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Summary 

Dynamic systems often have to follow a desired trajectory with a certain accuracy. There are many 
controls methods available to do this. Some of these methods are adaptive control and robust 
control. A disadvantage of the adaptive controllers is that stability cannot be always proved if the 
model, which describes the system, contains model errors. However, as a consequence of un- 
modelled dynamics, measurement noise and parameter variations the model will always contain 
model errors. The important property of a robust controller is that it is less sensitive to model 
errors. 
In this report a robust controller based on the singular value (u), which was introduced in 1982 by 
Doyle [6], has been presented. The controller design is based on a linear model. The structure of 
the model errors can be taken into account during this design and the controller should also 
perform in the presence of model errors. In this study attention has been paid to the determination 
of the model errors as a consequence of unmodelled dynamics and parameter variations. The 
research has been carried out by simulations and experiments. A rigid system, an RT-robot, and a 
flexible system, an xy-table, have been simulated and the controller has been implemented in the 
xy-table for experiments. The results of the p-controller have been compared to the results of an 
M,-controller, also designed with robustness specifications, and a PD-controller. 
Simulations of the RT-robot have shown that the p-controller is more robust with respect to 
parameter variations than the PD- and Ha-controllers. In the case of the unmodelled dynamics the 
,u-controller is not more robust with respect to these dynamics than the H,- and PD-controller. 
Simulations of the xy-table only show a better tracking accuracy for the ,u-controller, but no 
increase of the robustness. During the experiments with the xy-table the ,u-controller does not 
perform better than the PD- and €I,-controllers. 
Summarizing, it can be concluded that for the systems used in this research the ,u-controllers 
doesn’t perform satisfactory, which implies that further research into ,u-control will be necessary. 
Especially, attention has to be paid to the determination of the structure of the model errors. 
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structured singular value 
absolute value 
infinity norm 
the set of nxm real matrices 
the set of nxm complex matrices 
matrices, A, sometimes a scalar 

inverse of A 
complex conjugate transpose of A 
perturbed matrix 
c0lUIllI-l 
i'th term of a or scalar 
estimate 
desired, tracking error a-ad 
first order time derivative 
second order time derivative 
minimum singular value of A 
maximum singular value of A 
structured singular value of A with respect to structure A.. 
set of .. bounded perturbations 
set of .. normalized perturbations 
set of mixed complex, real, block-diagonal perturbations 
set of normalized mixed complex, real, block-diagonal perturbations 
performance block 

kìil§Pi;o§e Of A 

Some important matrices and functions 

G 
K controller 
A perturbation matrix 

WdS) 

WAS) 
S(S) sensitivity function 
T(s) complementary sensitivity function 

general system of the interconnection structure 

weighting function which reflects the requirements 
weighting function which reflects the uncertainties (model errors) 
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Chapter 1. Introduction 

In this report some controllers for dynamic systems will be considered and compared. Often the 
system9s end-effector has to track a desired trajectory with a tracking error which is smaller than 
the maximum permitted tracking error. Generally, a controller design is based on a model of the 
dynamic system or the model is a part of the controller. If the model corresponds to the system a 
controller can be designed such that the tracking error will be zero. However, in practice, the 
model will never exactly correspond to the system. There will always be model errors like: 

1. 
2. 

Uncerhinties in the m ~ d e l  parameters, e.g. not exactly h o m -  masses, spring constantss, 
damper constants. 
Model structure uncertainties or higher order dynamics. For example a system is often 
considered stiff while there could be flexibilities which have influence on the system 
behaviour. Another example is unmodelled motor dynamics. 
Measurement noise, which is often not modelled, but which could also cause tracking errors. 3. 

There are many methods to control dynamic systems. In some cases adaptive controllers perform 
well (small tracking errors), but stability cannot always be proved if the model contains model 
errors. In this study robust controllers will be used to control the system. Robust means that the 
controller is less sensitive to model errors caused by for instance parameter variations and 
unmodelled dynamics. The controlled system is not only required to be robust to model errors, but 
it also has to perform well. In other words robust-performance for the controller is required. 
For linear models several robust controller design methods are available. One of them is the H,- 
design method. This method takes the model errors into account during the controller design. The 
only restriction for these model errors is that they are norm bounded. A disadvantage of this design 
method is that in multivariable design the obtained condition for the robust performance can be 
arbitrary conservative, so that the resulting design is far from satisfactory. 
Usually, the model errors have some structure. The H,-control design method does not take into 
account this structure. For this reason the notion of Structured Singular Values @) has been 
introduced [6]. The p-synthesis is a control design method based on this notion and takes the 
structure of the model errors into account. For this reason the controller design can be less 
conservative than an H,-controller design. The performance, robust stability and robust performan- 
ce can be written in p-terms (chapter 2). The p-synthesis design method has some problems: 

~ 

I. 

2. 

How to compute the p-values? These values cannot always be exactly computed. In 
appendix A a summary of the p-computation is given. 
The p-synthesis design method and also the H, design method require a linear model descrip- 
tion of the system. This means that a nonlinear model of the system has to be linearized. In 
this research the nonlinear model will be linearized by a state feedback. As a consequence of 
model errors this feedback linearization, if it exists, is usually not exact, so that the obtained 
system still has to be linearized along a nominal trajectory. Because the nonlinear model 
contains model errors, the linear model will also contain model errors. More about the 
feedback linearization in chapter 3 and appendix B. A method how to quantify these model 
errors will also be considered in chapter 3. If a linear model exists it has to be put into a 
general framework, which is used for the analysis and synthesis. This framework is 
described in chapter 2. 
It is a problem to determine the model errors. Comparing the model used for the controller 
design to a more advanced model can be a way to determine these errors. Another way is 
identification of the model errors. For example information of (former) experiments can be 
used to estimate the model errors. An analysis in the frequency domain can also be very 
useful. However, the designer has to decide based on his knowledge of the system how to 
determine the model errors. The determination of the model errors is obviously an important 

3. 
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part of the controller design. When the model errors have been obtained they also have to be 
put in the general framework. 

In chapter 3 a description of an RT-robot is given. For this robot a p-controller, an Ha-controller 
and a PD-controller will be designed and compared with each other. Simulations will be carried 
out for two types of perturbations (model errors). First, the motor dynamics (unmodelled higher 
order dynamics) and secondly, variations in the end effector mass are considered as uncertainty. 
In chapter 4 a PD-, an H,- and a p-controller will be designed for an xy-table, which is a flexible 
manipuiator. For the controller desigm a simple Ifnear model, -~6thout flexibiGties will. be wed. The 
flexibility is considered as a model error. The designed controllers are compared with each other 
by means of simulations. 
In chapter 5 the controllers designed in the previous chapter are implemented in the actual xy- 
table. The flexibility of the xy-table can be changed by varying the stiffness of a component of the 
system. Experiments will be carried out for several values of the stiffness. The controllers are 
compared with each other. The experimental results will also be compared to the simulation 
results. 
In chapter 6 the conclusions based on the experimental and the simulation results are presented. 
Recommendations for further research into the p-control are also given. 



Chapter 2. Theory of psynthesis 

2.1 Introduction 

In this chapter, first a general interconnection structure usually used for the p-synthesis and the 
Linear Fractional Transformation will be introduced. Further, the ,u-analysis and synthesis are 
considered. The conditions for the performance, robust stability and robust performance presented 
in the analysis part will be compared to the expressions obtained for the Ha-analysis of a SISO 
system. ïïiis is done to better comprehend the complex expressions. For the synthesis part, the 
controller design, a currently used method, will be considered. This method is the D-K iteration. In 
section 2.3 two types of perturbations will be considered. These perturbations can represent the 
model errors caused by unmodelled dynamics or parameter variations. 

2.2 General interconnection structure and Linear Fractional Transformation 

d -  
V 

U 

Figure 2.1 The general interconnection structure. Figure 2.2 Linear Fractional Transformation descriptiön- 

As already stated in the introduction a general framework is used for p-analysis and p-synthesis. 
This framework is illustrated in figure 2.1. Any linear interconnection of inputs, outputs, com- 
mands, perturbations and a controller can be rearranged to match this diagram. The general system 
G represents the model of the system to be controlled and also contains the weighting functions 
which reflect how the uncertainty (model errors) affects the system. K represents the controller. A 
represents the perturbations as a consequence of the model errors caused by unmodelled dynamics 
and parameter variations. The inputs are v, feeding back the perturbations into the system, d, 
consisting of system inputs and disturbances and u, the controller outputs. The three outputs are z, 
the input to the perturbation matrix A, e, the output signals of interest and y, the controller inputs. 
The p-analysis is a method for analyzing the performance and robustness properties of feedback 
systems. For the robustness analysis the controller K can be incorporated in G, because in that case 
the controller is known. The diagram of figure 2.1 now reduces to that in figure 2.2, with 
M = F,(G,K). F,(G,K) is called a Linear Fractional Transformation on G by K [3, 81. The subscript 
1 on Fii pertains to the "lower" loop of G which is closed by K. The transfer function from the 
input d to the output e can be also expressed as an LFT: 

e = Fu(M,A)d = [M,+M2,A(I-M,,A)-~MI2]d 
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The subscript u on F,, now pertains to the "upper" loop of M which is closed by A. For the robust 
performance analysis the block diagram of figure 2.2 has to be extended with the performance 
specifications. This is described in section 2.4. In the next section first, a short review of the 
perturbations is given. 

23 Types of perturbations 

In this report two types of perturbations are used to describe the model erïoïs 

a. Real valued perturbations. The scalar real valued norm bounded perturbation .h, is a set of 
real numbers. The only constraint on the elements of the set is that their absolute value is 
smaller than or equal to a real number 6. These perturbations can be used for parametric 
uncertainty. The set of the perturbations is defined as 

Ar = {AIA E [-a, +a], 6 E R'} 
normalized BAr = { A l a  E [-l7 +i]} 

b. Complex valued perturbations. The pxq complex valued norm bounded perturbation A, is a 
set of pxq frequency dependent complex matrices. The only constraint on the matrices is that 
they have a frequency dependent bound 6, on their maximum singular value (a(.)). These 
perturbations can be used for unmodelled dynamics, e.g. motor dynamics, higher order 
dynamics. The set of complex perturbations is defined as 

Ac 
normalized BA, 

= {A I ~(A(o)) s 6,.(0), A(o) E Qxq7 6,(0) € W', V O} ~ 

= {AIA E Ac, O(A) 5 i} 

The perturbations can occur in a variety of structures. Usually the structure is block diagonal, 
because of the following reasons (refer to [li]): 

1. 
2. 

Connections of LFT's always lead to a new LFT with a block-diagonal structure. 
An LFT which describes the uncertainty in one subsystem may be (block-)diagonal itself. 

