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Abstract 
Companies in assemble-to-order environments face many different uncertainties, but it is unclear how 
to control operations and determine buffers in order to improve overall supply chain efficiency and 
control. In this master thesis we study this problem for the real-life supply chain of VDL ETG. We design 
two general models which contribute to the insights and understanding of operational control and 
buffer management in dynamic order-driven assembly systems, and which support buffer norm 
setting. We introduce a new mathematical concept called ‘hidden inventory’, which allows for 
analyzing customer order due date uncertainty under order-driven control as demand uncertainty in an 
inventory model. We apply the model to three real-life cases, showing the potential to reduce system 
nervousness. Secondly, we develop a planned lead time model which supports the analysis of safety 
time buffers (planned lead times) in order-driven assembly systems under lead time uncertainty. Via 
discrete event simulation we show that important cost and cycle time savings are possible by using 
smart heuristics to determine planned lead times. Finally, based on our modeling and analysis, in 
combination with support tools which have been developed, we ‘design’ important directions for 
improving operational control and buffer management at VDL ETG.    
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Management summary 
In this thesis report we present the results of our study on tactical buffer management and operational 
control in multi-item multi-echelon assemble-to-order (ATO) systems. As a case study, the real-life 
complex supply chain of VDL Enabling Technologies Group Eindhoven (VDL ETG) has been selected. 

Problem statement 
VDL ETG is active in the field of complex, innovative mechatronic systems. The company is a tier-one 
contract manufacturing partner for original equipment manufacturers (OEM’s) of complex, high-tech 
products (e.g. AMSL and FEI). The environment in which these companies operate is very complex in 
terms of high demand and supply uncertainty; low volumes; complex bill of material structures and 
dependencies; expensive materials; rapid technological developments; capacity restrictions; and 
customer lead times which are shorter than integral throughput times.   

Based on an extensive problem analysis, we constructed a cause and effect diagram and we formulated 
several projects to address the key problems. Using dependencies between the projects and the 
priorities of key stakeholders at VDL ETG, a roadmap towards improvement of efficiency and control in 
VDL ETG’s supply chain has been developed. We focus on one of these projects, which concerns buffer 
management and control in the ATO/MTO supply chain. Despite the considerable progress in 
developing analytical models for such systems, there is still much room for new theoretical 
developments, especially concerning the application of knowledge and models from classical 
inventory theory in order-driven assembly environments. In order to address this promising gap for 
extending the existing literature and to investigate the possibilities for improving supply chain 
efficiency and control at VDL ETG, the following main research questions was defined: 

How should VDL ETG manage buffers and control operations in its dynamic ATO/MTO environment, 
such that the supply chain efficiency and controllability is improved? 

Analysis of key supply chain features in the real-life complex supply chain 
In order to gain understanding of important aspects to take into account for improving operational 
control and buffer management in the design phase of our research, we first analyzed key strategic, 
tactical and operational features in the as-is situation at VDL ETG. Flexibility and responsiveness have 
been discussed as two important strategic features. We argued that, from an integral planning and 
control perspective, we might consider required responsiveness as ‘given’, reflected by the target 
customer service levels and lead times. In terms of tactical features, we discussed capital investment risk 
and customer commitment. In the supply chain of VDL ETG, we basically identify three types of stock 
related investments: ‘inventory’, ‘work in progress’ and ‘purchasing’. Investments in all three classes can 
be order-driven (i.e. ‘project investments’) or forecast-driven (i.e. ‘anonymous investments’). From a risk 
perspective, it is mainly anonymous inventory which creates a high risk exposure for VDL ETG. In order 
to protect against these risks, VDL ETG has forecast commitments with its customers. Finally we 
identified planning stability and nervousness as two important operational features of supply chain 
planning in real-life complex supply chains. We argued that nervousness is mainly a symptom of bad or 
deficient control and planning. Hence the design and evaluation of alternative buffer norms and 
control rules should also be considered in relation to system nervousness.  

Supply chain uncertainties and current buffer methods  
Qualitative and quantitative analysis revealed the existence and magnitude of three main classes of 
uncertainty from an integral planning and control perspective in the supply chain of VDL ETG: supply 
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Figure: Example of MPS cumulative demand uncertainty in 
relation to production planning for the ASML XT4 system (see 
page 28 for normal size and more explanation)  

uncertainty, manufacturing process uncertainty, and demand uncertainty. Concerning the supply and 
manufacturing process uncertainty, our analysis showed that besides stochastic yield, especially lead 
times create much uncertainty. Demand uncertainty in the order-driven supply chain of VDL ETG can 
be considered from both a time and quantity perspective. We showed that not only forecasts create 
uncertainty about future demand, stochastic customer order due dates do provide significant 
uncertainty about future period demand as well.  

In order to protect against the uncertainties, VDL ETG uses different types of buffers at different 
moments and places. We identified and discussed consignment stock, a week buffer between internal 
and external customer due dates, safety time and MPS smoothening as the most prevalent buffer 
options. Our research revealed that the application of buffers is mainly operationalized based on 
employees’ experiences (from planners, factory engineers, etc.). There is a lack of explicit performance 
feedback loops and control with regard to uncertainties and methods used to buffer against them. This 
makes it hard to create a solid understanding of the existence and especially the impact of 
uncertainties (on decisions already made as well as decisions to be made), let alone on how to buffer 
against them (parameter setting) and control production in the most efficient and effective way.  

Design for understanding and analysis 
In the first part of our design phase, we therefore designed two general models which support 
understanding and analysis of buffering against the two main classes of uncertainty in order-driven 
assembly systems: demand uncertainty and lead time uncertainty. We argued that, in order to allow for 
robust and effective planning at the integral level, an explicit decoupling between demand and lead 
time uncertainty is needed. 

Stochastic (hidden) inventory model –  buffering and control under demand uncertainty 
Firstly, based on mathematical expressions, we hypothesized that service in a single-item single-
echelon inventory system can be ‘explained’ by the average inventory level and average order size as 
system outcomes, and that this service is relatively insensitive from specific control parameters which 
are used. Numerical analysis and empirical analysis for three real-life examples provides support for our 
hypothesis, at least in the high-tech environment of VDL ETG, characterized by high service levels, long 
lead times and low volumes.  

In order to validate our hypothesis for real-life examples in the order-driven supply chain of VDL ETG, 
we introduced a new modeling concept. Analysis of cumulative demand uncertainty (see Figure) 
revealed that cumulative forecasts orders 
(blue line) do generally exceed cumulative 
real demand (red line). Production (in the 
form of scheduled receipts, green + 
orange bars) is initially planned based on 
cumulative orders. Under the order-driven 

control at the MPS level, actual receipts 
are generally matched with real customer 
demand. Since this real demand on 
average is lower than the ordered 
demand (customer rescheduling), a difference between scheduled and actual receipts arises. 
Mathematical expressions for these differences under order-driven MRP control at the MPS level have 
been formulated. We name the new concept which includes these differences ‘hidden inventory’. We 
show that this concepts provides the explanation of a striking observation: VDL ETG’s extremely high 
service level under high demand volatility, while there is no (or very little) inventory at the final stock 
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Table: Discrete event simulation results showing the 
improvement potential of three alternative methods to set 
planned lead times 

point. More generally, the concept allows for analyzing buffering against order due date uncertainty in 
an order-driven system as buffering against demand uncertainty in a make-to-forecast inventory 
system. Hidden inventory can be considered as a kind of inventory which is hidden/kept in the work in 
progress. This inventory is spread in the pipeline in such a way that there is enough hidden inventory 
which can quickly enough be converted in real stock in order to cope with the stochastic demand from 
customer side, thereby obtaining a certain service level.  

Stochastic planned lead time model –  buffering and control under lead time uncertainty 
In order to understand and analyze buffering against lead time uncertainty, we developed a planned 
lead time model based on the two-stage assembly structure of a customer system produced by VDL 
ETG. We implemented the model in a discrete event simulation tool, and empirically validated it with 
historical data. Analysis revealed that the current planned lead time settings (average lead time plus 
safety time) are similar to using a so-called 
Fractile method. We introduced three 
alternative methods to determine planned 
lead times. Via our discrete event simulation 
tool we quantified the improvement 
potential of each of the alternative methods. 
It turned out that rather ‘easy’ Critical Chain 
concepts can result in a reduction of both the 
cycle time and stock investments. A more sophisticated Newsvendor heuristic (Atan et al.,2015) can 
result in major efficiency improvements: 4-5% cycle time reduction associated with 11% cost reduction 
in case of high target service levels (on-time delivery performance, OTD) and relatively low added value 
in the final assembly stage (which characterizes the main customer systems produced by VDL ETG). 

We expect these two mathematical models and related insights to apply to real-life, complex ATO 
supply chains in general. Together, the stochastic inventory model and the stochastic planned lead 
time model provide a powerful concept for understanding two important classes of uncertainties in 
order-driven assembly systems: due date uncertainty and lead time uncertainty. Companies can use 
the stochastic inventory model to support the determination of important inventory buffers under due 
date uncertainty, and methods based on the Critical Chain concepts or a more sophisticated 
Newsvendor heuristic can be used to determine important time buffers under lead time uncertainty. 
Both aspects are important for efficient and effective buffer management and control in what we can 
regard as ‘make to order-driven stock’ supply chains.  

Design for improvement 
After the major part of our design phase, in which we designed models to improve crucial 
understanding of buffering in the complex order-driven supply chain of VDL ETG, we ‘designed’  
directions and options for improvement based on our analyses and supporting tools which have been 
developed. Amongst others, we discussed (in Chapter 6): the visualization and management of the 
hidden inventory buffer in order to reduce system nervousness and ease (capacity) planning and 
control; the exploration of the effect of lower target service levels on possible reduction of the required 
inventory buffer size; the decoupling between demand uncertainty and lead time uncertainty to allow 
for robust and effective planning at the integral level; the investigation of the planned lead time model 
and Newsvendor heuristic for more systems, in order to quantify the improvement potential for those 
systems; the use of new planning performance metrics to allow for explicit production control and 
feedback loops; the use of the new Stock Investment Report structure to measure and monitor stock-
related capital investments.   
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One	

Introduction 
“Life is really simple, but we insist on making it complicated”  -Confucius- 

 

In this report we present our study on tactical buffer management and operational control in multi-
item multi-echelon assemble-to-order (ATO) supply chains, conducted at VDL Enabling Technologies 
Group Eindhoven (hereafter ‘VDL ETG’). VDL ETG is active in the field of complex, innovative 
mechatronic systems. The company is a  tier-one contract manufacturing partner for original 
equipment manufacturers (OEM’s) of complex, high-tech products (e.g. AMSL and FEI). The 
environment in which these companies operate is very complex in terms of high demand and supply 
uncertainty; low volumes; complex bill of material structures and dependencies; expensive materials 
and rapid technological developments.  

A very important feature of this type of environment is the long internal throughput time of products 
compared to the lead times required by customers. Companies active in the supply chain manufacture 
and/or assemble customer-specific products from modules and components in multiple production 
(and test) steps. Moreover, these components and modules might be used for multiple customer 
orders, possibly in different combinations and/or with optional features. This creates many challenging 
tasks, and urges the companies to keep improving their supply chain operations efficiency and control. 
A lack of good efficiency and control can cause unnecessary high investments in inventory and can 
lead to supply chain nervousness in terms of rescheduling production plans (De Kok & Fransoo, 2003; 
De Kok & Inderfurth, 1997).     

In the past decades, there has been a growing interest in supply chain operations planning and control 
in multi-echelon systems (De Kok & Fransoo, 2003; Song & Zipkin, 2003). Following the definition of the 
first-mentioned authors, we can define the objective of supply chain operations planning as: “to 
coordinate the release of materials and resources in the supply network under consideration such that 
customer service constraints are met at minimal cost.”  

Despite the considerable progress in developing analytical models for these systems, there is still much 
room for new theoretical developments, especially concerning the application of knowledge and 
models from classical inventory theory in ATO environments. This thesis therefore addresses this 
promising gap for extending the existing literature by focusing on the following problem: 

Companies in ATO environments face many different uncertainties, but it is unclear how to 
control operations and determine buffers in order to improve the overall supply chain 
efficiency and control.  

The remainder of this chapter is organized as follows: after a discussion of the research methodology in 
the next section, we provide an introduction to VDL ETG in Section 1.2. In Section 1.3 we discuss the 
problem context and summarize the key elements of a roadmap which has been developed to 
structure a series of master thesis projects at VDL ETG. Based on the problem analysis, we formulate the 
research questions in Section 1.4.  Thereafter, the scope of the research is discussed in Section 1.5. We 
conclude this chapter by outlining the remainder of this report in Section 1.6.   
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1.1. Methodology 
Following Van Aken (2004), one can make a distinction between explanatory sciences, like the natural 
sciences and most social sciences, and design sciences, like medicine and engineering. “The core 
mission of a design science is the development of valid knowledge, which can be used by 
professionals in the field in question to design solutions to their field problems” (Van Aken, Berends 
and Van der Bij, 2007 p. 35). The typical research product of such a design science, supporting the 
solution and implementation design, is the technological rule, respectively the solution concept. 

Our research study is based on this paradigm of the design sciences, aimed at developing prescriptive 
knowledge in the form of technological rules or solution concepts. We structure our research and this 
report according to the associated reflective cycle for design-based problem solving, see Figure 1 
below. Note that the basis of the reflective cycle is a business problem solving activity, following the 
regulative cycle (Van Strien, 1997).  

 

Figure 1: Reflective cycle, including the regulative cycle (Van Aken et al., 2007) 

As introduced in the beginning of this chapter, we selected the problem of improving operational 
control and tactical buffer management in complex ATO environments. The case selected is the 
complex, high-tech ATO/MTO supply chain of VDL ETG, which we will further characterize in the next 
paragraph.    

For the quantitative parts of the research project, we use the quantitative research model of Mitroff, 
Betz, Pondy and Sagasti (1974), see Figure 2. Quantitative empirical research must be designed to test 
the validity of quantitative theoretical models and quantitative theoretical problem solutions, with 
respect to real-life operational processes (Bertrand & Fransoo, 2002). The quantitative parts within our 
research project fit this empirical quantitative research type, as within this type the primary concern is 
to have a model fit between observations in reality and the model developed for that reality. In 
addition, the empirical quantitative research type is concerned with testing the usability and 
performance of the problem solutions obtained from quantitative theoretical research in real-life 
operational processes. As Bertrand and Fransoo (2002) conclude their article, “there is a major 
opportunity for quantitative, model-driven empirical research, where the rich pond of axiomatic 
results, based on advances in mathematics over the past decades, is fished to create more rigorous 
empirical scientific knowledge in the field of Operations Management.” 
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Figure 2: Quantitative research model (Mitroff et al., 1974) 

Concerning the research methods, we practically used: 

Desk research including the use of academic literature as well as company documents and databases, 
in order to retrieve insights and support the generation of knew design knowledge.  

Interviews have been used to validate quantitative results as gathered from VDL’s databases, as well 
as to discuss current problems and important issues to consider when investigating new concepts for 
buffer norm setting and material control.  

Modeling is required to support the design phase of the project. This concerns the development of 
mathematical models and quantitative concepts to understand existing processes and to analyze 
important decision functions. 

Simulation, finally, is used to test the performance of alternative methods for norm setting and 
operational control, and to investigate the improvement potential compared to the current situation. 

1.2. Company introduction  
VDL Enabling Technologies Group (VDL ETG) is part of the large international, family owned business 
VDL Group. The VDL Group consists of more than 83 companies, with more than 10.000 employees 
working in 19 different countries around the world. It is a collection of flexible, independently 
operating companies, each with their own specialism. The VDL Group focuses on the development, 
production and sale of semi-finished products, busses and complex end-products, and on assembly of 
cars (VDL Annual Report, 2013).  

VDL ETG is active in the field of complex, innovative mechatronic systems. In 1900, it all started as 
Philips Machinefabrieken and during the 20th century it became a worldwide operating company, 
supplying integrated systems and solutions to Philips as well as other companies. In 2000, the name 
changed into Philips Enabling Technologies Group and in 2006 it was taken over by the VDL Group.  

VDL ETG focuses on systems integration and supply chain management of mechatronic (sub)systems 
for OEM’s of complex, high-tech products. This is reflected in their mission statement:  

‘’To reach global leadership as tier-one contract manufacturing partner, by outperforming in 
delivering mechatronic solutions.”  

VDL ETG has different divisions, with general management being located at the headquarters in 
Eindhoven. The company has a special division named VDL ETG Research, focusing on engineering 
and prototyping. Moreover, the division VDL ETG Technology & Development takes care of the product 
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and technology development. In addition, there is a special division called VDL ETG Projects, which 
focuses on producing one-off, customer specific modules and systems. Finally, the company offers its 
main serial production and assembling services characterized by high complexity and low volumes, 
being performed in 4 different locations: VDL ETG Almelo, VDL ETG Eindhoven, VDL ETG Singapore and 
VDL ETG Suzhou. Unless stated otherwise, when using the term VDL ETG we refer to VDL ETG 
Eindhoven (Acht). The other three production sites, each with their own characteristics and planning 
and control structures, are outside the scope of this project. 

The modules produced by VDL ETG (and its customers) are used in different markets: semiconductor, 
analytical systems, solar, medical and aerospace. The major part of VDL ETG’s turnover is attributable to 
customers active in the lithography/semiconductor industry. As shown by Figure 3, this market has 
grown over the past decades, but meanwhile has a high volatility. This volatility in demand is further 
amplified upstream in the supply chain. VDL ETG faces this effect, being highly subject to the 
economic cycles and demand patterns. 

 

Figure 3: Lithography market trend and semiconductor capital expenditures (Berenberg, 2013) 

1.2.1. VDL ETG’s supply chain  
The core activity of VDL ETG is the assembly and integration of modules and systems, which is 
controlled by the Systems department. Components used for the assembly and integration are either 
produced internally by the Parts department or sourced from external suppliers. Parts is characterized 
by job-shop planning, detailed production schedules and routings, set-up times and machine 
utilization level control. Employees working on the Parts floor are highly specialized, i.e. they have 
specific skills to perform operations on only one or very few machines. Components produced by Parts 
are used for the assembly activities of Systems as well as to fulfill external customer demand. Compared 
to Parts, Systems has a higher flexibility in terms of capacity. Within Parts, machines are the critical 
resources and cause bottlenecks, whereas the most important capacity within Systems is people. Due 
to rather generic nature of the assembling activities, Systems has a higher resource flexibility. Assembly 
capacity can be scaled up due to the nature of the work, but this cannot be done quickly. Hence, 
capacity constraints are present over a short planning horizon, whereas for the long run often infinite 
capacity is assumed.  

The customer order decoupling point (CODP) lies at different places for different customers and final 
systems. Some systems have an assemble-to-order (ATO) structure, while others have a make-to-order 
(MTO) structure. In the first case, the CODP lies before assembly; in the case of MTO, the CODP is before 
VDL ETG.  
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Considering the current planning and control structure of the supply chain, we identify a structure as 
shown in Figure 4. 

 

Figure 4: Supply chain planning and control structure VDL ETG 

Integral production planning is performed by Integral Planning . A master production schedule (MPS) 
is created based on the demand plan of customers. The MPS is disaggregated/exploded by BaaN (VDL 
ETG’s internal ERP system) and a suggested MRP production schedule is provided by the system. 
Integral planners then critically review the suggested schedule and make adjustments in case they 
think this is needed. This results in the customized planning schedule, according to which the planners 
release procurement and production orders. Due to multiple reasons, a.o. customers which change 
their order due date or suppliers which do not deliver on time, rescheduling might be needed. In this 
case, Integral Planning takes care of the rescheduling of production and procurement orders. 
Rescheduling contributes significantly to the workload of the planners and often causes problems for 
production planning, an issue which we will address later.  

Operational Procurement is responsible for the supply of materials and components from external 
suppliers (both for the stock point just in front of Parts as well as the stock point just before Systems). 
When they receive a procurement order from Integral Planning, they verify and check the suggested 
order, especially considering the buying prices and lead times of suppliers.  

The Parts department mostly operates independently from Production Office, i.e. Parts receives 
production orders from Integral Planning and is responsible for its own production schedules. The 
performance of Parts on this aspect, however, can be improved. Agreed planned lead times are often 
unmet, causing a delay in the arrival of certain components, which delays the start of the assembling 
process or results in disturbances during assembly execution.  

Within Production Office, there is a special unit Order Management which takes care of balancing 
demand with supply. The order managers are responsible for the communication with the customers 
(i.e. Customer Support) and, in addition, communicate with Integral Planning about the possibilities to 
accept future customer orders. Moreover, as they are responsible for direct contact with the customers, 
Order Management also receives modified orders and/or forecasts from the customers and 
communicates this with Integral Planning. Finally, Order Management is also responsible for releasing 
orders towards Expedition, with information regarding the delivery process and schedules for end 
products ready to be sent to the customers.  
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Finally, we briefly point out to a special group within the supply chain which has been created in 
January 2014: Repair Spare parts & Service (RS&S). This group is especially dedicated to the control and 
management of incoming demand for components and materials as required for spare parts and 
service. When a component or (semi-)finished module is needed, they inform Integral Planning about 
this ‘demand’. Integral Planning then checks if they can satisfy this demand by releasing available 
inventory. If this is the case, the demand is satisfied. In case the demand cannot be satisfied 
immediately, RS&S is responsible for the procurement and production of the materials needed. About 
5% of the sales volume of VDL ETG is represented by the RS&S chain. RS&S’s contribution to the profit 
of VDL ETG is somewhat higher (about 10%), due to higher profit margins on these products 
compared to general components and modules (Kamps, 2015). 

1.2.2. VDL ETG’s supply chain planning and control processes  
Within the supply chain as shown in Figure 4, operational control is organized according to separate 
‘chains’. In general, a chain refers to a specific customer, e.g. FEI or Philips. Considering ASML (being a 
very important and large customer for VDL ETG), a chain refers to a specific system class, e.g. the wafer 
handler system. Each chain has its own employees occupying the main functions related to 
operational planning and control: account manager(s), integral planner(s), operational buyer(s) and 
order manager(s). Next to these chain specific functions, there are also more general functions (being 
allocated to a set of multiple chains): parts planners and production assistants. 

Besides the main classification in different ‘chains’, there is another supply chain classification focused 
on the final system level. This deals with the difference between so called ‘Programs’ and ‘NPI Projects’. 
Initially, when a new system for a (new) customer is put into production, the production activities start 
as a ‘New Production Introduction’ (NPI) project. These projects are characterized by an experimental 
character of production operations and planning, low production volumes and they have a dedicated 
project leader. When time passes, the production and demand plans become more certain. A special 
checklist then is used to check if the project can be ‘Released For Volume’ (R4V), thereby becoming a 
‘Program’. Programs are characterized by controlled and released production processes, higher 
demand and production volumes, regular production planning and they have dedicated program 
managers. 

Finally, we briefly make an important note about the term ‘order’ at the demand side (MPS-level): this 
can be either a ‘real customer order’, or a so called ‘management order’. This latter type of order is an 
order which is created if production has to start while a ‘real customer order’ is lacking. In this case, 
management has to sign the ‘management order’, thereby agreeing to be aware of the potential risk of 
the ‘order’.  

To indicate the time dependencies between the main planning and control processes discussed 
above, we constructed a so called ‘swimming lane diagram’, see Appendix A. 

1.3. Problem context 
Since this research project actually marks the shared start of a series of research projects which will be 
conducted in collaboration between VDL ETG and students from Eindhoven University of Technology, 
an extensive problem analysis at VDL ETG has been performed. Based on this problem analysis, a 
roadmap has been developed to structure and plan the series of projects which share an overarching 
goal: improving the supply chain efficiency and control at VDL ETG.  

In this paragraph we summarize the key elements of the roadmap, we refer to Kamps and Arts (2014) 
for the full report.  
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1.3.1. Challenging business environment 
As discussed in the introduction, the business environment in which VDL ETG operates is very 
challenging. We have identified nine ‘features’ that together create the complexity faced by companies 
like VDL ETG when managing their supply chain: 

 Complex Bill of Materials (BOM) structures (a final system typically consists of hundreds or 
thousands of items, some of which can be used in multiple successor items) 

 Low demand volumes and short life cycles 
 High value of components 
 Uncertainty in the lead time of suppliers 
 High, early customization (chains are MTO or ATO organized) 
 Significant yield issues (products can be rejected during production and assembly processes) 
 Capacity restrictions at (Parts) manufacturing 
 Customer lead times shorter than integral throughput times 
 Demand due date uncertainty (customer can advance or delay order delivery dates) 

Although these features do not necessarily create complexity individually, it is the combination which 
does (Figure 5).  

             

Figure 5: Factors contributing to VDL ETG’s supply chain complexity 

1.3.2.  Problems and causes 
In order to better understand the real problems and issues which VDL ETG faces, we organized a semi-
structured session with some of the key actors who are closely involved in the operational decision 
making processes (Coppens et al., 2014). Based on this session along with process observations and 
individual discussions, an extensive cause-and-effect diagram has been constructed (see Figure 28 in 
Appendix B). We derived that the general ‘problem’ which is experienced and considered to be subject 
for improvement is actually threefold: the capital investment in inventory and work in progress is high, 
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the planning workload due to rescheduling activities is high, and finally the customer responsiveness is 
low.    

In order to validate the problems and causes, we extended the qualitative analyses with some general 
quantitative analyses. Since we will provide a more extensive discussion on the quantitative analyses 
related to the key issues for our study later on in this report, we refer to Kamps and Arts (2014) for the 
support of the identified problems and causes via more general quantitative analysis.  

1.3.3. A roadmap towards improvements in VDL ETG’s supply chain  
To address the problems as identified in the previous section, several projects have been constructed. 
The projects have been prioritized based upon their expected impact (cost savings, inventory 
reduction, performance improvement, etc.) and required effort (time, resources, supervision of project, 
etc.). Hereafter the projects have been positioned in time, resulting in a roadmap towards 
improvement of the controllability and efficiency in VDL ETG’s supply chain. In Appendix B we provide 
a graphical representation of the roadmap along with more information about the individual projects.   

1.4. Project selection and research questions 
Our development of the roadmap actually started in a September 2014, being the starting point for a 
series of master thesis projects. As shown by the roadmap (see Figure 30) the route towards 
improvements begins with ‘Project 4’. This project has meanwhile been finished by Tom Kamps, which 
resulted in the publication of his final master thesis (Kamps, 2015). This project focused on customer 
delivery date uncertainty and the efficiency of different rescheduling methods to cope with it. 

A topic which is closely related to the study of Kamps (2015) is the topic of stock control of 
components and final systems, and the buffer strategy to cope with uncertainties in the supply chain, 
a.o. delivery date uncertainty. It addresses other valuable options to improve the performance of the 
supply chain and to be responsive in a dynamic and uncertain MTO/ATO environment.  This second 
step in the roadmap (‘Project 6+10’) actually fits within the high-level type of problem we introduced 
in the introduction of this chapter.   

So, since it nicely relates to our high-level problem selection and since it continues with the research 
study performed by Kamps, we selected ‘Project6+10’ as the subject for our research.   

1.4.1. Research question 
The objective of the study is to extend scientific knowledge and to develop solution concepts that 
enable VDL ETG to become more pro-active and responsive to opportunities and risks created by its 
customers and suppliers. The knowledge and solution concepts concern the coordination of the 
planning and control activities in the ATO/MTO supply chain, with a focus on norm setting in terms of 
safety stock and safety time.  

Following the analyses and objective discussed so far, we formulate our main research question: 

How should VDL ETG manage buffers and control operations in its dynamic ATO/MTO environment, 
such that the supply chain efficiency and controllability is improved? 

1.4.2. Sub questions 
We define 6 sub research questions to answer the main research question and to structure the 
development of (generic) design knowledge. 

1. What are key strategic, tactical and operational features in the supply chain of VDL ETG? 
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2. What are the different types of uncertainty and their magnitude in the supply chain of VDL  ETG? 

3. How does VDL ETG currently deal with uncertainties in its supply chain and what can be learned 
from this? 

4. How can operational decision making and control within VDL ETG’s supply chain be improved? 

5. How should VDL ETG set norms for buffers in materials and time such that demand is met effectively 
(on time) and more efficiently (with less costs and nervousness)?  

6. How can VDL ETG use and implement the new insights? 

1.5. Scope of the project 
Below we outline the scope of our project by framing our research in a theoretical model and by 
discussing the practical scope within VDL ETG.  

1.5.1. Framing our main research question in the planning hierarchy 
First of all we briefly want to frame our research according to a framework which is presented by De 
Kok and Fransoo (2003). This framework (see Figure 6) positions supply chain operations planning 
(SCOP) in the planning hierarchy (cf. Bertrand, Wortmann & Wijngaard, 1990).  

De Kok and Fransoo (2003, p.597) define the objective of SCOP as “to coordinate the release of 
materials and resources in the supply network under consideration such that customer service 
constraints are met at minimal cost.” The operations planning and control part of our research 
question relates to the SCOP layer in the hierarchy, which can be considered as the function currently 
performed by the Integral Planning department within VDL ETG. On the other hand, the buffer norm 
setting relates to the Parameter Setting function in Figure 6, which needs to “coordinate the safety 
stock, leadtime and workload parameters of the supply chain.” Our research question thus integrates 
the tactical characteristic of norm setting with the operational character of operations planning in 
multi-echelon supply chain systems, which are typically closely related (Graves and Willems, 2003). 

We focus on the operational control and parameter setting at the integral level, i.e. we do not consider 
detailed material and resource coordination and parameter setting at the level of detailed Production 
Unit (PU) control. Note that we will use the terms ‘integral level’, ‘SCOP level’ and ‘Goods Flow Control 
level’ (Bertrand et al., 1990) interchangeable in the remainder of this report to denote our perspective.  
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Figure 6: Supply chain operations planning in the planning hierarchy (De Kok and Fransoo, 2003) 
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1.5.2. Practical scope within VDL ETG’s supply chain  
More practically, we can make a few other notes about the scope of our research within VDL ETG. Since 
the research project will mainly address integral operations planning and control, with a focus on 
buffering against uncertainty, of course the Production Office (see Figure 4) is included within the 
scope. This department consists of both Integral Planning as well as Order Management. The order 
acceptance function (i.e. setting/negotiating delivery dates with customers, etc.) is excluded from the 
scope of our research. 

Operational control and buffering at suppliers, as well as extensive operational supply chain integration 
with suppliers or customers (except for sharing demand forecasts, etc.) is not included within our 
scope.  

