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Abstract 

In this report, the development of a three dimensional finite element model 
for the post-filling stage of the injection moulding process, is presented. This 
model is meant for the injection moulding process of products with high 
demands on accurate geometrical shape, like lenses for CD-players. An im- 
portant aspect concerning geometrical shape is the generation of residual 
stresses. The development is divided in two parts. 

The first part is the development of a finite element model describing the 
thermal and visco-elastic behaviour based on a the Lagrange approach. The 
second part is the development of a Updated ALE algorithm. This algorithm 
is needed because large mesh distortions are expected when extra material 
is pushed in the mould to  compensate the shrinkage. This report deals only 
with the first part. 

For modelling the process the balance laws are given and the constitu- 
tive equations for Cauchy stress tensor, the internal energy and the heat flux 
vector are presented. The Cauchy stress tensor is described using the general- 
ized Newtonian Fluid model and the generalized Multimode Maxwell model 
dependerit on the temperature. These two models are worked out for both 
infinitesimal strain theory and nonlinear theory. The nonlinear model may 
be needed for the packing and holding stage. 

The thermal - and visco-elastic problem are solved decoupled, using tem- 
perature, displacement and pressure as unknowns. On the nonlinear visco- 
elastic problem the Newton Raphson solution method is applied. For both 
problems the enriched trilinear element is used. 

The performed simulations of the cooling stage under atmospheric pres- 
sure show good comparison with results obtained from the literature. Sim- 
ulations with the nonlinear model gives nearly the same results as obtained 
from the linear model. Also investigations on mesh size and time step size 
are presented. 

.. 
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Chapter 1 
Introduction 

On a continuously increasing scale, polymer materials are applied in indus- 
trial products in diverse fields as e.g.: the automotive and aviation indus- 
try, consumer electronics, bio-prost hesis etc. Polymers intrinsically exhibit 
a range of advantageous properties, compared t o  more traditional materials. 
Their primary asset is their low density, resulting in a relatively high specific 
strength and stiffness. Other properties that are useful in a variety of appli- 
cations are: impact resistance, electrical properties, temperature resistance, 
water resistance, surface finish and chemical inertness. Most important, how- 
ever, is that polymers are easy t o  process; complex shaped and integrated 
parts can be manufactured in automatic mass production equipment. 
(Douven [14]) 

1.1 Injection moulding 

Although a large number of industrial processes for the manufacturing of 
plastics products exists, about 30 per cent of all polymers is processed by 
injection moulding. 

Description of equipment and operations 

In figure 1.1 a schematic representation of a reciprocating screw injection 
moulding machine is given. Two main parts can be recognized: 

o The injection unit, 
o The clamping unit containing the mould. 

The screw plasticizes the granulated polymer, fed by a hopper, by heat con- 
duction from the heat bands and by viscous heating generated by the screw 
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clamping unit injection unit 

. 
nozzle 

moving mould half - 
non-renun valve 

fixed mould half 

Figure 1.1: The reciprocating screw injection moulding machine. 

rotation. The polymer is pressurized and further homogenized in the me- 
tering zone of the screw. Because the small diameter nozzle is sealed by 
solidified polymer, the melt pushes the screw backwards against a control- 
lable pressure. If sufficient material is metered, the screw rotation stops. 

After closing the mould, the screw is pushed forward. A non-return valve 
at the tip of the screw prevents the melt from leaking backwards. The poly- 
mer is injected at high speed through the nozzle, via the sprue that leads 
t o  the runner(s), into the cavity. At the entry of the cavity restrictions are 
present, so-called gates, that control the flow into the mould and promote 
the removal of the sprue and runner(s). The mould halves are fixed to  the 
clamp unit, that is designed to  withstand the high pressure exerted on the 
mould and prevent it from opening. This stage of the process is called the 
injection or filling stage. 

The mould is thermostated by recirculating water or oil through cooling 
or heating channels. The polymer starts t o  solidify immediately at the mould 
walls. When the mould is completely filled, additional material is forced in 
the mould t o  compensate the shrinkage. These stages are called the packing 
and holding stage of the injection moulding process. The material continues 
te e,-;tter the mculd cmity imtil t h e  gate freezes off, thus defining the start 
of the cooling stage. When the product is sufficiently cooled, the mould is 
opened and the product is ejected. (Douven [14]) 
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Figure 1.2: Pressure versus time at the gate. 

Problem under consideration 

This report focuses upon the injection moulding process of products with 
high demands on accurate geometrical shape, like lenses for CD-players. An 
important aspect concerning geometrical shape is the generation of residual 
stresses. One distinguishes residual flow stresses which develop during the 
filling of the mould and the packing stage, and the residual stresses gener- 
ated during the cooling. The latter one, also denoted as thermally induced 
stresses, is caused by differential shrinkage and gives rise to the highest con- 
tribution to the residual stresses. A three-dimensional approach is needed to 
calculating residual stresses. 

Lit erat ure 

The present state of research concerning the modelling of the injection mould- 
ing process is marked by recently works like Chiang [ll], [12] and Douven 
[14]. They focused on a 2SD analysis of the whole injection moulding cycle. 

Concerning residual stresses, Baaijens [3] gave a 2SD model to  calculate 
both flow- and thermally induced stresses. A 3D approach to this subject 
but only describing thermally Induced stresses is given by Kabanemi [ isj. 
Experimental work on thermally induced stresses was done by Lee [20], Saffell 
[23] and Wust [29]. 
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1.2 Objective of the research 

The objective of the research presented in this report is the development 
of a three-dimensional finite element model for the post-filling stage of the 
injection moulding process. The work will be divided in two parts from which 
the only the first one has been accomplished. 

The first part is the development of a finite element model based on 
the Lagrange approach describing the thermal and visco-elastic behaviour 
of the process. With use of this model the cooling stage can be simulated. 
Experimental data from the literature is available to  check the model. 

The second part is the implementation of an Updated-ALE algorithm. 
This algorithm is needed to  simulate the pack and hold stage. 

Also part of the research is a geometrical nonlinear constitutive model for 
the visco-elastic behaviour and the implementation of the enriched trilinear 
element. The nonlinear model may be needed in the pack and hold stage. 

1.3 Layout of the report 

In the first chapter an introduction on injection moulding is given and the 
objective of the research is presented. 

In chapter 2 a brief introduction is given t o  continuum mechanics and 
thermodynamics is given. The aim is t o  determine fields of density, motion 
and temperature of a body. These fields must obey balance laws. Some 
extra relations, so-called constitutive equations, have t o  be defined to  create 
a solvable set of equations. 

In chapter 3 the constitutive equations for the Cauchy stress tensor, the 
internal energy and the heat flux vector are presented. 

In chapter 4 the equations of the previous two chapters are used to model 
the injection moulding process. Definitions of the temperature and visco- 
elastic problem are presented. The visco-elastic problem is worked out for 
both geometrical linear and nonlinear theory. 

In chapter 5 the FEM discretization of the temperature and visco-elastic 
problems are worked out. On the nonlinear visco-elastic problem the Newton- 
Raphson solution method is applied. Further the enriched trilinear element 
is formulated. 

IE chapter 6 the r e s d t s  ef some simulations of the cooiing stage are gkven. 
They are compared to results from the literature. Also investigations on the 
influences of mesh sizes and time step size are presented. Further the linear 
and nonlinear visco-elastic models are compared, 

In chapter 7 some conclusions and recommendations for further research 
are given. 
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Chapter 2 

Theoretical background 

Continuum mechanics is concerned with the thermo-mechanical behaviour 
of continuous media on a macroscopic scale. The main goal of continuum 
mechanics is t o  determine the fields of density, temperature and motion for 
all material points considered, as a function of time (Muller [21]). 
In this chapter the basic concepts of continuum mechanics are summerized. 
(Douven [14], Oomens [22] and Schreurs [24]) 

2.1 Kinematics 
The kinematics of a problem contain the field of motion and its derivatives 
with respect to  time and position. 

A continuum is considered to exist of a set of material points. These 
material points can be identified by their material coordinates, denoted by 
a column [. The position vector of a material point, denoted by 2, is a 
function of the material coordinates [ and of the time t.  
The material points of a continuum at time t can be identified by their 
position vectors 20 in a reference state. Using the Lagrangian description the 
underformed initial state is chosen as the reference state. Thus an arbitrary 
scalar field a can be written in the following form 

N 

N 

The rriotim ef a continuum- is denoted as the vector field @. The position 
of a material particle at time t, identified by the position 2 0  in the reference 
state, is given by 2 = @(Zo,t). 
The gradient operator is defined 

& * ?a = a@+ d.) - a(.) (2.2) 
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where d> is an arbitrary vector of infinitesimal length. 
The material time derivative ci is defined as the rate of change from a at 

a fixed material point. The spatial time derivative dalat is defined as the 
rate of change of a at a fixed position in the space. The relation between 
these derivatives 

aa -3 

at 
ci = - + z. Va 

I n  equation (2.3) the velocity of a material point is defined as 

The deformation tensor is defined as 

F = (Go@))' (2.5) 

where 90 is the gradient operator with respect t o  the reference state. 
A unique decomposition of the deformation tensor is given by 

F = R - U  (2.6) 

where U is a stretch tensor and R is a rotation tensor, i.e. R" R = I and 
d e t ( R )  = 1. The right Cauchy-Green tensor is defined as 

G = F " . F  (2.7) 

L = (UZ)" = j 7 .  F-1 (2.8) 

The velocity gradient tensor is defined as 

This tensor can be split into a symmetric part D, the deformation rate tensor, 
and a skew-symmetric part O, the spin tensor. 

1 
D = - 2 ((f;)" + (e;)) 

1 
l2 = - (<.;y - (9;)) 2 (2.10) 

The displacement field is defined U = 2 - Zo. In case of linear deformations 
the spatial gradients of ü are assumed to  be small; 

li-&$l[ < I @.li) 

where /I 
case B o  = V. At last, the linear strain tensor is given by 

11 is a norm for second order tensor. It can be shown that in this 
-3 -3 

1 
2 E = - ((30U)" + (9,Z)) 

6 
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2.2 Balance laws 

The basic equations of continuums mechanics are the equations of balance. 
In their local form they can be written as 

Balance of mass ( continuity equation) 
-# 

ri, + p V  a i7 = ri, + p t r ( D )  = O 

Balance of momentum 

e .  u"+ pf' pi? 

Balance of angular momentum 

u = u" 

Balance of energy 
- # +  

pe = u : D - V h -k pr 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

where: p is the density 
f is the gradient operator with respect t o  the current configuration 
i7 is the velocity vector 
D is the strain rate tensor 
u is the Cauchy stress tensor 
f i s  the specific body force 
e is the specific internal energy 
2 is the heat fiux vector 
r is the specific heat source 

To create a solvable set of equations, beside the balance laws, some extra 
equations have to  be formulated. These equations, so-called constitutive 
equations, must be established for the Cauchy stress tensor, the heat flux 
vector and the specific internal energy as functions of density, temperature 
and motion. This is  the subject of the next chapter. 
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Chapter 3 

Mat er ia1 behaviour 

In this chapter the constitutive equations for the Cauchy stress tensor, den- 
sity and the specific internal energy will be given that represent the be- 
haviour of amorphous polymers. These properties can be divided in thermo- 
mechanical and thermal behaviour. 

3.1 Thermo-mechanical behaviour 

It is common practice t o  split the Cauchy stress tensor into CT = -PI + r ,  
where r is the extra stress tensor and p is a pressure term. In case of 
multimode application: 

m 

d = -pl+C72 
i=] 

Where m is the number of modes. 
If the extra stress tensor is deviatoric, p is the hydrostatic pressure. 

Idealized, during the injection moulding process, the material appears in 
two different physical states. The first one is the molten, liquid alike, state. 
For simplicity the elastic behaviour of the polymer in this state will be ig- 
nored. Only viscous effects are taken into account. Under these assumptions 
the molten material can be well described with the generalized Newtonian 
Fluid model. 

Below the glass transition temperature the polymer is solidified, the so- 
caEed glassy state. IE this state, visco-e!astic phemxxem p l q  an imprtm% 
role. The material in the glassy state will be described with the generalized 
Multimode Maxwell model. 
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3.1.1 Generalized Multimode Maxwell model 

The Multimode Maxwell model is based upon the linear visco-elastic theory. 
The multimode application of the model is used because the single-mode 
model gives poor results. The Maxwell model in rate-form: 

O 

Where (e) denotes some objective rate of ( a ) ,  8 is the relaxation time and '1 
is the viscosity. Using the fundamental theorem: 

To each objective tensor u a n  invariant tensor ïF can be associated 
such that 

A = - A .  (n + H), A(t = T)  = I (3.4) 

where r is  some reference t ime. The material t ime derivative of ü can be 
associated to a so-called objective rate through the relations 

(3.51 
O - = A. (T .A" 

where H is  some objective tensor. 

