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Axial anomaly generation by domain wall motion in Weyl semimetals
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A space-time dependent node separation in Weyl semimetals acts as an axial vector field. Coupled with domain
wall motion in magnetic Weyl semimetals, this induces axial electric and magnetic fields localized at the domain
wall. We show how these fields can activate the axial (chiral) anomaly and provide a direct experimental signature
of it. Specifically, a domain wall provides a spatially dependent Weyl node separation and an axial magnetic
field B5, and domain wall movement, driven by an external magnetic field, gives the Weyl node separation
a time dependence, inducing an axial electric field E5. At magnetic fields beyond the Walker breakdown,
E5 · B5 becomes nonzero and activates the axial anomaly that induces a finite axial charge density—imbalance
in the number of left- and right-handed fermions—moving with the domain wall. This axial density in turn
produces, via the chiral magnetic effect, an oscillating current flowing along the domain wall plane, resulting in
a characteristic radiation of electromagnetic waves emanating from the domain wall. A detection of this radiation
would constitute a direct measurement of the axial anomaly induced by axial electromagnetic fields.

DOI: 10.1103/PhysRevB.102.241401

Introduction. The smallest number of Weyl fermions re-
alizable as quasiparticles in a crystal is two [1,2]—one left
handed and one right handed. In the presence of inversion
symmetry, we can choose the origin of momentum space
such that one Weyl fermion resides at b and the other at
−b. Since time reversal does not change the handedness of
a Weyl fermion, such a minimal Weyl semimetal necessarily
breaks time-reversal symmetry [3,4]. The Weyl node splitting
2b is then induced by the time-reversal breaking and can
be thought of as a magnetization. Such a magnetic Weyl
semimetal was recently realized in EuCd2As2 at intermediate
temperatures [5,6] and in EuCd2Sb2 in an external magnetic
field [7]; several further Weyl states in magnetic materials
were experimentally observed [8–11].

The electronic response of the Weyl fermions to external
electromagnetic fields is fundamentally influenced by the chi-
ral anomaly [12,13]. The handedness of the Weyl fermions
is not generally conserved and the axial density n5 = nL −
nR, the difference in density of left- and right-handed Weyl
fermions, instead satisfies the homogeneous anomaly equa-
tion [14]

∂t n5 = e2

2h̄2π2

(
E · B + 1

3
E5 · B5

)
. (1)
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Here, E and B are the usual electric and magnetic fields,
while E5 and B5 are so-called axial electric and magnetic
fields [15,16], which point in the opposite direction for the
two chiralities. Direct experimental signatures of the anomaly
have proven hard to come by. While negative magnetoresis-
tance is a consequence of the chiral anomaly [17,18], it is
not an unambiguous signature of it [19–23]. Axial fields are
also challenging to realize as they may require systematic
and significant straining of materials [24–26]; obtaining an
axial electric field E5 is particularly hard, as this requires
controllable time-dependent strain. This is because the Weyl
node separation b couples to the Weyl fermions as an axial
vector potential and strain gives it a space-time dependence as
b → b(r, t ). This then gives rise to axial fields through B5 =
∇ × b and E5 = −∂t b, in analogy with how electromagnetic
fields are obtained from a vector potential [27].

In this Rapid Communication we discuss how both of these
difficulties—the generation of axial fields and detection of the
axial anomaly—are overcome by studying domain wall mo-
tion [28,29] in Weyl semimetals. Indeed, in a magnetic Weyl
semimetal a space-time variation in the Weyl node separation
is naturally realized at domain walls in the magnetization [30].
Such domain walls have been indirectly observed, for exam-
ple, in the magnetic nodal semimetal CeAlGe [8]. Domain
wall motion has also been studied in related systems such as
junctions of ferromagnets and topological insulators [31–35],
and the interplay of anomalies and skyrmion motion in He3

has been experimentally observed [36].
Consider a magnetic domain wall along the x direction,