We consider Parts as one of the suppliers of materials and components for assembly at Systems. We 
thus won’t explicitly address production planning and control activities within the Parts department 
(e.g. routings, machine allocations and machine utilization control). As mentioned before, there are 
several significant issues at Parts which have a high improvement potential. This, however, will be the 
focus of the research study related to ‘Project 7/8/9’ (see Figure 30) which is planned to start in 
September 2015. The control within the RS&S department is excluded from the scope too. This 
department is responsible for the repair spare parts and service requirements. Tactical decisions as 
setting inventory levels, developing policies for preventive or reactive maintenance, and operational 
decisions like item procurement ordering are outside our scope.  

For our quantitative modeling and analysis, we will only consider critical items such as customer 
specific modules, system components and expensive standard items. Items in the category glue and 
‘bolts and nuts’ are left out. These items are controlled ‘manually’ (two-bin) and their inventory levels 
are kept high on purpose due to their small cost value.    

Finally, note that we will focus on the R4V customer systems and exclude customer systems in the NPI 
phase. Planning and control of modules and systems in this NPI phase has a ‘project’ (one-off) 
character, changes per new project and is actually subordinate to the testing and mechanical 
engineering activities. Once the systems are released for volume, they are put into ongoing production 
and their operations planning and control becomes vital.     

1.6. Thesis outline 
The next two chapters of this thesis present the results of multiple analyses of the as-is situation within 
VDL ETG. In Chapter 2 we describe several key strategic, tactical and operational features in the 
dynamic ATO/MTO supply chain, taking a planning and control perspective. An extensive analysis of 
the main uncertainties observed in the supply chain along with an identification of the current buffer 
methods is provided in Chapter 3. In Chapter 4 we present some insightful preparative analyses and 
conceptual discussions which are important for the development of appropriate models to support 
our design phase. Two general quantitative models that support the evaluation and analysis of buffer 
management are designed in Chapter 5, along with the results of their application to real life examples 
in VDL ETG’s supply chain. In Chapter 6 we present the second part of our design phase, as we ‘design’ 
directions and options for improving operational control and buffer management. In Chapter 7 we 
provide our main conclusions and insights by answering the research questions and discussing 
recommendations for further research within VDL ETG. We conclude this thesis in Chapter 7 by 
improving design knowledge based on a reflection on our case study at VDL ETG, and we provide 
recommendations for further scientific research. 
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Two 
Analysis of key strategic, tactical and 
operational supply chain features 
“Seek first to understand and then to be understood”  -Stephen Covey- 

 

In this chapter we describe several key strategic, tactical and operational features in the supply chain of 
VDL ETG, taking a planning and control perspective. The focus of this chapter is on the analysis and 
description of the as-is situation within VDL ETG. We start with a discussion on the strategic role of 
flexibility and responsiveness in Section 2.1. Two related tactical aspects are capital investment risk and 
customer commitment, which are discussed in Section 2.2. In Section 2.3 we briefly discuss planning 
stability and nervousness as two important operational features. We conclude this chapter with an 
overview of the main planning and control objectives currently used by VDL ETG.  

2.1. Flexibility and responsiveness 
Across industry sectors, the concept of responsiveness has been receiving increasing attention in the 
operations management literature. It has been advanced as one of the key themes in recent supply 
chain research (Reichhart & Holweg, 2007).  Reichart and Holweg (2007) claim that a key shortcoming 
of definitions, however, has been the unclear separation from the definitions of flexibility. In their 
synthesis of the existing literature, these authors define and frame supply chain responsiveness in 
relation to flexibility.  

Following Reichhart and Holweg , flexibility can be defined as “the ability of any system to adapt to 
internal or external influences, thereby acting or responding to achieve a desired outcome.” In 
addition, a system’s flexibility is based on internal resources that can be used to achieve different types 
of internal flexibility, which in turn can support the system’s ability to demonstrate external flexibility to 
its environment. We refer to Bertrand (2003) for an extensive discussion of flexibility from an 
investment and tactical point of view, i.e. which flexibility to use and how to design it in a system. 

Following Reichhart and Holweg (2007), the responsiveness of a manufacturing or supply chain system 
can be defined as “the speed with which the system can adjust its output within the available range of 
the four external flexibility types: product, mix, volume an delivery, in response to an external stimulus, 
e.g. a customer order”. These authors identify a lack of distinction between factors that require supply 
chains to be responsive and factors that enable them to be responsive. In their article, they develop a 
framework for the conceptualization of supply chain responsiveness (see Figure 7). We now structure 
our discussion of the need for and applicable determinants of responsiveness in the supply chain of 
VDL ETG according to this framework, taking an integral planning and control perspective. In the 
remainder of this report, we will use the term responsiveness and thereby refer to the external 
flexibility of the supply chain which can be demonstrated towards customers based on internal 
flexibility.    

According to Reichhart and Holweg (2007), the four main areas which create the need for supply 
chains to become responsive are: demand uncertainty, demand variability, product variety, and lead-



12 

 

time compression. Note that in the high-tech customer order driven business-to-business (B2B) 
environment of VDL ETG, except for product variety, all factors are present.  

 

 

Figure 7: Supply chain responsiveness framework (Reichart & Holweg, 2007) applied to VDL ETG 

Demand uncertainty is often regarded as the main reason for being responsive (Fisher, Hammond, 
Obermeyer & Raman, 1994). In addition to demand uncertainty (schedule instability), demand 
variability (schedule variability) plays a role with regard to responsiveness too. Product variety is the 
third factor which drives the need for responsiveness. Demand uncertainty is typically amplified by 
product variety, as the same aggregated demand is split over more stock keeping units. As mentioned 
before, this type of uncertainty is not of direct great (and manageable) concern in the complex, 
business to business supply chain of VDL ETG, with customer specific items. It is rather the short 
product life cycle of customer specific items which create many challenges. Finally, lead time 
compression increases the need to be responsive, because the firm or supply chain is given less time 
to respond to new orders or changes in existing ones.  

Of the internal enablers of supply chain responsiveness, we briefly discuss the factors which are 
relevant concerning VDL ETG’s supply chain characteristics. We focus on the first type of internal 
factors, which are the operational factors applying to individual organizations/systems within a supply 
chain. The second type, which covers the factors that deal with the integration of different supply 
chain partners, is outside the direct scope our research project. Hence we refer to Reichhart and 
Holweg (2007) for a detailed discussion of these factors. Demand anticipation is one of the most 
obvious enablers for a supply chain to be responsive. Improving demand anticipation can be achieved 
via different ways. Within the business to business environment of VDL ETG, close relationships exist 
with the customers. These customers provide forecasts to VDL ETG, which are associated with certain 
degrees of commitment. Manufacturing flexibility within VDL ETG’s supply chain mainly relates to the 
issues with flexibility of the Parts department. As mentioned before, throughput times are very long 
and often include many different types of slack. A decrease in the throughput time of items which are 
internally produced can be achieved by various measures. Resource flexibility, however, is limited due 
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to the limited machine capacities and very specific skill requirements for the worker(s) operating  a 
certain machine. Therefore, planning within Parts is based on a limited capacity. Within the Systems 
department, however, there is relatively high (resource) flexibility (cf. Section 1.2). Assembly activities in 
the Systems department are planned under the assumption of infinite capacity (Langenhuysen, 2015a). 

Reichhart and Holweg (2007) note that despite a tendency across industries to become “lean” and 
operate with less stock, inventory buffers still exist in many places in supply chains and these allow for 
higher supply chain responsiveness. Product architecture is closely related to the concepts of 
modularization and postponement. Within the context of VDL ETG, this issue is mainly part of the NPI 
phase of a customer chain. Once items is released for volume (R4V), the product architecture is 
basically considered as fixed. It is therefore outside the scope of our research project. 

We also briefly point to the control factor in the framework, which is the delivery reliability and quality 
requirement. VDL ETG measures its delivery reliability towards customers via the Committed Line Item 
Performance (CLIP) and Requested Line Item Performance (RLIP) measures. The CLIP score denotes the 
percentage of customer orders which are delivered on or one day before the (latest) confirmed 
delivery date, whereas the RLIP score denotes the percentage of customer orders which are delivered 
on or one day before the (latest) requested delivery date. Quality requirements are captured in detailed 
contractual agreements.  

Finally, note that the framework includes some relational factors too. These are neither external 
requirements nor pure internal determinants, but can be influenced by both parties and impact upon 
the need, as well as the ability, to be responsive. These aspects mainly apply to the (long-term) 
strategic relationships with customers, and are typically less relevant from an operations planning and 
control perspective. 

2.2. Risk and customer commitment in relation to capital 
investments 
Closely related to the three external requirements in Figure 7 is the issue of inventory risk. As 
mentioned before, in the high-tech industry in which VDL ETG and its customers operate, the process 
of rapid technological developments and advancements goes on. Customer specific products which 
VDL ETG produces typically are sold to the customer for a period of about 1-2 years. Given this short 
product life cycle, the high demand uncertainty, and the high value of the products, one could 
imagine that the inventory which is kept by VDL ETG creates a high risk exposure.   

2.2.1. Supply chain capital investments 
Three important types of stock related capital investments can be identified in VDL ETG’s supply chain: 

Inventory: this can be inventory of components and modules in the warehouses of VDL ETG or 
consignment stock located at the customer’s site. 

Work in Progress: these are components and modules which are in progress within VDL ETG, e.g. 
released for production but waiting in a queue in front of a machine. 

Purchasing: this refers to purchasing orders which are already released but which have not arrived at 
VDL ETG’s warehouses yet.  

Taking a control perspective, each of these types can be split up into two categories: ‘anonymous’ or 
‘project’. The first category refers to capital investments based on forecasts (i.e. the forecast-driven part 
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of the supply chain), while the second category refers to capital investments based on customer orders 
(i.e. the order-driven part of the supply chain).  

Figure 8 shows the relative size of each of the three main types of capital investments. Note that VDL 
ETG considers ‘project’ inventory as a type of work in progress. For monitoring and reporting purposes, 
VDL ETG currently doesn’t make an explicit distinction between ‘project’ and ‘anonymous’ work in 
progress or purchasing. Note that due to confidentiality, the vertical axis is hidden. 

 

Figure 8: Supply chain capital investment VDL ETG (performance report 2015 week 2) 

2.2.2. Capital investment risk and risk management 
Basically, any inventory which is held by VDL ETG creates a risk exposure as discussed above. Given the 
different types of inventory and taking an integral planning perspective, we can say that it is mainly the 
anonymous inventory which creates (obsolescence) risk (note that VDL ETG considers an item as 
obsolete if it hasn’t ‘moved’ for 4 months). In addition, the work in progress creates some risk too, since 
it also includes some anonymous work in progress. The fraction of the work in progress which is 
anonymous, however, is rather small (aggregate value of 1/6).   

Note that we explicitly mentioned the integral planning perspective above. For the integral planning 
department both customer orders and management orders (see Section 1.2) are simply considered as 
an order, and planned and controlled accordingly. Inventory which is held for an order is considered as 
project inventory, although it thus may actually stem from a management order. This type of order, 
however, creates risk for the company VDL ETG just as forecast-driven anonymous inventory does.   

Finally note that, despite the fact that project inventory generally creates no risk exposure, it still is 
associated with holding costs in terms of opportunity cost of capital and storage costs.  

Inventory in the MTO chains is generally kept for real customer orders. For the ATO chains, anonymous 
inventory is basically the result of a customer lead time for a final system which is shorter than the 
internal total cycle time, as agreed in close collaboration with the customer (Van Wandeloo, 2015). 
Hereby some of the components in a final system’s BOM have to be kept on stock, i.e. these have to be 
procured or produced based on a forecast instead of a real order.  

In order to minimize and control the risk associated to this forecast-driven inventory, VDL ETG  uses 
two different options: 

 For long-lead-time-items, VDL ETG asks the customer for full commitment to start producing 
or procuring these items. It thus can be considered as a kind of real customer order for a 
certain long-lead-time component of the final system. 
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 In general, customer agreements include forecast commitments. Customers are committed to 
the order amount of their forecasts to a certain level, and the level of commitment increases as 
the time to the required delivery date decreases.  

Concerning the second option, different structures exist. For example, for end items produced for FEI a 
structure with four equal commitment zones is used. In other words, the total integral lead time is split 
up into four equal zones. Right from the beginning the customer is committed for 25% to the forecast 
it provides. Once 75% of the integral lead time has passed, this customer is 100% committed to the 
order amount (Van Oosterhout, 2015).  

For the biggest customer, ASML, a more basic forecast commitment structure is used. One with two 
different zones: a full 100% commitment zone of X weeks, and a limited Y% commitment zone of Z 
weeks, where the X,Y and Z values differ per final product (Botden, 2015).  

2.3. Planning stability and nervousness 
De Kok and Inderfurth (1997) note that the performance of control policies and parameter settings are 
traditionally evaluated with respect to the costs they cause, and in case of avoiding estimation of 
shortage costs, with regard to the service degree they provide. These authors mention a third criterion 
in addition to the traditional performance which can be of high performance. This is the level of 
planning stability that can be achieved in a rolling horizon planning framework. In the case of VDL ETG, 
planning instability is represented by rescheduling of production and procurement plans (e.g. due to 
demand rescheduling, see Kamps (2015) for a detailed discussion). De Kok and Inderfurth (1997) note 
that especially in a multistage production environment ruled by an MRP system, nervousness on the 
top level (MPS –level) is propagating throughout the system. Due to MRP time-phasing and 
deterministic assumptions, even future planning instability enforces present replanning actions. 
Following the reasoning of De Kok and Inderfurth, we will treat planning stability as an independent 
attribute for assessing an inventory control system, similar to the attribute of customer service which 
cannot be replaced by cost or profit values in most practical situations. So, since nervousness matters, 
operations control rules and control parameters (buffer stock and planned lead times) will be 
discussed under additional consideration of their stability effects.  

Buffers can be installed to tackle this nervousness. Buffers are currently installed by VDL ETG via safety 
times (and in some cases safety stock). De Kok (2015), however, claims that nervousness is typically a 
symptom of bad or deficient planning and control procedures. We will, therefore, also shed light on 
how the improvement of buffer management and operational control can support the reduction of 
the supply chain nervousness.    

Finally, we identify two important reasons why nervousness and rescheduling matter in the supply 
chain of VDL ETG. First of all, rescheduling activities are labor intensive (we refer to Kamps (2015) for a 
cost analysis of these activities). Secondly, taking a supply perspective, nervousness is propagated 
towards suppliers (and Parts production) via rescheduling messages. This creates demand uncertainty 
and planning instability observed by suppliers (and Parts production), which in turn may decrease their 
supply reliability towards VDL ETG. As De Kok (2012) shows, also downstream links in the supply chain 
suffer from the bullwhip effect, i.e. variability not only amplifies as one moves upstream the supply 
chain, the bullwhip also returns.  

2.4. Supply chain planning and control objectives 
We conclude this chapter with a brief discussion about the objectives for integral supply chain 
planning and control within VDL ETG (Langenhuysen, 2015a).  
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First of all, we note that VDL ETG carefully monitors and controls its performance reliability, i.e. the 
service levels, towards customers. The target service level (CLIP score) equals 95%. This service level 
should be considered particularly as a requirement which need to be satisfied, it is not an explicit goal 
to maximize this service level.  

Secondly, inventory plays a central role in the management and evaluation of VDL ETG’s supply chain 
planning and control activities. Since the investment in inventory (and work in progress) is associated 
with costs and risks, the inventory levels are monitored continuously. Contrary to the service level for 
which an explicit objective value is defined, there are no hard targets for the inventory values. VDL ETG, 
however, aims to keep the investments in inventory as low as possible. 

As mentioned in the previous section, the planning workload in general and the rescheduling 
workload in particular are of concern for VDL ETG, too. Compared to inventory and service levels which 
are carefully monitored and controlled, rescheduling workload is not monitored explicitly. However, 
management is aware of the burden (and direct and indirect costs) this places on the integral planning 
and control activities. We therefore identify the reduction of the rescheduling workload as a third type 
of supply chain planning and control objective.  

Finally, we briefly mention some other aspects which we came across during the interviews and desk 
research. First of all one might argue that products should not only be delivered on time, they should 
also be of the right quality. Since this typically is a manufacturing / factory engineering issue, we do not 
consider this as a planning and control objective explicitly. Instead, we will incorporate these quality 
issues in our analysis via yield. In addition, cycle time reduction could improve the performance of the 
supply chain and could therefore be seen as a separate objective. This is typically a responsibility of the 
supply chain engineers, and mainly design-related. Considering the scope of our research, we will 
consider the lead times and their variability as given, and focus on the improvement of the supply 
chain efficiency via better norm setting and control. Of course, if smarter buffer management would 
allow for lead time reductions, this would be an important additional benefit.   

2.5. Conclusions and insights 
In this chapter we described several key strategic, tactical and operational features in the supply chain 
of VDL ETG, taking a planning and control perspective. We discussed the strategic role of flexibility and 
responsiveness, and argued that these affect operational planning and control only indirectly. In 
addition, we discussed capital investment risk and customer commitment as two related tactical 
aspects. Moreover, we mentioned planning stability and nervousness as two important operational 
features. Finally we provided an overview of the main planning and control objectives currently used 
by VDL ETG. The insights presented in this chapter provide us with an important understanding of 
aspects to take into account and they provide directions for improving operational control and buffer 
management in the design phase of our research. In the next chapter we will continue our 
investigation of the as-is situation with both qualitative and quantitative analyses of supply chain 
uncertainties and methods currently used by VDL ETG to buffer against them.     
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Three 
Analysis of  supply chain uncertainties and 
current buffer methods 

“ Uncertainty is a very good thing: it's the beginning of an investigation, and the investigation should never end” -Tim Crouch- 
 

In this chapter, we identify and analyze the different types of uncertainties which are present in the 
supply chain of VDL ETG. In addition, we discuss the options currently used to buffer against them. In 
order to improve control and reduce the impact of these uncertainties in the design phase of our 
research, we must first understand their sources and relative impact (Davis, 1993; Lee & Billington, 
1992).  

A general introduction about uncertainty and system performance will be presented in Section 3.1. We 
then structure our discussion of the different types of uncertainties according to the classification of 
Davis (1993). This author identifies three types of uncertainties in a supply chain: supply, process and 
demand uncertainty. The key results of our quantitative analysis of these types will be provided in 
Section 3.2, Section 3.3 and Section 3.4, respectively. In Section 3.5 we attempt to relate the different 
types of uncertainty and frame them from an integral supply chain perspective. After the discussion of 
the key types of uncertainties and their ‘size’ in VDL ETG’s supply chain, we will discuss the current 
buffer options in Section 3.6.  

3.1. Uncertainty and system performance 
Ho (1989) identifies two different classes of uncertainties that affect production processes: 
environmental uncertainty and system uncertainty. Environmental uncertainty includes uncertainties 
beyond the production process, such as demand uncertainty and supply uncertainty. System 
uncertainty is related to uncertainties within the production process, such as operation yield 
uncertainty, production lead time uncertainty and changes to product structures. Davis (1993) 
identifies three different sources of uncertainty that plague supply chains: suppliers, manufacturing 
and customers. Note that suppliers and customers together constitute the environmental uncertainty 
discussed by Ho (1989), while manufacturing uncertainty is identical to the system uncertainty. In the 
remainder of this document, we will use the high-level classification of Davis (1993), i.e. we will discuss 
and analyze different types of supply, manufacturing process and customer demand uncertainty.  

To conclude this short introductory paragraph, we briefly refer to two related laws out of a series of 
insightful laws developed by Hopp and Spearman (2000) on variability (the term they use for both 
variation and uncertainty) and trade-off buffering: 

Variability law: increasing variability always degrades the performance of a production system 

Variability buffering law: variability in a production system will be buffered by some combination of 
inventory, capacity and time.  

This stresses the relevance of our analyses and investigation of the different types of uncertainties. We 
structure our discussion of the results according to Figure 9. As represented by this figure, we focus on 
the uncertainties from the perspective of supply chain operations planning and control, e.g. currency 
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uncertainty, purchase price uncertainty and the risk of a supplier going bankrupt are not considered 
within our analyses. Our quantitative discussions will be focused on probability density functions, for 
that is the nature of uncertainty (Davis, 1993). Finally note that we will use the terms variability and 
uncertainty interchangeably in this chapter.  

Supply
(External suppliers)

Supply lead time uncertainty

Supply yield uncertainty

Manufacturing process
(Parts & Systems)

Manufacturing lead time uncertainty

Manufacturing yield uncertainty

Demand 
(Customers)

Order due date uncertainty

Forecast uncertainty

 

Figure 9: Framework of uncertainties at VDL ETG 

3.2. Supply uncertainty 
For these analyses, we used ERP-based historical data, filtered on delivery dates between 01-01-2014 
and 28-02-2015. This eventually resulted in 15.633 purchasing order lines for Parts, and 19.394 
purchasing order lines for Systems. Note that due to confidentiality, the vertical axis is hidden in all 
figures.  

3.2.1. Supply lead time uncertainty 
The time needed to receive a component from an external supplier may differ from expected. As with 
random demand, lead time uncertainties may provoke either some shortages or surplus in inventories. 
In the context of VDL ETG, the supplier lead time reliability is measured via the CLIP score. VDL ETG 
considers an order to be delivered ‘on time’ if it has been delivered ‘on or no more than 4 working days 
earlier than the committed date’. In addition, there is ‘1 working day late margin for delay in VDL ETG 
receipt’ (Klein, 2015).  

Figure 10 visualizes the supplier lead time uncertainty (over all different customer chains). The results 
are highly similar for Parts and Systems, with the majority of the purchasing orders delivered on time, 
but still quite a large amount delivered too late. Following the definition of VDL ETG as introduced 
above, we derive that the total CLIP performance towards Parts and Systems is about 69,1%, 
respectively 69,8%. For Parts, the average supply lead time deviation is 0,39 days, with an associated 
standard deviation of 45,9 days. For Systems, the average supply lead time deviation is -0,90 days, with 
an associated standard deviation of 26,0 days. Note that this analysis considers a kind of additive lead 
time deviation, focusing on the absolute deviation in days. In other words, we do not consider the 
multiplicative deviation in terms of a percentage of the planned lead time.  

 

Figure 10: External supply lead time uncertainty Parts and Systems 
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3.2.2. Supply quantity uncertainty 
Besides uncertainty of the supply lead time, there might also be a deviation between the ordered and 
delivered quantity of purchasing items: supply quantity uncertainty. Here we can make a same note 
regarding the focus on the distribution of the quantity error instead of the quantity itself.  

The deviations between delivered quantities and confirmed order quantities are shown in Figure 11. 
The percentage of purchasing order lines delivered with the right order quantity (whether or not 
delivered on time) towards Parts and Systems is 98%, respectively 98,3%. For Parts, the average 
quantity error equals 0,4 units with an associated standard deviation of 45,8 units.  For Systems, the 
average quantity error is 0,1 units and the standard deviation equals 10,1 units.  

 

Figure 11: External supply quantity uncertainty Parts and Systems 

Although we use no formal expression to compare lead time uncertainty with supply quantity 
uncertainty, the results above demonstrate that it is especially the supply lead time which requires 
special attention. Moreover, at VDL ETG supply yield uncertainty is never a reason to order more than 
actually needed, e.g. ordering 11 units at a supplier since it is expected that the delivered quantity 
equals 10 units. If suppliers cannot deliver the requested quantity, let’s say 10 units, on time, two 
options are possible: either the supplier informs VDL ETG that it only has 9 units available and waits for 
the final unit, with the result that it delivers 10 units too late; or the supplier informs VDL ETG and the 
operational buyer decides to split the order, so 9 units are delivered on time, and other single unit is 
delivered later but (hopefully) on the confirmed separate delivery date too (Klein, 2015).  

Finally note that we do not yet (aim to) provide statements about how to model the supply quantity 
(yield) uncertainty. We refer to Yano and Lee (1995) for a discussion of different types of yield models 
and their applicability. The analyses as discussed above, however, are a type of ‘additive yield’: if an 
order of size Q is placed, then the yield (quantity actually received) is equal to Q+Y, with Y a 
(continuous) random variable.  

3.3. Manufacturing process uncertainty 
For these analyses, we used ERP-based historical data, filtered on delivery dates between 01-01-2014 
and 28-02-2015. In addition, we excluded RS&S production orders and order lines with internal product 
rejections. This eventually resulted in 9.088 production order lines for Parts, and 6.577 production order 
lines for Systems. Note that due to confidentiality, the vertical axis is hidden in all figures.    

3.3.1. Manufacturing lead time uncertainty 
Figure 12 visualizes the manufacturing lead time uncertainty (over all different customer chains). Again, 
we focus on the production finish date error in order to analyze the manufacturing lead time 
uncertainty, see our discussion about the supply lead time uncertainty in Section 3.2. For Parts, the 
average finish date deviation equals -0,02 working days, with an associated standard deviation of 37,98 
working days.  
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Figure 12: Manufacturing lead time uncertainty Parts and Systems 

We should make an important note regarding the manufacturing lead time uncertainty within the 
Systems department. For Systems, the key performance indicator typically is the final CLIP performance 
offered towards customers. Internally, production order finish dates are often exceeded, but not only 
due to material shortages or due to exceeding the throughput time. Often, planners or employees 
working on the assembly operations know that certain items are not immediately needed but only 
near the end of the assembly operation (e.g. at day 5 of the total 5 days assembly operation). Moreover, 
an assembly operation can be started for a production batch of 10 units. Since not all 10 units are 
needed at the finish date as stated in the planning system, the assembly of some units will be delayed 
(without updating their requested delivery date). Finally, if customers delay their order then assembly 
can delay its operations too, but the planned finish dates of modules is not updated in the ERP system.  

The lead time analysis for Systems therefore should be considered differently compared to the analysis 
for the Parts manufacturing operations. For Parts, the majority of the production orders actually is a 
kind of customer order which should be delivered to Systems. Hence, the CLIP performance measures 
of Parts do typically represent the true manufacturing process lead time uncertainty (Nas, 2015a). We 
explicitly note that the lead time uncertainty analysis and probability density function for Systems still 
clarify an important thing: actual assembly operations differ from the production plans, either on 
purpose or due to material shortages and planning deficiencies. Moreover, the CLIP measures are not 
suitable for planning and control decisions, an issue we will discuss later on.     

3.3.2. Manufacturing quantity uncertainty 
We start with a brief discussion of two aspects related to quantity uncertainty from a manufacturing 
process perspective within VDL ETG. First of all, items can get a ‘waste% factor’ for certain operations 
within Parts, which is the standard percentage of the production order quantity which needs to be 
manufactured in addition to the order quantity, mainly due to set-up items which are needed (e.g. the 
first item is used for calibrating a machine setting and becomes waste). These waste% factors, 
however, cannot be observed in VDL ETG’s production order lines data. In other words, if for example 
10 units of a certain item are needed, the data file shows an order quantity of 10 (and hopefully a 
delivered quantity of 10). These waste% factors differ per item per routing and are estimated based on 
the experience of the Factory Engineers (Leenders, 2015). 

From a supply chain planning perspective, we identify the real quantity uncertainty: the deviation 
between the delivered  (produced) quantity and the confirmed (production) quantity. In other words, if 
10 units of a product are needed, uncertainty arises if the produced quantity deviates from the 
requested quantity (whether a constant yield factor was taken into account or not). More specifically, if 
there is a constant/deterministic yield for all items, this would have been accounted for via the yield 
factors, and the delivered quantity would always equal the requested quantity. Buffering, however, is 
intended to cope with unexpected deviations and thus mainly relates to the deviations between the 
requested and delivered production quantity. Figure 13 shows the quantity deviations. 
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Figure 13: Manufacturing quantity uncertainty Parts and Systems 

Finally we note that within Systems, yield plays a different role compared to Parts. For assembly 
operations, VDL ETG does not decide to assemble 11 products if 10 are actually needed to account for 
yield issues. It is, however, possible that some items need rework (which can delay the throughput 
time, which affects the CLIP performance) or items are rejected (then the production order is ‘closed’, 
either before or after the planned finish date, and a new production order is released). This again 
stresses the remark about the caution with which lead times (finish date reliability) of separate 
production orders within the Systems department should be analyzed (Koops, 2015). 

3.4. Demand uncertainty 
The final class of uncertainty is related to the demand side, i.e. the uncertainty created by customers. 
We discuss two different types of uncertainty: demand forecast uncertainty and customer order due 
date uncertainty.  

3.4.1. Taking a ‘time perspective’: demand due date uncertainty 
As discussed in Chapter 1, VDL ETG faces frequent demand due date changes from customers. From a 
demand uncertainty perspective, this type of uncertainty should be distinguished from forecast 
uncertainty, since demand due date uncertainty relates to customer orders instead of (customer) 
forecasts. The demand due date uncertainty is of relevance for the entire MTO chains, as well as for the 
order-driven part in the ATO chains.  

In his thesis report, Kamps (2015) extensively discusses demand due date uncertainty in terms of 
external rescheduling messages which VDL ETG receives from its customers. We used his data analysis 
to derive Figure 14, which indicates the existence and extend of order due date uncertainty. We 
explicitly included a delivery date shift of 0 weeks, i.e. actually no shift, since this provides a fair 
indication of the customer due date uncertainty. The figure shows that order delays are observed more 
frequently than order advancements.  

 

Figure 14: Customer due date uncertainty 
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3.4.2. Taking a ‘quantity perspective’: forecast and order error 
Besides this ‘timing perspective’ on demand uncertainty (see previous paragraph), we can also take a 
‘quantity perspective’ on demand uncertainty. In other words, the uncertainty of the required demand 
in future periods. This consists of both forecasted as well as ordered demand. Note that VDL ETG 
doesn’t forecast customer demand itself, it receives demand forecasts from its customers.  

Demand at the MPS-level is initially forecasted (typically with a one year forecast horizon) and once it 
becomes critical in terms of falling within the integral lead time, there should be an order in the ERP 
system to start production (either a real customer order or a management order, see Section 1.2). Both 
the forecasts and orders at the MPS level are stochastic in a rolling schedule environment, i.e. demand 
for a certain moment in future is thus both forecasted as well as ordered for multiple periods.  

In order to get an idea about the existence and extent to which forecast uncertainty is present, we 
analyzed three important final systems in detail: the ASML NXT3 system, the ASML XT4 system and the 
FEI Project Assy. These are complex systems in the two biggest ATO chains (ASML Wafer Handler and 
FEI). These systems are MPS controlled, with long-lead-time-items being procured or produced based 
on forecasts, while the majority of the (sub) modules is assembled to order. Below we discuss the 
results for the ASML NXT3 system, for the other two systems we obtained highly similar results.  

To get an idea about the relative forecast and order accuracy throughout the forecast and order 
period, we calculated the average deviation between the forecasted/ordered amount and the final 
customer delivery (‘real demand’), for each number of weeks before delivery. Figure 15 shows that, on 
average, demand is over forecasted/ordered. Moreover, the accuracy improves as one moves closer to 
the final delivery date. Note that there is a small overlap between orders and forecasts around 27 
weeks before delivery: this is the order lead time, which equals the integral lead time (excluding a few 
very long-lead-time-items). The bars indicating the number of data points show the overlap. In other 
words, sometimes an order has been placed by ASML more than 27 weeks before delivery, while there 
are also instances in which there was only a forecast less than 27 weeks before delivery.  

