Ambient Narrative system, consisting of a

precondition and an action part.

Context : “Any information that can be used to characterize the situation of an entity. An

entity is a person, place, or object that is considered relevant to the interaction between a

user and an application, including the user and applications themselves.” [Dey 01]

Context awareness: The consciousness of an application of its context.

Hypermedia: Hypermedia is a term used for systems that contain graphics, audio, video

and plain text, interconnected by hyperlinks to create a non-linear medium of information.

Narrative: A text composed in any medium which describes a sequence of events.

OWL: Web Ontology Language. OWL is a language for defining and instantiating

ontologies. Ontologies are designed for use by applications that need to process the

content of information instead of just presenting this information to humans. Ontologies

provide greater machine interpretability of content than that supported by XML and RDF

by providing additional vocabulary along with a formal semantics. [Wiki: OWL]

Pervasive computing: → Ubiquitous computing.

RDF: Resource Description Framework. RDF is a family of World Wide Web Consortium

specifications, originally designed as a metadata model but which has come to be used

as a general method of modelling information, through a variety of syntax formats. The

RDF model is based upon the idea of making statements about resources in the form of

subject-predicate-object expressions, called triples. [Wiki: RDF]

Taxonomy: A classification in an ordered system.

Ubiquitous computing: A vision where all computer hardware including input and output

devices disappear in the environment.

XML: Extensible Markup Language. XML allows information to be encoded with

meaningful structure and semantics that can be understand by computers and by

humans.

 12

2 Requirements

In this project a system component is to be built that will not serve actual users, but will

be totally hidden for the end-user. It only has interfaces to other system components.

Having no end-users does not mean that there are no user requirements. We can identify

user requirements for the whole system which also count for this component.

The system we will build is a new concept and end-users are not yet identified. Therefore

requirements will mostly come from researchers and developers.

Because the component to be built is basically a model representing context information,

most requirements are about which context information should be represented by the

model. This is why most requirements are actually criteria for the context model.

2.1 Context model

2.1.1 General requirements

The model to be made shall be as simple as possible, but not too simple. We do not need

all kind of extra functionality that is never used. What we need is a most expressive

model for situation descriptions that covers a sufficiently large set of ambient intelligence

scenarios in the home and retail domains. What we do not need, for example, is the

possibility to get a 3d visualization of the situation described by the model. This can be a

nice feature, but is not needed at this moment, so it is not within the scope of this project.

The model shall be unambiguous. When putting new context information from a certain

sensor into the model, it has to be exactly clear where to put this information. And in the

other direction, when reading certain information from the model, its meaning has to be

totally clear.

The model shall be extensible. It is easy to imagine that in this requirements stage we

can not find exactly all context information that has to be in the model. So in a later stage,

when a new sensor is added to the system, for example, it has to be possible to easily

extend the model with new parameters.

The final and most important requirement is that the model shall be able to describe as

many situations as possible in the home and retail domains concerning ambient

intelligence scenarios. To find these situations, we use a number of techniques to identify

requirements [Hatley 00]. The first activity is a literature study. Second comes a broad

scenario analysis and finally we will do a brainstorm session. In the next paragraphs we

will discuss these activities and their correlation.

 13

2.1.2 Literature study

As stated above we started with a literature study. We did a search for literature on the

topics of context awareness, ambient intelligence surroundings, and pervasive computing.

We found books, reports and papers in the library of Philips Research, the ACM digital

library, the IEEE digital library and on the internet. While reading, we focused on context

information parameters that were described or used. This way we came up with a first

taxonomy of context parameters. Example context parameters are the “outside

temperature”, a “person’s age”, a “person’s activity”, and a “device’s orientation”. The

total list of literature can be found in appendix C.1.

2.1.3 Scenario analysis

For all kinds of projects, both within Philips Research as outside Philips, scenarios have

been developed about future use of ambient intelligence. In most of these scenarios the

systems are context aware to naturally interact with users. After collecting scenarios from

different sources, we read and interpreted them one by one to fully understand what is

written and what is meant in every scenario. Then we analyzed them very carefully to find

all context information that would be necessary to realize these scenarios.

We matched all these context information parameters with the earlier constructed context

taxonomy and, when our context taxonomy did not support a context parameter, it was

added to the taxonomy. Example context parameters found in scenarios are the “air

quality”, a “person’s mood” and the “object’s contents”. A complete list of scenarios used

for our analysis can be found in appendix C.2. Now two matrix diagrams present the

context taxonomies for respectively the home and retail domain and show which

scenarios use which context information parameters. These matrices can be found in

section 2.1.5.

Movie scripts

The ambient intelligence surroundings can be seen as an interactive narrative that people

explore by interacting with their environment. Another form of narrative is film. Because of

this similarity we looked at some movie scripts to possibly discover more context

information. We have analyzed three different movies to cover different genres. The three

movies are: Slither (horror / comedy) [Gunn 04], V for Vendetta (action / drama / thriller)

[Wachowski 90] and Willow (fantasy / adventure) [Lucas 88].

From these movies we read different parts of the script. Then we indexed activities and

conditions from the actors of which we thought that these activities should possibly be in

our model. After having populated this list we searched in the context taxonomy for ways

to detect every activity or condition. This list can be found in Appendix D.2. Example

activities are “moving towards a door”, “laughing”, “being afraid” and “kissing”. Although

we gathered lots of activities and situations, we did not find anything that can not be

described by our context taxonomy. There are some difficult situations, but these can be

detected by combining two or three context parameters.

 14

2.1.4 Brainstorm

There is an enormous amount of literature and scenarios available for ambient

intelligence in the home domain. For the retail domain there is less information. This is

why we decided to set up a brainstorm session to think about ambient intelligence

systems in retail environments.

Eight people participated, all directly or indirectly involved in the DreamScreen project.

We already had a lot of scenarios about the outside of a shop, i.e. the shop window, and

about expensive fashion shops, so we decided to focus on activities inside a common

shop such as a supermarket. The result of this brainstorm is a list of 23 ideas of things

that would be useful to have in such a shop or mall. We grouped these ideas by similarity

into five clusters. For every cluster we listed the necessary context information, and if not

already there, we added this to the context taxonomy. These lists can be found in

appendix D.1. Example context parameters found by the brainstorm are a “person’s

mental state” and an “object’s weight”. Treating every cluster as a scenario we added

them to the context taxonomy for the retail domain.

2.1.5 Taxonomies

In this section we present the context taxonomies constructed by the activities of the

previous sections. Table 1 contains the context taxonomy for the home domain and table

2 contains the taxonomy for the retail domain. These tables contain matrices with a

scenario in every column and a context parameter on every row. This way it is easy to

see in what scenario an how often a context parameter is used. The numbers in the

header rows each represent a scenario. The list of scenarios can be found in appendices

D.3 en D.4. Parameters without a mark were added to the taxonomy during the literature

study, parameters marked by a * during the scenario reviews and parameters marked by

a º during the brainstorm session.

Persons 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 Identity x x x x x x x x x x x x

 Age x
 Gender x

 Location

 absolute position x x x x x x x x x x x x

 relative position x x x x x x x x x

 which room x x x x x x x x x

 same room x x
 Orientation x x x x x

 Movement

 direction* x x x x x x x

 speed x x x x x x x

 acceleration x x x
 Activity x x x x x x x x x x x

 Activity duration x x

 Gestures x x x x

 Speech

 self x x x x x x x x x x x x

 someone else x x x
 Face* x

 Health x

 heart rate x x

 15

Table 1: Context taxonomy for the home domain.

 blood pressure x x

 body fat* x x
 weight* x

 medicine use* x

 smoking* x

 Emotions x

 face expression x

 mood* x
 Intentions x x x x x

 History

 persons met* x

 location* x

 activities* x

 music heard* x
 food eaten* x

 Profile / Rights x

 Entities nearby x x x x x x

 Gaze x

 Touch x x x x x x x x x
Devices 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 Identity x x x x x x x x x x

 Resources

 display x

 Capabilities* x x x x x x x x

 Location

 absolute position x x x x
 relative position x x x x x

 which room x x

 same room x

 Orientation x x x

 Movement
 direction* x x

 speed x x

 Activity x x x

 Profile / Rights x x

 Entities nearby x x x x x x x x x x x x x

 Contains* x x x
 Has contained* x x
Objects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 Identity x x x x

 Location

 absolute position x x x

 relative position x x
 which room x

 Movement x

 speed x

 Contains x x x x

 Has contained* x x
Groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 Entities nearby x
Environment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 Light* x x x x x

 Sound / Noise x x

 Temperature x
 Rain Chance* x

 Air quality* x

 Indoor / Outdoor x

 Time x x

 Water* x

Persons 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

 Identity x x x x x x x

 Length x

 Mental stateº x

 Physical stateº x

 Location
 absolute position x x x x x

 relative position x x x x x x x x x x x x x x

 16

Table 2: Context taxonomy for the retail domain.

 Orientation x x x x x x x x

 Movement
 direction* x x x x x

 speed x x x x x

 Activity x x

 Gestures x x x x x

 Face* x

 Emotions
 moodº x x

 Intentions x

 good/badº x

 time to spendº x

 History

 products bought* x
 time spentº x

 Entities nearby x x

 Gaze x x x x x x x

 Touch x x x x x
Devices 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

 Identity x
 Capabilities* x

 Location

 absolute position x x x

 relative position x x x x x

 Movement

 direction* x x
 speed x x

 acceleration x

 Profile / Rights x

 Entities nearby x x

 Contains* x x
Objects 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

 Identity x x x x x

 Shape* x x

 Weightº x x

 Location

 absolute position x x x x
 relative position x x x x

 heightº x x

 Colour* x

 Entities nearby x

 Contains x x x x

 orderº x
 Has contained* x x
Groups 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

 Location

 relative position x x

 Space between* x

 Orientation x
 Movement

 speed x

 Nr. of individuals* x x

 Contains x
Environment 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

 Light* x

 Colour* x

 Sound / Noise x

 Temperature x

 Season x

 Time x x x
 Date x

 17

2.1.6 Overview

For all context information parameters listed in the taxonomies in the previous section,

there has to be a possibility to store them in and retrieve them from the context model.

Therefore all these context parameters are requirements on our model. We will give a

summary and analysis of these context taxonomies here.

Home domain

32 scenarios

7,3 parameters per scenario on average

Context parameters per scenario

 11 scenarios have ≤ 5 parameters

 17 scenarios have 6–10 parameters

 2 scenarios have 11–15 parameters

 1 scenario has 16–20 parameters

 1 scenario has ≥ 21 parameters

69 unique parameters in total

3,4 scenarios per parameter on average

Scenarios per context parameter

 28 parameters occur in 1 scenario

 28 parameters occur in 2–5 scenarios

 8 parameters occur in 6–10 scenarios

 5 parameters occur in ≥ 11 scenarios

Top 10 context parameters

1. Entities nearby a device

2. Identity of a person

3. Absolute position of a person

4. Speech of a person

5. Activity of a person

6. Identity of a device

7. Relative position of a person

8. In which room is a person

9. Touch of a person

10. Capabilities of a device

Coverage

� 70% of the parameters cover 80%

of the scenarios.

� 80% of the parameters cover 90%

of the scenarios.

Retail domain

32 scenarios

4,5 parameters per scenario on average

Context parameters per scenario

 25 scenarios have ≤ 5 parameters

 6 scenarios have 6–10 parameters

 0 scenarios have 11–15 parameters

 1 scenario has 16–20 parameters

55 unique parameters in total

2,6 scenarios per parameter on average

Scenarios per context parameter

 25 parameters occur in 1 scenario

 26 parameters occur in 2–5 scenarios

 3 parameters occur in 6–10 scenarios

 1 parameter occurs in ≥ 11 scenarios

Top 10 context parameters:

1. Relative position of a person

2. Orientation of a person

3. Gaze of a person

4. Identity of a person

5. Absolute position of a person

6. Movement of a person

7. Gestures of a person

8. Touch of a person

9. Relative position of a device

10. Identity of a device

Coverage

� 60% of the parameters cover 80%

of the scenarios.

� 75% of the parameters cover 90%

of the scenarios.

 18

2.1.6.1 Communalities and differences

Some context parameters are only used in a single domain, others are used both in the

home domain as in the retail domain. In table 3 an overview of these numbers is

presented. In the “intersection” row the numbers of shared context parameters are

presented. In the “union” row the total numbers are listed, that is the shared parameters

plus the unique home parameters plus the unique retail parameters.

Table 3: Numbers of context parameters per domain and totals.

2.1.6.2 Completeness

We did a literature study, scenario reviews and a brainstorm. Through these activities we

managed to find a total of 92 unique context information parameters. Table 4 shows the

numbers and percentage per activity. This shows us that already 62% of the context

parameters were found in the literature study, and that the brainstorm session only added

9% to the total amount. Of course these amounts depend on the order of the activities. In

the brainstorm session, for example, we actually found 35% of the context parameters,

but most of them were already discovered during the literature study or scenario analysis.

Given the fact that the brainstorm, being the third activity, only added a few new context

parameters, we conclude that the solution space is not infinitely big, and that we found a

very large part of the context parameters that are interesting for our application. With this

set of parameters it should be possible to cover a sufficiently large set of scenarios.

Table 4: Percentages of found context parameters.

