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Abstract

Computer simulation of physical experiments has proven itself as a valuable
method to perform scientific research. Due to complex computations and/or
large problem sizes, these experiment simulations can become computationally
intensive. Furthermore, simulation software is often bound to specific hardware
and/or software environments and therefore has limited portability.

In this master’s thesis, an object-oriented model for parallel experiment sim-
ulations is presented. The implementation of this model provides a framework to
create simulations (for a class) of experiments that can be modeled as functions.

An example of a computationally intensive experiment was found in the
domain of scattering analysis: based on the framework, a parallel simulation
program was developed which performs scattering experiment simulations in
parallel. For inter-process communication, an implementation of the Tuple Space
paradigm is used, which leads to simulation software that is both scalable and
portable.
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Chapter 1

Introduction

This chapter lays the foundation for the work presented in this master’s thesis;
it describes the background of and the motivation for the work.

1.1 Experiments

In the scientific method, experimentation plays a central role. An experiment
is defined in [Oxf96] as a controlled manipulation of events, designed to produce
observations that confirm or disconfirm one or more rival theories or hypotheses.

But opposed to putting the questions to nature, advancements in computer
science have made it possible to perform experiments in silico; in computer ex-
periments, a model of a phenomenon is simulated and the obtained results are
used to make inferences about the underlying system.

In this way, computer experiments may seem to be of limited use because of
the uncertainty they introduce: the model is an imperfect representation of the
underlying system and the obtained results can be inexact (e.g. when the model
is stochastic, or requires numerical approximation). The advantage of perform-
ing experiments on computers however, is that it allows to do experiments that
—when performed on the real system— would be

• too dangerous, because of its effects on health or environment (e.g. a
nuclear detonation, or testing the effects of a new drug);

• not feasible, for example experimenting under conditions that cannot eas-
ily be attained (e.g. under extreme low/high temperatures, in the absence
of gravity, small/large time scales);

• too theoretical: to gain more insight into a theory, one can perform ex-
periments that are purely theoretical.

In the next section one particular type of experiment will be presented in
more detail. This family of experiments is the subject of the simulations pre-
sented in the following chapters.
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1.2 X-ray scattering analysis

X-ray scattering experiments are widely used in (bio-)chemistry to determine
the structure of a wide range of particles or aggregates (e.g. molecules, crystals
or gels). To perform this type of experiment, a beam of X-ray radiation is
directed to a substance of particles (which can be anything from single atoms
to large proteins or even polymers) and a spectrum, which results from the
rays being diffracted, is observed. Analysis of this spectrum reveals information
about the structure of the substance.

Figure 1.1: Schematic setup of an X-ray scattering experiment

In a computer simulation of a scattering experiment, a spectrum is computed
for (a model of) a physical sample. Since the sample’s structure must be known
in order to compute the spectrum, one may argue that these simulations are of
limited use. They are however useful, e.g. for

• comparing a computed spectrum to an measured one; this could either be
a comparison of the spectrum of an unknown sample to a large database of
computed spectra, or a comparison to a spectrum of a synthesized sample
that is believed to have the same structure as the sample to be analyzed.

• aggregated information about a sample’s structure, that may not be easily
visible from the (modeled) sample. An example of this is the fractal
dimension (which may be computed from a structure factor spectrum, a
type of scattering experiment), that gives information about the relation
between the mass and size of an object.

1.3 Problem description

The goals of this master’s project are to:

• design an object-oriented model for computer experiments,

• implement a parallel program to simulate (scattering) experiments,

• research the suitability of the Tuple Space model to this type of simula-
tions.

2



The object-oriented model for computer experiments, named the OOSA
model (Object-Oriented Scattering Analysis), will accommodate scattering ex-
periments, but the design strives for a more general approach.

Because computer experiments generally are computation intensive, the PROOSA
software (Parallel Object-Oriented Scattering Analysis) will implement this model
to simulate scattering experiments in parallel.

As there are many parallel paradigms, there are many ways to design such
a system. The approach taken here is to implement PROOSA on a network of
distributed nodes, communicating through a Tuple Space (see chapter 4), which
cooperate to simulate experiments in parallel. An alternative approach, based
on a Service Oriented Architecture, is presented in [Koo06].

3



Chapter 2

Simulation of scattering
experiments

How experiments will be modeled, and how this model is applied to scattering
experiments, is the subject of this chapter.

2.1 Modeling experiments as functions

In a physical experiment, measurements are performed to determine the values
of properties of the system that is being examined. This setup can be simu-
lated on a computer by constructing a model of the system and defining how it
responds to certain events.

In the OOSA model however, experiments will be modeled as functions:
as there exists many relations between physical quantities, one can often be
expressed as a function of the other(s). Therefore, an experiment in OOSA will
be defined as the determination of a result quantity as a function of a number
of argument quantities.

A quantity is defined as a quantifiable or assignable property ascribed to
a particular phenomenon, body, or substance. Examples of quantities are the
length of a wave, the mass of a particle or the intensity of radiation.

Example: the function f

f : A0 × A1 × . . . × AN−1 −→ R

defines a result quantity R as a function of argument quantities Ai (0 ≤ i <
N).

Argument quantities can be differentiated by their domains. The simplest
ones are the constants, i.e. they assume only one value. Examples are the
wavelength of the (monochromatic) X-ray radiation, or the sample that is being
analyzed. These arguments will often be removed from the function definition,
with their values used as constants in the computation(s).

Arguments without a specific value will be variables, that can take any value
from a certain domain. The result quantity’s value will be determined for all

4



possible values from these domains. In case an argument domain is discrete,
the possible values can easily be enumerated. But as most quantities have con-
tinuous domains, and therefore could assume an infinite amount of values, they
will approximated by sampling their domains by a finite amount of values.

Example (continued): to approximate function f , for each of its (vari-
able) argument quantities Ai a number of values a(i,j) is selected that enumerate
or sample the domain of Ai. For each combination of these values, the value of
the result quantity is determined.

These sampled values are values of a physical quantity, which means they
are expressed as the product of a number and a unit; the numerical value of a
physical quantity depends on the unit it is expressed in.

The determination of a result value, as a function of the (sampled) argu-
ment values, is called performing an observation. Thus, an observation con-
sists of a tuple of physical quantity values (a0, a1, . . . , aN−1, r), where r =
f(a0, a1, . . . , aN−1).

An observation(-tuple) now consists of two parts. The numerical values of
the argument and result quantities in the tuple are together called a signal. The
units are part of the signature, which describes the quantities and the units they
are expressed in.

2.2 Scattering experiments

In PROOSA, Debye’s formula will be used as the method to perform observa-
tions of X-ray diffraction spectra. It is defined as

I(q) =

N∑

j=1

N∑

k=1

fj(q)fk(q)
sin (q · rj,k)

q · rj,k

(2.1)

where

I is the observed intensity,

q is the wave number, related to the wavelength λ and scattering angle Θ by
q = 4π

λ
sinΘ,

j, k denote atomic scatterers,

fi(q) is the form factor of a scatterer i, which defines its scattering behavior at
a certain angle,

rj,k is the distance between (the centers of) scatterers j and k.

2.2.1 Calculation of Debye’s formula

Debye’s formula is compute intensive function; for interesting simulations the
number of scatterers N will be large, the double summation over N leads to a
N2 amount of terms

T (j, k) = fj(q)fk(q)
sin (q · rj,k)

q · rj,k

5



To obtain a more efficient calculation, a number of transformations and ap-
proximations are applied.

The first observation to make is that, as the distance between two scatterers
is symmetric and multiplication of all constituent terms of T is commutative,
T (j, k) equals T (k, j). Applying this to formula 2.1, it transforms into

I(q) = N + 2

N−1∑

j=1

N∑

k=j+1

fj(q)fk(q)
sin (q · rj,k)

q · rj,k

(2.2)

thus reducing the number of terms by a factor 2.

A second observation is that, when computing the intensities for various
diffraction angles for a static sample, the scatterers’ positions and therefore
their distances remain the same; instead of summing over all pair distances for
each observation, the distances can be computed once and stored in a set of
bins. This is the computation of a radial distribution function.

If a bin is defined to contain the total amount of particle pairs with a scat-
tering behaviours j and k at a certain distance d, the formula changes to

I(q) = N + 2

Nbins∑

i=1

Mifi(q)
sin (q · ri)

q · ri

(2.3)

where

Mi is the number of particle pairs in bin i,

fi(q) is the combined form factor for scatterer types j and k, i.e. fj(q) · fk(q),

ri is the distance between each pair

This transformation reduces the number of terms from the number of unique
pairs to the number of bins (i.e. the number of unique distances). For regular
structures, e.g. crystal lattices, this decrease of terms to sum can be very large.
Most important, however, is that the particle pair distance calculations can now
be reused, not only between the observation computations for a single experi-
ment, but also in different types of experiments based on particle pair distances.

Instead of storing each unique distance in a separate bin, bins will be ex-
tended to store the amount of particle pairs within a (small) range of distances.
Not only can this reduce the amount of terms even further, it also has advan-
tages in the actual computation (as the amount of and distances within the bins
are known in advance).

Note that this introduces an approximation of the actual radial distribution
function; the smaller the bin ranges, the better the approximation will be, but
the larger the number of terms in the summation will be, making the computa-
tion less efficient. The bin size used in simulations will therefore be a parameter
that is configurable by the user of the software.
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2.3 The experiments in PROOSA

2.3.1 Radial distribution experiments

In statistical mechanics, the radial distribution function g(r) determines the
average density of particles at a coordinate r relative to any particle in the
sample. In PROOSA, g(r) will be defined as the number of particle pairs at
certain distance r apart. In terms of equation 2.3, g(ri) = Mi.

In PROOSA, using radial distribution experiments for the computation of
scattering analysis experiments increases the efficiency of the computation: the
inter particle pair distances have to be computed only once (instead of for each
observation) and the number of terms in de summation decreases (as similar
distances contribute to the same term).

Furthermore, the results of radial distributions can be used in the computa-
tion of other experiments based on particle pair distances. Separating part of an
experiment’s computation into a separate experiment, allows it to be computed
only once and its results to be reused in multiple experiments that follow it.

For these reasons, radial distribution experiments have been defined in PROOSA
as its own class of experiments.

SRD

In the SRD experiment (Single Radial Distribution), the sample is considered
to be homogeneous. It computes a function srd with signature

srd: length −→ amount of substance

that is defined by

srd(d) = (#p, q : p < q : distance(p, q) ≈ d)

where p, q are particles, < is an operator which defines an ordering on all par-
ticles in the sample, distance is a function that computes the (box-)distance
between particle pair (p, q) and ≈ is a comparator that returns true for a cer-
tain (small) range of distances around d.

MRD

Suppose every particle belongs to a certain substance, and set S is the set of
all these substances. The MRD experiment (Multi Radial Distribution) has
function signature

mrd: length × (S × S) −→ amount of substance

and definition

mrd(d, (s, t)) = (#p, q : p < q ∧ subst(p, q) = (s, t) : distance(p, q) ≈ d)

where (s, t) is a pair of substances, and function subst() defines the substance
pair of a particle pair.

7



2.3.2 Scattering experiments

Scattering experiments compute spectra, that originate from radiation being
diffracted by the particles in a sample.

SFS

The SFS experiment computes a Structure Factor Spectrum. It has signature

sfs: length−1 −→ intensity

and its definition is similar to 2.1, with the exception that the formfactors have
been omitted:

sfs(q) =

N∑

j=1

N∑

k=1

sin (q · rj,k)

q · rj,k

As the SFS experiment is defined over particle pairs, but doesn’t take their
substances into account, it can be computed from the results of an SRD exper-
iment.

SAXS

In the SAXS experiment, or Small Angle X-ray Scattering, a spectrum is com-
puted by using Debye’s formula (equation 2.1). Its signature is

saxs: length−1 −→ intensity

As described in section 2.2.1, the computation of this type of experiment can
be based on the results of a MRD experiment.

WAXS

Wide Angle X-ray Scattering is performed by the WAXS experiment. It has
signature

waxs: angle −→ intensity

and is defined as

waxs(θ) = saxs(
4π

λ
sin(θ))

As this experiment is defined over particle pairs and requires their substance
types for the formfactor computation, it can be computed out of a MRD exper-
iment’s results.

From the definition of waxs(θ) it can easily be seen that SAXS and WAXS
compute very similar functions. The main difference is in the range of the
parameters: WAXS computes intensity spectra over a wider range of angles,
which results in other characteristic distances to become visible in the spectrum.
More detailed information on the theory behind scattering experiments and the
analysis of the results can be found in [GF55].
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Chapter 3

An object-oriented model
for computer experiments

In this chapter, the object-oriented model that will be used for the simulation of
scattering experiments will be presented. It is designed, however, to accommo-
date more general types of experiments as well. The modeling of observations
and quantities is inspired by the work of Fowler [Fow97].

3.1 Observations

In an experiment, a number of observations is performed; each observation
contains measurements of the values (both numerical values and units) for a
number of quantities. If experiments are modeled by functions, i.e., one quantity
is considered to be functionally dependent on other quantities, an observation
consists of zero or more argument quantities and exactly one result quantity.
For each of these quantities, the observation holds a value.

Observation Quantity

Signal Value

ObservationSignature
+name: String

UnitQuantitySignature
+name: String

+val 1

+signature

0..*

1

0..*

+arg
0..*+theSignal

1

1

+res 1

+signature

0..*

1

+arg
0..*

+arg
0..*

+res 1

+res 1

Figure 3.1: the relations between observation and quantity classes
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In Figure 3.1 it is shown how observations are modeled in OOSA. The basic
class is the Observation which consist of zero or more argument quantities and
exactly one result quantity. Each Quantity object consists of two parts: the
numeric Value of the quantity and its QuantitySignature, which describes the
name and the units in which its values are expressed.

This separation of value and signature also exists at the Observation level:
a Signal aggregates the numeric values for all arguments and the result, the
ObservationSignature is composed of the individual quantity signatures (function
signatures).

3.1.1 Signatures

In OOSA, signatures are used to describe quantities; for each Quantity, its cor-
responding QuantitySignature holds the name and the unit its value is expressed
in. Each Unit has a name and a symbol; for example an area could be expressed
in squared millimeters with symbol mm2.

Currently, the only responsibility of a unit is to return a textual represen-
tation of its name and/or symbol. Therefore, units will constructed from a
BaseUnit, which can be one of the basic SI units [Bur06] or a custom defined
one. By means of decorators, these basic units can be extended with a prefix
or a exponent; a decorator simply extends the textual representation returned
by the unit it decorates. To illustrate this, the example unit from the previ-
ous paragraph would have to be constructed by decorating a Length instance
of BaseUnit with a magnitude of −3 (signifying 10−3, the milli prefix) and an
exponent of 2.

Derived units are constructed by adding them separately to a QuantitySigna-
ture; for example, a quantity that represents a moment, would have two units,
of type Force (Newton) and Length (meter), in its signature.

