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1 Introduction 

The European Commission foresees an important role for Energy Service Companies, like Strukton, to achieve 
energy saving goals and it proposes to publish best practices or benchmarks for energy efficiency [1]. Numerous 
efforts have been made to benchmark energy performance of buildings for public use. However most of them 
are based only on building function categorization and floor area normalization [2]. It is expected that other 
approaches for categorization or normalization can improve the process of energy performance assessment and 
therefore identify buildings with high energy saving potential. In order to help Strukton improve energy 
efficiency in buildings in their portfolio, an efficient method to determine energy saving potential can improve 
internal processes. Because of the commercial nature of Strukton activities, the process of finding this saving 
potential should be achievable with minimum use of time and resources. The current research aims to offer 
Strukton or other instances a more specialized benchmarking methodology for assessing energy performance of 
single buildings through analysis of performance of a set of buildings or building portfolio.  

In order to achieve this goal, a methodology was developed to create benchmarks using a set of buildings, a 
number of building parameters and measured energy consumption data of these buildings. The methodology is 
of an observational nature and low computational demand is a requirement because of the commercial nature of 
the methodology. Therefore, the choice of statistical methods is arbitrary and accuracy could be improved.  
MatLab R2014b and its Statistics and Machine Learning Toolbox were used to build a model for analysis of a 
dataset and calculation of the benchmarks. The model is a combination of built-in MatLab functions and some 
straightforward calculations. The aim is to be able to use any given building portfolio as an input and calculate 
useful benchmarks with minimal adaptations to the model. The number of buildings or observations is expected 
to be of no issue to the practicability of the model, however a low number of observations can lead to unreliable 
results.  

As mentioned, the aim of the research is to develop a methodology to find benchmark values from a specific set 
of building data. The Strukton Worksphere building portfolio is one example of such a dataset. Unfortunately, at 
this moment Strukton building data is not gathered and stored systematically. However, the company is 
planning on improving on data collection and use this for enhancing building performance. The results of this 
research can help develop the data collection strategy of Strukton and propose a methodology for analysis of 
this data. Considering the amount of data needed to find meaningful results, it was decided to use another 
dataset for testing the benchmarking methodology. The Commercial Building Energy Consumption Survey 
(CBECS) 2003 a publically available dataset of over 5000 buildings (observations) and over 300 building 
characteristics or measured data (parameters) . After filtering, as explained in Appendix 0, close to 3692 
buildings were included in the final dataset used for testing the analysis. In 2012, a new survey was conducted 
by the same organization [3]. The survey has a similar setup as the 2003 edition, however, at the moment of 
writing this paper, the data gathered in this survey is not yet released. The survey is conducted in the United 
States, so differences in climate characteristics, units used and similar differences must be taken into account. 
Therefore, data of the CBECS 2003 dataset was recalculated to unit standard units used in Europe and the 
Netherlands and an assumption was made on the US climate type most similar to Dutch climate. For this 
assumption, the Netherlands was considered one uniform climate zone [4]. Nevertheless, these differences are 
expected to have minor influence on the workings of the methodology in the Netherlands, although a similar 
dataset of Dutch commercial buildings might lead to slightly more accurate results. 
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Figure 2: Detailed schematic representation of the research steps and the MatLab functions used for each step. A, B C, D and E
correspond to the stages shown in Figure 1. 
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2.3 Sensitivity analysis and multicollinearity (Stage C)  

After categorization and optional normalization of the buildings and associated predictor and response (energy 
consumption) parameters, Step 7 of the methodology as shown in Figure 2, consists of a sensitivity analysis. 
The aim of this step is to determine mutual correlation between predictor parameters and the relative 
contribution of the predictor parameters to energy consumption. Both correlations can be determined by 
calculating Spearman’s partial rank correlation coefficients using built-in MatLab function partialcorr() [5], as 
was suggested by Tian et al. [6]. This function provides partial rank correlation coefficients and the p-value for 
the parameters. The coefficients represent the degree of correlation between two parameters, a coefficient close 
to 1,00 indicates a strong correlation, a coefficient close to 0,00 indicates a weak correlation. If two predictor 
parameters show a strong mutual correlation, the influence of one parameter on energy performance can be 
assumed to be explained by the other parameters to a great extent. Therefore, one of the parameters can be 
discarded for computational purposes. If one predictor parameter and energy consumption show a weak 
correlation, it can be concluded that the predictor parameter has insignificant influence on energy performance. 
Therefore, it is assumed that this parameter can also be discarded. 

The reliability of the results of this step are dependent on the dataset worked with. The size of the dataset, 
distribution of parameter values and the reliability of data can influence results. Nominal data, like the 
categorization parameters, cannot be included in the sensitivity analysis. In order to test the statistical 
significance of the coefficients found, the p-value is assessed. Per assumption, a p-value smaller than 0,05 can 
be considered statistically significant [7], and therefore the correlation coefficient can be considered a reliable 
measure for strength of the correlation. 

As mentioned, predictor parameters might be to some extent correlated. Moreover, in a multidimensional 
dataset like the one used for this research, this is likely to occur. For example, the number of degree days can be 
expected to have some correlation with location and the amount of heated floor area is likely to be related to 
total floor area. Correlated input parameters of a multidimensional dataset can cause decreased accuracy of the 
results of the multiple regression analysis in step 10 of the research [6, 8]. This phenomenon is referred to as the 
multicollinearity problem [9]. To check whether this problem is an issue to address in the current dataset, 
variance inflation factors (VIFs) are calculated for each input variable (Step 8, Figure 2)[7]. The equation for 
calculating VIFs can be found in Appendix 2. A rule of thumb introduced by Allison et al. [9] and applied by 
Wang et al.[8] among others, states that when the VIF of a variable exceed 2.5, this variable is significantly 
correlated to one or more of the other input parameters. For the current research, it is assumed that in case one 
or more parameters show these higher VIFs, the multicollinearity problem should be taken into account.   

Two approaches are considered to address the multicollinearity problem. First, parameters could be discarded 
for reasons explained in the subsection on sensitivity analysis. When the multicollinearity problem remains an 
issue, the remaining parameters can be recalculated to uncorrelated parameters (principal components) using 
Principal Component Analysis (PCA) [8, 10], Step 10 in Figure 2. For this analysis, built-in MatLab function 
pca(); [11]   was used to create these uncorrelated parameters. More detailed information on the 
multicollinearity problem and PCA process can be found in the Appendix 0. Figure 7 shows the principle of 
PCA where a set of predictor parameters (p) are recalculated to a set of principal components (pc) which have 
insignificant mutual correlations. If multicollinearity is not an issue based on VIFs, this step can be skipped and 
predictor parameters can directly be combined into one virtual predictor parameter X, as input for the Multiple 
Regression Analysis (MRA). Figure 8 shows the structure of a dataset both with original predictor parameters 
and with these predictor parameters replaced by principal components. 
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3 Results 

The current research resulted in a methodology that can be used for analysis of a dataset of buildings and define 
custom energy performance benchmarks for this dataset. These benchmarks can help assess energy performance 
and indicate energy saving potential by comparing to similar buildings in subset based on a number of 
categorization parameters. The first part of the methodology proposed compares Multiple Regression Analysis 
(MRA) results for different input datasets constructed categorizing or normalizing building data, as explained in 
the methods section. The analysis of these MRA results is performed in order to select the most promising data 
subset for assessment of energy performance. After this selection, the MRA results can be used to calculate 
predicted energy consumption for a given set of buildings. The difference between predicted and measured 
energy performance, referred to as the residual, can be used to assess energy performance compared to similar 
buildings. The current section focusses on the results of the four crucial steps to this methodology and concludes 
with a case study to demonstrate the practical relevance of this methodology. Results of the benchmarking 
process will not be addressed separately but will be discussed in Section 3.3 on the case study. 

3.1 Categorization and normalization findings 

As mention in Section 2.2, two types of energy 
consumption normalization are considered in this 
research and compared to the results for not-
normalized data. In particular, these types are 
Energy Use Index (EUI) and Daily Energy Use 
Index (DEUI). In general, the coefficients of 
determination (R2) are significantly higher for 
energy consumption and electricity consumption 
when performing the MRA using the original, not-
normalized dataset.  When analyzing fossil fuel or 
district heat consumption specifically, it is advisable 
to use normalized data because R2 tends to be higher 
for these cases. This can be explained by the fact 
that fossil fuels and district heat are mainly used for 
heating, and the size of the building and the number 
of degree days are known to be of significant 
influence on heating demand. In general, DEUI 
scores slightly better than EUI.  