The elements of the block diagonal perturbations can appear in special forms. In this report the 
elements are always member of BAr or BAc. Some interesting block forms, which are used are 
represented. 

Real repeated scalar blocks 

A, = {AlA = 6 1 , 6  E W} 
B& = {AlA E A,-,., 6 E [-1, +1]} 

Real non-repeated scalar blocks 

A, = {AlA = diag{6,,6, ,..., a,,}, 6,,6, ,..., 6, E W} 
BA, = ( A ~ A  E &, 6,,6, ,..., 6, E [-I, +i]} 
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Full complex blocks 

L\, 
BA, 

= {AIE(A(o)) s O c ( ~ ) ,  A(w) E F", 6,(0) E Lp', t/ O} 

= {A IA E A@ 3A) s I} 

General block-diagonal perturbation 

The combination of the block structures above leads to the definition of a general block-diagonal 
perturbation Ab [3, 61. 
Two integers S and F represent the number of repeated scalar blocks and the number of full 
blocks, respectively. To bookkeep their dimensions the following positive integers are introduced 
rl7...,rS; m17...,mF. The i'ih repeated scalar block is rimi7 while the j'th full block is mjxmj. 
The associated block-diagonal perturbation Ab C c" is given by 

This block-diagonal perturbation is also used in appendix A for the computation of the structured 
singular value. 

2.4 p-Analysis 

Robust Stability 

Figure 2.5 An interconnection structure for robust stability. 

For robust stability analysis only the blockdiagram of figure 2.5 has to be considered. 
Define RH, as the set of all real stable proper scalar transfer functions and define RH,"" as the 
set of all nxn matrices with entries in RH,. There are two restrictions on the framework within 
which p-analysis can be applied 

I. M,,(s) E RH,"" 

2. The kqxkq block-diagonal elements of Ab are subsets of RHm$"g 
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The first demand requires that the controlled system under consideration is nominally stable. The 
second demand is satisfied by requiring that A only has norm bounded perturbations as its elements 
(A E BAb). The definition of ,u is based on the small gain theorem. 

Small gain theorem [li]: 
Let M,,(s) E RHmmXn and A E BAf 
The feedback structure in figure 2.5 is internally stable iff 
det(I-AM,,&jo)) * O Y A E Bb, o E (-w, 80) iff 
SUP { q M l l ( j W  1, o E (-9 q 

In another notation this means I IM,,(jw)l lm e 1. 
This condition is necessary and sufficient for robust stability for unstructured perturbations (A E 
B A J .  However, if the perturbation is structured (A E BAb), then the condition is only sufficient, 
since B h  C BAb. For these types of perturbations the ,u robust stability theorem based on the 
structured singular value ,u can be used. The definition of the structured singular value is given in 
appendix A. The theorem is as follows [li]: 

,u Robust stability theorem 
Let M,,(s) E RHmmXn and A E BAb 
the feedback structure in figure 2.5 is internally stable iff 
det(I-AM1,(jw)) # O V A E BAb, w E (-a, CU) iff 
SUP ~ * b ( M i i c i W ) ) )  1, 0 E (-9 m) 

Or in a simple notation I IMl1(jw) I 1, < 1 for A E BA,,. 

The singular value in the small gain theorem can be computed easily and exact. The structured 
singular value (E) cannot be always computed exact. This value has often to be approximated, see 
appendix A. 
In the case of a SISO system a similar condition for robust stability exists. A SISO system is 
robustly stable for AOW), a multiplicative uncertainty with I IA(jo)I lm e 1, if and only if 
~ ~ M l l ~ ~ m  = IIW,(jo)TTg'o)l Im < 1. Where Tow) is the complementary sensitivity function, the 
response of an output signal to a reference signal. In figure 2.4 the complementary sensitivity 
function is defined as the transfer function from r to y. W,(jo) is a weighting function which 
represents the uncertainty profile of the system. The multiplicative uncertainty is defined as follows 

with B(jo) = The nominal plant model 

&o) 
W,(jo) = Weighting function which represent the uncertainty profile of the plant 

A(jo) 

= Set of possible plants 

= Scaling factor on the magnitude of the perturbation (varies between O and 1) 
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r 3 e >  - K u >  P . Y, 

Figure 2.4 Single loop feedback system 

Robust gegormance 

Robust stability of a control system is the first requirement that has to be satisfied. However the 
system's performance specifications have to be abo fulfilled. These specifications could be for 
example small tracking errors or limited control efforts. The ,u-analysis requires that the perform- 
ance specifications are stated in the frequency domain. The performance specifications can be 
handled by incorporating two frequency dependent weighting functions, W,, and W12, which 
reflect these specifications, into the pinterconnection structure, figure 2.5. 

n 

U 

Figure 2.5 ,u-interconnection stnicture with Figure 2.6 Robust performance in a robust 
performance Specifications. stability framework. 

Now d' and e' become signals which are a member of an unity set of signals. The set used in the 
~ . - "  - - -- - - . - - - . - panalysis is the set ot 111 H2 norm bounded signals I l l ] .  

BP = W ) I X ( S )  E H2, I Ix(s>l12 5 1) 

In figure 2.6 the weighting functions have been embedded into a stability framework. In this view 
robust performance analysis is exactly equivalent to robust stability analysis, the perturbation now 
consists of an uncertainty block and a performance block. The performance block A, is a full 
block. Note that even if the uncertainty is unstructured the equivalent robust stability problem 
(robust performance problem) still has structure, because of the diagonal structure of the feedback 

Nominal perjformance (A=O) now is satisfied if and only if I IQz2 I lm 6 1. This means for an 
input signal in BP the output signal is also in BP. According to the small gain theorem this is 
equivalent requiring that the loop in figure 2.3 is stable for all A E B& with M,, replaced by Q22. 

loop (A, A*). 
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U 

In the case of a SISO system a similar expression exists. For a SISO system nominal performance 
is achieved if llQ2211 = IlW,(jo)S(jo)ll, e 1. Where S(jo) is the sensitivity function, the 
response of an error signal to a input signal. In figure 2.4 the sensitivity function is the transfer 
function from r or d to e. W,('jo) is the weighting function for the performance requirements. The 
weighting function has to be chosen by the designer taking into account the system specifications. 

Y 

2.5 psynthesis 

- K 

The synthesis problem is finding a controller K for the system G such that the required performan- 
ce is satisfied for all possible perturbations. This means finding a controller K that minimizes the 
following expression 

e-- 

Gum) now also contains the weighting functions which reflect the performance requirements. There 
doesn't exist a completely satisfactory method to solve this problem. The D-K iteration is a method 
which is often used in practice. This method has been based on the properties for the p-computa- 
tion (appendix A). With D-scales expression (2.6) becomes 

It has to be noted that the ,u-value cannot always computed exact which means that expression 
(2.7) is an approximation for expression (2.6). 

The D-K iteration 

This method alternately minimizes expression (2.7) for either K or D, while holding the other 
constant. For fixed D the problem is just an H, control problem. This means minimizing 

I IF,(G,K) I 1, for all Ks. F,(G,K) is the transfer function from d to e shown in figure 2.7. 

Figure 2.7 Block diagram for the H,-synthesis. 

This minimization can only be done using an iterative scheme, the y-iteration [3, 51. For fixed K, 
(2.7) can be minimized for D at each frequency. This minimization is a convex optimization 
problem. The resulting D-scales can be fitted with proper stable transferfunctions. The software [3] 
contains several algorithm for this fitting procedure. In principle this method could be used to 
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obtain controllers that are arbitrary dose to p (optimal in the case of 3 or fewer perturbation 
blocks) and provide a nearly optimal controller for the general case. Because individual convexity 
in the two parameters K and D of the optimization problem does not always imply total convexity, 
convergence is not always guaranteed. 
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Chapter 3. RT-robot: controller design and simulation 

3.1 Introduction 

In this section a PD-controller, an 33,-controller and an ,u-controller for a RT-robot will be 
designed. The controller design will be carried out for two types of model errors, i.e. the motor 
dynamics and variations in the end-effector mass. With these controllers the RT-robot will be 
simulated and the controllers will be compared with each other. In section 3.3 a method is given to 
put the modei errors caused by a not exact Îeefiack iinearization into the general interconnection 
structure. First, the RT-robot will be described. 

3.2 Description 

Figure 3.1 The RT-robot 

Figure 3.1 illustrates the RT-robot (Rotation-Translation). The robot has two degrees of freedom, 
r(t) and cp(t), and moves in the horizontal plane. The robot consists of a disk with moment of 
inertia I and a rigid bar with length 1 and homogeneously distributed mass m. The load (ml) is 
concentrated at the end of the bar. M(t) and F(t), the motor torque and force, are the control 
quantities of the robot. The model equations for this robot are 

Plr - (Plr - P2)@2 = F 
(p3 - 2p2r + Plr2)Q + 2(plr - p2)i+ = M 

with PI = m + ml = 15 [kg] 

P2 = Ami = 5 [kgm] 
2 

33 Perturbations in state space systems 

As mentioned before, the nonlinear model description cannot be used for the synthesis of the Ha- 
and p-controllers. A linear description, which matches the general interconnection structure 
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(figure 2.1) is required. The model (3.1) is linearized by a nonlinear state feedback. Figure 3.2 is a 
block diagram of this linearization. It has to be noted that the equations (3.1) have been written in 
another notation. In appendix B this notation is given. The exact feedback linearization is also 
described in this appendix. 

I I I I 

X=f(x)+g(x)u 
u=a (x)+ p (x)v 

I I I I 

/I\ I 
X 

Figure 3,2. Block diagram of the state linearization. 

If there are no errors in the model, the linearization is exact and results in a decoupled system of 
two second order differential equations. Now, the response of the output y to the input v is linear. 
Generally, the model contains model errors as a consequence of unmodelled dynamics and 
parameter variations. In that case the linearization is not exact and does not result in a decoupled 
system of two second order differential equations. After the feedback linearization the system will 
still be nonlinear and linearization along a trajectory is necessary to get the desired linear model 
description for the synthesis. The system matrix and the input matrix now contain extra terms 
comparing with the matrices obtained by an exact feedback linearization. The additional terms can 
be considered as perturbations on the nominal system. The perturbations have to be put in a 
perturbation matrix A, so they enter the system in a feedback form. This can be done as follows [7, 
81: 

Define the nominal state space model of the system as 

Parameters variations in the matrices A, B, C and D lead to non-dynamic real perturbations. If 
equations (3.2) are transformed to the Laplace domain the perturbations can also be additional 
dynamics, like actuator or sensor dynamics. The parameter variations are denoted as dA(s), dB(s), 
dC(s) and dD(s). The perturbed model is 

sx = Ax + BV + dA(s)x + dB(s)v 
y = Cx + Dv + dC(s)x + dD(s)v (3.3) 

As mentioned before the H,- and ,u-synthesis requires the general interconnection structure. To 
extract the uncertain part of the model, a new input v2 and a new output yz have to be defined. 
The following equations are obtained, figure 3.3: 

x = A x  + B v  + B2v2 

y = Cx + DV + D12~2 
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All matrices in (3.4) are constant and of appropriate dimensions. The uncertainty feedback is given 
as A(§) = C, -b  SI-^-%^ +- D,, refer to 171: 

In order to apply panalysis and synthesis it is necessary that the real parts of the eigenvalues of A, 
are negative. Model (3.3) and (3.4), (3.5) are equivalent if 

dA(s) = B2(1-A(s)D2.J1A(s)C2 
dB(s) = B2(I-A(~)D22)-1A(~)D2, 
dC(s) = D~~(I-A(s)D,~)-'A(§)C~ 
dD(s) = D,~(I-A(s)D~~)-~A(s)D~~ 

If the matrices dA(s), dB(s), d q s )  md dD(s) are kmom the matrices B2, @2, U,,, D,, and D2, can 
be determined. However, the determination of these matrices is not unequivocal, also refer to [7].  