BaseUnit
#name: String
#symbol: String
+make(nm: String, sb: String): Unit
+makeLength(): Unit
+makeTime(): Unit
+makeMass(): Unit
+makeCurrent(): Unit
+makeTemperature(): Unit
+makeAmount(): Unit
+makeIntensity(): Unit
+makeAngle(): Unit

Unit

+getName(): String
+getSymbol(): String

UnitDecorator

#decoratedUnit
1

MagnitudeDecorator
-magnitude: int

ExponentDecorator
-exponent: int

Figure 3.2: Units

In principle every quantity has its own signature. In OOSA however, where
each observation is computed by the same function over the same argument

10



types, the signature of the quantities is the same for each observation, and can
therefore be shared. This explains why the relations between Observation and
Quantity and their corresponding signatures (see Figure 3.1) are modeled as
aggregations instead of compositions.

3.1.2 Values

The numeric value of a Quantity is stored in a Value object. The responsibility
of the Value class is to store values and —upon request— write them to output.

Quantities assume values from a certain domain (the type of the values);
in OOSA the two main types are integers (for discrete variables) and reals (for
continuous variables). Values from different types of domains are stored in
objects of the subclasses of Value:

Value

+write(Writer w)

IntegerValue
+val: integer

RealValue
+val: real

Figure 3.3: The abstract Value and its subclasses

The exact type of the primitive data types can be specified at compile-time.
In general, a larger number of bits to store values in (e.g. using double instead
of float) will increase the precision of the result, but at the cost of performance
and increased memory use.

To abstract the code from the actual data type chosen to store the value in,
the val attribute of the various Value subclasses has been given public visibility,
to allow code to directly access the value without specifying a type; the exact
type of the val field will be resolved by the compiler. If access to the value would
only be possible by get and set methods, the return value and parameter would
have to be expressed in this type; a change in precision of a value type would
then also require modifications in code, instead of only changing the type of a
single attribute.

To be able to determine this primitive type, the compiler will have to know
what subclass of value is being referenced. It will therefore be the responsibility of
classes that operate on values, to have knowledge of the type of the corresponding
quantity; this possibly requires a (static) cast of an abstract Value to one of its
concrete subclasses.

In OOSA, this requirement comes down to experiments having to know the
types of their argument and result quantities, i.e., whether a certain quantity
assumes values from a discrete or a continuous domain.

Note: in programming languages that feature a preprocessor facility, one
can introduce a new type by means of a typedef, and have the preprocessor re-
place it by an actual type at compile-time. The approach above has been chosen
here because PROOSA will be implemented in Java, which lacks a preprocessor.
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3.2 Performing observations: Experiments

Performing observations is the responsibility of the Experiment class. Using a
mathematical function which describes the relation between the argument and
result quantities, an experiment computes the numeric value of the result for a
tuple of argument values.

Experiment

+simulate()
#simulatePrelude()
#initializeOutcome()
#prepare()
#performObservation(rank: int)
#conclude()

ObservationSignature
+name: String

Sample
+theSample

0..*1

+theSignature

0..1

1

+thePrelude0..*

Outcome
+theOutcome

0..1 0..1

1

Figure 3.4: The Experiment class

Figure 3.4 shows the model for Experiment and its related classes. The Out-
come of an experiment is a container class which holds the set of observations
performed by the experiment. Details of how observations are stored in out-
comes can be found in section 3.3.

All experiments in OOSA operate on samples, i.e. they compute functions
defined over a (physical) sample. In this respect the Sample can be seen as
an argument of the function, albeit an argument with only one (i.e. constant)
value. Due to its special nature, Sample will be modelled separately; its struc-
ture is described in section 3.4.

As some experiment computations can be based on the results of other ex-
periments (e.g. computing an intensity spectrum from a radial distribution), a
prelude relation is defined between experiments. An experiment e will reference
the outcomes of the experiments in its prelude, therefore it requires those out-
comes to be known; all prelude experiments should have been simulated before
e can start performing observations.

3.2.1 Experiment simulation

To perform the set of observations for an experiment e, a user (or an experiment
which has e in its prelude) invokes e’s simulate-method. This leads to a number
of steps which are shown in Figure 3.5.

As the outcomes of the prelude experiments are required for the current
computation, the first step is to ensure that all of them have been computed.
To establish this, simulatePrelude() queries all of its prelude experiments
whether their outcomes have been computed; if not, their simulate method
will be invoked.

In the second phase, an experiment initializes its outcome. The method
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 : Experiment

 : User 1 : simulate()
2 : simulatePrelude()

3 : initializeOutcome()

4 : prepare()

5 *[for all ranks r] : performObservation(r)

6 : conclude()

Figure 3.5: Simulation of an experiment

initializeOutcome() allocates memory for storing the observations and ini-
tializes the results to a suitable value.

Sometimes additional data structures can be used to obtain a more efficient
computation: the classical tradeoff between space and time. This could be the
computation of expressions that are shared between multiple observations, an
example is a table of values that replaces a compute-intensive function. These
structures are created in the prepare()method. The motivation for introducing
these structures is the same as for introducing most prelude experiments. The
latter option is preferred when its computed data structure is general enough to
be reused by other experiments simulations, which —as experiment outcomes
will be persistent— don’t necessarily have to be simulated in the same run.

Note that, as initializeOutcome() and prepare() operate on separate
data structures, they can be executed in parallel; the sequential ordering in
Figure 3.5 is only one possible execution order and could also have been reversed.

The main step is the computation of all observations. If all observations are
uniquely identified by a rank (more details on ranks can be found in section 3.3),
performObservation(r)will be invoked for each rank. As shown in Figure 3.6,
this results in the computation of the result value for the observation with rank
r and its storage in the outcome.

The final step in a simulation is the invocation of conclude(), which per-
forms post-simulation cleanup or finalizations.

3.2.2 Concrete experiments

The abstract Experiment class defines the basic structure for an experiment
(simulation). To implement a concrete experiment, i.e. an experiment that
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 : Experiment  : Sampler : ObservationSignature  : Outcome

1 : performObservation(r)

2 *[for all arguments a] : argRank := getArgumentRank(r,a)

3 *[for all arguments a] : argValue := find(argRank)

4 : result := compute(Vector<argValue>)

5 : setResult(r, result)

Figure 3.6: Performing an observation

computes a certain function, one has to create a subclass of Experiment and
override some of its methods.

In PROOSA, five experiments have been defined (for an overview of the
function each computes, see section 2.3). As can be seen in Figure 3.7, a separate
subclass of Experiment has been created for each of these five experiments.

Experiment

+simulate()
#constructSignature()
#defaultResult(): Value
#simulatePrelude()
#initializeOutcome()
#prepare()
#performObservation(rank: int)
#conclude()

+thePrelude
0..*

SRDExperiment MRDExperiment SFSExperiment SAXSExperiment WAXSExperiment

Figure 3.7: The abstract experiment and its concrete subclasses

The abstract methods of Experiment that will have to be overridden in sub-
classes are

performObservation which defines the computed function, i.e. how the value
of the result quantity can be computed from the values of the argument
quantities;

constructSignature, a factory method that constructs the (observation-)signature
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for the function computed in the experiment;

defaultResult, which returns the initial Value for the result quantities.

3.2.3 Incorporating variations

Different functions will be computed in separate experiment classes; but even
a single function can often be computed in a number of ways (this could be
the result of the application of a certain approximation technique, in order to
obtain higher performance).

When these variations in the computation are incorporated by the creation
of Experiment-specializations for each variation, this can result in an explosion
of subclasses, as the variations often are orthogonal to each other.

A better approach is to isolate the differing behavior in a separate class,
as is done in the Strategy design pattern from [GHJV95]. For each possible
variation a separate Strategy interface is defined; note that these interfaces can
be very different as the variations, isolated in these Strategies, are orthogonal.
The subclasses of Strategy implement the various alternative algorithms for the
corresponding variation.

This approach is used in PROOSA for the computation of the sinc()-function
(defined as sinc(x) = sin(x)/x), which is used in the computation of scattering
experiments. As sin() is a relatively costly operation, higher performance can
possibly be obtained by replacing the computation of this function by lookup
of the result in a precomputed table.

This is demonstrated in Figure 3.8: the computation of sinc() is performed
by the abstract method calculate(double x) of class SincStrategy. During an
experiment simulation, the implementation in a subclass of SincStrategy, which
could either be SincFunction or SincTable, will be used.

SincFunction SincTable

SincStrategy

+calculate(double x): double

Experiment
StrategyFactory

+getSincStrategy(): SincStrategy

uses0..1

obtains strategies from

1

UserSettings

+precalculateSinc(): boolean

reads configuration from

1

Figure 3.8: Experiments and strategies

Upon construction, an Experiment which makes use of a certain strategy
interface has to be configured with a concrete object implementing it. By setting
a configuration variable, the user controls which implementation should be used.
The actual instantiation will not be performed by the experiment itself, but be
delegated to a factory class, as this
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• lowers the dependency of the experiment on the strategy: experiments
only need to know how to use the (abstract) interface for the strategy, not
which implementations are available and how they are controlled by user
variables. Adding a new implementation only requires the modification of
a single factory class.

• allows reuse of strategy objects: if a second experiment requests a strategy
which has no internal state, the factory class can decide to return an earlier
constructed object. For example, in the case of a SincTable this would save
memory (only one table will be stored) and computation time (the time
needed to compute the table).

Note that the strategy design pattern can also be used to unify the five
experiments implemented in PROOSA:

• the difference between the two radial distribution experiments is whether
or not the type of substance plays a role in selecting the bin to store the
distance in. This different behaviour could be isolated in a strategy that
performs the bin selection.

• the SFS and SAXS/WAXS experiments compute similar functions, except
that in the former formfactors are absent. One approach to this is a
strategy that either multiplies a term by a calculated formfactor, or by 1
(the identity element).

• SAXS and WAXS differ in their type of argument. A strategy could be
employed which converts to scattering numbers. For SAXS this conversion
would be the identity function, for WAXS the strategy converts angles to
scattering numbers.

With three simple strategies like these, the number of Experiment implemen-
tations can be reduced to only two (one basic radial distribution experiment
and one basic scattering analysis experiment). This approach, however, will not
be followed in PROOSA because the strategy objects introduce an indirection
which causes overhead, as the (virtual) methods of the strategy will frequently
be invoked.

3.3 Storing the results of experiments: Outcomes

The set of observations performed by an experiment is stored in its Outcome
object. The structure of the Outcome class is shown in Figure 3.9. Basically, an
Outcome object is composed of a set of R observations; each of these is uniquely
identified by an integer rank (where 0 ≤ rank < R).

The most notable difference with the class diagram for observations (Figure
3.1), is that each argument Quantity is replaced by a SampledQuantity. This
distinction is made as these quantities assume a predetermined set of values
obtained by enumerating or sampling a domain. The Sampler object, which
determines these values, is stored as part of the SampledQuantitySignaturee.

The number of observations R (the size of the outcome) is determined by
the number of values taken from the domain of each argument (the size of each
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Observation

Quantity

Signal

Value

+write(Writer w)

ObservationSignature

+name: String

QuantitySignature

+name: String

+val

1

+signature

0..*1

+arg 0..*

+rank

+theSignal

1 1

+res 1

+signature

0..*1

+res 1

+res

1

SampledQuantitySampledQuantitySignature

Sampler

+size(): int
+first(): Value

+last(): Value
+find(int rank): Value

Outcome

1 0..*

+rank

+sampler

1

supplies

0..*

+rank

+arg 0..*

+rank

+arg 0..*

+rank

+signature

0..*1

Figure 3.9: Outcome structure

SampledQuantity): the value of the result quantity will be computed for each
possible combination of argument values. If |Ai| is defined as the size of the ith

argument, and the number of argument quantities is N (which is the arity of

the observation), then R =
∏N−1

i=0 |Ai|.

Similarly, the rank of an observation is determined by the ranks of the val-
ues of its SampledQuantities. Each of these values has an integer argument
rank, which determines the values’ position in the list of values returned by
the corresponding Sampler. The functions, which perform the conversion from
argument ranks to observation ranks and vice versa, are encapsulated in the Ob-
servationSignature; they are used by method performObservation(r) of class
Experiment, in order to determine the values of the arguments for the observation
with rank r.
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3.3.1 Sampling

Values, which sample a certain domain, are provided by the Sampler class.
The interface for this class is shown in Figure 3.10: The abstract Sampler de-
fines methods to obtain the first, the ith or the last Value (where 0 ≤ i <
sampler.size) from the sequence of value samples.

IntegerSampler

+first(): IntegerValue
+last(): IntegerValue
+find(rank: int): IntegerValue
+rank(value: IntegerValue): int
+next(value: IntegerValue): IntegerValue
+prev(value: IntegerValue): IntegerValue

Sampler

+size(): int
+first(): Value
+last(): Value
+find(int rank): Value

RealSampler

+first(): RealValue
+last(): RealValue
+find(rank: int): RealValue
+rank(value: RealValue): int
+next(value: RealValue): RealValue
+prev(value: RealValue): RealValue

IntegerArithmeticSampler RealArithmeticSampler

IntegerGeometricSampler RealGeometricSampler

IntegerEnumerationSampler RealEnumerationSampler

Figure 3.10: Sampler class hierarchy

For each concrete subtype of value, a Sampler subclass is defined which rede-
fines the above methods (to return the more specific subtype), and introduces
new methods which take parameters of the Value subtype: prev and next to
obtain the sampled value that precedes or follows after the supplied parameter
in rank, and a method to find the rank of a sampled value. In this way, samplers
cannot be supplied with parameters of an unknown value subtype.

The sampling scheme defines which values from a certain domain are se-
lected. In OOSA, three schemes have been defined and each is implemented in
a separate subclass:

• EnumerationSampler objects simply enumerate the values in a list supplied
to their constructors;

• ArithmeticSampler objects specify an arithmetic series. They are defined
by a start-value, a step-size and a sampler size (i.e., the number of samples
taken) and return samples start+step×rank, where 0 ≤ rank < size−1;

• GeometricSampler objects, similar to the above, define a a geometric series
of values: start × steprank.
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This approach does lead to a high amount of Sampler subclasses: for (almost)
every combination of Value subtype and sampling scheme, a separate subclass
is implemented. There are ways to avoid this explosion of subclasses:

• in programming languages that support templates and operator overload-
ing, the sampler schemes can be implemented by operations on a template
parameter t; upon compilation this type parameter will be replaced by the
actual types used in OOSA.

• in languages that don’t support the above, the approach can be mirrored
by application of the Bridge design pattern [GHJV95]. The classes are
separated into two smaller class hierarchies, one which defines the sampling
schemes in terms of methods of the abstract Value, and another hierarchy
which defines the value subclasses and implements the methods for each
type.

In PROOSA however, every combination of value type and sampling scheme
will be implemented in its own class. The first approach is not possible in Java
(as it does not allow templates over primitive types, nor operator overload-
ing); the second can be implemented, but would impact performance (as every
arithmetic operation would require a method invocation). Apart from this, the
number of subclasses is fairly limited and the hierarchy is not expected to grow
much in the future.

3.3.2 Representations in memory

In the class diagrams for outcomes, Figure 3.9, it can be seen that an observation
contains redundant information:

• the Values of an observation are referenced by both (Sampled-)Quantity
and Signal. The Quantity doesn’t have to be stored, as it can always
be reconstructed from the numeric Value and (Sampled-)QuantitySignature
(stored in the Signal and the ObservationSignature);

• the argument values are stored in the signal, but can also be obtained
from the Sampler objects.