 Context parameters

From

literature

From

scenarios

From

brainstorm
Total

Home 48 69 (21 new) - 69

Retail 33 45 (13 new) 32 (9 new) 55

Intersection 24 32 (8 new) - 32

Union 57 83 (27 new) 32 (8 new) 92

 Context parameters

From

literature

From

scenarios

From

brainstorm
Total

Totals 57 83 32

% 62% 90% 35%

Totals new 57 27 8 92

% 62% 29% 9% 100%

 19

2.1.6.3 Summary

As presented in the previous section, we have 92 unique context information parameters

in our combined home and retail context taxonomy. We can reduce this to 80 by merging

the “devices” with the “objects” group in our taxonomy and by merging overlapping

parameters like a person’s “emotion” and “face expression”. Now the top 15 of most used

context parameters in the combined home and retail domain, and thus the high priority

top 15 of requirements for our context model, looks like this:

1. The relative position of a person

2. The identity of a device

3. The identity of a person

4. The absolute position of a person

5. The relative position of a device

6. Entities nearby a device

7. Speech of a person

8. Touch of a person

9. The absolute position of a device

10. The orientation of a person

11. The activity of a person

12. Contents of device

13. Movement of a person

14. Capabilities of a device

15. Gestures of a person

 20

2.2 Context history

In the search for requirements for our model, we found eight context information

parameters concerning history. This is 9% of all context information parameters.

Examples are “persons met”, “past activities”, “products bought” and “time spent”.

Actually these parameters are not really part of the context; in fact they are stored context

information from the past. This is why these parameters will not fit in the context model,

but a separate history model has to be developed.

This context history model has some extra requirements. First of all it shall support the

context history information parameters found in the previous section. But actually it is

more useful to store all context information. This can, for example, support data mining

and pattern recognition in a later stage.

2.2.1 Previous work

We did research on existing solutions using context history. Although several papers

describe it as very important en powerful, we found very few implementations of systems

using context history. The system in [Spence 05] uses context history but is quite specific

and can only be used in that system. [Salber 98] has a working system. It adds a

timestamp to every context parameter en stores this together with the context. This works

fine for very small systems, but with lots of sensors and lots of new data from these

sensors, this will not work because of the enormous amount of data. In [Byun 04] a

successful experiment is done on context history. They state that “in order to provide

‘intimate’ and ‘dynamic’ adaptations under Weiser's vision for ubiquitous computing

environments, we propose the utilization of context history together with user modelling

and machine learning techniques” [Byun 04] and “we believe that context history has a

concrete role to play in supporting proactive adaptation in a ubiquitous computing

environment.” It is not known whether this prototype is scalable to large applications.

2.2.2 General requirements

We will now address some issues concerning the use of context history. These issues will

significantly influence the requirements on our history model.

2.2.2.1 How to use context history?

Context history will be used in the preconditions of beats in almost the same way as

normal context. This means that these preconditions can put constraints on events in the

history. Context history offers even more possibilities. Where the current context is a

model of exactly one moment in time, context history represents lots of moments, so in

the preconditions on context history, we can also use aggregative constraints, such as

the number of occurrences of certain events or the average number of certain values.

 21

What do we want to use in the scenarios? In the requirements we can find these history

parameters: From a person’s history: “persons met”, “locations”, “activities”, “music heard”,

“food eaten”, “products bought”, and “time spent”. And from a device / object: “has

contained”. Furthermore we could do pattern recognition on the context history to find

certain habits. These habits can then be stored in a user profile. This pattern recognition

itself is out of the scope of this project, but it can be interesting in the near future.

2.2.2.2 Which information to store?

We can limit our context history to the parameters listed in the previous section, but with

the reasoning and pattern recognition in mind, we actually want to keep all context

information. This raises some problems. Say we store the whole context file every second.

That is 60*60*24 times a day, which is 2.6 million times a month. Some experiments with

extensive and rich context files showed that 50 Kb is a reasonable upper bound for the

context file size of a small system. This means that in a month we get a context history of

130 Gb. Retrieving information from such an amount of data will take much too long. A

possible solution is not to save everything every second, but only important changes like

entities entering or leaving a room. This means that lots of things, like changes of position,

are ignored. That is not what we want, so we have to find another solution for the storage

problem.

2.2.2.3 When to store?

Related to which context information to store is when to store. We just mentioned to store

the context every second. Another solution can be to store the old context every time a

new context gets active. So every time the context server sends new context data to our

model, the old contents of the model are stored in the context history database. But with

lots of independent sensors, this will probably give us even more data. So also the timing

of storing context history is part of the problem.

2.2.2.4 For how long to store?

We could choose to store context history for ever, but this will produce an enormous

amount of data which will probably almost never be used. So there has to be a limit in the

form of some expiration date on the information. Sometimes we still would like to save

interesting information for ever though. A solution to this is to do some reasoning and

pattern recognition on the context history and to store this derived information in a user

profile of persons, devices or environments. This way interesting information is saved but

the whole context history can be discarded.

We see that the most important requirement will be on storage size and related to that on

speed. We can imagine that the system will have tens, maybe hundreds of sensors, and

that all these sensors update their data very often, every millisecond for example. This

will not only raise storage problems, but also problems with real time searching in this

context history by the Ambient Narrative system. We can conclude that a smart storage

algorithm is required that dramatically reduces the size of the context information to

support quick context history queries.

 22

2.3 System requirements

2.3.1 Functionality

The main functionality of the system will be described in this section. This includes

precondition checking on the context model, precondition checking on context history,

position computations and extensibility.

The software component to be made around the context model will receive a beat’s

precondition as input and shall produce “true” or “false” as output. To this end, this

software component shall use the context model and the context history model.

The software component shall be able to do position computations on different kind of

location information formats. This way it can match position information from

preconditions with position information from the context model, without the need to have

the same format.

The software component shall automatically adapt itself to the context model when the

model is extended with new context information parameters.

2.3.2 Operating environment

This section describes the environment of the software component and the influence of

this environment on the component and its requirements.

As stated before the product to be made is a component of a larger system, which is the

Ambient Narrative system. Figure 2 in section 1.1.4 shows a diagram of the major

components of the DreamScreen architecture. As can be seen in this figure the context

model will be part of the Ambient Narrative system. This system has interfaces to the

context server on one side and to the rendering platform on the other.

During use the context server will continuously place new data into the context model.

And the Ambient Narrative system will continuously check preconditions of beats on the

context and context history.

2.3.3 Design/implementation constraints

There is one requirement on the implementation. It concerns the programming language.

To make the component compatible with the existing Ambient Narrative system, we are

bound to Sun’s Java language. For the context model, we are not restricted to a certain

modelling language.

 23

2.3.4 Interfaces

The software component has no end-user interfaces and no hardware interfaces. The

context model has a software interface with the context server for which a communication

protocol should be developed. This is out of the scope of this project.

The software component has a software interface with the Ambient Narrative system.

Because our component will be directly embedded in the Ambient Narrative system, this

system will directly call the functions of our software component.

2.3.5 Non-functional requirements

The output of the software component shall be correct. If and only if a beat’s precondition

holds, the output will be “true”; otherwise the output will be “false”.

Performance requirements, safety requirements and security requirements are not within

the scope of this project.

2.4 Assumptions

This section lists important assumptions on the context, the context model, beats and the

software.

Model

The context model is a reference model representing real world situations. This model is

hidden in the software and will not be directly used by humans.

Context sensing

Before the Ambient Narrative system, there will be a context server that merges and

filters context information from the sensors before it is passed to our model.

The context information data from the context server and its sensors is correct and

complete. Correct means: there is no false data. Complete means: everything that can be

sensed is present and there is no context information that is not sensed.

In the case of a sensor failure, the context information from this sensor will not be present

in the context model. Therefore all beats that have a precondition on this context

information can not be activated.

It is assumed that all necessary sensors are present. This requirement can be met by the

system through the presence of an authoring tool, which is used by end-users to create

new beats. This authoring tool will only allow preconditions on context information

parameters for which the required sensors are available.

 24

Beats

Users do not have explicit control over the hypermedia structure of the beats, but they

implicitly browse through it by doing things that change the context of the system. This

can be, for example, walking around, sitting down, pointing at something, etcetera.

At any given time, more than one beat can be active. In hypermedia style; you can

browse more than one node at once.

In the authoring tool, beats are given a priority. This can be done automatically or

manually by the author.

The authoring tool detects conflicts while programming new beats. Conflicts can occur

within one beat’s precondition, but also between different beats. The authoring tool

should force all conflicts to be solved, before accepting a new beat.

Within a hypermedia system, there is the possibility of deadlocks. When adding new

beats or removing existing beats, the authoring tool should check the new set of beats on

deadlocks and if necessary give a warning or suggest a solution.

The hypermedia system of beats is scalable. Precondition checking can be done very

efficient and fast, and by making use of the triggers between beats, the set of beats that

has to be checked can be small while the total set of beats can be large.

Software

Within this project, we do not consider sensors or sensor data at the input side of the

context model, but we will use given context information.

Within this project, we do not use the action parts of the beats but we will only check their

preconditions and return “true” when the precondition holds and the beat should be

activated, or “false” if not.

At this moment we do not think about speed or optimization of the software. These

aspects are important in the Ambient Narrative system, but are not within the scope of

this project.

 25

3 Design

In the previous section we have described our requirements. In this section we present

the design of our context model and related components like the beats’ precondition

model, context history model and the software component that checks the preconditions

on the context model and its history.

3.1 Context model

3.1.1 Modelling issues

Previous research work has shown that a distinction among the abstract classes of

person, thing and place is useful and sufficient when we want to map real world objects to

objects in a virtual environment [Ferscha 02]. We started the modelling phase by taking

some scenarios and their context parameter use from the requirements phase. When

thinking about how these scenarios can be modelled in the simplest way, we came to the

following basic hierarchical model. Inspired by The Experience Economy [Pine 99] which

states that “work is theatre and every business a stage”, the names of the entities come

from the theatre world.

context

 stage // place or location

 performance // activity

 actor // person

 prop // device or object

 relation // relation between actors and props

Modelling some less straight-forward things needed a bit more attention. Issues were:

� How to model orientation

� How to model positions

� How to model emotions

� How to model capabilities

� How to model activities

� How to model relations

� How to model gestures

3.1.1.1 Orientation

One and the same problem arises when modelling orientation, relative positions or

movement directions: In all three cases we have a starting position and we want to model

a direction or angle from that position. There is a simple solution to model a direction; the

360 degrees scale, but the main problem is: what to define as the 0 degrees angle? We

choose to let this be defined by the orientation of the anchor entity or, if this entity has no

orientation or there is no anchor, by the parent entity, which is a “stage”. A stage always

has an origin and x, y and z axes, and thus every entity can have an orientation based on

 26

this system. This means that the 0 degrees angle of an object is not always explicitly

defined; relative positions and directions have an anchor entity and use this entity’s

orientation as a reference.

Besides the angle, which is the rotation around the z axis, there

are two more orientations. These will probably not be used for

persons, but for objects they will. We define the “roll” as the

rotation around the x axis and the “tilt” as the rotation around the

y axis. These three axes are shown in figure 3.

 Figure 3: Three axes.

3.1.1.2 Positions

In the requirements we have found three kinds of positions; an absolute position, the

distance to another object called relative position, and the room in which a person or

object is. Starting with the third one, this can easily be derived from the model because

every object or actor is in a certain “stage”, which is a room or a part of a room. This

leaves us with two kinds of positions: the absolute and the relative one.

Relative positions

A relative position is always relative to another object. We call this the anchor. From this

anchor there is a distance and a direction, called angle. An example:

position

 class = relative

 anchor = table_1 // actor or object id

 distance = 200cm

 angle = 45°

Absolute positions

An absolute position uses a certain common system to give every location a unique

identifier. This system however can vary. There are, for example, local systems and there

are global systems like GPS. This system has to be known, because the units of the

latitude and longitude can vary per system. Two examples:

position

 class = absolute

 system = xyz // local system

 latitude = 800cm

 longitude = 200cm

position

 class = absolute

 system = gps // global system

 latitude = 51°24'36"

 longitude = 5°27'28"

 altitude = 14500cm

Notice that both relative and absolute positions can have an optional altitude to define the

height.