Basically, the choice of normalization type depends 
on which type of energy consumption is targeted for 
analysis. For the remainder of the current report, 
only primary energy consumption was taken into 
account, so further results were only described for 
total (not-normalized) energy consumption. 
However, detailed MRA and case study results in 
Appendix 4 and 5 do include the results for 
normalized data. In subsection 3.3 on the case study 
results, normalization will be addressed briefly as 
well.  

Table 2 shows that the results for normalized data were found to be significantly lower. Although normalization 
is considered advantageous in some cases, as discussed before, it is not recommended for primary energy 
consumption or electricity to use normalized data. However, using the MRA as is the case in this research, 
degree days and floor area are also included in calculations for predicted energy consumption, therefore making 
standard normalization unnecessary.  

Table 2: Coefficients of determination of the regression models 
for the total dataset, looking at different consumption 
parameters and performance indicators. P-values of all 
presented coefficients are significantly smaller than 0,05.  

R2 Primary Electricity Fossil Heat 
Total 88,94% 96,48% 51,27% 19,02% 

EUI 41,14% 42,99% 35,04% 45,39% 
DEUI 43,40% 43,01% 33,22% 50,41% 

 

 

Figure 11: Graphical representation of the data presented in 
Table 2. 
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As explained in section 2.2, 10 parameters were selected for categorization of the buildings in the dataset. Every 
categorization parameter consists of a range of three to sixteen subsets or building categories, which can be 
found in the appendix. The original dataset is divided in subsets with equal values for the categorization 
parameters. For example, building category office under categorization parameter function is a subset of the 
original dataset, consisting of all buildings of the function type office. Building category Brick, stone or stucco, 
under categorization parameter wall type is a subset of the original dataset, consisting of all buildings with a 
predominant facade type of brick, stone or stucco. One building can be assigned to the building category for 
offices as well as Brick, stone or stucco, but can only be assigned to one subset with respect to the same 
categorization parameter. The original dataset is the complete dataset without categorization carried out. 

For every subset of buildings multiple regression analysis was carried out to find a model for calculating 
predicted energy consumption. The statistics calculated with this model, calculated by MatLab function fitlm(); 
[12], can be used to assess the accuracy of predictions of this model. Table 3 shows the weighted mean R2 and 
p-value for every categorization parameter. This is the mean value weighted by the number of buildings in the 
subset divided by the total number of buildings of all subsets combined. R2 is a measure for the fit of the MRA-
prediction to the data in the building class, p-value indicates the statistical significance of the MRA-prediction. 
In general, it is assumed that if the p-value remains below 0.05 [7], the results are statistically significant. As 
Table 3 shows, this is the case for all values of R2.  

The most widespread method of categorizing buildings 
is probably by function or main activity within the 
building. Table 3 shows this can be statistically 
explained by the highest R2 of all. However, the 
original dataset or categorization by main heating 
equipment show similar results. More parameters show 
scores of over 80% and could be considered good 
options for categorization. Moreover, it can be very 
interesting to look at multiple categorizations for one 
building. A building might perform well compared to 
buildings of a same function, but not so well compared 
to buildings with the same type of heating equipment. 
This might indicate the heating system is not 
performing as well as can be expected indicating 
possible energy saving potential.  

  

Table 3: Weighted mean regression analysis results for the original dataset and subsets based on categorization parameters. 

Categorization 
parameters 

Primary EUI DEUI 

R2 p rank R2 p rank R2 p rank 

Original 88,94% 0,0000 - 41,58% 0,0000 - 44,15% 0,0000 - 

Location 88,99% 0,0000 1 25,41% 0,0257 11 23,67% 0,0220 11 

Function 87,79% 0,0000 3 32,79% 0,0000 7 36,15% 0,0000 4 

Wall type 85,66% 0,0000 4 34,40% 0,0029 5 41,38% 0,0017 1 

Roof type 85,18% 0,0000 5 36,81% 0,0004 3 31,33% 0,0000 7 

Building shape 82,19% 0,0000 6 31,40% 0,0000 8 32,68% 0,0000 5 

Building age 81,48% 0,0000 7 33,06% 0,0000 6 31,30% 0,0000 8 

Main heating system 80,57% 0,0000 8 37,86% 0,0000 2 38,03% 0,0001 2 

Main cooling system 76,74% 0,0000 9 29,47% 0,0138 9 30,11% 0,0008 10 

Water heating system 72,46% 0,0000 10 38,34% 0,0278 1 31,69% 0,0025 6 

Glass type 37,04% 0,0000 11 34,99% 0,0000 4 37,25% 0,0000 3 

Table 4: Regression statistics for subsets from categorization 
based on building age and the weighted mean for all subsets as 
presented in Table 3. 

Built during   
or after 

R2 p 
Number of 
buildings 

RMSE 

1999 82,94% 1,34E-133 385 7,39E+06

1994 87,23% 1,93E-144 357 9,96E+06

1988 53,02% 2,21E-44 370 2,48E+07

1981 53,39% 5,20E-53 381 3,35E+07

1975 80,18% 1,31E-122 388 1,82E+07

1969 94,71% 3,90E-211 359 1,72E+07

1960 90,59% 1,30E-202 427 1,12E+07

1950 93,37% 1,73E-181 337 1,05E+07

1927 94,56% 5,98E-143 323 7,88E+06

1771 87,64% 1,85E-150 365 5,74E+06

Weighted mean 81,48% 2,21E-45 (3692) 1,48E+07
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Details on the results per building class can be found in the appendices. As an example, Table 4 shows the 
statistics of the regression analysis of data categorized by building age or year of construction. As the results 
show, the categories for buildings built between 1981 and 1987, and between 1988 and 1993 show a relatively 
high RMSE indicating observations show a wide distribution of numbers for energy consumption. Notice that 
these categories also show a lower coefficient of determination, indication that there is a significant chance that 
predicted energy consumption deviates from actual, measured, energy consumption. Therefore, it might be 
beneficiary to subdivide these building categories to reduce the RMSE and improve R2. 

High weighted mean coefficients of determination as shown in Table 3 can indicate the chosen building 
parameter is suitable for meaningful categorization of buildings for benchmarking. However, the weighted mean 
coefficient of determination can be significantly influenced by low coefficients for a small number of subsets. 
Therefore, this type of categorization should not be discarded be because the single subset can be very 
interesting for benchmarking particular buildings. For example, when benchmarking energy consumption of a 
building built between 1969 and 1974, Table 4 shows a R2 of 96%, which shows this MRA model is very 
interesting for this particular building although the overall R2 for categorization by age is only 82%. Note that 
the p-value of all subsets is significantly smaller than 0,05, so results can be assumed statistically reliable. In 
conclusion, in case of the assessment of a single building, it is advisable to analyse MRA statistics for specific 
subsets the building is part of.    

In general, results of the MRA show that for every building different building parameters can be best suitable 
for categorization. Moreover, where one type of categorization, e.g. building function, might be more interesting 
for benchmarking one building than another type, e.g. heating system, this can be the other way around for 
another building. It is important to keep in mind that another original dataset might lead to different results and 
conclusions based on this same methodology. Thorough application of the methodology with respect to data 
collection and defining category boundaries where possible, as well as careful analysis of the results for both 
building benchmarks as well as choosing benchmarks for building energy performance assessment can enhance 
the ability to actually assess performance. 

3.2 Sensitivity analysis using Spearman’s partial rank correlation coefficient 

After normalization and categorization of the buildings partial correlation coefficients are calculated to 
determine mutual correlation between two building parameters, adjusted for the other parameters. Figure 12 
shows the partial correlation coefficients between all 14 predictor variables and total primary energy 
consumption for one subset of the building age categorization parameter, namely buildings built between 1999 
and 2004. For this particular subset of buildings, numbers of escalators, elevators computers show to have a 
relatively small correlation to primary energy consumption. This could indicate it is less crucial to include these 
parameters in the following steps, and these could possibly be discarded. However, the relative importance of 
parameters can be different for different subsets or different categorization parameters. 

