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Abstract.

High quality stoichiometric magnetite (Fe3O4) films grown by infrared pulsed laser

deposition (IR-PLD) on different surfaces have been investigated in order to study

the influence of the substrate, orientation, and thickness on their magnetic behavior.

Different single crystal (001)-oriented substrates, i.e., SrTiO3(001), MgAl2O4(001)and

MgO(001), have been used for the preparation of epitaxial Fe3O4(001) films. By

comparison, polycrystalline magnetite films were obtained on both single crystal

Al2O3(0001) and amorphous Si/SiO2 substrates. The thickness has been varied

between 50 - 400 nm. All films consist of nanocrystalline stoichiometric magnetite with

very small strain (< 1%) and present the Verwey transition (TV) between 110-120 K,

i.e., close to bulk magnetite (122 K). In general, TV depends on both microstructure and

thickness, increasing mainly as the thickness increases. Room temperature angular-

dependent measurements reveal an in-plane fourfold symmetry magnetic behavior for

all films grown on (001)-oriented surfaces, and with the easy axes lying along the

Fe3O4[010] and [100] directions. Remarkably, the fourfold magnetic symmetry shows

up to 400 nm thick films. In turn, the films grown on single crystal Al2O3(0001) and

on amorphous Si/SiO2 surfaces display an isotropic magnetic behavior. In general,

the coercive field (HC) depends on microstructure and film thickness. The largest

(lowest) HC value has been found for the thinner film grown on a single crystal

SrTiO3(001) (amorphous Si/SiO2) surface, which present the largest (lowest) strain

(crystallinity). Moreover, the coercivity follows an inverse law with film thickness.

Our results demonstrate that we can artificially control the magnetic behavior of

stoichiometric IR-PLD grown Fe3O4 films by exploiting substrate-induced anisotropy

and thickness-controlled coercivity, that might be relevant to incorporate magnetite in

future spintronic devices.
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1. Introduction

Magnetite (Fe3O4) is a ubiquitous iron oxide mineral that is the most magnetic of all

the naturally-occurring minerals on Earth [1]. In the last decades, artificially grown

magnetite films have shown great potential for spintronic applications [2–4], due to its

robust ferrimagnetism down to nanometer thickness, high Curie temperature (858 K),

good electrical conductivity and presumed half-metal character [1, 5], which require well-

defined and controlled magnetic behavior. Fe3O4 presents an inverse spinel crystalline

structure at room temperature (Fig. 1.a), with a third of Fe atoms (Fe3+) occupying the

tetrahedral A-sites and the rest (Fe2+ and Fe3+) on the octahedral B-sites. It presents a

low-temperature metal-insulator transition known as the Verwey transition (TV) [6, 7],

whose temperature and character depends on crystal quality [8, 9], where the crystalline

structure changes from cubic to monoclinic. Different routes have been used to prepare

magnetite thin films, such as molecular beam epitaxy (MBE) [9–15], sputtering [16–

19] and pulsed laser deposition (PLD) [20–24], and also on different substrates such as

MgO, Al2O3, MgAl2O4, BaTiO3 and SrTiO3. However, there is at present no general

consensus regarding the magnetic behavior of magnetite films. An open question is to

what extent the preparation of Fe3O4 films can affect their detailed magnetic properties,

including remanence, coercive field, and magnetic anisotropy symmetry.

In general, device applications based on magnetic nanostructures require both

understanding and control of the magnetic behavior of artificially grown films, where

the magnetic properties can differ from the bulk ones and, in addition, can be influenced

by the film growth microstructure, including interfacial strain, crystal orientation and

thickness. The magnetization bulk easy-axis directions of Fe3O4 at room temperature

(RT) are the cubic 〈111〉 ones (dashed red vectors in Fig. 1.b). Thus, in the (001)

surface of bulk samples, the magnetization is expected to lie along the in-plane 〈110〉
directions (blue vectors in Fig. 1.b), i.e., the projection of the bulk 〈111〉 on the (001)

surface, as confirmed by magnetic microscopy observations [25]. In the case of artificially

grown magnetite films, many works have focused on the study of in-plane magnetic

anisotropy induced by the substrate [11, 18, 23, 26–33, 54]. The MgO substrates have

been widely explored [11, 12, 26–31] due to its low lattice mismatch with Fe3O4 (+0.3%).

