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Abstract

This paper presents a method for closed-loop order reduction of linear sys­
tems. A dynamic system with a Hamiltonian structure is obtained using
optimal control techniques. The resulting linear time-invariant Hamilto­
nian system is then reduced in complexity applying standard reduction
techniques. The method is implemented on illustrative examples.

1 Introduction

Simple controllers are preferred over complex ones as they are easier to imple­
ment and require less resources for their calculations. Simplicity is never a sole
desire as a controller will have to meet certain performance specifications. This
generally conflicts with the desire for simplicity so that trade-offs will have to be
made. A common problem is how to arrive at a simple controller from a com­
plex model for the plant. Three common model-based strategies in designing a
controller of low complexity are graphically depicted in figure 1.

Model
Reduction

Controller synthesis

Direct

Controller synthesis

Controller
Reduction

Figure 1: Model-based strategies to obtain a low order controller

Between these methods, direct and indirect methods can be distinguished. Be­
tween the indirect methods, better results are obtained when a high-order con­
troller is designed for the high-order plant model. This is often computationally
very demanding if not impossible for high-order plant models. First reducing the
open-loop plant model and then designing a controller for it is computationally
a lot more friendly, but there is no direct relation between steps in the design
process and furthermore, potentially critical information is lost early on in the
design process. A good approximation of the plant dynamics in open-loop is not
likely to be but a decent approximation for the plant dynamics in closed-loop.
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The benefits of direct methods are that there is a direct insight to the dynamics
that are important in closed-loop, but only few of these methods exist today.
More detailed information regarding the subject of model reduction for control
can be found in [5].
In this paper, a new direct method is presented. The presented method exploits
Hamiltonian structures &'J are obtained in optimal control. The Hamiltonian sys­
tem describes closed-loop behavior of both plant and controller. Consequently,
the Hamiltonian system describing the closed-loop is reduced using standard
methods for linear time-invariant (LTI) models. The rest of this paper is orga­
nized as follows. In section 2 an introduction to Lagrangian theory for optimal
control is be given for both the continuous time and the discrete time case.
For both these cases, the optimality conditions can be written to the form of
a dynamical system. Section 3 further discusses the dynamical system for the
continuous time case. A linear time-invariant (LTI) system is constructed that
generates optimal control. Consequently, this LTI system is reduced in com­
plexity using standard model reduction techniques. Section 4 presents results
via two illustrative examples, where the techniques as presented in this paper
were implemented. Finally, sections 5 and 6 present conclusions and recommen­
dations.

2 Lagrangian theory for optimal control

This section is concerned with Lagrangian theory for optimal control. In optimal
control, an input vector is searched for that minimizes a specified cost function,
equality constrained by the system's dynamics. Using duality, the optimization
problem can be equivalently formulated in terms of an augmented cost function.
In the following it will be shown that from the optimality conditions, a system
of difference/differential equations results which can be rewritten as a dynam­
ical system. Extensive information on optimal control can be found in 14] and
information on constrained optimization in general can be found in [2].

2.1 Discrete time

Consider the case where we would like to drive the system's state from an initial
state to the origin in an optimal way. Let the system's dynamics be governed
by the following equation;

Xk+l = AXk + BUk ; Xkl = Xo
k=O

where x E jRn are the system's states, U E jRffi are the system's inputs and Xo is
the system's initial state. In linear quadratic regulation (LQR), a cost function
of the following form is used to specify optimality;

N-l
J(x,u) = ~ L [xIQxk +uIRuk] + ~ X~EXN

k=O

X = (xo, , XN)

u = (Uo, ,UN)
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where N > 0 is the control horizon, E = E T > 0 reflects the terminal cost, and
Q ~ 0 and R > 0 are weighting matrices. Optimal control is defined as the
input vector U that minimizes the function J given the system's dynamics and
the initial state. The mathematical formulation of finding optimal control in
primal form then becomes;

I

N-l

Popt = ~,~ J(x, u) = <I>(xd k=l~ {; F(xk, Uk)

subject to;

Xk+l = AXk + BUk ; Xkl = Xo
k=O

where

F(Xk, Uk) = ! [xJ QXk + uJRUk]

<I>(Xk) = ~xJEXk

This is a standard equality constrained optimization problem which, using du­
ality, can be reformulated as an equivalent optimization problem;

f(A) = min L(x, u, A)
x,u

= ~,i~~ [F(Xk, Uk) + AJ+l [AXk + BUk - Xk+l]] + <I>(Xk)lk=N

= ~,~~ [Hk - AJ+IXk+l] + <I>(Xk)lk=N

Hk = F(Xk, Uk) + AJ+l [AXk + BUk]
A= (AO, ... , AN)

where L(x, u, A) is called the Lagrangian and f(A) is called the dual cost.
H(Xk' Uk, Ak+l), or simply Hk, is called the Hamiltonian and it represents an
energy function. The dual problem amounts to maximizing f(A) over all possible
sequences A;

Dopt = max f(A)
).