Figure 3.3 General interconnection of uncertainties. 

3.4 Desired trajectory and the uncertainties 

In this research two types of uncertainties are considered 

1. Variations in the mass ml. The load mass m, varies between 4 [kg] and 6 [kg], with a 
nominal value of 5 [kg]. 

2. Unmodelled dynamics, in this case the motor dynamics described by the following simple 
first order model 

With xf and 'G, the motor time constants. The motor time constants are chosen equal between 



Chapter 3. RT-robot: controller design and simulation 17 

1 1 1 - [SI and - [SI, with a nominal value of - [SI. In figure 3.2, the motor dynamics 
200 800 400 

has to be placed between linearization feedback block and the system block. Now the input to 
the system is u8. 

The perturbations in the system matrix A and the input matrix B don't only depend on the 
uncertainties above but also on the reference signal, because of the linearization along the desired 
trajectory, which is necessary after the not exact feedback linearization. 'Tne trajectory has been 
chosen as follows: 

o 5 t 5 8.0 [SI : 

time (s) 

Figure 3.4 Desired trajectory. 
time (s) 

In the case of the mass variations the system and input matrices contains at 6 places elements 
which differ from the nominal case. The matrices of the state space description after feedback 
linearization and linearization along the desired trajectory xo, are 

A =  

with 

O 1 0 0  

O O O a ,  

O 0 0 1  

l2 a3 0 a4 

O 0  

a5 0 
O 0  

o a6 

O O 0 0  (2(F1 -Pl)x,x:)(P3 -2P2x, +P1(x10>2) -2(P1 -P,)x, x1 x4 ( -2P,+2P1x;) 

(3.9) 

2(P1-P1)X,X4 

P, -2P9,+P1(.,)2 
a3 = 
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2(F,-P,)x,x,o 

P, -2P.p,O+P1(x,42 
a4 = 

P, -2P2x;+Fl(x* 

P, -2P,Xl +Pl(X1)2 
a6 = 

P, = m + 61, with m, = 5 [kg], the nominal load mass 

Refer to appendix C for the derivation of the above expressions. 
The perturbations can be considered as 6 independent scalar perturbations. In that case the 
perturbation A matrix will be a diagonal matrix (size 6x6). It could be expected that the perturba- 
tions only depend on the parameter P,. However, they also depend on the nominal trajectory, 
which for example means that for one value of the parameter P, the perturbations can be both 
positive and negative. Of course the scalars a1...a6 are not completely independent. For this reason 
three new parameters are defined, see appendix C. If these parameters are used the derived 
perturbation matrix A consists of two repeated scalar block (size 2x2) and one scalar block (size 
1x1). The derivation of this perturbation matrix A together with the matrices B,, C,, D,,, D,,, D,, 
and W, of the general interconnection structure matrix G (figure 2.1), determined with the help of 
the method described in section 3.3, are given in appendix C. The weighting function for the 
uncertainties (W.J is obtained by scaling the perturbation matrix to unity. The concerned matrices 
are also given in appendix C. 
In the case of the motor dynamics the uncertainties in the matrices A and B depend on the 
frequency. 

Á(S) = 

0 O 0  o 
2 . 5 6 ~ ~  s 2. 13tEs - o o- 1 +TES 1 +TES 

O O 0  o 

- - o -  7TmS 2z,s %Is 

1+z,s P+ts 1 +t,s 

B(s) = 

O O 

1 - 0  1 +Tf s 

O O 

1 o -  1 +tms 

(3.10) 

The matrices B,, C,, D,,, D21, D,, the weighting function W, and the perturbation matrix A are 
also given in appendix C. 

3.5 The controller design 

In this section the BD-controller, the Ha- and ,u-controller are designed. The model obtained by an 
exact feedback linearization is used to determine tihe gains of the BD-feedback. As seen before the 
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exact linearization results in a decoupled system of two second order differential equations, which 
means that the controller design for the r- and rp-direction is also decoupled. The gains of the PD- 
feedback can be derived from the desired eigenfrequency o. and the desired damping of the closed 
loop system. Larger values of the gains will lead to a quicker response to tracking errors. However, 
if the values of the gains are too large the controller will less robust with respect to unmodelled 
dynamics and parameter variations and the system could become unstable. The damping factor and 
eigenfaequeaicy are equal for both directions and are chosen to be: 

The PD-feedback gains now become 

(3.11) 

The software [3] used to design the H,- and p-controllers requires a general interconnection 
structure matrix G (figure 2.1), which also contains the weighting functions for the uncertainty and 
the performance. The matrices of general interconnection structure matrix G including the 
weighting function for the uncertainties have been derived in appendix C. The weighting function 
for the performance (W,) depend on the requirements of the system, like small tracking errors. In 
this research it has been tried to choose the weighting functions in such a way that the tracking 
errors will be as small as possible and that robust performance is guaranteed. This means that the 
p-value of the closed loop system has to be less than 1 (chapter 2). The choice of the weighting 
function W, has been based on some design experiences, but it has been chosen reasonable 
arbitrary. 
The first step in the p-controller design is the computation of an H,-controller. In this case the 
scaling matrix D, see chapter 2, is an identity matrix of the size of the perturbation block A. After 
the H,-controller design the p-value of the closed loop system and the D-scales are computed. The 
D-scales have to be fitted by proper stable transfer functions. The fitted transfer functions are 
wrapped around the original interconnection structure. This new structure is used to design a new 
controller. The ID-K iteration continues until the p-value does not change anymore. The last 
designed controller is the p-controller. 
For the analysis of the designed 33,- and p-controllers the following quantities are plotted: 

- The p-values of the closed loop systems, which indicate if robust performance is satisfied. 
- The magnitude of the weighted nominal sensitivity functions. This quantity can be compared 

with IW,(jo)S(ico)I for a SISO system, see section 2.5. Because the system has two input and 
outputs and the r- and rp-direction have been decoupled two functions are plotted. 

- The magnitude of the weighted complementary sensitivity functions. This quantity can be 
compared with IW2(jo)T(jo)l for a SISO system, see also section 2.5. Only the largest 
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functions are plotted. 

been chosen corresponding to the type of model error. 
- The weighted sensitivity functions of the perturbed closed loop system. The perturbations have 

1. Variations in the mass ml. 

During the controller design the perturbation matrix A consists of ~ W S  full blocks (size 2x2) and 
m e  s c d ~  block (size 1x0) block. The repeated scalar blocks mentimee! in S ~ C ~ ~ Q I I  3.4 Owe been 
replaced by full blocks because the used software does still not contain an algorithm to fit full D- 
scales required for repeated scalar blocks. The performance block Ap is a full block (size 2x2). The 
weighting function for the performance (Wl) and the weighting function for the uncertainties (W,), 
which is derived in appendix C are: 

1 900s2+250s+45 w, = 

O 1 
w, = I 250~~+,,-!00s+360000 

900s2 + B O S  +45 
O 

104 

101 

10-1 100 101 102 103 10-2 

Frequency (radh) 

3.5 The weighting functions W, (solid) and W, (dashed) 

Ha-controller 13 states 2 inputs 2 outputs 
p-controller 41 states 2 inputs 2 outputs 

3 100 101 102 103 
Frequency (rad/s) Frequency (rads) 

Figure 3.6 p-values for the H,- (dashed) and Figure 3.7 Nominal Weighted Sensitivity function 
for Hm- (dashed) and p-controller (solid) p-controller (solid) 
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103 10-1 100 101 102 
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Figure 3.9 Figure 33 Nominal Weighted Compl. Sens. function Weighted Perturbed Sens. function for 
H, (dashed) and p-controller (solid) for Ha- (dashed) and p-controller (solid) 

The weighting function for the uncertainties W2, figure 3.10, consists of two complex scalar blocks 
(size 1x1) and is derived in appendix C. The pehmmce block A, is a Ml block (size 2x2). The 
weighting function for the performance (W,) is also drawn in figure 3.10. 

w1 = 

O 

s2+80s +16OO 
4s2+0.5s+0.016 

s2 4 0 s  +1600 
4s2+0.5s+0.016 

O 
w, = 

108 

105 

102 

10 -1 

10-4 
10-1 100 101 102 103 

Frequency (rad/s) 

tS - 0  
1 uds 

tS 0 -  1 UGS 

Figure 3.10 The weighting functions W, (solid) and W, (dashed) 

I with ?; = - 
200 

Ha-controller 10 states 2 inputs 2 outputs 
p-controller 26 states 2 inputs 2 outputs 
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Figure 3.11 p-values for the H, (dashed) and Figure 3.12 Nominal Weighted Sens. function for 
Hm- (dashed) and p-controller (solid) p-controller (solid) 

Figure 
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3.13 Nominal Weighted compl. Sens. function 
for Hm- (dashed) and pcontrolIer (solid) 

102 
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10-1 
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Frequency (rad/s) 

Figure 3.14 Weighted Perturbed Sens. function for 
H,- (dashed) and p-controller (solid) 

Analysis 

In the case of the mass variations robust performance for the p-controller has been satisfied, since 
the p-value of the closed loop system is less than 1, figure 3.6. This does not apply for the H,- 
controller. Figure 3.9 illustrates that the perturbed sensitivity function for the H,-controller only 
differs from the nominal sensitivity function at low frequencies. This implies that the system with 
the H,-controller will probably not become unstable for the mass variations. 
Tn the case of the motor dynamics it is not possible to design a p-controller with a p-value less 
than 1 if the weighting functions of figure 3.10 are used. This is the result of too high require- 
ments for the performance. The nominal weighted sensitivity function, figure 3.12, shows that even 
in the nominal case the performance requirements are not satisfied. Although nominal and robust 
performance have not been satisfied it can be expected that the p-controller performs better than 
the H,-controller which also holds in the case of the mass variations. Comparing figure 3.12 with 
figure 3.14 it can be concluded that for both controllers the sensitivity function doesn’t change 
very much if uncertainty is included in the system, which implies that the system is probably 
robust with respect to the motor dynamics. 
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During the controller design some problems occurred. Some of these problems are related to the 
used software [3] and other problems have to be solved by the designer. Some problems are: 
1. The calculation of the H,-optimal controller with the y-iteration. The used algorithm for the 

y-iteration requires an upper and lower bound for y. The choice of these bounds has a large 
influence on the final controller design. Changing these bounds can lead to a complete other 
controller, which is far from the optimal controller. 