pointing in the ±z direction deep in the bulk, as depicted
in Fig. 1. For concreteness, we assume the easy axis of the
magnetic anisotropy to be in the z direction and the hard-axis
anisotropy to lie in the y direction, making the xz plane the
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FIG. 1. A domain wall along the x direction with a continuously
varying Weyl node separation 2b. The two insets with Weyl cones
show the corresponding Weyl node separation in momentum space,
given by the bulk magnetization vector (green). The domain wall
has a hard-axis anisotropy in the y direction, and an easy axis in
the z direction. φ(t ) is the angle of the magnetization at the domain
wall center out of the easy-axis plane (xz plane), and X (t ) is the
position of the domain wall center. The domain wall depicted is in
the Bloch configuration for which φ(t ) = π/2. The Bloch wall only
has a nonzero component of B5 in the y direction, and B5,yλ/|b| is
plotted as a function of x − X (0) (middle bottom inset); for parame-
ter values, see Ref. [37].

easy plane. The domain wall can be described in terms of two
collective coordinates, the position X (t ) of the center of the
wall and the internal angle φ(t ), which measures the angle
of the magnetization out of the easy plane. X (t ) and φ(t )
describe zero modes of fluctuations around the domain wall
arising from translation invariance along the x direction and
rotation invariance around the z axis, respectively [38]. While
the existence of a hard-axis anisotropy formally breaks the
rotational invariance, X (t ) and φ(t ) are still good collective
coordinates in the limit of weak anisotropy. There are two
special configurations of the domain wall, the Néel wall for
which φ = 0 where the domain wall is situated in the easy
plane, and the Bloch wall, for which φ = π/2, illustrated in
Fig. 1. Since b rotates from −bẑ to bẑ an axial magnetic field
localized at the domain wall is obtained. This is similar to the
B5 obtained at the surface of Weyl semimetals [39], except
that it is not constrained to a definite location in space.

When the domain wall moves, the magnetization becomes
time dependent, generating an axial electric field E5. A con-
trollable way of moving a domain wall is by a magnetic field
B = Bẑ. This results in a rigid shift of the domain wall center
X (t ) with an average velocity that increases linearly with B
up until a critical value Bc, at which the internal angle starts
rotating and the velocity decreases—this is called the Walker
breakdown [40]. The axial electric field generated in this
movement is a function of both the rotation and the velocity
of the domain wall. However, as we show, the axial anomaly
(which depends on E5 · B5) is only activated when the internal
angle starts rotating, for magnetic fields larger than Bc. Once it
is activated, an axial density n5, localized at the domain wall,
builds up and an oscillating current is induced, via the chiral
magnetic effect [41]. This results in electromagnetic radiation
which is a direct signature of the axial anomaly induced by
axial fields.

Domain wall dynamics. We take the Weyl node separation
in a domain wall to define a unit magnetization m as b(r, t ) =

�/(eνF )m(r, t ), where e is the elementary charge, νF the
Fermi velocity, and � an effective exchange coupling between
the electrons and the magnetization. The variation of b with
r and t is slow enough, compared to typical electronic time
and length scales, that the interpretation of it as a Weyl node
separation in momentum space still makes sense. Expressed
in the collective coordinates,

m =
[

cos(φ(t ))

cosh
( x−X (t )

λ

) ,
sin(φ(t ))

cosh
( x−X (t )

λ

) ,−q tanh

(
x − X (t )

λ

)]
,

(2)
where λ is the domain wall width and q = ±1 is the
topological charge [38]; we consider the case q = −1
(cf. Fig. 1). The dynamics of the domain wall is encap-
sulated in a ferromagnetic action SFM = ∫

dt (LB − HH −
HZ) which considers the precession and exchange cou-
pling of the magnetization, coupled to an external magnetic
field [28]. The Lagrangian describing the precession is
given by a Berry phase term LB = h̄/a3

∫
d3x φ̇(cos θ −

1), where θ = 2 tan−1 exp[−(x − X (t ))/λ] and a is the lat-
tice constant [42]. The exchange coupling contributes the
term HH = 1/(2a3)

∫
d3x(Ja2|∇m|2 − Km2

z + K⊥m2
y ), which

is the Heisenberg Hamiltonian in the continuous limit. Here,
J , K , and K⊥ are positive constants: J is the exchange energy,
and K and K⊥ are the easy- and hard-axis anisotropy energies.
The contribution from an external magnetic field B = Bẑ,
applied in the direction of the easy-axis anisotropy, is included
as a Zeeman term, HZ = h̄/a3