 27

3.1.1.3 Emotions

Emotions and mood are important context parameters, because they really characterize

the user. After having done some research on human emotions we know that basic

emotions can be described by one word and that these emotions can easily be derived

from a face expression. [Bielefeld] There are six basic facial expressions proposed by

Ekman and Friesen [Ekman] conveying emotion. They are listed here:

� Anger

� Disgust

� Fear

� Happiness

� Sadness

� Surprise

Since these emotions can be described by one word, we will model emotion as the more

generic “health” parameter. This parameters is used to describe, for example, a person’s

heart rate, weight or blood pressure and has a “class” and “value” attribute. Using this

parameter means that there is no need for a special emotion entity in the model. An

example:

health

 class = emotion

 value = happiness

3.1.1.4 Capabilities

When a certain device is detected or needed for some scenario, one of the most

important and interesting things to know are its capabilities. This includes things like

communication protocols, display possibilities, etcetera. A problem of such capabilities is

that modelling only the capability itself will not be enough. Some scenarios have certain

requirements on these capabilities, for example on the size of a display, on the amount of

speakers, on the brightness of a lamp, etc. To find output capabilities, we take the five

human sense organs and from that we search for possible capabilities of devices and the

parameters belonging to these capabilities:

Human Solution Solution’s parameters

See screen size, amount of colours, resolution

 light colour, amount of colours, brightness, contrast

Hear speakers kind, amount, watt

Feel force-feedback strength

Smell scent odour

Taste - -

Next to these output capabilities, there are input capabilities like a touch-screen,

keyboard, speech recognition, gesture controller, etc. We can conclude that modelling all

these varying parameters will be too much, so we come up with another solution. We

 28

offer the possibility to define keywords which can be put together to create the right

description. Example keywords are: “small-screen”, “big-screen”, “white-light”, “big-

speakers”, etc. To make this really work, these keywords should be linked to some kind

of ontology to create a common understanding. For now, this is out of the scope of the

project. An example:

capability

 class = big-screen, small-speakers

3.1.1.5 Activities

To come to a model for activities, we listed the activities of some scenarios and thought

of a way to model these as simple as possible. Most activities are described by a verb

and a starting time. Some activities need extra information though. This is the case with

all kinds of movements like walking or running, because here we also have to model

things like speed, direction and acceleration. Therefore these attributes will be available

depending on the activity. Furthermore in every activity at least one actor or object is

involved, possibly even more, so there has to be a possibility to add actors to an activity.

Some examples:

performance

 activity = reading

 start = 21:48:37 // time stamp

 actor = … // actor

performance

 activity = running

 start = 14:36:52 // time stamp

 speed = 4 m/s

 angle = 10°

 acceleration = 1 m/s²

 actor = … // actor

performance

 activity = speaking

 start = 09:14:29 // time stamp

 words = hello // spoken words

 actor = … // actor

3.1.1.6 Relations

Relations between actors and actors, between objects and objects and between actors

and objects are very important context information. Examples of relation types are:

� touch

� gaze

� point

� speak

� hear

� smell

 29

Having a possibility to define relations in our context model is a very powerful tool to

model more complex situations and to group actors and devices together. An example:

relation

 class = touch

 object = jessica // actor or object id

 subject = tv_2 // actor or object id

3.1.1.7 Gestures

We did some research on gestures and listed the most common gestures below. In the

model we split these gestures in to two groups: those with a subject and those without.

The ones with a subject will be modelled as a relation, those without as an activity. This

way we do not need a special gesture entity in the model.

Hand gestures

� shake hands relation

� shake activity

� wave activity / relation

� point relation

� clap activity

� thumbs up activity

Head gesture

� shake head activity

� kiss relation

� nod activity / relation

Body gestures

� bow activity

� jump activity

3.1.2 Conceptual model

After having solved all modelling issues of the previous section, the remaining

requirements can be modelled as simple attributes belonging to certain entities. We

construct a conceptual model covering all these requirements. This is a hierarchical

model with several entities and attributes. This conceptual model is displayed on the next

page. It includes entities (in bold), attributes and sub entities (in italic), together with their

type, unit and value constraints.

 30

 Type Unit Constraints

stage

 id string - -

 indoor_outdoor string - “indoor” | “outdoor”

 condition - - min=0 max=1

 performance - - min=0 max=unbounded

 relation - - min=0 max=unbounded

condition

 light integer lux 0 <= x

 colour string sRGB 000 <= x <= FFF

 sound_db integer dB 0 <= x

 music_genre string - “classic”, “ambient”, “dance”…

 temperature integer °C -

 air_quality integer % x <= 100

 rain_chance integer % x <= 100

 water string - “yes” | “no”

performance

 activity string - “sitting”, “walking”, “speaking”…

 start time hh:mm:ss 00:00:00 <= x <= 23:59:59

 speed integer m/s -

 angle integer ° -180 <= x <= 180

 acceleration integer m/s² -

 words string - -

 actor - - min=0 max=unbounded

 prop - - min=0 max=unbounded

relation

 class string - “touch”, “gaze”, “point”…

 object string - prop id | actor id

 subject string - prop id | actor id

actor

 id string - -

 face URI picture -

 age integer years 0 <= x

 gender string - “male” | “female”

 length integer cm 0 <= x

 role string - -

 arrival time hh:mm:ss 00:00:00 <= x <= 23:59:59

 position - - min=0 max=1

 orientation - - min=0 max=1

 health - - min=0 max=unbounded

 intention - - min=0 max=1

 31

prop

 id string - -

 class string - “book”, “phone”, “tv”, “table”…

 colour string sRGB 000 <= x <= FFF

 width integer cm 0 <= x

 height integer cm 0 <= x

 depth integer cm 0 <= x

 weight integer kg 0 <= x

 capability string - -

 orientation - - min=0 max=1

 position - - min=0 max=1

 contains - - min=0 max=1

position

 class string - “relative” | “absolute”

 system string - “xyz” | “gps”

 latitude string cm | ° -

 longitude string cm | ° -

 altitude integer cm -

 anchor string - prop id | actor id

 distance integer cm 0 <= x

 angle integer ° -180 <= x <= 180

orientation

 angle integer ° -180 <= x <= 180

 tilt integer ° -180 <= x <= 180

 roll integer ° -180 <= x <= 180

health

 class string - “emotion”, “heart rate”…

 value string - -

intention

 activity string - -

 duration time hh:mm:ss 00:00:00 <= x

 speed integer m/s -

 angle integer ° -180 <= x <= 180

contains

 in_order string - “yes” | “no”

 count integer - 0 <= 0

 prop - - min=0 max=unbounded

 actor - - min=0 max=unbounded

 32

3.1.3 Formal aspects

We can put our conceptual model in a UML format which gives a graphical overview of

the total model. We have a model of 12 unique entities with a total of 54 attributes. These

attributes have different types. Most common are the string type (26) and the integer type

(23). Furthermore there are some attributes with a time stamp type (4) and URI type (1).

Figure 4: UML diagram of the conceptual context model.

 33

3.1.4 Coverage

In this section we will discuss the coverage of the requirements by our conceptual model.

Some context information parameters listed as a requirement in the requirements section

are not included in the model. We will discuss these context parameters here and give an

explanation of their absence.

Person’s / Device’s location: “nearby”: This information is derivable from two positions.

We can compute their inner distance and decide whether this is nearby or not. A second

reason for not including this context parameter in our model is that there is no unique

definition for “nearby”.

Person’s health: “mental state” and “physical state”: Both these context parameters are

very difficult to sense and, next to that, very difficult to describe.

Person’s intention: “good/bad”: This property of the intention is derivable from the

intention’s activity and therefore will not have to be modelled on its own.

Person’s intention: “time to spend”: This property of the intention is impossible to be

sensed directly. It can only be found in a stored user profile, which can be derived from

previous similar situations, i.e. from the context history.

Person’s history: “persons met”, “location”, “activities”, “music heard”, “food eaten”,

“products bought” and “time spent”: History parameters are not sensible context, but are

stored information, i.e. context history. These context parameters do not belong to the

context model, but have to be derived from stored context history.

Person’s / Device’s profile and rights: Profiles and rights are not sensible, but can be

found in a stored user profile. Some aspects of such a profile can be derived from context

history by data mining or pattern recognition, other aspects like the rights of a user will

have to be programmed explicitly by the owner of the system.

Device’s history: “has contained”: Here the same applies as to a person’s history; history

parameters are not sensible context, but are stored context information.

Groups: All group parameters from our requirements can be derived from the distinct

entities forming this group. Therefore no special “group” entity is needed in our model.

Environment’s dimensions: As with profiles and rights, stage dimensions are not sensible,

but stored information. Therefore every stage will have a profile in which its insensible

properties like dimensions can be found.

Some of these parameters are actually not real context parameters. History, for example,

is not something sensible, but is the context of the past. This also applies to user profiles.

The user identity is sensible, but user’s profiles, rights and preferences have to be

retrieved from some kind of database. We see this information as some kind of

background information of the context, that is stored context data to support the actual

context. We will address these issues in the next section.

 34

Looking back at the requirements of the model, we can conclude that most context

parameters of the requirements are covered. Only from the required context parameters

of the retail domain, two are missing. These are already mentioned above and are a

person’s mental and physical state. These two parameters are very difficult to sense and

very difficult to describe. For this reason they are left out. A summery of the coverage is

given in table 5.

Table 5: Coverage of the requirements by our model.

3.1.5 Stored parameters

As mentioned above, some parameters are not real context but are stored information.

One of the aspects of stored information are user profiles, which are not only real user

profiles, rights and preferences but also profiles and rights of devices and properties of

environments. Another aspect is context history, which will be an important part of this

project. A third aspect of stored information is the set of currently active beats. The user

profiles part is left out of the scope of this project for now. History issues will be

addressed in section 3.2 and the active beat set will be handled in section 3.3.

3.1.6 Derived parameters

From the context parameters that are included in the model, some are not sensible by a

single sensor. These parameters belong to the higher level information and should be

derived from lower level information, i.e. from other context parameters. To derive this

higher level information there has to be some kind of reasoning component with specific

rules. This reasoning part is out of the scope of this project, but nevertheless these

parameters are in our model. These parameters are listed here:

 Parameter Derivable from

Persons

 Role activity, time, position, other actors/props, (or user profile)

 Health / Emotion face, heart rate, activity, music

 Intention activity, time, position, other actors/props, (or user profile,

history)

Environments

 Indoor / Outdoor light, temperature, pressure, humidity

 Music genre bpm, volume

 Rain chance temperature, pressure, humidity

Domain Requirements
In

model

Background

information
Total

Not

included
Coverage

Home 69 59 10 69 - 100%

Retail 55 45 8 53 2 96%

Total 92 75 15 90 2 98%

 35

3.1.7 Extensibility

Our model has to support easy additions of new entities and new attributes. When new

information has to be represented in the model, we can just introduce new entities with

new attributes or new attributes in existing entities. The only restriction here is caused by

the software that will work with the model. This software shall be constructed in such a

way that it can handle these new entities and attributes without the need to be rewritten.

3.2 Context history

An interesting context aspect is context history. Although much research is done on

context awareness, not so much is done on context history. Context history issues we

have seen in the requirements section are which context information to store, when, how

often and for how long to do this, and how to use this information. The conclusion of the

requirements was that a smart storage algorithm is needed to handle the large amount of

context information.

3.2.1 Modelling solution

Since storing all context data is too expensive and space consuming we come up with a

new solution using a different approach. Our solution stores the ids of active beats

instead of the actual context. At first this seems strange, but let us take a closer look. For

a beat to get active, its whole precondition has to match with the current context. This

means that with one beat id, we can “store” a whole part of the context in our history,

because we know the precondition of this beat. So every time a beat is activated, this is

stored in the history and every time an active beat is deactivated, this is also stored. We

now have a log file containing all beats with start en stop dates and times. So for every

moment in the history, we can look up which beats were active. From this list we can

simply compute the context at a specific moment, by combining all preconditions from

these beats. These preconditions had to be true at that moment, so now we have our

historical context. Of course this context history can be incomplete because not all

context parameters have to be in the preconditions of the active beats.

There is even more we can do with this solution. Storing beat ids gives us another nice

functionality. We can define a beat with a precondition matching exactly the context

condition we want to store in the history. This beat can have an empty action part so

there will be no output, but later we can search the history for this beat and then do

something. This way an author of the system can exactly choose which events will be

stored in the history. To make this history more useful we add an extra field to the history

in which every beat can store some optional data. A beat that gets active at cash register

transactions, for example, can store the customer id and a list of sold products in the

history. This format makes our history not an absolute context history, but it certainly is a

very generic history with lots of possibilities. If an author, for example, still wants to store

 36

the whole context in the history, he simply defines a beat that gets activated at a certain

time interval and that stores the whole context in the history.

3.2.2 Conceptual model

There are four parameters we want to store in the history:

� the beat id

� the activation date/time

� the deactivation date/time

� optional extra data

Two examples:

history

 beat

 id = cashRegister

 activated = 2007-02-12 14:15:16

 deactivated = 2007-02-12 14:15:37

history

 beat

 id = cashRegister

 activated = 2007-02-14 20:13:19

 deactivated = 2007-02-14 20:14:03

 data

 customer = 54643

 product = jeans

3.3 Preconditions model

In this section we describe the precondition model for the beats. Although the idea is to

exactly match a precondition with the context to trigger a beat, this does not mean that

preconditions use exactly the same syntax. The preconditions have almost the same

format, but extended with some mechanisms to test values on ranges. In a precondition

we can use upper and lower bounds for example, where in the context we have an exact

value. Furthermore there is another important issue in preconditions. There has to be a

possibility to test the presence / absence of other active beats. This can, for example,

prevent a beat from starting twice at the same time. But it also makes sure that no two

overlapping beats will be active simultaneously.

 37

3.3.1 Modelling issues

The complete list of differences between the context model and the preconditions format

are given in the overview below. Note that not mentioning an element in the precondition

does not mean that an element may not be there, but that it means that it does not matter.

Hence the absence rule.

 Context Preconditions

Values <exact value> between <min> and <max>

Position <exact position> <area>

Absence - not <element>

Time - between <min> and <max>

Together with testing on other active or inactive beats and testing on context history, this

gives us six issues to solve in the preconditions:

� min / max values versus exact values

� matching positions

� testing absence of context

� testing on time

� testing presence / absence of other beats

� testing on context history

Notice that the first three are tests on the context, the fourth is a test on the current time,

the fifth is a test on the active beat set and the sixth on context history. In the next

sections we will deal with all these issues.