Therefore, three subclasses of Outcome will be implemented, which offer
different tradeoffs between speed and memory usage:

• FullObservationsOutcome, which stores all information and thus contains
redundancy;

• SignalsOnlyOutcome, which stores the Signal part only. In case one of its
observations (or quantities) is accessed, it will be constructed upon this
request;

• ResultsOnlyOutcome, which only stores the result values and thus has
a minimal memory footprint. Signals or observations will only be con-
structed when externally accessed.
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3.4 Modeling physical samples

The classes presented this far constitute the OOSA model, i.e. the simulation
of experiments that are modeled as functions.

The experiments in PROOSA are based on functions that have a (physical)
sample of particles as one of their (constant valued) arguments. For example,
the computation of a scattering experiment is based on the inter-particle dis-
tances and the scattering behavior of those particles. How Samples are modeled
is shown in figure 3.11.

Sample
+name: String

AtomicScatteringFactor
-coefficients

FormFactor
+name: String
+evaluate(q: RealValue): RealValue

UniformSphereFactor
-radius: RealValue

Substance
+name

+theFF1

+theSubstances0..*

+rank

Box

+nmbOfParticles(): int()
+getIterator(): Iterator<Particle>()+theBox

1

Particle
+content0..*

Geometry

+volume(): RealValue
+maxDistance(): RealValue()
+distance(v: RealValue, w: RealValue): RealValue

RealVector3

+geometry 1

+origin1
+sizes1

+angles
1

PeriodicGeometry

+substance
0..*1

+position
1

Figure 3.11: Sample and its constituent classes

The class Sample is the main class in the model. It consists of a Box, which
defines the space and the particles contained in it. This definition of the space
is encapsulated in a Geometry object; its responsibilities are the computation
of distances within the simulation box. For simulations with periodic bound-
ary conditions, a subclass PeriodicGeometry exists which overrides the distance
calculation.

The Particles contained in the Box have various properties. Properties that
are unique to a certain particle (e.g. its position) are stored as an attribute of
the Particle class. Properties shared between a number of particles are stored
as attributes in their common Substance; in the current model an example is
such a property is the Formfactor, which defines the scattering behaviour for a
certain Particle.
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3.4.1 External representation

The Outcome and Sample classes in OOSA require their instances to support
some form of persistency; this way their objects can be reinstated later, allowing
them to be referenced by (future) experiment simulations.

In the current version of OOSA, these objects will be stored in external
files, whose exact format is defined by a formal grammar in Backus-Naur Form
(BNF). To reinstate such an object, a separate scanner and parser class will
read such a file and reconstruct the object described by it. To illustrate this,
appendix A contains the grammar that is used to represent a Sample object
—one of the more complex structures in the OOSA model— in an external
file. The SampleParser class is a recursive descent parser that recognizes this
grammar and can be used to reconstruct a Sample from a valid file.
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Chapter 4

Introduction to Tuple
Spaces

The parallel computation version of OOSA, which will be introduced in the
following chapters, will make use of a Tuple Space for the communication be-
tween the cooperating processes. This chapter will introduce the concept of
tuple spaces, followed by a description of a few implementations of this commu-
nication model.

4.1 The Tuple Space model

The concept of tuple spaces (or shared dataspaces), was first introduced in
the language Linda [Gel85]. In this model, asynchronous distributed processes
communicate by storing and removing tuples from a common tuple space; this
is also called generative communication, as the generated tuples independently
exist as entities until some process decides to remove them.

4.1.1 Tuples and Tuple Spaces

A Tuple is, similar to a mathematical tuple, a collection of data values. For
example, a tuple with type

String × Integer

could have an instance

(”ParticleCount”, 210).

The tuple space is an abstract data type, distributed over a set of nodes
P , where processes (residing on one of the nodes from P ) can store persistant
tuples in, or read tuples from by an associative matching mechanism.

4.1.2 Tuple Space operations

There are three basic operations that a process can perform on a tuple space
(TS):
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• put(t) to add a tuple t to TS,

• read(t) to read the values of a certain tuple from TS, and

• take(t) to remove a certain tuple from TS.

The atomicity of these operations is guaranteed by the TS implementation.

Put(t)

This operation adds the tuple supplied as parameter to the tuple space, enabling
it to be read and/or taken by other processes. Note that multiple tuples of the
same type and with the same values can exist in a single tuple space.

Read(t)

To select a certain tuple, the read operation is supplied with a template; if a tuple
that matches the template can be found in TS, a copy of its values is returned;
should multiple tuples match the template, one of them is selected arbitrarily.
When no tuple can be found, this method will block until a matching tuple is
available.

Take(t)

Similar to the Read(t)-operation, this operation removes one matching tuple
from TS and returns it to the process that invoked the operation. Note that
this operation can also result in blocking when no matching tuple is available.

Templates and matching

A template is a tuple with zero or more of its values unspecified. For a tuple of
type String×Integer, possible templates are (here ∗ is used a wildcard symbol):

(∗, ∗)
(”ParticleCount”, ∗)
(∗, 210)
(”a”, 0)

A template t is defined to match a tuple v when all of t’s specified val-
ues equal the corresponding values of v. For example, any of the templates
(”ParticleCount”, 210), (”ParticleCount”, ∗), (∗, 210) and (∗, ∗) match the tu-
ple from the example in 4.1.1.

4.1.3 Properties of Tuple Spaces

Tuple spaces have some properties that distinguish them from other communi-
cation models. The most notable are

• spatial decoupling: when two process communicate by putting and taking
a tuple from TS, they have no information about each others identities.
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• temporal decoupling: when a tuple is put in TS, it persistently stays in
there until it is removed by some process. The process that puts a tuple
in TS, may even have ceased to exist before the tuple is taken by some
other process.

These properties lead to loosely coupled systems. Because they are spatially
decoupled, processes have no information who read their produced tuples, or
who produced the tuples that they read. This allows for scalability: in a pro-
ducer/consumer situation, the producer needs no information which consumers
read its tuples. Furthermore, more consumers can easily be added without any
modification to the producer.

Temporal decoupling results in asynchronous communication: sender and
receiver don’t need to be active at the same time, which avoids waiting times
when one process needs to wait for another.

Another property of the tuple space model is that communication is orthogo-
nal to the programming language in which the individual processes are defined.
The above three simple operations on a TS —which sometimes is referred to as
a coordination language— can be added to any programming language to turn
it into a parallel programming language.

4.2 Tuple Space implementations

There are many design decisions taken in the implementation of a tuple space
system. The most important choice is how to store the tuples.

4.2.1 JavaSpaces (JS)

JavaSpaces, an implementation of the tuple space model for the Java language,
takes a simple approach to implementing a TS: it is a non-distributed design
where one process m manages the storage and retrieval of tuples, other processes
communicate through a local proxy that forward the performed operations to
m. It is a relatively easy option to implement a TS, as it avoids many syn-
chronization and consistency problems, but this design introduces a bottleneck
as all nodes depend on the single process m for their communication (both in
performance and robustness).

Tuples in JS

Tuples in JS are ordinary objects, with the requirement that they descend from
a class named Entry. All tuple values have to be defined as attributes with
public visibility (this is required for the matching mechanism to be able to read
their values) and have to be of an object-type (to enable the value null to
function as a wildcard). For example the tuple type, mentioned in section 4.1.1,
is implemented in JS as:

public class NamedIntegerTuple extends Entry {
public Str ing name ;
public I n t e g e r va lue ;
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public NamedIntegerTuple ( ) ;
}

JS operations

In addition to the three operations that were described in section 4.1.2, JavaS-
paces also supplies non-blocking variants of the two operations that retrieve
tuples and a method to register for notification when a certain tuple gets writ-
ten in JS:

• readIfExists(Entry e), which returns a copy from a single tuple that
matches template e. Should no such tuple exist, this operation does not
block, but returns control to the process that performed the operation;

• takeIfExist(Entry e), which is the same as the above operation, except
that it also removes the matched tuple from TS;

• notify(Entry e, RemoteEventListener listener), which notifies the
listener object when entries are written that match the template e.

Tuple matching in JS

A template e in JS is a tuple object where zero or more variables have unspecified
values (for this, null is used as a wildcard value). When supplied to one of the
tuple-returning operations, a tuple t is returned that

• is of the same type as e, i.e. a (sub-)class of e, and

• has the same values for e’s specified variables.

When the subclass of the returned tuple t is unknown to the process that
reads or takes it, the class file (which defines the class) is requested from a
so-called class server. This allows for a very general implementation of con-
sumers for a certain type of tuple: as tuple are objects, the code that is used
by consumers to process it, can be defined in the class itself.

Communication costs

Performing tuple space operations can be time consuming. When a process p
performs a tuple space operation, the tuple parameter has to be sent from p’s
JavaSpaces-proxy to the JavaSpaces-kernel managed by some process q. To
transfer objects over a network from p to q, they first have to serialized, i.e.,
converted from an object to a binary stream of data, followed by deserialization
in process q. Next, for operations that retrieve tuples, q will need time to search
the stored tuples for one matching the template; if no such tuple is available and
the operation is blocking, process p will be idle waiting for a tuple to become
available. Finally, matching tuples will have to returned from q to p, which
again requires time for (de-)serialization and transfer of data.

Therefore, the costs of performing tuple space operations consist of the costs
for serialization and deserialization, data transfer between nodes and, depending
on the type of operation, search time for finding matching tuples (which can
include idle time).
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4.2.2 GSpace (GS)

Another implementation of the TS model is GSpace [RCvS04, Rus06]; this sys-
tem is truly distributed over a set of nodes, where each node has a local slice
of the tuple space in which tuples can be stored. Not only does this remove
the bottleneck as described in 4.2.1, it also allows for different strategies for the
division of tuples over the local slices. GSpace will be used as the TS imple-
mentation in PROOSA.

Policies: customizable distribution

Instead of implementing a single strategy for the distribution of tuples over
the local slices of the nodes (that communicate through the same TS), GSpace
recognizes the fact that the best performing strategy is dependent on the access
patterns for a certain type of tuple. As the application programmer defines
these patterns in his software design, he or she is also better equipped to specify
the distribution strategy (in GSpace terminology: distribution policy), whose
performance characteristics best match the tuple’s usage pattern.

This policy can be specified per type of tuple (i.e., per subclass of a general
Tuple class). The eight basic policies available in GSpace are:

Store locally New tuples are stored in the local slice only. Finding a matching
tuple is first tried on the local slice, if none can be found the other nodes
will be queried to search their slices for a tuple matching the template.

Pull caching Tuples are written in the local slice. Tuples read from other
nodes are cached in the local slice. When a cached tuple is read again, the
node that owns the original tuple is contacted to verify whether the local
copy is still valid.

Push caching Copies of tuples read from other nodes are again cached locally
for faster (repeated) reading. When a tuple is taken from GS, all nodes
with cached copies are notified of the invalidation of their copies.

Full replication Each node’s local slice contains all the tuples stored in GS.
Read operations can be performed locally, take and write operations must
be forwarded to all other nodes in order to maintain consistency.

Fixed replication Similar to full replication, all tuples are replicated to the
local slices of a group of nodes G, a subset of all nodes that is allowed to
grow to a fixed size. Nodes that are not in G forward their operations to
one of the groups’ members.

Static replication The group of nodes G, in which the tuples are replicated,
is static and determined before the start of the application.

Producer replication The nodes that produce tuples form a group G, all
tuples are replicated over the local slices of the nodes in G.

Consumer replication In this policy the group of nodes, which replicate all
tuples in their local slices, is formed by nodes that read and take tuples.
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GSpace operations

GSpace supports the three basic tuple space operations of put, read and take.
Of these three, the read and take operations are blocking, which means they
only terminate when a matching tuple is available; in this respect, the operation
can be regarded as synchronous communication, as the receiver (the process
performing a read or take) cannot continue before the data from a sender (the
process putting a suitable tuple) is available.

These blocking operations can be very useful for synchronization (e.g., when
waiting for exclusive access to a tuple that contains a shared variable, or for a
tuple that implements a semaphore) which may be required for the correctness
of a program. In all other cases however, the best performance can only be
obtained when there is no unnecessary idle time while waiting for a blocked
operation; the processes should be kept as busy as possible.

Another possible problem is that it can be difficult for a receiver to determine
whether a sender will be sending data (in TS: to guarantee the availability of
a matching tuple); it is unsafe to just perform another receive operation, as
executing it could result in being blocked indefinitely. This can occur when,
as in tuple spaces, communication isn’t one-to-one and a message may already
been received by another receiver.

Of course these issues are not unique here, but arise in other systems as well,
and several solutions have been proposed.

The first issue, idle waiting, can be avoided by performing the blocking
operation in a separate thread, allowing the program to continue with other ac-
tions in its main thread. In some systems, separate nonblocking communication
primitives are available as these may be able to attain even higher performance
than the threading solution. An example of this can be found in the MPI li-
brary [For94], where nonblocking send start and receive start calls initiate
a communication action, leading to data transfer that is performed concurrently
with the actions following the call; to complete the communication, these calls
should later be followed by a send complete and receive complete, which
verify that the communication action was completed.

The second issue, i.e., to assert whether is safe to execute a receive operation
so that it will not get blocked indefinitely, is less common. In tuple spaces
the problem can occur because of the spatial decoupling: a receiver generally
has no information about the number of producers (and other receivers) for a
certain type of tuple. With only blocking communication operations available,
a protocol will be required to resolve this issue.

Example: consider a set of nodes W (workers) that together process the
tuples from a set T (tasks). Each node tries to remove as many tuples of T as
possible and once T is emptied, all nodes should terminate. In the case of block-
ing operations, a take-operation can only be performed when it is certain that
there is still a matching tuple available, as otherwise the process performing the
operation will get blocked indefinitely, preventing the node to terminate. The
only way to certify availability of a tuple from T is to introduce a tuple SizeT
which holds the number of tuples remaining in set T . When a node wants to
remove a tuple from T , it first has to obtain exclusive access to tuple SizeT ,
decrement its value, and write it back. This scheme introduces a bottleneck,

27



as for each take operation, nodes need to obtain the SizeT tuple and update
it before they can safely take another tuple from T . Furthermore, the system
isn’t robust as all nodes in W will get blocked when one of W ’s members fails
to put SizeT back in tuple space.

The protocol described in the example above, requires two additional space
operations (a take followed by a put of SizeT , as the value needs to be updated)
per element of T . An more efficient alternative would be to have a communica-
tion primitive that asserts whether a matching tuple is available. This is similar
to the probe primitive as proposed in [Mar85], which asserts whether a com-
munication channel is ready for input. However, in a situation where there are
multiple receivers (as in the example above), this condition isn’t stable as it can
be falsified by a communication action from a different receiver.

A solution is to perform probe(t) and take(t) as one atomic action. This
combined statement has the same semantics as the takeIfExists(t) that is
available in JavaSpaces. With these nonblocking operations available, the work-
ers in the example can simply perform takeIfExists() repeatedly, until it no
longer returns a tuple. In that case, set T has been emptied.

In conclusion, the three operations provided by GSpace are general enough
and can be used to implement any TS-based program, but it can be useful —
for performance considerations and ease of programming— to have nonblocking
read and take operations available as well. It is therefore decided to extend the
GSpace API with implementations of these two operations.