The equation (3.2) can be rewritten 

Integrating this equation leads to the integral-form of the Maxwell model: 

The integral-form will be used because of numerical advantages. The rate- 
form implies, after time discretization, time steps factor ten smaller than the 
relaxation time t o  get reasonable result. With use of the integral-form this 
is not necessary, if 19 is known suEcientiy weii during the time interval of 
int erest. 

The temperature dependency of the material constants is treated by as- 
suming thermorheological simple material. Defining: 

8 ( T )  = aTeo (3 -9 )  
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q(T) = aTqO (3.10) 

Where ( . ) O  denotes (.) at the reference temperature and aT is the shift factor. 
The time-temperature shift function aT is governed by 

GT = e -CJ (T-%I) (3.11) 

Where c3 and To are constants. 
The pressure dependence of the shift factor: 

To(P) = TO(0) + *P (3.12) 

Where s is a constant. 
Finally applying the temperature dependence of relaxation times and vis- 
cosities to the integral-form of the Maxwell model leads to  the introduction 
of reduced time (see appendix A). 
Full expression of the generalized Multimode Maxwell model: 

m. ... 

u = - p I + C q  
i=l 

With expression for extra stress tensor: 

And the definition of reduced time: 

(3.13) 

(3.14) 

(3.15) 

Assuming the material is unloaded in time interval (-00, O]. 

3.1.2 Generalized Newtonian Fluid model 

In the molten state the material is described by the Newtonian fluid model. 
Using this model the elastic behaviour of the material will be ignored. The 
model is defined in the following way: 

a = - p I + r  (3 .16)  

The extra stress tensor is defined: 

r = 27Dd (3.17) 
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Where i j  is the steady state shear viscosity. 
Assuming the Leonov model to hold (Douven [14]), the steady state shear 
viscosity may be expressed as: 

Where the shear rate is defined: 

+=J2DD 

(3.18) 

(3.19) 

The temperature dependence of the relaxation times and viscosities is treated 
in the same way as in the glassy state. In this case the WLF equation is used 
t o  calculate the shift factor. Recalling 

B(T) = ~ p 9 0  

r](T) = uTr]O 

The WLF-equation: 

Pressure dependence: 

To(P) = TO(0) + SP 
C2(P) = c2(0) + S P  

Where c1, c2 and To are constants. 

3.2 Density 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The Newtonian and Maxwell model only descriwe the extra stress tensor. The 
pressure part p is physically related to volume changes. These are mainly 
caused by changes in pressure and temperature. These effects are incorpo- 
rated through the continuity equation: 

- + t r p j = û  e (3.25) 
P 

Where p = p(T,p) is the density. 
This yields: 

aT+/@+tr(D)=O (3.26) 

f l  



(3.27) 

The constants a and K, are calculated with use of an empirical pvT-relation, 
the so-called Tait equation for amorphous polymers (Zoller [30]): 

(3.28) (UO, + u~,(T - T’))(l- 0.0894h(1+ e)) i f  T 2 T g  
(ao, + al,(T - Tg))( l  - 0.0894h(1+ $)) i f T  5 Tg 

With: 

B,(T) = Bo,e-(B1mT) , &(T) =Bo& -(BinT) (3.29) 

T g ( P )  = Tg(0) + S P  (3.30) 

Where v is specific volume, Tg is pressure dependent glass transition temper- 
ature and ao,, al,, BO,, Bi,, ao,, al,, Bo,, BI, and s are constants. 

3.3 Thermal behaviour 

In this section the constitutive equations concerning the thermal behaviour 
are presented. The heat flux vector h is assumed t o  be proportional to  the 
temperature gradient: 

h = -AOT (3.31) 

Where X is the thermal conductivity coefficient. 
This equation is known as Fourier’s law. Ignoring elastic effects, the specific 
internal energy e can be written as (Sitters [26]): 

6 = cp(?) - P - t r(D) + --p T dP 
P p2  d T  

(3.32) 

Chiang [li] proposed for the thermal capacity at constant pressure: 

Where c,l, cp2, cp3, cp4 and cp5 are constants. 
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Chapter 4 

Modelling the inject ion 
moulding process 

In this chapter the balance laws and constitutive equations will be  utilized 
to  model the injection moulding process. 

Since it is our aim to  develop a three-dimensional model no simplifications 
due to  mould geometry can be made. Modelling the filling stage is rather dif- 
ficult in a 3D enviroment. Also it is assumed that the impact of this stage on 
the next stages is small. The simulation will therefore start with an already 
filled mould. The process will be modelled using a Lagrangian description 
with displacements as the unknowns, rather than a Eulerian description with 
velocities as unknowns. During the packing stage, difficulties may occur due 
t o  large mesh distortions. This problem may be overcome by employing an 
Updated ALE algorithm, Baaijens 121. 

In the next sections the definition of the thermal - and visco-elastic prob- 
lem will be given. 

4.1 Temperature problem 

The temperature problem will be derived from the energy equation, using 
Fourier's law and the relation for specific energy. An internal heat source is 
assumed not to  be present. 

Applying time discretization, the time domain S = [O, Te] is divided in nt 
intervais according io: 

13 



Employing the backward difference scheme to discretize time derivatives: 

$Fz Pn+i - Pn 
At (4.3) 

Where (.)n+i denotes ( e )  at t = tn+l and 
Defining the domain R with boundary I' = ru U rpU rh the temperature 
problem (PT) can be give by: 

denotes ( a )  at t = t,. 

Given  a heat f lux  qo : rP H IR , a s u r f a c e  conductance h : r h  H R , 
a prescribed temperature Ti+i : ru H lR, a n  init ial  t emperature  f i e ld  
Tn and pressure  f i e ld  p,, a n  actual pressure  f i e ld  p,+l, ex t ra  s t r e s s  
f i e ld  r and s t ra in  rate  LI, f i n d  Tn+i : R H R such t ha t  

$ A$Tn+1+ tr (r  : O) - 1 / 3 t r ( r ) t r ( D )  

P(Tn+i - Tn)/At + $G+i(Pn+i - p n ) / A t  (4.4; 

(h * ii = q O ) n + l  on rP (4.5: 

T,+1 = T:,, on  rU (4.7; 

and 

(4.6: 
+ 
h e 6 = h(T,+l - T , )  on rh 

Where: 

Calculating ,û and ,u, the last estimate of the temperature is used. So equation 
(4.4) is assumed t o  be linear. On the boundary î h  a so-called Robin boundary 
condition is given. The term i/3tr(rjtr(D) is only non-zero in case the extra 
stress tensor r is not deviatoric. 
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4.2 Visco-elastic problem 

The visco-elastic problem will be derived from the momentum equation, the 
continuity equation and angular momentum equation using the constitutive 
equation for the Cauchy stress tensor. Due to  the extremely high viscosity 
of the material compared t o  the velocities, inertia effects will be disregarded. 
Further, no body forces are assumed to  be present. The momentum equation 
yields 

(4.10) 
+ + 
V . u = O  

Two constitutive equation for the Cauchy stress tensor are used; The gen- 
eralized Newtonian Model and t he generalized Multimode Maxwell Model 
dependent on the temperature in the material point. 
With use of time discretization and reduced time the expression for the extra 
stress tensor of the Maxwell Model can be transformed: 

(4.11) 

Where: 

(4.15) 

In the last step 8 ( s )  is assumed t o  be constant in the time interval [tn, tn+l] 
and is chosen at t = cy. E [O, i]. This tensor will also be used in 
the Newtonian model. A constitutive equation for the Cauchy stress tensor 
including both models is defined by: 

m. ... 

u = -PI+ r*  +Cri 
2=l 

(4.16) 
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Where: 

if T > Tg 
Gni = 

e @ f l l  if T 5 Tg (and T 5 Tg at t = tn) 

(4.19) 

(4.20) 

(4.21) 

The definition of the visco-elastic problem will continue in two different ap- 
proaches from this point. 

4.2.1 Infinitesimal strain theory 

In the infinitesimal strain theory only small strains and rotations are permit- 
ted. Under these restrictions the strain rate tensor yields 

i 
D = -(óZ+(oV>') 2 (4.22) 

where 

(4.25) 

The constants a, K, and 7j  will be calculated using the last estimate of pres- 
sure, temperature and strain rate. 
Using the domain R with boundary r = I'u U rP the linear visco-elastic prob- 
lem (PVE) can be give by: 

-+ - + +  AU = un+l- un 
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Given  a boundary load &+I : rp H IRn, a precribed displacement 
A Z o  : ïu H IR", a n  init ial  temperature f ie ld  Tn, - pressure  f i e ld  pn 
and ex t ra  s t ress  f i e ld  rni and a n  actual temperature f i e ld  Sn+l, 
f i n d  A Û  : R H Rn such  that  

(4.26: 

(4.27: 

(4.28: 

(4.29: 

4.2.2 Non-linear theory 

In the non-linear theory finite strain and rotations are allowed. Recalling 
discretization of the time interval S = [O, Te] in nt intervals according to: 

nt 
S = U Sn, Sn = [tn,tn+l], At = tn+i - tn  (4.30) 

Applying linear interpolation, the motion of a point with label 2 0  and t E Sn 
can be given by: 

n=O 

(4.31) 

So, the deformation tensor in Sn can be given by: 

Fn+a = (1 - a)Fn + aFn+i (4.32) 

Application of the generalized midpoint rule gives: 

Cn+í - Cn 
At Cn+a = 

Where: 

(4.33) 

(4.34) C =  F " .  F 
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Equation (4.33) is the basic approximation for deriving a relation for the 
strain rate tensor. The relation is given by [i] : 

1 1  
2 At 

Dn+a = -- (FiZa. FE+, * Fn+l F-l n+a - 

F;+, F: - F, F i t a )  (4.35) 

This approximation for the strain rate tensor is incrementally objective in 
S,, but only for Q! = 4 physically acceptable results can be obtained [Z]. 
Using the theorem given in section 3.1.1 and the Truesdell proposition 

A = ~ - l  (4.36) 

The relation for the Multimode Maxwell extra stress tensor yields: 

r (n+1)  i = Fn+i F i l  * (Gnirni) * Fi" * F:+1+ 

GiF,+l* F& * q+) * F i t $  p:+, (4.37) 

The relation (4.35) with Q! = 
Using domain R the non-linear visco-elastic problem (NPVE) is given by: 

is also used in the Newtonian Fluid model. 

Let t h e  mot ion  during S, s a t i s f y  : 

(4.38) 

mad a boundary load $,+i : I?, H En, a precribed motion cpn"+l : Tu H En, 
I n  init ial  temperature f i e ld  T,, - pressure  f i e ld  p,, - de format ion  
f ie ld  Fn and ex tra  s t ress  f i e l d  7,; and a n  actual temperature f i e ld  T,+i, 
f i n d  : R IR such  tha t  

o n  rU (4.41) 4 0  
&+I = pn+ï 

on+, <,+i = Pn+i -+ o n  rp (4.42) 
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The expression for the extra stress tensor (es. (4.37)) is not deviatoric any 
more. In spite of this fact it's still assumed that the pressure term in the 
constitutive equation for the Cauchy stress tensor is the hydrostatic pressure 
(normaly defined by p = -ftr(cr)) .  Only in case of calculating pressure 
dependent const ants the real hydrostatic pressure is used. 

The constants a, K and 7 will be calculated using the last estimates of 
pressure, temperature and strain rate. 

4.2.3 Calculating G,i and Gi 
For the calculation of G,; and Gi, appearing in the equation for extra stress 
tensor from the Maxwell model, some approximations have t o  be made. 
Recalling the definitions eq. (4.20), (4.21), (4.15), (3.15) and (3.11). 
If T 5 T,: 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

First applying linear interpolation for the temperature on S,: 

For Gni this yields: 

(4.48) 

(4.49) 

Because there is no analytical solution for the integral of G;, a piecewise linear 
approximation for [(T> is  sed. D e h i n g  the time domain S* = if 1-n 9 f -,+i ' 1 2 

divided in k intervals according to: 

IC 

s* = u Sn, s. = [Tj, Tj+l], 8 7  = Tj+i - 
j =O 

(4.50) 
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Applying piecewise linear approximation from ((T) on Sn: 

(4.51) 

This yields: 

Where: 

(4.54) 

The equations (4.49), (4.53) and (4.55) do not hold for T, = T,+1. In this 
special case simple equations for Gni and Gi can be derived without using 
eq. (4.48) and (4.51). The constant 7 must be chosen dependent of the 
temperature change during time interval S, (chosen was 7 = 4 + int(&!’)). 
Further extra attention must be paid t o  the calcalation of e“ - eY when x 
and y are near to zero. In that case the expansion of er is used. 
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Chapter 5 

Application of the Finite 
Element Method 

The FEM discretization of the temperature -, visco-elastic - and nonlinear 
visco-elastic problem is discussed in this chapter. Using this method the 
volume is divided into elements. In these elements the unknowns will be 
approximated with polynominals of a certain order. 