3.3.1.1 Min / Max values

Most of the context parameters are numerical and have a value in a broad range. It is

useless to test these parameters on a single value, because that will almost never lead to

success. Instead we want to test these parameters on a certain range. This can be done

by introducing extra parameters available in the precondition. For every context

parameter of the type integer there will be two extra parameters in the precondition.

These parameters have the same name as the original preceded by “min_” or “max_”.

This way the value can be bound to a certain range. When only one of these parameters

is used, the range is only bound by this one value and open at the other end. An example:

actor

 min_age = 12

 max_age = 52

 38

3.3.1.2 Positions

In the requirements phase we found that there is often something like a “nearby” relation.

The problem with this, is that the definition of “nearby” is unclear and varies per scenario.

For this reason we can not include this functionality as a relation. However the same

functionality can be reached by using a relative position.

In the context there are two possible positions: relative and absolute. The absolute one

will probably be used most of the time. In the preconditions however both notations will

be used a lot. The relative position will be used to make constraints on the distances

between two objects, and the absolute position will be used to define areas. This

demands special functionality to compute relative positions from absolute ones and vice

versa. Below we give some examples of an actor with a relative positions to define the

“nearby” relation (figure 5a):

actor

 position

 class = relative

 anchor = table

 max_distance = 200cm

An optional addition is a minimum distance and

a minimum and maximum angle (figure 5b):

 min_distance = 150cm

 min_angle = 90° Figure 5a and 5b: Relative preconditions.
 max_angle = 230°

Another addition is an offset from the

anchor (figure 6):

actor

 position

 class = relative

 anchor = table

 max_distance = 200cm

 offset_angle = 45°

 offset_distance = 300cm Figure 6: Relative precondition with offset.

Instead of a circular area we can also define a rectangular area around or nearby an

anchor entity (figure 7a and 7b):

actor

 position

 class = relative

 anchor = tv

 width = 200cm

 length = 300cm

 offset_angle = 25°

 offset_distance = 300cm

 Figure 7a and 7b: Square relative preconditions.

 39

The second possibility to define a position is by an absolute position, defining a fixed area. Below we give

two examples of an actor with an absolute position. The first is a rectangular area (figure 8) and the second

a circular area (figure 9):

actor

 position

 class = absolute

 min_latitude = 200cm

 max_latitude = 800cm

 min_longitude = 0cm

 max_longitude = 200cm

 Figure 8: An absolute precondition.

actor

 position

 class = absolute

 center_latitude = 500cm

 center_longitude = 200cm

 radius = 150cm

 Figure 9: A circular absolute precondition.

3.3.1.3 Absence of context

Some scenarios can only be active when certain things are definitely not in the context.

These constraints need to be in the precondition. We introduce two formats for this

purpose. One is to put a constraint on whole entities like props and actors. The other

enables us to exclude certain values from parameters. Examples of the two solutions:

actor

 count = 0 // no actor present

actor

 role = !father // an actor, but not a father

3.3.1.4 Time

Time is an important context parameter, although it can not be sensed. But there is no

need to, because every computer system has an internal clock. There are many different

preconditions related to time. There are preconditions on the time of the day but there

can also be constraints on the day of the month or on the week of the year. To handle all

these varying requirements we introduce five parameters which all can have a minimum

and maximum or an exact value. These values can be added to the “stage” entity in the

precondition model.

 40

 Range Iteration

Time of the day 00:00:00 - 23:59:59 daily

Day of the week 1 – 7 weekly

Day of the month 1 – 31 monthly

Week of the year 1 – 52 yearly

Month of the year 1 – 12 yearly

An example of a precondition on the time:

stage

 min_week = 20

 max_week = 40

 week_day = 5

 min_time = 13:30:00

 max_time = 17:00:00

3.3.1.5 Other beats

Some scenarios can only be active when others are not. Other scenarios can only be

active together with certain other ones. These constraints need to be in the precondition

too. For these kinds of constraints, we introduce an extra section in the precondition

model, named “present”. In this section we have an “active” and an “inactive” section

which can both contain beat ids or beat classes. An example:

present

 active

 beat_id = 02324

 inactive

 beat_id = 17454

 beat_class = display_beats

3.3.1.6 History

Some scenarios put constraints on the history. As described in section 3.2 we have a

context history consisting of beat ids. There are five constraints we want to test the beats

in the history on:

� the beat id or class

� the date and time

� the number of occurrences in the history

� the activation duration

� extra data

An example:

history

 beat

 id = cashRegister

 start_period = 2007-02-01

 end_period = 2007-03-01

 min_count = 5

 data

 customer = 54643

 41

3.4 Software component

Our model is a detailed and formal representation of the context, but has no functionality

on its own. So there has to be accompanying software to process the data from this

model. As stated in the requirements section, there are three major requirements on this

software part; it has to do precondition checking on the context and context history

models, it has to be able to do position computations on different location information

formats during these precondition checks, and it has to automatically adapt itself to the

model when the model is extended with new context information parameters.

We will give an overview of the design of our component first and then handle these three

requirements. The diagram in figure 10 shows the design of our component (the dotted

lines), its subcomponents and its environment, the Ambient Narrative system. As we can

see, our component has two databases and a software component. In the “context”

database the current context will be stored and the “history” database will store the

context history. The remainder of this section will describe the design of the software

component.

Figure 10: Diagram of our component (dotted line) within the Ambient Narrative system.

3.4.1 Precondition checking

The precondition checker will be started by the Ambient Narrative system and provided

with a beat. The precondition of this beat consists of three parts; the first and most of the

time largest part contains the preconditions on the context, the optional second part

contains the preconditions on other currently active beats and the optional third part

contains preconditions on the history, that is on beats that were active in the history.

 42

We will give an example beat here. This beat will get active in the evening, after dinner,

when there are at least two persons in the living room, when it is bad weather outside and

when the TV is turned off. When all these preconditions are true, this beats can start for

example colourful visualizations on the windows and a relaxing music. The precondition

of this beat will look like this:

pre

 stage

 id = LivingRoom

 min_time = 18:00:00

 performance

 actor

 min_count = 2

 script

 present

 active

 beat_id = badWeather

 inactive

 beat_id = tvOn

 beat_id = havingDinner

 history

 active

 beat

 id = havingDinner

 min_period = -05:00:00

We see that in the “stage” part, three preconditions are present; it has to be the living

room, it has to be evening, that is 18:00 hours or later, and there have to be at least two

people. This part of the precondition can be checked on the context model. The second

and third part of the precondition are the “present” and “history” parts within the “script”

section. The “present” part contains three preconditions on the active beat set; the

“badWeather” beat should be active, and the “tvOn” and “havingDinner” beats should not

be active. The “history” part contains the precondition that it should be after dinner and

states that the “havingDinner” beat should have been active in the last 5 hours.

When it receives such a beat, our precondition checker will take three steps to check the

total precondition of this beat:

1. Check preconditions on other active beats (the “present” part)

2. Check preconditions on the history (the “history” part)

3. Check preconditions on the context (the main part, before the “scripts” section)

Figure 11 visualizes these three steps in a flowchart, with the names of the algorithms

used for each step. These algorithms will be discussed in the next sections. We see that

if one step returns false, the next steps will be skipped. Steps one and two are relatively

simple, and will therefore be done first. These two steps can be performed by the same

algorithm that searches for beat ids in the active beatlist or in the history beat log. Step

three is a bit more heavy and verifies our preconditions on the context model.

 43

Figure 11: Flowchart of the precondition checking process.

3.4.1.1 Step 1 and 2

The next algorithm solves the problem of searching beat ids in a list of active beats or a

list of beats that were active in the history. When checking preconditions on active beats,

we only search for a beat id or beat class and return true or false. When checking

preconditions on the history, we have to check more constraints. The precondition can

put constraints on the period in which we have to search, on the duration of a beat, i.e. for

how long a beat was active, on the amount of activations and on the optional data that

every beat can store in the history. This brings us to the following algorithm:

beatSearch(precondition, beatlist) [

 if (preconditions on ‘period’) ► get period constraints;

 if (preconditions on ‘duration’) ► get duration constraints;

 if (preconditions on ‘data’) ► get data constraints;

 if (precondition on ‘id’) ►

 get all beats with this id, in the given period, of the given duration, with the given data;

 elseif (precondition on ‘class’) ►

 get all beats of this class, in the given period, of the given duration, with the given data;

 if (precondition on ‘count’) ► check count constraints on the results;

]

3.4.1.2 Step 3

The third step of the precondition checking algorithm needs a bit more attention. The

context model and the beat’s precondition are both hierarchically build, so basically this

precondition checking process is a sub tree search in the context model. This sub tree

search is not so straightforward though. It is not a simple one on one match, but it has to

take many issues in account. We have seen these issues in section 3.3; the sub tree

search has to map “min” and “max” values on real values, it has to check the absence of

context, it has to match position information in different notations, it has to check relations

and it has to check constraints on the time. To handle these requirements, we design a

algorithm that recursively walks through the precondition and context model trees and

checks every single precondition. When it finds a precondition on a position or on a

relation, it uses separate algorithms, called “positionMatch” and “relationSearch”. These

algorithms will be discussed in the next two sections. This brings us to the following

algorithm:

 44

subTreeSearch(precondition, context) [

 for each context ►

 for each precondition ►

 if (preconditions on ‘position’) ►

 positionMatch(pre, context);

 elseif (preconditions on ‘relation’) ►

 relationSearch(pre, context);

 elseif (preconditions on ‘time’) ►

 check time constraints;

 else ►

 get all attribute constraints on min values, max values, and absence;

 results := get all context with these attributes;

 subTreeSearch(precondition children, results);

 if (precondition on ‘count’) ► check count constraints on the results;

]

3.4.2 Position computations

The different kinds of position notations, as seen in sections 3.1.1.2 and 3.3.1.2, demand

special functionality to match position constraints from the preconditions with positions in

the context. Relative positions and absolute positions exist and they can both have

rectangular or circular shapes. This raises the problem of positions being defined in two

different ways. We will handle all possible situations that can occur while matching

preconditions with the context model.

� Absolute precondition and absolute context: This is trivial; the software can

exactly match these two positions, i.e. compute whether the context position lies

within the precondition area.

� Absolute precondition and relative context: An absolute precondition defines an

area for a certain entity. When this entity has a relative position in the context, we

recursively compute its absolute position by taking its anchor’s position and its

offset. Now we have two absolute positions.

� Relative precondition and absolute context: A relative precondition defines the

distance and angle between two entities. Because we have absolute positions in

the context, we can compute the distance between these two entities and match

this distance with the one from the precondition.

� Relative precondition and relative context: Again, a relative precondition defines

the distance between two entities. If these entities are also defined relatively in

the context, we can match the distances only when the anchors are the same. If

this is not the case, we recursively compute the absolute positions of the

precondition or the context by taking the anchors’ positions and their relative

offsets, until we have at least one absolute position. Then we can recursively use

this same algorithm to match these positions.

 45

Positions with variables are handled by replacing the variable with the real ids and then

calling the position search algorithm for every instance. This brings us to the following

algorithm:

positionMatch(precondition, context) [

 if (precondition.position == context.position) ►

 true;

 elseif (precondition.position.class is ‘absolute’) ►

 x := find absolute position of context;

 positionMatch(precondition, x);

 elseif (precondition.position.class is ‘relative’) and (context.position.class is ‘absolute’) ►

 y := compute distance(precondition.position.anchor, context);

 check (precondition.position.distance < y);

 elseif (precondition.position.class is ‘relative’) and (context.position.class is ‘relative’) ►

 x := find absolute position of context;

 y := find absolute position of precondition.position.anchor;

 positionMatch(precondition, x) or positionMatch(precondition +y, context);

]

We will give an example of a precondition and a context fragment. The precondition

contains a relative position. The context contains an entity that matches with this

precondition but has a relative position to another anchor. Figure 12 visualizes this

situation. The circle around the TV matches with the precondition.

A precondition fragment:

actor

 min_age = 45

 position

 class = relative

 anchor = TV

 max_distance = 200cm

A context model fragment:

prop

 id = door_1

 position

 class = absolute

 latitude = 200cm

 longitude = 0cm

prop

 id = TV

 position

 class = relative

 anchor = door_1

 angle = 90°

 distance = 400cm
actor

 age = 51

 position

 class = relative

 anchor = door_1

 angle = 60°

 distance = 350cm Figure 12: Context and precondition.

 46

3.4.3 Relations and variables

An important aspect of the software component is the ability to understand and handle

variables in the precondition. These variables are necessary to link entities together.