To illustrate the work required for this extension, appendix B lists the imple-
mention of the blocking and nonblocking take-operations for the Store Locally
distribution policy.
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Chapter 5

Distributed computation of
experiment outcomes

To simulate experiments in parallel, the computations will have to be partitioned
and distributed over a number of concurrent processes. This chapter describes
the general approach to this distribution in the OOSA model, and how it is
applied to the specific experiments.

5.1 Partitioning the set of observations

In PROOSA, the parallel computation version of OOSA, multiple processes
cooperate to compute the outcome of an experiment simulation. Since obser-
vations are independent of each other (i.e. each result can be computed in
isolation), a simple approach to distribute the computational work over the
nodes is to partition the set of observations —which comprise the outcome—
into P subsets (where P is the number of nodes) and have each node compute
the results for the observations in one partition. A simple union of all sets of
results forms the outcome for the experiment simulation.

This approach has some consequences:

• the size of the outcome |O| (i.e. the number of observations) can be a
limiting factor to the number of nodes P that can be efficiently used. In
general, |O| should be several orders of magnitude higher than P : if it
is smaller some nodes will remain unused, if they are of the same order
the (relative) differences in size of subsets can be large which results in
imbalanced loads between nodes.

• for some experiments it can be inefficient to compute only a subset of ob-
servations. A good example of this are the radial distribution experiments,
where all particle pair distances need to be evaluated to obtain the result
of a single observation. For these types of experiments, incrementally
computing small parts of observations that ultimately form a complete
observation is necessary in order to obtain an efficient simulation.

• the reason for introducing parallelism is the large computational effort re-
quired to compute observations: performing an observation often involves
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the computation of an operation over a (very) large set (e.g. in OOSA
a physical sample or the outcome of a previous experiment simulation).
Each node will need access to this complete set, leading to high commu-
nication costs.

In conclusion, a complete observation can be a too coarse-grained unit of par-
allelism. Having nodes compute partial observations will increase the number of
observation computations, can circumvent the properties that make computing
complete observations inefficient and can reduce data dependencies (to only a
subset of the large set an experiment is defined over).

5.2 Partial observations

5.2.1 Subdividing

In order to reduce the grain size of observation computations, each observation is
divided into multiple smaller ones that are independent of each other and depend
on only a subset of the data. When the results of these smaller observations
have been computed, they need be combined to obtain the result for the original
observation. This approach can be applied —without impacting the OOSA
model for observations— by adding arguments to observations.

Example: a quantity Q is defined as a function of another quantity A. Sup-
pose, for each sampled value a from A, an observation Q(a) is defined as

Q(a) =
⊗

b∈B

f(a, b)

where ⊗ is an associative and commutative operator and B is some (large) set.
By introducing an element of B as an argument to Q, the partial observation
Q(a, b) is defined as

Q(a, b) = f(a, b)

Accumulation over all values b of the introduced argument yields the result of
the original observation Q(a):

⊗

b∈B

Q(a, b) = Q(a)

This way the number of observations is multiplied by a factor |B| which can
be very large. The associativity and commutativity of the ⊗ operator can be
used to extend the number of observations in a controlled way; by partitioning
set B in N disjoint subsets Bn and adding subsets instead of individual values
as argument to Q, the equations become:

Q(a, Bn) =
⊗

b∈Bn

f(a, b)

⊗

0≤n<N

Q(a, Bn) =
⊗

0≤n<N

⊗

b∈Bn

f(a, b) =
⊗

b∈B

f(a, b) = Q(a)

The number of observations is now increased by a (controllable) factor N and
each partial observation depends on only a subset of the possibly very large set
B.
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5.2.2 Accumulation

When all partial observations have been computed, they need to be accumulated
to obtain the result of the original observation.

⊗

0≤n<N

Q(a, Bn) = Q(a)

With set B partitioned into N subsets, operator ⊗ needs to be applied
N − 1 times to N observations Q(a, Bn) which all reside on different nodes.
This involves the transfer of N − 1 partial results to obtain the final result for
Q(a).

5.3 Application to OOSA’s experiments

5.3.1 General approach

For a general experiment which defines the application of a commutative and
associative operator

⊗
over a large set B (the data structure an experiment is

defined on, e.g. a sample or the outcome of a previous experiment) and P nodes
available to perform computations on, the basic approach in PROOSA will be
to partition set B into P subsets and have each node compute the results of the
observations that depend on its subset.

Note that the partitioning of B can (and will) be performed dynamically:
each node n starts with an empty set Bn, repeatedly removes one or more
elements from set B and processes these, continuing until set B is empty. This
approach will balance the workloads between the nodes, which can reduce the
total time required for a simulation.

Initialization: each node initializes an outcome (i.e. an ordered list of obser-
vations) to value e, the identity element of operator ⊗.

Repetition: each node is supplied with iterators for the experiment’s argu-
ments and an iterator for a subset of B. For each combination of argument
values, it calculates the terms of the partial observation that are based on the
subset.

For balancing purposes, it is possible split the argument ranges into more
(and thus smaller) sets of iterators than there are nodes available; now each
node processes multiple sets of iterators until all have been processed.

Finalization: following an accumulation strategy, partial observations are
transferred to one or more nodes, in order to compute the original observations
defined by the experiment.

5.3.2 SRD Experiments

For SRD experiments, the function to be computed is

srd(d) = (#p, q : p < q : distance(p, q) ≈ d)
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where p and q are particles from a sample S, operator < defines an ordering on all
particles in S, distance() a function that computes the (box) distance between
two particles and ≈ a comparator that returns true for a certain (small) range
of distances around d.

Defining S as the set of unique particle pairs, S = {(p, q)|0 ≤ p < q < N},
the function becomes

srd(d) = (#s : s ∈ S : distance(s) ≈ d)

Note that d values must be chosen such that (∀s :: (∃d :: distance(s) ≈ d)),
in order to obtain a good approximation of the radial distribution.

As is it very inefficient to perform this computation for individual distances
d (this would involve evaluating all particle pairs for each observation), the
computation will only be partitioned over set S and not over the set of distances
d.

5.3.3 SFS Experiments

Based on the outcome of a SRD experiment, SFS experiments compute the
function

S(q) = N + 2 ·
∑

d

srd(d) ·
sin (q · d)

q · d

Both a division in the range of q-values as one over the SRD outcome is a
possibility. Subdivisions of the SRD outcome decrease the data dependencies
for a process, but increase the number of partial observations that need to
be accumulated into a full observation; subdivisions of argument q have the
opposite effect (faster accumulation but more processes need access to the same
data). Measuring performance for several possible subdivisions will be used as
a guide to select the best performing option.
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Chapter 6

Extending the OOSA model
for parallel computation

To support the concept of partial observations, some changes to the Experiment
class are necessary that allow for more fine-grained control over the computation;
this control will be exerted by a Simulator class that defines how the experiment
is simulated.

6.1 The Experiment class

The public interface of class Experiment is extended with four methods; most
of these methods are the same as in the OOSA version of the experiment class,
except that they now have public visibility. This is required as they will be
invoked by external classes.

public void i n i t i a l i z eOut c ome ( )

This method is responsible for the allocation and initialization of a new Outcome
object, that is used to store computed results in.

public void prepare ( )

Any other preparations necessary to perform (partial) observation computa-
tions, e.g. the computation of a sinc(x)-table, are performed in this method.

public void per formObservations ( I t e r a t o r <Arg0Type> a r g 0 I t e r a t o r ,
I t e r a t o r <Arg1Type> a r g 1 I t e r a t o r , . . . )

The actual computations take place in this method, where the supplied iterators
define which (partial) observations to compute.

As the number and types of the arguments differ between the various types of
experiments, the signatures of the performObservations-methods are different
in each experiment class. This approach has been chosen to enforce type cor-
rectness of the parameters. As demonstrated later in this chapter, most classes
interacting with experiments do not have to know the specific signature of this
method, as its invocations can be isolated in a limited amount of classes that
already are dependent on the signature of the experiment.

public void conclude ( )
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Invoking this method performs the final steps required to obtain the outcome,
which could be as simple as multiplication and/or addition of a constant to each
observation.

The simulate method, which was present in the OOSA version of the Exper-
iment class, is now obsolete as its responsibility will be delegated to a separate
class that defines how to simulate an experiment.

6.2 Experiment Simulators

The Experiment class, as defined above, defines what function to compute, but
no longer how its simulation will proceed. By applying the Strategy design
pattern [GHJV95], the old implementation of the simulate()-method —which
performed sequential simulations— was moved to a separate class Sequential-
Simulator. This allows different types of simulation to be specified by their own
classes, which share a common Simulator interface (see Figure 6.1).

Experiment

+initializeOutcome()
+prepare()
+performObservations(Iterable<ArgType>, ...)
+conclude()

Simulator

+simulate()

SequentialSimulator

+create(Experiment)

DistributedSimulator

+create(Experiment, TaskProducer, OutcomeAccumulator)

simulates

1

Figure 6.1: Simulator classes

Simulators are instantiated with an Experiment to be simulated; invoking
method simulate will perform the simulation (i.e., compute all observations).

6.2.1 The SequentialSimulator class

To replace the sequential version OOSA, the class SequentialSimulator is intro-
duced; its simulate method performs the same steps as the original simulate
method as it was defined for class Experiment.

The only difference is that, instead of performing the observation for all
ranks, it uses iterators —obtained from the Experiment itself— that sample
values for all arguments.

6.2.2 The DistributedSimulator class

In the newly introduced DistributedSimulator class, the experiment’s compu-
tation is distributed over a number of concurrent processes that perform the
observations in parallel.

In pseudo-code, its simulate method performs the following steps
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public void s imulate ( ) {
constructTasks ( ) ;
d i s t r i bu t eTa sk s ( ) ;
co l lectOutcome ( ) ;

}

The above three steps will be delegated to separate classes. The reasons for
doing so are:

• isolation of experiment-type dependent code: as task structure depends
on the signature of the experiment (i.e. the amount and types of its argu-
ments), confining the construction (and distribution) of tasks to separate
classes avoids having to create a DistributedSimulator for each type of
experiment.

• to allow multiple implementations, but avoid an explosion of subclasses:
different strategies, both for distribution of the computation over the nodes
as for the collection and accumulation of the outcome, are implemented
in different subclasses. A single implementation of the DistributedSimula-
tor class can now choose between multiple distribution and accumulation
strategies by instantiating one of these subclasses.

These classes will be introduced in the following sections.

6.2.3 Further options for class Simulator

Isolating the simulation in a separate subclass allows to add new types of simu-
lations later on. Examples are distributed simulations for a different communi-
cation layer between the nodes, or a Multi-threaded implementation on a single
node to exploit the availability of multiple processor cores.

The Simulator class also allows hybrid simulations of multiple experiments
(that belong together) by different Simulator implementations; it could well be
possible that for certain experiments, the overhead for distribution and accu-
mulation exceeds the performance gained by simulating in parallel. In this case
is beneficial to perform these experiments by sequential simulation on a single
node, and the others distributedly.

6.3 Distribution strategies

There are many ways to distribute an experiment computation over a set of pro-
cesses; there a different strategies (e.g. which arguments to partition, whether or
not to compute partial observations, which process(es) to do the accumulation)
and for each of these strategies a number of parameters can be chosen (e.g. the
size/amount of partitions). As it is very difficult to choose an optimal strategy
in advance, these strategic choices are isolated to separate classes. Subclasses
implement different strategies, parameter values can be selected by the user in
a configuration file.
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DistributedSimulator

ComputationTask

+Vector<ArgumentRange>

TaskProducer

+TaskProducer(Configuration)
+createTasks(Experiment)

+createDistribution()

divides computation

TaskConsumer

+supplyIterators(Experiment)

TaskPool

+addTask(Task)

+removeTask(SearchCriteria): Task

Experiment

Workerperforms observations of

fills

selects tasks from

provides work for

Master

Figure 6.2: Distribution classes

6.3.1 Workload distribution

Unit of work

To represent the unit of work for a worker to do, the ComputationTask class is
introduced: it defines the argument ranges to be used for a single invocation of
the performObservations method of class Experiment. As sampler-objects will
be supplying the iterators over the argument values, the ranges are specified by
a starting rank and number of consecutive values to be sampled.

Note that, since the ranges are dependent on the signature of the experiment
(i.e., amount and types of arguments), each concrete Experiment-subclass has a
corresponding ComputationTask-subclass.

TaskProducer

The creation of tasks, i.e. the partitioning of the arguments into smaller ranges,
is the responsibility of the TaskProducer class. Construction of the various sub-
classes of ComputationTask are implemented in separate TaskProducer-subclasses.

Invoking method createTasks will create a pool of (a certain type of) tasks,
according to a certain distribution strategy. This strategy defines which argu-
ment(s) to partition; configuration parameters can be used to control the sizes
of these partitions.

The experiment parameter is used to obtain the size of argument ranges
from the experiment signature.
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TaskConsumer

The allocation of tasks to the worker nodes will be done dynamically; after a
worker process completes a task, it tries to obtain a new one, until all have been
computed. This approach strives for a load-balanced distribution, where the
faster nodes perform more tasks, such that every node completes computation
around the same time.

The method supplyIterators searches for a available task and calls the
experiment’s performObservations method with argument ranges as specified
by the task; this is repeated until the complete pool of tasks for the experiment
is emptied.

Different strategies for searching for new tasks exists; a basic strategy could
be to just randomly select a new task until all have been removed. More ad-
vanced schemes could make use of the fact that data, which has already been
used for earlier computations, may be available faster because of caching mech-
anisms; strategies like these select tasks based on their data dependencies.

TaskPool

The task pool, which is represented as a class in Figure 6.2, will in PROOSA be
implemented by the tuple space. The TaskProducer and TaskConsumer isolate
the code for interaction with the tuple space from the Simulator and Experiment
classes.

6.3.2 Outcome Accumulation

OutcomeAccumulator

+getAccumulatedOutcome(): Outcome

AccumulationTask

+execute(Experiment)

constructs

1..*

DistributedSimulator

+create(Experiment, TaskProducer, OutcomeAccumulator)

obtains outcome from

1

Worker

executes

1

Experiment

+accumulateOutcome(PartialOutcome)

performs observations of

1

Master

1

Figure 6.3: Accumulation classes

After all computations have been completed, each node has a part of the
outcome, which have to be combined to form the outcome for the complete
experiment. This accumulation step is comparable to performing a reduce op-
eration of the MPI library [For94], where the sendbuffers on each node contain
the partial observations to which operator ⊗ is applied.

This accumulation can also be accomplished in multiple ways. A simple
strategy would be for each worker process to return its outcome to the master
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that initiated the experiment, which then has to combine all results; more ad-
vanced methods use multiple process to do the accumulation in parallel (e.g., to
have each process accumulate a subset of the observations, or a tree algorithm
where each node accumulates the partial outcomes of its child nodes). Each of
these strategies can be implemented in a specialization of the OutcomeAccumu-
lator class.

In its single method getAccumulatedOutcome, for each worker process an
AccumulationTask is created, which instructs a worker what to do with its com-
puted partial outcome.

Note that the operator ⊗, which is applied to combine partial observations, is
dependent on the specific type of experiment. By extending the interface of the
Experiment class with a method to accumulate a partial outcome to its outcome
object, class OutcomeAccumulator remains independent of the experiment types.