A= (AD, ... , AN)

By construction we have that Dopt :s: Popt , where the difference Popt - Dopt is
generally referred to as the duality gap.
The optimum of the dual problem exists and is, say; (x*, u*, A*). Necessarily it
satisfies \7L(x*, u*, A*) = O. Moreover, if some assumptions hold, (x*, u*) will
be a solution to the primal optimization problem. These assumptions include
that A is invertible, the duality gap equals zero and that the Hessian of L is
positive at (x*, u*, A*).
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Differentiating L with respect to its independent variables leads to the following
conditions that have to hold at the optimum;

(state equation)

(costate equation)

(stationarity condition)

these equations may be expressed as the following system;

which can be rearranged to equations (1) and (2);

A-1BR-1BT

AT +QA-1BR-1BT (1)

(2)

The resulting system is an autonomous system with two point boundary condi­
tions, namely we know the state x at instant i to be XQ and we know the costate
>. at instant N to be EXN. Assume a new basis for the system as follows;

and

then

This results into

~ )(A+BR- 1 B T A-TQ
_A-TQ

(
X~+l ) = ( A - BR- 1B T A-T [?k - QJ
0 ..+1 x

With boundary conditions;
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Equation (3) represents the same autonomous system with two point boundary
conditions as does equation (2), but in a different coordinate system, where IJ*

is independent of x* only if;

T [ [T]-1 T ]X = Q + A PHI - Pk+1B R + B Pk+1B B PHI A - Pk = 0

PN=E

(4)

Equation (4) is known as the Riccati control difference equation which in the
infinite horizon case (N ---+ (0) reduces to equation (5), the algebraic Riccati
equation;

(5)

The coordinate change as used before already gives;

hence

(6)

(7)

where Pk is obtained from the solution of (4) and IJk equals 0 for all k. This
is due to the fact that the IJ- "system" is antistable and thus IJN = 0 implies
IJk = 0, V k. Therefore equation (6) reduces to;

Uk = _(BTPk+lB + R)-1 B TPk+lAxk

= -KkXk

Equation (7) implies that the optimal control may be implemented as a linear
feedback on the states.
The Hamiltonian can now be restated as follows;

H(Xk' Uk' '>"k+l) = ~ [Xk
T

QXk + Uk
T

RUk] + '>"k+l T [Axk + BUkJ

1 *TQ 1.>..* TBR-1BT.>..* .>..* T [A * BR-1BT.>..* ]= "2Xk Xk +"2 k+l k+l + k+l xk - k+l

1 *TQ 1.>..* TBR-1BT.>..* .>..* TA *= "2Xk Xk -"2 k+l k+l + k+l xk

= ~XkT [2Pk - K"[ RKk - Q] Xk

2.2 Continuous time

We may define an analogous problem for the continuous time case. Consider
again a system's dynamics of the following form;

x(t) = Ax(t) + Bu(t) ; x(O) = Xo
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With system's states x(t) E IRn , inputs u(t) E IRm and initial state Xo respec­
tively. Then define a continuous time cost function as follows;

t f

J(x,u) = ~ j xTQx+uTRudt+~ XT(tf)Ex(tf)

to

x = x(t), t E [to, tf]

u = u(t), t E [to, tf]

Minimization of J delivers optimal control trajectory u* for the specified dy­
namical system. The mathematical formulation of the optimization problem in
primal form then becomes;

tf I
Popt = ~\~ J(x, u) = j F(x, u) dt + <I>(x)

to t=t f

subject to;

x(t) = Ax(t) + Bu(t) ; x(O) = Xo
where

F(x,u) = ~ [xTQx+uTRu]

<I>(x) = ~ xTEx

This is a standard equality constrained optimization problem which, using du­
ality, can be reformulated as an equivalent optimization problem;

f(.x) = min L(x, u,.x) = min jt
f

F(x, u) +.xT [Ax + Bu - x] dt + <I>(x) I
X,'U X,'U

to t=t f

~ ':'.\? (!,F(x, u) + AT [Ax + BU]) - (A, x) +<!>(xt"