The strange value for the deviation 1 week before final delivery is explained by the fact that within the 
data (ERP system), the order amount for the next week includes both the customer orders for that 
specific week, as well as the outstanding/backlog orders concerning internal delivery dates. Because of 
a one week buffer between the internal and external delivery date, the number of outstanding orders 
typically varies between 1 and 2 units (weekly demand), which explains the striking data point. 

 

Figure 15: Forecast and order uncertainty ASML NXT3 system 

Finally we emphasize the rather isolated character of our discussion of the demand (forecast) 
uncertainty in this paragraph. Considering the scope of this sub question, the analyses above serve to 



23 

 

indicate the existence of demand uncertainty, from both a time and quantity perspective. In Section 
4.1 we analyze demand forecast uncertainty in relation to inventory and buffer control, with a focus on 
cumulative numbers instead of single period values.   

3.5. Towards an integral supply chain perspective 
The previous sections discussed the analyses of different types of uncertainty as faced at the integral 
level within VDL ETG. If we take a broader supply chain perspective, we can extend the uncertainties 
discussed above with uncertainties which are actually ‘propagated through the system’ by VDL ETG. 

We therefore extended our analysis of uncertainties with an analysis of three other types of 
uncertainties, which are ‘created’ by VDL ETG: purchase order due date uncertainty ‘sent’ to suppliers, 
internal production order due date uncertainty, and delivery uncertainty ‘sent’ to customers.  The 
results and some discussions are provided in Appendix C.  

Finally we framed the different types of uncertainties which have been discussed above in the supply 
chain control structure of VDL ETG, see Figure 35 in Appendix C. We do not (aim to) make any claims 
regarding formal causalities between these types of uncertainties. With Figure 35 we rather aim to 
provide a more integrated perspective on the different types of uncertainties, by positioning them in 
the supply chain control structure and indicating likely relations between them. Note that we make a 
clear distinction between the information flow and related uncertainties on the one hand, and the 
material flow and related uncertainties on the other hand.  

3.6. Current buffer methods 
In this section we discuss methods and options which are currently used by VDL ETG to buffer against 
uncertainties in the supply chain. We aim to identify and briefly explain the different options, an 
extensive investigation of the underlying procedures and working of the concepts is outside the scope 
of this section.  

As formulated in the ‘variability buffering law’ discussed in the introduction of this chapter, variability in 
a system will be buffered by a combination of time, material and capacity. This also applies to the 
supply chain of VDL ETG, in which safety stock and safety time are used as buffers. In addition to 
buffering with time and material (which are interchangeable in some way; Chang (1985)), buffering 
with capacity is a third option. As discussed in Section 1.2, capacity flexibility exists within the Systems 
department. Hence planning assembly operations in the Systems department is performed while 
assuming infinite capacity (static planning). Within Parts, (dynamic) capacity buffering is used. For the 
medium (and long) term, capacity is planned at 80%, i.e. a 20% capacity buffer. For the short term, i.e. 
next week, capacity is planned at 100%. The buffer is typically used to deal with issues as order 
advancements, rejections and operator absenteeism (De Vocht, 2015).  

Since we take an integral material planning and control perspective in this chapter, we won’t consider 
production unit capacity buffering explicitly in the remainder of this section. Still, it is a promising 
avenue for further research and improvement especially within Parts, and therefore formulated as a 
separate research project which will be started in the second half of this year (cf. Figure 30). 

3.6.1. Master production scheduling and buffering 
In VDL ETG’s MRP planning environment, customer forecasts and orders are translated into a master 
production schedule (MPS). The MPS in this case is typically not completely identical to the demand 
forecast. Planners aim for smooth production schedules, and by doing so actually create buffers to 
cope with uncertainties (of any type, but especially demand uncertainties). Based on their experiences, 



24 

 

planners also buffer against expected order advancements from customers, etc. Note that MPS 
planning is typically performed with a rolling planning horizon of 1-2 years, and MPS’s are not frozen 
(Rosenau, 2015; Nas, 2015b).  

3.6.2. Item safety stock and safety time buffers 
Except for only a few critical (high uncertainty, low cost value, etc.) items, safety stock is not used (only 
48 items out of total 22.065 active items). Safety time is used for 1642 items (out of total of 22.065 
active items). The safety times for these items relative to their lead times are shown in Figure 16. Note 
that safety times are typically a multiple of 5 working days (one week). The average of the safety time 
divided by the lead time is 0,42 for Parts, 0,34 for Systems. 

 

Figure 16: Safety time MRP items 

3.6.3. Buffer between external and internal customer due date 
Generally, VDL ETG uses one week difference between the external and internal customer due date, 
implemented in BaaN by the Order Managers.  This creates some buffer, but is not necessarily fixed. In 
other words, planners can and do decide to skip or deviate from this buffer week for various reasons, 
e.g. if a customer order is received within integral lead time (Nas, 2015b). 

3.6.4. Consignment stock 
The final buffer option which can be observed in VDL ETG’s supply chain is consignment stock. This is 
stock which is actually located at the customer, but still owned by VDL ETG (with the risks associated to 
it). The most eminent example of this option can be observed in the chain of Philips. VDL ETG 
produces final systems based on forecasts provided by Philips, in combination with predefined lower 
and upper inventory levels as agreed between both parties.  

3.7. Conclusions and insights 
In this chapter, we identified and analyzed the different types of uncertainties which are presented in 
the supply chain of VDL ETG and the options currently used to buffer against them. Understanding the 
sources and relative impact of these uncertainties helps us to improve control in the design phase of 
our research (cf. Davis, 1993; Lee & Billington,1992). Taking an integral planning and control 
perspective, we summarize the main insights we derived from our qualitative and quantitative analysis 
below. 

Three main classes of uncertainties which VDL ETG faces are: supply, process and demand uncertainty. 
In terms of the supply and manufacturing process classes, it is especially lead time uncertainty which is 
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important. In terms of demand uncertainty, we identify both forecast and order uncertainty in terms of 
requirements for future periods (which actually captures the demand due date uncertainty).  

Uncertainty generally is buffered with a combination of time, material and capacity. Capacity buffering 
is only used at planning within Parts. Systems plans under the assumption of infinity capacity. Other 
options currently used to buffer against uncertainty are: safety stock, safety time, MPS planning with 
buffers, buffer of one week between external and internal due date, and consignment stock. 

Within VDL ETG, there is a strong focus on and monitoring of material related uncertainties and 
performance metrics, e.g. CLIP suppliers, inventory levels, CLIP towards customers. In contrast, there is 
much less understanding and monitoring of information related uncertainty, e.g. forecast uncertainty, 
internal rescheduling and lead time modelling. People are aware of related issues, but the real impact 
and causes are not really known. Different types of buffers are used at different moments and places. 
The application of buffers is mainly operationalized based on employees’ experiences (from planners, 
factory engineers, etc.). There is a lack of explicit performance feedback loops and control with regard 
to uncertainties and methods used to buffer against it. This makes it hard to create a solid 
understanding of the existence and especially the impact of uncertainties (on decisions already made 
as well as decisions to be made).  

This provides an interesting avenue for improvement: improving the understanding of uncertainties 
and their buffer management, which allows for performance improvement from a more integral 
supply chain operations planning and control perspective. Moreover, it will enable VDL ETG to become 
pro-active (robust planning, awareness and insights about forecast uncertainties, etc.) instead of re-
active (cost accounting afterwards, underpinning inventory levels after production projects are closed, 
etc.). We further elaborate on this promising option for improvement in Chapter 6.   
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Four 
Pre-design phase 
“We cannot solve our problems with the same thinking we used when we created them”  -Albert Einstein- 

 

In Chapter 2 and Chapter 3 we extensively analyzed the current situation in the supply chain of VDL 
ETG by taking an integral planning and control perspective. Before we continue with the design of 
quantitative models which support the analysis and determination of buffer norms, we first introduce 
some important preparative analyses and conceptual discussions.  

In Section 4.1. we analyze customer demand uncertainty in relation to material planning at the MPS 
level. In the previous chapter we already discussed forecast uncertainty with a focus on the volatility of 
forecasts and the forecast error per period. In this chapter we consider cumulative forecast uncertainty 
in relation to inventory positions, which will provide us with important information for our design 
phase. Hereafter, we analyze MPS nervousness in terms of demand plan and production plan stability 
in Section 4.2. Especially in the multistage MRP-controlled production environment of VDL ETG, 
uncertainty and nervousness at the MPS level is propagating throughout the system (De Kok & 
Inderfurth,1997). We continue with MPS uncertainty and nervousness in Section 4.3, as we provide an 
important conceptual discussion on the role and position of the CODP within VDL ETG. Hereafter in 
Section 4.4 we discuss the importance of suitable performance metrics in order to support decision 
making and control.    

4.1. MPS forecast uncertainty 
In order to study forecast uncertainty in relation to operations planning and control, we analyzed the 
MPS (ERP based) history for three important MPS items at VDL ETG: the FEI Projector Assy (average 
demand = +/- 1 system per week, integral lead time = 28 weeks), the ASML NXT3 wafer handler 
(average demand = +/- 1,5 systems per week, integral lead time = 27 weeks) and the ASML XT4 wafer 
handler (average demand = +/- 1 per week, integral lead time =17 weeks). We selected these systems 
since they are important final customer systems in two important ATO chains within VDL ETG: the 
ASML AWH chain and the FEI chain. Together, these two chains represent about 30% of the total 
investment in inventory and work in progress and about 60% of the investment in anonymous 
inventory (see our discussion in Section 2.2).   

We retrieved an extensive data file, covering all MPS related historical information for many MPS items, 
a.o. the items mentioned above. We used this data set for our analyses, in combination with 
discussions with planners and order managers to validate the data based results. As indicated by De 
Kok and Fransoo (2003, p.669), “the existence of ERP systems allows for the analysis of transactional 
data over time, from which we can obtain insight into the behavior of demand, inventories and lead 
time. Such research will be time consuming and difficult, due to the fact that the experimental setting 
cannot be fully controlled. Such research will be rewarding in terms of deeper insights into real-world 
supply chain operations planning problems and the contribution of quantitative models to its 
solution.”  

First of all we analyzed the data from a single-item single-echelon perspective. In other words, we 
consider the MPS item as a single product (no assembly operations) with a single lead time which is set 
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equal to the integral planned lead time of the item (ܮ௖௨௠ ) recorded the ERP system (i.e. the longest 
cumulative planned lead time in the BOM).  

In the context of VDL ETG, even customer orders do change and only become ‘final’ at the moment 
they are actually requested by the customer. Moreover, once a forecast becomes critical in terms of 
falling within the integral lead time without being a customer order, a management order is created. 
Planners (and the MPS history files) don’t distinguish between real customer orders and management 
orders. The above mentioned elements triggered us to make no explicit distinction between orders 
and forecasts for future moments. In the remainder of this section, we use the notation 

∑ ݐ௧ሺܨ ൅ ሻ௅೎ೠ೘ାோିଵݏ
௦ୀ଴  for the at time ݐ estimated demand during the cumulative lead time plus review 

period (in general this includes (stochastic) customer orders, but can also include some forecasts; if 
there was both a forecast quantity as well as an order quantity for a period, we took the maximum 
value). Without loss of generality, we assume a review period of one time period (week). 

We compared the forecasted cumulative demand at each review (log) date [ ∑ ݐ௧ሺܨ ൅ ሻ௅೎ೠ೘ାோିଵݏ
௦ୀ଴ ] 

with the real demand (customer deliveries) during the same period [ ∑ ݐ௧ሺܦ ൅ ሻ௅೎ೠ೘ାோିଵݏ
௦ୀ଴  ]. These 

indicators serve to illustrate the cumulative demand forecast uncertainty. In addition, we offset these 
numbers against the ‘state’ of the system at each log date. This state is comprised of the net stock at 
moment ܫ] ݐ௧ሿ (excluding scheduled receipts which arrive at the start of period ݐ) plus the scheduled 

receipts for the next cumulative lead time period, i.e. ∑ ܴܵ௧ሺݐ ൅ ሻ௅೎ೠ೘ିଵݏ
௦ୀ଴ . Note that this sum includes 

ܴ periods less than the sum of the forecasted demand. The demand during this final ܴ periods is 
exactly the decision variable at a certain review date: the order release at the start of period ݐ, i.e. 
ܴܵ௧ሺݐ ൅   .(௖௨௠ܮ

Below we discuss the findings of our analysis. We present the detailed results for the ASML XT4 system 
in Figure 17, similar figures for the ASML NXT3 system and the FEI Projector Assy are provided in 
Appendix D. Due to confidentiality, the vertical axes are hidden.  

The figures show the state of the system right before a release decision as represented by the 
scheduled receipts (green bars) plus possible on hand inventory/shortage (dark green bars). The 
amount released is represented by the orange bar, which is actually the scheduled receipt for ܮ௖௨௠ 
periods later. Cumulative forecasts are indicated by the blue line, the real customer deliveries during 
the same cumulative period are represented by the red line.  

Note that the ܮ௖௨௠ rightmost red data points provide a ‘wrong’ indication of the demand. This is due 
to the lack of customer deliveries during the full cumulative lead time. For example, for 1-3-2015, we 
can calculate the forecasted demand for the next ܮ௖௨௠ periods. The customer deliveries, however, are 
only recorded until the moment of data retrieval (1-4-2015), and therefore significantly lower than the 
demand forecasts. This explains the decreasing cumulative demand in the final ܮ௖௨௠ periods.  

The figures provide additional support for our earlier conclusion in Chapter 3 about demand 
uncertainty: demand is typically ‘over forecasted/ordered’ by customers. Moreover, we see that the 
forecasted cumulative requirements partially match with the ‘state’ of the system as reflected by the 
scheduled receipts plus net inventory. Note that for the FEI Projector Assy, planners do explicitly plan 
with some finished goods stock. This is supported by Figure 37 in Appendix D, which shows some 
‘over planning’ in terms of scheduled receipts which exceed the forecasts. For ASML, planners 
generally plan with no finished inventory. ASML’s final systems are typically held as work in progress 
and only released as finished inventory when they are delivered to the customer, i.e. they are in 
finished stock for less than a day.  
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Figure 17: Cumulative demand uncertainty ASML XT4 system 

4.2. MPS demand and supply nervousness 
In the previous paragraph we analyzed forecast uncertainty from a MPS planning perspective, i.e. 
focusing on cumulative demand and forecasts in relation to the system’s state. In this paragraph we 
discuss the uncertainty/ volatility of the demand forecasts and the uncertainty/volatility of production 
planning.  

The MPS data set has been used to analyze the forecast revisions (demand plan) and scheduled 
receipts revisions (production plan) over the entire planning horizon for each of the three MPS items 
discussed before. We determined any change in the forecast or scheduled receipt for each period over 
time. Mathematically, we compare: 

ݐ଴ሺܨ		:ݐ∀ ൅ ௖௨௠ሻܮ 	↔ ݐଵሺܨ ൅ ௖௨௠ሻܮ 	↔ ⋯ ↔ ݐ௧ሺܨ ൅ ௖௨௠ሻܮ 	↔ ݐ௧ାଵሺܨ	 ൅ ௖௨௠ሻܮ ↔ ⋯ ↔
ݐ௧ା௅೎ೠ೘ିଵሺܨ ൅   ௖௨௠ሻܮ

ݐ଴ሺܴܵ		:ݐ∀ ൅ ௖௨௠ሻܮ 	↔ ܴܵଵሺݐ ൅ ௖௨௠ሻܮ 	↔ ⋯ ↔ ܴܵ௧ሺݐ ൅ ௖௨௠ሻܮ 	↔ 	ܴܵ௧ାଵሺݐ ൅ ௖௨௠ሻܮ ↔ ⋯ ↔
ܴܵ௧ା௅೎ೠ೘ିଵሺݐ ൅     	௖௨௠ሻܮ

Note that ∀݅: ݅ ൏ ݐ௜ሺܨ ,ݐ ൅ ௖௨௠ሻܮ ↔ ݐ௜ାଵሺܨ	 ൅  ௖௨௠ሻ relates to possible changes in demand plansܮ
outside the lead time, i.e. before production has been started. Similarly, ∀݅: ݅ ൒ ݐ௜ሺܨ ,ݐ ൅ ௖௨௠ሻܮ ↔
ݐ௜ାଵሺܨ	 ൅  ௖௨௠ሻ relates to changes within the lead time. Of course, this distinction holds for theܮ
changes in scheduled receipts too. 

In order to get an idea about the extent to which revisions occur, we first visualized the above changes 
in the MPS history file. A part of this analysis for the ASML XT4 module is shown in Figure 38 and Figure 
39 in Appendix D. The visual analyses revealed the smoothening effect of MPS planning for all three 
customer systems, i.e. the production plan as represented by the scheduled receipts is more stable 
than the demand plan as represented by the customer forecasts. Moreover, especially within the lead 
time this dampening effect can be observed. Outside the lead time there seems to be no dampening 
effect. It actually seems like the production plan outside the lead time (planned receipts instead of 
scheduled receipts) is more volatile than the demand plan.  

We extended our visual analysis with a quantitative analysis, by investigating all revisions as formulated 
by the expressions above. The detailed quantitative results are reported in Section D.2 in Appendix D. 
Below we briefly discuss the general findings.  
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Our quantitative analysis confirmed the dampening MPS effect within the lead time, where the 
number of scheduled receipt revisions is about half the number of forecast revisions. Outside the 
production lead time, the number of production revisions is even larger than the number of forecast 
revisions for both ASML systems. Regarding the difference between increases and decreases in 
forecast/production plans, we see that outside the lead time, there are more demand/production 
increases (about 65%), whereas within lead time there are more demand/production decreases (about 
55%). Regarding the link between demand revisions and production revisions, the analysis revealed 
that (within the lead time) production is more likely to respond to a demand forecast decrease 
compared to a demand forecast increase.   

4.3. The CODP: its role and position within VDL ETG 
During our analyses of current planning and control policies and our search for improvement 
opportunities, we faced different ‘problems’ evidencing the haziness about the current role and 
position of the CODP within VDL ETG.  

In the existing literature, the CODP is often defined as “the point that indicates how deeply the 
customer order penetrates into the supply chain. It is the distinction between the order-driven and 
forecast-driven parts of the supply chain for a particular product market combination” (De Kok & 
Fransoo, 2003; cf. Bertrand et al., 1990). An important aspect in relation to the CODP point is demand 
uncertainty. De Kok and Fransoo (2003) state that “all releases downstream of the CODP are based on 
actual customer orders and thus are not planned under uncertainty of demand (cf. Orlicky, 1995). All 
releases upstream of the CODP are planned based on dependent demand.”  

Regarding the penetration of a customer order into the supply chain, we identify both ATO and MTO 
structures within VDL ETG (see Section 1.2). Assembly operations are only performed based on orders, 
whereas Parts production orders or purchasing orders can be released based on an order as well as a 
forecast. 

As mentioned before, however, within the highly volatile B2B environment of VDL ETG, customer 
orders are associated with uncertainty too. Not in terms of the customer buy, but mainly in terms of 
the moment at which the customer buys. From a MPS planning perspective, this uncertainty is actually 
demand uncertainty, i.e. the demand for a specific future period is unknown until the moment of real 
demand. More specifically, as our quantitative analysis in Section 3.4 revealed that customer orders are 
as uncertain as a (customer) demand forecasts, releasing based on customer orders is actually similar 
to releasing based on forecasts from an uncertainty perspective. This is contrary to the definition of the 
CODP as stated above. 

Although order driven release decisions can be regarded as forecast driven release decisions from a 
planning (uncertainty) perspective, one might think of a significant difference in terms of commitment: 
orders have full customer buy commitment, whereas forecasts are essentially not associated with 
commitment. But recall from our discussion in Section 2.2 that forecasts are associated with varying 
levels of commitment too. Moreover, management orders are created if production needs to be 
released but customer commitment is lacking. For a planner, there is actually no distinction between a 
real customer order, a commitment order or a management order. So, from a planning perspective, we 
observe that actually all release decisions are covered by some type of commitment.  

These observations triggered us to question the general view of the supply chain as a pure ATO 
system. We therefore constructed an alternative framework which represents the decoupling situation 
within VDL ETG, see Figure 18. Release decisions are thus covered right from the beginning of the 
supply chain. For the MTO product chains as classified by VDL ETG, material is allocated to a customer 
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order right from the beginning. For the ATO product chain, purchasing and production decisions are 
taken anonymously, i.e. without an order, and material is only allocated to an order during assembly. 
Finally, decisions which are made based on uncertain demand information are basically only 
decoupled from certain demand information at the final product inventory position. 

 

Figure 18: Alternative view on decoupling within VDL ETG 

It is interesting to note that in existing literature, inventory models for operations planning and control 
typically only focus on decisions for items that are kept in stock at and upstream of the CODP (De Kok 
& Fransoo, 2003). On the other hand, models for stochastic throughput times are only considered in 
order driven systems, i.e. the part after the CODP, assuming deterministic order due dates.  

Buffering is needed to cope with demand and process lead time uncertainty, and both currently exist 
from the beginning until the end of the supply chain. Considering the main purpose of our next 
research part, i.e. modeling and analyses to support buffer norm setting, we will initially consider the 
uncertainty decoupling point as the CODP in typical stochastic inventory models, and the 
commitment decoupling point as the CODP underlying stochastic lead time models. We further 
address this aspect in the next chapter during our discussion about the necessity to decouple demand 
uncertainty from lead time uncertainty. 

Given the discussion above, and since our buffering analysis is not so much about the exact position of 
the CODP but about possible efficient options for decoupling, we will not explicitly refer to ‘the CODP’ 
in our upcoming discussions.  

4.4. Planning and control performance metrics  
VDL ETG currently uses two major service measurements: the RLIP (percentage of orders fulfilled one 
day before or on the latest requested customer delivery date) and the CLIP (percentage of orders 
fulfilled one day before or on the latest confirmed delivery date). Both measures are not only used for 
customer orders, but for procurement and production orders as well.  

There currently is a strong emphasis on CLIP delivery measures on customer orders (average service 
level of about 95%), fed by the strong customer-orientation of this measure. This metric therefore is 
mainly suited to measure the ‘delivery reliability’ which VDL ETG obtains at the very final end of its 
supply chain, i.e. at delivery to the customer. This metric, however, is the only measure which is 
structurally employed, and it is used during planning meetings, evaluations, etc. (Nas, 2015b; 
Langenhuysen, 2015b).  

Due to different reasons (a.o. the flexibility in terms of modifying order due dates in consultation with 
the customer, a difference between external and internal due dates and customer deliveries as part of 
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a yearly order for which the delivery date is only recorded in the system just before delivery), this 
indicator is a kind of ‘intervention dependent metric’ and thereby unsuitable for modeling and buffer 
norm setting (and for true measurement of planning performance).  

The RLIP (average service level of about 30%) can be considered as a more suitable alternative to the 
CLIP indicator, measuring the true supply chain (planning) ‘capability’. However, this measure provides 
some difficulties too. Especially if customers initially place an order with an extremely short, ‘unrealistic’ 
order lead time, while accepting the alternative, ‘realistic’ lead time suggested by VDL ETG afterwards. 
In addition, the RLIP still is external due date oriented, while (MPS) planning is focused on internal due 
dates. Besides these issues, the inconsistency of production planning which is initially focused on 
internal production due dates and the shift to a focus on external customer due dates once issues (e.g. 
capacity issues, escalations) arise, limits the true control value of CLIP or RLIP monitoring too.  

The issues explained above clearly demonstrate that one might argue whether the CLIP (and RLIP) 
measure are the right or only service measures to focus on. They can be used to measure service 
offered towards customers, but fail to support operational decision making and control. A detailed 
investigation and development of alternative service measures, however, is outside the scope of our 
research. For the quantitative modeling and analysis in the design phase of our research, we will 
consider more suitable service measures while taking into account the availability of service related 
data. In Chapter 6 and 7 we return to the issue of control performance metrics as we discuss 
recommendations for improvement and further research within VDL ETG.  

4.5. Conclusions and insights 
In this chapter we presented some insightful preparative analyses and conceptual discussions which 
are important for the development of appropriate models to support our design phase. Analysis of 
historical demand and production data revealed that, for three important customer systems in the ATO 
supply chain of VDL ETG, cumulative customer forecasts and orders generally exceed real demand. In 
addition to uncertainty, demand orders and forecasts are associated with nervousness too. Via leveling 
in the MPS production plan, an important part of this nervousness is dampened by planners. Since 
even customer orders provide uncertain (and nervous) information about real demand until the final 
moment of delivery, we argued that we can (and should) consider the supply chain as a kind of MTS 
system in order to support buffer norm setting under stochastic demand. There is, however, one 
important difference with a classical MTS environment: within VDL ETG production is generally only 
started if there is customer commitment (either via a real customer order or committed forecast), 
thereby reducing the majority of the risk of stock investments. Production control thereby becomes 
generally order-driven, but under stochastic lead times and uncertain demand. We should therefore 
design alternative models to support buffer norm setting against demand and lead time uncertainty.  

We split up the design phase of our research in two parts. In the next chapter, we extensively discuss 
the design of new mathematical models. Since the complex, stochastic current planning and control 
situation (see discussions above) doesn’t allow for the use of standard mathematical models to easily 
design improved rules, we first design new quantitative models. These models support the 
understanding and analysis of buffering in order-driven assembly systems with lead time and demand 
uncertainty. Besides discussing the design of the models, we also discuss their value for understanding 
the complex reality and we use them to evaluate alternative buffer norm settings. After ‘design for 
understanding and analysis’ in Chapter 5, we focus on ‘design for improvement’ in Chapter 6. In other 
words, based on the models designed and analyzed in Chapter 5, we also discuss the ‘design’ of more 
concrete directions and options for improving operational control and buffer norm setting.    
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Five 
Design for understanding and analysis 
“Everything should be as simple as possible, but not simpler”  -Albert Einstein- 

Based on the analyses and discussions in the previous paragraph, we believe that there is a need and 
promising option for the design of new and alternative buffer norms and strategies in order to improve 
operational control and efficiency in the real life complex supply chain of VDL ETG. For the design and 
complementary quantitative modeling and analysis, we use and extend scientific knowledge on 
analysis and control of stochastic multi-echelon supply chain systems. 

In Chapter 2 we provided an extensive analysis of the different types of uncertainties faced by VDL ETG, 
and investigated their relative impact. Accordingly, we select two main classes of uncertainties for 
which we will design quantitative models to support the analysis of buffer norms. This decision will be 
underpinned in Section 5.1, along with a theoretical discussion of the need for decoupling them for 
quantitative modeling and analysis. Then in Section 5.2 we discuss the first class of uncertainty: 
demand uncertainty. The second class of uncertainty, which is lead time uncertainty, will be discussed 
in Section 5.3. We conclude this chapter with a summary of the main insights.  

Note that the focus of this chapter is on the design of quantitative models to support the 
understanding and analysis of buffer management in the stochastic assemble-to-order supply chain. In 
the next chapter, we use the insights obtained in this chapter to design directions for improvement.   

5.1. Decoupling demand uncertainty from lead time uncertainty 
The first class of uncertainty for which we will design quantitative models to analyze buffer settings is 
demand uncertainty. By taking an alternative perspective to demand uncertainty compared to the 
current understanding and beliefs within VDL ETG, we will be able to capture both the demand due 
date uncertainty as well as the forecast/order uncertainty in one model. Next to demand uncertainty, 
we will model lead time uncertainty. Our analysis in Chapter 2 revealed that, compared to quantity or 
yield uncertainty, lead time uncertainty is more comprehensive for VDL ETG’s control. Here we consider 
both supplier lead time uncertainty as well process lead time uncertainty, which both simply represent 
lead time uncertainty which propagates downstream through the supply chain system.  

In Section 1.5 we positioned our research in the planning hierarchy (De Kok & Fransoo, 2003; Bertrand 
et al., 1990). Although we do not aim to provide a comprehensive discussion of all production 
planning and control concepts, we point to an important design principle for designing production 
control systems as introduced by Bertrand and Wortmann (1981), and further elaborated on by 
Bertrand et al., (1990): the separation of Goods Flow Control from Production Unit control. Goods Flow 
Control, within VDL ETG mainly represented by Integral Planning, coordinates the output of the 
Production Units and coordinates production with sales. Production Unit control, on the other hand, 
focuses on detailed control of operations, in an MRP environment often denoted as work centers or 
shop floors. The objective of detailed Production Unit control then is to realize targets set at the 
integral level. De Kok and Fransoo (2003) note that a consequence of this approach is that lead times of 
the various Production Units are fixed and are input to the system rather than output. These lead times 
are essentially modeled in exactly the same way as in MRP. More specifically, in order to properly 
coordinate the release of materials and resources while taking into account the random processing 
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times at work centers (as the result of interactions between materials and resources), the concept of 
‘planned lead times’ emerges. This concept as a result for the need of robust and feasible control of 
real-life complex production systems, affects our upcoming quantitative modeling and analysis in two 
ways.  

First of all, we will decouple demand uncertainty from lead time uncertainty. If the planned lead times 
are chosen properly, such that they are consistent with the resource availability and flexibility, we can 
assume that the lead times are met with a high reliability. Then, (multi-echelon) inventory models, 
which assume deterministic lead times, can be used to model and analyze buffering against demand 
uncertainty. In Section 5.2 we will discuss these types of analyses. We start with a basic one-product 
inventory model and consider a final MPS item as one product with a fixed lead time equal to the 
integral planned lead time. It turns out that this is a fair representation of VDL ETG’s reality, which 
provides an important basis for the design of improvement options.  

Secondly, if we zoom in on the item level, it turns out that planned lead times within VDL ETG are 
definitely not met with a ‘sufficiently high’ reliability. Since a high reliability of planned lead times is an 
important aspect in order to allow for efficient and effective control at the integral level, we will also 
model and analyze lead time planning within VDL ETG. Hereby the focus will be on the support for the 
determination of buffer norms (i.e. safety times) in order to improve the overall efficiency and control 
within the supply chain.   

Finally, we briefly underpin our decision to rely on stochastic quantitative modeling for the analysis 
and design of improved buffer options. Generally, MRP-based planning systems do not provide 
support for the determination of safety stock and safety time norms to buffer against uncertainty a 
priori. These parameters therefore are determined based on experience, lacking a clear understanding 
of their performance and impact, let alone a clear idea of their ‘optimal’ values. In addition, MRP-based 
concepts do not provide insights about the impact of demand uncertainty on supply chain capital 
requirements to achieve required customer service levels (De Kok & Fransoo, 2003). Likewise, VDL ETG’s 
MRP-based planning and control methods do not include uncertainty actively as part of the ‘model’. 
Uncertainty rather is mainly ‘controlled’ via rescheduling, with very high associated workload, costs and 
nervousness. By using and extending existing knowledge about stochastic inventory and lead time 
models, we support the analysis of buffer management and the design of options for improving 
operational control.    