As determined through the calculation of the VIFs in the example in Appendix 0, four predictor parameters 
showed strong correlations to one or more other predictor variables. To take a closer look at this result, partial 
correlation coefficients for these four parameters were calculated. Figure 13 shows the results of these 
calculations carried out using MatLab-function partialcorr() [5]. Heating and cooling degree days show strong 
(negative) mutual correlations, meaning that if parameters shows high values the other one most of the time 
shows low values. Total, heated and floor area also show strong (positive) correlations. It means large values for 
one often means large values for the others. In case of these high correlations it could be concluded that some of 
the parameters can be discarded because their effects on energy performance are to a great extent explained by 
the other parameters. The conclusions of both previous paragraphs in this section are based on the assumption 
that the results of the sensitivity analysis are statistically significant. In order to test this significance, the 
MatLab function used, also provides the p-values that are associated with every single correlation coefficient. 
For this particular subset, and for all subsets considered in the current research, the p-values tended to be larger 
than the allowed 0,05[7]. Therefore, at this point, the results of the sensitivity analysis were found to be of little 
significance and reliability. This resulted in the choice to not discard any of the chosen predictor parameters at 
this point. Future research on the subject of sensitivity analysis and relative significance of predictor parameters 
to energy performance of buildings are expected to improve the results of the current research. More on this 
topic is discussed in Section 4.4. 
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Figure 12: Spearman's partial correlation coefficients indicating the strength of the partial correlation between 
predictor variables and total primary energy consumption. 
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Figure 13: Spearman's rank correlation coefficient for the parial correlation found between four selected parameters and the 
other predictor parameters for the subset of buildings built after 1999. Heated and cooled floor area, as well as heating and 
cooling degree days were chosen because these parameters showed high VIF’s, as show Figure 17 and Figure 16 in Appendix 0, 
which also discusses multicollienearity and the calculation of VIFs.  
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4 Conclusions and discussion 

This section rounds up the conclusions that yielded from the current research, discusses strengths and 
limitations of the current state of the methodology and offers recommendations for further development of the 
methodology. 

4.1 The proposed benchmarking methodology 

The research presented in this paper resulted in a proposal for a methodology to develop benchmarks based on 
data analysis of a given dataset. This dataset consists of set of buildings, technical building characteristics and 
measured data. Therefore the methodology is considered to be advantageous for companies, institutions or 
collectives targeting energy efficiency of buildings in their portfolio. The only prerequisite is availability of a 
significantly large set of buildings and associated building data. Significance of the size of the dataset depends 
on the diversity of buildings within the set. The methodology is advantageous in comparison to most public 
benchmarks because more types of building categorization can be considered and multiple benchmarks can be 
used for a thorough assessment. The research showed interesting alternatives for categorization by building 
function, showed the potential of benchmarking using subsets of similar buildings and can be used to assess 
historic performance. Also, to some extent, energy saving potential could be located within the building, 
through analysis of multiple benchmarks for one building. If the benchmarking results of one type of 
categorization are significantly lower than others, the defining categorization parameter is assumed to be a good 
place to start looking for possibilities to enhance performance. Also, because of the application of regression 
analysis, the normalization process seems to be superfluous. Floor area and degree days, for example, are 
implemented in the regression model used to calculate predicted energy consumption. This finding was 
supported by the coefficients of determination (R2) for regression models found for subsets with normalized 
data (Table 3, Section 3.1, and Appendix 4). The methodology is flexible to numerous approaches for 
categorizing buildings and choosing predictor parameters. Therefore it is possible to start with a limited set of 
buildings and predictor parameters and get initial results. Increasing the number of buildings or predictor 
parameters can be carried out over time to increase accuracy of the results. In the same manner, submetering and 
time resolution can be implemented to amplify the possibilities of using results for assessing building energy 
performance. The current state of the methodology shows interesting results, however, robustness of the 
methodology can be significantly increased and the methodology could be expanded. The conclusions on these 
possible improvements are discussed in the next subsections. Finally, one of the major conclusions of the 
research is that the assessment of multiple benchmarks, based on multiple (single or combinations of) 
categorization parameters, can help enhance the understanding of building performance and therefore help 
improve it.  

4.2 Combining categorization parameters and clustering buildings 

The results presented in this paper indicate that further research on the categorization of buildings can lead to 
improved results of the method. The aim of categorization is to define subsets of buildings with similar 
characteristics. This can be done based on one categorization of a combination of parameters. Based on the final 
conclusion of the previous subsection, it must be noted that it is not the goal of the methodology to determine 
one ultimate type of categorization to benchmark performance. Multiple types can show sufficient reliability 
and the comparison of those can lead to new insight on energy performance.  

Looking back at the building age categorization, the low scoring categories show high root mean squared error 
(RMSE) indicating a wide range of energy consumption within this category. Dividing these categories in 
multiple subcategories might improve the results. Furthermore, the focus of this research has been on 
categorization based on one single building parameter. However, it is expected that combining building 
parameters for categorization could improve the ability to assess energy performance of buildings. For example, 
looking at all office buildings built after 2000 or buildings with a façade of mainly glass and a heat pump cooler. 
The combination of building parameters can be made as complex as desired, increasing the similarity of 
buildings within the building category. Future research could investigate the added value of applying state of the 
art clustering techniques for building categorization. 
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4.3 Challenges in data availability 

Building categories can contain as many buildings as available, but a larger set of buildings is likely to generate 
more reliable results. In general, smaller sets show lower R2 except when the RMSE or dispersion of energy 
consumption is relatively low. To test the minimum amount of buildings the p-value can be used, a p-value 
exceeding 0,05 is considered as an indication for unreliable results [7]. In the current research it was found that 
a minimum of 35 buildings was required for the regression model to be usable for predicting energy 
consumption. This number should be reconsidered every time the methodology is applied.  

The research was carried out using the CBECS 2003 data because of the large number of buildings and building 
parameters. Although the data is considered useful for testing the methodology, a number of shortcomings have 
emerged as well. The data from the survey was collected more than a decade before the research was carried 
out. In this decade, a lot of progress was made concerning energy efficiency in both existing and newly 
constructed buildings. For example, on-site generation of electricity and heat using solar or wind energy was not 
included in the dataset. Also, overall energy consumption patterns most likely have changed quite a lot due to 
developments in appliances and installations. A similar survey was carried out in 2012, unfortunately the 
complete dataset is only scheduled to be released end of 2015. A more recent dataset might be useful for further 
testing and developing of the methodology.  

The dataset contained a lot of categorical data where interval data might be expected or more useful. For 
example, wall type is only included in the research using categories like brick wall or glass facades. Window 
glass types in the survey are divided in single glass, multi-layer glass or a combination. A transition towards 
working with insulation values, air tightness, etc., is expected to have a significant positive effect on the ability 
to assess energy performance. The same can be said for heating and cooling systems, servers and computers. 
Capacities, efficiencies and running time might be interesting data to take into account. General tendency is to 
install increasing amounts of measurement instrument, this data can be used for energy performance assessment 
using the proposed methodology. Also, a number of parameters were not found in the survey data which might 
have significant influence, like façade area and air tightness of the building. 

4.4 Choice of parameters 

The set of building parameters selected from the survey data was based on literature study and availability. This 
makes this set arbitrary and leaves it up for discussion. Improvement of the availability of good quality data as 
mentioned above and a more thorough sensitivity analysis of building parameters might improve this set of 
building parameters. For example, the parameter wall type is a nominal value which means it cannot be ranked, 
so one type cannot be considered better or worse than another type. This makes it very hard to include this 
parameter in a sensitivity analysis or regression analysis. Therefore, this parameter is only used as a 
categorization parameter while it is expected to be significant to predicting energy consumption when expressed 
as insulation values. A simple sensitivity analysis was carried out for the selected set of parameters, but results 
were not very conclusive so for this research the set of parameters presented in Table 1, no parameters were 
discarded for the next steps of the research. 

4.5 Resolution of the dataset and methodology 

The methodology can be adapted from a low dimensional dataset, like annual whole building energy 
consumption and a limited number of parameters, to a higher dimension for time, building level and level of 
detail of building parameters. The current research focuses on annual whole building energy consumption. 
However, the methodology is expected to be suitable for assessing on different levels as well. Time resolution 
might be changed to a monthly, daily or even hourly scale to look at the difference between seasons, weekends 
and weekdays or day and night. Also zooming in from whole building level to floor, room, or system level 
might help locate inefficient energy performance and enable significant savings. Future research is needed to 
further develop the methodology for this purpose, especially concerning interpreting results of an assessment.  
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4.6 Recommendations for future research 

From the findings of this results and the observed shortcomings and opportunities to improve were identified. 
The methodology proposed in shows promising results, but is not yet robust enough. For example, the case 
study showed deviant results for cooling, for which possible explanation were suggested. Uncertainties in data 
collection and parameter selection make it difficult to draw conclusions in such a case. Further research on the 
following topics can probably significantly improve the robustness of the methodology. Update the database 
used for testing the methodology is not one of the steps mentioned, but is expected to be useful for any kind of 
future research. 

1. Reconsider the parameter set from Table 1 to develop a minimal dataset for robust performance 
assessment of buildings, including the possible values of categorical data. 

2. Test the methodology for building categories defined by a combination of categorization parameters or 
clustering using state-of-the-art techniques to maximize similarity of buildings within the subsets. 

3. Adapt the methodology from annual whole building, to monthly or smaller time resolution and to 
submetering on floor, system or component level to more precisely locate energy saving potential. 