The temperature - and visco-elastic problem will be solved separately t o  
save computation time. This can be done because it is assumed that the 
dependence of the temperature problem on the displacement - and pressure 
field is weak. So, each time- or iteration-step the temperature problem is 
solved first, supplying a temperature field that is used in the visco-elastic 
problem. 

5.1 The weak formulation 

The system of equations PT, PVE and NPVE derived in the previous 
chapter are cast in a strong format by application of the weighted residual 
method. The equations are multiplied by a weighting function and integrated 
over the volume. The weak form is obtained by using integration by parts 
and transforming a volume integral into a boundary integral. The weak form 
of the problem imposes lower order of differentiability requirements on the 
solution than the original strong form. The weak forms, PTW, PVEW 
and NPVEW, are derived in appmdkc 5. Fûï the nodinear visce-e!rtstic 
problem the Updated Lagrange method is used. This means that as reference 
configuration of the time interval S,, the state at t = t ,  is chosen and implies 
that F, = I.  
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5 2  Newton-Raphson solution method 
The nonlinear visco-elastic problem will be solved using the Newton-Raphson 
iteration process. Therefor the system of equations has to  be linearized. 
The weak form of the nonlinear visco-elastic problem in short notation: 

A($, P, $1 = L($, $1 (5.1) 

Let $ be a estimate of the motion 3, S@ the error in the estimate 
be an estimate of the pressure p, with Sp the error in the estimate p̂  : 

and @ 

p = p + s p  (5.4) 

The definition of the directional derivative of a functional A ( .  . . , $) into the 
direction S$ witli respect t o  $ : 

A( .  . . , @ + ûS$) - A(.  . . , 3) 
8 

SPA(. . . , $3; 6 3 )  = lim 
%+O 

Likewise 

A(.  . . ,p + esp) - A ( .  . . ,PI 
e SPA(. . . ,p; Sp) = 1im 

%+O 

(5.5) 

Neglecting higher order terms the linearized system of equations is given by 

A($, 6, $) + SPA(Z, P, $; SP) + SPA($,@, $; SP) = 

For the derivation of this system of equations see appendix C. 
Employing the Newton-Raphson iteration process this system of equations 
has to  be solved each iteration step until convergence. After each iteration 
step the new estimates are calculated as follows: 

pi+l = pi + Spi (5.10) 

where i denotes the i-th iteration step. 
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5 e 3 D iscret izai Pon 

The volume R will be divided into nel element, such that 

nc1 
R = U W  

i=l 

Boundary elements are defined by 

(5.11) 

re = r n oe (5.12) 

Within each element there are a finite number of discrete points, the so- 
called nodes. In these nodes the unknowns, displacement and pressure or 
temperature, are calculated. The values of the unknown in any point of 
the element can be derived by interpolating between the nodes. This inter- 
polating is done with use of shape functions. The weighting functions are 
also defined in the nodes and interpolated between them. According to the 
Galerkin method the same shape functions for the weighting function and 
the corresponding unknowns will be used. Further, the Cartesian reference 
system will be introduced. 

5.3.1 Discretization of the temperature problem 

The temperature field and weighting function are interpolated over the ele- 
ment as follows 

nT 

T(z ,  y, z )  = ZVz(z7 Y, 4 
i=l 

(5.13) 

(5.14) 

where nT is the number of temperature nodes in the element and pi(z,y, z )  
is the shape function. 
Interpolation on the boundary element 

(5,15) 

(5.16) 

where nTb is the number of temperature nodes on the boundary element and 
xi(%, y, z )  is the shape function. 
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The discretized temperature problem is worked out in appendix D. 
result given by: 

The 

V W  
N 

(5.17) 

These equations must hold for all admissible weighting functions. So, the 
contribution from one element in matrix form is given by 

S " T = f  (5.18) 
N NT - 

5.3.2 

The displacement field and corresponding weighting function are interpolated 
over the element as follows: 

Dfserei~zationn sf the vkcs-e!astk problem 

(5.21) 

(5.22) 

where n - ~  is the nUrril;er of displxemezt nodes in the &me=% and pi(-? Y 7 4  
is the shape function. 
Interpolation of the pressure field and the corresponding weighting function: 
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n v w  

(5.24) 

where nvp is the number of pressure nodes in the element and $i(q y, z )  is 
the shape function for the pressure. 
Interpolation from the weighting function on the boundary element 

n v b  

(5.25) 
i=l 

where nvb is the number of displacement nodes in the boundary element and 
xz(z, y, z)  is the shape function from the boundary element. 
The discretized system of equations for the visco-elastic case is derived in 
appendix D. The result is given below 

and 

b ' q  (5.27) 
N 

These equations must hold for all admissible weighting functions. So, the 
contribution from one element in matrix formulation is given by 

(5.28) 

where 
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(5.30) 

(5.31) 



JL = K $ $ ~  dfl (5.32) 
NN 

(5.33) 

(5.34) 

5.3.3 Discretization of nonlinear visco-elastic prob- 
lem 

The iterative motion (displacement) field and corresponding weighting func- 
tion are interpolated over the element as follows: 

nnv 

nnv 

(5.35) 

(5.36) 

where nnv is the number of displacement nodes in the element and pi(., y, z )  
is the shape function for displacement. 
Interpolation of the pressure field, the iterative pressure field and the corre- 
sponding weighting function: 

nnvv 

(5.37) 

(5.38) 

(5.39) 
i=l 

where nnvp is the number of pressure nodes in the element and $i(z, y, z)  is 
the shape function for the pressure. 
Interpolation from the weighting function on the boundary element 

nnvb 
(5.40) 

where nnvb is the number of displacement nodes in the boundary element 
and xi("c, y, z )  is the shape function for the boundary element. 
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The discretized system of equations for the nonlinear visco-elastic problem 
is derived in appendix D. The result is given below 

and 

(5.42) 
N N 

These equations must hold for all admissible weighting functions. So, the 
contribution from one element in matrix formulation is given by 

where 

E(; = s, 4' + o> AdQ (5.44) 

(5.45) 

(5.46) 

(5.48) 

(5.49) 
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5.4 T h e  enriched trilinear element 
The element that will be used for the temperature - and visco-elastic problem 
is the enriched trilinear element. This element is recommended by C.R. Bev- 
erly et al. [8] as a good compromise between solution accuracy, computation 
time and stability for mixed formulations. 
The element has 15 displacement (or temperature) nodes and 4 pressure 
nodes. The displacements nodes are located a the corners of the hexahedral, 
the centre of the surfaces and one node at the centre of the hexahedral. See 
figure 5.1. The shape functions are defined using isoparametric coordinates. 

c 

11 A+ 
I 

I I I I 

I 
1 1 9. 
I 15 I . I  ,*--- 

7 

E3i-- - - - - - - , , ,' 

2 
Figure 5.1: The enriched trilinear element. 

The transformation to  this, so-called -space with isoparametric coordi- 
nates leads to a cube with edges of length two. The shape functions are than 
derived by taking the trilinear element and adding bubble-functions at the 
surfaces and one bubble-function over the hole element. Also the derivatives 
of the shape functions are determined (see appendix E). 
The shape functions for the pressure are defined in such way that the pres- 
sure field is linear (in the i -space) over the element. 
Also a bcmìdzïy deme;lt is defined. This elerne~t has five displacement (or 
temperature) nodes. See appendix F. 
The integrals over these elements will be calculated using numerical integra- 
tion rules. These integration rules are given in appendix G. 

N 
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5.5 Global system of equations 

To obtain the global system of equations the element matrices and right 
hand sides have t o  be assembled. But first the element system of equations, 
can be simplified by elimination of the internal unknowns to save storage and 
computation time. These unknowns have no connection with other elements. 
For the temperature problem this is the temperature at the centre-node, for 
the visco-elastic problem the displacement at the centre-node and the four 
pressure values. The element system of equations, in general, is given by 

where z 

The elimination leads t o  
contains the internal unknowns. 

N i p  

The global system of equations is given by 

n,l 

where: A is the assemble operator 
e=l 

w is the global weighting column 
-g 
IC is the global column with unknowns 
Ng 
- K" is the element matrix 
f" is the element right hand side 
N 

For all admissible weighting functions this yields 

(5.50) 

(5.51) 

(5.52) 

(5.53) 
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Chapter 6 

Numerical sirnulat ions 

The equations derived in the previous chapter are implemented in the finite 
element package SEPRAN. Starting-point were a set of subroutines describ- 
ing incompressible, isothermal visco-elastic behaviour based on a rate-form 
(Bever [5]). In this chapter the test cases and simulations of the cooling stage 
are discussed. Also the linear and nonlinear model are compared. 

6.1 Test cases 

To check the implementation some test cases are performed. For the visco- 
elastic problem a tension and simple shear test are derived analytical, see 
appendix H, and compared with simulations using the finite element model. 
The results are accurate within 0.01%. The displacement field in these tests 
are linear so this accuracy was expected. The approximation due i o  time 
discretization are not studied. 
For the temperature problem a test case is obtained for the literature (see 
appendix H). Performing this test oscillations did occur within the elements. 
This may be caused by the fact that the approximation field of the enriched 
element is a combination between linear and quadratic. The oscillations seem 
to  occur only in the nodes that are added to the linear element. 

6.2 Simulation of the cooling stage 

The model developed is capabie of simulating the cooling stage under aimo- 
spheric pressure. The global matrix is solved by an iterative solver. Using 
this method memory usage can be reduced. Two different preconditioning 
methods are used: diagonal scaling and symmetric Gauss-Seidel. 
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Figure 6.1: Stress component xx versus coordinate y. 

At t = O the material is unloaded and the temperature field is homo- 
geneous at a temperature above the glass transition temperature. A Robin 
boundary condition is applied on the boundary surfaces assuming the heat 
transfer to be linear with the temperature difference between boundary and 
at infinity. The simulations are performed on square or rectangular cubes. 
For reason of symmetry anly one eighth part ofthe cube has to be simulated. 
The material used is polycarbonate Makrolon CD 2000. The material data 
is obtained from Douven [14], see appendix I. Seven cases are examined, de- 
tailed data and results are presented in appendix J. The results are discussed 
below. 

Case 1 
In this first case a cube is cooled down from 465K to 290K. This test was 
done to get an impression of the model and the phenomena that take place. 
The residual stress component xx over the y-axis is given in figure 6.1. A 
physical explanation for this result can be found in the differential shrinkage 
during the cooling. The outside surfaces solidify first followed by the middle 
of the cube. But the shrinkage of the middle of the cube is prevented by the 
already solidified outside. So in the outside surfaces compression develops 
and tension stresses develop in the middle of the cube. 
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Figure 6.2: Temperature change versus time. 

Case 2 
In this case mesh refining is performed. Like in case 1, the mesh size is 
decreasing from the middle of the cube to the surfaces. This is done because 
the largest temperature gradients arise at the surfaces. The mesh refining 
from 6 x 6 ~ 6  t o  10xlOx10 shows that the accuracy of the first case was already 
quite good, the isobars have the same shape and minimum and maximum 
values differ only a few per cents. (The largest differences appear in the shear 
stresses.) In case of the 6 x 6 ~ 6  mesh the element size is O.llmm at the surface 
and 0.23mm in the middle of the cube. 

Case 3 

Using a constant time step of 0.01 sec, the maximum temperature change 
during one time step starts with 40K, and decreases quickly. To prevent this 
large temperature change a logarithmic increasing time step is performed in 
case 3, startizg with At = ri.001 t o  0.02 sec. The maximum iempeïatnre 
change decreases to  9K, see figure 6.2. This is a more acceptable value. The 
changes in the results are very small. This may be explained by the fact 
that these large temperature changes occur in a very small area, the corner 
of the cube. A remark must be made on the temperature field. Due to the 
very small time steps oscillations within the elements occur. This may lead 
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Figure 6.3: Effect of cooling rate on residual stress. 

t o  loss of accuracy . 