When there is an actor and an object in the precondition for example, and there has to be

a relation between these two, we want to point to these specific entities from the relation

entity. An example fragment of a beat’s precondition with two variables:

performance

 prop

 id = $book

 actor

 id = $actor

 role = customer

 min_age = 45

relation

 class = point

 object = $actor

 subject = $book

To handle these variables we design some functionality that stores all variables with their

corresponding context ids during the sub tree search. This way we can look up the real

ids later, when checking the relation preconditions. To check these relation preconditions,

a separate algorithm is used. This relation search algorithm handles variables by

replacing them for real ids before checking the relation preconditions on the context.

relationSearch(precondition, context) [

 if (precondition on relation ‘class’) ► get relation.class constraints;

 if (precondition on relation ‘object) ► get relation.object constraints;

 if (precondition on relation ‘subject’) ► get relation.subject constraints;

 get all relations of the given class, with the given object, with the given subject;

 if (precondition on ‘count’) ► check count constraints on the results;

]

3.4.4 Extensibility

To make the software accept new extensions to the precondition model and context

model, we make it generic in a way that it accepts all entities and attributes in the

precondition and always tries to match these with the context model. There is no real

restriction on naming, but new entities or attributes will only be checked on exact value,

minimum value or maximum value. The software will not do computations on these

values. Furthermore it is not possible to add new attributes to the position entity. So

introducing new entities or attributes in the context model is almost always possible, as

long as we make sure to use the same names and types in the preconditions and in the

context model.

 47

4 Implementation

4.1 Modelling language

In the previous section, we presented the design of our context model. A UML diagram of

this design can be found in figure 4 in section 3.1.3. In this section we will look at the

implementation of the model. To this end we have to choose a modelling language. As

we have seen in section 1.4 on previous work, existing solutions either use XML or RDF

as a context modelling language.

Our precondition checking consists of two main tasks. These tasks are sub tree searches

and computations. From the requirements phase we know that position information is the

most important context information. It covers the 1
st
, 4

th
, 5

th
, 6

th
 and 9

th
 position in the list

of most used context parameters. To be more precise, position information appears in

86% of all ambient intelligence scenarios we have seen. While checking beats’

preconditions for these scenarios, computations have to be done to match different

positions. So we want to be able to do fast sub tree searches and fast computations on

our model.

XML

The eXtensible Markup Language is a general-purpose markup language for documents

containing structured information. As the name implies, the language is extensible, which

means that developers can define their own tags. Tags describe the information

contained in these tags and form an XML tree. Reasons to use XML are its compact

notation, simple validation, available tooling and easy integration with development

platforms.

RDF

The Resource Description Framework (RDF) is a framework for describing information on

the web. RDF is a language based on XML and describes information in triplets. These

triplets form a RDF graph. Because RDF uses an XML syntax, it inherits all properties of

the XML language. Reasons to use RDF are easy automated understanding, integration

with the semantic web and reasoning possibilities.

Because of the tree property of XML in comparison with the graph property of RDF, and

because of the compact notation, it is faster to do sub tree searches in XML. Because of

our focus on fast precondition checking and position computations, and not on reasoning,

we choose XML as a modelling language.

 48

4.2 Context model

To define the structure, content and semantics of our XML model, we create an XML

schema. This schema is created from the UML diagram of our conceptual model,

presented in the previous section. The schema defines entities and attributes, their types

and relations, and puts restrictions on their minimum and maximum occurrences. The

XML schema of the model can be found in appendix D.5. Below we give an example of a

context description by our model. This context description example is visualized by figure

13.

<context>

 <stage id="insideShop">

 <condition>

 <light>1000</light>

 <temperature>25</temperature>

 </condition>

 <performance>

 <activity>presence</activity>

 <prop id="book_x">

 <name>Lord of the Rings</name>

 <colour>green</colour>

 <position class="absolute" system="xyz">

 <latitude>400</latitude>

 <longitude>40</longitude>

 </position>

 </prop>

 <prop id="mirror_b">

 <name>Interactive Mirror</name>

 <position class="absolute" system="xyz">

 <latitude>10</latitude>

 <longitude>300</longitude>

 </position>

 </prop>

 </performance>

 <performance>

 <activity>walking</activity>

 <speed>2</speed>

 <angle>-135</angle>

 <actor id="actor_1">

 <role>customer</role>

 <age>40</age>

 <position class="relative">

 <anchor>mirror_b</anchor>

 <angle>0</angle>

 <distance>240</distance>

 </position>

 </actor>

 </performance> Figure 13: Situation described by the model.

 <relation class="gaze">

 <object>actor_1</object>

 <subject>book_x</subject>

 </relation>

 </stage>

</context>

 49

4.3 Context history

As described in the design section, we will store beat ids with corresponding activation

and deactivation dates and times in the history model, together with optional extra

information in the “data” field. This model will be implemented by a simple XML model. An

example:

<beatlog>

 <beat id="buyTransaction" class="customerMode">

 <activated>2007-03-24 14:15:30</activated>

 <deactivated>2007-03-24 14:15:36</deactivated>

 <data>

 <customer>cust_00123</customer>

 <product>xyz</product>

 <product>abc</product>

 <total_price>125,99</total_price>

 </data>

 </beat>

</beatlog>

This implementation offers us two possibilities to use context history. As described in the

design section we can put preconditions on beat ids with the possibility to define certain

periods, minimum or maximum occurrences and tests on the extra data field. This already

is a powerful way to create complicated scenarios.

However, as we have already mentioned in section 3.2, our history model offers a second

possibility to use context history. We could also use the history as if it were real context

information. The great plus of this method would be that it lets us create preconditions in

the same way as we do on the current context. The idea behind this method is that it will

not check preconditions on the history model itself, but first recreate the history of a

certain time or period by combining all preconditions of beats that were active in that

period. This way we can recreate the real context of the history. And then we could check

preconditions in exactly the same way as we do with normal context.

Because of time constraints we only implement the first method, i.e. the possibility to put

preconditions on beat ids, in the software. The other method is a very interesting one

though and should definitely be implemented and tested in the future. The context history

model supports both methods, so the model will not have to be changed. It is the

software doing the precondition checking that has to be extended. This software will have

to lookup the beat ids in a certain period in the history model, then has to find these

beats’ preconditions, combine them and then check the preconditions on this derived

history.

 50

4.4 Software

As stated in the requirements section, we will use Java as a programming language. We

create one class that does the total preconditions checking. The main method of this

class is called with three parameters, all pointers to an XML tree. The first one is the

context, the second is a beat and the third is a list of active beats merged with the history

beatlist.

In the design phase we found that there are three steps to take; first check preconditions

on other active beats; then check preconditions on the history; and finally check

preconditions on the current context. The first two steps are implemented by

“beatSearch” method. The third step is implemented by the method “subTreeSearch”.

Figure 14 shows these methods and the other methods of our class in a call hierarchy. To

be more specific, we can map the four algorithms we designed in the design section on

one or more of these methods. The algorithm “beatSearch” is implemented by the

methods “beatSearch”, “singleBeatSearch”, “checkDuration”, “dateDifference” and

“beatDataSearch”. The algorithm “subTreeSearch” is implemented by the methods

“subTreeSearch” and “timeCheck”. The algorithm “relationSearch” is implemented by the

method “relationSearch”. The algorithm “positionMatch” is implemented by the methods

“positionSearch”, “positionVariableSearch”, “findAbsolutePosition” and

“findAnchorPosition”.

Figure 14: Call hierarchy of our component.

We will very shortly handle all these methods to explain their purpose.

check(context, beat, beatlist) checks the complete precondition of a beat in three steps:

1) check preconditions on the active beatlist by calling beatSearch(); 2) check

preconditions on the history beatlist by calling beatSearch(); 3) check preconditions

on the current context by calling subTreeSearch(). Returns true or false.

beatSearch(pre, beatlist, in_history) checks the preconditions on the active beatlist or

on the history beatlist, by a loop over the preconditions on active and inactive beats

and calling singleBeatSearch() for all of them. Returns true or false.

 51

singleBeatSearch(pre, beatlist, in_history) searches a beat in the active beatlist or in

the history beatlist, checks preconditions on it, and returns true or false.

checkDuration(date1, date2, duration) checks whether the period between the two

dates is longer than duration and returns true or false.

dateDifference(date1, date2) computes the duration between two dates and returns the

difference in milliseconds.

beatDataSearch(beatdata, historydata) checks the data preconditions on a fragment of

the history beatlist, by calling subTreeSearch() and returns true or false.

subTreeSearch(pre, context) checks a precondition fragment on a context fragment and

returns true or false.

timeCheck(pre) checks time constraints of the precondition on the current time and

returns true or false.

positionSearch(pre, context) checks a position precondition on a context fragment and

returns true or false.

relationSearch(pre, context) checks a relation precondition on a context fragment and

returns true or false.

positionVariableSearch(pre, context) checks a relative position precondition with a

variable anchor on a context fragment, by replacing this variable for real ids and

then calling positionSearch(). Returns true or false.

findAnchorPosition(position, context) searches for the position of the anchor of a

relative position, by a query on the context and returns the position or null.

findAbsolutePosition(position) searches for the absolute position of an entity and

returns this position or null.

To get an idea of how the precondition checking component works, figure 15 shows a

sequence diagram of the most important methods of our class.

Figure 15: Sequence diagram of the most important Java methods.

 52

5 Evaluation

5.1 User test

Because expressiveness is one of the most important requirements on our model, we

have to evaluate this expressiveness. To test our context model on expressiveness we

set up a user test. We will explain the test first and then discuss the results.

5.1.1 Experiment

During this test we ask a group of users to come up with a random set of new scenarios.

Afterwards, we will try to express these scenarios in our model. This second step will be

performed by us, because end-users will never get to see the XML model itself.

Nine people (3 female and 6 male researchers and students) participated in the test.

These nine participants were divided in four groups and every group was asked to think

like an end-user, that is the author of the system, i.e. the person who writes the

precondition and action parts of the beats. These groups were asked to come up with

some scenarios they would want to create, as they were the end-user of the system. We

did not show our context model, but to show some possibilities we first provided a couple

of examples of possible scenarios. See figure 16 for such an example. There were no

restrictions on the location (inside, outside, in a car, etcetera) or domain (home, retail,

work, etcetera). We asked the groups to write down some scenarios in either a short text

or in a drawing.

Figure 16: An example scenario shown to the user test participants.

 53

The four groups produced in total a list of 13 scenarios, which are listed here:

I. “After dinner, a smart home senses that there are many people (guests) in the

living room. It thinks it is a party, so it plays nice music and gives visualizations on
the windows of the living room.”

II. “A shop window senses that a family or a group of friends or people with pets stand

in front of the shop window and shows targeted advertising.”

III. “During bad weather, the window of the living room shows nice weather.”

IV. “A shop window senses people talking, close to the shop window after hours and

triggers an alarm.”

V. “A shop window senses an animal in front of the shop window and triggers an

ultrasonic sound.”

VI. “When the shop window senses a female customer, older than 65, in front of the

shop window pointing to a product, it starts the 65+ interaction mode.”

VII. “A customer in a flower shop shows emotion while looking at and smelling a

specific flower. The system detects this situation and emotion and responds to it.”

VIII. “The system detects specific needs, for instance bored children in a shop and

responds to it.”

IX. “The system detects the taste of ice cream and knows your preferences. It gives a

warning for those that are too sweet for you.”

X. “A shop window senses a person walking in the cold and the rain, not close to the

shop window, with a dog and an umbrella and looking straight ahead. It responds to
this in a very specific way to attract the person’s attention.”

XI. “A husband, wife and child are shopping. The woman is inside the shop, and the

father and child wait outside. This is sensed by the system and, when there is
nobody else in front of the shop window, it responds to this situation by offering a
game at the eye level of the child.”

XII. “In the evening, a customer is reading information on the shop window. Then the

system senses a pickpocket behind the customer and gives a warning to watch
out.”

XIII. “A couple is shopping together. A shop window senses this and shows one

information zone with a product they are both talking about, instead of two separate
information zones.”

 54

5.1.2 Results

When we analyse the context information aspects used by these user test scenarios, we

come to a list of 31 context parameters. This list is shown in table 6.

Persons 1 2 3 4 5 6 7 8 9 10 11 12 13

 Identity x x

 Age x x x

 Gender x x

 Length x

 Location

 absolute position x x x

 relative position x x x x x x x x x x

 which room x x

 Orientation x

 Activity x x x x

 Speech x x

 Emotions / Mood x x x

 Intentions x

 History

 Activities x

 Profiles / Rights x x x x

Relations

 Entities nearby x x x x

 Touch x

 Gestures x

 Gaze x

Devices 1 2 3 4 5 6 7 8 9 10 11 12 13

 Identity x x x

 Location

 absolute position x

 relative position x

Relations

 Location

 same room x

 Entities nearby x x x x x x x x

Groups 1 2 3 4 5 6 7 8 9 10 11 12 13

 Number of individuals x

Relations

 Is family x

 Is friends x

Environment 1 2 3 4 5 6 7 8 9 10 11 12 13

 Indoor / Outdoor x

 Light x x

 Temperature x x

 Time of day x x x

 Water x x

Table 6: Context usage of the user test scenarios.

To get a quick idea of the context usage of the user test scenarios, we show the top 10 of

the context parameters, when ordered by their usage frequency, in table 7. We can

compare this list to the context parameter list from our model’s requirements by the third

column, in which the position of each context parameter in the initial requirements is

displayed.

To complete the user test, we modelled all test scenarios as a precondition of a beat. As

an example, two beats of the user test scenarios can be found in appendix D.6.

 55

Position in user test Context parameter Position in requirements

 1 Relative position of a person 1

 2 Entities nearby a device 6

 3 Activity of a person 11

 4 Entities nearby a person 18

 5 Identity of a person 3

 6 Identity of a device 2

 7 Absolute position of a person 4

 8 Emotions of a person 24

 9 Time of the day 21

 10 Age of a person 45

Table 7: User test top 10 of context information parameters

When we compare the whole set of 31 context parameters of the user test to our model’s

requirements, we find that 29 of the 31 context parameters are covered by our model.