4. Further investigate the possibilities to locate energy saving potential using the results of multiple 
benchmarks, based on multiple categorization approaches.  
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Table 6: Conversion factors [14]   for recalculating 
CBECS 2003 (US) data to European standards.  

Units US EU Factor
Floor area ft2 m2 0,09290

Energy thous Btu MJ 1,05597

Degree day DDF;65 DDC;18 5/9

 

1. Data preparation, filtering and assumptions 

As mentioned, in order to test the methodology the CBECS 2003 dataset was used as can be found on the 
website of U.S. Energy Information Administration [13]. The total set of micro data contains of over 5000 
buildings and per building hundreds of possible building parameters in combination with energy consumption 
data. Therefore it was considered a suitable source of data for the current research. The actual data showed to be 
usable but not perfect for the methodology during the course of this research. Some weaknesses of the data 
could be eliminated by recalculating and filtering the data. Others have to be considered while interpreting the 
results and efforts should be made to improve data collection quality in future work, as discussed in Section 4.  

First of all, the dataset was recalculated to European 
standard units using the conversion factors in Table 6. 
The research focusses on energy consumption so 
observations without data for primary consumption 
were removed from the dataset. Primary consumption is 
defined as the total of energy consumption from all 
individual energy sources. Primary energy is measured 
in British Thermal Units (Btu) in the U.S. system and in 
mega joule (MJ) in the European system. Observations 
with less than 12 months of energy consumption data 
were also removed from the dataset. Also, malls, vacant 
buildings, and buildings with function description ‘other 
function’ were removed because of a lack of data. 

As mentioned before, a selection was made concerning the building parameters used, as presented in Table 1. 
One group of parameters was used for categorizing buildings into smaller subsets of higher similarity. Another 
group of parameters was used as input for regression analysis and the benchmarking process. The selection of 
parameters was made based on availability of data, the type of parameter values and literature study [15-19]. 
Consequently some of the parameters are not used as might be expected, because the type of data was not as 
desired. For example, wall type is incorporated in the CBECS 2003 dataset as a nominal parameter while 
insulation values might me more interesting. More on this subject can be found in Section 4. 

For a significant number of observations, one or more parameter values were missing. Although the used 
MatLab functions mostly use built in strategies to deal with missing values, in some cases it was considered to 
be desirable to make assumptions on parameter values for missing data. For number of elevators and escalators, 
as well as number of servers and missing energy consumption data, is was assumed that missing values indicate 
the value is 0. The percentage of exterior glass was assumed to be 25% when in case of missing data and the 
number of computers per person was assumed to be the average number over the filtered dataset, being 
approximately 0.86 computers per person. Furthermore, server and computer categories were replaced by the 
median value of the category interval. 

Finally, some parameters were recalculated. Natural gas and fuel oil were combined and renamed fossil fuels. 
Years of construction were recalculated to building age with 2004 as base value. In other words, buildings age is 
2004 minus the year of construction. Percentages for heated and cooled floor area were recalculated to actual 
areas by multiplying the percentages with the value of total floor area.  

During the course of the research, it was concluded that a subset of building data should contain at least 35 
buildings to in order to provide useful results. This number was found using the current dataset and might be 
different when analyzing another building portfolio. The current research, testing of the methodology, analyses 
and benchmarking process were carried out using a dataset from the United States. By carrying a case study 
using Strukton buildings the results were tested for Dutch buildings. Because of the large variety of climatic 
conditions within the U.S. one climate zone was assumed to be most similar to Dutch climate. This was 
assumed to Seattle, located in Census Region 9, Pacific.  
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Figure 17: Variance inflation factors for the predictor
parameters of the subset of buildings categorized by building
age. The category used as an example is buildings built after
1999. 
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Figure 16: Variance inflation factors for principal components 
calculated from the predictor parameters of the subset of 
buildings built after 1999. 
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2. Multicollinearity and Principal Component Analysis  

 
The danger of a high dimensional dataset is the existence of correlations between parameters representing 
building characteristics. In case of Multiple Regression Analysis this can lead to unreliable results 9and 
therefore the presence of multicollinearity has to be checked. Variance Inflation Factors (VIFs) are calculated to 
this extent [8,20]. 

௣ܨܫܸ ൌ ฬ ଵ

ଵିோ೛
మฬ (  1 ) 

MatLab code:  VIF=abs (diag(inv(rho))); [20]     

With Rp
2(=ρ) the coefficients of multiple determination or Spearman’s ρ (Partial Rank Correlation Coefficients) 

of the predictor parameters found by MatLab-function partialcorr(); [5] and VIF an Nx1 matrix if VIFs for 
every predictor parameter. N is the number of predictor parameters. 

Depending on the results and rule of thumb proposed by Allison et al. [9], a ruling on the presence of 
multicollinearity is made. It is expected that multicollinearity will be found. Correlated parameters might be 
discarded and benchmarks can be developed for the remaining predictor parameters. Another approach to the 
multicollinearity issue is Principal Component Analysis (PCA) [8, 10, 21]. This technique converts the predictor 
parameters into a number of uncorrelated components by combining correlated parameters. In order to create 
uncorrelated input for the regression analysis, built-in MatLab function pca(); [11]   was used. This function 
determines principal component coefficients which can be used to recalculate parameter values of every 
observation to principal components in such a manner that principal component are not significantly correlated 
and therefore are suitable as predictor parameters for multiple regression analysis.  

Every principal component explains a certain amount of variance in the data. The number of principal 
components is maximum the number of original parameters, however, it is possible that 100% variance 
explained is reached using less principal components. Moreover, in literature it is suggested to only keep 
principal components up to a number of approximately 75% of variance explained [21]   in order to simplify 
further steps in research. Discarded principal components represent such a small significance in influence on 
energy consumption that they can be ignored. The percentage of variance explained is provided by the MatLab 
function as explained. The function also provides in scores, being representations of the observations using 
principal components instead of the original predictor parameters. These scores result in a new dataset for which 
parameters, principal components in this case, are supposed to be not significantly correlated. This can be 
checked by recalculating VIFs for the principal components. 

Figure 17 shows the VIFs calculated for the predictor parameters using Equation 1, for the subset of buildings 
built after 1999, indicating multicollinearity may cause problems due to correlated predictor parameters. 
Therefore, PCA was performed for the predictor parameters of this dataset resulting in principal component 
coefficients and a recalculated dataset for this subset. Again, VIFs were calculated and results are shown in 
Figure 16. VIFs show to be significantly lower than 2.5 for the principal components, so multicollinearity 
should not cause problems in the regression analysis. 
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3. Subsets or building categories defined for categorization of buildings 

Building function 

 

Location 

 (predominant activity in the building) US Census Divisions* 

2 Office 1  New England 

4  Laboratory 2  Middle Atlantic 

5  Non-refrigerated warehouse 3  East North Central 

6  Food sales 4  West North Central 

7  Public order and safety 5  South Atlantic 

8  Outpatient health care 6  East South Central 

11  Refrigerated warehouse 7  West South Central 

12  Religious worship 8  Mountain 

13  Public assembly 9  Pacific 

14 Education * Dutch climate was assumed to be most similar to the Pacific 
division. Census Divisions can be found following this link: 
 
www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf 

 

15 Food service 

16  Inpatient health care 

17  Nursing 

18  Lodging 

25  Retail other than mall Heating equipment type 

26 Service 1  Furnaces that heat air directly 

2  Boilers inside the building 

Year of construction* 3  Packaged heating units 

  Range 4  Individual space heaters 

1 1999-2003 5  Heat pumps for heating 

2 1994-1998 6  District steam or hot water 

3 1988-1993 7  Other heating equipment 

4 1981-1987     

5 1975-1980     

6 1969-1974 Cooling equipment type 

7 1960-1968 1  Packaged A/C units 

8 1950-1959 2  Residential-type central A/C 

9 1927-1949 3  Individual room A/C 

10 1771-1926 4  Heat pumps for cooling 

* For categorization and further analysis building age is used by 
subtracting the year of construction from base year 2004. Case 
buildings from after 2004 are categorized in the first building class 
(1999-2003) 

5  District chilled water piped in 

6  Central chillers inside the building 

7  "Swamp"-coolers or evaporative coolers 
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Building Shape Window glass type 