In general, in-plane magnetic anisotropies have been reported for magnetite grown on

MgO(001) and MgO(110) substrates [11, 26–31]. However, in-plane isotropic behavior

has been also reported [30]. Recently, some works reported perpendicular magnetic

anisotropy in Fe3O4 films deposited on MgO(111) substrates [28]. Other oxide (001)-

oriented substrates with larger lattice mismatch have been used, such as MgAl2O4

(misfit −3.9%) [24], SrTiO3 (misfit −7.0%) [17, 29–31], and LaAlO3 (misfit −9.7%) [17],

resulting in a well-defined magnetic anisotropy of very small strained Fe3O4 films (< 1%)

with thicknesses above 40 nm. In addition, semiconductor single crystals substrates

such as GaAs(001) [33], InAs(001) [34], and buffered Si(001) [19, 32], as well as metallic

substrates [54], have been also used to induce in-plane anisotropy.

However, there is no consensus about the easy axis direction in the films showing
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Figure 1. Schematic illustration showing the crystal unit cell (a) and the magnetic

symmetry of Fe3O4(001) single crystal at room temperature. The crystal scheme has

been prepared by VESTA [40], with tetrahedral and octahedral sites of the inverse

spinel structure indicated in (a). The eight anisotropy directions of bulk magnetite, i.e.,

〈111〉 crystal directions, are indicated with dashed red vectors in (b), which results with

a fourfold in-plane magnetic symmetry in the surface plane with easy axis directions

along the 〈110〉 surface crystal directions, indicated with blue vectors.

what in-plane anisotropic behavior is. In most cases, the 〈110〉 surface in-plane

directions are reported for the easy-axis, as expected from a (001)-oriented surface of

bulk magnetite (see Fig. 1.b), but they do not identify the local domain magnetization

direction. Recently, we showed 〈100〉 magnetization easy axes in magnetite films grown

on SrTiO3:Nb(100) [23]. The main result of this work is shown in Fig. 2. In particular,

stoichiometric epitaxial Fe3O4 thin films grown with PLD on SrTiO3:Nb(001) substrates

(Fig. 2.A) showed individual domains with magnetization lying mostly along the in-

plane 〈100〉 directions (Fig. 2.B), while the domain walls were aligned with the 〈110〉
directions. Furthermore, the remanence and the coercivity display an in-plane fourfold

symmetry with the maxima of both along the 〈100〉 directions (Fig. 2.C). Similar results

have been reported in magnetite films grown by sputtering [17, 19] and PLD [20, 24] on

different substrates, in which hysteresis loops acquired along different directions are

compared.

Other important magnetic parameters of magnetite films like the magnetization

reversal mechanism and the coercivity are much less investigated. The magnetization

reversal understanding requires either magnetic imaging and/or a vectorial-analysis of

the magnetization reversal. In turn, the coercivity is not a direct measure of the strength

of anisotropy. It is modified by defects and may present strong dynamical effects [35],

but its angular dependence can provide information on the dynamic effective magnetic

anisotropy symmetry, and its evolution with thickness can indicate general trends, if any.