2. Numerical problems if the matrices used for the H,-synthesis becomes toa large, so that they 
are very close to singular.. The môtries m become ?cc lage for severa! reasûns: 
- The order of the transfer functions to fit the D-scales is chosen too high. 
- The order of the weighting functions for the performance requirements and model errors are 

too large. 
- There are too many requirements for the system which implies that many weighting functions 

have been required 
3. It is not always clear which order transfer function for the D-scales has to be chosen. Sometimes 

a less accurate fit finally leads to a better result, because for example numerical problems does 
not occur. 

4. An algorithm to fit full D-scales required for repeated scalar blocks has still not been implemen- 
ted in ?he software [3], which means that in the case of the mass variaeions the structure of the 
uncertainty has been lost. 

3.6 Implementation of the controllers 

I xd 

Figure 3.15 Block diagram of the closed system used for the simulation. 

For the implementation of the controllers the nonlinear model of the RT-robot (3.1) is used. In the 
case of the motor dynamics the closed loop system is illustrated in figure 3.15. The ,u-, H,-and 
PD-controller, the linearization feedback and the motor dynamics are parts of the total controller. 
The controller has also been extended with a feedforward of the desired acceleration, so that in the 
nominal case the tracking error will be zero. 
For the variations in mass ml the 'block' motor dynamics has to be removed. The mass ml in the 

nonlinear model now is not equal to the nominal mass (15 [kg]). x = f(x) +g(x)u is the state space 
description of the nonlinear model described in section 3.2. For the simulations the trajectory of 
section 3.4 is used. In figure 3.16 and 3.17 the tracking errors for the r-direction [mm] and the rp- 
direction [rad] are plotted for ,u- and PD-controller. The mass ml = 6 [kg]. The tracking error of 
the H,-controller has been left away because it is much larger. Figures 3.18 and 3.19 illustrate the 
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Figure 3.19 RMS-value of the tracking error in 
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figure 3.20 Tracking error r-direc. (t=1/200 s) Figure 331 Tracking error cpdiaec. (2=1/20O s) 
p-controller (solid), PD-controller (dashed) and Ha-controller (dot dashed) 
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,u-controller (solid), PD-controller (dashed) and €I,-controller (dot dashed) 

3.7 Discussion and conclusions 

From the simulations it cm be amduder! that in all cases the p-controller perfoms better than the 
H,-controller, which completely corresponds to the expectations from the analysis. However, the ,u- 
controller does not always perform better than the PD-controller. In the case of the motor dynamics 
the PD-controller performs a little better for all time constants, figures 3.22 and 3.23, and is even 
more robust than the ,u-controller, which sooner becomes unstable. 
In the case of the mass variations the PD-controller performs better in the nominal case (ml = 5 
[kg]), but in the other cases the ,u-controller is better, figures 3.18 and 3.19, which implies that the 
p-controller is more robust with respect to mass variations. It has to be noted that in the nominal 
case the tracking error for the PD-controller had to be zero because of the feedforward of the 
desired acceleration. However as a consequence of numerical inaccuracies this error is not equal to 
zero. 
For both types of model errors the €I,- and p-controllers are robust to a larger range of uncertain- 
ties than which the controllers have been designed for. This means that the method used to 
estimate the uncertainty as a consequence of the not exact feedback linearization leads to too 
conservative controllers. Another reason for the conservativeness is the controller design. For the ,u 
computation all possible perturbations (real and complex) are considered. Maybe a complex 
perturbation can cause instability, but a real perturbation does not, so the controller design seems 
conservative. 
Of course the weighting functions for the uncertainty can be chosen smaller so the controller is 
robust to a smaller range of uncertainties. The weighting function for the performance can then be 
chosen larger so that the tracking error decreases. In this way a better controller can be obtained. 
Also another choice for the weighting function which reflect the performance requirements could 
lead to a better controller. 
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Chapter 4. The xy-table: controller design and simulation 

4.1 Introduction 

In this section a PD-controller, a Ha-controller and pantroller for a flexible manipulator, the xy- 
table, will be designed. The Controller design in x- and y-direction will be decoupled. However, no 
attention is paid to the controller for the y-direction, because no research has been done into 
possible model errors in this direction. For the x-direction the flexibility in the shaft will be 
cansidered iis a peitwbaiioli. In section 4.3 a method to determine this perturbation is presented. 
The controllers will be simulated for several values of the stiffness of the shaft. The results are 
given in section 4.6. A short discussion is at the end of this chapter. 

BElT Ei.EE1 

SLíDE 

S'IDEYA Y 

MOTOR i 

BElT Ei.EE1 

SLíDE 

S'IDEYA Y 

- MOTOR i 

SPlíVDlE 

Figure 4.la The xy-table Figure 4.lb The simulated system 

4.2 Description of xy-table 

Figure 4.la gives a schematic representation of the xy-table. The system used for the simulation is 
shown in figure 4.lb. The end-effector with mass me can move in the horizontal plane by means of 
three slideways. The system has three degrees of freedom, the rotations cp,(t), cp2(t) and cp3(t). The 
couples Ti and T3 generated by two servo-motors are the control quantities of the system. The 
coulomb friction along the slideways is represented by the torques W,, W, and W,. In appendix D 
the equations of motion of the model and the values of the parameters are given. If there is no 
torsion spring k the model can be simplified to a model with two degrees of freedom, see also 
appendix D. 

Pi@, = TI - P,sign(@,) 

P2q)3 = T3 - P,sign(@,) 

with P, = 4.68*103 [kgm'] 
P, = 4.60*104 [kgm2] 

P3 = 0.50 P m l  
P4 = 0.15 [Nml 

This model, but without coulomb friction, will be used for the controller design. 
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4 3  Description of the uncertainties 

In this section the weighting function which reflects the model errors in the xi-direction is 
determined. The model errors resulting from the torsion spring are the only uncertainties which are 
taken into account during the controller design. The torsion spring only has influence on the 
rotations cpi and cpz and almost no influence on cp3. The influence of the torsion spring is conside- 
red as a multiplicative perturbation 
The nominal trailsfeïfrrrition fïom the motortoqiiie T, - to the rotation ep, - is 

the input TI. 

1 -  - 213.7 V(s) = - - 
PiSZ s 2  

The transfer function above has been obtained by Laplace transformation of (4.1), the simplified 
model without flexibility. When the torsion spring k is not neglected the transfer function is 

0.67*10-3s + 3 *lo-% + k Y(s) = 
2.38 *PO-% P.% + 4.61 +10-~ks + 6 * ~ o - ~ k s  

(4.3) 

with k = torsion stiffness in [Nm/rad] 

This transfer function has been derived from expression (D.l), the advanced model of the xy-table. 
Small terms of this expression have been neglected and some viscous damping, which was not 
modelled, has been added. A detailed derivation is given in appendix E. 
For each value of the torsion spring, a peak appears in the transfer function that will move to 
higher frequencies with increasing torsion stiffness. In figure 4.2 the transfer function V(s) is 
plotted for some values of k. The influence of the torsion spring is treated as a multiplicative 
perturbation [2]. The transfer function p(s) can be written as follows 

q(s) = (1 + A(s)W2(s))V(s) with IA(s)lco c 1 (4.4) 

or in another form 

I W2@) I v s 

For the weighting function W2(s) the following form has been chosen 

(4.5) 
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The parameters a, ai, and pi have to be chosen in such a way that the left part of inequality (4.5) 
is fitted as good as possible, but for all frequencies the magnitude of this part has to be smaller 
than the magnitude of the weighting function. In figure 4.3 the weighting functions (dashed lines) 
are plotted for the same values of k as in figure 4.2. In all cases hold Bl=O.O1 [-I and a=40 [kg- 
lm2]. For increasing stiffness the parameter o, is 29, 36, 41, 70, 220 [radhl, respectively. The total 
weighting function which will be used for the controller design has to fit all separate weighting 
functions (dashed lines), because the controller has to perform well for all values of the stiffness 
larger than 0.46 [Nm/tad]. TWO possible ~URC?~COS zie plotted, i.e. d i d  !ines in fignïe 4.3. I: is zot 

easy to say which function describes the model errors the best. However, a too large weighting 
function for the uncertainties will probably lead to a too conservative controller, and a too small 
function probably won't guarantee the desired robustness. 
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8 
E! .a 10-1 
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I n-4 
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A U  
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i n-5 
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10-1 100 10' 
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Figure 4.3 Fitted weighting functions Figure 4.2 Transfer function (4.3) for several k's 
(0.46, 0.69, 0.93, 255, 28.1 [Nmhad]) 

4.4 Controller design and analysis 

As mentioned in section 4.1 the controller designs for the x- and y-direction are decoupled. Only 
the controller design in x-direction is considered because the flexibility of the system in this 
direction can be changed. The uncertainties described in the previous section are taken into account 
during the controller design. A PD-controller is designed with a view to compare the Ha- and ,u- 
controller with this controller. The model (4.1) without friction has been used to determine the gain 
of the PD-feedback. The gain depends on the desired eigenfrequency o. and the desired damping 
factor f3 of the closed loop system. A larger gain results in a quicker response of the system and in 
smaller tracking errors. Because of unmodelled dynamics, e.g. the torsion spring, and measurement 
noise the gain may not be too large. A too %arge value of the gain can cause instability. 
If the torsion spring has it's smallest value (k=O.46 [Nmhad]) the peak in the transfer function 
(4.3) appears at about the frequency of 29 [rad/s], see figure 4.2. The eigenfrequency a. of the 
controlled system has to be smaller than this frequency. The eigenfrequency and the damping 
factor are chosen to be: 
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= 3.5*2n [rad/s] 

891 = 0.7 [-I 

The PD-feedback now becomes 

2 with = oocplPl 

Kdrpl = 2~rploûrplpl 

'pi and are the motorposition [rad] and the motor velocity [rad/s] of the servomotor, 
respectively. 
The Ha- and p-controllers are designed for several weighting functions for the performance and the 
uncertainties. This will show the influence of the choice of the weighting functions. The weighting 
functions for model errors are given in figure 4.4. 