∫
d3x m · γ B, where γ is the

electron gyromagnetic ratio.
The collective coordinate description of the domain wall in

terms of X (t ) and φ(t ) is valid as long as there is translational
invariance in the x direction and rotational invariance around
the z direction. While the existence of a hard-axis anisotropy
would deform the domain wall and break the rotational in-
variance, the deformation is negligible in the limit K⊥ � K ,
in which X (t ) and φ(t ) are good collective coordinates [29].
While this is not an essential limit, it simplifies our discussion
so we assume it henceforth. The domain wall action in this
limit in terms of collective coordinates [28],

SFM = −2h̄A

a3

∫
dt (φ̇X + ν⊥ sin2 φ − γ B X ). (3)

Here, A is the cross section of the sample in the yz plane and
ν⊥ = λK⊥/(2h̄), with λ = √

J/K the domain wall width. The
first term is the Berry phase term, the second the contribution
from the Heisenberg Hamiltonian, and the last the Zeeman
term. The time evolution of the collective coordinates is given
by the action SFM together with damping, which takes into
account magnetization relaxation effects. Incorporating the
damping as a dissipation function W = −h̄Aλα/a3[(Ẋ/λ)2 +
φ̇2], where α is the Gilbert damping constant [43], the gener-
alized Euler-Lagrange equations of motion take the form

φ̇ + α

λ
Ẋ = γ B, (4)

Ẋ − αλφ̇ = ν⊥ sin 2φ, (5)

which are combined into a single equation for the internal an-
gle: φ̇ = a1 − a2 sin(2φ). Here, a1 = γ B/(α2 + 1) and a2 =
αν⊥/[(α2 + 1)λ]. a2 is always positive while the sign of a1

depends on the direction of the magnetic field.
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The solutions for φ(t ) depend on the magnitude of B
and are divided into two domains separated by the critical
magnetic field Bc = αν⊥/(γ λ) obtained when |a1| = a2. This
is observed from the solution for φ(t ), which for an initial
condition φ(0) = 0 is

tan(φ) =
a1 tan

(√
a2

1 − a2
2 t

)
√

a2
1 − a2

2 + a2 tan
(√

a2
1 − a2

2 t
) . (6)

The square root in the above expression is negative when B <

Bc, in which case the solution is tan(φ) = a1 tanh(ζ t )/[ζ +
a2 tanh(ζ t )], where ζ =

√
a2

2 − a2
1. In the long-time limit t →

∞, this results in a constant angle φ = 1/2 arcsin(B/Bc).
The domain wall velocity is also constant in this limit: Ẋ =
λγ B/α. When the magnetic field is larger than the critical
value, B > Bc, the internal angle oscillates in time according
to φ(t ) = arctan{a1 tan(ωt )/[ω + a2 tan(ωt )]}, with the angu-
lar frequency ω =

√
a2

1 − a2
2. In this regime the domain wall

position X (t ) = [−φ(t ) + γ Bt]λ/α also increases with time
with an oscillatory motion. The magnitude of the magnetic
field therefore plays a role in how the domain wall moves,
which has implications for the onset of the chiral anomaly.
The anomaly equation (1) (with E = 0) is proportional to

E5 · B5 = �2

e2ν2
F λ

φ̇ cos φ

cosh3
( x−X (t )

λ

) , (7)

which is zero when B < Bc, implying that the chiral anomaly
is only activated in the Walker breakdown regime B > Bc. The
axial electric field, which contributes with the term φ̇, is also
nonzero before the Walker breakdown, but is then orthogonal
to B5.

The axial chemical potential. The axial anomaly induced by
the domain wall motion generates an axial chemical potential
μ5 = (μL − μR)/2, with μL and μR the chemical potentials
of left- and right-handed Weyl fermions, respectively. The
anomaly equation is of the form ∂t n5 = e2/(6h̄2π2)E5 · B5 −
n5/τ , where the second term takes into account intervalley
scattering between the two Weyl cones, with intervalley scat-
tering time τ [44,45] and where E5 · B5 oscillates in time
with period τφ = 2π/ω. In the limit τφ � τ , the domain wall
oscillates faster than the intervalley scattering and the number
density becomes n5 = e2/(6h̄2π2)

∫ t
0 ds E5(x, s) · B5(x, s).