1 Square 1  Single layer glass 

2 Wide rectangle 2  Multi-layer glass 

3 Narrow rectangle 3  Combination of both 

4  Rectangle/square with courtyard 4  No windows 

5  "H"-shaped 

6  "U"-shaped Roof type 

7 "E"-shaped 1  Built-up 

8  "T"-shaped 2  Slate or tile shingles 

9  "L"-shaped 3  Wood shingles/shakes/other wood 

10  "+"-or cross shaped 4  Asphalt/fiberglass/other shingles 

11 Other shape 5  Metal surfacing 

6  Plastic/rubber/synthetic sheeting 

Wall type 7  Concrete 

1  Brick, stone, or stucco 

2  Pre-cast concrete panels Water heating type 

3  Concrete block or poured concrete  1 One or more centralized 

4  Siding, shingles, tiles, or shakes 2  One or more "point-of-use"- 

5  Sheet metal panels 3  Both types of water heaters 

6  Window or vision glass    
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4. Results from Multiple Regression Analysis (MRA) of individual building categories 

 

 

after 1999 82,94% 1,34E-133 # 385 7,39E+06  02=Office 89,45% 0,00E+00 783 1,04E+07
1994-1998 87,23% 1,93E-144 # 357 9,96E+06  04=Laboratory 94,21% 3,91E-11 37 1,91E+07
1988-1993 53,02% 2,21E-44 # 370 2,48E+07  05=Nonrefrigerated warehouse 84,02% 1,01E-124 349 3,72E+06
1981-1987 53,39% 5,20E-53 # 381 3,35E+07  06=Food sales 95,30% 3,17E-51 100 1,05E+06
1975-1980 80,18% 1,31E-122 # 388 1,82E+07  07=Public order and safety 98,10% 8,06E-43 71 3,03E+06
1969-1974 94,71% 3,90E-211 # 359 1,72E+07  08=Outpatient health care 74,19% 8,02E-26 124 5,90E+06
1960-1968 90,59% 1,30E-202 # 427 1,12E+07  12=Religious worship 95,25% 4,39E-116 247 4,49E+05
1950-1959 93,37% 1,73E-181 # 337 1,05E+07  13=Public assembly 96,17% 3,79E-113 221 1,03E+07
1927-1949 94,56% 5,98E-143 # 323 7,88E+06  14=Education 83,26% 7,50E-190 531 4,02E+06
1771-1926 87,64% 1,85E-150 # 365 5,74E+06  15=Food service 88,42% 4,71E-79 201 9,69E+05

81,48% 2,21E-45 3692 1,48E+07  16=Inpatient health care 62,53% 1,96E-28 177 9,21E+07

 17=Nursing 96,45% 3,64E-29 59 5,81E+06
after 1999 27,07% 1,01E-19 # 385 901  18=Lodging 97,44% 3,98E-153 218 3,94E+06
1994-1998 66,42% 5,48E-74 # 357 996  25=Retail other than mall 92,79% 5,28E-149 292 1,43E+06
1988-1993 31,82% 1,16E-23 # 370 904  26=Service 99,76% 8,79E-223 282 1,18E+06
1981-1987 28,13% 1,44E-20 # 381 907 88,99% 3,91E-13 3692 9,26E+06

1975-1980 30,36% 1,99E-23 # 388 999
1969-1974 29,03% 5,37E-20 # 359 1036  02=Office 19,73% 1,66E-29 783 565
1960-1968 30,25% 3,77E-26 # 427 878  04=Laboratory 35,87% 4,25E-01 37 1734
1950-1959 42,53% 1,58E-32 # 337 729  05=Nonrefrigerated warehouse 27,28% 8,58E-12 349 371
1927-1949 29,81% 2,19E-13 # 323 907  06=Food sales 15,78% 2,02E-01 100 1405
1771-1926 17,39% 6,95E-10 # 365 915  07=Public order and safety 25,30% 1,52E-01 71 699

33,06% 6,88E-11 3692 918  08=Outpatient health care 57,75% 1,14E-14 124 676

 12=Religious worship 23,31% 8,61E-07 247 308
after 1999 29,02% 5,86E-23 # 385 0,29  13=Public assembly 41,96% 1,58E-18 221 746
1994-1998 50,86% 1,14E-47 # 357 0,41  14=Education 23,49% 2,23E-23 531 586
1988-1993 32,91% 4,35E-26 # 370 0,30  15=Food service 33,37% 2,55E-11 201 2571
1981-1987 28,76% 2,12E-22 # 381 0,32  16=Inpatient health care 8,87% 2,71E-01 177 1330
1975-1980 30,03% 2,74E-24 # 388 0,33  17=Nursing 40,10% 5,96E-03 59 713
1969-1974 30,49% 1,21E-22 # 359 0,33  18=Lodging 30,78% 4,40E-09 218 647
1960-1968 30,81% 2,00E-23 # 427 0,27  25=Retail other than mall 25,24% 3,84E-12 292 666
1950-1959 34,78% 2,63E-25 # 337 0,23  26=Service 16,89% 2,37E-06 282 1136
1927-1949 25,12% 2,85E-15 # 323 0,30 25,41% 2,57E-02 3692 789
1771-1926 20,54% 1,79E-13 # 365 0,26

31,30% 1,79E-14 3692 0,30  02=Office 17,97% 2,72E-27 783 0,19

 04=Laboratory 20,93% 7,48E-01 37 0,73
 05=Nonrefrigerated warehouse 36,85% 1,28E-28 349 0,09

 06=Food sales 15,55% 2,24E-01 100 0,51
 07=Public order and safety 23,67% 1,73E-01 71 0,23

 1=New England 93,91% 3,00E-75 151 9,35E+06  08=Outpatient health care 45,00% 1,52E-10 124 0,22
 2=Middle Atlantic 89,89% 7,54E-231 500 1,98E+07  11=Refrigerated warehouse 0,00% 0,00E+00 0 0,00

 3=East North Central 78,44% 5,33E-207 669 2,22E+07  12=Religious worship 21,33% 1,15E-06 247 0,09
 4=West North Central 92,75% 1,24E-175 340 5,28E+06  13=Public assembly 41,08% 5,02E-19 221 0,22

 5=South Atlantic 89,30% 0,00E+00 694 1,23E+07  14=Education 18,15% 1,95E-17 531 0,20
 6=East South Central 97,15% 1,04E-130 211 1,02E+07  15=Food service 29,80% 2,46E-10 201 0,97

 7=West South Central 86,44% 1,18E-172 436 9,47E+06  16=Inpatient health care 21,91% 7,45E-06 177 0,45
 8=Mountain 91,23% 3,85E-104 228 9,29E+06  17=Nursing 18,36% 3,17E-01 59 0,28

 9=Pacific 41,79% 2,46E-44 463 2,21E+07  18=Lodging 21,45% 8,74E-06 218 0,22
82,19% 3,09E-45 3692 1,49E+07  25=Retail other than mall 27,46% 5,33E-13 292 0,21

 26=Service 11,54% 4,13E-04 282 0,47
 1=New England 62,36% 1,10E-14 151 1082 23,67% 2,20E-02 3692 0,27

 2=Middle Atlantic 28,63% 1,39E-28 500 1080
 3=East North Central 26,33% 5,90E-36 669 901

 4=West North Central 47,59% 1,82E-38 340 679
 5=South Atlantic 31,34% 1,61E-47 694 804

 6=East South Central 24,33% 9,52E-08 211 1235
 7=West South Central 30,87% 1,24E-23 436 926

 8=Mountain 28,91% 1,02E-10 228 974 1=One or more centralized 93,59% 0,00E+00 2194 7,21E+06
 9=Pacific 24,76% 2,90E-21 463 747  2=One or more "point-of-use" 86,94% 9,56E-265 639 6,20E+06

31,40% 5,44E-09 3692 901  3=Both types of water heaters 62,55% 3,77E-90 482 4,35E+07
87,79% 5,49E-91 3315 1,23E+07

 1=New England 32,88% 3,15E-08 151 0,23
 2=Middle Atlantic 29,41% 5,77E-31 500 0,28 1=One or more centralized 35,07% 2,23E-193 2194 750

 3=East North Central 27,31% 3,88E-39 669 0,23  2=One or more "point-of-use" 25,91% 2,43E-33 639 780
 4=West North Central 46,91% 5,14E-39 340 0,16  3=Both types of water heaters 31,57% 2,12E-31 482 855

 5=South Atlantic 34,28% 2,79E-55 694 0,28 32,79% 3,14E-32 3315 771

 6=East South Central 34,67% 2,32E-14 211 0,42
 7=West South Central 35,30% 4,66E-34 436 0,30 1=One or more centralized 39,27% 1,07E-201 2194 0,23

 8=Mountain 29,07% 1,00E-11 228 0,27  2=One or more "point-of-use" 30,07% 3,09E-42 639 0,24
 9=Pacific 29,42% 2,56E-28 463 0,45  3=Both types of water heaters 29,97% 1,93E-30 482 0,28