101 

a 
E! -a 10-2 

E 
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10-1 100 101 102 

s2  + 0.04s + 9*104 
0 . 6 7 ~ ~  + 20s + 418 

W2W = 

0 . 1 5 ~ ~  + 0.14s +0.02 
0 . 6 7 ~ ~  + 20s + 418 

W2@) = 

(solid) 

(dashed) 

Frequency (rad/s) 

Figure 4.4 Weighting functions which reflect the model errors 

Of course, a lot of weighting functions are possible, but these have been chosen because they 
roughly describe the range of possible weighting functions. The first one is probably too 
conservative and the second one does probably not reflect the model errors sufficiently. Notice that 
the weighting functions in figure 4.4 are not the same as those in figure 4.3. 
The choice of the weighting function for the performance depends on the system's requirements. In 
this case it has been tried to make the tracking errors as small as possible. However, the weighting 
function has to be chosen in such a way that robust performance @<i) is satisfied, which means 
that the requirements should not be too high. 
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Figure 4.5 Weighting functions for the performance 

For two sets of weighting functions the controllers have been designed and the following quantities 
are plotted: 
- The ,u-values of the closed loop system, which indicate if robust performance is saiisBed. 
- The magnitude of the weighted nominal sensitivity function. This function is equal to 

- The magnitude of the weighted complementary sensitivity function. This function is equal to 

- the magnitude of the weighted perturbed sensitivity function, which is the sensitivity function of 

IWl(s)S(s) I because it concerns a SISO system. 

IW2(s)T(s) I because it concerns a SISO system. 

the closed loop system if perturbations are added to the system. 

0 . 1 5 ~ ~  + 0.14s +0.02 
0 . 6 7 ~ ~  + 20s + 418 

W2@> = 
250s + 14400s +360000 

900s +%Os +45 
1. W,(S) = 

H,-controller 6 states 1 input 1 output 
,u-controller 14 states 1 input 1 output 
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In both cases a p-controller design with pc1 is possible. This means that robust performance has 
been satisfied for all permitted perturbations, which implies that the xy-table will be stable for the 
possible torsion springs. In the case of the W,-mntrolller robust performance sannot be guaranteed. 
Nevertheless, from the figures 4.9 and 4.13 it can be expected that for both controller designs the 
system will be stable for all possible values of the stiffness, because the perturbed sensitivity 
functions hardly differ from the mominal semsiiivity furnctions, figures 4.8 anid 4.12, respectively. 
These figures also illustrate that the ,u-controller will perform much better than the Ha-controller. 
From figure 4.6 could be concluded that the performance requirements, represented by the 
weighting function W, could be chosen larger. Of course this function has to be chosen in such a 
way that robust performance is always guaranteed, thus p c l .  

4.5 State reduction and discretization of the pcontroller 

Before simulating the xy-table with the designed controllers the number of states of the ,u- 
controller has to be reduced. This state reduction is necessary for two reasons: 
- Because of the large number of states, the matrix of the controlier often has a bad condition. 

This could lead to discretization and implementation problems. 
- The number of states is too large for a real time implementation, see also chapter 5. 

The state reduction has been carried out with the Square Root Balanced Method, which is an 
additive error model reduction method 641. The number of states can be reduced by fifty percent 
without decrease of the performance. 
The matched pole-zero method has been used for the discretization. This method has been 
implemented in a MATLAB-routine and is only suitable for SISO systems. 
It is recommended first, to reduce the number of states of the controller and secondly, to discretize 
the controller because the reverse approach could lead to numerical problems. 

4.6 Simulation of  xy-table 

The xy-table has been simulated with the PD-controller and discrete Ha- and p-controllers. Discrete 
controllers have been used to simulate the practice as good as possible. In a real time system a 
discrete controller has always to be used, because it takes processing time to compute the new 
inputs for the system. An additional advantage is that the controllers used during the simulation 
can be directly applied in the real system. The advanced model, described in appendix D has been 
used as simulation model. The simulations were done for different values of the stiffness of the 
torsion spring. The controllers have been extended with a compensation for the coulomb friction 
and a feedforward of the desired acceleration as illustrated in figure 4.14. 
The sampling frequency was 143 [&l. Not the measured rotation has been used as input for the 
controller, but the rotation and the speed (only in the case of the PD-controller) one sample ahead 
estimated by a discrete Kalman observer [i] to cancel the time delay caused by the computational 
time delay. 
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xd <n+l>, P-, Ra-, PD- 

UmtrCJller - 
x(n) , model (D.1) 

The desired trajectory was a circle 

I 

K(n+í) Kalman, 
obsenrer 

xd = 0.8 - 0.2cos(2zft) [m] 
Yd = 0.8 + O.&in(hft) [m] 
f = 3.5rc/4 [rad/s] 

' 

The above trajectories are the desired positions of the servomotors, not to be confused with the x- 
and y-position of the end-effector. It has to be noted tbai eomtiolleis for the x-direction have been 
designed for the rotation cpa. The relationship between this rotation and the displacement above 

'd is cpld = - 
f x 

As mentioned before only the x-direction has been considered. For the PD-controller and the 
controllers designed with the weighting functions of set 1 the tracking errors [mm] of the motor 
position and the tracking errors of the end-effector position are plotted, figures 4.15 and 4.16 
respectively. The value of the stiffness of the torsion spring was k=0.46 [Nm/rad], the smallest 
value for which the controllers have been designed. In the figures 4.17 and 4.18 the RMS-values 
(Root Mean Square) of the motor and the end-effector position errors are plotted for several values 
of the stiffness. 
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Figure 4.15 Tracking error of the motor 
position for k=0.46 [Nmhad] 
p-controller (solid), Hm-controller (dashed-dot) and PD-controller (dashed). 

Figure 4.16 Tracking error of the end-effector 
position for k=0.46 [Nm/rad] 
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Figure 4.17 RMS-values of the tracking 
errors of the motor position 
p-controller (solid), H,-controller (dashed-dot) and PD-controller (dashed). 

Figure 4.18 RMS-values of the tracking errors 
of the end-effector position 

For the controllers designed with the weighting functions of set 2 only the tracking enor of the 
motor position and the RMS-values of motor position errors are plotted. 
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Figure 4.19 Tracking error of the motor 
position for k=0.46 [Nm/rad] 
p-controller (solid), Ha-controller (dashed-dot) and PD-controller (dashed). 

Figure 4.20 RMS-values of the tracking errors 
of the motor position 

4.7 Discussion and conclusions 

From figures 4.15 and 4.17 should be concluded that the ,u-controller performs better than the PD- 
controller. It has to be noted that PD-feedback gain can be chosen larger, so the tracking errors 
will be smaller, without causing instabilities during the simulations. However, former research [l] 
has shown that large gains cause a chattering response if the controller is used in an experiment. 
With a view to these experiments the PD-feedback gain has not been chosen larger. Whether the 
designed ,u-controller will also perform in practice is investigated in chapter 5. 
If the weighting function for the model errors is chosen larger and the weighting function for the 
performance smaller than the PD-controller has the same performance as the ,u-controller, see 
figures 4.19 and 4.20. In both cases the ,u-controller performs better than the Hm-controller which is 
according to the expectations from the analysis in section 4.5. However, the H,-controllers do not 
become unstable inspite of the fact that in both cases robust performance @cl) is not satisfied, 
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figures 4.6 and 4.10. The robustness with respect to the torsion spring of the three controllers is 
almost the same, see figures 4.17 and 4.19. It has to be noted that the H,- and p-controllers are 
robust for the whole range of possible values of the stiffness. For smaller values of the stiffness the 
motor position error increases faster, however the system stays stable. The intersection of the 
RMS-values of the BD- and p-controller In figure 4.20 does not directly mean that the ,u-controller 
is more robust. To investigate this robustness it will be necessary to do simulations with smaller 
values of stiffness of the torsion spring. However, it is clear that the robustness will probably not 
increase without reduetion of îhe perforname. 
The tracking errors of the end-effector do not decrease with the pcontroller. This could be 
expected because the controllers were based on the motorposition error and not on the end-effector 
error. 
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Chapter 5. xy-table implementation 

5.1 Tntroduction 

The controllers of chapter 4 will now be implemented in the xy-table. First, a short description of 
the real xy-table and the used software are given. The experiments will be carried out for two 
different trajectories, both circles. In contrast to the simulations the tracking errors in the y- 
direction will also briefly be considered. In section 5.4 other ,u- and Ha-controllers are proposed 
and tested. The chapter is closed with a short discussion and some conclusions. 

5.2 Description of the real xy-table 

The xy-table has already been described in chapter 4. The only difference with the simulations is 
the position of the origin of the x- and y-axis which is now exactly in the middle of the operating 
area. The used control software, written in the computer language C++, imposes this definition for 
the axis. The ,u- and H,-controllers of chapter 4 which were simulated in Matlab have to be also 
converted to this language. 

servomotors and at belt wheel 2, see figure 4.1. However, not the rotations in [rad], but the motor 
positions in [m] are available at every sample time. Some other quantities like the acceleration of 
the end-effector in x- and y-direction and the current to both servomotors are also measured, but 
they are not used to determine the new controller outputs. Unfortunately, the position of end- 
effector cannot be measured because the optical measurement system to do this was not operational 
during this study. With the help of the rotation rp2 it is possible to determine the position of the 
end-effector. This information is not used to control the system, but is only used to calculate the 
end-effector position after the experiments. As for the simulations, the motor positions x1 and y, 
which are in fact the rotations cpl and rp,, are only used to determine the controller outputs. 
However, not the measured rotations cp, and cp, are used as the input for the controller, but the 
estimated values by the discrete Kalman observer one sample ahead are used, which is also the 
same as during the simulations. For all experiments the sample frequency is 143 [Hz]. 

n e  r ~ t a t i ~ n s  'Pr, Tp2 and qp, are meélslaaed by m e a s  Of three flKXellB2llh! ellCOd6XS fixed at both 

53 Experiments 

For the x-direction, the first experiments have been carried out with the same controller as during 
the simulations. These controllers are the PD-controller and the Ha- and ,u-controllers designed 
with the following weighting functions (set 1, chapter 4) 

Z 0 s 2  + 14400s + 360000 w1 = 
9oos2 + Z O s  + 45 

0 . 1 5 ~ ~  + 0.14s + 0.02 
0 . 6 7 ~ ~  -+ 20s + 418 

w2 = 

For the y-direction the experiments have also been carried out with a PD-controller and an Ha- and 
p-controller designed with the following weighting functions 
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375s2 + 21600s + 540000 w, = 
9oos2 + 250s + 45 

O .O0 15s 
14.02s 

w2 = 

The weighting function W, for the performance requirements bas been chosen in such a way that 
the bandwidth of the system with the H,-controller is about 6 PIJ. The weighting function W, 
only reflects possible model errors caused by motor dynamics and mass variations. Because tbe 
model errors are not exactíy -known tiie choice foor W2 is rather arbitrary. 
As for the simulations, the controllers have been extended with compensation for the coulomb 
friction and a feedforward of the desired accelerations. From some experiments it was concluded 
that in y-direction a friction compensation of 9 [NI Instead of 15 [NI leads to better results. The 
desired trajectory was a circle with the same radius and angular velocity as used in the simulations. 
The results of the experiments are only given for the H,- and PD-controller, because the ,u- 
controllers do not perform well for both the x-direction and the y-direction. 
In figures 5.1 and 5.2 the motor position errors are plotted for the x- and y-direction, respectively. 
The value of the stiffness of the torsion spring is 0.46 pm/rad]. Figure 5.3 illustrates the RMS- 
vahes of the motorposition error in x-direction for several values of the stiffness. 