Case 4 and 5 

According t o  Saffell [23] residual stresses are dependent on the cooling rate. 
Higher cooling rates give rise to higher residual stresses. In the simulations 
the cooling rate can be manipulated by the surface heat transfer coefficient 
h. Three different values of h are used to  examen this effect. The residual 
stress components xx over the y-axis are presented in figure 6.3. The results 
are in agreement with the literature, also the minimum and maximum values 
of the residual stresses are in the same order of magnitude. 

Case 6 

This case is an example of the solidification of a rectangle cube 

6.3 Non-linear application 
The last case (7) is performed using the nonlinear model. The results are 
nearly the same as obtained in case 1. This could be expected because at 
temperatures below T’, the deformations are small. 
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Figure 6.4: Number of iteration steps versus time. 

In the beginning of the simulation up to 9 iteration steps are needed, 
see figure 6.4. Trying t o  improve the convergence speed some concepts were 
tested. First SD,++ was implemented instead of SD,+I. No significant 
improvement was obtained. F’urther the solutions of the previous time steps 
(displacement and pressure) were taken as the starting values of the new step. 
With this concept convzrgence failed at t = 0.5 sec. The concept of taking 
only the pressure from the previous step turned out to  be the best. The bad 
convergence speed at the beginning of the simulations may be caused by the 
existence of two quite different materials in the cube (melt and glassy state). 
After all the material in the cube is solidified (below f 423K), the number 
of iterations decreases rapidly, see figure 6.5. 
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Chapter 7 

Conclusions and 
recornmendations 

In this report a finite element model for the post-filling stage of the injection 
moulding process is presented. At this stage of development the model is ca- 
pable of simulating the cooling stage under atmospheric pressure. The model 
is based on the lagrangian approach, using temperature and displacement as 
unknowns. The mechanical behaviour is described with the generalized New- 
tonian fluid model and the generalized multimode Maxwell model. For both 
models the linear and nonlinear application is given. The temperature and 
displacement field are solved separately. 

A number of conclusions and recommendations for further research are 
summerized below. 

o Compared t o  the literature available, the results of the presented 
model, concerning thermally induced residual stresses, are qualit a- 
tively good. The effect of the cooling rate is described quite well. 

o Simulations with the nonlinear model give the same results as ob- 
tained with the linear model. This was expected because the cooling 
process is assumed to be close t o  linear. Further research on the 
nonlinear model is needed. Simulations on a real nonlinear problem 
should be performed. Instead of using the Truesdell proposition in 
the relation between the objective tensor t~ and the invariant tensor 
F, t h e  r~ to t fon  tenser R c a ~  be iised, Doing this the exira stress 
tensor is deviatoric. 
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o In the temperature field oscillations occur. This is a limitation on 
the time step size. Further research could be done on the perfor- 
mance of other elements on this subject. 

o The change from viscous model to  visco-elastic model is deposited 
at the glass transition temperature. ïaking into account the eIas- 
tic effects of the melt stage the model-change temperature must 
be deposited at a higher value. This could be a topic of further 
research. 

o Two iterative solvers did work for the simulations performed. Us- 
ing this type of solver the memory usage reduces extremely, an 
important aspect in 3D simulations. 

o The next step in the development of the model is the Updated ALE 
algorithm. This algorithm is needed in the packing and holding 
stage. In these stages extra material is pushed into the mould 
to  compensate the shrinkage. Using a Lagrangian approach large 
mesh distortion arises. The Update A L E  algorithm calculates the 
quantities of interest back to  the original mesh each time step using 
the advection equation. 

o Also the model could be based on the Eulerian description. The 
results t o  be obtained employing the two different descriptions could 
be compared. For implementation of mould elasticy the Lagrangian 
descriptio2 is more suitable. 
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Appendix A 

Theory of reduced time 

Reduced time is introduced to make the constitutive equation suitable for an 
arbitrary temperature history. 

The basic constitutive equation, 1-dimensional and single-mode, is defined: 

The relaxation function: 

Where u is the stress and E is the strain. 
The relaxation time and viscosity are temperature dependent, defining: 

Where UT is the time temperature shift factor. 
For an arbitrary strain history eq. (A.l)  yields [22]: 

Assuming the material is unloaded at time interval (-00, O]. This equation 
only holds for constant temperature. 

First step in the derivation is time discretization. At t = ~i the temper- 
ature is Ti . The transformation from the relaxation function at reference 
temperature to  T, can be done by: 

42 



7i ?SI t [sec] I 

Figure A.l: Construction of G+(t). 

In figure A.l the construction of the relaxation function for a given temper- 
ature history is shown. In this figure vi expresses the horizontal shift of the 
curve. At t = ri the following equality must hold: 

G+(T) = GZ-l (% - vi-1) = GT; (7i - vi) (A.7) 

where: 

For ri<t<q+l this yields: 

(A.lO) riAa; = viAa; - aTiAvi 

where: 

Aai = “Ti - aTi-l, Avi = vi - vi-1 (A.l l )  

Transforming eq.(A.10) to a differential equation by decreasing the time in- 
terval yields: 

rda = v(r)da - a(.r)dv (A.12) 
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Rearranging eq. (A.12) : 

7 U 
da = d- 

a 2 ( 4  a 
-- 

Integration and using u(0) = O yields: 

Using eq. (A.7) : 

Reduced time is now defined as: 

The constitutive equation for an arbitrary temperature history: 

(A.13) 

(A.15) 

(A.16) 

(A.17) 
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Appendix I3 

Derivation of the weak form 

In this appendix the weak forms of the temperature -, visco-elastic - and 
nonlinear visco-elastic problem are derived. 

B.1 The weak form of the temperature prob- 
.. lern 

The strong form (PT) is given by 

Given a heat f l u x  qo : rP H I R ,  a surface conductance h : r h  !+ lR , 
rl prescribed temperature f ield Tl+l : ru I+ IR,  a n  initial temperature 
field T, and pressure f ie ld  p,, a n  actual pressure f ie ld  pn+l, extra 
stress f ie ld  r and strain rate D, f i n d  T,+I : R !+ lR such that 

zn d 

(h n' = qO),  .1 on rP 

on ru 
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The weak form of the above problem is obtained by the following actions: 
1. Multiplication of equation ( B . l )  by a weighting function w and integration 

2. Using integration by parts: 
over R. 

v * ( w A f T )  = o w  AOT + w f  AfT 

3.  Application of Gauss theorem: 

10 ( w A 9 T ) d R -  - - Lpnrhwqdr 

Defining the space of trial temperature fields 

7 = {Tn+lITn+l E C1,Tn+l = T2+l on L} 

w = {wlw E c l , w  = û on rui 

(B.7) 

(B.8) 

and the space of temperature weighting functions as 

The weak form of the temperature problem (PTW) is now given by 

Given see PT, f i n d  Tn+l E 7 such that f o r  all w E W 

1 O w .  A?T,+, dR = w ( t r ( 7  : O) - 1 / 3 t r ( ~ ) t r ( D ) -  s, 
P(Tn+1 - Tn)/At - ,UT,+l(Pn+l - P n ) / A i >  do- 
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B.2 The weak form of the linear visco-elastic 
problem 

Given  a boundary load &+i : rP I-$ R”, a precribed displacement f ie ld  
I AUG : Tu H Bn, an irtitial temperattire f i e id  T,, - pressure f ie ld  p, 
and ex tra  stress f ie ld  r,i and a n  actual temperature f ie ld  Tn+l, 
f i n d  Ai; : 0 H Rn such that 

The strong form (PVEL) is given by 

1 
At 1 f? ( -P,+~I + 277-~~(Ai;)+ 

(B.lO) At 

m m C(G,~T:~) + (E 
i=l i=l 

The weak form of the above problem is obtained by the following actions: 
1. Multiplication of equation (B.lO) by a weighting function W and 

2. Use of the symmetry of the Cauchy stress tensor and integrating by parts: 
integration over R. 

-+ 0. f7. W = ( i 7 W ) C  : d + 2u . (V CT) (B.14) 

3. Application of Gauss theorem: 

(B.15) 

4. Multiplication of equation (B. l l )  by a weighting function q and integration 
over R. 

In the sequel the subscript n + 1 will be omitted for notational simplification. 
Defining a set of trial solutions for the displacement field 

U = {AZ I AZ E IC’]”, Ai; = AZo o n  I?,} (B.16) 
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The set of weighting functions is defined likewise by 

w = { G I G  E [ c ' ]~ ,M=  00,  r,) 

P = ( p I p E C 0 )  

The set of trial solutions for the pressure field by 

The set of weighting functions is defined likewise by 

Q = (414  E co> (B.19) 

The weak form of the linear visco-elastic problem (PVEW) is given by 

(B.17) 

(B.18) 

Given see PVE, f i n d  A Ú  E U and p E P such that f o r  all 
resp. w E W and q E Q 

m 
d : {-PI + 2q-gd(AÚ) 1 + X(Gnirni)+ 

i=l At 

m 

(B.20) At 

1 q {a(T - Tn) + ~ ( p  - pn) + tr(s(AÚ))} dR = O (B.21) 

L 
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B.3 The weak form of the nonlinear visco- 
elastic problem 

The strong form (NPVE) is given by 

Let the motion during S, sa t i s f y  : 

z n d  a boundary load $,+I : ïp 

- deformation f ie ld  F, and extra stress f ie ld  rni and a n  actual 
temperature f ie ld  T,+1, f i n d  $,+I : R H R such that  

IR", a precribed motion f ie ld  
: r, H En, an  initial temperature f ie ld  Tn, - pressure f ie ld  p,, 

(B.25) 

(B.26) 

To obtain the weak form of the problem above the same actions as performed 
in the last paragraph have to be done. Using the Updated Lagrange method 
means in this case that F, = I. For further purposes equation (B.23) will 
be split into two parts. 
Defining the set of trial motion solutions 

x = ( $ 1  @ E [@In, @ = $' on r,} (B.27) 
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Using also the spaces W, P and Q the formulation of the nonlinear visco- 
elastic problem (NPVEW) is given by 

Let the motion during Sn satisfy : 

t - tn 
E 10, 11 = - 

A t  
+ 
pn+a = (1 - a)@n + a(Dn+l, 

znd see NPVE, f i nd  (D E X and p E P such that for all 
resp. w E W and q E Q 

(B.28) 

V d E W  

Vq E Q 

(B.29) 

(B.30) 

uit h 

L(d,(D) = Lp Wpdr (B.32) 

Remark on definition of spaces: 
[ 1" : Means that every component must satisfy the condition. 
Ck : is the class of functions that are at least k times differentiable. 
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Appendix C 

Determination of the 
linearized system of equations 

In this appendix the linearized system of equations is determined from the 
nonlinear visco-elastic problem. This system of equations will be used in the 
Newton-Raphson iteration process. 

m. 

l 
i c 
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The definition of the directional derivative of a functional A(W, p, @) into the 
direction 6$3 with respect to the third variable 

likewise, 

/!A(&, p -F ûsp, $3) - k ( W , p ,  @) 
i? 

S,A(G,p, 6 Sp) = lim 
e+o 

Analogously, the directional derivative of a tensor A(?) into the direction S$3 
is defined as 

A($ + SS@) - A(@) SA(@; S@) = lim 
e+o i? 

In this appendix only S,A, SPA, 6,B and 6,B are calculated. The term 
6,L is not calculated because this term is small compared to 6,A and SPA, and 
thus can be neglected for that reason. Further for reason of simplicity, when 

a = 1 is used instead of a = f. Both assumptions can lead, at worse, to a 
lower speed of convergence of the Newton-Raphson iteration process. 