~ ':'.\? (1, B(x, u, A)) + (\, x) + {A, x} I,~:((_~ ),(..~x) ) } I,~"

H(x, u,.x) = F(x, u) +.xT [Ax + BU]

Where L(x, u,.x) is called the Lagrangian and f(.x) the dual cost, C·) denotes
an 12 type inner product and (C .)) denotes an Euclidean type inner product.
H(x, u, .x) is called the Hamiltonian and it represents an energy function. The
dual problem is now defined as follows;

D opt = maxf(.x) ~ Popt
A

As in the discrete time case, at the optimum all partial derivatives of the La­
grangian have to equal zero;

VL(x*,u*,.x*) =0

6
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(state equation)

(costate equation)

(stationarity condition)

Furthermore, we assume that the duality gap equals zero and that the Hessian of
L is positive at the optimum. Equation (8) leaves us to the following conditions;

aL A' B' ., 0 A' B' .,- = x + u -x = ------> x + u =xa).. ,
aL = aH +,\' = 0 ------> Qx' + )..,T A = _,\'
ax' ax'
aL = aH = 0 ------> Ru' + B T ).., = 0
au' au'

which may be written down as the following system;

(9)

This is an autonomous system with two point boundary conditions, for which
we may define a new basis as follows;

and

I
-P ( ~) = (

I
-P

o 0
-F 0

which gives;

iJ = -Pi: + ,\ - Fx

so

o 0
-F 0

This results into;

I 0
-P I )( A

-Q )( I 0
P I )] ( ;: )

With boundary conditions;

-BR-1BT

-(A-BR-1BTp)T ) ( ;:) (10)

(
x(O) ) = ( xo )
0'(tf) 0

Equation (10) represents the same autonomous system with two boundary point
conditions as does equation (9), but in a different coordinate system, where 0"

is independent of x' only if;

x = AT P + P A - P B R- 1B T P + Q + F = 0

P(tf)=E

7
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Equation (11) is known as the Riccati control differential equation which in the
infinite horizon case (tf ---> 00) reduces to equation (12), the algebraic Riccati
equation;

x = AT P + PA - PBR- 1B TP + Q = 0

The coordinate change as used before already gave;

),* = Px* + IJ*

hence

u* = _R-1BT),*

= _R- 1B T [Px* + IJ*]

(12)

with P the solution to the Ricatti equation as stated in (11) and where IJ* equals
odue to the fact that the IJ- "system" is antistable and thus lJ(tf) = 0 implies
IJ = 0 V t. Therefore the above reduces to;

u* = _R-1B TPx* = -Kx*

which implies that the optimal control may be implemented as a linear feedback
on the states.
The Hamiltonian can now be restated as follows;

H(x*, u*, ),*) = ~ [x*T Qx* + u*T Ru*] + ),*T [Ax* + Bu*]

= ~x*TQxT + ~),*TBR-1B T ),* + ),*T [Ax* _ BR-1B T ),*]
2 2

= ~x*TQxT _ ~),*TBR-1B T),* + ),*T Ax*
2 2

= ~x*T [Q + 2PA - K TRK] x*

3 Model reduction on the Hamiltonian system

In this section, the order of the Hamiltonian system as constructed in the pre­
vious section will be reduced using standard model reduction techniques. As
these techniques are very well known they will be discussed quite briefly. More
detailed information can be found in e.g. [1].

3.1 Unconstrained Hamiltonian system

In this section, we consider the continuous time formulation of the Hamiltonian
system. As was presented in section 2, a system of differential equations were
obtained from the optimality conditions. This system describes the evolution of
state x E jRn and costate), E jRn in time, both in closed-loop. Provided that P is
time-invariant, we may regard the system to be an autonomous LTI system that
incorporates the closed-loop dynamics. A time-invariant P can be obtained by
solving equation (12) (equation (5) for discrete time). n stable and n antistable
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poles are present, or better: if w is an eigenvalue of the state evolution matrix
in equation (9) than so is -w ( w- 1 for discrete time). In order for the closed­
loop behavior to be bounded over an infinite horizon, it was shown that state
and costate have to be linearly dependent via '\(t) = Px(t). Furthermore, it
was shown that the optimal control u*(t) was a linear projection of the costate.
Therefore, we shall introduce the following LTI system (13) with an output
u*(t), and an input v(t) in order to properly initialize the state and costate.
The latter is taken care of if we choose v(t) = xoo(t), under the assumption
that L,H contains no energy initially.