5.2. Demand uncertainty and inventory models 
As discussed in the previous section, we rely on stochastic inventory modeling in order to analyze 
buffering against demand uncertainty in VDL ETG’s supply chain. Before we continue with the analysis 
of specific cases within VDL ETG, we first provide a general, insightful discussion on service 
performance in a classical single-item single-echelon inventory model.   

5.2.1. Explaining service in a single-item single-echelon inventory model 
There is a vast literature on inventory control policies for single item single location systems based on 
stationary stochastic demand (De Kok, 2012). Generally, four different control models for such a system 
can be identified: a continuous review fixed order quantity policy (s,Q), a continuous review order up to 
policy (s,S), a periodic review fixed order quantity policy (R,s,Q) and period review order up to policy 
(R,s,S). In Appendix E we list the general model variables, specific policy variables and the model 
assumptions which together define the model. Following the notations of De Kok (2010), we formulate 
expressions for performance measures most frequently used in practice in Appendix E too.   
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If we consider a certain inventory system, we can make a distinction between exogenous ‘parameters’, 
control parameters and performance outcomes. Exogenous parameters in this case are the average 
demand per period, standard deviation of demand per period, average lead time in number of periods 
and the standard deviation of the lead time. Control parameters define the inventory control policy, i.e. 
the review period, the reorder level, the order up to level or the fixed order quantity. Other variables as 
the average inventory, the average order size and the average service level are performance outcomes 
of a certain policy (e.g. a (R,s,Q)  rule) to control the inventory system.  

 

Figure 19: Parameters and variables in the single-item single-echelon inventory model 

Based on the expressions in Appendix E and some exploratory analysis, we hypothesize that: 

the service level (either the ‘ready rate’ or ‘fill rate’) in a single-item single-echelon system is 
primarily explained by the average inventory in combination with the average order size, and 
this service is ‘relatively insensitive’ of the specific control policy which is used.  

More specifically, given the external parameters and the average inventory in combination with the 
average order size as system outcomes, we can approximate the ‘implicitly used’ control parameters 
under each control rule, which in turn result in a certain service level.   

We define: 

஽ߤ  ݀݋݅ݎ݁݌	ݎ݁݌	݀݊ܽ݉݁݀	݁݃ܽݎ݁ݒܽ  ≕

஽ߪ
ଶ  ݀݋݅ݎ݁݌	ݎ݁݌	݀݊ܽ݉݁݀	݂݋	݊݋݅ݐܽ݅ݒ݁݀	݀ݎܽ݀݊ܽݐݏ  ≕

௅ߤ  ሻݏ݀݋݅ݎ݁݌	݂݋	ݎܾ݁݉ݑ݊	ሺ݅݊	݁݉݅ݐ	݈݀ܽ݁	݁݃ܽݎ݁ݒܽ  ≕

തܺ  	݁݉݋ܿݐݑ݋	݉݁ݐݏݕݏ	ܽ	ݏܽ	ݕݎ݋ݐ݊݁ݒ݊݅	݁݃ܽݎ݁ݒܽ	݄݁ݐ  ≕

തܳ  	݁݉݋ܿݐݑ݋	݉݁ݐݏݕݏ	ܽ	ݏܽ	݁ݖ݅ݏ	ݎ݁݀ݎ݋	݁݃ܽݎ݁ݒܽ	݄݁ݐ  ≕

Then some mathematical rewriting (details are listed in Appendix E) eventually results in the following 
estimators of the control parameters for each of the policies: 

(s,Q) 
ܳ ൌ തܳ   

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାఓವ

మ

ଶఓವ
െ

ொത

ଶ
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(R,s,Q) 

ܴ ൌ
ொത

ఓವ
  

ܳ ൌ തܳ    

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାொത∗ఓವ
ଶఓವ

െ
ொത

ଶ
  

(s,S) 

ܵ െ ݏ ൌ തܳ െ
ఙವ
మାఓವ

మ

ଶఓವ
  

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାఓವ

మ

ଶఓವ
െ

ொത

ଶ
  

(R,s,S) 

ܴ ൌ
ொത

ఓವ
  

ܵ െ ݏ ൌ തܳ െ
ఙವ
మାொത∗ఓವ
ଶఓವ

  

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାொത∗ఓವ
ଶఓವ

െ
ொത

ଶ
  

Note that the standard deviation of the lead time does not influence the parameter estimators. It does, 
however, influence the service level which is obtained.  

In addition, note that our discussion in this section and the complementary Appendix E is focused on 
the formulas which describe the behavior of an inventory system. On the other hand, there is the 
numerical processing of the formulas. For an industrial engineer, once the formulas have been derived, 
the numerical processing becomes less interesting (De Kok, 2010). Hence we refer to the Classical 
Inventory Models tool of De Kok (2010) for analytical evaluation of the expressions and formulas. We 
adapted the tool to account for modeling demand per period in a continuous review inventory model 
(instead of considering demand as the combination between an arrival distribution and a quantity 
distribution per order). In addition, we extended the tool with a section which implements the 
estimators for the control parameters formulated above. We also included sections for sensitivity 
analysis. Note that we use the term ‘Stochastic Inventory System Tool’ for the new tool hereafter.  

Our hypothesis actually is twofold. On the one hand, we hypothesize that the average inventory in 
combination with the average order size (and of course along with the demand and lead time 
information), ‘explain’ the service level (either ‘fill rate’ or ‘ready rate’). From a modeling perspective this 
holds for each control rule separately, since the parameter estimations simply are the result of rewriting 
the expressions for the average order size and inventory in terms of the parameters. Hence a key 
aspect of validating this part of our hypothesis is in the empirical validation for real-life examples, 
which will be performed in the next section.  

We can, however, use analytical evaluation in order to investigate the second part of our hypothesis, 
which is about the ‘relative control insensitive’ service levels. Below we discuss some key insights 
obtained from sensitivity analysis which we performed in order to validate this second part of our 
hypothesis.  
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Similarity between (..,s,Q) and (..,s,S) policies 

First of all note that, given the average order size in combination with the average inventory, 
analytically estimated service levels (both ‘fill rate’ and ‘ready rate’) are equal for an order up to policy 
and fixed order quantity policy (see Appendix E for quantitative expressions). For our sensitivity 
analysis, we therefore focused on the comparison of service levels under the (R,s,Q) and (s,Q) control 
policies (results are highly similar for a comparison between (R,s,S) and (s,S) policies).   

Service level and demand distribution 

For the sensitivity analysis we focused on the ‘fill rate’ service measure (often denoted as the ଶܲ	or ߚ 
service measure), which is ‘’the long-run fraction of total demand, which is being delivered from stock 
on hand” (De Kok, 2010). Results are highly similar for the ‘ready rate’, but since the fill rate is most often 
used in practice and mostly resembles the service measures currently used by VDL ETG, we focus on 
the fill rate. In addition, analytical evaluation of the fill rate via the Stochastic Inventory System Tool 
requires a known distribution of the demand, either Gamma or Normal distributed. For our analysis we 
assume Gamma distributed demand, since negative values are possible when assuming Normal 
distributed demand, especially in the low-volume environment of VDL ETG.  

Influence of lead time 

Exploratory analysis revealed that the lead time has a negligible effect on the difference between the 
service level under (R,s,Q) control and (s,Q) control (see Appendix E for our sensitivity analysis). All other 
input variables keeping equal, the lead time of course does have an effect on the service level, but this 
approximately equal for both control policies.  

The average inventory and order size in relation to the average demand 

Our analysis revealed that the average order size in relation to the average demand has the biggest 
impact on the difference between the fill rate of a (R,s,Q) and (s,Q) policy. In addition, the average 
inventory in relation to the average demand does influence the difference between service under the 
alternative control policies too, only to a smaller extent. In order to illustrate the sensitivity analysis, we 
illustrate the effect of the average inventory and order size in relation to the average demand for a 
basic case with ߤ஽ ൌ 2, ஽ߪ

ଶ ൌ 1, ௅ߤ ൌ 10, ௅ߪ
ଶ ൌ 0.	 

Figure 20 shows that the service under both policies is equal if the average orders size equals the 
average demand. An average order size equal to the average demand implies that in a period review 
system each period an order is placed, which then becomes similar to a continuous review system. If 
the order size in relation to the average demand becomes larger, the gap between the service under 
both policies increases (although the difference decreases once the value of the order size divided by 
the average demand gets ‘very’ large). Of course, the service under continuous review exceeds the 
service under periodic review. Moreover, we see that interval in which both service levels are close to 
each other is larger in case the average inventory in relation to the average demand is larger. Finally 
note that for very high service levels (above 95%), the difference between service under continuous 
review policies and periodic review policies is relatively small, especially when the average order size is 
less than the demand during five periods (difference of 2% point even when the average order size is 
five times the average demand and the average inventory is five times the average demand).  
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Figure 20: Sensitivity analysis for a basic case 

Before we continue with the validation of our hypothesis by applying the model to real-life examples 
within VDL ETG, we first introduce a new concept which allows for applying a stochastic inventory 
(MTS) model to an order driven (MTO) supply chain system with stochastic customer due dates.  

5.2.2. Introducing a new model concept: hidden inventory 
For the empirical validation of the model (i.e. explaining service in a single-item single-echelon 
inventory system based on the average inventory and order size) with data from VDL ETG, we analyzed 
historical data of all three important MPS items which have been introduced in the previous chapter: 
the FEI Projector Assy, the ASML NXT3 wafer handler and the ASML XT4 wafer handler.  

First of all, in order to be able to apply the stochastic inventory model to the order-driven supply chain 
of VDL ETG, we analyzed the historical demand data from a MTS perspective (see our discussion in the 
previous chapter). More specifically, we analyzed customer demand by considering orders and 
deliveries per week. We thus neglected the volatility and evolution of individual orders, we only 
consider stochastic demand (as implied by the latest confirmed delivery dates) and real deliveries per 
week. By analyzing the percentage of demand which is delivered ‘from stock’, i.e. with no delay, we 
obtain the service performance in terms of the fill rate. Moreover, we initially considered the MPS item 
as a single item with a planned lead time which is equal to the integral cycle time (with no 
uncertainty).  

During the analysis we faced a striking inexplicable thing: there was no inventory of finished goods 
(note that this is the ‘CODP’ under our alternative way of modelling), while the fill rates were between 
98%-100%. Some exploratory analysis of the data revealed that the cumulative scheduled receipts (at 
MPS level) do not equal the cumulative actual receipts in the same period, which is assumed in all 
classical inventory models. Recall from our analysis of MPS nervousness in Section 4.2 that due dates of 
MPS production orders are rescheduled, even within the integral lead time window. In order to capture 
this phenomenon, we formulate mathematical expressions which describe the results of human 
production control at the MPS level under order-driven control with stochastic due dates. Without loss 
of generality, we assume a review period of 1 time period (week within VDL ETG). In addition, we 
assume a deterministic planned lead time, which we further elaborate on later in this paragraph. Note 
that we follow the same reasoning for deriving an expression for the average inventory as discussed in 
Appendix E. We use the subscript ‘theory’ to denote our expressions for the expected net inventory 
based on comparable theoretical models in academic literature.  
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We define: 

ܮ   ݉݁ݐ݅	ܵܲܯ	݂݋	݁݉݅ݐ	݈݀ܽ݁	ሻ݈ܽݎ݃݁ݐሺ݅݊	݈݀݁݊݊ܽ݌   ≕

ܴܵሺݐሻ  	݄݁ݐ	ݐܽ	݁ݒ݅ݎݎܽ	݋ݐ	݈݀݁݊݊ܽ݌	݉݁ݐ݅	ܵܲܯ	݂݋	ݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ  ≕

 	ሻݐሺ	݀݋݅ݎ݁݌	݂݋	ݐݎܽݐݏ

ሻݐ௧௛௘௢௥௬ሺܫ  	ݐݎܽݐݏ	݄݁ݐ	ݐܽ	݉݁ݐ݅	ܵܲܯ		݂݋	ݕݎ݋ݐ݊݁ݒ݊݅	ݐᇱ݈݊݁ܽܿ݅ݐ݁ݎ݋݄݁ݐ′  ≕

 ሻݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ	ܽ	݂݋	݈ܽݒ݅ݎݎܽ	݄݁ݐ	ݎ݁ݐሺ݂ܽ	ݐ	݀݋݅ݎ݁݌	݂݋

ሻݐሺܲܫ  ݐ	݀݋݅ݎ݁݌	݂݋	ݐݎܽݐݏ	ݐܽ	݉݁ݐ݅	ܵܲܯ	݂݋	݊݋݅ݐ݅ݏ݋݌	ݕݎ݋ݐ݊݁ݒ݊݅  ≕

ሻݐመ௧௛௘௢௥௬ሺܫ  	ݐݎܽݐݏ	݄݁ݐ	݁ݎ݋݂ܾ݁	ݐݏݑ݆	݉݁ݐ݅	ܵܲܯ		݂݋	ݕݎ݋ݐ݊݁ݒ݊݅	ݐᇱ݈݊݁ܽܿ݅ݐ݁ݎ݋݄݁ݐ′  ≕

 ሻݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ	ܽ	݂݋	݈ܽݒ݅ݎݎܽ	݄݁ݐ	݁ݎ݋ሺܾ݂݁	ݐ	݀݋݅ݎ݁݌	݂݋

ሻݐሺܦ     	ሻݐሺ݀݋݅ݎ݁݌	݊݅	݉݁ݐ݅	ܵܲܯ	ݎ݋݂	݀݊ܽ݉݁݀   ≕

௧௛௘௢௥௬൧ܫൣܧ ∶ൌ  ′݈ܽܿ݅ݐ݁ݎ݋݄݁ݐᇱܽ݁݃ܽݎ݁ݒ	ݐ݁݊	ݕݎ݋ݐ݊݁ݒ݊݅	ሺ݀݃݊݅ݎݑ	ܽ	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	݈݁ܿݕܿሻ 

 

We use the following moments in time for our analysis (cf. Appendix E): 

ݐ ൅  	ݐܽ	݀݁ݏ݈ܽ݁݁ݎ	ݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ	݄݁ݐ	݂݋	݈ܽݒ݅ݎݎܽ	݂݋	ݐ݊݁݉݋݉   ܮ

	ݐ	݀݋݅ݎ݁݌	݂݋	ݐݎܽݐݏ	݄݁ݐ

߬௧   ݂݅ݐݏݎ	ݐ݊݁݉݋݉	ݎ݁ݐ݂ܽ	݀݋݅ݎ݁݌	ݐ	݊݅	݄݄ܿ݅ݓ	ܽ	݈݀݁ݑ݄݀݁ܿݏ	ݐ݌݅݁ܿ݁ݎ	ݏ݅	݀݁ݏ݈ܽ݁݁ݎ 

ݐ ൅ ߬௧ ൅  ݄݁ݐ	݃݊݅݀݁݁ܿܿݑݏ	ݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ	݄݁ݐ	݂݋	݈ܽݒ݅ݎݎܽ	݂݋	ݐ݊݁݉݋݉  ܮ

 ݐ	݀݋݅ݎ݁݌	݂݋	ݐݎܽݐݏ	݄݁ݐ	ݐܽ	݀݁ݏ݈ܽ݁݁ݎ	ݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ

 

We assume that, in each review period, a production order (scheduled receipt) is released. We derive: 

ሻݐሺܲܫ ൌ ሻݐሺܫ	 ൅ ∑ ܴܵሺݐ ൅ ሻ௅ݏ
௦ୀ଴           [5.1] 

ݐ௧௛௘௢௥௬ሺܫ ൅ ሻܮ ൌ ሻݐሺܲܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ
௦ୀ଴ ൌ ∑ ܴܵሺݐ ൅ ሻ௅ݏ

௦ୀ଴ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ
௦ୀ଴   [5.2] 

ݐመ௧௛௘௢௥௬ሺܫ ൅ ߬௧ ൅ ሻܮ ൌ ሻݐሺܲܫ െ ∑ ݐሺܦ ൅ ሻ௅ݏ
௦ୀ଴ ൌ ∑ ܴܵሺݐ ൅ ሻ௅ݏ

௦ୀ଴ ൅ ሻݐሺܫ െ	∑ ݐሺܦ ൅ ሻ௅ݏ
௦ୀ଴  [5.3] 

 

Now we can derive an expression for the average inventory: 

௧௛௘௢௥௬൧ܫൣܧ ൌ 	
ଵ

ଶ
	൫ܫൣܧ௧௛௘௢௥௬ሺݐ ൅ ሻ൧ܮ ൅ ݐመ௧௛௘௢௥௬ሺܫൣܧ ൅ ߬௧ ൅  ሻ൧൯      [5.4]ܮ

 						ൌ 	
ଵ

ଶ
	ሺܧሾ∑ ܴܵሺݐ ൅ ሻ௅ݏ

௦ୀ଴ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ
௦ୀ଴ ሿ ൅ ∑ሾܧ ܴܵሺݐ ൅ ሻ௅ݏ

௦ୀ଴ ൅ ሻݐሺܫ െ

																										∑ ݐሺܦ ൅ ሻ௅ݏ
௦ୀ଴ ሿሻ 								 

						ൌ ܧ	 ቂ∑ ܴܵሺݐ ൅ ሻ௅ݏ
௦ୀ଴ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ

௦ୀ଴ െ
ଵ

ଶ
ݐሺܦ ൅     ሻቃܮ
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An important assumption underlying the expression above, and typically assumed in comparable 
models in literature (cf. De Kok et al., 2005), is that scheduled receipts arrive according to their planned 
lead times. From a supply uncertainty perspective, this assumption can be defended since we model 
the MPS item with a planned lead time which equals the total integral lead time, which is met with 
such a high reliability that we can neglect lead time uncertainty. From a scheduling/planning 
perspective, however, we argue that the assumption is violated. Our earlier analysis of nervousness at 
the MPS level revealed that production orders are rescheduled, especially delayed, within lead time. 
This implies that the cumulative scheduled receipts do not necessarily represent cumulative actual 
receipts. More practically, at VDL ETG this is the result of actual receipts which are generally closely 
matched with real customer demand, and this real demand is significantly lower than the 
forecasted/ordered demand (cf. Figure 17). Since cumulative scheduled receipts (together with on 
hand inventory) match with the forecasted demand to a large extend, a difference between scheduled 
and actual receipts arises.  

Hence we modify the above expressions in order to account for ‘real’ behavior of production planning 
at the MPS level. We define: 

ݐሺܴܣ ൅ ሻݏ  ݉݁ݐ݅	ܵܲܯ	݂݋	ݏݐ݌݅݁ܿ݁ݎ	݈ܽݑݐܿܽ  ≕

ሻݐ௥௘௔௟ሺܫ  	ݐݎܽݐݏ	݄݁ݐ	ݐܽ	݉݁ݐ݅	ܵܲܯ		݂݋	ݕݎ݋ݐ݊݁ݒ݊݅	ݐᇱ݈݊݁ܽ݁ݎ′  ≕

 ሻݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ	ܽ	݂݋	݈ܽݒ݅ݎݎܽ	݄݁ݐ	ݎ݁ݐሺ݂ܽ	ݐ	݀݋݅ݎ݁݌	݂݋

ሻݐመ௥௘௔௟ሺܫ  	ݐݎܽݐݏ	݄݁ݐ	݁ݎ݋݂ܾ݁	ݐݏݑ݆	݉݁ݐ݅	ܵܲܯ		݂݋	ݕݎ݋ݐ݊݁ݒ݊݅	ݐᇱ݈݊݁ܽ݁ݎ′  ≕

 ሻݐ݌݅݁ܿ݁ݎ	݈݀݁ݑ݄݀݁ܿݏ	ܽ	݂݋	݈ܽݒ݅ݎݎܽ	݄݁ݐ	݁ݎ݋ሺܾ݂݁	ݐ	݀݋݅ݎ݁݌	݂݋
 
Now we derive the expression for the ‘real’ inventory levels: 

ݐ௥௘௔௟ሺܫ ൅ ሻܮ ൌ ∑ ݐሺܴܣ ൅ ሻ௅ݏ
௦ୀ଴ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ

௦ୀ଴       [5.5] 

ݐመ௥௘௔௟ሺܫ ൅ ߬௧ ൅ ሻܮ ൌ ∑ ݐሺܴܣ ൅ ሻ௅ݏ
௦ୀ଴ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ

௦ୀ଴ െ
ଵ

ଶ
ݐሺܦ ൅  ሻ    [5.6]ܮ

௥௘௔௟ሿܫሾܧ ൌ 	
ଵ

ଶ
	൫ܧሾܫ௥௘௔௟ሺݐ ൅ ሻሿܮ ൅ ݐመ௥௘௔௟ሺܫൣܧ ൅ ߬௧ ൅  ሻ൧൯       [5.7]ܮ

																ൌ 	
ଵ

ଶ
	ቀܧሾ∑ ݐሺܴܣ ൅ ሻ௅ݏ

௦ୀ଴ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ
௦ୀ଴ ሿ ൅ ܧ ቂ∑ ݐሺܴܣ ൅ ሻ௅ݏ

௦ୀ଴ ൅ ሻݐሺܫ െ

																					∑ ݐሺܦ ൅ ሻ௅ିଵݏ
௦ୀ଴ െ

ଵ

ଶ
ݐሺܦ ൅   ሻቃቁܮ

																ൌ ܧ	 ቂ∑ ݐሺܴܣ ൅ ሻ௅ݏ
௦ୀ଴ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ

௦ୀ଴ െ
ଵ

ଶ
ݐሺܦ ൅   ሻቃܮ

In order to explain the difference and capture the effect of human planning behavior at the MPS level, 
we define: 

∆௧ൌ ∑ ܴܵሺݐ ൅ ሻ௅ݏ
௦ୀ଴ െ ∑ ݐሺܴܣ ൅ ሻ௅ݏ

௦ୀ଴ 	        [5.8] 

Then:  

௥௘௔௟ሿܫሾܧ ൌ ܧ ቂ∑ ܴܵሺݐ ൅ ሻ௅ݏ
௦ୀ଴ െ ∆௧ ൅ ሻݐሺܫ െ ∑ ݐሺܦ ൅ ሻ௅ିଵݏ

௦ୀ଴ െ
ଵ

ଶ
ݐሺܦ ൅  ሻቃ    [5.9]ܮ

Under stationary demand, this expressions can be rewritten into: 

௥௘௔௟ሿܫሾܧ ൌ ௧௛௘௢௥௬൧ܫൣܧ െ  ሾ∆௧ሿ         [5.10]ܧ
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∆௧ൌ ∑ ܴܵሺݐ ൅ ሻ௅ݏ
௦ୀ଴ െ ∑ ݐሺܴܣ ൅ ሻ௅ݏ

௦ୀ଴  thus should explain the difference between the average 
inventory one would expect to be held in the (inventory) system and the average inventory observed 
in historical data as a result of (order-driven) planning and control (under stochastic due dates) at the 
MPS level.  

We name this new concept of ∆௧  ‘hidden inventory’. Since we explicitly analyzed scheduled receipts 
(i.e. production orders already released), the hidden inventory can be considered as a kind of inventory 
which is hidden/kept in the work in progress. This inventory is spread in the pipeline in such a way that 
there is enough hidden inventory which can quickly enough be converted in real stock in order to 
cope with the stochastic demand from customer side, thereby obtaining a certain service level. It has a 
‘buffer value’ equal to ∆௧ items in final stock. This delta is a powerful concept which allows for 
evaluating human decision making in a stochastic inventory model. More specifically, it captures 
possible rescheduling decisions at the MPS level under order-driven control with uncertain customer 
due dates. 

Given the possible difference between scheduled and actual receipts, we can regard expression [5.4] 

for ܫൣܧ௧௛௘௢௥௬൧ as an expression for the inventory at the final ‘stock point’ plus buffers in the form of 
hidden inventory upstream in the supply chain. In  the next paragraph we will validate our concept by 
analyzing three real-life examples from VDL ETG. 

5.2.3. Empirical validation for three real-life examples from VDL ETG 
In order to validate the concept of hidden inventory in combination with the single-item single-
echelon inventory model, we used historical data for all three MPS items introduced earlier in this 
chapter. We initially consider the MPS item as an item in a single-item single-echelon system, with 
stochastic customer demand per period and a deterministic lead time.  

 

Figure 21: Single-echelon representation of a MPS item 

This allowed us to estimate the ‘expected inventory’ via expression [5.4]1 in combination with historical 
data about demand, scheduled receipts and actual receipts. Then, along with the average historical 
order size, we used this expected inventory as input for the single-item single-echelon model 
discussed in Section 5.2.1 in order to estimate the service level. Concerning the empirical validity of our 
‘hidden inventory’ concept as well as the model to explain service, we found that the model-estimated 
fill rates are close to the historical data-based fill rates. For the ASML NXT3 system and FEI Projector 

                                                             

1 Note that in a stationary situation, expression [5.4] and the combination of [5.8] & [5.10] should result in the same expected 
inventory. We estimated the average inventory based on (available) data from the second half in 2013 till the ‘end’ of 2014. In 

order to capture the dynamics, we use expression [5.4]. More specifically, ൣܫ௧௛௘௢௥௬൧ ൌ
∑ ቂ∑ ௌோሺ௧ା௦ሻಽషభశభ
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Assy, the fill rates are very close, though there is a small discrepancy for the ASML NXT4 system. The 
results are reported in Table 1. Note that due to confidentiality, we do not report the explicit distinction 
between ‘real inventory’ and ‘hidden inventory’, i.e. ܧሾܺሿ is the sum of both.   

Table 1: Empirical validation for three MPS items (with total integral lead time) within VDL ETG 

 

Based on the test for these real-life cases, we derive some relevant insights. First of all, by introducing 
the concept of hidden inventory, we almost perfectly explain the systems’ service via a single-item 
single-echelon inventory model. This confirms our hypothesis that, along with demand and lead time 
input parameters, the average inventory (possibly partially or fully consisting of hidden inventory) in 
combination with the average order size as system outcomes explain another system outcome: the 
service level. Moreover, as modeled via the concept of hidden inventory, there is a hidden buffer in the 
high work in progress levels. Scheduled receipts are based on scheduled due dates of orders. If these 
are advanced frequently, problems can arise. But since orders are generally delayed, hidden inventory 
arises. This creates enough buffer flexibility in order to cope with stochastic demand and possible 
customer order advancements. Still, it likely results in inefficiency since priorities and plans have to be 
rescheduled. 

Secondly, in the environment of VDL ETG, we explain the service without any assumption about the 
policy used to control the inventory system. In other words, VDL ETG’s context, the service is largely 
insensitive to the control rule which is used. This provides support for the second part of our 
hypothesis for the low-volume environment of VDL ETG.  

Thirdly, we derive that production planning and control at the MPS level within VDL ETG is quite similar 
to base-stock control, i.e. continuous review with order multiples of one unit. In Appendix F we proof 
this claim via formal expressions for ordering decisions at the MPS level in a MRP controlled system and 
ordering decisions in a base-stock controlled system. Considering our earlier general analysis as 
represented by Figure 20, we derive that VDL ETG’s environment can be positioned in the area in 
which the service indeed proves to be relatively insensitive to the control rule used. This provides 
relevant support for promising options for further improvement of production control (which will be 
discussed in Section 7.3) and underlies our analysis in the next paragraphs.  

5.2.4. Separating final assembly from upstream production: single-item 
two-echelon model 
In the previous paragraph we abstracted from complex BOM structures by considering a final MPS 
item as a single item with a (planned) lead time equal to the integral lead time. This abstraction 
allowed us to analyze demand uncertainty at the MPS level in combination with final inventory and 
hidden inventory in the pipeline. We argued that the hidden inventory is divided over the entire 
pipeline, apparently in such a way that it can be converted to final inventory quickly enough to cope 
with stochastic customer demand.  

In order to better grasp the concept of the hidden inventory in the supply chain, we extend the single-
item single-echelon analysis by explicitly decoupling the final assembly phase from upstream activities. 
In other words, we model the MPS item in a serial two-echelon system. Based on the planned lead 

µD σD µL σL E[X] E[Q] Cont.Review Period.Review Real fill rate

ASML NXT3 system 1,15 0,93 27 0 13,6 1,9 0,990 0,989 0,990

ASML XT4 system 0,8 0,78 17 0 10,2 1,35 0,993 0,992 1,000

FEI Projector Assy 0,91 1,01 28 0 15 1,3 0,981 0,980 0,980

Model fill rate estimations
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times retrieved from the ERP system, we can split up the total integral lead time in the lead time of the 
final assembly plus the lead time of upstream activities.  

 

Figure 22: Two-echelon representation of a MPS item 

For all three MPS items discussed before, we analyzed the large historical data set again while using a 
lead time equal to the integral lead time of final assembly. Since production orders are rescheduled 
during the final assembly window too, again we observe the phenomenon of hidden inventory. By 
using the same procedures and expressions as formulated in Section 5.2.2, we estimated the final 
inventory (including some hidden inventory). We used these estimations along with the final assembly 
lead time, average order size and demand information to estimate the service level via the stochastic 
single-item single-echelon inventory model explained in Section 5.1.1. The results of the analyses for all 
three MPS systems are provided in Table 2. 

Table 2: Empirical validation for three MPS items (with final assembly window lead time)  

 

To our surprise, the estimated fill rates based on modeling final assembly as a single-echelon inventory 
model do quite well match with the historical data-based fill rates, except for a discrepancy for the 
ASML XT4 system. Similar to our discussion above, we derive that there is hidden inventory which 
creates an important buffer in the final assembly window too. Since an assumption behind the 
stochastic single-item single-echelon inventory model is an ‘infinite’ amount of stock at the external 
supply side, we thus derive that a limited amount of stock before final assembly apparently suffices to 
ensure ‘infinite’ material from a stochastic inventory control perspective. We can regard this as a kind of 
‘natural’ decoupling situation which has originated under the existing planning and control 
procedures within VDL ETG. So, the upstream activities can be considered as an integral stage which 
precedes the (final) assembly stage, with a sufficiently high reliability in terms of supplying requested 
materials to the final assembly stage (cf. Atan, De Kok, Dellaert, Janssen & Van Boxel, 2015).  

Note that our discussion of insights above is focused on the understanding, evaluation and 
explanation of (current) buffering against demand uncertainty in an order-driven system via (hidden) 
inventory. The high abstraction level allows us to use the concept of planned lead times. At a more 
detailed level, however, this doesn’t hold. We therefore extensively discuss lead time modeling and 
analysis in Section 5.3. Before we turn to this related class of uncertainty, we first discuss an interesting 
option for reducing the inventory buffer size in the next paragraph.   