O 1 2 3 O 1 2 3 

time (s) time (s) 
Figure 5.2 Figure 5.1 Motorposition error in the x-direction Motorposition error in the y-direction 

PD-controller (dashed) and H,controller (solid) 

_.-_ -.*. - -. -. -. - .- -. -. -. -. - . -. -. -. _. - -. 

0.4 I I 

O 1 2 3 

k (Nm/rad) 

Figure 5.3 RMS-values of motorposition error in 
x-direction for several torsion springs 
PD-controller (dashed) and H,-controller (dot dashed) 
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Analysis 

x-direction: The PD-controller does not perform as well as during simulations. The tracking error 
of the motorposition has been increased by about 40 percent. Some possible reasons are 

- There is no exact compensation of the coulomb friction. In practice the coulomb friction does 
not only depend on the sign of the speed, so the ccmlomb friction will differ a lot from the 
compensated vaiue of the ÎricEion €or small speeds. Another reason is that tbe belts oftea touch 
the sides of the belt wheels through which the friction will change. 

- The parameters, like masses, moments of inertia, etc do not exactly correspond to the model 
parameters, which have been used at the controller design. 

- The real system contains more unmodelled dynamics caused by viscous friction, bad bearings 
and the little springs which connect the belts to the slides. 

- The motors and the amplifier have been modelled as constant gains, which is not correct 
because of their own dynamics. 

Contrary to the simulations the H,-controller now performs better than the PD-controller. A 
possible reason could be the bandwidth of li,-controller (about 20 [rad/s], figure 5.4), which is 
smaller than the bandwidth of the PD-controller (about 40 [radhl), so the above mentioned 
unmodelled dynamics have less influence on the system behaviour. However, to confirm this 
statement experiments with a PD-controller with a smaller bandwidth will be necessary. It has to 
be noted that the H,-controller even performs a little better as during the simulation, but there is 
no clear explanation for this. For both, the H,-controller and the PD-controller the RMS-value of 
the motor position error does not increase if the stiffness of the torsion spring decreases, figure 5.3, 
which is also different from the simulation results, figure 4.17 . From this it can be concluded that 
in the real system the torsion spring has less influence on the motor position. 
The chattenng response of the p-controller during the experiments could point to a too large 
influence of model errors which are not taken into account during the controller design. However 
from figure 5.4, it can be concluded that the bandwidth of the p-controller is about 40 [radhl, 
which is equal to the bandwidth of the PD-controller, so the model errors are not the main reason 
for the bad performance of the p-controller. 
In [i] the estimation errors of the Kalman observer are given as another possible reason for the 
chattering response. Especially, the speed estimation is bad if the eigenfrequency of the used PD- 
controller is above 4.5 [Hz], which implies a bandwidth of about 55 [radhl, and the sample 
frequency is about 125 [Hz]. 
However, the estimated speed is not used for the p-controller, but probably a kind of observer has 
been included in the p-controller, which may lead to problems for the determination of the new 
states of the controller. This has not been proved, but it is likely considering that the H,- and p- 
controller are calculated by solving two Riccati equations [SI. One equation represents the optimal 
control problem and the other represents the observer. Although, the bandwidth of the p-controller 
is 40 [rad/s], it may be too large for a good determination of the new states of the controller. In 
the next section another p-controller is proposed and tested. 
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y-direction: From figure 5.2 it can be concluded that PD-controller performs better than the H,- 
controller, which means that the PD-controller is more robust to the model errors. To improve the 
H,-controller, the model errors have to be taken into account more accurately during the controller 
design. For example, the harmonic friction, which is clearly visible in figure 5.3, can be considered 
as a perturbation on the nominal system and taken into account at the Controller design. For the 
same reasons as mentioned for the x-direction the p-controller for the y-direction doesn’t perform 
satisfying. 

10: 

100 

10-1 

10-2 

I n-3 
LU - 10-1 100 101 102 103 

Frequency (rad/s) 

for the H,- (dashed) and ,u-controller (solid) 
Figure 5.4 The complementary sensitivity function 

5.4 Another H,- and pcontrolles 

As a result of the bad performance of the tested p-con.-oller in section 5.3 it has b :n tried to 
design another p-controller for the x-direction. For the new controller design the weighting 
functions are 

0 . 3 3 ~ ~  0.14s * 0.02 
0 . 6 7 ~ ~  + 20s + 418 

W2(S) = 
f25s2 + 7200s * 180000 

900s2 + 250s + 45 
WdS> = 

The requirements for the performance have been chosen smaller and the weighting function for the 
uncertainties has been chosen larger in the hope that the p-controller performs better. With the 
above mentioned weighting functions a H,-controller has been also designed. 

H,-controller 6 states 1 input 1 output 
p-con troller 14  states 1 input 1 output 

In figures 5.5 and 5.6 the p-values and the complementary sensitivity functions for both controllers 
are plotted, respectively. 
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Figure 5.6 Figure 5.5 p-values of îhe Hm- (dashed) and Compl. sens. function for Hm- (dashed) 
p-controller (solid) and p-controller (solid) 

The controllers have been tested for two desired trajectories, both circles. 

b. The same trajectory as above with the difference that the frequency now is 2d3.5 [radhl. 

In figure 5.7 the motorposition error is plotted. The value of the stiffness of the torsion spring was 
0.46 [Nm/rad] and the reference signal was signal a. Figures 5.8 and 5.9 illustrate the RMS-values 
of the motorposition error and the RMS-values of the end-effector position error for several values 
of the stiffness, respectively. For trajectory b the RMS-values of the motorposition are only plotted, 
figure 5.10 

time (s) k (Ndmd)  

Figure 5.8 Figure 5.7 Motorposition error in x-direction RMS-value of motorposition error 
for trajectory a. and k=0.4  [Nm/rad] for trajectory a. 
p-controller (solid), PD-controller (dashed) and Hm-controller (dot dashed) 
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Analysis 

Now the ,u-controller does not cause a chattering response. However, for both trajectories the H,- 
and PD-controller perform better than the ,u-controller. In the case of the H,-controller the desired 
trajectory has less influence on the motorposition error. Comparing îignres 5.8 and 5.10 it ean be 
seen that the RMS-values of the motor position error hardly differ for the H,-controller. For the 
PD- and ,u-controller these values increase by 50 percent for trajectory b. It has to be noted that for 
small values of the stiffness the H,-controller does even not perform as well as it does for 
trajectory a, but there is no clear explanation for this. If the desired trajectory is trajectory a. than 
the stiffness of the torsion spring has less influence on the tracking errors. Even for small values of 
the stiffness the tracking errors do not increase. This is probably caused by the influence of the 
other unmodelled dynamics mentioned in the previous section. 
In the case of trajectory b. the tracking errors increase if the value of the stiffness decreases. For 
this trajectory the other unmodelled dynamics probably have less influence on the tracking errors, 
so the influence of the torsion spring is more important for the system behaviour. The robustness 
with respect to model errors as a result of the torsion spring is the same for the controllers. From 
figure 5.9 can be concluded that the controllers have no or less influence on the position error of 
the end-effector which could be expected because the controllers have only been designed on the 
motor position error. 

5.5 Discussion and conclusions 

During the simulations the performance of the ,u-controller showed great promise. In all cases the 
,u-controller performed better than the H,- or the PD-controllers and the robustness with respect to 
model errors did not differ much. However, during the experiments the ,u-controller becomes 
instable if the bandwidth of the controlled system is too large. This can be avoided by choosing 
other weighting functions for the performance and the uncertainties. Then the response is stable, 
but not as good as it is for the H,- and PD-controllers. The robustness with respect to the torsion 
spring is less clear during the experiments than it was during the simulations. Only if the frequency 
of the reîerence sigma1 is taken smaller than the influence of the torsion spring is visible. pni that 
case the motorposition error increases if the stiffness of the torsion spring is taken smaller than the 
values which the controllers have been designed for. 
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Chap ter 6. Conclusions and recommendations 

In this chapter a summary is given of the most important conclusions of this research. Some 
recommendations for further research and experiments will also be given. 

* The design of the ,u-controller sometimes causes problems. The D-K iteration carried out with 
the help of the software [3] doesn't always converge to the optimal ,u-controller, which is often 
the result of numerical problems. These problems occur if the matrix which reflects the design 
problem is too large, so it can be ill conditioned. Two possible reasons for this bad condition 
are: 
- The order of the transfer functions, fitting the D-scales, is chosen too large, so the parameters 

of this functions nearly depend on each other. 
- The order of the weighting functions which reflect the model errors and the requirements for 

the system have been chosen too large. This means that the design problem has not been 
formulated well. 

* The method used to determine the additional model errors as a consequence of the not exact 
state feedback linearization f m  the RT-robot leads to a reasonable conservative controller. 
Nevertheless, with regard to parameter variations (variations in the mass) the ,u-controller is 
more robust with respect to these model errors than the PD- or H,-controller. In the case of the 
motor dynamics the PD-controller is a little more robust. 
In this study for the RT-robot model errors as a result of the parameter variations and the 
unmodelled dynamics have been considered separately. These model errors could be considered 
together during further research into the ,u-control, also refer to [lo]. 

* In the case of the simulations the p-controller applied to the xy-table, achieves better tracking 
accuracy, than the PD-controller. The robustness with respect to unmodelled dynamics caused 
by the torsion spring is the same for both controllers. The tracking errors hardly increase until 
the torsion spring is chosen smaller than the minimum value, which the controller had been 
designed for. 