32,68% 1,29E-09 3692 0,29 36,15% 2,81E-31 3315 0,24

Water heating system

[m2] R2 p number of 
buildings RMSE

Building Age Function

[m2] R2 p number of 
buildings RMSE [m2] R2 p number of 

buildings RMSE

Location

[m2] R2 p number of 
buildings RMSE
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 1=Brick, stone, or stucco 87,43% 0,00E+00 1934 9,67E+06  1=Square 82,69% 1,91E-110 329 1,02E+07
 2=Pre-cast concrete panels 79,84% 1,67E-82 277 2,30E+07  2=Wide rectangle 79,66% 0,00E+00 1898 7,43E+06

 3=Concrete block or poured concrete  92,66% 0,00E+00 640 9,59E+06  3=Narrow rectangle 76,03% 7,91E-41 215 1,07E+07
 4=Siding, shingles, tiles, or shakes 91,72% 1,94E-173 351 9,88E+05  4=Rectangle/square with courtyard 57,45% 1,68E-13 117 5,98E+07

 5=Sheet metal panels 62,66% 2,35E-66 366 1,18E+07  5="H" shaped 88,90% 3,45E-21 79 1,73E+07
 6=Window or vision glass 85,71% 1,09E-08 53 1,56E+07  6="U" shaped 84,45% 1,23E-27 98 1,16E+07

85,66% 1,60E-10 3621 1,01E+07  7="E" shaped 86,34% 3,06E-08 42 3,77E+07

 8="T" shaped 92,32% 2,22E-35 97 1,35E+07
 1=Brick, stone, or stucco 38,79% 1,07E-193 1934 755  9="L" shaped 75,63% 1,30E-45 216 4,59E+06

 2=Pre-cast concrete panels 29,13% 4,87E-14 277 993  10="+" or cross shaped 96,18% 2,05E-30 70 1,63E+07
 3=Concrete block or poured concrete  29,72% 2,98E-40 640 897  11=Other shape 93,90% 2,01E-86 170 2,04E+07

 4=Siding, shingles, tiles, or shakes 21,79% 6,29E-13 351 865 80,57% 3,85E-10 3331 1,13E+07

 5=Sheet metal panels 35,82% 4,07E-27 366 548
 6=Window or vision glass 31,93% 2,00E-01 53 722  1=Square 17,86% 1,51E-08 329 1354

34,40% 2,93E-03 3621 787  2=Wide rectangle 38,71% 2,19E-189 1898 656

 3=Narrow rectangle 43,88% 2,31E-14 215 1010
 1=Brick, stone, or stucco 39,94% 1,30E-203 1934 0,24  4=Rectangle/square with courtyard 32,72% 4,65E-05 117 868

 2=Pre-cast concrete panels 27,73% 5,21E-14 277 0,32  5="H" shaped 38,78% 1,03E-03 79 798
 3=Concrete block or poured concrete  30,00% 3,67E-42 640 0,29  6="U" shaped 33,77% 4,51E-04 98 800

 4=Siding, shingles, tiles, or shakes 22,34% 2,81E-11 351 0,30  7="E" shaped 71,59% 2,27E-04 42 1250
 5=Sheet metal panels 98,97% 0,00E+00 366 0,17  8="T" shaped 82,77% 2,06E-23 97 653

 6=Window or vision glass 31,02% 1,14E-01 53 0,29  9="L" shaped 24,97% 1,63E-06 216 670
41,38% 1,67E-03 3621 0,26  10="+" or cross shaped 53,47% 1,09E-05 70 793

 11=Other shape 40,87% 3,46E-11 170 811
37,86% 4,26E-05 3331 782

 1=Square 16,96% 6,56E-07 329 0,46
 2=Wide rectangle 42,03% 4,93E-214 1898 0,21

 3=Narrow rectangle 33,75% 2,85E-10 215 0,32
 4=Rectangle/square with courtyard 25,13% 8,70E-04 117 0,31

 1=Built-up 83,70% 0,00E+00 1147 1,37E+07  5="H" shaped 32,82% 2,85E-03 79 0,30
 2=Slate or tile shingles 96,02% 5,68E-109 203 3,97E+06  6="U" shaped 32,57% 1,98E-04 98 0,29

 3=Wood shingles/shakes/other wood 93,74% 1,11E-27 68 1,63E+06  7="E" shaped 67,66% 6,92E-05 42 0,42
 4=Asphalt/fiberglass/other shingles 30,52% 2,22E-48 737 1,39E+07  8="T" shaped 69,77% 9,26E-18 97 0,24

 5=Metal surfacing 95,96% 0,00E+00 638 1,60E+06  9="L" shaped 26,47% 1,61E-09 216 0,20
 6=Plastic/rubber/synthetic sheeting 66,06% 1,04E-167 776 2,21E+07  10="+" or cross shaped 57,32% 1,11E-06 70 0,27

 7=Concrete 95,05% 1,34E-21 78 9,00E+06  11=Other shape 35,27% 1,33E-09 170 0,29
72,46% 2,87E-23 3647 1,25E+07 38,03% 1,05E-04 3331 0,26

 1=Built-up 34,04% 5,58E-93 1147 883
 2=Slate or tile shingles 19,29% 7,48E-05 203 1023

 3=Wood shingles/shakes/other wood 20,67% 5,43E-01 68 994
 4=Asphalt/fiberglass/other shingles 30,02% 5,28E-48 737 715  1=Single layer glass 91,00% 0,00E+00 1392 5,71E+06

 5=Metal surfacing 73,07% 6,20E-168 638 516  2=Multi-layer glass 86,91% 0,00E+00 1538 1,23E+07
 6=Plastic/rubber/synthetic sheeting 32,78% 2,43E-57 776 907  3=Combination of both 67,02% 7,14E-146 664 2,83E+07

 7=Concrete 16,41% 8,24E-01 78 1256  4=No windows 98,17% 8,41E-66 98 1,57E+06
38,34% 2,78E-02 3647 808 85,18% 2,23E-67 3692 1,24E+07

 1=Built-up 32,85% 2,22E-90 1147 0,30  1=Single layer glass 31,33% 8,40E-103 1392 691
 2=Slate or tile shingles 15,20% 7,05E-04 203 0,46  2=Multi-layer glass 36,28% 6,84E-139 1538 772

 3=Wood shingles/shakes/other wood 39,68% 7,24E-03 68 0,33  3=Combination of both 47,70% 1,38E-82 664 840
 4=Asphalt/fiberglass/other shingles 29,77% 6,60E-49 737 0,23  4=No windows 49,19% 1,60E-02 98 509

 5=Metal surfacing 35,50% 8,15E-53 638 0,16 36,81% 4,25E-04 3692 747

 6=Plastic/rubber/synthetic sheeting 33,27% 4,50E-60 776 0,28
 7=Concrete 21,51% 1,07E-01 78 0,43  1=Single layer glass 34,10% 9,52E-117 1392 0,25

31,69% 2,46E-03 3647 0,27  2=Multi-layer glass 38,74% 1,06E-153 1538 0,23
 3=Combination of both 50,92% 3,38E-93 664 0,24

 4=No windows 63,61% 1,03E-14 98 0,11
39,84% 2,75E-16 3692 0,24

 1=Furnaces that heat air directly 91,93% 0,00E+00 1015 1,42E+06  1=Packaged A/C units 74,02% 0,00E+00 1424 5,37E+06
 2=Boilers inside the building 87,22% 0,00E+00 912 1,61E+07  2=Residential-type central A/C 72,62% 3,31E-134 528 4,30E+06

 3=Packaged heating units 86,62% 2,85E-308 747 3,33E+06  3=Individual room A/C 93,82% 7,81E-196 355 2,07E+06
 4=Individual space heaters 96,82% 1,77E-149 226 2,61E+06  4=Heat pumps for cooling 91,52% 1,40E-144 313 2,36E+06
 5=Heat pumps for heating 96,06% 3,49E-172 273 2,02E+06  5=District chilled water piped in 84,85% 4,38E-45 142 4,69E+07

 6=District steam or hot water 64,99% 1,65E-42 235 7,06E+07  6=Central chillers inside the building 63,43% 1,93E-97 505 4,21E+07
 7=Other heating equipment 98,32% 9,43E-62 109 2,86E+06  7="Swamp" coolers or evaporative coolers 95,66% 1,64E-20 50 1,22E+06

88,62% 1,10E-43 3517 1,04E+07 76,74% 2,48E-22 3317 1,19E+07

 1=Furnaces that heat air directly 27,79% 3,75E-62 1015 672,31  1=Packaged A/C units 34,92% 1,53E-121 1424 713
 2=Boilers inside the building 32,58% 4,10E-68 912 778,49  2=Residential-type central A/C 29,42% 1,08E-31 528 841