6.4 Other extensions to the Object-oriented model

6.4.1 Distributed data structures

The data structures used in the experiments of PROOSA tend to be very large
in size; a sample can easily consist of millions of particles and outcomes are
sampled for many argument values to obtain a good approximation.

As the computation of a partial observations requires only a subset of these
data structures, these structures’ interfaces are extended to allow processes to
access subsets of their data. In the implementation of these new methods, only
the requested subset of data will have to be transferred to the process accessing
it.

To store these structures in tuple space, their data is partitioned into subsets
of a certain fixed size; each of these subsets is stored in a separate tuple. The
size of these partitions has an impact on the performance of PROOSA:

• the smaller the partitions, the higher the communication costs will be,
as processes will have to execute more read/take operations to access a
certain amount of data.

• the larger the partitions, the larger the task size will be, possibly resulting
in more unbalanced loads.

Also, in the case that concurrent write access by multiple processes is required:

• the larger the partitions, the less parallel write access is possible; once a
partition is taken out of tuple space by a process to update its value(s),
no other processes can access any of the values stored in it.

For these reasons, the partition size will be a tunable parameter; increas-
ing it leads to more efficient communication, but a decrease allows for more
parallelism.
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General approach

The OOSA version of the classes —that represent these large structures— pro-
vide access to their elements by supplying iterators. In the PROOSA imple-
mentation, the general approach is to extend those classes to implement the
following interface:

public interface Part i t ioned <T> {
public int numberOfPartit ions ( ) ;
public I t e r ab l e <T> g e tPa r t i t i o n ( int pa r t i t i o n Index ) ;

}

This interface defines that classes implementing it supply iterators over an
indexed set of partitions. For structures that store their partitions in tuples,
this interface hides the tuple space access from interacting classes.

In the basic implementation of these methods, the data contained in a parti-
tion will only have to be transferred when a process requests it. An alternative
implementation is to cache (a number of the) read partitions in local memory, to
provide faster repeated access to the data (at he expense of larger memory con-
sumption). The advantage of this over caching at the distribution policy level,
is that substructures will only have to be transferred and deserialized once.

Sample

As sample data is read-only, exclusive access to (a part of) it is not necessary. If
each process used the complete sample, communication costs would be minimal
by storing the sample in a single tuple (only one read access). However, as
computation of partial observations requires processes to access only a subset
of the data Dp, communication costs are minimal when only Dp is transferred.
This also allows samples to be used that are too large to fit in the memory of a
single process.

Figure 6.4 shows how the general approach is applied in PROOSA. As before,
the set of particles in a sample are stored in the Box class (see section 3.4),
which provides access to them by means of an iterator. This class can be
exploited to hide the existence of a tuple space to classes depending on it. To
that end, Box is turned into an abstract class, for which two implementations,
SimpleBox and DistributedBox, are provided. SimpleBox contains the old Box
code, DistributedBox changes this behavior by storing subsets of particles in
tuples and by implementing Partioned<Particle> to provide access to its subsets.

Classes interacting with particles now only need to know the ParticlesCon-
tainer interface, not knowing whether the sample is distributed or not. This
knowledge is only required by the classes that supply the ParticleContainers to
them.

Sample construction is performed by the SampleParser class. With two
implementations available (i.e. distributed or not), the SampleParser should
not be dependent on the actual type of sample it is constructing. These classes
are be decoupled by applying the Abstract Factory design pattern [GHJV95]:
the sample and all its constituting classes are instantiated by a SampleFactory

class, which hides the actual types of the classes to the parser.

39



Box

SimpleBox DistributedBox

+numberOfPartitions(): int
+getPartition(int): ParticlesContainer

ParticlesContainer

+nmbOfParticles(): int
+nmbOfParticles(Substance): int

+iterator(): Iterator<Particle>

+partitions

1..*

Figure 6.4: Distributed Sample access

Outcome

There are two types of outcomes in PROOSA:

• the (partial) outcome of the experiment that is currently being simulated
(e.g. by a SequentialSimulator or a worker process that performs a subset
of the partial observations);

• the outcome from a previous experiment simulation, that is used as a
prelude to one or more experiments that follow it.

The first type of outcome reuses the OOSA implementation, as it is local to
a single process. For the second type, partitioning is useful to lower communi-
cation costs, as only a subset of the prelude’s observations may be needed to
compute a (set of) partial observation(s).

A newly introduced DistributedOutcome class extends OOSA’s (abstract)
outcome by implementing the Partitioned<SampledValue> interface (where Sam-
pledValue, the type that is iterated over, will be introduced in the next section).

In the implementation of this method, each partition of sampled values will
be stored in a separate tuple, and will be read from tuple space by a Distributed-
Outcome when a process requires one of its partitions.

Outcome construction When a process creates an outcome, it is always a
non-partitioned one that is either used for computation of observations, or has
been reconstructed from a previously stored outcome by a parser. To construct a
distributed version, DistributedOutcome is equipped with a constructor which
takes an Outcome object O as a parameter. The observations from O will then
be partitioned and stored in separate tuples.

40



Representing partial outcomes In the accumulation phase of an experi-
ment, partial outcomes are transferred from one process to another in order
to combine them. Instead of transferring a complete outcome object, a class
PartialOutcome is introduced, which only implements the Iterable<SampledValue>
interface. Its implementation tries to keep the memory footprint as small as
possible, in order to minimize communication costs (which was the reason for
introducing a separate class for this type of outcome).

6.4.2 Iteration over ranges

For the computation of partial observations, iteration over a range of sampled
values is required. A sampled value will be represented by the following interface

public interface SampledValue<V extends Value> {
public int getRank ( ) ;
public V getValue ( ) ;

Classes supporting iteration over sampled values, do so by implementing the
standard Java Iterable-interface.

Iteration over samplers

The primary providers of sampled values are the Sampler-objects contained in
the experiment’s signature. Their interfaces are extended with the following
method:

public class I t e r ab l eSample r extends Sampler {
public I t e r ab l e <SampledValue> getRange ( int s ta r t , int numSamples ) ;

A call to getRange returns an object which provides iterators over sampled
values with ranks start, start + 1, . . . , start + numSamples− 1.

Iteration over prelude outcomes

As described in a previous section, outcomes from one or more prelude ex-
periments are stored in a distributed fashion. Their partitions implement the
Iterable<SampledValue> interface, which provides iterators over the (consecu-
tive) range of observations contained in a partition (see section 6.4.1). This com-
mon interface allows uniform access to prelude outcome partitions and ranges
of a sampler by experiment instances.

This approach limits iteration over distributed outcomes to ranges contained
in a single partition. Therefore, computation tasks will specify ranges of obser-
vations from prelude experiments by their partition index. This design has
been chosen for efficiency, to ensure that all transferred data (when accessing a
partition) is used by the process.

Iteration over Particle pairs

For the computation of radial distributions, iteration over particle pairs is re-
quired. As the particles in a Sample are partitioned (see section 6.4.1), two
classes are introduced that return iterators over particles pairs contained in a
ParticleContainer:
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IntraPairsConstructor

+IntraPairsConstructor(ParticlesContainer)

InterPairsConstructor

+InterPairsConstructor(ParticlesContainer, ParticlesContainer)

PairConstructor

+iterator(): Iterable<Pair<Particle>>

ParticlesContainer

+nmbOfParticles(): int

+nmbOfParticles(Substance): int

+iterator(): Iterator<Particle>

obtains particles from

Figure 6.5: Particle pair iteration

The classes in Figure 6.5 return the unique pairs of particles contained in one
or two ParticleContainer objects: for a partition size of N , class IntraPairsConstructor
returns all 1

2 (N2−N) unique pairs in a single partition, and InterPairsConstructor

returns all N2 pairs from two partitions.
As for outcomes, the possible ranges for iteration over particles are limited

to those particles contained in a single partition. Not only does this make it
easier to specify ranges (and particles don’t need globally unique identifiers),
but it also is more efficient as iterators return exactly all particles in a single
partition (which ensures that the transferred data is optimally used).

6.5 Overview

In this section it is demonstrated how the classes, introduced and extended in the
previous sections, cooperate in order to calculate the outcomes of experiments.

6.5.1 Distributed simulation

In a distributed simulation, a master process and a group of worker processes
cooperate to compute the outcome of an experiment: the master distributes the
work over smaller tasks, which are consumed by the workers who perform the
(partial) observations computations prescribed by the task.

Master process

The master process performs experiment simulations by construction and sim-
ulation of a DistributedSimulator.

The first step in a distributed simulation is the construction of tasks, which
define how the computation is divided in smaller parts; this is the responsibility
of the TaskProducer-class.

The next step is the distribution of tasks over the set of worker processes.
For load balancing purposes, this allocation of tasks is performed dynamically
by the workers themselves. To hide the used search strategy for finding tasks
from the workers, this functionality is encapsulated in the TaskConsumer-class.

42



 : Master  : DistributedSimulator  : TaskProducer  : ComputationTask  : TaskConsumer  : OutcomeAccumulator  : AccumulationTask

1 : simulate()
2 : createTasks()

3 : create()

4 : createDistribution()
5 : create()

6 : getAccumulatedOutcome()
7 : create()

Figure 6.6: Distributed simulation of Experiments by a Master process

The final step is the accumulation of the partial outcomes (owned by each
process) into the outcome for the experiment. The OutcomeAccumulator class
instructs the workers how to perform the accumulation by providing each of
them an AccumulationTask.

Note the absence of conclude, in general this method will be called by the
process that performs the final accumulation step (which, depending on the
accumulation strategy, can be the master itself or one of the worker processes).

Worker process

The actual observation computations are performed by worker processes.
Note: in this section, the worker process interacts with a number of objects

that were created by a master process. How the worker obtains these objects
will be detailed in the next chapter.

 : Worker  : Experiment  : ComputationTask : TaskConsumer  : AccumulationTask : Sampler

1 : initializeOutcome()

2 : prepare()

3 : supplyIterators()
4 : getNext()

5 : getRange()

6 : performObservations()

7 : execute()

Figure 6.7: Distributed simulation of Experiments by a Worker process

When a worker wants to perform observations for an experiment, it first
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performs the steps of initializing an outcome (for storing partial results) and
performing any other preparations necessary for observation computations.

Next, it instructs its TaskConsumer to provide work to the experiment: the
TaskConsumer will repeatedly search for a new task, obtain iterators for the
ranges specified in that task and provide those iterators to the Experiment’s
performObservations-method.

Finally, the worker executes a single AccumulationTask, which instructs it
what to do with its partial outcome.

6.5.2 Sequential simulation

For comparison, an overview of sequential simulation will also be given here.

User  : SequentialSimulator  : Experiment Iterator<SampledValue> : Signature  : Sampler

1 : simulate()
2 : intializeOutcome()

3 : prepare()

4 : supplyIterators() 5 : getSampler()
6 : getRange()

7 : performObservations()

8 : getIterator()

9 : conclude()

Figure 6.8: Sequential simulation of Experiments

Simulation is initiated by the user, instructing the SequentialSimulator to
start the computation of the outcome. First, the experiment is initialized by
constructing a new outcome to store results in, and secondly by performing other
preparations needed to perform computations (e.g. initialization of a table that
replaces the computation of a costly function).

The next phase is the computation of the observations. Instead of obtain-
ing iterators for the argument variable(s) from a TaskConsumer, they are now
supplied by the Experiment itself; the experiment obtains the iterators —for the
complete range of argument values— from its Sampler objects and uses them as
parameters in the invocation of its PerformObservations method.

In the final phase of the simulation, the experiment performs any operations
defined in its conclude method.
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Chapter 7

Tuple Space
Implementation

7.1 System architecture

PROOSA is implemented on a network of nodes, that can communicate by
reading and writing tuples from GSpace, a tuple space (TS) implementation. A
network node can run any of two types of PROOSA processes:

• masters, who have one or more experiments to be simulated, and

• workers, who perform the computation of experiments.

7.1.1 Master nodes

To perform an experiment simulation, a user creates a configuration file which
specifies one or more experiments to simulate and starts a master process on
one of the nodes. For each of these experiments, this master constructs a Dis-
tributedSimulator and calls its simulate-method. After all experiments have
been performed, the outcomes are stored and the process terminates.

7.1.2 Worker nodes

Worker processes offer the service to perform experiment computations for mas-
ters; running a worker process on a node makes it available for a master to use
its service.

After being started, a worker will wait for an opportunity to join a new
simulation; after having joined one, it computes tasks for each of the experiments
specified for the simulation.

In the current implementation, a master expects the number of workers to
remain constant for the duration of the simulation. Therefore, once a worker has
joined a simulation, it has the obligation to stay in it until all the experiments
are completed.
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7.2 Communication protocol

Nodes in the network can only communicate by reading, taking or writing tuples
to the TS. The communication protocol specifies the various types of tuples and
how they are used in the communication between master(s) and workers.

7.2.1 Space Initialization

A TS that is to be used for PROOSA simulations, should be initialized with
exactly one instance of the following two tuple types:

tuple name field type initial value
UniqueID nextAvailable long 0
AvailableWorkers amount int 0

As there could be multiple simulations running on the same network, the
tuples that belong to a certain simulation will be marked with an ID. To obtain
an ID that is unique to this shared dataspace, processes can take the UniqueID
tuple and get an unused ID from it. The AvailableWorkers tuple is used by
masters to discover the number of available worker processes (see next section).

7.2.2 Starting a new simulation

At the beginning of a new simulation, a master first has to discover the number
of available workers; it can then gather (a subset of) workers and use these to
perform its computations.

Workers: announcing availability

When a new worker is started, it signals its availability to join a simulation by
taking the AvailableWorkers-tuple out of the TS, incrementing its amount by
one and writing it back.

If a node no longer is available to join a simulation, it has to access the
AvailableWorkers tuple and decrease its amount; only if the amount can be
decremented to a non-negative number, a worker is allowed to terminate, as an
amount of 0 signifies that a master is already depending on this worker to join
its simulation.

Master: discovering available nodes

When a new master is started, its first objective is to gather a set of worker
nodes that join in to compute the outcome of its experiment(s). For this, it
takes the AvailableWorkers-tuple from TS, selects an number of nodes P (0 ≤
P ≤ AvailableWorkers.amount), decreases the tuple’s amount by P and writes
it back.

Having determined the number of worker nodes P , an experiment writes out
exactly P Join-tuples. As these tuples will be consumed by the workers, only
P workers will be able to obtain one and join this simulation.
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tuple name field type initial value
Join simulationID long unspecified

numberOfExperiments int unspecified

To obtain an unused ID for its simulationID, a master can query the UniqueID
tuple.

Worker: joining a simulation

Available workers await the availability of a Join-tuple to be taken from TS, by
executing a blocking take operation. As soon as one is available, the worker
has joined the simulation with the specified ID.

7.2.3 Simulation of experiments

After having stored the Join-tuples, which will guarantee that P workers join
the simulation, the master can start simulation of its experiments.

Master: starting a new experiment simulation

Based on the user-specified configuration, the master creates the experiment
object that is to be simulated next and stores it in tuple space:

tuple name field type initial value
ExperimentTuple simulationID long unspecified

experimentID long unspecified
theExperiment Experiment unspecified

It then creates a DistributedSimulator for the experiment and invokes its
simulate method.