µD σD µL σL E[X] E[Q] Cont.Review Period.Review Real fill rate

ASML NXT3 system 1,15 0,93 4 0 6,3 1,9 0,989 0,988 0,990

ASML XT4 system 0,8 0,78 3 0 5,1 1,35 0,990 0,988 1,000

FEI Projector Assy 0,91 1,01 4 0 6,3 1,3 0,976 0,973 0,980

Model fill rate estimations
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5.2.5. The effect of target service levels  
In the previous paragraphs we focused on the explanation and evaluation of high customer service 
levels for three important MPS items within VDL ETG. Since we used a stochastic inventory model with 
a high abstraction level, the model and analysis are mainly suited for evaluation instead of 
optimization. A detailed representation and validation of real BOM structures is outside the scope of 
our research, but we briefly explain in Section 6.1 why the expected gains of detailed inventory 
modeling are likely to be rather limited.  

The analysis in the previous paragraphs provide an empirical validation of our model (for both the 
single-echelon as well as two-echelon representation), and explains the relation between the size of 
the (hidden) inventory buffer and the service level (fill rate) which is obtained. We have seen that the 
service levels for all three MPS items are between 98%-99% if we consider weekly demand. In VDL 
ETG’s environment, one might question if such a high service level is really needed. Especially 
considering the high value of customers systems and the business-to-business environment (with 
generally order-driven production), which makes lost-sales very unlikely.  

Moreover, we hypothesize that the planners (and order managers) have the capacity to further 
improve the service performance which would be obtained if the production control methods and 
concepts are strictly followed. More specifically, we expect that if a certain production control system 
enables a service level of e.g. 95%, the capacity of planners and smart human intervention makes it 
possible to obtain a real final service level of e.g. 98%.  Of course, this is just a very hypothetical 
statement which lacks underlying quantitative modeling. In Section 7.2. we propose this as a 
potentially interesting direction for further scientific research . For now, we briefly discuss the results of 
a sensitivity analysis which we performed by investigating the effect of the ‘target service level’ on the 
required (hidden) inventory buffer.  

More practically, we used our valid stochastic single-item single-echelon inventory model in 
combination with the final assembly window (see Figure 22). Keeping all other parameters equal, we 
varied the (hidden) inventory buffer such that different fill rate performance levels were obtained. Note 
that we focused on the fill rates assuming a period review control. We already showed that the 
differences in the service level explained by assuming period or continuous review are very limited in 
VDL ETG’s environment. However, periodic review best represents VDL ETG’s control procedures and 
also implies a lower bound of the service level. The results are shown in Table 3. We use the model-
based estimated service level for the current situation (Table 2) as the benchmark: the size of the 
(hidden) inventory buffer is normalized at 100% for each MPS item separately. 

Table 3: Sensitivity analysis for the effect of target service levels on required inventory buffers 

 

This table shows that lower target service levels are associated with significantly lower inventory buffer 
requirements. Considering a target service level of 95%, the required inventory buffer size is 25%-30% 
smaller than the current (hidden) inventory buffer size. In order to visualize this high sensitivity around 
service levels of about 95%, we show the relation between the inventory size and fill rate for the FEI 
Project Assy in Figure 23. Again, we stress the exploratory character of this analysis and we note that 

Serice Level Required inventory buffer Relative size Required inventory buffer Relative size Required inventory buffer Relative size

99,5% 7,5 119,0% 6 117,6% 8,8 129,4%

99,0% 6,3 100,0% 5,1 100,0% 7,8 114,7%

98,0% 5,7 90,5% 4,6 90,2% 6,8 100,0%

97,5% 5,4 85,7% 4,4 86,3% 6,3 92,6%

95,0% 4,5 71,4% 3,5 68,6% 5,4 79,4%

92,5% 3,9 61,9% 3,1 60,8% 4,7 69,1%

ASML NXT3 ASML XT4 FEI Projector Assy
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setting target service levels rather is a strategic decision instead of an issue for operational supply chain 
efficiency and control. Still, the analytic results in Table 3 provide an important insight on the relation 
between service and buffering against demand uncertainty in the supply chain of VDL ETG.  

 

Figure 23: Relation between target service level and inventory buffer size for the FEI Project Assy 

Finally, we briefly point to possible operationalization of these target service level insights. Since we 
proved that the current hidden inventory buffer is the result of customer orders (and forecasts) which 
generally exceed real demand (i.e. general delay of orders), reducing the inventory buffer directly 
seems strange to apply in practice. This would imply that certain orders have to be rejected in order to 
reduce the buffer size, along with a decrease in the service level. An interesting option to indirectly 
reduce the buffer size, however, is to plan at the MPS level with a shorter planned lead time. For 
example, if VDL ETG would aim for a lower target service level which is associated with a reduction of X 
units in terms of the required buffer size, then shortening the planned lead time with L periods will 
have a similar reduction effect if the average demand during L periods is equal to X units. In Chapter 6 
we further elaborate on our recommendations for improving buffering and operational control. 

5.3. Lead time uncertainty and planned lead time models 
In this section we model and analyze the second class of uncertainty which plays a crucial role for 
planning and control improvement. In the beginning of this chapter we argued that in order to 
properly coordinate the release of materials and resources while taking into account the random 
processing times at work centers (as the result of interactions between materials and resources), the 
concept of ‘planned lead times’ emerges. In addition, a high reliability of planned lead times is an 
important aspect in order to allow for efficient and effective control at the integral (Goods Flow 
Control) level. In this section we investigate the potential of improving supply chain efficiency and 
control via smarter buffering against lead time uncertainty. 

5.3.1. Introduction to planned lead time modeling 
Our quantitative analyses in Chapter 2 revealed the significant ‘magnitude’ of lead time uncertainty at 
the item level, including both external supplier lead time uncertainty as well as manufacturing or 
assembly lead time uncertainty. Following our reasoning about decoupling demand uncertainty from 
lead time uncertainty, we derive that after an order release, the only uncertainty to be taken into 
account is the lead time uncertainty of the supply or manufacturing process.  

Holding safety stocks and planning for safety times are two techniques companies use to buffer 
against uncertainties in demand, supply and manufacturing (Atan et al., 2015). At VDL ETG, buffering 
with time is preferable to buffering with material. In other words, there is a preference for safety times 
over safety stocks. Amongst others, two important reasons are the very dynamic environment which 
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creates a high risk of inventory obsolescence,  and the more ‘active’ behavior of safety times compared 
to fixed safety stocks under volatile demand. The preference for buffering via safety times  in VDL ETG’s 
environment is further acknowledged by different papers. In their well-known paper, Whybark and 
Williams (1976) suggest that safety times instead of safety stocks are preferred when uncertainties in 
demand and supply are mostly due to timing rather than quantity. Moreover, Molinder (1997) states 
that using safety times instead of safety stocks results in lower costs when the variabilities in demand 
and lead time are high at the same time. In addition, Yano (1987) argues that when all units in a 
batched order are produced at the same time, the safety stock needs to be as large as the batch size. 
Hence, using safety times should be a preferred strategy, especially within production environments 
with high batch sizes (e.g. Parts production at VDL ETG).  

Similar to other companies like ASML (Atan et al., 2015), VDL ETG faces the challenging problem of 
determining planned lead times for control at the integral level. Note that we use the term ‘planned 
lead time’ to denote the average lead time plus any safety time. As acknowledged by Atan et al. (2015), 
the difficulty comes from the interactions among multiple processes. The tardiness of a process might 
imply delays in the subsequent processes, and eventually, late delivery of final products.  

We refer to Atan et al. (2015) for a comprehensive review of earlier work on the problem of 
determining planned lead times. Gong, De Kok and Ding (1994) show that the problem of determining 
optimal planned lead times in multi-echelon serial systems is equivalent to the problem of 
determining optimal base-stock levels in a multi-echelon serial inventory system. For these systems, 
the optimal echelon base-stock levels can be found by successively solving a series of recursively 
defined one-dimensional problems. The optimality of the base-stock policies and the decomposition 
result initially has been derived by Clark and Scarf (1960) and has been extended by Federgruen and 
Zipkin (1984). For large assembly systems, however, finding exact solutions for the planned lead time 
problem is very difficult (Axsäter, 2005; Atan et al., 2015). Therefore heuristics are required. 

The aim of this section is to investigate the improvement potential of smarter buffering via planned 
lead times. We therefore start with the formulation of a quantitative model which supports the analysis 
of planned lead times under lead time uncertainty. We validate the model for a real-life example within 
VDL ETG and we analyze the improvement potential.   

5.3.2. Planned lead times within VDL ETG 
At VLD ETG, each item has a specific item lead time which is stored in the ERP system. For purchasing 
items, this lead time simply is the agreed delivery time of external suppliers. For manufacturing items, 
this lead time consists of throughput times of multiple operations and possible buffer time in between 
these operations. For example, a certain module can have a lead time of 10 days, which is comprised of 
1 day for picking material in the warehouse, 2 days for washing the material, 3 days for operation on a 
machine, 1 day buffer time, 2 days for operation on another machine and 1 day for testing. The sum of 
these times in the routing of an item constitute the item lead time. In addition, an item can have a 
safety time to account for any additional disturbances or uncertainties. The sum of the item lead time 
plus the safety time can be regarded as the planned lead time. 

Considering our focus on integral production planning and control (Goods Flow Level), we analyze the 
problem of determining the planned lead times of items given their stochastic lead times. Stochastic 
throughput times of individual operations thus are excluded. This decision is supported by the fact 
integral planners at VDL ETG work according to item lead times, planning at the level of individual 
operations is performed by production unit control either within Parts or Systems.  



46 

 

Using VDL ETG’s ERP system, we gathered lead time related historical data for all production orders 
(either at Parts or at Systems) since 2013. The real planned lead time data (i.e. the difference between 
the planned start date and end date of production orders) differs considerably from the standard 
planned lead times implied by the sums of the item lead time and safety time in the ERP system. Next 
to the standard planned lead time and the real planned lead time, there is a real lead time, i.e. the 
difference between the real start date and end date of a production order. These three types of lead 
time related data are visualized in Figure 24, along with the average differences over all production 
orders for System and Parts. 

 

Figure 24: Lead time settings at VDL ETG (average deviations of all production orders) 

These results show that planners do deviate from the standard planned lead time settings in the ERP 
system. Although an extensive investigation of all reasons behind this deviation is outside the scope of 
our research, we name a few: holidays or production plant related schedules, customer orders received 
within lead time and outdated lead time settings in the ERP system. In order to avoid making life more 
complex than necessary, we only consider the real planned lead times in relation to the real lead times 
and we neglect the standard planned lead time for our modeling and analysis. For the ease of reading, 
we omit ‘real’ in our discussions below. 

With regard to the difference between the planned lead time and the lead time, we should make an 
important note about data issues. First of all, if customers delay an order, production is often delayed 
without updating the due date of production orders. This results in lead times which exceed planned 
lead times, although they actually do not harm the customer service. This happens especially within 
Systems, and partially explains why at Systems on average the planned lead time is 9 days shorter than 
the lead time. Secondly, some assembly activities are scheduled in a ‘batch’ size larger than one 
(although they are not all produced at the same time). While it is very likely that each item in the 
‘batch’ is completed before the time it is actually needed, the finish date of the production order is set 
equal to the date at which the final item in the batch is finished. Note that production within Parts also 
occurs in batches, but since all products in the batch size are typically produced ‘at the same time’, 
there is not such an issue about biased lead time data as for Systems.  

Similar to most other work in this area, we will focus on the on-time delivery (OTD) percentage as the 
service level in the planned lead time models. At the final item level, this OTD percentage is similar to 
the ECLIP measure within VDL ETG: it denotes the percentage of customer orders which is delivered on 
or before the confirmed time. Note that we will use the term ‘on-time delivery performance’ and 
‘service level’ interchangeably in our discussions below. 
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Due to the data issues explained above, the lead time data-based OTD percentage of final customer 
systems is generally far below the OTD percentage calculated based on data about customer 
deliveries. An exception to this are final modules or systems which are produced for consignment 
stock (cf. Section 3.6). An example of the application of this concept is the customer chain of Philips, for 
which the consignment stock (located at Philips’s site, but still owned by VDL ETG) should be between 
a lower and upper stock level as agreed by both parties. Since under this concept demand uncertainty 
is generally decoupled from lead time uncertainty, it is suitable for our modeling and analysis of 
planned lead time settings. More specifically, production plans are generally followed, since demand 
uncertainty is buffered via consignment stock. The OTD percentage of customer ‘deliveries’ for 
consignment items is equal to or close to 100%, since customers just retrieve an item from the 
consignment stock when needed. The ‘production’ OTD percentage generally is lower, and can be 
regarded as the reliability with which customer items are delivered to the consignment stock. 

An example of a customer product which is produced under the concept of consignment stock is the 
Philips U-Arc. Since the rather ‘small’ product structure of the Philips U-Arc allows us to keep our 
models and analyses ‘manageable’, and since production of this module is order-driven, we selected 
this module as the basis for our modeling and analysis. This will be discussed in the next paragraphs.   

5.3.3. Formulation of the model 
Based on the full BOM structure for Philips U-Arc, we constructed an assembly system as shown in 
Figure 25. Note that we omitted ‘manually’ controlled items (two-bin), since these are outside the 
scope of integral planning at VDL ETG and they are basically ‘always’ available.  

 

Figure 25: Assembly system Philips U-Arc 

The Philips U-Arc is a module which consists of 4 main components for which production is order-
driven. Component 1 has an underlying purchasing item, which is purchased based on forecasts. 
Historical data revealed that the purchase order lead time uncertainty is negligible. In order to take the 
effect on the total integral lead time into account, we increased both the lead time and planned lead 
time of Component 1 with an amount equal to the lead time of the purchasing item. Component 3 
has two underlying purchasing items, which are purchased based on forecasts. Since historical data 
revealed that their lead time uncertainty is negligible too, we increased both the planned lead time 
and lead time of Component 3 with an amount equal to the maximum of the lead times of its 
predecessors. For the other two components, historical data about starting times revealed that we can 
assume instantaneous delivery of raw materials to their process. This results in the two-echelon 
structure shown in Figure 25. 

We refer to the process of producing (or assembling) component (or module) ݅  as ‘stage’ ݅. 
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In the remainder of this section we formulate expressions which eventually result in an expression for 
the service level of the system and the total stock investments (both inventory and work in progress). 
Note that, similar to the current practice within VDL ETG, we do not aim to include the service 
performance in the cost expression via penalty costs.  

Process expressions 

In this section we derive process equations which relate the earliness and tardiness of different stages. 
We define: 

௜ܮܲ  ሼ0,1,2,3,4ሽߝ	݅∀				,݅	݁݃ܽݐݏ	ݎ݋݂	݁݉݅ݐ	݈݀ܽ݁	݈݀݁݊݊ܽ݌  ≕

߬௜  ሼ0,1,2,3,4ሽߝ	݅∀				,݅	݁݃ܽݐݏ	ݎ݋݂	݁݉݅ݐ	݈݀ܽ݁	ܿ݅ݐݏ݄ܽܿ݋ݐݏ  ≕

௜ܧ  ሼ0,1,2,3,4ሽߝ	݅∀				,݅	݁݃ܽݐݏ	݂݋	ݏݏ݈݁݊݅ݎܽ݁  ≕

௜ܮ  ሼ0,1,2,3,4ሽߝ	݅∀				,݅	݁݃ܽݐݏ	݂݋	ݏݏ݁݊݅݀ݎܽݐ  ≕

௜ܹ ,0	݁݃ܽݐݏ	݂݋	ݐݎܽݐݏ	݄݁ݐ	݈݅ݐ݊ݑ	݅	݁݃ܽݐݏ	ݐܽ	݁݉݅ݐ	݃݊݅ݐ݅ܽݓ  ≕  	݄݁ݐ	݋ݐ	݁ݑ݀

 ሼ1,2,3,4ሽߝ	݅∀				ݏ݁݃ܽݐݏ	ݎ݄݁ݐ݋	݂݋	ݏݏ݁݊݅݀ݎܽݐ

଴ܹ  4	݋ݐ	1	ݏ݁݃ܽݐݏ	݂݋	ݏݏ݁݊݅݀ݎܽݐ	݄݁ݐ	݋ݐ	݁ݑ݀	0	݁݃ܽݐݏ	݂݋	݁݉݅ݐ	݃݊݅ݐ݅ܽݓ  ≕

ܺା ≔  max	ሺ0, ܺሻ 

If all components (at stage 1 to 4) are finished on or before time, production of the module in the final 
stage starts at its planned start date. In other words, we assume that finale module production is hold 
back in case all previous stages are finished early. Atan et al. (2015) note that this assumption is quite 
common in literature (cf. Yano, 1987; Axsäter, 2005), often motivated by the fact that cost efficiency is 
obtained by waiting until the planned start time of successive stages and holding inventory of less 
costly products (since holding cost increase as more value is added). Moreover, at VDL ETG this policy 
generally is followed too, mainly because early start of stages will affect capacity planning and can lead 
to extensive rescheduling later on.  

Therefore, we have: 

଴ܹ ൌ maxଵஸ௜ஸସ ௜ܮ           [5.11] 

The waiting time of component stage ݅ due to the tardiness of other components is: 

௜ܹ ൌ ൫maxଵஸ௝ஸସ,௜ஷ௝ ௝ܮ െ ௜൯ܮ
ା
				∀݅	 ∈ ሼ1,2,3,4ሻ       [5.12] 

Due to the negligible lead time uncertainty of the purchasing items and the instantaneous delivery of 
material to the production stages, we derive that stages 1 to 4 can always start at the planned start 
time. We have: 

௜ܧ ൌ ሺܲܮ௜ െ ߬௜ሻା							∀݅	 ∈ ሼ1,2,3,4ሻ        [5.13] 

௜ܮ ൌ ሺ߬௜ െ 	݅∀								௜ሻାܮܲ ∈ ሼ1,2,3,4ሻ        [5.14] 

Since the start of final module production is delayed for ଴ܹ time units, we derive the following 
expressions for the earliness and tardiness of the final stage: 

଴ܧ ൌ ሺܲܮ௜ െ ߬௜ െ ଴ܹሻା          [5.15] 
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଴ܮ ൌ ሺ߬௜ െ ௜ܮܲ ൅ ଴ܹሻା          [5.16] 

Given that the throughput times at all stages are random, ܧ௜  and ܮ௜ , ∀݅ ∈ ሼ0,1,2,3,4ሽ, are random 
variables as well.  

Service expression 

Let ℙሺߠሻ denote the probability of event ߠ.  

Since we focus on the percentage of customer modules which are finished on (or before) time as the 
service level in our model,  we derive  

݈݁ݒ݈݁	݁ܿ݅ݒݎ݁ݏ ൌ 1 െ 	ℙሺܮ଴ ൐ 0ሻ        [5.17] 

Cost expression 

Let ॱሾ. ሿ denote the expectation of a random variable. Furthermore, let ࡸࡼ be the vector of all the 
planned lead times and ܥሺࡸࡼሻ be the total expected stock investments in the system as a function of 
  .ࡸࡼ

Without loss of generality, we set the planned start time of the final module production to 0. We 
assume that the system incurs a marginal holding cost investment of ݄௜  from the moment production 
at stage ݅ starts until the final module is finished. In the setting of VDL ETG, this holding cost 
investment consists of labor and material costs. The final module is finished at ܲܮ଴ ൅  ଴ andܮ
component production at stage ݅, ∀݅ ∈ ሼ1,2,3,4ሽ, starts at െܲܮ௜ . Note that actual production at the 
final stage starts at ଴ܹ. We derive: 

ሻࡸࡼሺܥ ൌ ॱൣ∑ ݄௜
ସ
௜ୀଵ ሺܲܮ଴ ൅ ௜ܮܲ ൅ ଴ሻܮ ൅	݄଴ሺܲܮ଴ ൅ ଴ܮ െ ଴ܹሻ൧     [5.18] 

We define ܪ଴ ൌ ∑ ݄௜
ସ
௜ୀ଴ . Then we can rewrite the above expression into: 

ሻࡸࡼሺܥ ൌ ॱൣ∑ ݄௜
ସ
௜ୀଵ ሺܲܮ௜ ൅ ଴ሻܮܲ ൅ ݄଴ሺܲܮ଴ െ ଴ܹሻ ൅  ଴൧     [5.19]ܮ଴ܪ

Now the objective is to find the vector ࡸࡼ that minimizes the total expected stock investments ܥሺࡸࡼሻ 
under a service level constraint. Before we continue with an analysis of alternative methods to 
determine the planned lead times, we first validate our model and explain our insights on VDL ETG’s 
current practice of planning lead times in the next paragraph.  

5.3.4. Empirical validation for the Philips U-Arc 
In order to validate the model and to analyze alternative methods for setting planned lead times, we 
developed a discrete event simulation tool in Microsoft Excel, which we name the ‘Planned Lead Times 
Simulation Tool’ hereafter. This simulation implements the expressions and structures formulated 
above. More practically, using the planned lead times, the average and standard deviation of the lead 
time and the cost parameters as input, the Planned Lead Times Simulation Tool returns the service 
level and average stock investments as output. In Appendix G we provide some more information 
about the structure of the tool.  

Using VDL ETG’s ERP system, we retrieved historical data about lead time realizations for the Philips U-
Arc. For the final module production stage, we have a set of 150 lead time realizations. For the 
component production stages, our data consists of a number of realizations between 15 and 45. One 
might argue that these numbers of realizations are not sufficient for validation. Our model validation, 
however, does not concern standard statistical modeling where the model is estimated from the data. 
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We used the historical data to calculate the sample mean and standard deviation of the stochastic lead 
times. Moreover, we retrieved data about the added value and planned lead time per stage from the 
ERP system. The parameter values are reported in Table 4. Note that because of confidentiality, we 
multiplied the original cost parameter values with a certain factor.  

Table 4: Model parameter values Philips U-Arc 

 

We used these parameters as input for our Planned Lead Times Simulation Tool in order to obtain the 
average stock investment and service level as output. Note that we rely on fitting a Normal distribution 
on the historical lead time average and standard deviation in order approximate the distribution of the 
stochastic lead times (see Appendix G). Concerning the empirical validity of our model, we find that 
our model-based service level estimate of 75,3% is very close to the actual module on-time 
performance of 75,1%.  

Our historical data analysis revealed that the planned lead time settings for the Philips U-Arc imply an 
OTD percentage of about 85% at the individual stages. We know from other current research (Atan et 
al., 2015) that planned lead times at ASML are determined by fitting a Normal distribution on the 
average and standard deviation of the lead time at each stage, and then using a certain % fractile to 
select the planned lead time. In order to investigate if the current practice of setting planned lead 
times at VDL ETG resembles such a concept, we used our Planned Lead Times Simulation Tool to draw 
an efficient service and cost frontier using the Fractile method. The results in Figure 26 confirm that the 
current planned lead time settings for the Philips U-Arc indeed resemble the Fractile method (with a 
85% fractile).  

Based on the above analysis, we conclude that our model (and Planned Lead Time Simulation Tool) 
provides a valid representation of reality, and it provides a solid basis for the analysis of alternative 
methods to determine planned lead times. This will be discussed in the next paragraph.   

 

Figure 26: Current planned lead time settings Philips U-Arc compared with Fractile method 

E[τ] σ[τ] PL h

Component 1 47,7 8,4 56,0 490

Component 2 32,0 8,0 41,0 170

Component 3 36,0 7,8 42,0 300

Component 4 47,0 8,9 56,0 530

Final module 0 31,0 7,8 39,5 1510

Parameter values Philips U‐Arc
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5.3.5. Towards improved planned lead time settings 
Before we analyze alternative methods to determine planned lead times, we first provide an alternative 
expression for the expected total stock investments (costs) in the system. 

ሻܮሺܲܥ ൌ ॱൣ∑ ݄௜߬௜
ସ
௜ୀଵ ൅ ଴߬଴ܪ ൅ ∑ ݄௜ሺ ௜ܹ ൅ ௜ሻܧ

ସ
௜ୀଵ ൅ ݄଴ܧ଴൧     [5.20] 

The first two parts in this alternative expression are independent from the planned lead times, and we 
therefore omit them in our stock investment evaluation of alternative methods below. The remaining 
part of the expression can be regarded as stock investments due to waiting times / earliness.  

In Table 5 we present the results of our analysis for three alternative methods to determine the 
planned lead times. We use the current situation as the benchmark: the cycle time (i.e. longest 
cumulative planned lead time) and cost under this situation are normalized at 100%.  

Critical Chain. This method is based on a conceptual approach introduced by Goldratt (1997). He 
claimed that the safety buffer in project networks with uncertain activity durations (note the similarity 
with our planned lead time model) should be positioned at the end of the project. We set the planned 
lead times of the components equal to their average lead time, and set the planned lead time of the 
final stage equal to 0. Then we modify this planned lead time at the final stage until the current service 
level of 75,3% is met (in order to account for a small deviation between the model-based service level 
of 75,3% and the real service level of 75,1%, we use the model-based service level for the comparisons).  

Critical Chain Extreme. Taking the Critical Chain concept to the extreme, we also consider the 
alternative method in which all planned lead times are set to 0. Then the planned lead time of the final 
stage is increased until the current service level of 75,3% is met.   

Newsvendor heuristic. In their paper, Atan et al. (2015) provide an iterative heuristic procedure to 
determine planned lead times in an order-driven assembly system. The heuristic is based on the 
decomposition of the assembly system into serial systems and a conjecture related to generalized 
newsvendor equations. In Appendix H we provide some more information about this heuristic.  

Table 5: Performance of alternative methods in the current scenario 

 

Based on these results, we derive that the current planned lead times aren’t performing bad compared 
to the alternatives. The Critical Chain concept results in a small improvement in terms of both a cycle 
time reduction and stock investment reduction. Taking the Critical Chain concept to the extreme 
results in a further reduction of the cycle time, although the stock investments increase with about 5%. 
The Newsvendor heuristic, finally, result in a decrease of 2% of both the cycle time and stock 
investments.  

In order to investigate the sensitivity of these results, we analyze the performance of the alternatives 
for three other scenarios in the next paragraph.  

5.3.6. Sensitivity analysis  
Compared to most other main customer systems produced by VDL ETG, the Philips U-Arc module has 
two distinct characteristics. First of all, the rather low service level of about 75% is considered as 
reasonable due to the concept of consignment stock, which  does not only protect against demand 

Method OTD

Current 75,3% 95,5 100,0% 37.900 100,0%

Critical Chain 75,4% 94 98,4% 37.350 98,5%

Critical Chain Extreme 75,3% 90,6 94,9% 39.830 105,1%

Newsvendor heuristic 75,3% 93,6 98,0% 37.130 98,0%

Cycle time Stock investment

Current Scenario
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uncertainty, but to lead time uncertainty as well. Since the consignment stock is not used for most 
other main customer systems, we also consider the scenario in which the target service level is set to 
90%. Secondly, about 50% of the total cost price of the Philips U-Arc is added during the final 
production stage, whereas the added value during the final assembly window of the ASML NXT3 
system for example is between 5-10%. We therefore also consider an alternative scenario in which the 
added value of during final module production is 10%. A third alternative scenario results from 
combining alternative Scenario 1 and 2, i.e. a high service level and limited added value during the final 
stage. We report our findings in Table 6, Table 7 and Table 8 below. Since the planned lead times for 
these alternative scenarios are not known under the current method, we use the Fractile method as 
the benchmark.  

Table 6: Performance of alternative methods under alternative Scenario 1 

 

We find that the results for alternative Scenario 1 are quite similar to the results for the current scenario, 
with a slightly bigger improvement effect of all alternative methods compared to the Fractile method. 
The stock investment reduction benefit of the Newsvendor heuristic gets more substantial as the 
added value during the final stage is limited. Moreover, also the cycle time reduction benefit of the 
Newsvendor heuristic slightly increases as the added value during the final stage is limited (cf. Figure 
42 and Figure 43 in Appendix H). If we consider alternative Scenario 3, which best represents the 
situation of most main customer systems, we see that a cycle time reduction of 4.3% can be obtained, 
associated with a stock investment reduction of 11.2%  

Table 7: Performance of alternative methods under alternative Scenario 2 

 

Table 8: Performance of alternative methods under alternative Scenario 3 

 

Compared with the Fractile method, the Critical Chain concept performs quite well for all alternative 
scenarios, whereas the extreme variant performs well mainly for the final two alternative scenarios. If 
we compare both Critical Chain concepts, we see that the main win of the basic Critical Chain concept 
is in the reduction of the stock investments, whereas the main win of the extreme variant is in the 
reduction of the cycle time.  

The general insight from these experiments is that a substantial part of the system safety buffer should 
be positioned at the final stage. This is in line with the research of Goldratt (1997) and in line with 

Method OTD

Fractile 90,0% 103,9 100,0% 55.320 100,0%

Critical Chain 90,0% 100,7 96,9% 54.170 97,9%

Critical Chain Extreme 89,9% 97,5 93,8% 57.160 103,3%

Newsvendor heuristic 90,0% 100,7 96,9% 53.050 95,9%

Alternative Scenario 1: higher service level

Cycle time Stock investment

Method OTD

Fractile 75,3% 95,5 100,0% 28.650 100,0%

Critical Chain 75,4% 94 98,4% 26.710 93,2%

Critical Chain Extreme 75,3% 90,6 94,9% 28.300 98,8%

Newsvendor heuristic 75,3% 92,6 97,0% 26.180 91,4%

Alternative Scenario 2: lower added value final stage

Cycle time Stock investment

Method OTD

Fractile 89,9% 103,9 100,0% 39.975 100,0%

Critical Chain 90,0% 100,7 96,9% 35.910 89,8%

Critical Chain Extreme 89,9% 97,5 93,8% 37.780 94,5%

Newsvendor heuristic 90,0% 99,4 95,7% 35.510 88,8%

Alternative Scenario 3: higher service level and lower added value final stage

Cycle time Stock investment
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findings for multi-echelon inventory systems that the majority of the slack should be positioned at the 
most downstream stage (De Kok & Fransoo, 2003). However, one should be careful with simply 
applying an extreme version of the Critical Chain concept. This method will lead to the biggest 
reduction of the cycle time, but also implies that a major part of the cost reduction potential is lost.  

Clearly, additional research is required to obtain more comprehensive insights about setting planned 
lead times in assembly systems with stochastic lead times. We further discuss this aspect during our 
discussion about options for further research in Chapter 7 and 8. Still, the above exploratory analysis 
revealed some valuable insights, which we further elaborate on in the next chapter.  