 3=Packaged heating units 32,47% 3,22E-54 747 920,18  3=Individual room A/C 19,03% 2,12E-10 355 674
 4=Individual space heaters 24,92% 2,05E-08 226 463,02  4=Heat pumps for cooling 15,40% 4,31E-06 313 864
 5=Heat pumps for heating 14,90% 5,11E-05 273 891,84  5=District chilled water piped in 25,71% 1,59E-04 142 1447

 6=District steam or hot water 19,83% 2,93E-06 235 1315,96  6=Central chillers inside the building 32,85% 4,13E-35 505 878
 7=Other heating equipment 28,83% 6,10E-04 109 523,02  7="Swamp" coolers or evaporative coolers 13,40% 9,15E-01 50 1693

28,34% 2,31E-05 3517 794,46 29,47% 1,38E-02 3317 815

 1=Furnaces that heat air directly 29,89% 1,45E-61 1015 0,20  1=Packaged A/C units 36,62% 2,12E-131 1424 0,23
 2=Boilers inside the building 35,62% 1,46E-78 912 0,25  2=Residential-type central A/C 30,52% 5,14E-33 528 0,27

 3=Packaged heating units 31,61% 9,36E-54 747 0,31  3=Individual room A/C 21,96% 9,47E-14 355 0,19
 4=Individual space heaters 20,49% 6,09E-07 226 0,18  4=Heat pumps for cooling 17,39% 1,89E-08 313 0,28
 5=Heat pumps for heating 17,21% 5,94E-07 273 0,29  5=District chilled water piped in 17,65% 1,21E-02 142 0,54

 6=District steam or hot water 17,76% 6,00E-06 235 0,44  6=Central chillers inside the building 27,30% 2,64E-28 505 0,31
 7=Other heating equipment 66,23% 6,24E-15 109 0,17  7="Swamp" coolers or evaporative coolers 41,57% 1,88E-02 50 0,20

30,47% 4,86E-07 3517 0,26 30,11% 8,01E-04 3317 0,26

R2[m2]

Roof type

Cooling system

[m2] R2 p number of 
buildings RMSE

[m2]

Glass type

R2 p number 
of 

RMSE

RMSE
number of 
buildingsp

Heating system

[m2] R2 p number of 
buildings RMSE

Building Shape

[m2] R2 p number of 
buildings RMSE

Wall type

[m2] R2 p number of 
buildings RMSE
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5. Detailed results case buildings 

 

  

Table 7: Input data for 2 years of the same case study building. For the Strukton office building in Son the results 
for 2011 and 2014 are compared.  

Input data Cases Strukton Building Son 2011 Strukton Building Son 2014 

Location [-] Pacific 9 Pacific 9 

Floor area [m2] 7550  7550 
 

Function [-] Office 2 Office 2 

Wall type [-] Brick, stone or stucco 1 Brick, stone or stucco 1 

Roof type [-] Plastic/rubber/synthetic 6 Plastic/rubber/synthetic 6 

Building shape [%] 25  25 
 

Percent exterior glass [-] Wide Rectangle 2 Wide Rectangle 2 

Number of floors [-] 5  5 
 

Number of elevators [-] 2  2 
 

Number of escalators [-] 0  0 
 

Building age [years] 1 1 1 1 

Weekly operating hours [hours] 60  60 
 

Number of employees  [persons] 350  350 
 

Heated floor area [m2] 7550  7550 
 

Main heating system [-] Heat pump for heating 5 Heat pump for heating 5 

Cooled floor area [m2] 7000  7000 
 

Main cooling system [-] Heat pump for cooling 4 Heat pump for cooling 4 

Water heating system [-] Point of use 2 Point of use heating 2 

Number of servers  [-] 5  5 
 

Number of computers  [-] 350  350 
 

Glass type [-] Multi-layer 2 Multi-layer 2 

Heating degree days [DDC;18] 2587  2406 
 

Cooling degree days [DDC;18] 79  109 
 

Annual major fuel consumption  [MJ] 5.579.379 3.977.645 
 

Annual electricity consumption [kWh] 673.149 654.733 
 

Annual fossil consumption  [MJ] 3.156.043 1.620.607 
 

Annual district heat consumption  [MJ] 0  0 
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Table 8: Detailed benchmarking results for the 2 years analyzed for the case building. 

 

R2 p-value 0% 5% 20% 45% 55% 80% 95% 100% Case building Label

Original 88,94% 0,00E+00 -109,460 -3,670 -0,576 0,000 0,153 2,142 34,520 1264,723 -17,936 A
10 Location 41,79% 2,46E-44 -56,678 -4,241 -0,665 -0,056 0,094 1,263 20,506 1008,250 -11,218 A
3 Function 89,45% 0,00E+00 -75,291 -10,468 -0,880 -0,017 0,132 1,626 19,589 274,247 -27,913 A
4 Wall type 87,43% 0,00E+00 -121,264 -4,342 -0,820 0,032 0,230 2,521 40,998 978,928 -17,597 A
9 Roof type 66,06% 1,04E-167 -73,165 -8,260 -1,752 -0,011 0,420 6,324 71,054 981,216 -35,899 A
8 Building shape 79,66% 0,00E+00 -54,024 -3,055 -0,488 -0,035 0,084 1,286 16,705 789,869 -15,176 A
7 Building age 82,94% 1,34E-133 -32,833 -5,044 -0,902 -0,033 0,145 1,205 13,989 601,473 -1,992 B
1 Main heating system 96,06% 3,49E-172 -9,256 -1,608 -0,458 0,014 0,097 0,680 5,959 23,371 -5,617 A
2 Main cooling system 91,52% 1,40E-144 -11,321 -1,381 -0,393 0,005 0,077 0,686 6,067 44,327 5,808 F
5 Water heating system 86,94% 9,56E-265 -112,762 -2,544 -0,562 -0,013 0,137 1,038 12,128 207,549 -8,832 A
6 Glass type 86,91% 0,00E+00 -150,496 -6,932 -1,018 -0,028 0,213 2,407 37,866 969,665 -20,542 A

R2 p-value 0% 5% 20% 45% 55% 80% 95% 100% Case building Label

Original 88,94% 0,00E+00 -109,46 -3,67 -0,58 0,00 0,15 2,14 34,52 1264,72 -19,63 A
10 Location 41,79% 2,46E-44 -56,68 -4,24 -0,66 -0,06 0,09 1,26 20,51 1008,25 -12,89 A
3 Function 89,45% 0,00E+00 -75,29 -10,47 -0,88 -0,02 0,13 1,63 19,59 274,25 -29,63 A
4 Wall type 87,43% 0,00E+00 -121,26 -4,34 -0,82 0,03 0,23 2,52 41,00 978,93 -19,30 A
9 Roof type 66,06% 1,04E-167 -73,16 -8,26 -1,75 -0,01 0,42 6,32 71,05 981,22 -37,62 A
8 Building shape 79,66% 0,00E+00 -54,02 -3,06 -0,49 -0,03 0,08 1,29 16,71 789,87 -16,85 A
7 Building age 82,94% 1,34E-133 -32,83 -5,04 -0,90 -0,03 0,14 1,21 13,99 601,47 -3,64 B
1 Main heating system 96,06% 3,49E-172 -9,26 -1,61 -0,46 0,01 0,10 0,68 5,96 23,37 -7,26 A
2 Main cooling system 91,52% 1,40E-144 -11,32 -1,38 -0,39 0,00 0,08 0,69 6,07 44,33 4,21 F
5 Water heating system 86,94% 9,56E-265 -112,76 -2,54 -0,56 -0,01 0,14 1,04 12,13 207,55 -10,50 A
6 Glass type 86,91% 0,00E+00 -150,50 -6,93 -1,02 -0,03 0,21 2,41 37,87 969,67 -22,27 A
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Benchmarking using residuals based on total energy comsumption [TJ]
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R2 p-value 0% 5% 20% 45% 55% 80% 95% 100% Case building Label

Original 41,14% 0,00E+00 -1886 -696 -375 -86 47 720 2494 16983 -373 C
7 Location 24,76% 2,90E-21 -838 -505 -298 -48 46 508 2103 12685 47 E
9 Function 19,73% 1,66E-29 -1071 -590 -318 -80 28 439 1354 8879 -402 B
1 Wall type 38,79% 1,07E-193 -2717 -752 -408 -98 59 764 2687 16989 -673 B
4 Roof type 32,78% 2,43E-57 -2537 -834 -450 -105 63 762 2729 12427 -996 A
2 Building shape 38,71% 2,19E-189 -1287 -635 -334 -71 44 657 2479 13176 -287 C
5 Building age 27,07% 1,01E-19 -875 -589 -297 -63 30 496 1818 17091 -132 C