The axial chemical potential is considered to be space and
time dependent and relates to the axial number density as

μ5(x, t ) =
2

2
3
([

C1n5 +
√

C2
1 n2

5 + 4C3
2

] 2
3 − 2

2
3 C2

)
6
(
C1n5 +

√
C2

1 n2
5 + 4C3

2

) 1
3

, (8)

where the constants C1 = 81π2 h̄3ν3
F and C2 = 3(3μ2 +

π2T 2k2
B), T is the temperature, and kB the Boltzmann con-

stant. The above expression for μ5 holds in the limit of small
magnetic fields, h̄eB � μ2

5/ν
2
F , where μ = (μL + μR)/2 is

the average chemical potential [46]. μ5(x, t ) oscillates in time,
is located at the domain wall, and travels along the x direction
as X (t ) evolves with time (see Fig. 2).

Measuring the anomaly. The axial chemical potential gen-
erates a current density [47] proportional to the external
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FIG. 2. Axial chemical potential μ5 as function of time t , eval-
uated at the domain wall center x = X (t ) (upper panel) and as a
function of x at times t1 = 100τφ + τφ/4, t2 = 320τφ − τφ/4, and
t3 = 520τφ + τφ/4 (lower panel). Here, we take the chemical poten-
tial μ = 10 meV, temperature T = 300 K, and magnetic field B = 1
T; other parameters are given in Ref. [37].

magnetic field through the chiral magnetic effect [46],

JA(x, t ) = e2

2π2h̄2 μ5(x, t )Bẑ ≡ JA
z (x, t )ẑ. (9)

The rotation of the magnetization further yields an effective
current, JM (x, t ) = ∇ × M, where M = γ h̄/a3m is the mag-
netization density. The currents JA

z (x, t ) and JM (x, t ) give rise
to electromagnetic fields, measurable through their radiated
power. We describe these fields using Jefimenko’s equations
[48], and consider them separately in the near-field, r � R0,
and the far-field, r � R0, limits, where R0 is the wavelength of
the electromagnetic fields and r =

√
[x − X (t )]2 + y2 + z2 is

the distance to the detector from the domain wall center [49].
In both limits the domain size is considered to be the smallest
of the three length scales, λ � r, R0. We further require that
Lz > νF τφ , where Lz is the width of the sample in the z
direction (in the opposite limit accumulation of charge at the
edge of the sample might become relevant), which for real-
istic parameters [37] and B � 1 T holds when Lz ∼ 10 μm.
The radiation in the near field is measurable by current-
technology on-chip, which can detect weak signals of only a
few emitted photons [50]. Reactive components dominate the
electromagnetic fields in the near field, and by describing the
electromagnetic fields in this limit as an expansion in r/c, we
find that the only radiative contribution up to second order in
r/c originates from the anomaly current. The resulting power
impinging on a detector of size � × �, and a small solid angle,
is given by PA

� (θ, ϕ) = �2d2
2 B2λ2〈(∂2

t μ5)2〉 sin2 θ/(2ε0c5),
where d2 = LyLze2/(8π3h̄2), ε0 is the vacuum permeability,
θ, ϕ are the polar and azimuthal angles, and 〈· · · 〉 refers to
the time average [51]. Figure 3 depicts the number of pho-
tons, n = PA

� t�/Ep, emitted by a domain wall during the time
t� = �/〈Ẋ 〉 it takes it to traverse the detector length � = 1 μm,
as a function of the external magnetic field, where Ep = h̄ω is
the photon energy. The number of emitted photons goes above
1 for B ∼ 2.5 T and increases as B4, yielding around 1530
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FIG. 3. The number of photons n = PA
�,maxt�/Ep emitted by the

domain wall during the time t� = �/〈Ẋ 〉 it traverses the detec-
tor length � = 1 μm, as a function of external magnetic field B.
Here, PA