One of the user test scenarios contains two context parameters that are not supported by

the model. These two context parameters are actually of the same type, they both

describe a relation between a group of people: our model is unable to describe a “family”

and a “friends” relation between a group of entities.

This means that 94% (29/31) of the context parameters from the user test are supported

by the model. Based on the fact that this was a broad and random user test, we state that

our model is able to describe a very large part of the situations in the home and retail

domain. And with the new precondition format, beats can be tested for these situations on

the model.

5.2 Software test

5.2.1 Test scenario

To test the software working with the context model, the existing DreamScreen project

and Ambient Narrative system have a test scenario. This test scenario consists of a set of

ten beats. It is a simple but effective scenario, using only one sensor, which is a “smart

floor” that does position detection. There are five different areas, defined by the

preconditions of the beats. People walking in and out these areas trigger one or more of

these beats:

Beat overview

1 AttractorMode Active when there is nobody within 2 meters of the shop window.

1 AttentionMode Active when there is somebody walking by the shop window.

4 InteractionModes Active when there is somebody standing still in front of one of the

four shop windows.

4 BlankModes Active on the other windows when the InteractionMode is active

on one of the shop windows.

 56

This scenario does not use the features of the new context model. So we have to create

a new scenario with more beats, triggered by different kinds of context information, to

show the possibilities of the system using the new context model. To this end we take the

list of parameters from the requirements phase and come to the following list of context

information that we want to use in our test scenario:

 Context parameters

 The position of a person or a device

 The identity of a person or a device

 Entities nearby a person or a device

 Speech of a person

 Touch of a person

 The orientation of a person or a device

 The activity of a person

 Capabilities of a device

 Gestures of a person

 Gaze of a person

Table 8: Context requirements for the test scenario

Basically we create the same scenario as the existing test scenario, but now using the

new context model with additional features. First we translate the current beat set into the

new modelling syntax, and then we add new features using other context information. We

use daylight and time information to select an appropriate AttractorMode. We adapt the

AttentionMode to the time and have different ones for a single person or for a group of

people walking by. We change the InteractionModes depending on the capabilities of

devices of the people in front of the window. Also different InteractionModes will be

shown when people look or point at certain products in the shop window. We add an

extra AttentionMode that responds to people skating by, instead of walking by. We add

an extra InteractionMode for people pointing at a product and simultaneously saying the

word “price”. Finally we create a beat that gets active when a person is standing against

the window with his/her back.

Besides this, we create two versions of this new beat set; one using absolute positions

and the other using only relative positions, to show all the possibilities of the context

model. So we duplicate the entire beat set. In the first set we assume that there is an

absolute position of everything. In the second set we only use relative position

information to show that the same scenario can be realized.

In the beat overview below we list all beats, their purpose and, between parentheses, the

context information used. We see that the list of table 8 is totally covered by one ore more

beats. Two example beats from the test set can be found in appendix D.7. With this beat

set, we will test our software component.

Beat overview

4 AttractorModes Depending on day/night (light) & summer/winter (time).

5 AttentionModes Depending on day/night (light) & group/alone (amount of

actors) & skaters (person’s activity).

 57

8 InteractionModes Four windows, depending on with/without Bluetooth

(capability of devices nearby a person).

4 InteractionModesGaze Active when looking at a product (position, person’s gaze).

4 InteractionModesPoint Active when pointing at a product (position, person’s

gestures).

1 InteractionModePointSpeak Active when pointing at a product with voice recognition

(position, person’s gestures, person’s speech).

1 BackOffMode Active when standing with the back against the window

(person’s position, orientation and touch).

1 KnownCustomerMode Active when a known customer returns to the shop

(person’s identity).

5.2.2 Test tool

The new scenarios introduced in the previous section have to be tested in practice on

different context situations. To this end, we created a test program that loads a beat set

and a set of context files, i.e. snapshots of the context at specific moments in time. The

program will check this beat set on every context, using our precondition checking

software component. We will show this test tool and its functionality here, using the test

beat set.

First we have to open a folder containing context files and a folder containing beat files,

and then the tool can start the precondition checking. So first we load a beat set and a

context set. This is shown in figure 17. We can inspect the individual context and beat

files by opening the tree views. This can be seen in figure 18, where we see part of a

context on the left and complete beat on the right.

Figure 17: Context files and beat files are loaded.

 58

Figure 18: Parts of a context file and a complete beat file.

The test tool also supports context history. The history log can be inspected and, if

necessary, changed. When opening the history, we see a beat log as shown in figure 19.

This history can be edited for testing activities. Here it can be seen that there are two

beats in the history.

Figure 19: The beat log file, containing beats that where active in the history.

After loading context and beat files, we can start the actual precondition checking. A new

window will appear that shows the context file that is currently used and the beats that

are active in this context. This can be seen in figure 20. The window shows a picture and

the name of every active beat. The picture describes the situation in the precondition of

the corresponding beat. These pictures are hand made and added to a beat by the beat’s

author.

 59

Figure 20: Three beats are active in context 2.

With the “next” and “previous” buttons we can go to another context, so that all beats’

preconditions will be checked again on a new context. This way we can walk through all

contexts and test our beat set on different situations.

5.2.3 Results

While creating the context files for this test, we listed per context situation which beats

should be activated. During the test we can verify the results by comparing the activated

beats with the ones from these lists. The software should select the right set of beats at

every context and no other beats than that.

The final results of our software tests show us that the precondition checking component

does exactly what it is expected to do. In a broad range of context situations and beats, it

selects exactly the right beats for every single context situation.

The precondition checking tool works correct and precise on position computations of

persons and devices. Both absolute and relative positions are used and this raises no

problems. All other aspects of context information like, for example, speech, gestures,

gaze, touch or activities of a person or the orientation or capabilities of a device are

detected and processed in a correct way.

 60

6 Conclusions

In this section we will answer our research questions, draw conclusions and evaluate the

project. Finally we will propose some future work topics.

6.1 Context

To answer our first research question, “What kind of context information is needed in

ambient intelligence surroundings?”, we performed several research tasks. The main

objective of these research tasks was to identify existing context usage. To this end we

first of all performed a thorough literature study, in which we focused on proposed context

usage and the use of context information in existing context aware systems. As a second

step we researched a number of future scenarios and indexed their use of context

information. To complete our search for context information we organized a brainstorm

session to come up with new future scenarios using context. During these research

activities we focused on two domains for ambient intelligence, which are the home and

retail domains.

After having collected all kinds of context information parameters, we ordered, grouped

and analysed these results. This way we came up with two partially overlapping lists of

context information parameters, which can be found in tables 1 and 2 in section 2.1.5.

After merging these two lists, we ended up with 80 unique context information parameters.

The most important parameters of this set, depending on the amount of their occurrences,

include the position, orientation and movements of a person or device, the identity and

activity of a person and the contents and capabilities of a device. We used this total set of

context parameters as input for our next research steps. This list can also be a useful list

for other future research projects.

6.2 Context model

Knowing which context information is needed, we are able to answer our second

research question: “How can we efficiently represent this context information in a model?”.

To answer this question, we made a design of a compact model that represents the

context of our system. To fulfil this task, the model is able to describe every context

information parameter we found earlier.

We created a hierarchical model using names from the theatre world. Every context has

one or more “stages” which are areas like rooms, floors or gardens. A “stage” can host

zero or more “performances”, which are activities , and “relations”. A “performance” has

one or more “actors”, people, or “props” which are objects or devices. The “relations”

define relations between “actors” or “props”. All these entities in our model have different

attributes. An “actor”, for example, has attributes like “age” or “gender” and a

 61

“performance” has an “activity” and “start time”. This resulted in a compact model of 12

entities with 54 attributes. A diagram of this model can be found in figure 4.

During our research on context information, we found that almost 10% of the context

information was not about the current context, but about context history. Therefore we

designed a second model next to the context model, to represent context history

information. There was not so much information about context history in the literature, so

we came up with a totally new method to store context history in a compact but still useful

way.

To test the expressiveness of our context model, we conducted a user test. We asked a

group of people to think of random situations and we tried to express these situations in

the model. The model was able to describe 94% of all aspects of these user test

situations. This result demonstrates that our model satisfies our design goal of being

richly expressive and broadly applicable; the model covers a broad range of ambient

intelligence scenarios and can be used to describe these scenarios in small detail.

6.3 Functionality

After we designed the model to represent the context, we can answer the third research

question, “How can this model be used in the existing Ambient Narrative system?”, and

integrate our model in the Ambient Narrative system. The beats of the Ambient Narrative

system put preconditions on the context, i.e. on our model. To make this work, these

preconditions have to be compatible with the model. Therefore we first designed a

precondition format based on our model. After that we started the implementation.

To this end we decided to use XML as a modelling language to implement our model and

Java as a programming language to build the surrounding software component. This

component performs the precondition checking, which includes comparing values to

exact values, upper and lower bounds, counting entities, working with relations and

variables and performing computations on position data. As an implementation of the

model, we translated the conceptual model into an XML schema. This schema can be

found in appendix D.5. The implementation of the software component resulted in a Java

class that can easily be used by other programs to check a certain precondition on the

context model.

The most important things checked by this software component on the context model are

geographical positions, which turned out to be the most important context information

aspects. The software component performs computations on position information to

compare different position formats and compute distances. We can, for example, check

preconditions like “is there a person, in an area of 6 by 4 meters in the front left corner of

a room, who is within 1 meter of a phone, which is at least 3 meters away from any wall”.

Next to this position information, other preconditions can be checked like, for example,

the age or emotions of the person, the size or capabilities of the phone or the

temperature in the room. Next to that, we can add history constraints to this precondition

like “the person should not have been in this room before” or “the phone should have

ringed at least twice, in the last hour”.

 62

We tested our software component with a broad set of beats. To this end we created a

test tool that loads a set of beats and a set of context files and then uses our software

component to check all beats’ preconditions on every context. We created a set of 64

beats and a set of 6 instances of our model representing different context situations. This

test was successful; the software computes exactly the right set of beats for every context

situation. Also the use of history was tested and found to be a powerful tool to create

more advanced beats. We tested a beat that detects customers in a shop that bought

certain products in this shop before. This procedure works very accurate and it shows

with a concrete example how history can help to increase the possibilities of the system.

6.4 Future work

Context history

We have done some work on context history and found that the main problem is the

enormous amount of data. We provided a mechanism to put preconditions on events in

the history, without the need to always store all context information. A disadvantage of

this method is that we loose the real context, so we proposed another method, in which

we can really recreate the context of a certain moment in the history. More research has

to be done on this method to be able to test and implement it.

User profiles

To make the system more useful, there has to be a user profile component on which

those preconditions can be checked that can not be verified in another way. For example,

we can sense the identity, weight or length of a person, but we can not sense a person’s

preferences or rights.

Context future

While working with historical and present context, the idea of future context comes up.

We think about context prediction mechanisms to enable the system to adapt itself even

more to the user’s needs. Research on context precondition is ongoing and it would be

very interesting to integrate this kind of functionality in our system.

Context reasoning

We mentioned context reasoning several times throughout this report. We did not focus

on these mechanisms, but reasoning is a very powerful tool, for example, to extract

patterns and find preferences of certain entities in the context. So reasoning can help to

build user profiles and predict future context.

Sensor failure and uncertainty

A different aspect of our system is the dependence on lots of sensors. This raises the

problem of sensor failure – what if a sensor does not provide output and certain beats

have preconditions on its values – and the problem of uncertainty – what if a sensor is not

very reliable and provides wrong values now and then. Research has to be done on

these areas to make the system more robust.

 63

C References

C.1 References

[Aarts 03] Aarts, E.H.L., Marzano, S. “The new everyday; views on ambient

intelligence”, ISBN 9064505020, 010 Publishers, Amsterdam, 2003

[Aarts 06] Aarts, E.H.L., Diederiks, E. “Ambient Lifestyle, from concept to

experience”, p. 198-202, ISBN 9789063691615, BIS Publishers,

Amsterdam, 2006

[Abowd 00] G. D. Abowd, E. D. Mynatt, “Charting Past, Present and Future

Research in Ubiquitous Computing”, ACM Transactions on Computer-

Human Interaction, 7(1):29-58, March 2000.

[Becker 05] Becker, C., Dürr, F. “On location models for ubiquitous computing”, in

Journal of Personal and Ubiquitous Computing 9, 20-31, Springer, 2005

[Bielefeld] www.techfak.uni-bielefeld.de/ags/ai/projects/mimic/welcome.html

(November 2006)

[Brusilovsky 96] P. Brusilovsky. “Methods and Techniques of Adaptive Hypermedia”,

User Modeling and User-adapted Interaction, 6(2-3):87-129, 1996

[Byun 04] H. Byun, K. Cheverst. “Utilizing Context History To Provide Dynamic

Adaptations”, Applied Artificial Intelligence 18(6): 533-548, 2004

[Coen 98] M. H. Coen. “Design Principals for Intelligent Environments”, Proc.

Proceedings of the Fifteenth National Conference on Artificial

Intelligence (AAAI’98), Madison, Wisconsin, 547-554, Mostow, C.R.A.J.