Worker: initializing a new simulation

After having joined a simulation, the worker awaits the availability of an Ex-
perimentTuple (with the specified simulationID) to be read from TS.

For the experiment contained in it, the worker invokes the initializeOutcome
and prepare methods; this can be done in separate threads, as both methods
operate on different data structures.

Master: creating a distribution of the computation

The first two steps in a distributed simulation is the construction and distribu-
tion of tasks over the workers (see section 6.2.2).

Construction of the task pool is performed by the TaskProducer of the
DistributedSimulator. After invocation of its createTasks method, it will cre-
ate —based on a distribution strategy— a number of Task tuples and writes
these to TS:

tuple name field type initial value
TaskTuple experimentID long unspecified

argumentRanges unspecified (dependent of experiment signature)
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As tasks are dependent on the (signature of) the experiment, each Experi-
ment has its own type of Task tuples.

Distribution of tasks takes place dynamically: with a pool of Tasks avail-
able, workers continuously search for Tasks to remove and compute, until none
are left. This search strategy is encapsulated in the TaskConsumer class, which
hides the type of tasks and search strategy being used for the workers. A master
constructs P (possibly different!) TaskConsumerTuples and stores them in TS:

tuple name field type initial value
TaskConsumerTuple experimentID long unspecified

theConsumer TaskConsumer unspecified

Important notice: in the current design, the TaskConsumers are written to
TS only after all Tasks have been stored in it; this is done to ensure that, when
a TaskConsumer cannot take any more Tasks from tuple space, the assumption
that all tasks have been allocated to workers is valid.

Worker: performing computation tasks

After the experiment to be simulated has been initialized, the worker is ready
for computation of tasks. These tasks are provided by a TaskConsumerTuple.
First the worker takes one of these tuples with a matching experimentID from
TS; next, for each task provided by its TaskConsumer, the experiment computes
the (partial) observations for the argument range(s) specified in the task.

Master: accumulating the results

For a master, the final step in the simulation is to obtain the accumulated out-
come. The strategy used to accumulate the partial outcomes is encapsulated in
the OutcomeAccumulator class. To instruct the workers what to do with their
computed outcomes, getAccumulatedOutcome writes P AccumulationTaskTu-
ples to TS:

tuple name field type initial value
AccumulationTaskTuple experimentID long unspecified

theTask AccumulationTask unspecified

Worker: outcome accumulation

When the task pool of computation tasks has been exhausted, workers take
a single AccumulationTask from TS and execute it on their outcomes. This
completes the participation of the worker to the current experiment, allowing it
to dispose of the objects that where instantiated for it.

7.2.4 Termination of a simulation

Master

The above steps, are repeated for each of the experiments specified in the config-
uration file of the master. After all experiment outcomes have been computed,
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the master writes the results to the filesystem and terminates.

Worker

When a worker has performed computation and accumulation tasks for the
number of experiments that were specified in the Join tuple, it first disposes
of all remaining objects used for this simulation. Then it either decides to
terminate, or to be available for other simulations by incrementing the amount
of the AvailableWorkers tuple again.

7.2.5 Summary

The tuple communication protocol, as described in the previous paragraphs, is
visualized in the following state diagrams.

In Simulation

entry/put(SamplePartition)
exit/take(SamplePartition)

In Experiment

entry/put(Experiment)
exit/take(Experiment)

Work distribution

entry/put(ComputationTask)
entry/put(TaskConsumer)

Result collection

entry/put(AccumulationTask)

exit/take(PartialOutcome)

Gathering workforce

entry/take(UniqueID)

entry/put(UniqueID)
entry/take(availableWorkers)
entry/put(availableWorkers)
exit/put(JoinTuple)

[ remainingExperiments > 0 ] 

[ remainingExperiments = 0 ] 

Figure 7.1: Tuple operations performed by Master
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Figure 7.1 shows the communication protocol for a PROOSA master process,
Figure 7.2 does the same for a single worker.

It is clearly to see that the processes visit similar states, where the tuples
produced by the one are consumed by the other. The only exception are tuples
that contain read-only data and are the same for all workers (currently, these
are the experiment and sample partition tuples): the master will store a single
copy of these tuples when entering a state and is responsible for removing it
when exiting the state.

Available

entry/take(availableWorkers)

entry/put(availableWorkers)

exit/take(JoinTuple)

In Simulation

In Experiment

entry/read(Experiment)

entry/take(TaskConsumer)

Computation

entry/take(ComputationTask)

do/read(SamplePartition)

Accumulation

entry/take(AccumulationTask)

exit/put(PartialOutcome)

[ remainingExperiments = 0 ] 

[ interrupted by user ] 
[ uninterrupted ] 

[ remainingTasks = 0 ] 

[ remainingTasks > 0 ] 

[ remainingExperiments > 0 ] 

Figure 7.2: Tuple operations performed by Workers

7.3 Distribution policy selection

In GSpace, each type of tuple can be assigned its own distribution policy. By
selecting a policy whose performance characteristics best match how an appli-
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cation uses a particular type of tuple, communication costs can be reduced.
The default distribution policy is Store Locally (SL), in which tuples are

stored in the gspace kernel that is running locally to the process executing a
put operation. The advantages are that tuples can be stored fast and require
a minimal amount of memory as only one copy is stored. The downside is
that read and take operations —when a matching tuple cannot be found in
the local gspace kernel— are costly as other kernels will be queried sequentially
whether they contain a matching tuple. This is particularly a problem in the
case where the tuple can only be found in the local kernel of one specific process,
as processes on other nodes will perform a linear search to locate this kernel, on
average requiring half the number of kernels to be queried.

Besides the SL distribution policy, GSpace offers several other policies (see
section 4.2.2 for an overview), which can be divided into two categories. First
there are two policies that introduce caching by storing local copies of previously
read tuples, which speeds up repeated reading of the same (remotely stored)
tuple.

The second category are replication policies that duplicate tuples over a set
G of GSpace kernels. This duplication increases the cost of put and take op-
erations (as tuples have to be stored and removed from multiple kernels) and
requires more memory to store tuples in each kernel of group G; the advantage is
that read operations can be performed locally for processes executing on nodes
in set G, while nodes outside G will only have to query one of the nodes in G.
The various replication policies differ in how the set G is composed.

Although PROOSA currently uses more than ten different types of tuples,
they can be categorized in five categories according to their access patterns:

1. global tuples that are updated on every access

2. tuples produced by a master

(a) taken by a single worker

(b) read my multiple workers

3. tuples produced by worker(s)

(a) taken by a master

(b) taken by a single worker

Tuples of category 1 contain the value of global variables (e.g. the number
of workers, or the next unused simulation ID) and processes need to access
these only once per simulation. Under the Store Locally (SL) policy, processes
will —on average— need to query half the GSpace kernels to locate the single
instance of these tuples. Since the values are updated on every tuple access,
caching policies do not improve the situation as any cached copy will always
be invalid. With the replication policies, the tuple will always be stored in the
kernel of any member of group G; by choosing a group of size 1, processes will be
able to locate the tuple directly, while at the same time minimizing the costs of
replication. A good policy for this category will therefore be Fixed Replication
or Static Replication on a group of size 1.
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Category 2a encloses the tuples that are produced by a master and are
consumed by workers to prevent other workers from using the same tuple (e.g.
Task tuples). The SL policy requires workers to —on average— query half the
remote kernels before a take operation is performed in the kernel local to the
master process. Caching policies do not offer any improvement as there is no
repeated access to these tuples. With a replication policy, processes will only
have to query one of the nodes of G; because all operations are take actions,
they will always be performed on one specific member of G, called the sequencer.
Therefore it has no advantages to choose a group size larger than one: Fixed
Replication or Static Replication on a group of size 1 are good choices for this
access pattern, Producer Replication may also be considered when there will
only be one master process (the advantage is that the master will be running
on the sequencer node, resulting in local storage of tuples).

The tuples categorized under 2b are read-only tuples, which for example
contain an experiment or a partition of the sample. Not only will the SL pol-
icy require processes to query multiple kernels for each read operation in order
to locate the kernel m where the master process stores its tuples, it may also
introduce a bottleneck as these tuples typically are large and m is responsible
for serving the requests from all worker process. Although a process only inci-
dentally needs repeated access to one of these tuples, the caching policies still
reduce communication costs: read operations not only have to be served by
m, but may also be handled by other kernels which contain a cached copy of
the requested tuple. The resulting behaviour is similar to the data distribution
in peer-to-peer file sharing networks. Push caching will be the best performing
caching policy, as this will avoid validity checks of cached tuples, which of course
are not necessary for read-only tuples. Another way to reduce search time and
avoid the bottleneck is by using a replication policy, as worker processes will
only have to query one of the members of group G; the performance will be op-
timal when the kernels local to the worker nodes are all members of G: the Full
Replication and Consumer Replication policies are therefore the best choices.

Category 3 represents tuples created by workers, containing the results of
computations. If one node runs a master process and W nodes run worker
processes then, under the SL policy, the master process collecting the results
will on average have to query 1

2W remote nodes to obtain a single result; to
collect all W results, 1

2W 2 remote queries are required. Caching policies do not
improve this situation as there is no repeated read access to these tuples. Repli-
cation can be used to reduce the search times as only one node of the group
G, that replicate the tuples, will have to be queried. Since only one process is
interested in a certain tuple, groups of sizes larger than 1 offer no advantages.
Note that replication with a group of only one node g may introduce a bot-
tleneck, as this node will have to handle the storage and retrieval of typically
large tuples; performance tests will have to prove whether this weighs up to the
reduced search times. Policies to consider for 3b are therefore Fixed Replication
and Static Replication with a group size of 1. For category 3a, performance will
be optimal when kernel g is local to the master process: when it is known that
there will only be one master process, Consumer Replication will be the optimal
replication policy.

In the current GSpace implementation, the Store Locally performs a linear
search over all remote kernels when a matching tuple cannot be found in the
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local kernel. Because space based programs often have a producer/consumer
design, the probability is high that consecutive take operations by consumers
can be serviced by the same remote kernel where a producer stores its tuples.
It would therefore make the SL policy much more efficient if its implementation
was changed to start each linear search in the remote kernel where the last
successful read/take took place.
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Chapter 8

Results

To assess the performance of the proosa implementation, a number of experi-
ment simulations were performed. Their results and an analysis form the content
of this chapter.

8.1 Test environment

All simulations were performed on a Beowulf cluster consisting of 17 identical
machines. Each of these has a single Pentium 4 CPU (clocked at 3.06 GHz, with
HyperThreading support) and 2 Gigabytes of RAM. All machines are connected
via a private, local gigabit ethernet by means of a 24 port 3COM switch.

The machines are running the Gentoo Linux operating system. All Java
program code was executed in the server virtual machine of the Sun Java 2
Platform (Standard Edition version 5.0).

Simulation times were measured by performing 11 simulation runs in se-
quence. The time of the first run was discarded (its purpose was to ”warm
up” the Java Virtual Machine, i.e., to make sure the most frequently executed
methods were compiled into native machine code); the reported times are the
average time of the 10 remaining runs.

In the analysis of simulations, the time spent in fragments of the program was
measured and classified as either computation, communication and idle time.
Because it was often hard to discern communication from idle time (this would
have to be measured within the GSpace kernel), the following approximation
was used: when a node performs a blocking read/take for a certain tuple, it
was classified as idle time (thus masking communication time as idle time),
any consecutive read/take operations were classified as communication time
(possibly masking idle time as communication time).

8.2 Sequential simulation

As a reference, the simulations were first performed by the sequential version of
the simulation program; these values will be used as baselines to compare the
performance of the parallel version to.
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The simulation setup consists of two experiments: a SRD experiment fol-
lowed by a SFS. The sample used is a NaCl crystal lattice, consisting of N
particles. In the distance computations, periodic boundary conditions were
used.

For various sizes of N , the average times over 10 simulations runs (in seconds)
are reported in Table 8.1:

16k 32k 64k 128k 256k
Tseq 13.0 49.5 201.1 830.2 3282.8

Table 8.1: sequential simulation (average time in sec)

Since the computational effort required to compute a radial distribution is
O(N2), and just O(N) for a scattering experiment, the SRD experiment is
expected to dominate the simulation time. As the number of unique particle

pairs to evaluate is N(N−1)
2 , increasing the sample size by a factor 2 results in

a factor 4 increase of particles pairs:

2N(2N − 1)

2
=

4N − 2

N − 1
·
N(N − 1)

2

Therefore, doubling the sample size is expected to lead to approximately a
factor 4 increase in simulation time. This factor is clearly visible in Table 8.1.

8.3 Parallel simulation

8.3.1 Simulation 0

The first parallel simulation, will perform the same SRD and SFS experiment
as in the sequential simulation on a sample size of N = 128k (i.e., a sample
consisting of 131072 particles). There will be a single master process M and
W = 16 worker processes, each running on a separate node with its own local
GSpace kernel.

For all strategies the most basic ones are chosen:

• tasks are assigned to the workers randomly: each worker removes available
tasks until all have been performed,

• accumulation is performed by the master: all workers write their par-
tial outcomes to the tuple space, which are collected by the master and
combined into the outcome of the experiment.

• the sample is partitioned into W sets, resulting in W (W−1)
2 = 120 inter-

and W = 16 intra-tasks for the SRD experiment. The SFS experiment
will not partition the sampled range of q-values: each worker will compute
partial observations for all q-values over a subset of the SRD bins.

Finally, the store locally policy is used for all types of tuples.
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Theoretical analysis

For the SRD and SFS simulation on a sample of N particles and performed by
W worker nodes, the execution time required for each phase is characterized in
the following table:

phase action(s) time required
initialization gather workers O(W )

parse/store sample O(N)
srd create experiment O(1)

create tasks O(W 2)
distribute tasks O(W )
compute outcome O(N2 ÷ W )
accumulate outcome O(N × W )
finalize O(1)

sfs store srd data O(N)
create experiment O(1)
create tasks O(1)
distribute tasks O(W )
compute outcome O(N ÷ W )
accumulate outcome O(N × W )
finalize O(1)

finalization remove sample O(N)
store outcome(s) O(N)

In typical simulations, where N ≫ W , the computation phase of the SRD
experiment is expected to dominate the total execution time.

Observed performance

The results of simulation 0 are visualized in figure 8.1. For each phase of the
simulation, shades of gray are used to visualize how the processes spend their
time: the light gray color is used to show computation time, medium gray
color stands for communication and the dark gray signifies idle time (waiting
for synchronization, i.e., awaiting the availability of a tuple in tuple space).
The small arrows signify the moments where tuples are stored or retrieved on
which the processes synchronize: J stands for Join-, E for Experiment-, T for
TaskConsumer- and O for Outcome-tuples.

The figure clearly shows that most of the simulation time is spent by the
master, in the accumulation phase of the SRD experiment (409.04 seconds),
which was characterized as O(N × W ). The large communication time that is
needed to read W partial outcomes from tuple space is caused by

• absence of parallelism: a single node, the master, sequentially reads all
partial outcomes from tuple space and accumulates them to its local out-
come. This leads to the multiplication by the factor W .

• high costs per read/take operation: which is mainly caused by the large
size, O(N), of the outcome tuples read.