Apart of the angular dependence measurements for specific thicknesses and substrates

mentioned below, we are not aware of the aforementioned studies that are required, nor

general trends have been identified yet.
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From the above discussion, it is well established that the properties of magnetite

films are determined by the film microstructure, including interfacial strain, crystal

orientation and thickness. Thus, both magnetic and transport properties are strongly

influenced by the synthesis method and growth conditions. For instance, poor quality

films present the Verwey transition at a lower temperature [8, 9]. Moreover, several

results indicate that the magnetism and magneto-transport phenomena in magnetite

films are controlled by antiphase domain boundaries (APBs) generated during the film

growth [13, 36]. In fact, the crystal domain size or the APB density seems to be

dependent on the thickness [31, 37] and on the misfit with the substrate [30]. Therefore,

it is clear that precise control over the microstructure and phase purity is necessary to

control the magnetic behavior, and therefore the transport behavior. Furthermore, in

order to disentangle the magnetic symmetry orientation and to study its dependence
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Figure 2. Identifying magnetic easy-axis directions of stoichiometric magnetite films

grown on SrTiO3:Nb(001) [23]. (A) Epitaxial relationship of magnetite on SrTiO3.

Oxygen atoms are shown as red spheres, with Sr atoms represented by green ones (Ti

atoms are below in the middle of the blue-grey octahedral). The magnetite unit cell is

shown in the lower-right side, with octahedral irons shown in yellow, and tetrahedral

irons shown as green filled tetrahedra (schematics prepared by VESTA [40]). The

surface unit cells of both materials are drawn by blue and red squares, respectively

(a1) and (a2) Corresponding LEED patterns measured by LEEM (both images are

at the same scale). (B) Room temperature SPLEEM images acquired at the same

location with the electron spin-direction along the x-axis ([100] direction, top image)

and y-axis ([01̄0], bottom), showing the local surface magnetization component along

the given direction. The inset shows the corresponding polar histogram of the in-

plane magnetization as derived from the images. (C) Polar plot representation of

the remanence (top graph) and coercivity (bottom) derived from kerr hysteresis loops

acquired at different applied field angles with respect to the [100] crystal direction

(Adapted from [23]).
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with the aforementioned microstructure parameters, a study of the angular evolution of

the magnetic properties is required.

In this work, we study pure magnetite films grown by IR-PLD upon changing

substrate, orientation, and thickness. The morphology, microstructure, stoichiometry,

Verwey transition, and angular-dependent magnetic behavior of all films prepared

have been correlated in order to identify the key parameters controlling the magnetic

properties of high quality nanostructured magnetite films grown by IR-PLD.

2. Experimental

High quality magnetite films grown on different substrates, and with different

thicknesses, have been investigated in detail in order to get the key parameters

controlling the magnetic behavior. Pulsed laser deposition (PLD) has been used for the

deposition [38]. Both laser irradiation wavelength and substrate temperature crucially

affect the composition, crystallinity, surface structure and the magnetic properties of the

grown samples. PLD investigations of magnetite thin films are routinely performed with

ultraviolet (UV)[39] lasers. However we have recently demonstrated the preparation of

high quality magnetite films by using 1064 nm infrared-wavelength irradiation (IR-

PLD) [22] from hematite targets.

For the present study, magnetite films of different thickness, ranging from 30 to

450 nm, have been prepared on different surfaces, including substrates with cubic,

hexagonal, and amorphous structure. In order to study the possible influence of the

substrate lattice parameter on microstructure and magnetic properties of the magnetite

films (bulk lattice parameter of 0.8395 nm), we have chosen different (001)-oriented

substrates with different lattice mismatch with magnetite: MgO (mismatch with

magnetite is -0.3 %, tensile), MgAl2O4 (MAO, +3.9 %, compressive), SrTiO3 (STO,

+7.3 %, compressive), and SrTiO3:Nb (STO:Nb, +7.3 %, compressive). As examples

of non-cubic substrates we have used amorphous substrate Si/SiOx and hexagonal

Al2O3(0001) substrates.

The Q-switched Nd:YAG laser had a full width at half-maximum of 15 ns with

a 10 Hz repetition rate at a typical fluence of 4 J/cm2. The substrates were heated

to 750 K during deposition. Layer thicknesses were determined ex situ either by X-

Ray fluorescence and/or by X-ray reflectometry. The morphology, microstructure, and

stoichiometry of the films were characterized at room temperature (RT) by atomic force

microscopy (AFM), X-Ray diffraction (XRD) and Mössbauer spectroscopy, respectively.