(13)

u*(t) = ( 0 -R-1B T ) ( x*(t) )
,\* (t)

which may also be denoted in compact form by;

The resulting Hamiltonian system is a linear time-invariant (LTI) system. There­
fore, standard reduction techniques for these kind of systems could be investi­
gated. Because L,H is non-minimal due to the chosen mapping from input to
state, we shall first discuss its minimization.
In section 2.2, a similarity transformation based upon the solution of the Ric­
cati equation was presented. If we perform this transformation on L,H we obtain;

(
x*(t)) = (A-BR-1BTP
iJ*(t) 0

-BR-1BT

_ (A - BR- 1BT p) T

-R-1 B T ) ( x*(t))
a*(t)

) (
x*(t) ) (I)
a*(t) + 0 v(t)

From this it is clear that the a states are uncontrollable, which we desired be­
cause of their anti-stability. A minimal realization of L,H may now be obtained
by truncating the uncontrollable a states, which yields the following stable sys­
tem;

(14)

This system will serve as a departure point for model reduction in sections 3.1.1
and 3.1.2.
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3.1.1 Reduction via modal truncation

In this section, the stable minimal Hamiltonian system ~H as presented in equa­
tion (14) is reduced by implementing modal truncation methodology. Prior to
reduction, a similarity transformation will be performed on ~H where transfor­
mation W is such that;

o

Where D is a diagonal matrix containing the modes or closed-loop poles of ~H in
Jordan blocks. The modes are ordered from slow to fast; O<Re(wl)::;Re(wz)::;
... ::;Re(wn ). After transformation, the equivalent representation of ~H in the
new coordinate system is as follows;

which may be partitioned as follows, where D11 E IRkXk ;

As system dynamics are dominated by slow modes rather than fast modes the
system, ~H can be simplified by keeping only the first k ::; n modes and trun­
cating the other n - k 2: O. This results in the following reduced order system
of order k;

(15)

The system as defined in equation (15) is both stable and minimal, and the
output it is able to generate is a subset of the output that (14) is able to
generate.

3.1.2 Reduction via balanced truncation

Another reduction method considered for reducing the Hamiltonian system is
balanced truncation, which is based upon the Hankel singular values of ~H'

Using information from both the observability and reachability gramians, the
state space is parameterized such that states are ordered according to the Han­
kel singular values of the system. Hankel singular values provide direct insight
to both the observability and reachability of corresponding states. A kth or­
der approximation may consequently be obtained by preserving the first k < n

10



states and truncating the remaining n - k 2: a states of the system in balanced
form. This reduced model preserves the k best reachable as well as observable
states.

_v_(t-)----.~I__~_H_ u*(t) ~1__~G_-y_*_(t..~

Figure 2: Frequency weighting of u*(t)

A more advanced balancing-based reduction technique is a frequency weighted
balanced truncation. Adding frequency weighting is an interesting option here
since we actually prefer a good approximation of y* (t) over one of u *(t) itself
(figure 2). In figure 2, G denotes a model describing the dynamics of the plant
to be controlled. By adding a model for the plant dynamics as an output fre­
quency weighting, the internal balancing of the controller is tailored to the plant
to be controlled. Detailed information on frequency weighted balancing can be
found in [3]. Once a description of ~H in frequency weighted balanced form is
obtained, it may be truncated to a lower order. This yields an approximated
version of our controller which takes into account the behavior of ~H which is
most efficient and desirable for the control of G. An example may be found in
section 4.

4 Illustrative examples

The methodology as presented in section 3.1 is illustrated on two examples. In
both these examples, a Dirac-pulse J(t) multiplied by Xo was used as an input
signal for the Hamiltonian systems. Furthermore ,the value of the weighting
matrix Q in the cost functions was taken to be C T C, while the value of R ~ a
was varied. As the value of weighting matrix R decreases for a fixed value
of Q, the closed-loop poles shift further away from the imaginary axis in the
complex plane. However, for the following examples illustrative values of R were
determined. In the following examples, reduced order Hamiltonian systems were
used to generate reduced order inputs for the full order plant.