5.4. Conclusions and insights 
In this chapter we focused on the design of quantitative models which support understanding and 
analysis of buffer settings in order-driven assembly systems with stochastic customer due dates. We 
extensively modeled and analyzed buffering against two important classes of uncertainty in real-life 
complex supply chains: demand uncertainty and lead time uncertainty. We explicitly decoupled these 
classes of uncertainty, following our introductory discussion in Section 5.1.  

First of all, by taking an alternative perspective on demand uncertainty faced under order-driven 
control, we formulated a stochastic single-item single-echelon inventory system which captures 
demand uncertainty at the MPS level. The model provides an explanation for the very high service 
levels which are obtained by VDL ETG while there is no (or very little) finished stock: there is a buffer in 
the form of hidden inventory in the work in progress. By analyzing the MPS item from a two echelon 
perspective, we showed that there is a kind of natural decoupling between the final assembly window 
and upstream production. In addition, sensitivity analysis revealed that a reduction of the target service 
level to 95% can be associated with a reduction in the required inventory buffer size of about 25%. Still, 
this remains a rather strategic discussion. 

In order to investigate buffering against lead time uncertainty, we formulated and validated a 
stochastic planned lead time model, which has been implemented in a discrete event simulation tool. 
Our analysis for the Philips U-Arc revealed that for this MPS item, the current planned lead time settings 
are similar to the Fractile method used by ASML. Apparently, planned lead times are selected such that 
an on time performance of about 85% at individual stages is obtained. We analyzed three alternative 
methods for determining planned lead times. In combination with some sensitivity analysis, we 
showed that a rather ‘simple’ Critical Chain concept can result in a reduction of both the cycle time 
and stock investments, while meeting the current service level. A more sophisticated Newsvendor 
heuristic can result in additional improvements, up to 4% cycle time reduction and about 11% cost 
reduction in case of high target service levels and limited added value in the final assembly stage. The 
general finding is that the majority of the buffer against stochastic lead times in the system should be 
positioned at the final stage. This implies that, contrary to general believe at VDL ETG, not meeting due 
dates in upstream production stages does not necessarily deteriorate the overall system performance. 
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Six 
Design for improvement  
“Continuous improvement is better than delayed perfection”  -Mark Twain- 

 

In the first and major part of the design phase (see previous chapter), we focused on the design of 
quantitative models to support understanding and analysis of buffer management in the stochastic 
assemble to order supply chain. The models and analysis increased the understanding of important 
stochastic processes in relation to buffering, and revealed valuable insights about improvement 
directions. In this chapter we continue with the second part of our design phase, as we elaborate on 
the design directions and specific options for improving buffer management and operational control 
at VDL ETG.  

In Section 6.1 we discuss the directions for improvement of buffering and operational control under 
demand uncertainty. In Section 6.2 we formulate options for improving control and buffer 
management under lead time uncertainty. We provide a brief discussion on the necessity of suitable 
performance metrics to support decision making and control in Section 6.3. Finally in Section 6.4 we 
briefly generalize our findings as we elaborate on how other companies can benefit from our research.  

6.1. Improved buffer management and control under demand 
uncertainty 
In Section 5.2 we designed a quantitative model which captures demand uncertainty and 
rescheduling at the MPS level. By considering a MPS item as a single item with an integral planned lead 
time, we showed that we can model the supply chain of VDL ETG as a stochastic single-item single-
echelon inventory system. More specifically, we showed that the current order-driven control with 
uncertain due dates can be analyzed as forecast-driven control with demand uncertainty. The hidden 
inventory concept provides the missing link between the obtained high service level and final 
inventory which is currently absent or very small. Below we discuss two main options for improvement 
as a result of our analysis of demand uncertainty. 

Visualization of the hidden inventory buffer to reduce nervousness 
Based on our analysis and quantitative model, we argue that much system nervousness and 
inefficiency can be taken away by explicitly following initial production plans. Our analysis revealed 
that the hidden inventory buffers result from customer orders (or forecasts) which exceed real 
deliveries (delaying orders) and scheduled receipts which are rescheduled to match demand. Since the 
added value during the final assembly window is rather limited (e.g. about 5-10% of the cost price for 
the ASML NXT3 system, of which about 20-25% is labor driven instead of material driven), the cost 
efficiency of updating production plans is marginal. Moreover, the risk of holding inventory is hedged 
by customer orders (or committed forecasts). Following initial production plans will visualize the 
hidden inventory buffer (with limited additional costs) and will reduce the nervousness at the MPS 
level, thereby reducing inefficiency and reducing nervousness which is propagated through the 
system. In addition, it has the potential to ease planning, since there will be less rescheduling and less 
haziness about the real ‘size’ of the work in progress to which resources have to be allocated to finish it.  
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We believe that the biggest benefit thus comes from the alignment of plans with execution, i.e. by 
(largely) following initial production plans at the MPS level, much system nervousness can be reduced 
and the inventory buffer can be explicitly managed, while meeting the current high service level. Since 
our single-echelon model simply explains the relation between the inventory buffer and service level, 
there is no direct option for improvement. Underlying our modeling and analysis is the MTS 
perspective to analyze buffering against demand uncertainty. More detailed modeling, i.e. multi-
echelon inventory structures, might create an option for improvement via smarter positioning of safety 
stocks (against demand uncertainty) in the supply chain. Upstream positioning of the buffer, however, 
will increase the complexity of integral control as this will intervene with lead time uncertainty. 
Moreover, from previous research we know that in multi-echelon inventory systems the majority of the 
slack should be positioned at the most downstream stage (De Kok & Fransoo, 2003).  

Based on the above discussions and insights, we suggest to start a pilot test for a MPS item. More 
practically, by (more) strictly following initial production plans at the MPS level, the currently hidden 
inventory buffer will be visualized. Our Stochastic Inventory System Tool supports decision making at 
the MPS level by providing a reference level for the buffer size which should be in place to protect 
against demand uncertainty in order to obtain a target service level. The pilot test then should reveal 
the size and the evolution of the final inventory buffer. Moreover, it will reveal the extent to which 
nervousness is reduced in the entire supply chain. 

Exploration of the effect of lower target service levels 
Considering the high-tech B2B environment in which VDL ETG operates, one might argue about the 
necessity of target service levels which are about 99%. In addition, we hypothesize that the capacity of 
human planners enables an increase of a target (theoretical) service level of 95% with a few percent. In 
order to investigate the effect of lower target service levels, we performed some sensitivity analyses. 
These revealed that a reduction of the target service level to 95% can be associated with a reduction in 
the required buffer size of about 25%. Our Stochastic Inventory System Tool therefore can also be used 
to support decision making regarding the investments in inventory buffers for various service levels. In 
addition, the tool can help to explore the impact of the move rate (average demand) on the required 
inventory buffer.  

6.2. Improved buffer management and control under lead time 
uncertainty 
Analysis of ERP data revealed that lead times at VDL ETG are currently ‘uncontrolled’. There are issues 
with lead time monitoring, planned lead times are stochastic and lead time uncertainty is currently not 
explicitly managed. Due to different lead time related data issues, we selected a MPS consignment 
stock item (Philips U-Arc) for the modeling and analysis of the planned lead time problem. A stochastic 
model has been formulated and empirically validated with historical data.  

Via discrete event simulation we analyzed three alternative methods to determine planned lead times. 
The simulations showed that an efficiency increase via reductions in both the cycle time and stock 
investments can be obtained by determining the planned lead times via rather easy Critical Chain 
concepts. Moreover, a more sophisticated Newsvendor heuristic can result in further efficiency gains. 
Although these insights are obtained based on the analysis for only a single real life case, they already 
reveal that planned lead time settings are an important and promising option to buffer against lead 
time uncertainty in the supply chain of VDL ETG.  
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Investigate the planned lead time model for more systems 
Based on our analysis of the planned lead time model, we recommend to further investigate the 
improvement potential of planned lead times within VDL ETG. Our planned lead time model and 
complementary tool can be used to acquire a better understanding of the performance impact of 
current planned lead time settings. Moreover, it will allow for quantifying the improvement potential of 
alternative methods for setting buffer norms in the form of planned lead times (safety times).  

Our Planned Lead Times Simulation Tool can be used to explore the service and cost effect of different 
planned lead times for a basic two-echelon structure. It will be relatively easy to extent the tool to 
more comprehensive assembly structures, which will allow for a more detailed analysis. We explicitly 
recommend to further explore the promising Newsvendor heuristic, since this looks to be a very 
effective and efficient method to set buffer norms against lead time uncertainties.    

Decouple lead time uncertainty from demand uncertainty 
For our modeling and analysis of buffer management in the order-driven assembly system, we 
explicitly decoupled between lead time uncertainty and demand uncertainty (cf. Section 5.1). We 
argue that explicitly visualizing and ‘managing’ the final inventory buffer (see Section 6.1) in 
combination with explicit use of planned lead times, operationalizes the decoupling within VDL ETG. 
More specifically, it thereby becomes possible to explicitly monitor and manage lead time uncertainty, 
since demand uncertainty (rescheduling) will intervene with production order due dates (and 
performance measures) to a much smaller extent.  

6.3. Explicit control and feedback loops 
During the past couple of years, issues and uncertainties related to material flows in the supply chain of 
VDL ETG (CLIP suppliers, own CLIP performance of deliveries, costs, inventory investments, etc.) have 
been made visible. Via special Program Managers, there now is explicit management of these issues 
and feedback loops are created. Based on our quantitative and qualitative analysis throughout the 
entire research project, we believe that it is time for the next improvement phase: creating a better 
understanding of information related uncertainties (demand uncertainty, rescheduling, etc.) and 
planning concepts (planned lead times, inventory buffers). People are aware of related issues, but only 
improved understanding and insights will enable VDL ETG to manage them, improve them and to 
create feedback loops. This allows VDL ETG to become pro-active instead of re-active. 

An important prerequisite for pro-active management and operational control (under uncertainties) is 
the use of suitable performance metrics. In Chapter 4 we argued about the unsuitability of the current 
CLIP and RLIP measures to support and evaluate decision making. Moreover, different data-related 
issues limit the use of performance metrics to evaluate operational control, e.g. lead times of 
production orders at Systems are not properly monitored due to the focus on only customer CLIP 
measures. For our quantitative modeling and analysis, we therefore calculated alternative performance 
scores which are suitable for evaluation and decision support, e.g. the weekly demand fill rate and the 
on-time delivery performance of production orders. Hence we recommend to put in place new 
performance metrics, and more importantly, explicitly monitor them in order to allow for feedback 
loops. A basic starting point is the use of OTD-based measures for individual production orders in the 
assembly stage, which is currently lacking. Moreover, the current CLIP scores still can be used to 
measure delivery reliability towards customers, but this indicator should not solely guide operational 
decision making and control.  
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Besides the lack of explicit control and feedback loops with regard to operational decision making and 
control, we briefly point to the design of another improvement direction for performance 
measurement. Up until the start of our research project, the different types of stock related capital 
investments (see Chapter 2) were not monitored consistently across different control reports. Through 
multiple iterations with the manager of Integral Planning (Langenhuysen, Manager Production Office), 
we therefore designed and developed a new Stock Investment Performance Report structure 
consisting of three main reports (see Appendix I). These new reports are already used within the 
company since April 2015. We therefore recommend to keep using these reports in order to increase 
the understanding and awareness about stock investments and risks among people involved with the 
planning and control of customer chains. Moreover, the reports can be improved based on 
experiences and ideas from people using them. 

6.4. Generalizability of design and research findings 
Finally in this section we briefly discuss how other companies can benefit from our findings, especially 
from the models which have been designed and analyzed in the previous chapter.  

Firstly, our model with hidden inventory allows for analyzing buffering in order-driven supply chain 
systems with stochastic customer due dates based on a make-to-stock system with demand 
uncertainty. The model therefore can be use by other order-driven manufacturing companies which 
operate in dynamic (B2B) environments in which customer orders do provide certainty about the 
customer buy, but not about the real moment of buy. In case a customer item is produced via an 
assembly structure, integral planned lead times (can) allow for abstracting from detailed assembly 
structures and lead time uncertainties. Our model (and analysis) can be used to acquire a better 
understanding of the service and inventory effect of order due date uncertainty and scheduling 
decisions at the MPS level. Furthermore, it supports decision making regarding required inventory 
buffers for various service levels, different move rates and different degrees of order due date volatility.  

Secondly, the general lead time model which has been formulated in Section 5.3 can be used by other 
companies for evaluating planned lead time settings in order-driven assembly systems. Once 
companies can explain the service level (and stock investments) under existing planned lead time 
settings, they can start thinking of improving the settings. Our analysis revealed that basic Critical 
Chain concepts can provide a valuable starting point to reduce both cycle times and stock 
investments via smarter positioning of buffer time (actually more towards to end of the assembly 
system). Moreover, the Newsvendor heuristic which has been empirically tested in our research can be 
used by companies for a system-wide optimization of their planned lead time settings.  

Together, the stochastic inventory model and the stochastic planned lead time model provide a 
powerful concept for understanding two complex classes of uncertainties in order-driven assembly 
systems: due date uncertainty and lead time uncertainty. Companies can use the stochastic inventory 
model to support and explore the determination of important inventory buffers under due date 
uncertainty, and methods based on the Critical Chain concepts or a more sophisticated Newsvendor 
heuristic can be used to determine important time buffers under lead time uncertainty. Both aspects 
are important for efficient and effective buffer management and control in what we can regard as 
‘make to order-driven stock’ supply chains.  

Finally, note that our discussions on the role and position of the CODP in real-life complex supply 
chains and our discussion on the ‘need’ for decoupling demand uncertainty from lead time uncertainty 
for robust operations planning, might provide a valuable starting point for discussions about improved 
buffer management and control for other companies as well.    
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Seven 
Conclusions 
“The more I learn, the more I realize I don’t know”  -Albert Einstein- 

 

We conclude the business focused part (‘regulative cycle’) of our research study by answering the 
research questions and providing recommendations for further research within VDL ETG. 

7.1. Research questions  
In the introduction of this thesis, we stated that companies in ATO environments face many different 
uncertainties, but it is unclear how to control operations and determine buffers in order to improve the 
supply chain efficiency and control. As a case study, VDL ETG has been used to study this problem. 
After a comprehensive explorative problem analysis and the development of a roadmap (Kamps & Arts, 
2014), we formulated the following main research question:  

How should VDL ETG manage buffers and control operations in its dynamic ATO/MTO environment, 
such that the supply chain efficiency and controllability is improved? 

The focus of this research question is on the operations planning and control activities at the Goods 
Flow Control level (Integral Planning at VDL ETG). We now address this overarching question in an 
integral way by answering our research sub questions.  

1. What are key strategic, tactical and operational features in the supply 
chain of VDL ETG? 
In order to gain understanding of important aspects to take into account for improving operational 
control and buffer management in the design phase of our research, in Chapter 2 we analyzed key 
strategic, tactical and operational features in the as-is situation at VDL ETG.  

We identified flexibility and responsiveness as two important, related, strategic features. Two related 
tactical features are capital investment risk and customer commitment. Planning stability and 
nervousness have been discussed as two important operational features. We concluded our discussion 
of this research question by formulating the main planning and control objectives: meeting high 
customer service levels (above 95%) while keeping the inventory and work in progress investments as 
low as possible. In addition, we identified reduction of rescheduling workload as a third objective.       

2. What are the different types of uncertainty and their magnitude in the 
supply chain of VDL ETG? 
In the first half of Chapter 3 we constructed a framework (see Figure 9) of the key types of uncertainties 
observed in VDL ETG’s supply chain. The general classes of uncertainty are: supply, manufacturing 
process and demand uncertainty. Quantitative analysis revealed that for the supply and manufacturing 
process uncertainty, it is mainly the lead time uncertainty type which is the most comprehensive, 
rather than the yield uncertainty type. For demand uncertainty, we identified two related types: 
demand due date uncertainty and forecast uncertainty. Demand due date uncertainty at VDL ETG has 
been investigated extensively by Kamps (2015), therefore in this study we mainly focused on forecast 
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uncertainty: we showed that forecasts and orders provided by customers are volatile and imply 
quantitative uncertainty about future period demand.  

Next to the above types of uncertainty which are faced (at the Goods Flow Control level) by VDL ETG, 
we extended our discussion with some analysis of other types of uncertainty which are actually 
propagated through the supply chain by VDL ETG itself: delivery uncertainty sent towards customers, 
internal production order due date uncertainty, and purchasing order due date uncertainty sent 
towards external suppliers.  

Our desk research as well as interviews revealed that there is a strong focus on material flow 
uncertainties and associated performance metrics at VDL ETG. In contrast, there is much less 
understanding and monitoring of information flow related uncertainties and underlying planning and 
control concepts.   

3. How does VDL ETG currently deal with uncertainties in its supply chain 
and what can be learned from this? 
In the second half of Chapter 3, we discussed the different options which are currently used by VDL 
ETG to buffer against uncertainties. Capacity buffering is mainly used via dynamic capacity planning at 
Parts, production planning at Systems is performed while assuming infinite capacity (static).     
Qualitative and quantitative analysis revealed the following main buffer options which are currently 
used: explicit item safety stock (about 7,5% of all active items), explicit item safety time (less than 0,5% 
of all active items), MPS planning with buffers, general buffer of one week between internal and 
external customer due dates, and consignment stock (for a few customer chains, e.g. Philips).  

Different types of buffers are used at different moments and places. The application of buffers is mainly 
operationalized based on employees’ experiences (from planners, factory engineers, etc.). There is a 
lack of explicit performance feedback loops and control with regard to uncertainties and methods 
used to buffer against it. This makes it hard to create a solid understanding of the existence and 
especially the impact of uncertainties, let alone of the ‘optimal’ buffer parameter settings. 

4. How can operational decision making and control within VDL ETG’s 
supply chain be improved? 
In Chapter 4 we provided some conceptual discussions which were important for the development of 
appropriate models to support our design phase. These discussions provided insights about how 
operational decision making and control can be improved, or actually ‘supported’. In the second part 
of our design phase (Chapter 6), we further elaborated on the design of directions for improvement. 
Amongst others, we discussed the development of appropriate control performance indicators which 
allow for feedback loops, a shared focus on production plans instead of disunity among people in 
terms of steering based on external demand dates or internal production plans, decoupling demand 
uncertainty from lead time uncertainty, and explicit buffer management. This final aspect has been 
analyzed extensively in Chapter 5 and is the main subject of the next sub question.  

5. How should VDL ETG set norms for buffers in materials and time such 
that demand is met  effectively (on time) and more efficiently (with less 
costs and nervousness)?  
Based on exploratory analysis and alternative thinking discussed in Chapter 4, we formulated two main 
quantitative models in Chapter 5 to analyze buffer norm setting in relation to two important classes of 
uncertainty: demand uncertainty and lead time uncertainty.  
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In Section 5.2 we showed that a kind of hidden inventory buffer arises due to actual receipts at the MPS 
level which are generally closely matched with real customer demand, and real demand which is 
significantly lower than the forecasted/ordered demand (cf. Figure 17). So, the (hidden) inventory 
buffer basically can result from more strictly following initial production plans. In addition, our 
stochastic inventory model (and complementary tool) can be used as a reference to support the 
evaluation and size of the required inventory buffer under different levels of due date uncertainty, 
different move rates and different cycle times. Finally, we showed that a reduction of about 25% in the 
required inventory buffer can be obtained if target service levels are decreased to a level of 95%.  

In Section 5.3 we analyzed safety time buffers to protect against lead time uncertainty. Via our planned 
lead time model (and complementary discrete event simulation tool), we investigated three alternative 
options to determine planned lead times. Compared with the current planned lead time settings 
(which are similar to using a Fractile method), we showed that ‘easy’ Critical Chain concepts can result 
in a reduction of both the cycle time and stock investment. A more sophisticated Newsvendor 
heuristic to set planned lead times can result in additional savings, up to 4% cost reduction while 
reducing the cycle time with about 11% (cf. Table 8). Although these insights are obtained based on 
the analysis for only a single real life case, they already reveal that planned lead time settings are an 
important and promising option to buffer against lead time uncertainty in an order-driven assembly 
system. We therefore recommend this ‘problem’ as an interesting option for further research in Section 
7.2. 

6. How can VDL ETG use and implement the new insights? 
Based on the insights which we obtained during our research study and the associated tools which 
have been developed, we ‘designed’ recommendations and options for using them in Chapter 6. 
Amongst others, we suggested to use the new Stock Investment Performance Report structure; to start 
a pilot test for visualizing the hidden inventory buffer; and to investigate the planned lead time model 
and the heuristics for more customer items. We believe that our research is a great leap forward in 
terms of contributing to the important understanding of buffer management and operational control 
in the real-life complex supply chain of VDL ETG, and by indicating the potential of different 
improvement options. The next step is to operationalize and design detailed control and 
parametrization rules, for which our research should be regarded as a vital starting point. 

In summary, our main business contributions are: the development of a roadmap for a series of supply 
chain improvement projects; the development of a new performance report structure for supply chain 
capital investments; the development of a model (and associated tool) which explains the service 
performance of a MPS item under volatile demand given the inventory buffer size, and which supports 
the determination of the inventory buffer size given a target service level; the development of a model 
(and associated tool) which allows for exploring alternative planned lead time settings and their effect 
on the on time delivery performance and stock investments; the design of directions for improving 
buffer management and operational control.   

7.2. Recommendations for further research within VDL ETG  
Next to the recommendations for using the insights and tooling as discussed in Section 7.1, we make 
the following recommendations for (general) further research within VDL ETG.  

Detailed production unit control at Parts 
As discussed several times in this report, we took an integral planning perspective for analyzing and 
modeling uncertainties and buffer methods. This implies that we considered uncertainties at the 
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detailed production unit level (e.g. uncertain lead times of items produced by Parts) as endogenous to 
the problem of determining buffer norms. For example, during our analysis of planned lead times, we 
assumed a given uncertainty of item lead times. Additional gains can be realized if these uncertainties 
are reduced. Especially within Parts, detailed production unit control is very challenging, due to the 
interactions of items and limited resources. In addition, the problem of planned lead times can be 
further explored.  

Operational coordination of work order release 
The main focus of our research was on the analysis of buffer management for protection against 
demand and lead time uncertainty. We also shed light on how our insights can improve operational 
control at VDL ETG. Although we did use some alternative concepts to model and analyze 
uncertainties and buffer management, the general findings and insights were discussed by 
considering their application under the current control practices. We believe that the supply chain 
efficiency and control can be further improved by further investigating the problem of how to 
operationally coordinate the timing and quantity of work order releases. More practically, we showed 
that the current MRP-based control poses multiple problems, so an investigation of more constrained 
based work order release concepts (e.g. SBS policies (De Kok & Fransoo, 2003)) can enable additional  
improvements. Moreover, qualitative and quantitative analysis revealed the improvement potential of 
smarter planned lead time settings, so we recommended to include this problem in this direction of 
further research.  

Supply chain design and responsiveness 
Considering the cause and effect diagram (see Figure 28) discussed in Chapter 1, we note that our 
research mainly focused on the ‘problems’ of high inventory and WIP investments, and the high 
rescheduling workload (nervousness). The fourth problem, i.e. low supply chain responsiveness, has 
been addressed only indirectly. We discussed the role of supply chain responsiveness and flexibility 
from a planning and control perspective in Section 2.1. For our quantitative modeling and analysis of 
tactical buffer management and operational control, we considered the required responsiveness as 
‘given’, reflected by the current customer service levels and lead times. In the volatile environment of 
VDL ETG, high responsiveness can be an important competitive advantage. We therefore consider it as 
an promising option for further research, which can be regarded as a ‘design’ or ‘strategic’ oriented 
problem in the planning hierarchy (see Figure 6). Many interesting considerations emerge when 
designing flexibility in a system (Bertrand, 2003), e.g. alternative production strategies to achieve high 
customization while maintaining ‘quick’ deliveries (Meredith, Akinc, Zwartelé & Arts, 2015). In addition, 
the concept of consignment stock can be investigated as a design option to buffer against demand 
and lead time uncertainty for other major customer systems next to the products for which 
consignment stock is currently used.   
 
Finally, we cannot stress enough the integral nature of the planning and control problems in the 
supply chain of VDL ETG. This thesis provides insights and tools to ‘solve’ and improve a part of the 
problems, but we underline the importance of keeping the entire picture in mind. The improvement of 
the supply chain via series of (thesis) projects therefore is a good way to address the various 
challenges. Next to the above comprehensive research directions, we therefore refer to the other  
projects as listed in the roadmap (see Figure 30) for other promising options for further research at VDL 
ETG.   
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Eight 
Reflection 
“All models are wrong, but some are useful”  -W. Edwards Deming - 

 

In this chapter we complete the reflective cycle (Figure 1) by reflecting on our case study at VDL ETG 
and improving our design knowledge. In addition, we provide future research directions.  

8.1. Design knowledge 
Below we discuss the most interesting observations from the case study and we summarize our main 
scientific contributions.   

Explanation of service in a single-item single-echelon stochastic inventory 
model based on the average inventory and average order size 
In Chapter 5 we investigated the validity of our hypothesis that the service in a single-item single-
echelon stochastic inventory system can be ‘explained’ by the average inventory in combination with 
the average order size as system outcomes, and that this service is relatively insensitive to the 
operational control rules/parameters under certain circumstances. Based on formal mathematical 
analysis of the inventory system behavior, we formulated expressions for the estimated control 
parameters implicitly used under different control rules.  

Empirical analysis for three real life examples revealed the validity of our hypothesis, at least in the 
high-tech environment of VDL ETG characterized by high service levels, long lead times and low 
volumes. This implies that it is mainly a system’s average inventory in combination with the average 
order size which ‘drives’ service performance, rather than the detailed control parameters and 
concepts.   

For case studies in real life supply chains, an analysis of the average inventory in combination with the 
average order size thus can reveal valuable insights about the system performance.  

‘Hidden inventory’ under MTO control with order due date uncertainty 
One of the most striking observations in our case study is that MTO control at the MPS level with 
uncertain customer due dates can be analyzed as MTS control with hidden inventory buffers. Driven by 
the ‘inexplicable’ phenomenon of high service levels which are obtained under volatile demand 
without (or only very little) final stock, we introduced the concept of hidden inventory.  

This hidden inventory arises due to cumulative actual receipts at the MPS level which differ from the 
cumulative scheduled receipts (order driven), as a result of order-driven control, i.e. rescheduling actual 
receipts to match with customer orders, which are stochastic in terms of their due date. The hidden 
inventory can be considered as a kind of inventory which is hidden/kept in the work in progress. This 
inventory is spread in the pipeline in such a way that there is enough hidden inventory which can 
quickly enough be converted in real stock in order to cope with the stochastic demand from customer 
side, thereby obtaining a certain service level.  
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A distinction between the forecast-driven part and order-driven part thus does not really exist in the 
real life complex supply chain of VDL ETG. Traditionally, buffer management in the forecast-driven part 
of a supply chain system is analyzed under the assumption of deterministic lead times (De Kok & 
Fransoo, 2003). Buffer management in the order-driven part is typically analyzed under the assumption 
of deterministic customer order due dates (Axsäter, 2005). In the dynamic and volatile environment of 
VDL ETG, these explicit distinctions vanish: production is basically order-driven, but the uncertainty of 
order due dates creates uncertainty which can be analyzed as demand uncertainty in forecast-driven 
inventory models. The case study at VDL ETG illustrates that we can regard real-life order-driven supply 
chains in dynamic environments as a kind of stochastic ‘make to order-driven stock’ systems.    

For case studies in real life supply chains, the hidden inventory thus provides a powerful concept 
which allows for evaluating and understanding human decision making at the order-driven MPS level, 
from the perspective of a stochastic inventory system. Moreover, we showed that it can be used to 
explore the required inventory buffer size to protect against demand (due date) uncertainty for 
different target customer service levels and demand move rates.  

Safety time buffering under stochastic lead times  
In the second part of Chapter 5, we analyzed safety time buffering under lead time uncertainty. We 
formulated a two-echelon assembly model based on a real-life example within VDL ETG. Analysis of 
historical data for this example showed that the current planned lead time settings are similar to using 
a Fractile method, a method which is used by ASML too. Based on a discrete event simulation, we 
analyzed alternative methods to set planned lead times. The analysis revealed that efficiency and 
effectiveness gains can be obtained in terms of both lower stock investments and lower cycle times. A 
comprehensive heurist results in significant improvements (about 4% cycle time reduction and 11% 
cost reduction under high service levels and low added value during the final stage), but rather ‘simple’ 
Critical Chain based concepts can already result in important improvements too. The general insights 
we obtained from our analysis is that the majority of the buffer against lead time uncertainty should be 
positioned at the end.  

For case studies in real life supply chains, the concept of the Critical Chain thus might be a valuable first 
option to investigate the improvement potential of smarter safety stock buffering. In addition, one 
should realize that not meeting due dates in upstream production stages should not necessarily be 
detrimental for the overall system performance in the real-life supply chain. One should thus be careful 
with immediately rescheduling capacity and priorities in case it looks like planned due dates within the 
supply chain are not met. 

In summary, our main ‘scientific’ contributions are: the introduction and validation of the hypothesis 
about the service explanatory power of the average inventory and order size in a general inventory 
system; the introduction and empirical validation of ‘hidden inventory’ as a new mathematical concept 
which allows for the analysis of buffering under demand due date uncertainty in order-driven systems 
as buffering under forecast uncertainty in inventory systems; the formulation of a planned time model 
for a two-echelon assembly system along with the empirical validation for a real life example; an 
empirical analysis of two Critical Chain concepts and a Newsvendor based heuristic (Atan et al., 2015) 
as promising methods to set planned lead times under lead time uncertainty in an order-driven 
assembly system.  

8.2. Future research directions 
Based on our research and case study we identify promising areas for further academic research. 



64 

 

Modeling human planner behavior 
In Chapter 5 we investigated the effect of lower target service levels on the required inventory buffer 
size to cope with demand uncertainty. We hypothesized that human planner capacity can enable an 
increase of a ‘target’ or ‘model’ service level of 95% with a few percentages. Stochastic operations 
models and concepts can provide important support for human decision making, but they probably 
never will totally substitute human planners. Quantitative analysis of human planning behavior can 
reveal valuable insights, which in turn can be used to further improve the models and concepts to 
support it.  

Lot sizing under lead time uncertainty in order-driven control 
Our analysis of setting planned lead times under lead time uncertainty was conducted for a real life 
customer module at VDL ETG which is produced to order, with lot sizes equal to the order quantity. 
One might think of examples in which production is order-driven, but lot sizes are used for one or 
more of the production stages. In this case, lead time uncertainty should be modeled differently. We 
hypothesize that our model discussed in Chapter 5 then provides a kind of lower bound on the service 
level, since stochastic lead times at the stage(s) with lot sizing do not affect earliness/tardiness in each 
order cycle.  