Mössbauer data were recorded in the electron detection mode using a conventional

constant acceleration spectrometer equipped with a 57Co(Rh) source and a parallel

plate avalanche counter [41]. The velocity scale was calibrated using an α-iron foil and

the isomer shifts were referred to the centroid of the centroid of the RT spectrum of

α-iron.

Magnetic characterization was carried out by superconducting quantum interference

device magnetometry (SQUID) and vectorial-resolved magneto-optical Kerr effect (v-
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MOKE). SQUID magnetometry is employed to measure the evolution of magnetization

with temperature, which has been used to determine the Verwey transition of the

investigated magnetite thin films. The angular dependence of the Fe3O4 films magnetic

properties was measured at room temperature (RT) by high-resolution v-MOKE

measurements in a longitudinal configuration [42, 43]. The hysteresis loops were recorded

by changing the in-plane angular rotation of the sample (αH) and keeping fixed the

external magnetic field direction, which is applied parallel to the film plane. The whole

angular range was probed at intervals of 4.5◦, i.e., from αH = 0◦ to 360◦.

3. Results

In the following, relevant results on the morphology, chemical, and structural

characterization of the different films investigated will be presented. Representative

microscopy AFM images of the magnetite films grown on different substrates are shown

MAO(001) 

500 nm 

100 nm Fe3O4 

500 nm 

MgO(001) 

Si/SiOx 

+40 nm 

-40 nm Al2O3(0001) 

500 nm 

500 nm 

150 nm Fe3O4 115 nm Fe3O4 

STO:Nb(001) 

500 nm 

67 nm Fe3O4 70 nm Fe3O4 

amorphous hexagonal 

Figure 3. Surface topography characterization. Selected AFM topographic images,

2.0µm wide of Fe3O4 thin films grown on non-cubic (top images: amorphous SiO2

and hexagonal Al2O3(0001)) and cubic (bottom: MgO(001), MgAl2O3(001) and

SrTiO3(001)) substrates. The thermal color height scale is displayed in the right top

side and corresponds to 40 nm.
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Figure 4. Room temperature ICEMS spectra recorded from the Fe3O4 films grown

on the indicated surfaces. The symbols are the experimental data acquired in the films

used in Fig. 3. Continuous black lines are the best fits with the two sextet components,

as expected for magnetite. The corresponding resonances SA and SB are depicted with

solid red and blue lines, respectively. Note that the ratios SB/SA found indicate that

the films have stoichiometric composition while the area ratio of the lines 2 and 3 of

sextets indicate the existence of out-of-plane magnetization components.
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in Fig. 3. In general, the root-mean-square roughness (roughness in the following) is

much larger in the case of non-cubic substrates (> 20 nm), where pronounced elongated,

squared, and orthorhombic features for films hundred nanometer thick with sharp edges

can be identified (first two left images of Fig.3). Smaller features are found in the film

grown on the Al2O3(0001) surface. For the films deposited on (100)-oriented substrates,

squared shape features (”mesas”), with heights of up to 30 nm and lateral sizes in the

100-200 nm range, emerge from a very flat film (with roughness < 3 nm), similar to

our previous results on STO:Nb [23]. Moreover, the roughness increases with the lattice

mismatch and with the thickness, suggesting that the lattice mismatch at the interface

between both lattices is the main factor controlling the final morphology.