11 Main heating system 14,90% 5,11E-05 -748 -451 -244 -41 37 428 1583 16212 -189 C
10 Main cooling system 15,40% 4,31E-06 -896 -465 -245 -37 45 409 1627 16225 1139 F
6 Water heating system 25,91% 2,43E-33 -1315 -544 -323 -75 52 596 2505 13276 -256 C
3 Glass type 36,28% 6,84E-139 -1784 -731 -396 -77 60 802 2818 16982 -436 B

R2 p-value 0% 5% 20% 45% 55% 80% 95% 100% Case building Label

Original 41,14% 0,00E+00 -1886 -696 -375 -86 47 720 2494 16983 -580 B
7 Location 24,76% 2,90E-21 -838 -505 -298 -48 46 508 2103 12685 -160 C
9 Function 19,73% 1,66E-29 -1071 -590 -318 -80 28 439 1354 8879 -611 A
1 Wall type 38,79% 1,07E-193 -2717 -752 -408 -98 59 764 2687 16989 -883 A
4 Roof type 32,78% 2,43E-57 -2537 -834 -450 -105 63 762 2729 12427 -1208 A
2 Building shape 38,71% 2,19E-189 -1287 -635 -334 -71 44 657 2479 13176 -495 B
5 Building age 27,07% 1,01E-19 -875 -589 -297 -63 30 496 1818 17091 -346 B

11 Main heating system 14,90% 5,11E-05 -748 -451 -244 -41 37 428 1583 16212 -406 B
10 Main cooling system 15,40% 4,31E-06 -896 -465 -245 -37 45 409 1627 16225 929 F
6 Water heating system 25,91% 2,43E-33 -1315 -544 -323 -75 52 596 2505 13276 -467 B
3 Glass type 36,28% 6,84E-139 -1784 -731 -396 -77 60 802 2818 16982 -645 B
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Benchmarking using residuals based on floor area normalized energy comsumption [MJ]
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R2 p-value 0% 5% 20% 45% 55% 80% 95% 100% Case building Label

Original 43,40% 0,00E+00 -0,6401 -0,2140 -0,1196 -0,0270 0,0167 0,2268 0,9031 11,1490 0,0375 E
7 Location 29,42% 2,56E-28 -0,9573 -0,2619 -0,1599 -0,0408 0,0215 0,3213 1,3181 11,1032 0,2514 E
9 Function 17,97% 2,72E-27 -0,3203 -0,1992 -0,1118 -0,0287 0,0120 0,1625 0,5180 3,4649 0,0061 D
5 Wall type 31,02% 1,14E-01 -0,3933 -0,3284 -0,2115 -0,0329 0,0156 0,1763 0,4758 0,7576 -0,1787 C
4 Roof type 33,27% 4,50E-60 -0,8087 -0,2360 -0,1357 -0,0302 0,0235 0,2227 0,8912 5,0375 0,0259 E
1 Building shape 42,03% 4,93E-214 -0,3682 -0,1902 -0,1026 -0,0192 0,0189 0,2201 0,8916 5,8345 0,0619 E
8 Building age 29,02% 5,86E-23 -0,2646 -0,1740 -0,0891 -0,0156 0,0183 0,1883 0,7485 6,7958 0,0133 E

11 Main heating system 17,21% 5,94E-07 -0,2487 -0,1657 -0,0937 -0,0155 0,0255 0,1588 0,6021 5,2240 0,0352 E
10 Main cooling system 17,39% 1,89E-08 -0,3089 -0,1652 -0,0931 -0,0186 0,0211 0,1544 0,5856 5,2272 0,0353 E
6 Water heating system 30,07% 3,09E-42 -0,6129 -0,1735 -0,1056 -0,0215 0,0139 0,2120 0,8788 4,1254 0,0138 E
2 Glass type 38,74% 1,06E-153 -0,7393 -0,2112 -0,1149 -0,0242 0,0184 0,2357 0,9276 6,7564 0,0282 E

R2 p-value 0% 5% 20% 45% 55% 80% 95% 100% Case building Label

Original 43,40% 0,00E+00 -0,6401 -0,2140 -0,1196 -0,0270 0,0167 0,2268 0,9031 11,1490 -0,0228 D
6 Location 29,42% 2,56E-28 -0,9573 -0,2619 -0,1599 -0,0408 0,0215 0,3213 1,3181 11,1032 0,1955 E
9 Function 17,97% 2,72E-27 -0,3203 -0,1992 -0,1118 -0,0287 0,0120 0,1625 0,5180 3,4649 -0,0530 C
2 Wall type 39,94% 1,30E-203 -0,9509 -0,2212 -0,1289 -0,0289 0,0196 0,2381 0,9864 11,1432 -0,0771 C
4 Roof type 33,27% 4,50E-60 -0,8087 -0,2360 -0,1357 -0,0302 0,0235 0,2227 0,8912 5,0375 -0,0366 C
1 Building shape 42,03% 4,93E-214 -0,3682 -0,1902 -0,1026 -0,0192 0,0189 0,2201 0,8916 5,8345 0,0058 D
7 Building age 29,02% 5,86E-23 -0,2646 -0,1740 -0,0891 -0,0156 0,0183 0,1883 0,7485 6,7958 -0,0578 C

11 Main heating system 17,21% 5,94E-07 -0,2487 -0,1657 -0,0937 -0,0155 0,0255 0,1588 0,6021 5,2240 -0,0273 C
10 Main cooling system 17,39% 1,89E-08 -0,3089 -0,1652 -0,0931 -0,0186 0,0211 0,1544 0,5856 5,2272 -0,0316 C
5 Water heating system 30,07% 3,09E-42 -0,6129 -0,1735 -0,1056 -0,0215 0,0139 0,2120 0,8788 4,1254 -0,0380 C
3 Glass type 38,74% 1,06E-153 -0,7393 -0,2112 -0,1149 -0,0242 0,0184 0,2357 0,9276 6,7564 -0,0358 C
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Benchmarking using residuals based on floor area and degree day normalized energy comsumption [MJ]
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Table 9: Residual calculations to assess energy performance for the 2 years analyzed for the case building. 

 

Predicted Observed Residual Predicted Observed Residual
[TJ] [TJ] [TJ] [TJ] [TJ] [TJ]

Original 23,515 5,579 -17,936 23,610 3,978 -19,633
Location 16,798 5,579 -11,218 16,872 3,978 -12,895
Function 33,493 5,579 -27,913 33,612 3,978 -29,635

Wall type 23,176 5,579 -17,597 23,274 3,978 -19,297
Roof type 41,478 5,579 -35,899 41,593 3,978 -37,615

Building shape 20,756 5,579 -15,176 20,824 3,978 -16,846
Building age 7,571 5,579 -1,992 7,618 3,978 -3,640

Main heating system 11,197 5,579 -5,617 11,237 3,978 -7,259
Main cooling system -0,229 5,579 5,808 -0,230 3,978 4,208

Water heating system 14,411 5,579 -8,832 14,474 3,978 -10,497
Glass type 26,121 5,579 -20,542 26,246 3,978 -22,268

Predicted Observed Residual Predicted Observed Residual
[MJ] [MJ] [MJ] [MJ] [MJ] [MJ]

Original 1112 739 -373 1107 527 -580
Location 692 739 47 687 527 -160
Function 1141 739 -402 1138 527 -611

Wall type 1412 739 -673 1410 527 -883
Roof type 1735 739 -996 1735 527 -1208

Building shape 1026 739 -287 1022 527 -495
Building age 871 739 -132 873 527 -346

Main heating system 928 739 -189 932 527 -406
Main cooling system -400 739 1139 -402 527 929

Water heating system 995 739 -256 994 527 -467
Glass type 1175 739 -436 1171 527 -645

Predicted Observed Residual Predicted Observed Residual
[MJ] [MJ] [MJ] [MJ] [MJ] [MJ]

Original 0,232 0,277 0,045 0,232 0,209 -0,023
Location 0,014 0,277 0,263 0,014 0,209 0,196
Function 0,262 0,277 0,015 0,262 0,209 -0,053

Wall type 0,287 0,277 -0,009 0,287 0,209 -0,077
Roof type 0,246 0,277 0,031 0,246 0,209 -0,037

Building shape 0,204 0,277 0,073 0,204 0,209 0,006
Building age 0,267 0,277 0,010 0,267 0,209 -0,058

Main heating system 0,237 0,277 0,040 0,237 0,209 -0,027
Main cooling system 0,242 0,277 0,036 0,241 0,209 -0,032

Water heating system 0,248 0,277 0,030 0,247 0,209 -0,038
Glass type 0,245 0,277 0,032 0,245 0,209 -0,036
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