Capacitated systems and planned lead times 
For our quantitative analysis and modeling, we didn’t consider limited capacity explicitly. We argued 
that if planned lead times are set correctly, we can assume that the capacity flexibility is such that the 
planned lead time is met with a high reliability. We thus consider lead times to be exogenous to the 
integral planning and control ‘problem’, implying that the system needs to take care of controlled lead 
times such that they are more or less fixed (cf. De Kok & Fransoo, 2003). Further research should reveal 
the relative effectiveness and efficiency of this concept in capacitated systems.    

Divergent networks with lead time uncertainty  
In Chapter 5 we formulated a planned lead time model for a two-echelon assembly structure, with four 
parallel stages preceding a single final stage. We analyzed the performance of several methods to set 
planned lead times under lead time uncertainty in such a system. One of these methods was a 
heuristic developed by Atan et al. (2015), which is based on decomposing the assembly system into 
mutually dependent serial systems. Future research should reveal if the approach underlying the 
heuristic can be used to find ‘optimal’ planned lead times in general networks. Other heuristics for the 
planned lead time problem in general networks might be developed as well.  

Hybrid push-pull concepts 
In Section 7.2 we briefly mentioned the improvement potential of a more constraint based planning 
within VDL ETG. More specifically, the top-down MRP-based material coordination lacks constraints 
which take account of material availability in upstream stages. It is a push-concept which therefore 
results in many rescheduling activities. On the other hand, pull-driven material coordination (e.g. SBS 
policies (De Kok & Fransoo, 2003)), allows for incorporating operational constraints for order releases. 
Our quantitative analysis revealed that we can model the push-driven control at the MPS level as pull-
driven control under demand uncertainty. We therefore can think of a promising option for the design 
of comprehensive hybrid push-pull concepts, in which intelligent use of early (uncertain) demand 
information is incorporated as well as the use of more operationally constraints for order releases.  



65 

 

A 
Control process flow descriptions  

A.1. Swimming lane diagram 
In this section we show the so called ‘swimming lane diagram’ which outlines the main planning and 
control processes discussed in Section 1.2, along with their time dependencies.  

Note that the diagram shows the regular decisions which are taken, including a special part which 
represents the optional occurrence of rescheduling activities. In this diagram, we focus on the decision 
functions which are important for the control of information and material in the supply chain, i.e. we 
focus on planning, control and release decisions. Execution processes (e.g. component manufacturing 
or assembling activities) are therefore excluded. Control starts by the order acceptance decision 
function performed by an order manager (contact with customer) and ends at the moment the order 
manager releases the order for shipping, i.e. the process flow ends again at the point of contact with 
the customer.  

All the processes in Figure 27 actually consist of one or more detailed decision functions, each having 
their own input, control and output variable(s), along with associated control mechanisms. A detailed 
overview of each of the decision functions is provided in Section A.2.  
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Figure 27: Swimming lane diagram of operational supply chain control decisions 
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A.2. IDEF0 process descriptions 
For each of the processes in Figure 27 introduced in the previous section, we show the details of the 
associated decision functions using the IDEF0 notation. Note that at the end of this appendix, we 
provide a list with all input, control and output variables used, along with the mechanisms. 
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A.3. Variables and mechanisms  
 

Nr. Input variable  
I1 Customer order (MTO)  
I2 Customer forecast (ATO)  
I3 Demand plan  
I4 Master production schedule  
I5 Availability raw materials  
I6 Machine utilization  
I7 Manufacturing order  
I8 Procurement order  
I9 Historical supplier reliability  
I10 Purchase order  
I11 New delivery date (MTO)  
I12 New forecast (ATO)  
I13 Modified delivery date in 

BaaN 
 

I14 Already released orders  
I15 Current production status  
I16 Replanning messages Parts  
I17 Replanning messages 

suppliers 
 

I18 Detailed planning Parts  
I19 Internal planning supplier  
I20 Inventory levels  
I21 Ready signals  
I22 Production order assembly  
I23 Inventory levels kit karts  
I24 Ready signal Systems  
I25 Customer contact  
I26 Open procurement orders  
I27 Procurement forecast  
 

Nr. Mechanism  
M1 Order manager  
M2 Integral planner  
M3 BaaN MRP  
M4 Planner Parts  
M5 Operational procurement 

employee 
 

M6 Supplier 

M7 Replanning tool  
M8 Production assistant  
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Nr. Output variable  
O1 Order  
O2 Price 

O3 External delivery date  
O4 Demand plan  
O5 Master production schedule  
O6 Manufacturing order Parts  
O7 Procurement order 

O8 Detailed planning Parts  
O9 Purchase order  
O10 Purchase order confirmation  
O11 Rescheduling confirmation  
O12 Modified delivery date in BaaN 

O13 Replanning messages Parts  
O14 Replanning messages suppliers  
O15 Confirmation new schedule  
O16 Work instructions  
O17 Work instructions supplier  
O18 Production order assembly  
O19 Picking orders  
O20 Production folder 

O21 Updated production order 
assembly 

 

O22 Transportation order  
O23 Internal planning supplier 

 

Nr. Control variable 
C1 Customer contract 

C2 Planned lead time  
C3 Capacity Parts  
C4 Capacity Systems  
C5 Bill of materials (BoM)  
C6 Economic order quantities  
C7 Capacity work stations  
C8 Routings  
C9 Economic order quantities  
C10 Supplier contracts  
C11 Control variables supplier  
C12 Safety stock level  
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B 
Roadmap sections 

B.1. Cause and effect diagram 
Figure 28 shows the cause and effect diagram which has been discussed in Section 1.3.2. 
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Figure 28: Cause and effect diagram
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B.2. Projects and dependencies 
Based on the cause and effect diagram introduced in the previous section and the quantitative 
problem validation (cf. Kamps & Arts, 2014), we constructed an overview of different types of projects 
and their rough dependencies (Figure 29). 

We classified the different projects based on the focus of their problem: does the problem relate to 
either strategic, tactical or operational decision making processes? In addition, we included the basic 
dependency relations between them, indicating which project(s) preferably should be executed 
before the start of another project. Note that all problems are actually somehow related to each other 
and iterations might be needed, but the basic and logical sequence is represented in the figure. A 
detailed description of each of the projects is provided in Section B.3. 

 

Figure 29: Rough project dependencies 
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B.3. Project descriptions 
In this section we provide a brief general description of each of the ‘projects’ which have been outlined 
in Figure 29 in the previous section.  
 
1. Assess risks and causes of obsoleteness 
The process of decision making about obsolescence was mentioned as “much paperwork”. 
Discovering both the causes of the obsoleteness and the process could contribute to a reduction of 
obsoleteness and the workload of dealing with obsolete products. 
 
2. Evaluate use of management orders (efficiency) 
When there is no customer commitment for an order (yet); a management order can be released to 
reduce lead time or produce an EOQ. This is however risky as it is uncertain whether and when 
demand will arrive. This project should focus on the inventory created by management orders and the 
associated cost. 
 
3. Assess supplier reliability 
Many suppliers do not deliver on time or deliver too early. In both cases, this is inefficient. Studying the 
costs of low supplier performance and designing a framework to give (operational) procurement tools 
to manage their suppliers, could enhance supplier discipline, providing a more lean supply chain. A 
difference between NPI and R4V should be made. 
 
4. Redesign rescheduling methods 
The costs of rescheduling (or not rescheduling) upon a demand change are unclear. Furthermore, 
rescheduling currently happens based upon gut feeling and rules of thumb. More insight in optimal 
rescheduling could reduce lead times, decrease inventory levels and lead to more consistent 
communication towards both customers and suppliers. Main question would be: what is the cost of 
rescheduling; and when should one reschedule? 
 
5. Enhance collaboration on rescheduling with key suppliers 
Currently, VDL ETG absorbs rescheduling as customers demand flexibility and suppliers do not provide 
it. This gap between flexibility offered to customers and flexibility agreed with suppliers should be 
investigated and addressed. When a group of suppliers can enhance collaboration with VDL ETG in a 
way that they provide flexibility, inventory levels can be reduced. A possibly interesting concept 
related to this issue is the concept of Logistics Forecast Agreements (LFA), which can be used to 
reduce the planning workload and instability.  
 
6. Optimize stock finished modules 
Via the use of real options, one could estimate in which cases it is beneficial to create a real option by 
increasing inventory levels of critical-path components to reduce throughput time. It then is important 
to have a good estimate of the additional sales value that can be obtained by responding quicker.  
 
7. Find right throughput times of Parts 
The parameter values used to schedule work within this job-shop environment are old and might not 
be right anymore; this especially holds for the waiting times. Finding the right parameter values and 
optimizing the planning process could contribute to a higher throughput, lower work in progress and 
a higher fill rate. This could also include the splitting of jobs and flattening the capacity utilization.  
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8. Evaluate MOQ, EPQ and EOQ calculation 
As employees indicate that minimal order quantities (MOQs) are rather high, and this results in high 
inventory, it seems valuable to evaluate the MOQ calculations. 
 
9. Find optimal internal safety times and stocks and external planned lead time Parts 
When project 7 is completed, optimal internal safety times and stocks can be calculated and external 
lead times can be determined. 
 
10. Optimize safety times and safety stocks components 
Via the use of management orders, ‘safety stock’ is created to decrease throughput time. It is however 
not yet clear when these orders are optimal and what optimal order sizes would be. On the other 
hand, when out-of-stock occurs, inventory costs also rise due to work-in-progress problems. In 
achieving an optimal inventory level, there is a balancing between high holding costs and high out-of-
stock costs. Manufacturing yield; supply uncertainty and demand uncertainty should be incorporated. 
 
11. Evaluate trade-off JIT delivery systems 
Currently, assembly nearly always starts when all components are arrived, while not all components are 
needed in the first sprint. When planning takes into account the moments on which components 
actually are required, inventory levels could be reduced, but more picking might be needed. BaaN can 
accommodate such a way-of-working, but it is rarely used at this moment. Effects of and requirements 
for successful application of a JIT principle should be investigated. 
 
12. Assess order acceptance procedure 
Orders are not always accepted for realistic deadlines, this can be due to an attempt to increase orders 
and subsequently sales. It could both lead to unrealistic expectations as well as high pressure for the 
supply chain. 
 
13. Evaluate method of prioritizing orders 
Sometimes priority orders are released; these have a rather high work load. Evaluation of the process of 
release and the subsequent planning processes could reveal the costs of a priority order and better 
methods to accept priority orders. 
 
14. Monitor all warehouse in/outflows 
For some warehouses, like the clean rooms, not all in- and outflows of materials are monitored. 
Therefore the inventory levels are unclear. Increase of monitoring could lead to more insight in the 
inventory positions within VDL ETG. 
 
15. Improve process insight 
For many parties, it is not clear what the status is of the manufacturing process, and what causes of 
delays are. Furthermore, the ERP system is not used in the way that it is designed for. Several by-passes 
are built to make the work of some people easier, but this complicates the analysis of and insight in the 
system. More insight could reduce workload of people and increase process stability.  
 
16. Bind decisions and actions at Integral Planning 
Many actions of planners have to be done manually and one by one. This could lead to errors and 
subsequently to higher cost. It would be valuable if related decisions of planners are made in one 
action. This could be realized by a decoupling between the moment of confirming the outgoing order 
and the moment of release towards procurement and Parts.  
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B.4. Roadmap 
We prioritized the projects introduced in the previous sections in order to schedule them in time, 
based on their priority in combination with the general dependency relations. The projects have been 
prioritized based upon their expected impact (cost savings, inventory reduction, performance 
improvement, etc.) and required effort (time, resources, supervision of project, etc.). As some projects 
do not provide implementable results, they are grouped. Jeroen Zwiep, Jasper Weterings (both supply 
chain innovation engineers), Hilde Botden (supply chain engineer) and John Langenhuysen (manager 
of Production Office) have ranked the projects. Next to these three rankings, we made an assessment 
from a student’s viewpoint (Kamps & Arts, 2014).  

Based on these ranked and grouped projects, and the rough dependencies between the individual 
projects as discussed above, a roadmap which outlines the planning of the different projects in time 
has been constructed. This roadmap (Figure 30) shows the planned order of execution, along with the 
departments at which the projects probably will be performed. Overall, the roadmap covers the 
important projects which address the key issues, and eventually should result in an improvement of 
the control and efficiency of VDL ETG’s supply chain.  

Finally, note that the projects with a yellow dotted line are tentative, these projects are not planned 
yet. They are listed for the sake of completeness right after the first evaluation moment, but their final 
planning and way of execution still has to be determined.  
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Figure 30: Roadmap towards improvement of supply chain efficiency and control
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C 
Integrating the supply chain uncertainties 
This appendix extends our discussion of uncertainties in the supply chain of VDL ETG, by providing the 
results of our analysis of three types of uncertainties which are ‘created’ by VDL ETG itself: purchase 
order due date uncertainty ‘sent’ to suppliers, internal production order due date uncertainty, and 
delivery uncertainty ‘sent’ to customers.  

Adding these types to the framework (Figure 9) introduced in Chapter 3, results in the extended 
framework shown in Figure 31 below.  

 

Figure 31: Extended framework of uncertainties in the supply chain of VDL ETG 

In the final section of this appendix, we provide an integral view on all uncertainties which have been 
discussed (neglecting quantity uncertainty), by positioning them in the supply chain control structure 
of VDL ETG (cf. Figure 4). Note that due to confidentiality, the vertical axis is hidden in all figures.  

C.1. Purchase order due date uncertainty sent towards suppliers 
Similar to the analysis of the customer due date uncertainty faced by VDL ETG (Section 3.4.1), we 
analyzed the purchase order due date uncertainty sent towards external suppliers, i.e. the demand due 
date uncertainty which is observed by VDL ETG’s suppliers. For this analysis, we used ERP-based 
historical data. We excluded non production related purchasing order lines (e.g. services and 
transportation). Since only data from rescheduled planned deliveries in November and December 2014 
are available, we compared these rescheduled order lines with all purchasing order lines in November 
and December. The results are shown in Figure 32, which reveals that VDL ETG typically sends its 
suppliers more advancements than delays. Planners try to avoid unnecessary nervousness by not 
immediately sending purchase order delays if a customer delays demand, although delays are sent to 
suppliers in case of ramp-downs. In case of customer order advancements, purchase orders are 
advanced too if this is necessary to meet customer service levels (Nas, 2015b). 
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Figure 32: Purchase order due date uncertainty 

C.2. Internal production order due date uncertainty 
Not only do planned due date changes occur regarding the purchasing orders sent towards external 
suppliers, internal production order due dates do face uncertainty too. In other words, the planned due 
date of a production order can be changed (possibly multiple times). Ideally, we would like to retrieve 
the uncertainty as ‘created’ by integral planning and control procedures, i.e. production order due date 
changes sent as a result of replanning. Within VDL ETG, however, only data with all rescheduled 
production order due dates are available, which also includes rescheduling due to production delays. If 
a certain production operation is delayed, the due date of the production order is often delayed too.  

Data analysis, however, still provides an indication of the existence of this type of uncertainty and 
nervousness. For this analysis, we used ERP-based historical data, filtered on new delivery dates 
between 01-01-2014 and 28-02-2015. This eventually resulted in 5217 rescheduled production order 
lines at Parts (cf. total number of 18176 production order lines of which the lead times have been 
analyzed) and 1274 rescheduled production order lines at Systems (cf. total number of 13154 
production order lines of which the lead times have been analyzed). The deviations between the old 
and new planned due dates in weeks are shown in Figure 33. Note that due to the data availability 
issues, these figures thus only show the rescheduled production order lines. 

 

Figure 33: Internal production order due date uncertainty Parts and Systems 

Again, we mention the lack of an explicit distinction between the different ‘drivers’ for a re-planning. In 
his thesis, Van den Broek (2013) already mentioned this lack within VDL ETG and he identified different 
drivers of rescheduling, e.g. customer due date rescheduling, material shortage and production delay. 
Such a differentiation would definitely facilitate and improve the analyses of planning and control 
procedures. For now, our analysis identifies the extent to which rescheduling is present. Based on 
experiences from the planners (Nas, 2015b), we note that for Parts, advancements are typically the 
result of rescheduling by integral planners, whereas delays are typically the result of rescheduling by 
Parts planners (during operation). For Systems, integral planners are mainly responsible for both 
advancements and delays.  
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C.3. Customer delivery uncertainty 
Similar to our analysis of the external supply uncertainty (Section 3.2), we performed an analysis of VDL 
ETG’s reliability as a supplier to its customers, i.e. customer delivery uncertainty. For this analysis, we 
used ERP-based historical data, filtered on customer orders which are fulfilled by Systems (deliveries 
directly by Parts or RS&S are excluded) during the period of 2014 – feb 2015, which resulted in 4984 
customer order lines.   

The delivery time uncertainty based on CLIP information (delivery date in comparison to confirmed 
planned delivery date) is shown on the left-hand side in Figure 34. The figure shows that the delivery 
performance in terms of the CLIP score is very high (considering on time or one day earlier delivery as a 
CLIP hit, about 93% delivery performance). The average deviation is -0,2 days with an associated 
standard deviation of 15,7 days. In addition, the performance in terms of the order quantity is very high 
as well, with a perfect delivered quantity for 99% of the customer order lines (average deviation is -0,06 
units, standard deviation is 2,4 units).  

 

Figure 34: Customer delivery uncertainty based on CLIP and RLIP scores 

This delivery performance, however, is largely influenced by the degree to which the customer is 
able/willing to offer flexibility in terms of modifying the requested delivery date, e.g. a customer can 
accept a delivery date delay if VDL ETG indicates that it will deliver a certain item a week later than the 
original requested delivery date. Since the CLIP analysis therefore only provides limited insight about 
the operating performance from a pure supply chain planning and control perspective, we also 
analyze the uncertainty based on RLIP information. This score focuses on the difference between the 
delivery date and the original requested delivery date by the customer. The results on the right-hand 
side in Figure 34 show a higher delivery time uncertainty as well as quantity uncertainty which is 
propagated downstream the supply chain towards the customers.  

The RLIP delivery performance is about 26%. The average date deviation is -9,7 days, standard deviation 
equals 116,6 days. If we consider quantity uncertainty, we derive that for 96,7% of the order lines, the 
delivered quantity was equal to the requested quantity. The average deviation was -0,13 units, with an 
associated standard deviation of 2,7 units.  

We thus identify a very large gap between the RLIP and CLIP scores. In other words, there is a large gap 
between the ‘capability’ and ‘reliability’ of VDL ETG’s supply chain planning and control. This stresses 
the importance to consider suitable performance metrics for our quantitative modeling and analysis in 
the design phase.  
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C.4. Framing the uncertainties in VDL ETG’s supply chain control 
structure 
We now frame the different types of uncertainties which have been discussed above in the supply 
chain control structure of VDL ETG, see Figure 35. Note that we do not (aim to) make any claims 
regarding formal causalities between these types of uncertainties. With the picture below we rather 
aim to provide a more integrated perspective on the different types of uncertainties, by positioning 
them in the supply chain control structure and indicating likely relations between them. 

We make a clear distinction between the information flow and related uncertainties (in orange, x-axis 
in weeks) on the one hand, and the material flow and related uncertainties (in blue, x-axis in days) on 
the other hand. Note that we do not include quantity uncertainties in the figure, we only focus on 
(lead) time uncertainties.  
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Figure 35: Towards an integral perspective on supply chain uncertainties 
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D 
MPS demand and production analysis 

D.1. MPS forecast uncertainty in relation to production planning 
In this section we show the results of our quantitative analysis of forecast uncertainty in relation to 
production planning for the ASML NXT3 system and the FEI Project Assy (cf. Figure 17 in Chapter 4). 
Due to confidentiality, the vertical axes are hidden.  

 

Figure 36: Cumulative demand uncertainty ASML NXT3 system 

 

Figure 37: Cumulative demand uncertainty FEI Projector Assy 
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D.2. MPS demand and production nervousness 
This section provides detailed results supporting our discussion in Section 4.2. 

Visualization 
In order to visualize the comparisons in Section 4.2, , we show a part of the analysis for the ASML XT4 
system (integral leadtime of 17 weeks) in Figure 38 and Figure 39. The review date positioned on the 
vertical axis, the period date on the horizontal axis. A red cell indicates an increase in the quantity 
(forecast or scheduled receipt), a yellow cell indicates a decrease in the quantity. The black borders 
indicate the lead time of 17 weeks. Changes above these cells with black borders imply a change 
outside the lead time, changes below imply a change within the lead time. Finally note that due to the 
inclusion of both backlog demand and  scheduled receipts in the review week just before each period, 
we observe an increase in both the forecasts and scheduled receipts for nearly all cells on the lowest 
diagonal line.      

These figure show the smoothening effect of MPS planning, i.e. the production plan as represented by 
the scheduled receipts is more stable than the demand plan as represented by the customer forecasts. 
Moreover, especially within the lead time this dampening effect can be observed. Outside the lead 
time there seems to be no dampening effect. It actually seems like the production plan outside the 
lead time (planned receipts instead of scheduled receipts) is more volatile than the demand plan.  

 

Figure 38: Example visual analysis forecast revisions ASML XT4 system (lead time = 17 weeks) 

 

Figure 39: Example visual analysis production revisions ASML XT4 system (lead time = 17 weeks) 
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Quantification 
The detailed results of our quantitative analysis of demand and production nervousness at the MPS 
level are reported in the tables below (cf. our discussion in Section 4.2). 

Table 9: ASML XT4 system (lead time = 17 weeks, data from March 2012 till March 2015) 

 

Table 10: ASML NXT3 system (lead time = 27 weeks, data from February 2013 till March 2015) 

 

Table 11: FEI Projector Assy (lead time = 28 weeks, data from March 2012 till March 2015) 

 

  

All Total # of revisions Average decrease size Average increase size

Forecasts 899 415 46,2% 484 53,8% ‐1,2 1,2

Production 716 326 45,5% 390 54,5% ‐1,1 1,2

79,6% 78,6% 80,6%

Outside lead time Total # of revisions Average decrease size Average increase size

Forecasts 448 176 39,3% 272 60,7% ‐1 1,3

Production 483 192 39,8% 291 60,2% ‐1,1 1,2

107,8% 109,1% 107,0%

Within lead time Total # of revisions Average decrease size Average increase size

Forecasts 451 239 53,0% 212 47,0% ‐1,3 1,2

Production 233 134 57,5% 99 42,5% ‐1,1 1,1

51,7% 56,1% 46,7%

Decrease Increase

ASML XT4 system

Decrease Increase

Decrease Increase

All Total # of revisions Average decrease size Average increase size

Forecasts 677 277 40,9% 400 59,1% ‐1,2 1,2

Production 463 178 38,4% 285 61,6% ‐1,1 1,2

68,4% 64,3% 71,3%

Outside lead time Total # of revisions Average decrease size Average increase size

Forecasts 214 56 26,2% 158 73,8% ‐1,2 1,2

Production 232 63 27,2% 169 72,8% ‐1,2 1,2

108,4% 112,5% 107,0%

Within lead time Total # of revisions Average decrease size Average increase size

Forecasts 463 221 47,7% 242 52,3% ‐1,2 1,2

Production 231 115 49,8% 116 50,2% ‐1 1

49,9% 52,0% 47,9%

Decrease Increase

ASML NXT3 system

Decrease Increase

Decrease Increase

All Total # of revisions Average decrease size Average increase size

Forecasts 744 343 46,1% 401 53,9% ‐1,5 1,5

Production 362 146 40,3% 216 59,7% ‐1 1,1

48,7% 42,6% 53,9%

Outside lead time Total # of revisions Average decrease size Average increase size

Forecasts 347 126 36,3% 221 63,7% ‐1,5 1,5

Production 194 47 24,2% 147 75,8% ‐1 1,2

55,9% 37,3% 66,5%

Within lead time Total # of revisions Average decrease size Average increase size

Forecasts 397 217 54,7% 180 45,3% ‐1,4 1,4

Production 168 99 58,9% 69 41,1% ‐1 1

42,3% 45,6% 38,3%

Decrease Increase

FEI Projector Assy

Decrease Increase

Decrease Increase
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E 
Single-item single-echelon inventory 
model 
The variables and expression in this appendix are adapted from De Kok (2010). 

E.1. Definitions 
ܺሺݐሻ ≔  ݐ	݁݉݅ݐ	ݐܽ	݇ܿ݋ݐݏ	ݐ݁݊	  

ܺሺିݐሻ ≔ ݐ	݁݉݅ݐ	݁ݎ݋݂ܾ݁	ݐݏݑ݆	݇ܿ݋ݐݏ	ݐ݁݊ → ܺሺିݐሻ ൌ 	 lim௧→௧ି ܺሺݐሻ   

ܻሺݐሻ ≔   ݐ	݁݉݅ݐ	ݐܽ	݊݋݅ݐ݅ݏ݋݌	ݕݎ݋ݐ݊݁ݒ݊݅

ܦ ≔   	݀݋݅ݎ݁݌	ݎ݁݌	݀݊ܽ݉݁݀

,ଵݐሺܦ ଶሿݐ ≔ ,ଵݐሺ	݈ܽݒݎ݁ݐ݊݅	݄݁ݐ	݃݊݅ݎݑ݀	݀݊ܽ݉݁݀ ,ଵݐሺ	݄ݐ݅ݓ	ଶሿݐ ଶሿݐ ൌ ሼݐ|ݔଵ ൏ ݔ ൑   	ଶሽݐ

ݏ ∶ൌ   ݐ݊݅݋݌	ݎ݁݀ݎ݋݁ݎ

ܳ ≔   ݕݐ݅ݐ݊ܽݑݍ	ݎ݁݀ݎ݋

ܵ ≔   ݈݁ݒ݈݁	݋ݐ	݌ݑ	ݎ݁݀ݎ݋

߬௜ ≔ ݅௧௛	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	ݎ݁݀ݎ݋	ݐ݊݁݉݋݉	ݎ݁ݐ݂ܽ	݁݉݅ݐ	ݐ ൌ 0	ሺ݅ ൌ 1,2, . . ሻ  

߬଴ ≔ 0,   ݈݀݁ܿܽ݌	ݏ݅	ݎ݁݀ݎ݋	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	ݐݏݎ݂݅	݄݁ݐ	݄݄ܿ݅ݓ	ݐܽ	݊݅݃݅ݎ݋	ݐܽ	݁݉݅ݐ

:௜ܮ ൌ ݐ	݁݉݅ݐ	ݐܽ	݈݀݁ܿܽ݌	ݎ݁݀ݎ݋	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	݄݁ݐ	݂݋	݁݉݅ݐ	ݕݎ݁ݒ݈݅݁݀ ൌ 	 ߬௜	ሺ݅ ൌ 0,1, . . ሻ  

ܵܵ:ൌ  ሻ݇ܿ݋ݐݏ	ݕݐ݂݁ܽݏሺ	ݎ݁݀ݎ݋	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	ܽ	݂݋	݈ܽݒ݅ݎݎܽ	݄݁ݐ	݁ݎ݋݂ܾ݁	ݕ݈݁ݐܽ݅݀݁݉݉݅	݇ܿ݋ݐݏ	ݐ݁݊	݀݁ݐܿ݁݌ݔ݁

,ଵݐሺܤ ଶሿݐ ≔ ,ଵݐሺ	݊݅	݀݁ݎ݁݀ݎ݋ܾ݇ܿܽ	݀݊ܽ݉݁݀   ଶሿݐ

௜ܷ ൌ ݐ	݁݉݅ݐ	ݐܽ	ݐ݋݋݄ݏݎ݁݀݊ݑ ൌ 	 ߬݅ 

௜ܷ
ோ ൌ ݐ	݁݉݅ݐ	ݐܽ	݈݁݀݋݉	ݓ݁݅ݒ݁ݎ	ܿ݅݀݋݅ݎ݁݌	݊݅	ݐ݋݋݄ݏݎ݁݀݊ݑ ൌ 	 ߬݅     

ାݔ ≔ maxሺ0, xሻ  

ܲሼ… ሽ ≔ …ሼ	ݕݐ݈ܾܾ݅݅ܽ݋ݎܲ ሽ  

…ሾܧ ሿ ≔ …ሾ	݊݋݅ݐܽݐܿ݁݌ݔܧ ሿ  

…ଶሾߪ ሿ ≔ …ሾ	݁ܿ݊ܽ݅ݎܸܽ ሿ  

ଵܲ ≔   ሻ݁ݐܽݎ	ݕ݀ܽ݁ݎሺ	ݏ݁ݒ݅ݎݎܽ	ݎ݁݀ݎ݋	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	ܽ	݁ݎ݋݂ܾ݁		ݐݏݑ݆	݇ܿ݋ݐݏ	݂݋	ݐݑ݋	ܾ݃݊݅݁	ݐ݋݊	݂݋	ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌

ଶܲ ≔ ,݀݊ܽ݉݁݀	݈ܽݐ݋ݐ	݂݋	݊݋݅ݐܿܽݎ݂	݊ݑݎ	݃݊݋݈  ሻ݁ݐܽݎ	ሺ݂݈݈݅	݄݀݊ܽ	݊݋	݇ܿ݋ݐݏ	݉݋ݎ݂	݀݁ݎ݁ݒ݈݅݁݀	ܾ݃݊݅݁	ݏ݅	݄݄ܿ݅ݓ
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E.2. Assumptions 
(i) Subsequent orders cannot overtake each other, i.e. an order placed later cannot arrive 

earlier 

(ii) All demand which cannot be met immediately from stock is backordered 

(iii) The stochastic demand is stationary  

E.3. Performance expressions 
The derivation of probability density functions and performance expressions is based on the analysis of 
the inventory system during two order cycles. The analysis starts at a moment in time at which the first 
replenishment order is being placed, which is considered as the time origin: time 0. Other moments in 
time which are used for the analysis are: 

଴ܮ ≔  0	݁݉݅ݐ	ݐܽ	݈݀݁ܿܽ݌	ݎ݁݀ݎ݋	݄݁ݐ	݂݋	݁݉݅ݐ	ݕݎ݁ݒ݈݅݁݀	݄݁ݐ

߬ଵ ≔  ݈݀݁ܿܽ݌	ݏ݅	ݎ݁݀ݎ݋	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	݀݊݋ܿ݁ݏ	݄݁ݐ	ݐ݊݁݉݋݉	݄݁ݐ

߬ଵ ൅ ଵܮ ≔  ݀݁ݎ݁ݒ݈݅݁݀	ݏ݅	ݎ݁݀ݎ݋	ݐ݄݊݁݉ݏ݈݅݊݁݌݁ݎ	݀݊݋ܿ݁ݏ	݄݁ݐ	ݐ݊݁݉݋݉	݄݁ݐ

 

General Equations 

ଵܲ ൌ ܲሼܺሺሺ߬ଵ ൅ ଵሻିሻܮ ൒ 0ሽ  

ଶܲ ൌ 1 െ
ாሾ஻ሺ௅బ,ఛభା௅భሿሿ

ாሾ஽ሺ௅బ,ఛభା௅భሿሿ
  

,଴ܮሺܤ ߬ଵ ൅ ଵሿܮ ൌ 	 ൫െܺሺሺ߬ଵ ൅ ଵሻିሻ൯ܮ
ା
െ ൫െܺሺܮ଴ሻ൯

ା
  

,଴ܮሺܦ ߬ଵ ൅ ଵሿܮ ൌ ܺሺܮ଴ሻ െ ܺሺሺ߬ଵ ൅   	ଵሻିሻܮ

ሾܺሿܧ ൌ
ଵ

ଶ
	ሺܧሾܺሺܮ଴ሻሿ ൅ ሾܺሺሺ߬ଵܧ ൅   ଵሻିሻሿሻܮ

ܵܵ ൌ ሾܺሺሺ߬ଵܧ ൅  ଵሻିሻሿܮ

  

The expressions for XሺL଴ሻ and Xሺሺτଵ ൅ Lଵሻିሻ depend on the replenishment logic used and will be 
described below as general as possible, while using only assumption (i) and (ii). 