The good stoichiometry of the films has been checked by integral conversion

electron Mössbauer spectroscopy (ICEMS) measurements at RT. The ICEMS spectrum

of stoichiometric magnetite is composed by two sextets corresponding to the iron ions

located in the octahedral (SB) and tetrahedral (SA) positions, respectively, of the spinel-

related structure [44]. The ICEMS spectra recorded from various representative PLD

films are depicted in Fig. 4 and all show these two sextets. For the sake of consistency

all the spectra were fitted with the same criteria, basically maintaining the linewidth

to be equal for the six line of sextets (but different for the SA and SB components)

and the areas in the ratio 3:x:1:1:x:3, allowing x to refine until obtaining the best χ2

value. In general, the Mössbauer parameters obtained from the fit of the spectra are

totally characteristic of magnetite with x values around 2, between 1.8 (MgAl2O4) and

2.6 (Si) (being 2.2 for both MgO and STO). The latter is indicative that the films

have out-of-plane magnetization components, where x = 4 corresponds to full in-plane

magnetization and x = 0 to full out-of plane magnetization [58]. The derived Mössbauer

parameters are: isomer shifts (δA = 0.26 mms−1 and δB = 0.65 mms−1) quadrupole

shifts (2εA = −0.02 mms−1 and 2εB = −0.02 mms−1) and hyperfine magnetic fields

(HA = 49.0 T and HB = 46.4 T). The area ratio SB/SA of the two components is 1.9 in

all the cases, what indicates that the films are of stoichiometric composition [44]. Thus,

our data suggest that the substrate has no influence on the chemical composition of the

films. The different x values found could be ascribed to the use of different substrates

and thicknesses, as discussed in the next sections.

3.1. Influence of the substrate

The structural and magnetic characterization of magnetite films with similar thickness

grown on different substrates are correlated and compared, in order to study the effect

of the film’s microstructure on its magnetic properties.

Figure 5 shows representative XRD patterns of Fe3O4 films grown on non-cubic

substrates (a and b) and on (001)-oriented cubic substrates (c and d). The films

grown on non-cubic substrates, i.e., on amorphous SiO2 and Al2O3(0001), display

peaks located at 30.2◦, 35.5◦, 37.1◦, 57.2◦ and 62.7◦, which are assigned to Fe3O4

reflections (220), (311), (220), (422), (511) and (440) planes, respectively (Fig. 5.a and
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Figure 5. Selected XRD patterns of Fe3O4 thin films deposited on (a) Si(001) with a

native SiO2 layer, (b) Al2O3(0001), (c) SrTiO3:Nb(001) and (d) MgAl2O4(001).

.b). This pattern is indicative of polycrystalline magnetite (Joint Committee on Powder

Diffraction Standards Card No. 88-0866). An additional peak at 44.67◦ is observed on

the film grown on Al2O3 substrate (Fig. 5.b). This peak is assigned to metallic iron. In

contrast, the films grown on (001)-oriented cubic substrates (SrTiO3:Nb and MgAl2O4)

show a well-defined preferential orientation related to the surface of the substrate, as

can be observed by the predominance of (400) reflection peak at an angle 43.3◦ (Fig. 5c

and 5d). In this case, the films exhibit a small contribution of Wüstite (Fe0.8O0.2) that

can be observed at an angle 41.8◦. By comparing the intensity of peaks obtained for

both families of substrates it can be noticed the high quality (crystallinity) of Fe3O4

films obtained when a (001)-oriented cubic substrate was employed.

Several structural parameters have been derived from the XRD patterns of Fig. 5.

The average crystallite size have been calculated for all samples using Scherrer formula,

resulting the following sizes: 28, 23, 31 and 50 nm for the Fe3O4 films grown on

SrTiO3:Nb, MgAl2O4, Al2O3 and SiO2 substrates, respectively. The polycrystalline films

have larger crystallite sizes when compared with the epitaxial ones of similar thickness.