First in the determination some transformations have to be carried out. 
The term ó G  must be made independent of the motion + and the integration 
domain must be transformed to  a known domain: 

calculating 6,(D,++,, \ S,(Df++) and 6,(F,+1* F-' ,+f . Dd ,+$ - P-" , + p : + l ) ?  
i 
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In the sequel the subscript n + 1 is omitted to  simplify the notation. 
Application of the definition eq. (C.6) on eq. (C.ll)  yields 

&,A = Lo(",W)' : { S(.@-'> . (-$I + +* + +) det(F) + 
F-' . (a+* + S+) dei(+) + 
F-' . (-$I+ +* -+ +I sjaet!i+jl (c.13) 

1 
= S,(OW)" : {@ S ( P )  * (+I+ +* + +)+ 

(E* + S+) + (-51 + +* + 7) 'y:$'} dR ((3.14) 

where the last estimate of the extra stress tensor from 
defined 

and the last estimate from the Newtonian model 

Maxwell model is 

' FiIt  * F" (C.15) 

+* = 27D,,; d 

Application of the definition eq. ((2.7) on eq. (C.12) yields 

SPA = (QW)" : (-Sp1)dR s, 
Defining 

-+ 
Lg, = OS$ 

SF=Ls, .F 
the following expressions can be obtained [I] : 

- -1 - -1 SF =-F 'L6, 
&(dei(@)) = det(*)tr(ls,) 

Using eq. (C.8) and (y. = 1 : 

i=l i=l 

1 1  1 - - c  --(E Gi) {is(@-') : @-'I + -F : S(P-')I- 
2 A t  z=1 . 3 

qP-"). E.-' - F-" . s(F-1)) 

= Lg,*+++.L&+ 
1 1  2 --(E Gi) { L;, . B + B Ls, - -tT(L;, . B ) I }  
2 A t  2=1 . 3 

(C.16) 

(C.17) 

(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 

(C.23) 
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and 

(C.26) 

(C.27) 
B = F-" . F-' 

Using eq. (C.14), (C.21), (C.23) and (C.25) it follows that 

&,A =  OW)" : [ - L + .  (-pr + a* + a)+ 

At 3 

2 At i=l 3 

- 
{ L;, + B + B. L+ - -tr(L;, 2 . B ) I }  + 

--(E 1 1  Gi) {L;, B + B. Lav - -tT(Lg, 2 + B ) I }  + 
* 7 + 7 * Ls, + (-@I + 7* + 7) t ~ (  L+)] dR 

Application of the definition eq. (C.6) on eq. ((2.11) yields 

S,B = J,, q [t.( AtSD,+i)det (F)+ 
{Q(T - Tn) + K(@ - P,)+ 

tr(AtD,+:)} û ( d e t ( F ) ) ]  dR 

= s, Q [tT(AtSD,+$)+ 

{a(T - T,) + K(@ - P,)+ 

where 

(C.28) 

(C.29) 

(C.30) 

(C.31) 

(C.32) 
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Application of the definition eq. ((2.7) on eq. (C.5) yields 

= s, q +SPI (43.33) 

L(VG)' : {-$I + +* + +} dR + (HG)' : [-L6,. (-$I + 7* + +)+ 

With the use of equations (C.3), (C.4), (C.5), (C.17), ((2.28) ((7.31) and 
(C.33), equations (C.1) and (C.2) can be written as 

+ 

I 2 - 
At {L;, B + B. L ~ ,  - -tr(L;,. 3 B)I  + L ~ , .  + + + . L;,+ 

1 1  
2 At 

7) * tr(Lb,)] dR + ~(OG)' : (-SPI) dR = JL 
J, Q { C6 + tr(AtD,+$} do+ / q [tr(L;, B)+ 

{ cg + tr (AtD,++)}  tr(La,)] dR + / n q {ESP} dR = O 

GFdr ((2.34: 

and 

n 

(C.35) 

Denoted as the system of equations from NPVEWL. 

i 
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Appendix - D 

Discretization 

In this appendix the discretization equations of the temperature -, visco- 
elastic - and nonlinear visco-elastic problem are derived. The subscript n + 1 
will be omitted to  simplify the notation. 

D.l Discretization of the temperature prob- 
lem 

Assume T and w approximated with piecewise polynomials of order k, Pk. 
Let Ih  and W h  be the finite dimensional approximations to  7 and W 

Ih  = {ThlTh E C1,Th E Pk(Re) ,Th = To on I?:} 

wh = {wh I wh E c1, wh E pk(fle),  wh = O on r:} 
P.1) 

P . 2 )  

The Galerkin finite element approximation of the temperature problem is 
now given by (PTWh) 

Given qo, h, T,, p ,  p ,  r ,  and D, find T E Ih  such that f o r  all w E W h  

o w  X?T,+l do = w (tr(7 : O) - 1 / 3 t r ( ~ ) t r ( D ) -  

w {h(T - T,)} d r  spr wqo dr - 03-31 
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Where r; = r,nre and Fl = rhnre 
Introducing a three-dimensional Cartesian reference system 

eT = [ZZ ey fq 
N 

so: 

Interpolation of the temperature field on each element 

1 TnT J 
Likewise the weighting functions 

1 wnT 1 
Where nT is the number of temperature nodes on element. 
Interpolation of the temperature field on boundary element 

Likewise the weighting functions 
r 

Where nTb is the number of temperature nodes on boundary element. 
Further defining: 

The first term can be discretized as follows 

(D.lO) 

(D.ll)  
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The second part will first be rewritten and then discretized. 
Introducing the abbreviation 

trtd = t r ( 7  : O) - 1 / 3 t r ( ~ ) t r ( D )  (D.12) 

Rewriting and discretizing the terms of this part 

XI [ f r td  - P(T - Tn>/At - p T ( p  - p^,>/At] 

where 

- P = p p T  NN (D.14) 

Discretizing the first boundary term 

wqo = wTXq0 (D.15) 
N b  N 

The second term 

UI {h(T - T,)} = N b N  w T X { h ( X T T  N N b  - T,)} 

= w T X X T h T  N b N N  N b  - wTXhT,  N b N  (D.16) 

This leads to  the discretized equation for the element: 

wT /’ [ X A ~ A  + + P(p - p n ) } / ~ t I  d~ E+ 
i-lc N 

wTXq0 
N b  N 

d r  

i 
Ï 

(D.17) 
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D.2 Discretization of the linear visco-elastic 
problem 

Defining the finite dimensional approximations to  U, W, P and Q 

Uh = {AZh I AZh E [ClIn, AZh E P'(O'), AZh = Ad' on I',} 

wh = {wh I zuh E [c']~,  zuh E P'(O"), W~ = d on r,} 

Ph = {ph IPh E co, ph E P"R")} 

Q h  = {qh 1 qh E co, qh E P"(ne)} 

(D.18) 

(D.19) 

(D.20) 

(D.21) 

The Galerkin finite element approximation of the visco-elastic problem is 
now given by (PVEWh) 

Xven 5, Tn, T, p, and r,i, f ind AU E Uh and p E Ph such that f o r  all 
'esp. w E Wh and q E Qh 

Where I'; = I?, n I'". Introducing again a three-dimensional Cartesian refer- 
ence system 

N e'T = [ëx ëy ëz] (D.24) 

so: 
-+ -+ d d d B = ex- + ëy- + ëz- 

dx ay dz (D.25) 

zu = wxëx + wyë. + wzêz (D.26) 

! 
Ï 

(D.27) 
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Interpolation of the displacement field on each element 

0 Xnvb 0 
O 1  

xi o o Xnvb 0 
z q p  = o xi o * .  

o o xi * * *  0 0 Xnvb [ 

Interpolation of the weighting function on each element 

- mi" - 
wi  

= x w  (D.30) 
--b w: 

wnvb 
Y 

wnvb 

- wivb - 

= pw 
-N 

(D.29) 

Where nu is the number of displacement nodes in the element. 
Interpolation of the weighting functions on the boundary element 

$1 

Likewise the weighting functions 

= PT$ 
N N  

= q T $  
N N  

(D.31) 

(D.32) 
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Where nvp is the number of pressure nodes in the element. 
Matrix representation of the linear strain tensor 

Where 

d Aux 
d X  

Ex, = 

d A u y  

dY EYY = 

dAu" 
dz E"" = 

dz 

(D.33) 

(D.34) 

(D.35) 

(D.36) 

(D.37) 

(D.38) 

(D.39) 

(D.40) 

Introducing the column 5 

N E T  = [Ex, 2Exy Eyy E"" 2&yz 2&x,] 

Using eq.(D.34) to (D.39) and discretizing 

(D.41) 
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In the last step eq.(D.28) is used, so 

rg  0 o 1  

- A =  

The term (?G)", denoted as Lw, is treated likewise 

Introducing the column L 
N W  

LT [Lil 2L12 L22 L33 2L23 2L13] 
N W  

So, analogously to eq.(D.41) 

L =Aw 
N W  N 

Discretize the first term of eq.(D.22) 
-a 

(VZO')" : -PI = L, : -pI 

= -t.(Lw)P 
= -wTQp 

N -N 

where 

- Q =  [ $1 qnvp ] 

(D.42) 

(D .43) 

(D .44) 

(D.45) 

(D.46) 

(D.47) 
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Discretize the second term 

(eG)' : 27-&(A.l;) 1 = Lw : 27-gd(AZ) 1 
At At 

= L T (29-)D12: - l  
N W  At -I 

where 

1 l 2  O f  o O 0 0  

1 1  
3 3 o - 3  -- o o 

Discretization of the third term 

= L T C  
N w N 1 0  

where 

711 712 T13 

713 723 733 

and 
c T = [TH 712 722 733 723 7131 

N 1 0  

The fourth term can be discretized likewise the second term 
m 1 T T  

m 

(O,)' : (E Gi)-@(AZ) = w A (E G i ) O 1 2 A A u  
N 

i=l N 
At i=l 

(D.48) 

(D.49) 

(D.50) 

(D.51) 

(D.52) 

(D.53) 
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In order to discretize the right hand side of eq.(D.22), the representation of 
j? with respect to  {Zx e'y ZZ} is given by 

p" bxZx + byeY + bzZZ (D.54) 

Discretizing the vector p' 

@= (D.55) 

where b is the column with the components of the vector S i n  the element 
nodes. Thus discretizing the right hand side 

N 
1 

G$=w T T  x X b  (D.56) 
N b N  NN 

Before discretizing eq.(D.23) the terms in this equation are rearranged. 
The first term 

where 

C12 = a(T - Tn) - KPn 

The second term 

qif.p = OTKXXTp 
The third term 

qtr(c(A5)) = q T $ J c T  E 
N " 1 1 N  

N "11 
= qT$JcTAAE 

where 

C T  = [ 1  o 1 1  o o o ]  
N 1 1  

The discretized system of equations for the element 

(D.57) 

(D.58) 

(D.59) 

(D.60) 

(D.61) 

and 

I 
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D.3 Discretization of the nonlinear visco-elastic 
problem 

Defining the finite dimensional approximations t o  6x0, SXn+l, W, P and Q 

= {sgh I ~ p + ~  E [c']", E P~(R"), = 0 on r,} (D.64) 

Sx,h+l = {S<ph I S<ph E [C']", sgh E P,(R"), 

Sgh = $'(zû>tn+i)  - $'(sû,tn) on ru} (D.65) 

(D.66) 

(D.67) 

(D.68) 

wh = {wh I wh E [ C ' ] ~ ,  wh E pk(oe), wh = O on r,} 
Ph = {ph  ( p h  E co, ph  E Pk(R")} 

Qh = {Qh I Qh E co, Qh E Pk(F)) 

The first iteration step: SX; = SXk+l, next iteration steps: 6x2 = SX). The 
Galerkin finite element approximation of the nonlinear visco-elastic problem 
is now given by (NPVEWLh) 

Jiven $, T,, T, p,, rni, $, and F, f i n d  Sp+ E SX: and p E Ph such that 
for all resp. w E W h  and q E Qh 

-+ (ow)': { -$I++*++}dR+/  fl0 (Ow)': [-Ls,.(-$p++*++)+ 

1 1  2 --(E Gi) { & & e  B + B - Ls, - -tr(Lg, + B)I + (-$I + +*+ 
2nt 2=1 . 3 

+) . tr(Lg,)] dR + 1 (ow)' : (-SPI) dR = / 2U@drp (D.69) 
fl" r; 
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Where r p  = I', 
ence system 

I?". Introducing again a three-dimensional Cartesian refer- 

N êT = [ZX zy &] (D.71) 

so: 

(D.72) 

d = wxzx + WYZy + W"ZZ (D.73) 

S@ = Sxêx + syêy + széz (D.74) 

Interpolation of iterative motion (displacement) on each element 

Interpolation of the weighting function on each element 

-+ wlnc = 

= - pûx(D.75) 

Where nnv is the number of displacement nodes in the element. 
Interpolation of the weighting functions on the boundary element 

= yw (D.76) 
-N 

X 
Wnnvb 

Y 
wnnv b 

. wnnvb 

= ~ w  (D.77) 
-Nb 
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Where nnvb is the number of displacement nodes on the boundary element. 
Interpolation of the pressure field on the element 

Likewise the weighting functions 

Qnnvp l i  Q(n. = [ Qi 

N N  

(D.78) 

(D.79) 

= N N  q T +  (D.80) 