ܺሺܮ଴ሻ ൌ ܻሺ0ሻ െ ,ሺ0ܦ   ଴ሿܮ

ܺሺሺ߬ଵ ൅ ଵሻିሻܮ ൌ ܺሺܮ଴ሻ െ ,଴ܮሺܦ ߬ଵ ൅   ଵሿܮ

ൌ 	ܻሺ0ሻ െ ,ሺ0ܦ ଴ሿܮ െ ,଴ܮሺܦ ߬ଵ ൅   ଵሿܮ

ൌ ܻሺ0ሻ െ ,ሺ0ܦ ߬ଵ ൅   ଵሿܮ

ൌ 	ܻሺ0ሻ െ ,ሺ0ܦ ߬ଵሿ െ ,ሺ߬ଵܦ ߬ଵ 	൅   ଵሿܮ

ൌ ܻሺ0ሻ െ	ሺܻሺ0ሻ െ ܻሺ߬ଵ
ିሻ	ሻ െ ,ሺ߬ଵܦ	 ߬ଵ 	൅   ଵሿܮ

ൌ ܻሺ߬ଵ
ିሻ െ ,ሺ߬ଵܦ	 ߬ଵ 	൅   		ଵሿܮ
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(s,Q) 
ܺሺܮ଴ሻ ൌ ݏ ൅ ܳ െ ܷ଴ െ ,ሺ0ܦ   ଴ሿܮ

ܺሺሺ߬ଵ ൅ ଵሻିሻܮ ൌ ݏ െ ଵܷ െ ,ሺ߬ଵܦ ߬ଵ 	൅   ଵሿܮ

(R,s,Q) 
ܺሺܮ଴ሻ ൌ ݏ ൅ ܳ െ ܷ଴

ோ െ ,ሺ0ܦ   ଴ሿܮ

ܺሺሺ߬ଵ ൅ ଵሻିሻܮ ൌ ݏ െ ଵܷ
ோ െ ,ሺ߬ଵܦ ߬ଵ 	൅   ଵሿܮ

(s,S) 
ܺሺܮ଴ሻ ൌ ܵ െ ,ሺ0ܦ	   ଴ሿܮ

ܺሺሺ߬ଵ ൅ ଵሻିሻܮ ൌ ݏ െ ଵܷ െ ,ሺ߬ଵܦ ߬ଵ 	൅   ଵሿܮ

(R,s,S) 
ܺሺܮ଴ሻ ൌ 	ܵ െ ,ሺ0ܦ	   ଴ሿܮ

ܺሺሺ߬ଵ ൅ ଵሻିሻܮ ൌ ݏ െ ଵܷ
ோ െ ,ሺ߬ଵܦ ߬ଵ 	൅   	ଵሿܮ

 
From the equations above we derive two ‘translation’ mechanisms. First of all, if we consider the (..,s,Q) 
and (…,s,S) systems, we see that the expressions for ܺሺሺ߬ ൅  ሻିሻ are equal and that the expressionsܮ
for ܺሺܮሻ are actually similar too, with  ܵ ൌ ݏ	 ൅ ܳ െ ܷ (or ܵ ൌ ݏ	 ൅ ܳ െ ܷோ in the case of periodic 
review). This implies that the expected safety stock (ܵܵ), the expected inventory (ܧሾܺሿ), the expected 
ܲ1 service level and finally the expected ܲ2 service level are equal.   

On the other hand, there is a ‘translation’ of continuous review models and period review models via 
the expected undershoot. In the case of period review models, of course, the undershoot would be 
expected to be higher. This is reflected in the expression for the expectation we will use later on. 

We first drop the indices under the assumption of stationary demand and undershoot distributions. 
Then: 

(s,Q) 
ܺሺܮሻ ൌ ݏ ൅ ܳ െ ܷ െ ,ሺ0ܦ   ሿܮ

ܺሺሺ߬ ൅ ሻିሻܮ ൌ ݏ െ ܷ െ ,ሺ0ܦ   ሿܮ

ሾܺሿܧ ൌ ݏ ൅
ொ

ଶ
െ ሾܷሿܧ െ ,ሺ0ܦሾܧ   	ሿሿܮ

ܲ2 ൌ 1 െ	
ሺ஽ሺ଴,௅ሿା௎ି௦ሻశିሺ஽ሺ଴,௅ሿା௎ି௦ିொሻశ	

ொ
  

(R,s,Q) 
ܺሺܮሻ ൌ ݏ ൅ ܳ െ ܷோ െ ,ሺ0ܦ   ሿܮ

ܺሺሺ߬ ൅ ሻିሻܮ ൌ ݏ െ ܷோ െ ,ሺ0ܦ   ሿܮ

ሾܺሿܧ ൌ ݏ ൅
ொ

ଶ
െ ሾܷோሿܧ െ ,ሺ0ܦሾܧ   ሿሿܮ



96 

 

ܲ2 ൌ 1 െ	
൫஽ሺ଴,௅ሿା௎ೃି௦൯

శ
ି൫஽ሺ଴,௅ሿା௎ೃି௦ିொ൯

శ
	

ொ
  

(s,S) 
ܺሺܮሻ ൌ ܵ െ ,ሺ0ܦ   ሿܮ

ܺሺሺ߬ ൅ ሻିሻܮ ൌ ݏ െ ܷ െ ,ሺ0ܦ   ሿܮ

ሾܺሿܧ ൌ
ଵ

ଶ
ܵ ൅

ଵ

ଶ
ݏ െ

ଵ

ଶ
ሾܷሿܧ െ ,ሺ0ܦሾܧ   ሿሿܮ

ܲ2 ൌ 1 െ	
ሺ஽ሺ଴,௅ሿା௎ି௦ሻశିሺ஽ሺ଴,௅ሿିௌሻశ	

ௌି௦ା௎
  

(R,s,S) 
ܺሺܮሻ ൌ 	ܵ െ ,ሺ0ܦ   ሿܮ

ܺሺሺ߬ ൅ ሻିሻܮ ൌ ݏ െ ܷோ െ ,ሺ0ܦ   	ሿܮ

ሾܺሿܧ ൌ
ଵ

ଶ
ܵ ൅

ଵ

ଶ
ݏ െ

ଵ

ଶ
ሾܷோሿܧ െ ,ሺ0ܦሾܧ   ሿሿܮ

ܲ2 ൌ 1 െ	
൫஽ሺ଴,௅ሿା௎ೃି௦൯

శ
ିሺ஽ሺ଴,௅ሿିௌሻశ	

ௌି௦ା௎ೃ
    

 

Based on the formulas and analyses discussed above, we hypothesize that the service level which is 
obtained is primarily explained by the average inventory in combination with the average order size, 
and that this service is relatively insensitive of the specific control policy which is used. More 
specifically, given the external parameters and the average inventory in combination with the average 
order size, we can approximate the ‘implicitly used’ input parameters under each control rule.  

We define: 

஽ߤ ≔   ݀݋݅ݎ݁݌	ݎ݁݌	݀݊ܽ݉݁݀	݁݃ܽݎ݁ݒܽ

஽ߪ
ଶ ≔   ݀݋݅ݎ݁݌	ݎ݁݌	݀݊ܽ݉݁݀	݂݋	݊݋݅ݐܽ݅ݒ݁݀	݀ݎܽ݀݊ܽݐݏ

௅ߤ ≔   ሻݏ݀݋݅ݎ݁݌	݂݋	ݎܾ݁݉ݑ݊	ሺ݅݊	݁݉݅ݐ	݈݀ܽ݁	݁݃ܽݎ݁ݒܽ

തܺ ≔   	݁݉݋ܿݐݑ݋	݉݁ݐݏݕݏ	ܽ	ݏܽ	ݕݎ݋ݐ݊݁ݒ݊݅	݁݃ܽݎ݁ݒܽ	݄݁ݐ

തܳ ≔   	݁݉݋ܿݐݑ݋	݉݁ݐݏݕݏ	ܽ	ݏܽ	݁ݖ݅ݏ	ݎ݁݀ݎ݋	݁݃ܽݎ݁ݒܽ	݄݁ݐ

 

Then we calculate the demand during the lead time and we approximate the undershoot via: 

 

,ሺ0ܦൣܧ ሿ൧ܮ ൌ ஽ߤ ∗   	௅ߤ

ሾܷሿܧ ൌ
ఙವ
మାఓವ

మ

ଶఓವ
	   

ሾܷோሿܧ ൌ 	
ఙವ
మାொത∗ఓವ
ଶఓವ
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Mathematical rewriting using the variables and expressions discussed above results in the following 
approximations of the control parameters for each of the policies as follows: 

(s,Q) 
ܳ ൌ തܳ   

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାఓವ

మ

ଶఓವ
െ

ொത

ଶ
  

(R,s,Q) 

ܴ ൌ
ொത

ఓವ
  

ܳ ൌ തܳ    

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାொത∗ఓವ
ଶఓವ

െ
ொത

ଶ
  

(s,S) 

ܵ െ ݏ ൌ തܳ െ
ఙವ
మାఓವ

మ

ଶఓವ
  

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାఓವ

మ

ଶఓವ
െ

ொത

ଶ
  

(R,s,S) 

ܴ ൌ
ொത

ఓವ
  

ܵ െ ݏ ൌ തܳ െ
ఙವ
మାொത∗ఓವ
ଶఓವ

  

ݏ ൌ തܺ ൅ ஽ߤ ∗ ௅ߤ ൅
ఙವ
మାொത∗ఓವ
ଶఓವ

െ
ொത

ଶ
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E.5. Influence of lead time 
In order to illustrate the negligible effect of the lead time on the difference between the service (fill 
rate) under continuous and period review, we illustrate the analysis for an artificial case with ߤ஽ ൌ
2, ஽ߪ

ଶ ൌ 1, ௅ߪ
ଶ ൌ 0, ሾܺሿܧ ൌ 5, ሾܳሿܧ ൌ 5, in Figure 40 below. Note that for this case, the difference 

between the service under continuous and period review is moderately high (cf. Figure 20).  

 
Figure 40: Illustration of lead time sensitivity analysis for the artificial case 

Analysis via our Stochastic Inventory System tool revealed that, compared  with the effect of the 
average inventory and order size in relation to the average demand, the effect of the lead time on the 
service gap is negligible.   
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F 
Base-stock vs. MRP-control at the MPS level 
In this appendix we proof that base-stock control at the MPS level can be regarded as an equivalent of 
MRP control at the MPS level, under no lot sizing restrictions. Adapted from De Kok (2001).  

 

Variables 
௜ܮ  ݅	݉݁ݐ݅	ܵܲܯ	݂݋	݁݉݅ݐ	ሻ݈݈݁ܽ݀ܽݎ݃݁ݐሺ݅݊	݈݀݁݊݊ܽ݌  =:

,ݐ௜ሺܨ ݐ ൅ ݐ	݀݋݅ݎ݁݌	݊݅	݅	݉݁ݐ݅	ܵܲܯ	ݎ݋݂	݀݊ܽ݉݁݀	݀݁ݐݏܽܿ݁ݎ݋݂ =:ሻݏ ൅  	ݐܽ	݁݀ܽ݉,ݏ

 	ݐ	݀݋݅ݎ݁݌	݂݋	ݐݎܽݐݏ	݄݁ݐ

 ݐ	݀݋݅ݎ݁݌	݂݋	ݐݎܽݐݏ	݄݁ݐ	ݐܽ	݀݁ݏ݈ܽ݁݁ݎ	݅	݉݁ݐ݅	ܵܲܯ	݂݋	ݕݐ݅ݐ݊ܽݑݍ  =:ሻݐ௜ሺݎ

௜ݏݏ  ݅	݉݁ݐ݅	ܵܲܯ	ݎ݋݂	݇ܿ݋ݐݏ	ݕݐ݂݁ܽݏ  =:

 

We assume not lot size restrictions, i.e. we assume no MOQ and a lot size multiple quantity of 1.  

 

Base-stock policy (Statistical Inventory Control) - Pull 
Inventory position of item i at start of period t: 

௜ܻሺݐሻ ൌ 	 ሻݐ௜ሺܫ ൅	∑ ݐ௜ሺݎ െ ሻ௅೔ݏ
௦ୀଵ          [E.1]

       

Quantity of item i released at start of period t: 

ሻݐ௜ሺݎ ൌ maxሾ0, ௜ܵሺݐሻ െ ௜ܻሺݐሻሿ ൌ 	maxൣ0, ௜ܵሺݐሻ െ ሻݐ௜ሺܫ ൅	∑ ݐ௜ሺݎ െ ݇ሻ௅೔
௞ୀଵ ൧				   [E.2]

    

MRP policy - Push 
The Time-Phased Orderpoint logic of the MRP logic leads to release quantities for MPS item i at the 
start of period t which equals: 

ሻݐ௜ሺݎ ൌ maxൣ0, ∑ ,ݐ௜ሺܨ ݐ ൅ ݇ሻ ൅ ௜ݏݏ െ ሻݐ௜ሺܫ	 െ ∑ ݐ௜ሺݎ െ ݇ሻ௅೔
௞ୀଵ

௅೔ାோ
௞ୀ଴ ൧    [E.3]
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Equivalence between MRP policy and base-stock policy 
From equations [E.1] and [E.3] it easily follows that: 

an MRP policy for the MPS item is equivalent to a base-stock policy with: 

௜ܵሺݐሻ ൌ ∑ ,ݐ௜ሺܨ ݐ ൅ ݇ሻ ൅ ௜ݏݏ
௅೔ାோ
௞ୀ଴         [E.4] 

So a base-stock policy with a time-dependent base-stock level is equal to a MRP policy. It then uses 
forecasted demand when calculating the release quantities, and thereby thus becomes a push system.  
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G 
Planned Lead Times Simulation Tool 
This appendix provides some additional information on the Planned Lead Times Simulation Tool, 
which implements the planned lead time model discussed in Section 5.3. 

G.1. Structure 
The simulation tool, built in Microsoft Excel, actually consists of three main sheets.  

 

Figure 41: Structure of Planned Lead Times Simulation Tool 

In the first sheet, there is an input section, which requires the following information about each of the 
items/stages in the two-echelon assembly structure: 

- Average of stochastic lead time 
- Standard deviation of stochastic lead time 
- Planned lead time 
- Added value (cost) per item 

Concerning the planned lead time values, one basically needs to provide the planned lead time per 
item. There is, however, also an option to provide a value in a special cell for the Fractile method. More 
specifically, if one provides a percentage value in this cell for the Fractile method, the tool 
automatically determines the planned lead time for each stage accordingly.  

In addition, the user needs to define the number of simulation runs. Note that one simulation run 
includes 500 realizations, i.e. 500 production cycles.  

The output section in Sheet 1 provides the key performance measures:  

- the service level in terms of the OTD percentage 
- the cycle time 
- the average stock investments due to waiting times / earliness 
- the average total stock investments including WIP investments (cf. expression [5.20])  
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Sheet 2 provides a more detailed interface, by showing detailed simulation outcomes per item / stage. 
Note that this sheet provides the results of one simulation run. More specifically, it shows for reach 
individual stage:  

- the average earliness 
- the average tardiness 
- the average waiting time due to other stages 
- the average WIP investment 
- the average investment due to waiting time and earliness 
- and the OTD performance of each individual stage  

In Sheet 3, the detailed data realizations are reported. For each of the 500 production cycles, the 
realizations of the lead times are listed (see next paragraph). Based on these realizations, the relevant 
variables for the costs and service expressions (cf. Section 5.3) are calculated. 

G.2. Assumptions 
In addition to the assumptions discussed in Section 5.3.3 (a.o. infinite supply of raw material, holding 
back final assembly in case all component stages are finished on time), we use one additional 
assumption for the generation of data realizations in our simulation tool (Sheet 3): lead times are 
stationary and Normally distributed. This assumption allows for instantaneous lead time realizations for 
a single run via Excel, but more importantly, turned out to be a fair representation of reality in terms of 
the empirical validity of the simulation-based system performance outcome (see Section 5.3.4).  
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H 
Newsvendor heuristic 
In this appendix we provide some background information on the Newsvendor heuristic (Atan et 
al.,2015), which has been analyzed in Section 5.3 as a promising method to determine planned lead 
times in an order-driven assembly system.  

H.1. Solution approach 
The heuristic was developed with the intention of solving the planned lead time problem at ASML, 
which is actually very similar to the problem of determining planned lead times at VDL ETG (see 
Section 5.3). In their article, Atan et al. (2015) study an assembly system that consists of a number of 
parallel multi-stage process feeding a multi-stage final assembly process. The authors developed an 
iterative heuristic procedure for determining planned lead times that relies on a conjecture related to 
generalized Newsvendor functions. Although we do not aim to provide all mathematical details 
behind the heuristic, note that the authors rely on two-moment mixed Erlang fits to approximate the 
distributions of the sum of waiting times, tardiness and throughput times (cf. expressions [5.11] - 
[5.16]). By comparing numerical results of their heuristic with the results from a numerical optimization 
method (Davidon-Fletcher-Powell), the authors conclude that the heuristic performs well with a 
percentage cost error of 1.33%.  

Note that the heuristic is based on the minimization of the sum of waiting/earliness costs and penalty 
costs (cf. our costs expressions [5.19] and [5.20] which include no penalty costs). The authors exploit 
the relationship between the Newsvendor fractile and the on-time delivery probability to estimate 
penalty costs associated with late deliveries of a system.  

H.2. Efficient frontiers 
In order to illustrate the improved performance of the Newsvendor heuristic over the Fractile method 
(used by ASML and also similar to the planned lead time settings at VDL ETG), we compare the efficient 
frontier of both methods for the Philips U-Arc case (see Section 5.3).  

More specifically, we draw two efficient frontiers: one cost efficient frontier (Figure 42) and one cycle 
time efficient frontier (Figure 43), for varying service levels. Figure 42 shows that the Newsvendor 
heuristic does not only successfully ‘optimize’ the total relevant costs (sum of penalty costs and waiting 
costs) compared to the Fractile method, the waiting costs separately are lower under the Newsvendor 
heuristic too. Finally note that Figure 43 confirms our findings as discussed in Section 5.3: the 
Newsvendor heuristic allows for a reduction of the cycle time compared to the Fractile method, with 
slightly higher gains for higher target service levels.   
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Figure 42: Cost efficient frontiers of the Newsvendor heuristic and Fractile method 

 

Figure 43: Cycle time efficient frontiers of the Newsvendor heuristic and Fractile method 
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I 
Stock Investment Performance Report  

I.1. Performance report structure 
Figure 44  below shows the new Stock Investment Performance Report structure which has been 
designed during this research project (see Section 6.3). The new structure actually consists of a triple of 
reports, which we briefly elaborate on in the next sections.   

 

Figure 44: New Stock Investment Performance Report structure 
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I.2. History report 
The history report (weekly focus) actually consists of two main parts: a part in which historical information for the company VDL ETG (Eindhoven) is reported, 
and a part in which the historical information per ‘chain’ is reported. A representation of the general part is provided below. This report shows the (weekly) 
evolution of investments in inventory, work in progress and purchasing. Moreover, it contains deltas in terms of the comparison of this week’s investments with 
the investments of the previous week. Note that due to confidentiality, some numbers, lines and axis are hidden.   

 
Figure 45: Adapted representation of the general part of the history report

Anonymous 
Inventory

Project 
Inventory

Anonymous 
WIP Project WIP Anonymous 

Purchasing
Project 
Purchasing

Customer 
Commitment Orderboek Inventory WIP Purchasing Chain Value

Last Week 6.868.888€     6.851.784€     2.047.301€     12.316.762€         5.600.223€         4.847.186€     58.738.745€      63.968.615€      6.868.888€     21.215.847€   10.447.409€   38.532.144€   

This Week 6.607.751€     6.671.379€     2.095.507€     12.794.927€         5.674.792€         5.049.128€     58.558.343€      63.733.288€      6.607.751€     21.561.814€   10.723.921€   38.893.485€   

Delta 261.138-€         180.404-€         48.206€           478.166€              74.569€               201.943€         180.402-€            235.327-€           261.138-€         345.968€         276.511€         361.341€         
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I.3. State report 
A simplified version of the state report is shown in the figure below. The state report shows the current investments (automatically updated each night) in 
inventory, work in progress and purchasing, both order-driven as well as forecast-driven. Note that due to confidentiality, numbers and axis are hidden.  

 

Figure 46: Adapted representation of the state report 
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I.4. Forecast report 
The figure below shows the structure of the forecast report (monthly focus). Note that this report automatically forecasts the investments in the inventory and 
work in progress for the end of the next month, based on information about the current state (see previous section). Moreover, it provides deltas with regard to 
differences between different months. Due to confidentiality, numbers are hidden.  

 

Figure 47: Adapted representation of the forecast report 

 

ASML AWH  

ASML Cymer Notitie

ASML NXE  

ASML SB Notitie

Baccini Softline

FEI Notitie

KLA

Philips Notitie

Thermo

Trumpf

Waters

X Overig

Total

  Delta Current State

To
ta
l I
n
ve
n
to
ry
 &
 W

IP

Delta Previous Two Months

VDL ETG Supply Chain Capital Investment Report [Forecast]

31‐3‐2015

In
ve
n
to
ry

W
o
rk
 in

 P
ro
gr
e
ss

30‐4‐2015

In
ve
n
to
ry

W
o
rk
 in

 P
ro
gr
e
ss

To
ta
l I
n
ve
n
to
ry
 &
 W

IP

D
e
lt
a 
w
it
h
 L
as
t 
M
o
n
th

In
ve
n
to
ry

W
o
rk
 in

 P
ro
gr
e
ss

To
ta
l I
n
ve
n
to
ry
 &
 W

IP

Month

To
ta
l I
n
ve
n
to
ry
 &
 W

IP

C
h
ai
n

C
o
m
m
e
n
t 
1

Programs

C
o
m
m
e
n
t 
2

O
rd
e
rb
o
o
k

V
al
u
e
 F
ac
to
r

To
ta
l P
u
rc
h
as
in
g

Month State

To
ta
l I
n
ve
n
to
ry
 &
 W

IP

Forecast 31‐5‐2015



109 

 

Bibliography 
Axsäter, S. (2005). Planning order releases for an assembly system. OR Spectrum, 27, 459-470. 

Berenberg. (2013). Semiconductor Equipment. Hamburg: Berenberg Equite Research. 

Bertrand, J. (2003). Supply chain design: flexibility considerations. In A. De Kok, & S. Graves, Handbooks 

in OR & MS (pp. 133-198). Elsevier. 

Bertrand, J., & Fransoo, J. (2002). Operations management research methodologies using quantitative 

modeling. International Journal of Operations and Production Management, 22(2), 241-264. 

Bertrand, J., & Wortmann, J. (1981). Production control and information systems for component 

manufacturing shops. Amsterdam: Elsevier. 

Bertrand, J., Wortmann, J., & Wijngaard, J. (1990). Production control: a structural and design oriented 

approach. Amsterdam: Elsevier. 

Botden, H. (2015, March 6). Supply Chain Engineering (e-mail communication). (J. Arts, Interviewer) 

Broek, F. v. (2013). De basis is gelegd: streven naar complete beheersing van herplanningen VDL ETG. 

Eindhoven: Fontys Hogeschool Bedrijfsmanagement Eindrapport. 

Chang, C. (1985). The interchangeability of safety stocks and safety lead time. Journal of Operations 

Management, 6(1), 35-42. 

Clark, A., & Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem. Management 

Science, 6, 475-490. 

Coppens, P., Graaf, T. v., Loermans, F., Nas, P., Rosenau, D., & Verschuren, T. (2014, October 7). Cause and 

Effect Session. (J. Arts, & T. Kamps, Interviewers) 

Davis, T. (1993). Effective supply chain management. Sloan Management Review, 34(4), 35-46. 

De Kok, A. (2001). Push en pull in supply chain management. Bedrijfskunde, 73(3), 94-100. 

De Kok, A. (2010). Handout: analysis of stock control models for one location with one product (with 

associated tool). Eindhoven: Eindhoven University of Technology. 

De Kok, A. (2012). The return of the bullwhip. Review of Business Economic Literature, 57(3), 381-392. 

De Kok, A. (2015, February 19). Reflection and discussion on Research Proposal. (J. Arts, Interviewer) 

De Kok, A., & Atan, Z. (2015). Setting planned leadtimes in customer-order-driven assembly systems. 

Working paper Eindhoven University of Technology. 



110 

 

De Kok, A., & Fransoo, J. (2003). Planning Supply Chain Operations: Definition and Comparison of 

Planning Concepts. In A. De Kok, & S. Graves, Handbooks in OR & MS (Vol. 11, pp. 597-675). 

Elsevier. 

De Kok, A., & Inderfurth, K. (1997). Nervousness in inventory management: comparison of basic control 

rules. European Journal of Operational Research, 103, 55-82. 

De Kok, A., Janssen, F., Van Doremalen, J., Van Wachem, E., Clerkx, M., & Peeters, W. (2005). Philips 

Electronics Synchronizes Its Supply Chain to End the Bullwhip Effect. Interfaces, 35, 37-48. 

De Vocht, P. (2015, March 19). Capacity planning at Parts. (J. Arts, Interviewer) 

Federgruen, A., & Zipkin, P. (1984). Computational issues in an infinite-horizon, multi-echelon inventory 

model. Operations Research, 32, 818-836. 

Fisher, M., Hammond, J., Obermeyer, W., & Raman, A. (1994). Making supply meet demand in an 

uncertain world. Harvard Business Review, 72(3), 83-93. 

Goldratt, E. (1997). Critical Chain. USA: North River Press. 

Gong, L., De Kok, A., & Ding, J. (1994). Optimal leadtimes planning in a serial production system. 

Management Science, 40(5), 629-632. 

Graves, S., & Willems, S. (2003). Supply Chain Design: Safety Stock Placement and Supply Chain 

Configuration. In A. De Kok, & S. Graves, Handbooks in OR & MS (pp. 95-132). Amsterdam: 

Elsevier. 

Ho, C. (1989). Evaluating the impact of operating environments on MRP system nervousness. 

International Journal of Production Research, 27, 1115-1135. 

Hopp, W., & Spearman, M. (2000). Factory Physics (2nd ed.). Singapore: McGraw Hill. 

Kamps, T. (2015). Master Thesis Tom Kamps VDL ETG. Eindhoven University of Technology, Expected in 

February 2015. 

Kamps, T. C., & Arts, J. (2014). A roadmap to the improvement of VDL ETG's supply chain efficiency & 

control. Eindhoven: Eindhoven University of Technology. 

Klein, A. (2015, February 3). Supplier Performance Measurement. (J. Arts, Interviewer) 

Koops, B. (2015, March 12). Head of Factory Engineers Systems. (J. Arts, Interviewer) 

Langenhuysen, J. (2015a, March 5). Discussion about supply chain planning and objectives. (J. Arts, 

Interviewer) 



111 

 

Langenhuysen, J. (2015b, April 20). CODP discussion and performance metrics within VDL ETG. (J. Arts, 

Interviewer) 

Lee, H., & Billington, C. (1992). Managing Supply Chain Inventory: Pitfalls and Opportunities. Sloan 

Management Review, 33(3), 65-73. 

Leenders, H. (2015, March 12). Factory Engineering at Parts: yield uncertainties. (J. Arts, Interviewer) 

Meredith, J., Akinc, U., Zwartelé, B., & Arts, J. (2015). Corrigendum to "Charecterizing and structuring a 

new make-to-forecast production strategy. Journal of Operations Management, in press. 

Mitroff, I., Betz, F., Pondy, L., & Sagasti, F. (1974). On managing science in the systems age: two schemas 

for the study of science as a whole systems phenomenon. Interfaces, 4(3), 46-58. 

Molinder, A. (1997). Joint optimization of lot-sizes, safety stocks and safety lead times in an MRP system. 

International Journal of Production Research, 35, 983-994. 

Nas, P. (2015a, March 9). Manufacturing lead time uncertainty at Parts and Systems. (J. Arts, Interviewer) 

Nas, P. (2015b, March 19). Integral planning Philips. (J. Arts, Interviewer) 

Orlicky, J. (1975). Meterials Requirements Planning. New York: McGraw-Hill. 

Reichhart, A., & Holweg, M. (2007). Creating the customer-responsive supply chain: a reconciliation of 

concepts. International Journal of Operations & Production Management, 27(11), 1144-1172. 

Rosenau, D. (2015, March 16). Integral planning ASML. (J. Arts, Interviewer) 

Van Aken, J. (2004). Management research based on the paradigm of the design sciences: the quest for 

tested and grounded technological rules. Journal of Management Studies, 41(2), 219-246. 

Van Aken, J., Berends, H., & Van der Bij, H. (2007). Problem Solving in Organizations: A Methodological 

Handbook for Business Students. Cambridge: Cambridge University Press. 

Van Oosterhout, P. (2015, February 25). Program Manager FEI. (J. Arts, Interviewer) 

Van Strien, P. (1997). Towards a methodology of psychological practice: The regulative cycle. Theory & 

Psychology, 7(5), 683-700. 

VDL Annual Report. (2013). VDL Groep Jaarverslag 2013. Eindhoven. 

VDL ETG. (2014). ERP Data BaaN IV, internal acces via BaaN or iQBS. 

VDL ETG. (2014). QHE Process Descriptions, acces via internal sharepoint. 

Whybarck, D., & Williams, J. (1976). Material requirements planning under uncertainty. Decision 

Sciences, 7(4), 595-606. 



112 

 

Yano, C. (1987). Stochastic leadtimes in two-level assembly systems. IIE Transactions, 19(4), 371-378. 

Yano, C., & Lee, H. (1995). Lot sizing with random yields: a review. Operations Research, 43, 311-334. 

 