Moreover, larger crystallite sizes are found for the case of STO when compared with the

other (001)-oriented cubic substrates. XRD patterns have been used as well to calculate

the lattice parameter of the magnetite films, based on Bragg’s law, obtaining values of

0.836, 0.836, 0.836 and 0.833 nm for SiO2, Al2O3, MgAl2O4 and SrTiO3:Nb substrates,

respectively. Notice that all these values are quite close to the bulk one(0.840 nm), but

with a small compressive strain (< 1%).
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Figure 6. Determination of the Verwey transition temperature Tv for the

polycrystalline (left graphs) and epitaxial (right) Fe3O4 films used in Fig. 5. In the

top graphs the evolution of the films magnetization during the warming with an in-

plane applied field of 2 kOe is plotted. On the bottom graphs, the corresponding

temperature evolution of dM/dT is plotted. For clarity, different colors and shapes

have been used for the different Fe3O4 films: Si/SiO2 with green square symbols,

Al2O3 with dark yellow circles, SrTiO3:Nb with black triangles; and MgAl2O4 with

red diamonds, respectively. Tv is derived from the maximum value of the dM/dT (T )

curve.

The Verwey transition, which as mentioned depends strongly on crystal quality,

was investigated by measuring the magnetization as a function of temperature. The

transition is defined as the point with maximum rate of change in magnetization

against temperature. A representative study for magnetite films of similar thickness

grown on different substrates is displayed in Fig. 6. The evolution of the magnetization

during warming of non-cubic and cubic substrates is compared in Fig. 6.a and Fig. 6.b,

respectively. In order to identify clearly Tv, the evolution in temperature of the derivative

of the magnetization with respect to the temperature has been plotted in Fig. 6.c and
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Figure 7. Selected in-plane hysteresis loops of Fe3O4 thin films deposited on (a) Si

with a native SiO2 layer, (b) Al2O3, (c) SrTiO3:Nb and (d) MgAl2O4. Graphs (c) and

(d) show hysteresis loops acquired at αH = 0◦ and αH = 45◦, which correspond to the

easy and hard axis directions, respectively.

Fig. 6.d, respectively. Tv values of 114 and 116 K are obtained for the films grown on

SiO2 and Al2O3, respectively, while for SrTiO3:Nb and MgAl2O4 the transition is found

at 111 and 112 K, respectively. The difference of temperatures for the Verwey transition

in different films might be related to strain induced by the substrate during first stages

of growth, as well as to the crystalline average size [45]. For instance, polycrystalline

films (with large crystallite size) have Verwey transition temperatures very close to the

bulk magnetite value (120 K). By comparison, epitaxial Fe3O4 films (smaller crystallite

size) present lower values. The difference also could be related with the thickness of the

different films, because the epitaxial films are thinner than polycrystalline ones. In fact,

TV increases with increased thickness, as can be seen in Fig. 11.

Very clear differences can be observed when the magnetic properties of

polycrystalline and epitaxial films are compared. MOKE hysteresis loops have been

systematically recorded by changing the in-plane orientation of the applied magnetic

field (αH) in the whole angular range. Fig. 7 shows representative in-plane hysteresis

loops measured at RT for Fe3O4 films deposited on different substrates. Two loops

are plotted for each sample, with the applied magnetic field aligned along the [100]

(αH = 0◦) and [110] (αH = 45◦) magnetite surface directions. Both hysteresis loops

are identical for the case of polycrystalline films, i.e., films grown on SiO2 and Al2O3
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substrates, indicating an isotropic magnetic behavior (see Fig. 7.a and b). In contrast,

a different magnetic behavior is identified for the two angular conditions in the case of

films grown on SrTiO3:Nb and MgAl2O4 substrates (Fig. 7.c and d). In this case, the

hysteresis loops acquired at the two angular conditions show a different magnetization

reversal pathway, and therefore different coercivity (HC) and remanence (MR) values.

In particular, the remanence and coercivity values are higher for αH = 0◦, i.e., along

the [100] direction. The lowest coercivity and remanence values are found at αH = 45◦,

i.e., along the [110] direction. Between these, from αH = 0◦ to 45◦, both coercivity

and remanence decrease and the opposite trend is found from αH = 45◦ to 90◦. In

fact, the trend is repeated every 90◦ for the case of the epitaxial films, as shown in

the corresponding polar-plots representations of coercivity and remanence depicted in

Fig. 8. These clearly show a fourfold magnetic symmetry with the maxima along the

〈100〉 directions. By contrast, the polar-plots for films grown on SiO2 and Al2O3 display

no angular dependence of coercivity and remanence, indicative of an isotropic magnetic

behavior of the polycrystalline films. This isotropic behaviour is also reflected (for

out-of-plane vs in-plane) in the components of the Mössbauer spectra.