Where nnvp is the number of pressure nodes in the element. 
Now the tensor Ls9 will be worked out. This tensor can be split into a 
symmetric and a skew symmetric part [13] 

L s y  = Ds<p + a y  (D.81) 

The matrix representation of D+ with respect t o  {Zx Zy Zz} is denoted by 

(D.82) 

The matrix representation of Ins9 with respect to  {Zx Zy Zz} is denoted by 

where 

(D.83) 

(D.84) 

(D.85) 

I 

I 

, 
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R- . = - 1 (- dSpi + w) dSpj 
aJ 2 dpj  

(D.86) 

and pz = z, y, z for resp. i = 1, 2 ,  3. 
The term (o,)', denoted as A,, will be treated in the same way. So, the 
matrix representations, with respect to the Cartesian reference system, of 
the texsors D,, n, and ZW 

(D.87) 

(D.88) 

Now, introducing the column 

dT = [ D Z  2 0 %  D g  D g  2D,S3 201: 202 20% - 2 R g ]  (D.90) 
-6v 

Likewise 

d T = [DYl 201,  DT2 Dy3 2Dy3 2 0 %  2012 2RY3 - 207.1 (D.91) 
N W  

- d O O  

0 -  d o  
0 0 %  
O a; ay 

8% 0 %  
d dX d o  

-- d o g  

dX 

ay ax 

dY 

8 -  d 

- d d 

dY 
d d 0 - _-  
8% dY 

- 

d 

- -- 

a% 

(D.93) 
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where 

- A =  

Likewise 

d =Aw 
N W  N 

Discretizing the first term 

(V2U)C : -@I = L, : -pr 
= -t7=(Lw)@ 

= -w'Q$ 
N -N 

(D.95) 

(D.96) 

(D.97) 

(D.98) 

(D.99) 
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where (with respect to the Cartesian reference system) 

and 

The second term is now discretized likewise the third term 

N 

where simulant t o  eq.(D.103) and eq.(D.101) 

and 

where 

Cl = 

1 0 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0 0  
0 0 0 1 0 0 0 0 0  

0 ~ 0 0 0 0 0 0 0  

0 0 0 0 ~ 0 0 0 0  
0 0 0 0 0 ~ 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

(D.lOO) 

(D.lO1) 

(D.102) 

(D.103) 

(D.104) 

(D.105) 

(D.106) 
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Discretizing the sixth term 
-+ 

(VZU')" : -&a, 7 = -Lw : LS, + 
= -tT(Lw&2) 

= w 2 ; ' T & B 1 4 V ~  

T = d o l d  
N w  -bv 

where 

0, = - 

(u.'Iû7j 

(D. 10 8) 

The fifth term is treated likewise the sixth term 

(D. 109) T T +  (GW)" : -Ls,*+* = w A DIASp 
N N 

Where 0; is the same as Di only with respect to  +* instead of 7. 
Discretizing term 7, equal to term 12 (except the constant) 

= d T & d  
-w N S ,  

= U r T ~ T ~ a ~ ~ x  
N 

where 

B11 B12 B13 
BI2 B22 B23 

N 

B13 B23 B33 
N 

- 
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and 

o,= (D.112) 

Discretizing term 8, equal to  term i3 (except the constant) 

= dl.D,d 
-W -6Q 

= wTATD5ASp 
N N 

where 

O 

O 

O 

B 3 3  

iB23 

$Bi3 

O 

- f & 3  

-$Bi3 

(D.113) 

( D. 1 14) 
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Discretizing term 9, equal to term 14 (except the constant) 

where 

2 
3 

0 7  = -- 

Discretizing term 10 

BI1 B12 B22 B 3 3  B23 B13 0 0 0 
o o o o o O 0 0 0  

BI1 B12 B22 B 3 3  B 2 3  B I 3  0 0 0 
B11 Bl2 B22 B 3 3  B 2 3  B13 0 0 0 
o o o o o O 0 0 0  
o o o o o O 0 0 0  

o o o o o O 0 0 0  
o o o o o O 0 0 0  

o o e o o 0 0 0 0  

where 

(D.115) 

(D.116) 

(D.117) 

(D.118) 
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and 

0, = (D.119) 

Discretizing ter= 11 

= d T D  d 
N, -3 N6io 

(D.120) 

(D. 121) 



Discretizing term 15 

c 2 = -  

- 1  o 1 1  o o o o O '  
0 0 0 0 0 0 0 0 0  
1 0 1 1 0 0 0 0 0  
1 0 1 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
O 0 0 0 0 0 0 0 0  

where 

0 6  = 

7 1 1  o Fl1 7 1 1  o o o o o 
7 1 2  o 7 1 2  7 1 2  o o o o o 
7 2 2  o 7 2 2  7 2 2  o o o o o 
F33 o 7 3 3  733 o o o o o 
7 2 3  O 7 2 3  723 O O O O O 
7 1 3  O 7 1 3  F13 O O O O O 
o o o o 0 0 0 0 0  
o o o o 0 0 0 0 0  
o o o 0 0 0 0 0 0  

Discretizing term 16 likewise term 17 

(UG)~ : +* tT (~s , p )  = w T ~ T ~ ~  N ASP N 

(D. 122) 

(D.123) 

(D.124) 

(D. 125) 

I 

(D.126) 
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Where 0; is the same as 0 6  only with respect to ?* instead of ?. 
Discretizing term 18 

(óG)": -SPI = -L, : SPL 
= -tr(.C,)Sp 

= -tr(Lw)2 sp T 

= -wTQ6p N - N  (D.127) 

Representation of p with respect to  {Za: ZY &} and discretizing 

p" bxZz + byey + b"Zz = 

So discretizing the boundary term 

(D.128) 

(D.129) Gfl=zub T T  s 
Now discretizing equation (D.70). The first term 

The second term 

= qT?LJeTl&5p 
N N N 3  N 

(D.131) 

where 

C T  = [Bil B12 B 2 2  B 3 3  B 2 3  B13 0 0 o] (D.132) 
N 3  

The third term 

where 

c T = [ l  o 1 1  o o o o o] 
-5 

The last term 

(D. 134) 

NN N (D.135) 
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So, the discretized system of equations yields 

(D.136) 

and 

where 

+D, +o; (D. 138) 

(D.139) 

(D. 140) 
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Appendix - E 

Enriched trilinear element 

In this appendix the shape functions and the 2-, y- and z-derivatives of 
an arbitrary enriched trilinear element will de derived. 

This element has 15 displacement nodes and 4 pressure nodes. In order to  
derive the shape functions isoparametric coordinates are used. This so called 
6 - space is an orthonormal space with E, 7 and 5 as independent coordi- 
nates. The basic idea of deriving the shape functions for the displacement 
is adding bubble-functions at the surfaces and midpoint of a trilinear hexa- 
hedral element. The shape functions of the trilinear hexahedral element are 
given by [13] : 

N 

1 
- 8  Nl(0 = -(i + S)(1 - r l ) U  - S) 
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1 2 

Figure E.l: The enriched trilinear element. 

The bubble-function added to the surface with node 3 :  
1 

N 3 ( 0  N = S(1 - O(1 - E 2 ) U  - v2> 

N 2 (  N r >  = # +  [)(i - t2)(1 - v2)  

Surface with node 12: 
1 

Surface with node 7: 

N7( N 6 )  = ;(I - v)( l  - E2)(1 - C2> 

&( N r ) = 2(1+ 7)(1 - E2)(1 - C2> 

N6( 6 )  = $1 - [)(i - v2)(1 - C2) 

& ( E )  N = $1 + [)(i - v2)(1 - C2) 

Surface with node 8: 

1 

Surface with node 6: 

1 
N 

Surface with node 9: 
1 

(E4 

(E.9) 

(E. 10) 

(E . l l )  

(E. 12) 

(E. 13) 

(E. 14) 
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Table E.l: Isoparametric coordinates of nodal points 

The bubble-function added to the midpoint: 

N15(i) = ( - c2)( - q2)( - c2) (E. 15) 

The shape functions p i ( ( ,  q, e) must be assembled out of the functions Nj([,q, S) 
in such way that they satisfy the following equations: 

= 

This yields: 

(E. 16) 

(E. 17) 

(E. 18) 

1 
(E.19) 

(E. 20) 

(E.21) 

(E.22) 
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(E.24) 

1 

(E. 27) 

(E.30) 

The E-, q- and (-derivatives of these shape functions are calculated by 
first deriving the derivatives of the functions Ni([,  q, () and then assemble 
them with the same factors as use to  assemble the shape functions. The E-, 
q- and (-derivatives of the shape functions can be calculated easily but the 
z-, y- and z-derivatives are needed 1131. They are given by: 

P+ = ~ i , &  + Pi,qq,x + ~ i , ~ 5 , .  

%,y = Pi,& + Pi,$l,y + Pi,CS,Y 

(E. 34) 

(E.35) 

In matrix formulation: 

(E.37) 
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As [, q and 5 are not known as a function of x, y and z the inverse relation 
must be used: 

15 

x<N> = Pi( N o x ;  
i=l 

i= l  

(E.38) 

(E.39) 

(E.40) 

The matrix x 

be determined out of these inverse relations: 

, containing the 6-, r]- and (-derivatives of x, y and z can -,I N 

i=] 

(E.41) 

(E.42) 

(E.43) 

(E.44) 

Corresponding expressions for the derivatives of x, y and z are valid. The ma- 
trix [ which is called the Jacobian matrix, can be computed by inverting 

N X '  
N 

the matrix x 
N, 6 

N 

(E.45) 

This leads to  the expression for the x-, y- and z-derivatives of the shape 
functions: 

82 
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The shape functions for the pressure nodes are defined as follows: 

?h(L 'I7 5) = 1 

?!'??(E7 'I? s) = 

?w, ?, 0 = ? 

+4(& 77, 5) = 5 

(E.47) 

(E.48) 

(E.49) 

(E.50) 
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Appendix F 

Five node boundary element 

In this appendix the shape functions of an arbitrary five node boundary 
element will be obtained. 

In order to derive the shape functions isoparametric coordinates are used. 
This so called 6 * - space hac two independent coordinates: E and 7. Sixridant 

N 

4 3 

I 
5 

1 

- 
E 

Figure F.l: Five node boundary element 

t o  the enriched trilinear element the shape functions are derived by taking 
the shape functions of an bilinear element and adding a bubble-function on 
the surface. The bilinear shape functions [13]: 
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Table F. 1: Isoparametric coordinates of nodal points 

The shape functions pi( 6 ") have to  be assembled out of the functions Ni( 6 *) 
N N 

in such way that they satisfy the following equations: 
5 

i=l 

5 

i=l 

5 

This yields: 
1 

Xl(6,rl) = Ni - 4N5 

x2(6,77) = N2 - 4N5 

x3(6,rl) = N3 - 4N5 

x4(1,77) = N4 - 4N5 

1 

1 

1 

(F. 10) 

(F.ll) 

(F. 12) 

x5(6,77) = N5 (F. 13) 
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ApDendix A G 

Numerical integrat ion 

To obtain the element matrices, volume - and surface integrals have to be 
calculated. The integrals must be transformed t o  the ( - resp. ( *  - space 
and integration rules have t o  be applied. 

N N 

G. 1 Volume integrals 

General appearance: 
fi 

This integral can be transformed to  the - space 1171: 
N 

where: 

Approximation of this integral with a numerical integration rule: 

Integration rule, 15 points [Ml: 
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Al * F(0, O, O)+ 
Bs * {F(-b, o, O) + F(b, o, O) + ...}+ (6  t e r m s )  (G.5) 
c8 * {F(-c, -e, -e) + F(c, -e, -e) + 

(1 t e r m )  

...} ( 8  t e r m s )  

where: 

Al = 0.712137436 

c8 = 0.396312395 C = 0.727662441 
B6 = Û.686227234 O = Û.8484iûûii 

G.2 Surface integrals 
General appearance: 

1 = lc G(x7 Y, z)dS 

The transformation equations: 

In vector notation: 

r = x i + y j + z k  
= f(t,  rl)i + dt, rl)j + Wt, rl)k 

The surface integral is given by [27]: 

where: 

(G.6) 

(G. 10) 

(G. l l )  

dS = j * d / d q  
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where: 

(G. 13) 

The transformation of the integral to the N [" - space yields: 

I = /' J' G(4[,7), Y([, 71, .(El d)j"(E? 7 )  dE d7 (G. 14) 
-1 -1 

Approximation of this integral with a numerical integration rule: 

I N " C G  (.([*),y( Ni Ni E"), z( N i  E")) * j (  N i  E")  * Wi 
i=l 

Integration rule, 9 points [l] 

LI s_: G(x, Y)d.dY 53 

Ai * G(O,O)+ (i t e r m )  

c4 * { G ( q  0) + G(-c, 0) + ...} (4 i e r m s )  
B4 * {G(b, b) + G(-b, b) + . . a > +  (4 t e r m s )  

where: 

Al = 0.7901234686 
Bs = 0.3086420047 b = 0.7745966692 
Cg = 0.4938271818 c = 0.7745966692 

(G. 15) 

(G. 16) 

(G. 17) 
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Appendix H 

Test cases 

In this appendix the test cases, tension and simple shear, for checking the 
visco-elastic element will be worked out. For the thermal element a test case 
obtained from the literature (Chatenier [io]) is given. 