The total execution time of the master process, which is the total time a user
needs to wait for the outcome of the experiments to be available, will be used
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Figure 8.1: random task distribution, outcomes accumulated by master (Simu-
lation 0)
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to quantify the performance of the parallel program. For this run of simulation
0, the total execution time was 587.8 seconds.

Because there is hardly any improvement in performance over the sequential
simulation, the experiment setup will be modified in the following simulations,
to try to tackle the problems identified above.

8.3.2 Simulation 1

This simulation strives to introduce parallelism in the accumulation phase of
the SRD experiment, to reduce the bottleneck formed by the master.

There are several possible approaches to introduce parallelism in the accu-
mulation of outcomes. The strategy used in this simulation is targeted towards
maximum parallelism: with W workers available, the outcome is partitioned
into W sets. Each worker is assigned one of these outcome partitions to accu-
mulate. For this, it needs to read W − 1 partial outcome partitions of the other
workers and integrate them with its own partial outcome partition.

All workers require approximately the same amount of time, Tacc, for the
accumulation of their assigned part, and no worker can complete before all others
have made their partial outcomes available to the other workers. Therefore, all
workers should start their accumulation phase at around the same time to keep
the accumulation time as small as possible.

This may require better load balancing of the observation computations over
the workers. Should this not be possible, another approach is to use less than
W workers in the accumulation phase, so the worker that last completes its
(partial) observation computations, does not require Tacc, which would delay
the computation considerably, but only the time need for writing its partial
outcome partitions to tuple space.

Theoretical analysis

As described in section 8.3.1, the introduced parallelism should decrease the
effect of factor O(N × W ) in the SRD outcome accumulation; by using W
workers to perform the accumulation on, it is expected that this factor changes
to O(N).

Observed performance

The result of distributing the accumulation over the workers is displayed —for a
typical run— in Figure 8.2; the total execution time of the simulation decreased
from 587.8 seconds to 362.8 seconds.

Introducing parallelism into the SRD outcome accumulation had a large
impact on the performance, but this phase still requires a considerable amount
of time on the workers: it covers more than half of the total simulation time. For
example, the first worker spent 205.94 seconds on it. Therefore, the next step
will be to try to speedup the reading and writing of partial outcome partitions.

8.3.3 Simulation 2

The goal of this simulation is to lower the time required for storage and retrieval
of (partial) outcome tuples. The time needed to obtain a tuple from tuple space,
which matches with a template t, consists of
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Figure 8.2: random task distribution, outcomes accumulated by workers (Sim-
ulation 1)
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(i) search time: the distribution policy for the type of t determines where
matching tuples can be found. In the store locally and caching policies,
each node can possibly contain a matching tuple in its local slice of the
tuple space; searching time will therefore be of order O(P ) (where P is
the total number of tuple space kernels, usually equal to the number of
nodes). For replication policies, the search time will be O(1), as only one
of the nodes in the replicating group will have to be queried.

(ii) waiting time: when no matching tuple is available, the operation blocks
until a tuple, added by another process, can be obtained by the blocked
process.

(iii) transfer time: when a matching tuple is found in a remote kernel, it has to
be transferred to the machine on which the searching process is running.
The required time, consisting of time for serialization, data transport over
the network and deserialization, are determined by the size of the matching
tuple.

The costs for putting a tuple in tuple space, are determined by

(iv) transfer time: which, as for reading/taking tuples, is determined by the
tuple size.

(v) distribution policy: if the policy specifies a tuple to be replicated in mul-
tiple slices of the tuple space, these transfer times are additional to the
transfer time of putting the tuple in the local slice of the process that
executes the put() operation.

Therefore simulation 2 will incorporate the following changes to its setup:

• a custom implementation of the serialization/deserialization for the ob-
jects involved: the advantage over Java’s default serialization mechanism
are shorter (de-)serialization times and smaller amounts of binary data.

• replacing the outcome tuples by sparse tuples, i.e., only the values that
differ from a certain default value are included and transferred. For SRD
outcomes only the nonempty bins will have to be transferred. This filtering
of values does require more computation time on the process that writes
the tuple, but can have a big impact on the amount of data to transfer.

Theoretical analysis

The time the master has to wait for the SRD outcome to be available consist
of the time needed for (a) the observation computations, (b) the distributed
accumulation and (c) the transfer costs to the master, or:

O(N2 ÷ W ) + O(N) + O(N)

The effects of the above changes do not change this characterization, i.e., it
does influence terms O(N) but the relation remains linear with N . It is however
hard to predict by how much the times will decrease.
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Observed performance

The modifications for this simulation had their intended effect: the total execu-
tion time of the master process decreased to 147.1 seconds.

The main reason for this decrease is the introduction of sparse outcome tu-
ples. To obtain a good approximation, the number of bins for typical simulations
will be large; this often results in a large number of empty bins. In the current
simulation, where the sample is a regular crystal lattice, the number of distinct
distances is even more limited, increasing the empty bin count even further.

Looking at the visualization of the execution (Figure 8.3), it easy to see
where the most time can be won: prior to each experiment, the master stores
the required data in tuple space. For the second experiment, this is the outcome
of the first experiment; in the visualized simulation run, for example, this phase
required 36.39 seconds.

These large times could be reduced by applying the same modifications as
was done for the accumulation phase (i.e., customizing the serialization process
and reducing the amount of data by only storing non-empty bins). They can
however be circumvented altogether by changing the program design: the master
should not remove the outcome partitions in the accumulation phase of the first
experiment, but only read each one exactly once. In the second experiment, the
workers can then consume the outcome partitions.

Since this is such a small modification, it has been applied to the current
simulation. A run of this modified simulation is visualized in figure 8.4; the
total execution time has decreased to 110.0 seconds.

The main problem now is that the workers spend a considerable amount of
idle time before they can start computing.

8.3.4 Simulation 3

In the final simulation setup, it is first tried to reduce the idle waiting time of
the workers at the start of the simulation. This idle time consists of waiting for

1. a master process to be started,

2. the sample particle partitions to be stored in tuple space,

3. the storage of tasks.

Of these three items, the first is beyond control of the application and only
the second and third can be influenced.

Item two is caused by the large time required to parse the sample from file:
an O(N) operation. In the previous simulation setups however, the master
process first parsed a block of particles from the sample file and consecutively
stored the block in a tuple; as both these operations involve a lot of waiting for
I/O, performing them in separate threads should lead to an interleaving that
reduces the total time required. To easiest way to achieve this behavior is by
enabling the multirequest setting in GSpace: with this setting, tuple operations
performed by a process will each be serviced in its own thread.

The large time required for storing task tuples, item three, is a result of
the current GSpace implementation: when a tuple is inserted, all kernels (se-
quentially) are informed of this event, which allows them to retry read/take
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Figure 8.3: customized serialization and reduced data (Simulation 2)
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Figure 8.4: master process redesign (Simulation 2.1)
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operations that were blocked on the type of tuple inserted. This O(W ) oper-
ation is repeated for each task tuple that is inserted. As the number of tasks
was O(W 2), there are O(W 3) communication actions performed to inform a
single kernel of the insertion of one task tuple. Resolving this issue requires
changes to the GSpace implementation, which is beyond the scope of this work.
One possible approach would be to introduce a mput(List<Tuple>) operation,
which can be used to put multiple tuples of the same type, requiring only one
insertion notification to be sent to all remote kernels.

A second change to the simulation setup is the assignment of SRD tasks
to the worker processes. In the previous simulations this assignment was ran-
dom: workers selected a random task from tuple space, retrieved the particle
partition(s) on which that task was based and then computed the particle pair
distances. Since these tuples were governed by the Store Locally policy, re-
peated access to the same particle partition didn’t bring any advantages in
communication costs. A different distribution policy could be selected to re-
duce communication costs by locally available cached or replicated copies, but
as the set of tasks has size O(W 2), the probability of repeated access is low.
Therefore, the random task assignment will be replaced by a different strategy:
each worker process is assigned one partition p of the sample and tries to pro-
cess as many tasks as possible that are dependent on the particles contained
in p. When no more of these tasks exists, the worker will continue processing
other (randomly selected) tasks, which will balance the computation when one
or more other workers are slower in processing their (preferred) set of tasks.

Theoretical analysis

The proposed changes do not transform the program into a more efficient de-
sign, but they should lead to more efficient usage of resources: multithreading
will lead to interleaving of file and network I/O, the new task allocation will
maximize reuse of previously read data.

Observed performance

Figure 8.5 shows that the changes did result in better performance: the workers’
idle time is shortened and they can start computing earlier, the SRD compu-
tations are performed faster because less particle partitions have to be read.
For the visualized run the simulation time (on the master) decreased to 99.9
seconds.

8.3.5 Evaluation of distribution policies

Until now, all performed simulations used the basic Store Locally distribution
policy for storage and retrieval of tuples. In section 7.3, the other available
distribution policies were evaluated for each of the tuple access patterns in
PROOSA.

It was intended to measure the performance improvements (that were ex-
pected as a result of) the other recommended policies here, however, the imple-
mentation of GSpace that was used in this thesis prohibited this as
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Figure 8.5: optimized task allocation, multithreaded put (Simulation 3)
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• it was not yet able to handle the large (particle partition) tuples in the
replication policies, which use multicasting to replicate the tuples;

• the method to remove cached or replicated tuples is very inefficient, de-
creasing the total performance: when a tuple t is removed that is governed
by a caching or replication policy, the sequencer or master node that con-
trols t will send a message —containing t— to the other kernels, with the
instruction to remove it. For large tuples, which are common in PROOSA,
this not only results in a considerable amount of data transfer, but also in
a deep compare of t with the tuples stored in the kernel that received the
message.

8.4 Scalability

To determine how well the program scales, a number of simulations have been
performed with the last used setup (see section 8.3.4); the only difference is that
the heap size of the Java Virtual Machine was restricted to 64 MB, which proved
to lead to shorter absolute simulation times and smaller variance between the
runs.

The results, for various sample sizes and workers amounts, are shown in
Table 8.2, which lists the average simulation times over 10 consecutive runs.

16k 32k 64k 128k 256k
Tseq 13.0 49.5 201.1 830.2 3282.8
Tpar(1) 17.0 62.9 229.7 853.4 3418.7
Tpar(2) 12.8 43.5 156.8 618.1 2277.9
Tpar(4) 7.7 23.8 84.4 315.5 1149.0
Tpar(8) 5.9 14.8 47.9 154.6 583.6
Tpar(16) 11.5 15.2 31.6 92.3 310.6

Table 8.2: absolute simulation time (in seconds)

As was argumented for the sequential case in section 8.2, doubling the sample
size leads to roughly a factor 4 increase in simulation time. In Table 8.2, this
factor is visible is the simulation times of the larger samples; the sample needs to
be of a large enough size before the time needed for the O(N2) SRD computation
dominates the other O(N) phases (see section 8.3.1).

16k 32k 64k 128k 256k
S(1, N) 0.77 0.79 0.88 0.97 0.96
S(2, N) 1.02 1.14 1.28 1.34 1.44
S(4, N) 1.69 2.08 2.38 2.63 2.86
S(8, N) 2.22 3.33 4.20 5.37 5.63
S(16, N) 1.14 3.26 6.36 8.99 10.57

Table 8.3: speedup

The effect of the number of workers on the performance is more clearly visible
in Table 8.3, which lists the speedup S(P, N) that is defined as:
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S(P, N) =
Tseq(N)

Tpar(P )(N)

In the ideal case, doubling the number of parallel cuts simulation time in
half or doubles the speedup. In PROOSA, this factor is less than 2 because
some phases, mainly the creation and distribution of tasks, were designed to be
of O(W 2) in order to allow a balanced load distribution. Furthermore, the cost
of tuple retrieval under GSpace’s Store Locally policy is also of O(W ).

16k 32k 64k 128k 256k
E(1, N) 0.77 0.79 0.88 0.97 0.96
E(2, N) 0.51 0.57 0.64 0.67 0.72
E(4, N) 0.42 0.52 0.60 0.66 0.71
E(8, N) 0.28 0.42 0.52 0.67 0.70
E(16, N) 0.07 0.20 0.40 0.56 0.66

Table 8.4: efficiency

However, the increase of overhead dependent on the size of W as described
above, does not explain the poor speedup which is experienced when switching
from 1 to 2 workers. It is more clearly discernable in Table 8.4, which shows
the efficiency, defined as:

E(P, N) =
S(P, N)

P

Examination of the execution of the simulations for N = 128k and P = {1, 2}
learns that there is a lot of deviation in the time needed for processing SRD
tasks. The times needed for computing the distances within a single sample
partition (in this case, a partition of size 64k) ranged from 201.2 seconds (cf.
Tseq(64k)) up to 315.4 seconds. Similarly, computing the distances between
two sample partitions showed times between 456.5 and 623.2 seconds. Note
that these measurements only include the computation time, as at the start of
the measurement the required data was already available in the workers’ local
memory and no actions were performed that include waiting or blocking. Also,
the loads in each run were perfectly balanced, where both workers computed
N2/4 particle pair distances. During simulation, the GSpace kernel was the
only other running process of importance, but the external requests it receives
during in the SRD computation phase, cannot possibly require a large amount
of CPU time to be causing this.

At the time of this writing it is still unclear what is the cause of this deteri-
oration in performance, but it is likely to have to be sought in the Java virtual
machine that was used to run the simulations in.

8.5 Further suggestions for improving perfor-

mance

The total execution time of a program, Texec consists of several terms:
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Texec = Tcomp + Tcomm + Tidle

where

• Tcomp is the time spent in computations,

• Tcomm is the time spent for communication, and

• Tidle is time spent idle, e.g. while waiting for synchronization.

To obtain the best possible speedup in a parallel program, the computation
time should be equally divided over all concurrent processes, communication
time should be minimized and idle time should be eliminated altogether.

Idle time

Looking at the execution of the last performed simulation, Figure 8.5, it is easily
discernable where the most idle time is spent:

1. by the master, while waiting for the SRD outcome to be computed;

2. by the workers, while waiting for the tasks and data to become available
before they can start their computations;

and finally, some idle time is masked as (a part of the) communication time

3. by the workers, while waiting partial outcome partitions from other work-
ers.

The first item is not really a problem, as this idle time could be used by a
worker process, running on the same node as the master, to perform part of the
computations.

The second item however, has a large impact on the simulation performance.
Its main cause is the design decision to first store all data and tasks in tuple
space, before the workers are allowed to start computing; this approach was
chosen as it allowed the workers to assert that all tasks were consumed when
no more could be found in tuple space. A better approach is to let the workers
start during the master’s task writing, which requires the introduction of an
additional tuple for the workers to be able to assert the emptiness of the task
pool. Because tasks cannot be performed before the required data, i.e. one or
two sample partitions, are available, an optimal solution would interleave the
writing of sample partitions and tasks: once a partition j is added, the tasks
that are dependent on j and on one of the earlier stored partitions i (0 ≤ i < j),
can be safely added to tuple space.

A minor improvement may be to replace the multithreaded handling of tuple
space operations, which was used in Simulation 3 to interleave file I/O and
network communication, by a single concurrent thread responsible for storing
tuples. Tuples to be stored are then added to a blocking queue, instead of
being passed to a newly created thread: not only will this reduce the required
resources, but also guarantee that the order of writing tuples is maintained,
which may be needed for program correctness.
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Note that in the current implementation, all experiments are simulated in a
strictly sequential order. Although it would make only a slight difference here
(as the SRD experiment time dominates the time for the SFS experiment), in
general a better approach is that the master, while waiting for the results of the
current experiment, already starts preparations for the following experiment:
storage of any required data, the experiment itself and the set of tasks.