The fourfold symmetry is found for all epitaxial magnetite films grown on (001)-

oriented oxide substrates and oriented along the 〈100〉 directions, i.e., rotated 45◦ with

respect to the expected 〈110〉 surface directions (see Fig. 1). The difference between

Figure 3: Hysteresis loopsFigure 1: XRD
Figure 2: Verwey transition

Figure 4: Angular evolution of magnetic properties
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Figure 8. Polar-plot representations of the angular evolution of HC and MR/MS

of Fe3O4 thin films deposited on SrTiO3:Nb (full triangles, black), MgAl2O4 (open

diamonds, red), Al2O3 (open circles, dark yellow) and Si with a native SiO2 layer (full

squares, green). The symbols are derived from the corresponding hysteresis loops, as

the one shown in Fig. 7, acquired at the different angular conditions in the whole range.

Note the isotropic behavior of the polycrystalline magnetite films and the well-defined

fourfold magnetic symmetry aligned along the 〈100〉 surface directions in the case of

the epitaxial films.
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Fe3O4 films grown on different substrates is the value of coercivity. For data shown in

Fig. 8, the highest (smallest) coercivity values are found for the film grown on STO (Si).

The difference in coercivity could be also attributed to the thickness difference of the

films: the thinnest (thicker) film is the one grown on STO (Si). In the next section it is

shown that, in fact, coercivity depends strongly on the films thickness.

3.2. Influence of film thickness

Figure 9 displays the diffraction patterns of Fe3O4(001) films of different thickness grown

on STO:Nb and MAO. The increase of the Fe3O4 (400) peak intensity is clearly related

with the increased thickness. Note that even for thicknesses as large as 330 and 350 nm,

the films display a single crystal orientation, indicating the suitability of the IR-PLD

technique to obtain thick Fe3O4(001) films with high crystallinity. The calculated strain

of the films is similar when comparing the thin and the thick films grown on the same

substrate. The one corresponding to STO:Nb is a little less relaxed; the strain on

STO:Nb (MAO) is c.a. 0.8% (0.3%). The corresponding crystallite sizes, calculated

using the Scherrer equation, are larger for the thicker films. The crystallite sizes are 28

and 70 nm (27 and 50 nm) for the films grown on STO:Nb (MAO) with thickness of 67

and 330 nm (100 and 350 nm).

The purity, i.e., good stoichiometry, of the magnetite films have been checked by

ICEMS and by the determination of the Verwey transition TV. In brief, the ICEMS
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Figure 9. Thickness-dependent XRD diffraction patterns of magnetite films grown

on SrTiO3:Nb(001) (a) and MgAl2O4(001) (b).
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Figure 10. Thickness-dependent ICEMS spectra of epitaxial Fe3O4 films grown on

MgO(001). The symbols are the experimental data acquired at RT for the thick

(bottom graph) and the thin (bottom) film. Continuous black lines are the best

fits with the two sextet components, as expected for magnetite. The corresponding

resonances SA and SB are depicted with solid red and blue lines, respectively.