H.1 The tension test 

The tension test is worked out for both linear and nonlinear theory. The 
material is assumed t o  be unloaded at the beginning of the tests and tests 
are carried out isothermal. The tension bar is given in figure H.1. Defining 

L 
X I  = - 

LO 

h 
X.2 = - 

ho 

X 

Figure H.l: The tension bar 
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Linear theory 

The strain matrix is given by 

o A 2 - 1  

The trace of this matrix 

For this tension test the following must hold 

g(n+l)zz = g ( n + l ) z z  = 0 03.5) 

Visco-elastic material behaviour: 

o,+, = -Pn+ll +En+] 

aAT + KAP + t r (g (AZ) )  = O 

For the given strain matrix equation H.7 yields (only non-zero terms) 

(H.lO) 

7 ( n + l ) z z  = T(n+l)za: ( H . l l )  

(H.12) 

Applying equation H.5 yields 

Pn+l = 7(,+l)zz = T ( n + l ) t z  (H.13) 

For a given A l ,  A2 can be calculated as follows 
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Newtonian material behaviour: 

On+, = -Pn+iL + Ins1 (H.15) 

(H.16) 

(H. 17) 

For the given strain matrix equation H.16 yieids (oniy non-zero terms) 

1 2  

1 4  

(H.18) 

(H.19) 

T(n+l)rz = T(n+l)zz (H.20) 

- 
T(n+ï)zz = 7 ~ 3 ( x 2  - xi) 

T(n+i)yy = - 
- 

Equation H.17 yields 

Pn+i = T(n+i)zz = T(n+i)rz 

For a given Al,  A2 can be calculated as follows 

Nonlinear theory 

For the tension bar the deformation matrix is given by 

A2 o o 

o o A2 

L + 1  = [ o  A1 o ]  

The deformation rate matrix is given by 

The trace of the deformation rate matrix is given by 

1 x1-1 x 2 - 1  
t~(O,+i> = - { 2- + 4-) At X 1 + 1  X 2 + 1  

(H.21) 

(H.22) 

(H.23) 

(H.24) 

(H.25) 

(H.26) 
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Visco-elastic material behaviour: 

on+, = -Pn+J + L+l 
m 

(H.27) 

k l  
/ m  ì 

& G . ' F  z I -n+l,+'-n+'-st+~-m+l Dd F-T FT (H.28) 
\i=i 1 

aAT + KAP + tr( At on+') = O (H.29) 

For the given deformation and deformation rate matrix equation H.28 yields 
(only non-zero terms) 

7-(n+l)zz  = 7-(n+l)zz 

Equation H.29 yields 

A l - 1  X(2-1 
X 1 + 1  X 2 + 1  

"(Pn+l - pn) + 2- + 4- = o  

Applying equation H.5 yields 

Pn+l = T(n+l)zs = T(n+l)zr 

- calculate A2 with last estimate of pn+l (using eq. H.33) 
- calculate new estimate of pn+l (using eq.H.30 and eq.H.34) 
- repeat until convergence. 

Numerical solving this set of equations (given A,) : 

Newtonian material behaviour: 

o,+, = -Pn+lL + L+l 

L + 1  - - 21jOrr++ 
aAT + KAP + tr(At&+~) = O 

(H.30) 

(H.31) 

(H.32) 

(H.33) 

(€3.34) 

(H.35) 
(H.36) 

(H.37) 
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For the given deformation rate matrix equation H.36 yields (only non-zero 
terms) 

- 
T ( n + l ) z z  - T(n+l)zz 

Equation H.37 yields 

( A l  - 1) + 

( A 1 + 1 )  ( A 2 + 1 )  = O  
- 1) 

f+n+l - Pn) + 2 

(H.38) 

(H.39) 

(H.40) 

(H.41) 

Applying equation W . 5  yields 

Pn+l  = T(n+l)zz = T(n+l)zz 

For the numerical solving see above. 

(H.42) 

H.2 The simple shear test 

The simple shear test is worked out for both linear and nonlinear theory. 
The material is assumed to  be unloaded at the beginning of the tests and 
tests are carried out isothermal. The cube on which the test is performed is 
given in figure H.2. Defining 

b y = -  
c 

Z 
C 

(H.43) 

77 , I / - - - - - - -  Y 

d X  

Figure H.2: Simple shear 
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Linear theory 

The strain matrix is given by 

O 0  o 
- €(AZ) = [ O p i;] 

0 SY 
The trace of this matrix is zero. 

(H.44) 

Visco-elastic material behaviour: 
See equation H.6, H.7 and H.8. For the given strain matrix equation H.7 
yields (only non-zero terms) 

m 

T ( n + l ) y z  = C(Gni~(n i )y i )  + (H.45) 
i=l 

Equation H.8 yields 

Pn+l=  0 (H.46) 

Newtonian material behaviour: 
See equation H.15, H.16 and H.17. For the given strain matrix equation H.16 
yields (only non-zero terms) 

1 
T ( n + i ) y z  = "7 

Equation H.17 yields 

pn+í 0 

Nonlinear theory 

The deformation matrix is given by 

1 0 0  

O 0 1  
zn+i= [ 0 1 7 1  

The deformation rate matrix is given by 

O 0  o 
O 0  

The trace of the deformation rate matrix is zero. 

(H.47) 

(H.48) 

(H.49) 

(H.50) 
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Visco-elastic material behaviour: 
See equation H.27, H.28 and H.29. For the given deformation - and defor- 
mation rate matrix equation H.28 yields (only non-zero terms) 

(H.51) 

(H.52) 

(H.53) 

Equation H.29 yields 

Pn+ï = 0 (H.54) 

Newtonian material behaviour: 
See equation H.35, H.36 and H.37. For the given deformation rate matrix 
equation H.36 yields (only non-zero terms) 

1 
At 

Equation H.29 yields 

q n + l ) y z  = 7-7 

Pn+l = 0 

H.3 Temperature test case 

Starting-point is the following equation 

OT . d2T -Ik-- 
dt O X 2  

(H.55) 

(H.56) 

Assuming a half body with boundary conditions T(z = 0 , t  = O) = To. 
Analytical solution 

(H.57) 

T(x,t) = TO 1 - erf - { ( 2 2 1  

where 
2 z  

e r f ( z )  = - / e-22 dx 
& o  

(Chatenier [io]) 

(H.58) 

(H.59) 



Appendix I 

i 
1 
2 
3 
4 
5 
6 

Material data of Makrolon CD 

4 s qi Pas 
9.238. 3.101 lo2  
9.548. 2.596 * lo2  
1.852. low4 6.846 * lo1 
4.817. 1.135 * lo1 
1.804. 4.254 
2.019 1.377 

2000 

In this appendix the material data of a polycarbonate, Makrolon CD 2000 
from Bayer, are given. This data is obtained from Douven [14]. 
The following data are given: 
- Relaxation times and viscosities for melt state, table 1.1. 
- Relaxation times and viscosities for the glassy state, table 1.2. 
- WLF parameters, table 1.3. 
- Parameters in shift function for glassy state, table 1.4. 
- Parameters in Tait equation (melt and glassy state), table 1.5. 
- Parameters for cp, table 1.6. 
- The thermal conductivity, table 1.7. 

I mode-no. I Maxwell 1 

Table 1.1: Linear visco-elastic parameters for melt state. 
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mode-no. 
i 
1 
2 

Maxwell 
02 s 'li Pas 

6.323 1.019.109 
3.528 - 10-1 1.085 * I O 8  

I I 

6 I 3.417. I 4.261. lo1 1 

I 3 I A . * "  1 a68 * 

4 1.098 
5 6.125. 

I 7 I 1.906. I 3.137 I 

2.332 IO6 I 
5.307 lo4  
1.225. lo3 

Table 1.2: Linear visco-elastic parameters for glassy state. 

T m  K 
S K/Pa 

Table 1.3: WLF parameters (melt state). 

423.4 
5.2.10-7 

Table 1.4: Parameters shift function (glassy state). 

Table 1.5: Parameters in Tait-equation. 
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Table 1.6: Parameters for cp. 

Table 1.7: The thermal conductivity coefficient. 



Appendix J 

Results of numerical 
simulat ions 

In this appendix the results of cases 1 to 7 are presented. 

J.1 Case 1 
Material 
Size of cube 
T(t  = O) 
Ta3 
tend 
At 
h 
Mesh size 

: polycarbonate Makrolon CD 2000 
: Sx2x2mm 

~ [KI = 465.0 
[KI = 290.0 

[sec] = 6.0 
[sec] = 0.01 

[W/Km2] = 1000.0 
: 6 x 6 ~ 6  elements 

T, min. 
T, max. 
uzz, min. 
g z z  7 max. 
gzy, min. 
gzy, max. 
Hydrostatic pressure, min. 
Hydrostatic pressure, max. 

[KI = 
[KI = 

[N/m2] = 
[N/m2] = 
[N/m2] = 
[N/m2] = 
[N/m2] = 
[N/m2] = 

290.11 
293.19 

1.663+07 

6.733+06 

2.063+07 

-3.093+07 

-7.943+05 

-1.663+07 
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1: -2.423+07 
2: -1.743+07 
3: -1.06E+07 
4: -3.783+06 
5: 3.023+06 
6: 9.813+06 

[N/rn2] 

Figure J.l: Case 1, stress component crzz, outside surfaces. 

Z- 

-X 

1: -2.423+07 
2: -1.743+07 
3: -1.06E+07 
4: -3.783+06 
5: 3.023+06 
6: 9.81E+Q6 

lN/m21 

Figure 5.2: Case 1, stress component crzz, symmetry surfaces. 
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1: 2.803+05 
2: 1.353+06 
3: 2.433+06 
4: 3.503+06 
5: 4.583+06 
6: 5.653+06 

[N j d ]  

Y 

Figure 5.3: Case 1, stress component B , ~ ,  outside surfaces. 

1: 2.803+05 
2: 1.353+06 
3: 2.433+06 
4: 3.503+06 
5: 4.583+06 
6: 5.65E+06 

lN/m2I 

z{B$ 
,L- - - - ._ _ _  

Y 

-X 

Figure 5.4: Case 1, stress component oZy, symmetry surfaces. 
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1: -1.13ES-07 
2: -5.973+06 
3: -6.533+05 
4: 4.663+06 
5: 9.983+06 
6: P.53E+07 

[N/m2j 

Y 

Figure J.5: Case 1, hydrostatic pressure, outside surfaces. 

-X 

1: -1.13E+07 
2: -5.973+06 
3: -6.533+05 
4: 4.663+06 
5: 9.983+06 
6: 1.533+07 

[N/m21 

I 
Y 

Figure J.6: Case 1, hydrostatic pressure, symmetry surfaces. 

PO2 



Figure 5.7: 

1: -1.973-05 
2: -1.643-05 
3: -1.323-05 
4: -9.873-06 
5: -6.583-06 
6: -3.293-06 

Case 1, displacement component x, outside surfaces. 

1: -1.973-05 
2: -1.643-05 
3: -1.323-05 
4: -9.873-06 
5: -6.583-06 
6: -3.293-06 

[ml 

Y 

Figure 5.8: Case 1, displacement component x, symmetry surfaces. 
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5.2 Case 2 
Material 
Size of cube 
T(t = O) 
Tm 
t e n i  

At 
h 
Mesh size 

At t = tena : 

T, min. 
T, max. 
u,,, min. 
Pzz ,  max. 
uzy, min. 
uZy, max. 