4.1 A 2nd order system

For our first example, we consider a single-input single-output (8180) system
with the following transfer function;

G(8)- 8+1
- (8 + 10)(8 + 0.1)

Control in feed-forward was performed on this system, meaning the only input
of the controller is the initial state of the system. In figure 3, results are plotted
where G is driven to the origin of its state space from a given initial condition
for a value of R = 0.001. Results for a similar test with a value of R = 0.1
are depicted in figure 4. Both figures depict both the truly optimal y*(t) and
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u*(t) alongside results obtained with controllers reduced to order 1. In both
figures, reduction method 1 refers to modal truncation as described in section
3.1.1. For method 1, the added 'slow' and 'fast' indicate which eigenmode was
kept in place. Method 2 refers to balanced truncation as described in section
3.1.2 and 'FW' denotes plant frequency weighted balancing whereas no addition
refers to plain balancing.
As becomes clear from especially figure 3, only the true optimal control and the
frequency weighted reduced version thereof are able to drive the system to the
origin in a reasonable amount of time. This originates from the fact that the
other controllers are unaware that there are multiple states which also interact.
As the feed-forward controllers do not address the energy contained in the other
state, the energy has to be dissipated in a natural way via the dynamics of G.
By introducing frequency weighting in the reduction, the reduced controller has
information about the open-loop plant behavior and is able to act accordingly.
F\lrthermore, by introducing frequency weighting, we obtained a better fit on
y(t) rather than on u(t), which is more desirable in practical applications. With
no frequency weighting applied, the reduced controller may use additional free­
dom in trying to fit dynamics of u(t) which have little influence on y(t). This
effect can also be observed in figure 3.

4.2 A binary distillation column

The second system used for illustrating the methodology is a more complex
plant model. We used a linearized time-invariant model of a stabilized distilla­
tion column with 41 stages. A detailed description of this originally non-linear
model can be found in [61. A schematic representation of the distillation col­
umn with nomenclature is depicted in figure 5. Flow units are in kmol/min,
holdups in kmol, and compositions in mole fraction. The model contains two
proportional controllers in order to stabilize the levels using the product flows.
In this study, we consider only VB and L T to exert control over only the product
compositions XB and X D . The resulting plant model is a stable LTI model with
2 inputs, 2 outputs and 82 states. The value of R in the cost function was taken
to be 0.001 . [2, with h being the 2x2 identity matrix.
For a reduced order controller of the distillation column, only reduction method
2 was considered because of the complexity of the plant model and the diffi­
culty in deciding which modes to truncate. In figure 6, feed-forward results are
depicted where the Hamiltonian system was reduced to an order of 2. As can
be seen, there is some difference in the control signals but there is virtually no
difference between the induced plant outputs.

5 Conclusions

In this paper, a new direct method for closed-loop controller reduction was pre­
sented. A Hamiltonian system was obtained using Lagrangian theory for optimal
control. This Hamiltonian system can be represented as a normal LTI system de­
scribing the complete closed-loop behavior of both plant and controller. Modal
truncation and balanced truncation were used to obtain low-order controllers.
The methods were implemented in two different examples in which it was ob­
served that between the alternatives presented, frequency weighted balanced
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truncation delivers the most desirable low-order controller. Using frequency
weighted balanced truncation on the Hamiltonian system of a distillation col­
umn, a controller of order 2 was obtained that induced plants outputs which
were nearly indistinguishable from those induced by the optimal controller of
order 82. The methods as presented in this paper therefore seem to be a new
and viable alternative to existing techniques. In general, reduction methods
that allow frequency weighting are expected to produce low-order controllers
that perform better than ones obtained with non-frequency weighted reduction
techniques. This originates from the desire to have a low-order controller that
produces plant outputs resembling plant outputs induced by the optimal con­
troller rather than one that produces control signals resembling optimal control
signals.

6 Recommendations

Results obtained in this paper might further improve by using a frequency
weighted optimal Hankel norm approximation to reduce the Hamiltonian sys­
tem. Optimal Hankel norm approximation is an excellent candidate to reduce
the Hamiltonian system as the Hankel norm operator maps past inputs to fu­
ture outputs. This fits perfectly with the character of the Hamiltonian system
as this system generates optimal control from an input signal that is only non­
zero at t = to. Frequency weighted Hankel norm approximation is expected to
have similar benefits as are described above for frequency weighted balanced
truncation.
The reduced order controllers in this paper were provided feed-forward control
to the plant. Placing a reduced order controller in feed-back with the plant will
improve robustness and performance of control.
Currently only the optimization problem was only constrained by the plant's
dynamics. Inequality constraints could possibly be added to the problem to
provide low-order (sub-optimal) constrained control.
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