�,max = �2d2
2 B2λ2〈(∂2

t μ5)2〉 sin2 θ/(2ε0c5)|θ=π/2 is the radi-
ated power in the near field, and is due to the anomaly current, and
Ep = h̄ω is the photon energy. The polar plot depicts the normalized
power per solid angle, (dPA/d�)/A = sin2 θ , where A is the am-
plitude of (dPA/d�), as a function of the polar angle θ (maroon,
dotted) for any value of the azimuthal angle ϕ, and as a function of ϕ

(orange, solid) for θ = π/2. Here, Ly = Lz = 10 μm, and for other
parameter values, see Fig. 2 and Ref. [37].

emitted photons for B = 15 T, making the signal observable
by detector sizes � ∼ 0.1–1 μm [50,52–54].

In the far-field limit the electromagnetic fields radiate,
and the power contains contributions from both JA

z (x, t ) and
JM (x, t ). The anomaly current is even across the domain wall,
while the magnetization current is odd, which results in the ra-
diation due to the magnetization decaying faster with distance
than the radiation due to the anomaly (total power due to the
anomaly is independent of r while the magnetization power
decays as r−2). For B ∼ 10 T and r ∼ 1 cm the contribution to
the power due to the anomaly is 104 times larger than the mag-
netization contribution (for details, see Ref. [51]). The power
in both limits is thus dominated by the anomaly contribution,
and the radiation frequencies range between ω/2π = 27 and
420 GHz for magnetic fields in the interval B = 1–15 T.

These results generalize to multiple domain walls. Adja-
cent domain walls have opposite topological charge q = ±1,
and therefore travel in opposite directions under the influ-
ence of a magnetic field. The current due to the anomaly is
independent of the topological charge as the axial chemical
potential goes as q2. This implies that the radiated field from
the anomaly current of two adjacent domain walls add up. The
magnetization current, on the other hand, has a q dependence
which produces a sign different in the y components of the
magnetization current at two adjacent domain walls, which
modifies the radiation when considering several domain walls
compared to that of a single domain wall. In any case, this
will not change the fact that the anomaly contribution is the

dominating one, and measurable also in the case of multiple
domain walls. However, the radiated power only exists during
a finite length of time depending on the velocity of the domain
walls, until the domain walls annihilate each other or until
they reach the boundary of the sample. Pinning [29]—local
enhancement of easy-axis anisotropy, due to, for example, im-
purities, confining the domain wall to a certain region—could
modify the details of the radiation field, since adjacent do-
main walls could be prevented from annihilating one another
and the electromagnetic radiation would come from a fixed
location.

Discussion. We have shown how field-driven motion of
a domain wall in a magnetic Weyl semimetal leads to the
activation of the axial anomaly. This results from the space
and time dependent Weyl node separation emerging from the
domain wall motion, which generates axial electromagnetic
fields. The anomaly generates an axial chemical potential at
the domain wall, which in turn results in an oscillating cur-
rent and electromagnetic microwave radiation, the detection
of which would constitute a direct measurement of the axial
anomaly. Experimental techniques to detect such microwave
radiation are advanced and can even be done on-chip [50,52–
54]. While we have made some simplifying approximations
to highlight the fundamental physics, we expect the qualitative
picture to be robust in realistic situations, and a general feature
of any domain wall motion in Weyl semimetals. For example,
current-driven domain wall motion will lead to the same axial
anomaly-triggering mechanism as the one described here, but
will allow for an electronic control of anomaly activation,
which may be useful in designing experiments and applica-
tions. We have also worked in the limit of weak hard-axis
anisotropy where a description of the domain wall in terms
of collective coordinates is sufficient. Deviations away from
this limit will lead to a more complicated theory that needs
to take into account modes beyond just the zero modes we
include, but this is not expected to modify the qualitative de-
scription of the emergence of axial fields located at the domain
wall.

We have focused our discussion on the use of domain wall
motion for detecting anomaly physics. The other way around,
namely the effects of the anomaly on the physics of domain
walls and related spintronics phenomena, is an interesting
avenue for future studies.
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