: polycarbonate Makrolon CD 2000 
: 2x2x2mm 

[KI = 465.0 
[KI = 290.0 

6.G r,,,-i - 
[sec] = 0.01 

[W/Km2] = 1000.0 

- 
1 ""J 

: 10xlOx10 elements 

[KI = 290.11 
[KI = 293.16 

[N/m2] = -3.163+07 
[N/m2] = 1.633+07 
[N/m2] = -6.04E+05 
[N/m2] = 6.953+06 

Hydrostatic pressure, min. [N/m2] = -1.633+07 
Hydrostatic pressure, max. [N/m2] = 2.123+07 
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1: -2.483+07 
2: -1.793+07 
3: -1.11E+07 
4: -4.253+06 
5: 2.593+06 
6: 9.433+06 

[N-/12?2] 

Figure J.9: Case 2, stress component a,,, outside surfaces. 

1: -2.483+07 
2: -1.793+07 
3: -l.llE+O? 
4: -4.253+06 
5: 2.593+06 
6: 9.433+06 

[N/m21 

z{B3 L - - - - - . 

Y 

Figure J.10: Case 2, stress component a,,, symmetry surfaces. 
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1: 2.80Et-05 
2: 1.353+06 
3: 2.4334-06 
4: 3.503+06 
5: 4.583+06 
6: 5.6534-06 

[N/m2] 

Figure J.ll: Case 2, stress component gZy, outside surfaces. 

1: 2.803+05 
2: 1.353+06 
3: 2.433+06 
4: 3.503+06 
5: 4.583+06 
6: 5.653+06 

[N/m21 

Figure 5.12: Case 2, stress component gZy, symmetry surfaces. 
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1: -1.09E+07 
2: -5.573+06 
3: -2.253+05 
4: 5.123+06 
5: 1.053+07 
6: 1.583+07 

[N f m2] 

Figure 5.13: Case 2, hydrostatic pressure, outside surfaces. 

1: -1.09E+07 
2: -5.573+06 
3 :  -2.253+05 
4: 5.123+06 
5: 1.05E+07 
6: 1.58E+07 

[Nf m21 

Figure J. 14: Case 2, hydrostatic pressure, symmetry surfaces. 
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1: -1.983-05 
2: -1.653-05 
3: -1.323-05 
4: -9.883-06 
5: -6.583-06 
6: -3.293-06 

[m] 

Y 
1 

Figure 5.15: Case 2, displacement component x, outside surfaces. 

Z- 

-X 

1: -1.983-05 
2: -1.653-05 
3: -1.323-05 
4: -9.873-06 
5: -6.583-06 
6: -3.293-06 

[ml 

Figure J. 16: Case 2, displacement component x, symmetry surfaces. 
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5.3 Case 3 
Material 
Size of cube 
T(t  = O) 
T, 
t e n d  

At 
h 
Mesh size 

At t = tend : 

T, min. 
T, max. 
a2., min. 
a22 , max. 
uZy, min. 
uzy, max. 

: polycarbonate Makrolon CD 2000 
: 2x2x2mm 

[KI = 465.0 
[KI = 290.0 

[sec] = O.OllZn(1.094 + t )  
[sec] = 6.11  

[W/Km2] = 1000.0 
: 6 x 6 ~ 6  elements 

[KI = 290.10 
[KI = 292.92 

[N/m2] = -3.133+07 
[N/m2] = 1.673+07 
[N/m2] = -8.723+05 
IN/m21 = 6.793+06 

Hydrostatic pressure, min. [N/m2i = -1.673+07 
Hydrostatic pressure, max. [N/m2] = 2.093+07 

- I  

PO9 



1: -2.423+07 
2: -1.74E+07 
3: -1.06E+07 
4: -3.793+06 
5: 3.01E+06 
6: 9.813+06 

[W ,/E2] 

Figure J.17: Case 3, stress component a,,, outside surfaces. 

-X 

1: -2.423+07 
2: -1.743+07 
3: -1.063+07 
4: -3.793+06 
5: 3.01E+06 
6: 9.813+06 

W m 2 I  

Y 
Figure 5.18: Case 3, stress component uZZ, symmetry surfaces. 
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1: 2.803+05 
2: 1.35E+06 
3: 2.43Ef-06 
4: 3.503-1-06 
5: 4.583+06 
6: 5.653+06 

[ N / d ]  

Figure J.19: Case 3, stress component gzy, outside surfaces. 

Figure 5.20: Case 3, stress component gcy, symmetry 

1: 2.803+05 
2: 1.353+06 
3: 2.433+06 
4: 3.503+06 
5: 4.583+06 
6: 5.653+06 

[N/m21 
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1: -1.13E+07 
2: -5.983+06 
3: -6.60E+05 
4: 4.6634-06 
5: 9.98E4-06 
6: 1.533+07 

[ N / d ]  

Figure 5.21: Case 3, hydrostatic pressure, outside surfaces. 

-X' 

1: -1.13E+07 
2: -5.983+06 
3: -6.603+05 
4: 4.663+06 
5: 9.983+06 
6: 1.533+07 

Wm21 

Figure 5.22: Case 3, hydrostatic pressure, symmetry surfaces. 
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1: -1.953-05 
2: -1.623-05 
3: -1.30E-05 
4: -9.743-06 
5: -6.503-06 
6: -3.253-06 

Figure 5-23: Case 3, displacement component x, outside surfaces. 

1: -1.953-05 
2: -1.623-05 
3: -1.303-05 
4: -9.743-06 
5: -6.503-06 
6: -3.253-06 

bl 

Figure 5.24: Case 3, displacement component x, symmetry surfaces. 
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5.4 Case 4 
Material 
Size of cube 
T(t = O) 
Tm 
t end  

At 
h 
Mesh size 

At t = tena : 

T, min. 
T, max. 
oxx, min. 
flza:, Inax. 
ozy, min. 
gzy, Inax. 

[KI = 

[sec] = 
[W/Km2] = 

polycarbonate Makrolon CD 2000 
2x2x2mm 
465.0 
290.0 
6.0 
0.01 
500.0 
10xlOx10 elements 

[KI = 291.42 
[KI = 301.32 

[N/m2] = -2.573+07 
[N/m2] = 1.21E+07 
[N/m2] = -2.253+05 
[N/m2] = 5.213+06 

Hydrostatic pressure, min. [N/m2] = -1.21E+07 
Hydrostatic pressure, max. [N/m2] = 1.70E+07 
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1: -2.033+0’7 
2: -1.49ES.07 
3: -9.523+06 
4: -4.123+06 
5: 1.293+06 
6: 6.693+06 

[N/m2] 

Figure 5.25: Case 4, stress component gzz, outside surfaces. 

-X 

1: -2.033+0? 
2: -1.493+0’7 
3: -9.523+06 
4: -4.123+06 
5: 1.293+06 
6: 6.693+06 

lN/m2I 

Z- 

Figure J.26: Case 4, stress component uZz, symmetry surfaces. 
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J.5 Case 5 
Material 
Size of cube 
T(t  = o) 
Tm 

At 
h 
Mesh size 

t 
I.end 

At t = tend : 

T, min. 
T, max. 
uzz, min. 
u z z  , Inax. 
gzy, min. 
uzy, max. 

: polycarbonate Makrolon CD 2000 
: 2x2x2mm 

[KI = 465.0 
[KI = 290.0 

[sec] = 0.01 
[W/Km2] = 250.0 

I k C ]  = ?O.G 

: 10xlOx10 elements 

IK] = 291.74 
[KI = 295.64 

[N/m2] = -1.753+07 
[N/m2] = 8.243+06 
[N/m2] = -2.963+05 
[N/m2] = 3.563+06 

Hydrostatic pressure, min. [N/m2] = -8.243+06 
Hydrostatic pressure, max. [N/m2] = 1.15E+07 



1: -1.383+07 
2: -1.013+07 
3: -6.463+06 
4: -2.793+06 
5: 8.883+05 
6: 4.563+06 

[N/m2] 

-X 

! Figure 5.27: Case 5, stress component uzx, outside surfaces. 

1: -1.383+07 
2: -1.013+07 
3: -6.463+06 
4: -2.793+06 
5: 8.883+05 
6: 4.563+06 

[N/m21 

qT!o 
,i-- - _ _ _ _  

Y 

Figure 5.28: Case 5, stress component u,,, symmetry surfaces. 
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J.6 Case 6 
Material 
Size of cube 
T(t  = O) 
Tm 
t e n d  

At 
h 
Mesh size 

At t = tena : 

T, min. 
T, max. 
(T,,, min. 
azz ,  m m .  
cXy, min. 
flxy, max. 

: polycarbonate Makrolon CD 2000 
: 2x4x2rnm 

[KI = 465.0 
[KI = 290.0 

[sec] = 0.01 
[W/Km2] = 1000.0 

[sec] = 6.0 

: 6x12~6 elements 

[KI = 290.20 
[KI = 300.14 

[N/m2] = -3.34Et-07 
[N/m2] = 1.223+07 
[N/m2] = -1.20E+06 
[N/m21 = 5.473+06 

Hydrostatic pressure, min. [N/m2] = -1.353+07 
Hydrostatic pressure, max. [N/m2] = 1.943+07 

P 18 



1: -2.693+07 
2: 
3: 
4: 
5: 
6: 

-2.043+07 
-1.393+07 
-7.343+06 
-8.163+05 
5.713+06 

[N /E2] 

Figure 5.29: Case 6, stress component uxx, outside surfaces. 

Figure J.30: Case 6, stress component u,,, symmetry surfaces. 
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1: 
2: 
3: 
4: 
5: 
6: 

-2.693+07 
-2.043+07 
-1.393+07 
-7.343+06 
-8.163+05 
5.713+06 

IN/m21 

Y' 



1: -2.433+05 
2: 7.093+05 
3: 1.663+06 
4: 2.613+06 
5: 3.563+06 
6: 4.523+06 

[X j d ]  

Figure 5.32: Case 6, stress component a,,, symmetry surfaces. 
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5.7 Case 7 
Material 
Size of cube 
T(t  = O) 
Tm 
fend 

At 
h 
Mesh size 

Nonlinear app 

: polycarbonate Makrolon CD 2000 
: 2xZx2mm 

[KI = 465.0 
[KI = 290.0 

[sec] = 6.G 
[sec] = 0.01 

[W/Km2] = 1000.0 
: 6 x 6 ~ 6  elements 

cation. 

At t = tena : 

T, min. [KI = 
[KI = T, max. 

u,,, min. [N/m2] = 
g x x  , max. [N/m2] = 
uSy, min. [N/m2] = 
azy, max. [N/m2] = 
Hydrostatic pressure, min. [N/m2] = 
Hydrostatic pressure, max. [N/m2] = 

290.11 
293.18 
-3.073+07 
1.653+07 

6.683+06 

2.043+07 

-7.993+05 

-1.653+07 
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1: -2.423+07 
2: -1.743+07 
3: -1.06E+07 
4: -3.793+06 
5: 3.01E+06 
6: 9.813+06 

[N/m2] 

Figure 5.33: Case 7, stress component g X x ,  outside surfaces. 

-X 

1: -2.423+07 
2: -1.743+07 
3: -1.06E+07 
4: -3.793+06 
5: 3.013+06 
6: 9.813+06 

[N/m21 

Figure 5.34: Case 7, stress component g X x ,  symmetry surfaces. 
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1: 2.803+05 
2: 1.353+06 
3: 2.433+06 
4: 3.503+06 
5: 4.583+06 
6: 5.653+06 

[N/m2] 

Figure J.35: Case 7, stress component ozy, outside surfaces. 

Z- 

1: 2.80E+05 
2: 1.353+06 
3: 2.43Et-06 
4: 3.503+06 
5: 4.583+06 
6: 5.653+06 

[N/m21 

fag 
,I-- - _ _  _ _  

Y 

Figure 5.36: Case 7, stress component ozy, symmetry surfaces. 
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1: -1.133+07 
2: -5.983+06 
3: -6.603+05 
4: 4.663+06 
5: 9.983+06 
6: 1.533+07 

[N/m2] 

Figure 5.37: Case 7 ,  hydrostatic pressure, outside surfaces. 

Z- 

-X 

1: -1.13E+07 
2: -5.983+06 
3: -6.603+05 
4: 4.663+06 
5: 9.983+06 
6: 1.533+07 

[N/m21 

Y 

Figure J.38: Case 7, hydrostatic pressure, symmetry surfaces. 

124 



1: -1.973-05 
2: -1.643-05 
3: -1.313-05 
4: -9.853-06 
5: -6.573-06 
6: -3.293-06 

[E] 

Figure 5.39: Case 7, displacement component x, outside surfaces. 

1: -1.973-05 
2: -1.643-05 
3: -1.31E-05 
4: -9.853-06 
5: -6.573-06 
6: -3.293-06 

bl 

Figure 5.40: Case 7, displacement component x, symmetry surfaces. 
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