( 

* The p-controller implemented in the real xy-table causes a chattering response. This chattering 
response is caused by the too large bandwidth of the controlled system, which possibly leads to 
a bad determination of the new states of the controller. From the experiments it can be 
concluded that a controller with a smaller bandwidth leads to a stable response. On the other 
hand the PD- and H,-controller perform well during the experiments. However, the stiffness of 
the torsion spring has no or less influence on the tracking error, because of the influence of 
other model errors like springs between belts and slides, harmonic friction due to bad bearings, 
dynamics of the motors and amplifier. It would be useful to design a ,u- and H,-controller with 
taken into account the different model errors as a consequence of the above mentioned 
unmodelled dynamics, so the final controller will perform better. Of course, a good analysis of 
the possible model errors will be necessary. 
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* It has to be noticed that a robust controller (u- or H,-controller) has to be insensitive to 
unmodelled dynamics and parameter variations to some extent. From the experiments and other 
conclusions it can be concluded that the structure of the model errors has to be determined with 
a reasonable accuracy to get a robust controller that performs like a PD-controller. This means 
that some knowledge about the system is required. However, this extra knowledge can also be 
used to extend the model which involves that less advanced controllers can be used. Anyway, 
the ,u-controller design will be less complicated, so it will possible be better. 

* Maybe it would be possible to combine a ,u-controller design for the unmodelled dynamics with 
a adaption law to estimate the parameters of the system. 

* Summarizing it can be concluded that in the case of the xy-table the ,u-controller does not offer 
advantages to a simple PD-controller as long as no more model errors caused by unmodelled 
dynamics are taken into account during the controller design. For large systems the ,u-controller 
may have advantages to the PD-controller because the poles of the controlled system cannot be 
placed. Of course, also in that case, a good analysis of the possible model errors will be 
necessary. 
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Appendix A. The Structured Singular Value 

The structured singular value, a matrix function denoted by ,u(-) will be defined in this appendix. 
For M E C'' it is defined as [6]: 

unless no A E Ab makes I-MA singular in which case p (M) : = o. 
'b 

There are two types of perturbation blocks, repeated scalar and full blocks. Two nonnegative 
integers, S and F, represent the number of repeated scalar blocks and the number of full blocks, 
respectively. The following positive integers are introduced rl, ..., rs; ml, ..., mF' The i'th repeated 
scalar block is rixri, while the j'th full block is mjxmj. 

Define Ab C e n  as A, = {diag{611r2...,6s1rs, A1,...,AF):6i E Aj E 

Often norm bounded subsets of Ab will be important, so define BA, = { A ~ A  E q ~ )  i; 1) 

It is instructive to consider a "feedback" interpretation of pAJM) at this point. Let M E CF" be 

given and consider the loop shown below. 

U 

As long as I-MA is nonsingular, the only solution v, z to the loop equations are v=z=O. However, 

if I-MA is singular, then there are infinitely many solutions. p (M) is a measure of the smallest 

structured A that causes "instability" of the constant matrix feedback loop shown above. 
It has been proved that for p A $ ~ )  the following inequality is valid 

Ab 

?$M) : maximum singular value of M 
In [6, 81 a proof of this inequality can be found. Because the gap between the bounds in the 
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expression can be arbitrarily large, they must be tightened. To do this, first define the following 
two subsets of CY" 

Nek that for any 4 E Q E Q, D E D, 
Q * E Q ,  QAEA,, qQA)=qAQ)=qA), DA=AD. 

Consequently, 

Refer to [6,8] for a proof of this theorem. 
The bounds in (A.2) can piow be tightened to 

The lower bound is always an equality [SI. Unfortunately, the quantity p(QM) can have multiple 
local maxima which are not global. The p-software [3] uses a slightly different formulation of the 
lower bound as a power algorithm, which usually is an effective method to compute p. 
The upperbound has just one global minimum, but this minimum can be too conservative. This 
means that the upperbound in not always equal to p. For some block structures the upperbound is 

always equal to pA$M). If 2S+Fs3 the upperbound is equal to ,uAb(M). If 2S+F>3 then an exact 

value cannot be always computed. Summarized: 

yes = ,u can be computed exact 
no = ,u can be only approximated 
For proofs of the different boxes of this table refer to [SI. 
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> X=f(x)+g(x)u V U 
controller 2 u=a(x)+p(x)v 

- 

Appendix B. The state feedback linearization for the RT-robot 

x + .- 

In this appendix the exact linearization of the RT-robot is considered. The model equations (3.1) 
have to be written in the following form. 

€ 

x = f(x)+g(x)u 

Y = h(x) 

- 

with 

€=T(x) 

f(x) = 

x2 

P3 -2P2X1+P1X~ 

O 

1 
P; 
O 

O 

O 1  

2l  P3 -2P2x1 +pix1 

Figure B1 The feedback linearization. 

The exact feedback linearization is defined as 

u = a(x) + #3(x)v with a(x) = -A-'(x)b(x) 
fyx) = A-l(x) 

The matrices are defined as 

Lg1L2-lhi(x) . .. . LgmL:-kl(x) 

LgILf-lh2(x) .... E g m  Lp-k2(x) 
A(x) = I .... .... I 

jL&Lf-b,(x) . . . . LpL;-"hm(x)] 
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rl, ..., rm are elements of the vector relative degree. A multivariable nonlinear system of the form 
(BA) has a (vector) relative degree {rl, ...,rm} at point xo if 

1. LqL,khi(x) = O for all 1 s j s m, for all 1 s i s m, for all k s ri-2 and for all x in a neigh- 

bourhood of xo. Here L,khxx) means the k'th successive Lie derivation of 

the scalar function h,(x) in the direction of the vector field f. 
6)  2. ti.., mrr, m&?x A(x) is EoEshg~l2r at x = x . 

For the linearization the equations have to be written in the normal form. So the linearizing 
coordinates are defined as 

Cki(x) = L;-'hi(x) for 1 s k s ri, 1 5 i s m. (B.3) 

In the case of the RT-robot the relative degree is {2,2}. The equations already are in the normal 
form, so 

The matrices A(x) and b(x) are 

7 

O 

1 

1 - 
PI 

A(x) = 

O 
P, -2P2X1+P1X,2 

The linearizing feedback becomes 

u _ [  <Pl% -P2P," +PP1 

2(P1x1-P2)x2x4+(P3-2P2x1+P1x,2)v2 

Pl 
-2(P1x1 -P2)x2x4 

b(x) = 

P3-2P2x1+P1x,2 

In the new coordinates, the system appears as 

The state linearization feedback results in a decoupled system of two second order differential 
equations. For more about the state feedback linearization refer to [9]. 
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Appendix C. General interconnection structure for the RT-robot 

In this appendix the uncertainties in the system matrix A and in the input matrix B as consequen- 
ces of the not exact feedback linearization are derived for the RT-robot. This is done for two types 
of model errors, i.e., variations in the load mass m, and motor dynamics. Also the weighting 
functions which reflect the model errors are determined. First, the influence of variations in the 
mass ml are considered. 
The model equations 3.1 are written in the following form, see also equations (BA) 

x = f(x)+g(x)u 

Y = h(x) 

with 

x1 = r(t) 

x2 = i(t) 

x3 = cp(t) 

x4 = rP(9 

, 

1 P,-2P2X1+P,X,2 J 

O 7 
O 

o 
1 

P, -2P2X1+P1X1 2 

7 Y =i;) 
The exact linearizing feedback has been derived in appendix B, equation (B.4), and is as follows 

1 - I -(F1x1-P2)x~+P1v1 “ = I  2(P1x1-~Jx2x4+@,-2P2x1+P1x,2)v2 J 
- - 1  1 1 - - 

with P, = m + m, = 15 [kg] ; P2 = ,ml = 5 [kgm] ; P, = I + -m12 = S3 [kgm2] 
2 3 

Variations in the mass m, only have influence on P,, so P2 and P3 are equal to the nominal values. 
For this reason the bars above P2 and P, are left away during the derivation. 
Substitution of the linearization feedback (C.2) in (CA) results in 

x4 

P,-2P2x,+P,x~ 

(P, -2P2x, +Pix ;) (P, -2P2x1 +PIXl”> 
v2 
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J, = 

To obtain a linear model description which is required for the p-synthesis the equations (C.3) have 
to be linearized along a desired trajectory. The equations are written in the following form 

q t )  = f(x(t), v(t), t) (C.4) 

with a nominal input vO(t:to,te) and a nominal trajectory xo(t) (C.4) becomes 

KO@) = f(XO(î), v0(t), t) with 5 i 5 5, (C.5) 

Perturbations on the nominal equations can be written as 

9( t )  + X(t) = f( xO(t)+X(t), vO(t)+V(t),t) (C.6) 

This equation can be approximated by a Taylor polynomial 

Xo(t) + X(t) = f(xo(t), vo(t), t) + Jk(xo(t), vo(t), t)X(t) + J,(xo(t), vo(t), t)Y(t) +... (C-7) 

The matrices J, and J, are: 

(Remark Unfortunately, two terms have been left out during the derivation of the matrices J, and 
Jw These terms are represented in italics and have been left out of consideration in the continu- 
ation of the derivation.) 

-0 1 o 0 -  

a. O O al 

0 0 0 1  

a2 a3 0 a4 

.a, = 

O 0  

as 0 

O 0  

o a6 

with 
- 

(2(F1-P1)x~x4~(P3-2P2x~+Pl(x,D)2)-2(Pl-Pl)xl O 0 0  x2 x4 ( -2P2+2Plx:) 
- -  a2 = t 

(P3 -2P2x;+P,(x,o)2)2 
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2(F1 -P,)x~x,o 

P,-2P$,o+P1(x;)2 
a, = 

2(Pl-Pl)x;x; 

P, -2P2x,o+P,(x,q2 
a4 = 

P, -2P2X,o+P1(X,o)2 

P, -2P2x,o+P,(x,42 
a6 = 

If the desired trajectory is as follows 

r = X; = 0.5 + 0.5sin(O.Snt) [ml 

f = X: = O.~SJCCOS(O.SJC~) W S  li 
9p = X: = sin(0Jnt) [radl 

[rad/s] O g, = x4 = o.sJccos(o.5JCt) 

and 
14 s P, 5 16 [kg], which means 4 s ml 5 6 [kg] 

- 
Define API = P, - P,. The parameters a1...a6 can be approximated by the following equations 

al - 0.13AP1x4 O ; a2 - o.31L\p1X4 0 x2 o. , a, = -0.19AP1x:; 

O a, = -0.093AP,x4 ; as - 1-0.072AP1; a6 - 1-0.O81AP1; 

It has to be noticed that the scalars a1...a6 depends on each other. Of course, this dependence can 
be taken into account. The following scalars are defined: 

O O 0  
b1 = AP,; b2 = APix4 ; b3 = A P ~ x ~  ~2 

The matrices J, and J, now become 

J, = 

O I 0 0  

O O O 0.13b2 

O O 0  1 

).31b, -0.19b2 O -0.093b2 

J, = 

O O 

1-0.071b1 O 

O O 

O 1 -0.08fbl 
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*B, = 

Jf, and J, are equal to the perturbed system matrix A and the perturbed input matrix B, respective- 
ly. With the help of the method described in section 3.3 the matrices B,, q, D12, D21, D,, and A 
of the general interconnection structure can be determined. However, the determination of these 
matrices is not unequivocal, refer to [7]. 