The third item is caused by the imbalanced workloads, which are here caused
by the issue that was identified at the end of the previous section: the large
variance in processing time for tasks of the same size. If this issue cannot be
solved, a different accumulation strategy may be needed, which allows workers
that have completed their computations to do part of the accumulation, while
others are still performing observations. This can be as simple as limiting the
number of workers, that perform the parallel accumulation to a subset of size N ,
formed by the workers that first complete their computations. An alternative
is a tree-based algorithm, in which an accumulation step can be performed as
soon as two partial outcomes become available.

Communication time

As a certain (minimal) amount of communication cannot be avoided, and in the
current simulation setup only a minimal amount of tuple space operations are
performed (the only exception being the repeated reading of a particle partition
that is not the worker’s preferred partition, which only occurs incidentally),
the possibilities for decreasing Tcomm seem to be limited. There are however
a few things that can be done. In the current PROOSA simulation software,
communication costs can be lowered by

1. replacing Java’s default serialization mechanism by a custom implemen-
tation: as GSpace uses serialization to send objects (tuples) over net-
work connections, a customized serialization implementation can reduce
the time needed for (de-)serialization and the amount of data to be trans-
ferred. This is expected to have a big impact on the communication costs
of sample partition tuples.

2. using distribution policies with performance characteristics that match
a tuple’s access pattern: for PROOSA, this will require modifications
to the current GSpace implementation to enable it handling large tuples
efficiently.

3. reducing the amount of data to transfer, by compression; this is compara-
ble to the replacement of outcome tuples with sparse tuples (in which only
non-default values are stored). An alternative can be easily implemented
in GSpace, by decorating the streams that communicate over sockets with
a (de-)compression stream, which performs data (de-)compression trans-
parently.

Finally, a few simple extensions to the API of GSpace can have a big impact
as well

4. mput(Vector<Tuple>) for the insertion of multiple tuples in a single op-
eration: the advantage being that the other kernels will only have to be
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notified a single time of this insertion event (which is required as appli-
cation threads may currently be blocked on a read/take operation who’s
template matches with one of the newly inserted ones).

5. remove(t) which removes all tuples matching with t. This operation is
useful for post-simulation cleanup: currently, the P sample partitions are
removed by performing P take-operations which, although the tuples are
stored in the local kernel, are costly because serialization over a socket
connection is used to transfer tuples between the application process and
the local GSpace process. Furthermore, the retrieved tuple is not used
and will immediately be discarded

Computation time

The computation time will be minimal when (i) all the computational work is
perfectly distributed over the available workers and (ii) the most efficient algo-
rithm, i.e. the algorithm with the lowest computational complexity, is used.

Although in the current SRD simulation —where the number of sample par-
titions is chosen equal to the number of workers— a balanced load distribution
exists, and the load balancing strategy is able to achieve this distribution, large
variations in the processing time per task prevent the workers from ending their
computation phase at around the same time. Should the issue —that causes this
variance— not be resolved, increasing the number of tasks (which may require
using the proposed mput operation to be efficient enough) is expected to lead to
more equal computation phases.

The SFS simulation only accounts for a small part of the simulation time, due
to its O(N) computational complexity and the small amount of q value samples
and non-empty bins (a result of the regular structure of the sample: a crystal
lattice). For problem sizes as used in the current simulations, it will therefore
be more efficient to perform the SFS simulation by sequential simulation on the
master, as the communication costs for distribution and accumulation are larger
than the required computation time.
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Chapter 9

Conclusions

In the final chapter, the work described in the earlier chapters will be evaluated,
followed by a number a recommendations for future work.

9.1 Discussion

The (PR)OOSA model

The basis of the simulation software is formed by the OOSA model; when ex-
periments to be simulated are expressed as functions, the OOSA model provides
an object-oriented domain model of functions, in which it should be easy to de-
fine new experiments by only defining the relation between argument and result
values and their corresponding quantities.

The PROOSA model extends OOSA for parallel computation: it proposes a
way to subdivide the computation of an observation (i.e., a single result value
as a function of one of more argument values), in order to distribute the com-
putational work over a number of concurrent processes.

Of course it is hard to predict how well this model suits other experiment
simulations, or even completely different applications, where the work to be
performed can be expressed as a functional relation. However, the chosen ap-
proach of modeling as functions is very general and should be widely applicable.
Furthermore, the resulting domain model should be easy to understand. How
well the proposed parallelization works for other simulations, i.e., whether it is
general enough to apply and how it performs, will require further research.

Parallel simulation of scattering experiments

The PROOSA model was applied to the domain of X-ray scattering experiments;
the simulations that were performed achieved a reasonable speedup, while there
is still room for improvement (see section 8.5 for a number of suggestions).

On a side node, scattering analysis is a problem that lends itself very well for
parallelization. The communication costs are linear with N , the amount of data,
while the computational work is O(N2). Therefore, increasing the value of N
will automatically lead to better performance as the ratio between computation
and communication improves. In practice however, problem sizes will be much
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larger that those used the simulations presented here (which were limited by
time constraints).

Furthermore, the test were performed on a dedicated set of nodes, intercon-
nected by a high speed communication network. It would be interesting to test
the performance of the current implementation on a number of (heterogenous)
machines, connected via a LAN or even the internet.

Tuple space paradigm

An implementation of the tuple space model, GSpace, was used in the parallel
simulation software to provide the communication layer between the nodes.

The concept of tuple spaces turned out to be easy to understand and intu-
itive to use. It is a natural match with the chosen processor farm design, where
the farmer sends out data and tasks as tuples; workers consume and process the
tasks, storing the computed results in tuple space where the master can retrieve
them.

The available implementation of GSpace was able to achieve reasonable com-
munication performance that scaled linearly with the size of tuples; this allowed
good scalability to be achieved in simulations when the problem size exceeded
a certain minimum, which should not be a problem in practice.

GSpace’s concept of distribution policies, which allow a space based applica-
tion designer to select a tuple distribution strategy with performance character-
istics that best match the access pattern in the application, looks very promising.
Unfortunately, issues in the current implementation, mainly with respect to the
handling of large tuples —for which it probably was not designed— made it
impossible to test the effect of distribution policies on performance.

However, performance issues may occur when the program is scaled up to a
larger number of nodes: there is a considerable amount of inter-kernel commu-
nication which is linear with the number of kernels (e.g. when searching remote
kernels for matching tuples, or when one kernel informs the others of the in-
sertion of a new tuple). Not only performance may be a limiting factor to the
number of nodes that can be used effectively: in the replication policies, a lot
of the inter-kernel communication is implemented by O(1) IP multicasting, but
this feature may even not be available when switching to a wide area network
that is needed to accommodate a large number of nodes.

9.2 Recommendations

Besides improvements to the simulation software and tuple space implementa-
tion, of which a number were suggested in the preceding chapter and that would
lead to higher simulation performance, the work presented here leaves room for
further research in a few directions, hoped to be leading to more usability or
extended functionality:

• an inventorisation of typical and widely-used computer experiments, with
respect to the types of the function they compute; this will give insight in
how well the OOSA model and the chosen parallelization method are ap-
plicable in general, and what changes might be required to accommodate
these experiments as well.
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Furthermore, this allows performance testing of experiment simulations
where the ratio between computation and communication is different from
the N2 : N ratio in scattering experiments, or simulations where the
observations cannot be computed independently but require the workers
to coordinate by performing tuple operations.

• automated parallelization: in the current scattering analysis experiments,
parameters supplied by a user are required to determine how the work is to
be distributed over the workers. Ideally, the user should only have to define
the functional relation for the experiment he/she wants to simulate, and
the choice of an optimal distribution (based on an analysis of the computed
function) should be the responsibility of the simulation framework.

• runtime reconfiguration: when switching to larger problem sizes, with
larger running times, or to different environments —for example a LAN/WAN
of heterogenous nodes in order to harvest unused resources— the probabil-
ity of nodes leaving due to failure or a limitation on availability increases.
The current system has no provisions to recover from failure, and the
current requirement of nodes having to remain available is too limiting:
it does not allow to make use of nodes that become available after the
simulation is started, or of nodes that are available for a limited time
only.

• support for larger scales of simulations, both in problem size and number
of nodes. A larger problem size may require more data to be available than
can be stored in (the combined) memory: in this case only a subset of the
data —and the tasks dependent on it— can be made available at one time.
When increasing the number of nodes, the tuple space implementation
might be limiting the number of nodes that can be used effectively. If
these limitations cannot be circumvented, e.g. when they turn out to
be inherent to the tuple space paradigm, alternative methods have to be
sought. An example is to use an alternative distribution for the problem
data, which in the current scattering simulation is responsible for the most
memory usage and communication time, by means of a peer-to-peer file
sharing protocol; in such a setting, workers can obtain (parts of) their data
from each other, avoiding the bottleneck where data is requested from a
single source, and can be an alternative to multicasting which might not
always be available.
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Appendix A

External representation of
class Sample

A.1 BNF Grammar

<SAMPLE> ::= <SYSTEM> <SUBSTANCES> <GEOMETRY>
<CONTENTS>

<SYSTEM> ::= system <SYSTEM ID> ’\n’
<SYSTEM ID> ::= "regular expression for system

identifiers"

<SUBSTANCES> ::= substances ’\n’ { <SUBSTANCE> ’\n’ }
<SUBSTANCE> ::= <SUBST ID> <FORMFACTOR>
<SUBST ID> ::= "regular expression for substance

identifiers"

<FORMFACTOR> ::= <ATOMICSCATTERINGFACTOR> | ...

<ATOMICSCATTERINGFACTOR>::= asf { <REAL> }9

<GEOMETRY> ::= box ’\n’ <BOX SIGNATURE> ’\n’ <SIZES> [

<ANGLES> ] ’\n’
<BOX SIGNATURE> ::= { <LENGTH QUANTITY> }3 ’\n’ {

<LENGTH UNIT> }3

<SIZES> ::= <SIZE X> <SIZE Y> <SIZE Z>
<ANGLES> ::= <ANGLE α> <ANGLE β> <ANGLE γ>
<SIZE X>, <SIZE Y>,

<SIZE Z>, <ANGLE α>,

<ANGLE β>, <ANGLE γ>

::= <REAL>

<CONTENTS> ::= particles <PARTICLE COUNT> ’\n’
<POS SIGNATURE> ’\n’ { <PARTICLE> ’\n’
}

<PARTICLE COUNT> ::= <INTEGER>
<POS SIGNATURE> ::= { <LENGTH QUANTITY> }3 ’\n’ {

<LENGTH UNIT> }3

<PARTICLE> ::= <POS X> <POS Y> <POS Z> [ <SUBST ID> ]

<POS X>, <POS Y>,

<POS Z>
::= <REAL>
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<LENGTH QUANTITY> ::= length

<LENGTH UNIT> ::= ’E’<EXPONENT> m | Å
<EXPONENT> ::= <INTEGER>

A.2 Example of a .sample file

system nacl_cube4096

substances

Cl-1__RHF asf +18.2915 +0.0066 +7.2084 +1.1717 +6.5337 +19.5424 +2.3386 +60.4486 -16.3780

Na+1__RHF asf +3.2565 +2.6671 +3.9362 +6.1153 +1.3998 +0.2001 +1.0032 +14.0390 +0.4040

box

length length length

E-10 m E-10 m E-10 m

+45.024000 +45.024000 +45.024000

particles 4096

length length length

E-10 m E-10 m E-10 m

+1.407000 +1.407000 +1.407000 Na+1__RHF

+1.407000 +1.407000 +4.221000 Cl-1__RHF

+1.407000 +1.407000 +7.035000 Na+1__RHF

+1.407000 +1.407000 +9.849000 Cl-1__RHF

+1.407000 +1.407000 +12.663000 Na+1__RHF

+1.407000 +1.407000 +15.477000 Cl-1__RHF

+1.407000 +1.407000 +18.291000 Na+1__RHF

+1.407000 +1.407000 +21.105000 Cl-1__RHF

... ... ... ...

+43.617000 +43.617000 +23.919000 Na+1__RHF

+43.617000 +43.617000 +26.733000 Cl-1__RHF

+43.617000 +43.617000 +29.547000 Na+1__RHF

+43.617000 +43.617000 +32.361000 Cl-1__RHF

+43.617000 +43.617000 +35.175000 Na+1__RHF

+43.617000 +43.617000 +37.989000 Cl-1__RHF

+43.617000 +43.617000 +40.803000 Na+1__RHF

+43.617000 +43.617000 +43.617000 Cl-1__RHF
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Appendix B

Extending GSpace with
non-blocking operations

To illustrate the minor changes that are required to extend GSpace with non-
blocking versions of the operations to retrieve tuples, the source code of the
blocking take and non-blocking takeIfExists for the Store Locally distribution
policy is included here.

Note that the code fragments used for profiling and verbose (debug) output
were omitted for clarity.

B.1 Blocking take(Tuple t)

public Tuple take ( Tuple template ) {

Tuple r e s u l t = null ;

while ( true ) {

r e s u l t = ds . take ( template ) ; /∗ read from l o c a l dataspace ∗/
i f ( r e s u l t != null ) {/∗ i s the r e s u l t not n u l l ∗/

return r e s u l t ; /∗ yes , re turn i t ∗/
}

/∗ the l o c a l r e s u l t was nu l l , search on the o ther nodes ∗/
r e g i s t e r ( template ) ; /∗ r e g i s t e r f o r n o t i f i c a t i o n s ∗/

/∗ re turn the f i r s t non−nu l l in s t ance ∗/
r e s u l t = ( Tuple ) comm. mul t i Invoca t i onReturnF i r s t ( se t ,

dmClassName , ” externalTake ” , template ) ;
i f ( r e s u l t != null ) { /∗ i s the r e s u l t non−nu l l ? ∗/

return r e s u l t ; /∗ yes , re turn i t ∗/
}

s l e ep ( template ) ; /∗ o therw i s e s l e e p u n t i l a t u p l e i s a v a i l a b l e ∗/
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}

}

B.2 Non-blocking takeIfExists(t)

public Tuple t a k e I fE x i s t s ( Tuple template ) {

Tuple r e s u l t = null ;

r e s u l t = ds . take ( template ) ; /∗ read from l o c a l dataspace ∗/
i f ( r e s u l t != null ) {/∗ i s the r e s u l t not n u l l ∗/

return r e s u l t ; /∗ yes , re turn i t ∗/
}

/∗ the l o c a l r e s u l t was nu l l , search on the o ther nodes ∗/

/∗ re turn the f i r s t non−nu l l in s t ance ∗/
r e s u l t = ( Tuple ) comm. mul t i Invoca t i onReturnF i r s t ( se t ,

dmClassName , ” externalTake ” , template ) ;
i f ( r e s u l t != null ) { /∗ i s the r e s u l t non−nu l l ? ∗/

return r e s u l t ; /∗ yes , re turn i t ∗/
}

return null ; /∗ no matching t u p l e found , t h e r e f o r e re turn n u l l ∗/
}
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