(ed) AAAI Press / MIT Press, 1998

[Decker 03] C. Decker, U. Kubach, M. Beigl. “Revealing the retail black box by

interaction sensing”, in Proceedings of the ICDCS 2003, Providence,

Rhode Island, 2003

[Dey 01] Dey, A. “Understanding and Using Context”, in Personal Ubiquitous

Computing 5, January 2001, 4-7

[Dijk 01] Dijk, E.O., “Position and tracking technology for Context Awareness

applications in the Home”, Technical Note 2001/439, Phenom project,

Philips Research, Eindhoven, November 2001

[Dogac 03] Dogac, A., Laleci, G., Kabak, Y. “Context Frameworks for Ambient

Intelligence”. eChallenges, October 2003, Bologna, Italy

 64

[Doorn 05] M. van Doorn, A.P. de Vries, “Ambient Narratives and Storytelling in

Ambient Intelligence”, 2005

[Doorn 06] M. van Doorn, A.P. de Vries, “Co-creation in Ambient Narratives”, in

Ambient Intelligence for Everyday Life (AmI-Life'05), Lecture Notes in

Computer Science 3964, 2006

[Doorn 07] M. van Doorn. “Specification End-user Programming Architecture”,

Philips Research, draft 0.5, Eindhoven, CRE 2007

[Ferscha 02] A. Ferscha, S. Vogl, W. Beer, "Ubiquitous Context Sensing in Wireless

Environments", presented at Workshop on Distributed and Parallel

Systems, Austria, 2002

[Garate 05] Gárate, A., Herrasti, N., López, A. “GENIO: an ambient intelligence

application in home automation and entertainment environment”, in

Proceedings of the 2005 Joint Conference on Smart Objects and

Ambient intelligence: innovative Context-Aware Services: Usages and

Technologies, sOc-EUSAI '05, vol. 121. ACM Press, New York, 2005,

241-245

[Gronbaek 03] Gronbaek, K, J.F. Kristensen, P. Orbaek, M.A. Eriksen. "'Physical

Hypermedia': Organising Collections of Mixed Physical and Digital

Material", Proc. ACM Conference on Hypertext, Nottingham, 2003, pp.

10-20

[Gunn 04] James Gunn. “Slither”, September 10, 2004,

www.imsdb.com/scripts/Slither.html (October 2006)

[Halasz 94] F. Halasz, M. Schwartz. “The Dexter Hypertext Reference Model”,

Communications of the ACM, 37(2):30-39, February 1994

[Hansen 04] F. A. Hansen, N. O. Bouvin, B. G. Christensen, K. Grønbæk, T. B.

Pedersen, J. Gagach. “Integrating the Web and the World: Contextual

trails on the move”, in D. de Roure and H. Ashman, editors,

Proceedings of the 15th ACM Hypertext Conference, Santa Cruz, CA,

USA, August 2004, ACM Press

[Hatley 00] Hatley, DJ, Hruschka, P, Pirbhai, I. “Process for system architecture and

requirements engineering”, Dorset House, 2000

[Hull 97] R. Hull, P. Neaves, J. Bedford-Roberts. “Towards Situated Computing”,

ISWC '97: Proceedings of the 1st IEEE International Symposium on

Wearable Computers, IEEE Computer Society, 1997

[Hung 05] Hung Quoc Ngo, Anjum Shehzad, Kim Anh Pham Ngoc, S. Y. Lee,

Manwoo Jeon, "Research Issues in the Development of Context-Aware

Middleware Architectures", 11th IEEE International Conference on

 65

Embedded and Real-Time Computing Systems and Applications

(RTCSA'05), pp. 459-462, 2005

[Kleinhout 03] Kleinhout, J.C., Hollemans, G., Lashina, T.A., Korst, J.H.M. “Context

information: representation and reasoning”, Technical Note 2003/00525,

Easy Access project, Philips Research, Eindhoven, July 2003

[Korkea 00] M. Korkea-aho, “Context-Aware Applications Survey”, Internetworking

Seminar (Tik-110.551), Department of Computer Science, University of

Helsinki, April 2000, users.tkk.fi/~mkorkeaa/doc/context-aware.html

[Kostianen 05] M. Kostiainen, M. Kiesila, “The intelligent retail store”, Department of

Computer Science, University of Helsinki, October 2005

[Lucas 88] George Lucas, Bob Dolman. “Willow”, 1988,

www.imsdb.com/scripts/Willow.html (October 2006)

[Meyer 03] S. Meyer, A. Rakotonirainy, “A Survey of research on context-aware

homes”, Australasian Information Security Workshop Conference on

ACSW Frontiers, 2003

[Nijholt 04] A. Nijholt, “Smart Exposition Rooms: The Ambient Intelligence View”, in

Proc. Electronic Imaging & the Visual Arts (EVA 2004), V. Cappellini & J.

Hemsley, Pitagora Editrice Bologna, March 2004, 100-105

[Philips 07] “What is Ambient Intelligence?”, Technologies, Philips Research,

www.research.philips.com/technologies/syst_softw/ami (June 2007)

[Pine 99] B.J. Pine II, J.H. Gilmore. “The Experience Economy: Work Is Theater &

Every Business a Stage”, ISBN 0875848192, Harvard Business School

Press, 1999

[Przybilski 05] M. Przybilski, P. Nurmi, and P. Floréen. “A Framework for Context

Reasoning Systems”, in Proceeding Software Engineering 2005, 455-

808, Innsbruck, Austria, February 2005

[Rocker 05] Röcker, C., Janse, M. D., Portolan, N., Streitz, N. “User requirements for

intelligent home environments: a scenario-driven approach and

empirical cross-cultural study”. In Proceedings of the 2005 Joint

Conference on Smart Objects and Ambient intelligence: innovative

Context-Aware Services: Usages and Technologies, sOc-EUSAI '05, vol.

121. ACM Press, New York, 2005, 111-116

[Romero 03] Romero, L, Nuno C. “HyperReal: a Hypermedia Model for Mixed

Reality”, in Proceedings of the Fourteenth ACM Conference on

Hypertext and Hypermedia, pp. 2 – 9. New York, NY: ACM Press, 2003

 66

[Roussos 02] G. Roussos, L. Koukara, P. Kourouthanasis, J.O. Tuominen, O.

Seppala, G. Giaglis, J. Frissaer. “A case study in pervasive retail”, Proc.

ACM Mobile Commerce 2002, pp. 100-105

[Salber 98] Salber, D., Abowd, G. “The Design and Use of a Generic Context

Server”, Technical Report GIT-GVU-98-32, Georgia Institute of

Technology, 1998

[Salber 99] D. Salber, A. K. Dey, R. Orr, G. D. Abowd, “Designing for Ubiquitous

Computing: A Case Study in Context Sensing”. GVU, Technical Report

GIT-GVU-99-29, July 1999

[Satoh 05] Satoh, I. “A location model for ambient intelligence”, in Proceedings of

the 2005 Joint Conference on Smart Objects and Ambient intelligence:

innovative Context-Aware Services: Usages and Technologies, sOc-

EUSAI '05, vol. 121. ACM Press, New York, 2005, 195-200

[Schmidt 99] Schmidt, A. et al. “There is more to context than location”, in Computer

& Graphics, 23(6), 1999, pp 893 -901

[Schmidt 00] Schmidt, A. “Implicit Human Computer Interaction Through Context”.

Personal Technologies Volume 4(2&3), 2000, 191-199

[Schmidt 05] Schmidt, A., Kranz, M., Holleis, P. “Interacting with the ubiquitous

computer: towards embedding interaction”. In Proceedings of the 2005

Joint Conference on Smart Objects and Ambient intelligence: innovative

Context-Aware Services: Usages and Technologies, sOc-EUSAI '05, vol.

121. ACM Press, New York, 2005, 147-152

[Shehzad 04] A. Shehzad, H. Q. Ngo, K. Anh Pham, S. Y. Lee. “Formal Modeling in

Context Aware Systems”, in Proceedings of The 1st International

Workshop on Modeling and Retrieval of Context (MRC’2004), Ulm,

Germany, 2004

[Spence 05] M. Spence, C. Driver, S. Clarke. “Sharing Context History in Mobile,

Context-Aware Trails-Based Applications”, Department of Computer

Science, Trinity College Dublin, Ireland, 2005

[Wachowski 90] Andy Wachowski, Larry Wachowski. “V for Vendetta”, early 90’s,

www.imsdb.com/scripts/V-for-Vendetta.html (October 2006)

[Wang 04] X. Wang, et al., "Ontology-Based Context Modeling and Reasoning

using OWL". Context Modeling and Reasoning Workshop at PerCom

2004. citeseer.ist.psu.edu/wang04ontology.html

[Weiser 91] Weiser M. “The computer for the 21st century”, in Scientific American,

1991, 265 (3): 94 – 104

 67

[Wiki: Ami] en.wikipedia.org/wiki/Ambient_Intelligence (July 2007)

[Wiki: OWL] en.wikipedia.org/wiki/Web_Ontology_Language (June 2007)

[Wiki: RDF] en.wikipedia.org/wiki/Resource_Description_Framework (June 2007)

C.2 Ambient Intelligence scenarios

Home scenarios

[AmI Light 02] E. Diederiks, B. Eggen, J. van Kuijk. “Scenarios for Ambient Intelligent

Lighting”, Technical note, Philips Research / Philips Lighting, Eindhoven,

April 2002

[Amigo 05] C. Magerkurth, N. Streitz, Fraunhofer, M. Janse, N. Portolan, M. Barone,

S. di Marco, A. Larrannaga, I. Lucas, J. Arribas, S. Carro-Martinez.

“Report on User Requirements: State of the Art, Volume II”, IST Amigo

project, April 2005

[Hydrogen 00] H. Eggenhuisen, G. Jorna, “Hydrogen Workshop Report, Selected

scenarios and trend information”, Philips Design, Eindhoven, December

2000

[Intelligent 05] C. Röcker, M. Janse, N. Portolan, N. Streitz. “User requirements for

intelligent home environments: a scenario-driven approach and

empirical cross-cultural study”, in Proceedings of the 2005 joint

conference on Smart objects and ambient Intelligence, ACM Press,

New York, October 2005

[ISTAG 01] Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J. C.

“ISTAG: Scenarios for Ambient Intelligence in 2010”, CORDIS IST,

ISTAG, February 2001

[MUSCLE 05] R. van de Sluis, E. Diederiks, L. Geurts, A. Andrews. “Selected Multi-

user Issues for MUSCLE and SoCoHo”, Philips Research / Philips

Design, MUSCLE project / SoCoHo project, Eindhoven, April 2005

[Portable 01] I. Halters, V. Buil, R. van de Sluis. “Portable Displays in the Home,

Interaction and Application Scenarios for Context Awareness”, Philips

Research, Commuter project, Eindhoven, August 2001

Retail scenarios

[IILAH 05] J. Witsenburg, E. Diederiks, R. van de Sluis. “Shop lighting scenarios,

Gaining domain knowledge and evaluating scenarios with shop owners,

shoppers and retail experts”, Philips Research, Media Interaction group,

IILAH project, Eindhoven, August 2005

 68

[Pervasive 02] G. Roussos, J. Tuominen, L. Koukara, O. Seppala, P. Kourouthanasis,

G. Giaglis, J. Frissaer. “A case study in pervasive retail, Proceedings of

the 2nd international workshop on Mobile commerce”, Atlanta, Georgia,

USA, September 2002

[SWD 05] T. Lashina, E. van Loenen, G. Hollemans, K. van Gelder, M. van Doorn,

S. van de Wijdeven, V. Buil. “Shop Window Display brainstorm”, Philips

Research, Media Interaction group, DreamScreen project, Eindhoven,

July 2005

 69

D Appendices

D.1 Brainstorm results

Brainstorm ideas

1. Finding faster what you are looking for.

2. What is the fastest line at the cash register?

3. A smart purchase list.

4. What do I still have at home?

5. What to do when a product is unavailable?

6. Product A needs product B, where do I find it?

7. How to pack everything in the shopping cart.

8. Info about what may I have. (think about calories, allergies, etc.)

9. Choosing a mood to be guided around. (i.e. for an Italian night)

10. Where are my kids?

11. Finding your way in an unknown supermarket.

12. Scent applications.

13. Try out corners.

14. Shopping cart anti theft system.

15. Shopping cart automatic return feature.

16. Recommender when you forgot something.

17. No shopping cart, just pointing at products.

18. Presenting alternative products.

19. Coinless shopping carts.

20. Checking the stock for more products.

21. An automatic cash register.

22. Automatic warnings for over date products.

23. Getting recipe info.

Brainstorm idea clusters

Path finding (ideas 1, 6, 10, 11)

� Location

o self

o target (product / person) (3d)

o route

o car (bring products automatically to car)

o absolute (within shop)

o relative (on a fixed route)

� Identity

o of the product (size, weight, price, readable by shopping cart)

o of a person (child)

o role (clients, staff)

� Time

o in a hurry

o shopping for social contacts

 70

� Personal

o vegetarian, allergies, kosher, illness, disabled, intellectual state

o alone / with a group

o good or bad intensions

o mood (feel like cooking or not)

� History

o what do you usually buy

o how much time do you usually spend

Product info (ideas 2, 7, 20, 21, 22)

� Contents of shopping cart

o Identity

o Order

� Identity

o of the products (size, weight, price, date)

o of a person (average speed of cash register employee)