1 0  
O 0  

o 1  

b,-variations Ab2: 

00 

-1 o 
00 

o -1 

n p o  o U 

o.071Ab1 0 

' A = [ O 0.081Ab1 I 7  ;] 

O 0  O O.13Ab2 

O 0  O O 
d A =  

D,, = 

10 O -0.19Ab2 -0.093Ab2 

00 

00 

1 O 

01 

00 

bl-variations Abl: 

I-0.071Ab, O I  
B, = 

-0.081Ab1 

dB = 
O 

O 

b3-variations Ab3: 

o O 0 0  

o O 0 0  

o O 0 0  
dA= 

[0.31Ab3 O O O 

7 A ; p ' ~  O 1 ,  o o 1 ] 
O.63Ab2 ' = O -0.3 O -0.065 

The whole perturbation matrix is A = diag(0.13Ab2,0.63Ab,,0.071Ab,,0.081Abl,0.3lAb,). The 
matrices of the interconnection structure matrix G, figure 2.1, are 

b o  o O 0  

1 O -0.071 O O 

O 0  o O 0  

10 1 O -0.081 3 

7 c, = 

O 0 0  1 

O -0.3 O -0.065 
O 0 0  o 
O 0 0  o 
1 0 0  o 

D,, = D,, = zeros(6,6) 
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W, = 

The weighting function for the uncertainty is now obtained by scaling the perturbation matrix to 
unity and is as follows 

0.2 o o O 0  

o 1  o O 0  

O O 0.071 O O 
O O O 3.081 3 

(C.10) 

The matrices B,, q, D12, D21, D,, and the weighting function W, are elements of the general 
interconnection matrix G, figure 2.1, which is used for the controller design in chapter 3. 

In the case of the motor dynamics the equations (C.1) are first linearized along the desired 
trajectory and then transformed to the frequency domain. This is also done for the exact lineariza- 
ting feedback (C.2). The first linearized equation of motion (3.1) now becomes 

The exact linearization becomes 

ul(s) = -P1(Xpr(S) - 2(Plx;-Pz)x,sq3(s) + P1v1(s) 

Laplace transform of the motor dynamics, equation 3.7), gives the following equation 

Substitution of (C.12) in (C.13) results In 

This expression has to be substituted in (C.11) 

(C.11) 

(C.12) 

(C.13) 

(C.14) 

(C.15) 
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If the feedback linearization is exact the equation above will be 

s2r(s) = vl(s) (C.16) 

The equation above is the result of the Laplace transform of equation (B.5). Now (C.16) has to be 
subtracted from (C.15) and results in the parameter variations dA(s) and dB(s) caused by the motor 
dynamics with time constant tf 

dA(s) = 

o O 0  o 
2.56tp 2 . 1 3 ~ ~ ~  
- 0 0 -  

1 +tfS 1 +tfS 

o O 0  o 
o O 0  o 

dB(s) = 

O 0  

-0 

O 0  

O 0  

*f 
1 +tfS 

The matrices B,, C,, DI2, D26, D, and A of the general interconnection structure can be determi- 
ned with the help of the method described in section 3.3. 

B, = , A =  -1 , C, = [2.56 O O 2.131 , D,, = [-i O] 
l+TfS 

For the second equation of motion the derivation can be done in the same way. This results in 
the parameter variations dA(s) and dB(s) caused by the motor dynamics with time constant t, 

dA(s) = 

O O 0 0  
O O 0 0  

O O 0 0  

--o- 
tms I 7tms 2tms 

l+rms fw,s l+Tms I 
dB(s) = 

O 0  

O 0  

O 0  

o- 'dms 

1 +r,S 
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The whole perturbation matrix is 

A =  

The matrices of the interconnection structure matrix G are 

O 0  

1 0  

O 0  

o 1  

B, = 

- 

2.56 O O 2.13 
7 4;[, 2 o  1 ] 9  D21= 

-1 o 
o -1 

O 0  
’ D12 = D22 = [o 

The weighting function for the uncertainty is now obtained by scaling the perturbation matrix to 
unity and is as follows 

w, = 

The matrices B,, q, DI,, D21, D, and the weighting function W, are elements of the general 
system 6 (figure 2.1), which is used for the controller design in chapter 3. 
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Appendix D. Derivation of the xy-table model 

In this appendix the equations of motion of the xy-table model are given together with all values 
of the parameters which are used for the simulations. In figure D1 the system used for the 
simulations is shown. This figure is the same as figure 4.lb in chapter 4. 

Figure D1 The simulated system. 

The used symbols are: 

cpl 
cp2 

cp3 

X1 
x2 
Y 
b 
1 
rx 
rY 

m1 
m2 
me 

'1 
J2 

J3 

Wl 
w2 

w3 
Tl 
T3 

angular displacement of belt wheel 1 
angular displacement of belt wheel 2 
angular displacement of belt wheel 3 
position of x-slide 1 on slideway 1 
position of x-slide 2 on slideway 2 
position of the end-effector on the y-slideway 
distance between slideway 1 and 2 
length of the y-slideway 
radius of the belt wheels 1 and 2 
radius of belt wheel 3 
mass of x-slide 1 
mass of x-slide 2 
mass of the end-effector 
mass of the y-slideway including the y-motor 
moment of inertia associated with 9pl 
moment of inertia associated with cp2 
moment of inertia associated with cp3 
friction torque associated with cpi 
friction torque associated with cp2 
friction torque associated with cp3 
motor torque on belt wheel 1 
motor torque on belt wheel 3 
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k torsion spring constant [Nm/rad] 

x1 -x2 

b 
The angle a is assumed to be small: a = -; cos(a) = 1 ; sin(a) = a 

The values of the parameters used in the simulations correspond to the values of the parameters of 
the xy-table. These parameters are: 

b = l = l  [ml 
rx = r Y = 0.01 [ml 

me = 2.3 [kgl 
my = 6.6 [kgl 
Jl = 3*10" [kgm21 
J2 = O [kgm21 
J3 = 2*104 [kgm21 

W, = 0.15 [Nml 

m, = m2 = 3.8 [kg] 

W, = W2 = 0.25 

k E (0.46 ...co} [Nm/rad] 

[Nm] 

The equations of motion used for simulating the xy-table are [i] 

with 

M,, = I, + [m, + -na 1 1  + me(T V 3 r ~  )2lr , 2 
3 Y b  

M,, = M3, = O  
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f l  = T, - W,sign(@,) 

f2 = -W,sign(c$J 

f, = T3 - W,~ign(@~) 

For the controller design a simplified model is used. In this model the torsion spring is rigid (k=w) 
which means that cp, is equal to cp,. The equations of motion now become: 

with 

q T  = [Vi cP3I 

M,, = J, + [m, + m2 + me + mJrX 

M,, = M,, = O 

M22 = J, + mery 

w, = (W, + WJsign(@,) 

2 

2 

w2 = W,Sign(c$,) 

z1 = T, 

7;2 = T3 

The values of the parameters used in chapter 4 are: 

P, = M,, = 4.68*10" 
P2 = M2, = 4.60*10" 
P, = W, + W2 = 0.50 

[kgm2] 
[kgm2] 
[Nm] 

P4 = w, = 0.15 [Nml 
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Appendix E. Linear model of the flexible xy-table 

The ,u-synthesis requires a linear model of the xy-table. A linear model has been already derived in 
appendix D, equations (D.2). This model, which is only valid if torsion spring is stiff, will be used 
for the controller design. To investigate the influence of the torsion spring in this appendix a linear 
model is derived without neglecting the torsion spring. The nonlinear terms of the equations of 
motion (D.l) are estimated or neglected if these are small. To estimate the nonlinear terms the 
desired trajectory has to be known. The desired trajectory is the same trajectory which is used for 
the experiments. Tiie definition of the axis is given in figure E.I. 

I 

Figure El System used for the simulations of the xy-table. 

x d  and Yd are the desired motorpositions of the servomotors. The relationships between these 
displacements and rotations in the model (D.1) are: 

The linear equations of motion for this trajectory become 

fia(q)ij + 8(q,q) = f 

with 
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1 1 1 1  2 M,, = M,, = [Tmy(b> - ,m (-), + 0.22me]r, 
3 Y b  

M,, = M,, = o 
1 1 1  2 M,, = [m, + my - rn (-) + -m (-), + me - 0.75me,r, 

Y b  3 Y b  

Nr,, = a32 = O 
* 2 M,, = J, + mery 

6, = k(V, - cp2) 

62 = - k(cp, - cp2) 

h, = o 
f, = T, 

f2 = o 
- 
f3 = T, 

The friction torques W,, W, and W, have been omitted because the system without friction will be 
used for the controller design. After the substitution of the values of the parameters the linear 
equations of motion are 

3.6*10-,@, + 0.17*10-3@2 + k(cp,-cp)2) = T, 

0.17*10-3$J1 + 0.67*10-,q2 - k(cp,-cpJ = O 

0.46*10-3ip3 = T3 

Because the torsion spring only has influence on the motion in the x-direction, the equations (E.3) 
and (E.4) only have to be considered. 
These equations are extended with small terms for the viscous friction. The viscous friction has not 
been modelled, but in the real system this friction is about 0.6 [Ns/m] = 0.6*104 [Nmshad]. The 
model equations with viscous friction are 

3.6*10-3Cp1 + 0.17*10-3@2 + 3*10-5c$1 + k(cp,-cpJ = T, 

Q.17*10-3$l + 0.67*10-3@2 + 3*10-5c$2 - k(vl-v)2) = 8 

These equations have to be transformed to the frequency domain. After this transformation cp2(s) 
can be eliminated, so a transfer function from T, to cp, is obtained. Laplace transformation of the 
equations (E.6) and (E.7) gives 

3.6 *lO-’s 2cpl(s) + 0.17*10-3s 2cp2(s) + 3 *10-5scp,(s) + k(cp,(s)-rp,(s)) = T,(s) (E.8) 
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0.17*10-3~ ‘cp,(s) + O.67*1Ob3s 2cp2(~) + 3 *~O- ’SC~~(S)  - k(cp,(s)?,(s)) = O 

Equation (E.9) can be written as follows 

Substitution of (E.10) in (E.8) gives 

cpl(4 = 
2.38 + 1.28 *10-7s + 4.61 * l O S k s  + 6 *lO-’ks 

0.67*10-3s2 + 3*10-’s + k 

The transferfunction from T, to cp, is now 

In the rigid case, equations (D.2), the transfer function from T, to qPi is 

1 1 - 213.7 V(s) = -*- - - 
p, s2 s2 

(E.10) 

(EX) 

(E.12) 

(E.13) 

With the help of these equations the model errors as a consequence of the torsion spring can be 
determined. This has been done in chapter 4. 
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