� Time

Recipe info (ideas 3, 5, 8, 9, 16, 18, 23)

� Identity

o of the product (locations, size, weight, price, ingredients, taste, scent, colour,

alternatives, substitutes)

� Contents of shopping cart

o Identity

� Personal

o preferences

o vegetarian, allergies, kosher, illness, disabled, intellectual state

o mood (feel like cooking or not)

� History

o what do you usually buy

Smart Carts (ideas 14, 15, 19)

� Location

o self (cart)

o movement (speed, direction)

o entities nearby

� Contents of shopping cart

Other (ideas 4, 12, 13, 17)

� Products at home

o in cupboards, in fridge, etc

o amount

� Identity

o of the product (locations, weight, price, ingredients, taste, scent, colour)

� Gestures (pointing, touching, gazing, etc)

 71

D.2 Movie scripts analysis

Slither [Gunn 2004]

Activity Can be modelled by

bell ringing sound

chattering speech + face expression

giggling speech + face expression

humming sound

kneeling movement

laughing speech + face expression

listening activity

locking a door movement + gestures

looking orientation + gaze

lounging movement + activity

moving towards a door movement

nodding movement

opening a door movement + gestures

pointing gestures

raising a hand gestures

smiling face expression

snickering speech + face expression

staring orientation + gaze

staring in a mirror orientation + gaze

starting to leave movement

swirling towards movement

trembling highly movement + activity

turning towards a door orientation

walking into a room movement

walking towards a door movement

yelping with fear speech + face expression

V for Vendetta [Wachowski 1990]

Activity Can be modelled by

being afraid face expression

being outraged face expression

being relieved face expression

being stunned face expression

bending movement

dragging movement + gestures + activity

dropping movement

widening your eyes face expression

giving a speech speech + face expression

grabbing gestures

grinning face expression

handing it to her gestures

 72

hooting speech

howling speech

lifting your arm gestures

light sweeping across a room light

pausing movement + activity

phone ringing sound

popping a beer gestures + sound

punching a button gestures

rubbing tears from your eyes gestures

rushing out of a room movement

screaming speech + face expression

singing speech

sneaking up movement

starting to cry speech + face expression

whispering speech

Willow [Lucas 1988]

Activity Can be modelled by

being dragged movement

bouncing movement

carrying a baby activity + entities nearby

clumping together movement + entities nearby

falling movement + orientations

flaring face expression

flashing your eyes face expression

folding gestures

igniting gestures + sound + light

jumping movement

kissing movement + face expression + entities nearby

poking gestures

pounding movement + gestures

rolling movement

scrutinizing orientation + gaze

shaking your head movement

shrugging movement

shutting his eyes face expression

sliding movement

snapping your finger movement + sound

squinting face expression

turning away movement + orientation

 73

D.3 Home Scenarios

ISTAG: Scenarios for Ambient Intelligence in 2010 [ISTAG 01]

1. Dimitrios, the digital me

2. Carmen, traffic, sustainability & commerce

Portable Displays in the Home, Interaction and Application Scenarios for Context

Awareness [Portable 01]

3. All

User requirements for intelligent home environments: a scenario-driven approach

and empirical cross-cultural study [Intelligent 05]

4. All

Selected Multi-user Issues for MUSCLE and SoCoHo [MUSCLE 05]

5. Sharing one large display

6. Ad hoc sharing of activities and content on the move

7. Seamless continuation of activities in a social setting

8. Ad hoc transition of single-user to multi-user activities

9. Co-creation of a media album or play list

Hydrogen Workshop Report, Selected scenarios and trend information [Hydrogen 00]

10. Louise

11. Monitoring Inlay

12. Elderly Home

13. Position Aware

14. Person Aware

15. Context aware personal assistant

16. HomeCast

17. Interactive Table

18. Bathroom mirror

19. A moment's peace & quiet

20. Cyber pets

21. Friday the 13th

Scenarios for Ambient Intelligent Lighting [AmI Light 02]

22. Activity Spot

23. Light Timer 2

24. Tale-Telling Stones

25. Almost Home

26. Night Lights

27. Teaching Surroundings

28. Easy Light / A Warm Welcome

29. The Moody Blues

Report on User Requirements: State of the Art, Volume II [Amigo 05]

30. Voice command based home

 74

31. Gemini: Accumulating Context for Play Applications

32. Context Aware Information Retrieval in the Home

D.4 Retail Scenarios

Shop lighting scenarios, Gaining domain knowledge and evaluating scenarios with

shop owners, shoppers and retail experts [IILAH 05]

33. Microclimates / Light bubble

34. Reactive Spots

35. Reactive Counter

36. Natural Light / Daylight attraction

37. Light trendsetter

38. Full interaction

39. Adaptive spotlight

40. Anti-shoplifter lighting

41. Anti night-visitor lighting

42. Reactive clothing rack

43. Point ’n’ aim

A case study in pervasive retail, Proceedings of the 2nd international workshop on

Mobile commerce [Pervasive 02]

44. All

Shop Window Display brainstorm [SWD 05]

45. MTS01, 02, KV02

46. MTS06, 08, 11

47. MTS07, 12

48. MTS09

49. MTS13, 14

50. GE01

51. GE07

52. KV03

53. ETS04

54. KG11

55. EV01, KTS01

56. KTS03

57. MG01

58. MG03

59. MG08

Supermarket Brainstorm

60. Path finding

61. Product info

62. Recipe info

63. Smart Carts

64. Miscellaneous

 75

D.5 XML schema

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns="" id="context" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="position">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="latitude" type="xs:string" />

 <xs:element minOccurs="0" name="longitude" type="xs:string" />

 <xs:element minOccurs="0" name="altitude" type="xs:integer" />

 <xs:element minOccurs="0" name="anchor" type="xs:string" />

 <xs:element minOccurs="0" name="angle" type="xs:integer" />

 <xs:element minOccurs="0" name="distance" type="xs:integer" />

 </xs:sequence>

 <xs:attribute name="class" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="relative" />

 <xs:enumeration value="absolute" />

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="system">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="xyz" />

 <xs:enumeration value="gps" />

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:element name="orientation">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="angle" type="xs:integer" />

 <xs:element minOccurs="0" name="tilt" type="xs:integer" />

 <xs:element minOccurs="0" name="roll" type="xs:integer" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="health">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="class" type="xs:string" use="required" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="intention">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="activity" type="xs:string" />

 <xs:element minOccurs="0" name="duration" type="xs:duration" />

 <xs:element minOccurs="0" name="speed" type="xs:integer" />

 <xs:element minOccurs="0" name="angle" type="xs:integer" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="actor">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="arrival" type="xs:time" />

 <xs:element minOccurs="0" name="role" type="xs:string" />

 76

 <xs:element minOccurs="0" name="age" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="gender" type="xs:string" />

 <xs:element minOccurs="0" name="length" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="face" type="xs:anyURI" />

 <xs:element minOccurs="0" ref="position" />

 <xs:element minOccurs="0" ref="orientation" />

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="health" />

 <xs:element minOccurs="0" ref="intention" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 <xs:element name="contains">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="actor" />

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="prop" />

 </xs:sequence>

 <xs:attribute name="in_order" type="xs:string" />

 <xs:attribute name="count" type="xs:integer" />

 </xs:complexType>

 </xs:element>

 <xs:element name="prop">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="name" type="xs:string" />

 <xs:element minOccurs="0" name="capability" type="xs:string" />

 <xs:element minOccurs="0" name="color" type="xs:string" />

 <xs:element minOccurs="0" name="width" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="height" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="depth" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="weight" type="xs:positiveInteger" />

 <xs:element minOccurs="0" ref="position" />

 <xs:element minOccurs="0" ref="orientation" />

 <xs:element minOccurs="0" ref="contains" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required" />

 <xs:attribute name="class" type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:element name="condition">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" name="air_quality" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="color" type="xs:string" />

 <xs:element minOccurs="0" name="light" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="music" type="xs:string" />

 <xs:element minOccurs="0" name="sound" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="temperature" type="xs:integer" />

 <xs:element minOccurs="0" name="rain_chance" type="xs:positiveInteger" />

 <xs:element minOccurs="0" name="water" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="performance">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="activity" type="xs:string" />

 <xs:element minOccurs="0" name="start" type="xs:time" />

 <xs:element minOccurs="0" name="speed" type="xs:integer" />

 <xs:element minOccurs="0" name="acceleration" type="xs:integer" />

 <xs:element minOccurs="0" name="angle" type="xs:integer" />

 <xs:element minOccurs="0" maxOccurs="unbounded" name="words" type="xs:string" />

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="actor" />

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="prop" />

 </xs:sequence>

 </xs:complexType>

 77

 </xs:element>

 <xs:element name="relation">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="object" type="xs:string" />

 <xs:element name="subject" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="class" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 <xs:element name="stage">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" ref="condition" />

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="performance" />

 <xs:element minOccurs="0" maxOccurs="unbounded" ref="relation" />

 </xs:sequence>

 <xs:attribute name="id" type="xs:string" use="required" />

 <xs:attribute name="indoor_outdoor" type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:element name="context">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" ref="stage" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

 78

D.6 User test scenarios

Scenario I

“After dinner, a smart home senses that there are many people (guests) in the living room.

It thinks it is a party, so it plays nice music and gives visualizations on the windows of the

living room.”

<beat id="afterDinnerParty>

 <!-- preconditions that must hold for this beat to be selected -->

 <pre>

 <stage id="LivingRoom" min_time="17:00:00">

 <performance>

 <actor min_count="5">

 <health class="emotion">happy</health>

 </actor>

 </performance>

 </stage>

 <script>

 <present />

 <history>

 <active>

 <beat id="Dinner" min_period="-02:00:00" />

 </active>

 </history>

 </script>

 </pre>

 <!-- what happens when the beat is selected -->

 <action>

 :

 :

 </action>

</beat>

Scenario X

“A shop window senses a person walking in the cold and the rain, not close to the shop

window, with a dog and an umbrella and looking straight ahead. It responds to this in a

very specific way to attract the person's attention.”

<beat id="badWeatherMan">

 <!-- preconditions that must hold for this beat to be selected -->

 <pre>

 <stage id="outside">

 <condition>

 <max_temperature>5</max_temperature>

 <water>yes</water>

 </condition>

 <performance>

 <prop id="ShopWindow"/>

 </performance>

 <performance>

 <prop id="$umbrella" class="umbrella"/>

 </performance>

 79

 <performance>

 <activity>walking</activity>

 <actor id="$actorX">

 <role>customer</role>

 <position class="relative">

 <anchor>ShopWindow</anchor>

 <width>800</width>

 <length>300</length>

 <offset_angle>90</offset_angle>

 <offset_distance>400</offset_distance>

 </position>

 <orientation>

 <min_angle>20</min_angle>

 <max_angle>-20</max_angle>

 </orientation>

 </actor>

 <actor>

 <role>animal</role>

 <position class="relative">

 <anchor>$actorX</anchor>

 <max_distance>200</max_distance>

 </position>

 </actor>

 </performance>

 <relation class="touch">

 <object>$actorX</object>

 <subject>$umbrella</subject>

 </relation>

 </stage>

 <script>

 <present />

 <history />

 </script>

 </pre>

 <!-- what happens when the beat is selected -->

 <action>

 :

 :

 </action>

</beat>

 80

D.7 Software test scenarios

Below the beat “interactionPointPrice” is shown. This beat will get activated when a

person, standing in front of the intelligent shop window, points at a certain product and

says the word “price”.

<beat id="interactionPointPrice" class="interactionMode">

 <!-- preconditions that must hold for this beat to be selected -->

 <pre>

 <stage id="outside">

 <performance>

 <activity>speaking</activity>

 <words>price</words>

 <actor id="$actor">

 <position class="absolute">

 <min_latitude>0</min_latitude>

 <max_latitude>200</max_latitude>

 <min_longitude>0</min_longitude>

 <max_longitude>200</max_longitude>

 </position>

 </actor>

 </performance>

 <performance>

 <prop id="$product" />

 </performance>

 <relation class="point">

 <object>$actor</object>

 <subject>$product</subject>

 </relation>

 </stage>

 <script>

 <present />

 <history />

 </script>

 </pre>

 <!-- what happens when the beat is selected -->

 <action>

 :

 :

 </action>

</beat>

In the beat above, the position of the actor is defined absolutely. We will show the same

beat once again, but now with relative positioning.

<beat id="interactionPointPrice" class="interactionMode">

 <!-- preconditions that must hold for this beat to be selected -->

 <pre>

 <stage id="outside">

 <performance>

 <activity>speaking</activity>

 <words>price</words>

 81

 <actor id="$actor">

 <position class="relative">

 <anchor>ShopWindow1</anchor>

 <width>150</width>

 <length>150</length>

 <offset_angle>90</offset_angle>

 <offset_distance>75</offset_distance>

 </position>

 </actor>

 </performance>

 <performance>

 <prop id="$product" />

 </performance>

 <relation class="point">

 <object>$actor</object>

 <subject>$product</subject>

 </relation>

 </stage>

 <script>

 <present />

 <history />

 </script>

 </pre>

 <!-- what happens when the beat is selected -->

 <action>

 :

 :

 </action>

</beat>

	Abstract
	Contents
	1 Introduction
	2 Requirements
	3 Design
	4 Implementation
	5 Evaluation
	6 Conclusions
	References
	Appendices