SB/SA = 1.9 for the two films. The insets are zooms of the corresponding fits to

visualize clearly that the area ratio x of the lines 2 and 3 of sextets is lower for the

thinner film, suggesting that the magnetization of the thinner film is more out-of-plane.

spectra reflect high stoichiometric magnetite films and there is a non-negligible variation

of TV with both substrate and thickness. Figure 10 compares ICEMS spectra recorded

from two magnetite films with different thickness deposited on MgO(001). The spectra

were fitted with the same criteria and Mössbauer parameters described before (see

Fig. 4). Similarly, the area ratio SB/SA found is 1.9 for both magnetite films, indicating

that are of stoichiometric composition [44]. The x parameter, i.e., the area ratio of the

lines 2 and 3, is 2.2 for the thicker film and 1.8 for the thinner one, as clearly show the

corresponding insets of Fig. 10, indicating that the magnetization of the thinner film is
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Figure 11. Thickness-dependent Verwey temperature transition (Tv) of films grown

on SrTiO3:Nb(001) (left graphs, a. and c.) and MgAl2O4(001) (right, b. and d.)

substrates. In the top graphs are plotted the evolution of magnetization of the films

during warming with an in-plane applied field of 2 kOe. On the bottom graphs are

plotted the corresponding temperature evolution of dM/dT . For clarity, different

colors and shapes have been used for the different Fe3O4 films. Note that Tv increases,

getting closer to the bulk one, as thickness increases.

more out-of-plane than in the thicker one.

Each of the top graphs of Fig. 11 compares the magnetization evolution with

temperature for different film thicknesses grown on different substrates. As it was

previously mentioned, there is a reduction of the Verwey transition temperature to lower

temperatures as the thickness decreases. Comparing the films grown on STO:Nb and

MAO, the latter shows higher TV values, i.e., closer to the bulk one, probably due to the

smaller strain found on this film. As mentioned in the introduction, TV is very sensitive

to stoichiometry [8] but also to strain [55] and to the presence of structural defects [9, 24],

even in highly stoichiometric films. Most work on epitaxial (compressive) films show a

reduced TV (we note that magnetite films prepared under tensile strain have recently

shown substantially higher values than the bulk [55]). In turn, TV decreases as the

number of defects increases [46]. For example, magnetite films often present antiphase

domain boundaries (APBs) [36, 46], as discussed later. APBs densities can be related
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Figure 12. Selected in-plane hysteresis loops (easy and hard axis) comparing the

influence of the thickness of epitaxial Fe3O4 films grown on STO:Nb(001) (left graphs)

and MAO(001) (right). (a) 67 nm and (b) 330 nm deposited on SrTiO3:Nb, and (c)

100 nm and (d) 350 nm deposited on MgAl2O4.

to the deposition temperature [46], and decreased by post-deposition annealing. So,

for films with compressive strain grown on different substrates, the larger strain (films

grown on STO:Nb), the lower TV. In addition, thick films are at high temperature for

longer times during fabrication, which should result in fewer defects and thus a larger

TV. The other observed dependenciy, i.e., of the out-of-plane magnetization component,

will be analyzed when discussing the dependence of magnetic properties with the film

thickness.

Representative hysteresis loops acquired at αH = 0◦ and 45◦ comparing the

magnetic behavior of Fe3O4 films with different thickness are displayed in Fig. 12. The

left (right) graphs correspond to films grown on STO:Nb (MAO). The top (bottom)

graphs compare loops of the thinner (thicker) films. All hysteresis show single loop

behavior, and the thicker the film the smaller the coercivity and the remanence. In

addition, the fourfold symmetry is clearly observed for all films grown on the (001)-

oriented substrates, with the maxima of both coercivity and remanence lying along

the 〈100〉 surface crystal directions, and the corresponding minima along the 〈110〉
directions. This magnetic symmetry is clearly observed in the polar plot representation

of both coercivity and remanence shown in Fig. 13. Each polar-plot compares different

thickness. The trend occurrs for the whole angular range. The coercivity and remanence
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Figure 13. Angular evolution of in-plane HC and MR/MS of Fe3O4 thin films

deposited on SrTiO3:Nb substrates with thickness of 67 nm (full triangles, black) and

330 nm (open diamonds, red), and MgAl2O4 substrates with thickness of 100 nm (full

circles, blue) and 350 nm (open squares, green).

are smaller in the case of the thicker films. The fourfold magnetic symmetry is preserved

for magnetite thicknesses as large as 450 nm.

The thickness-dependent coercivity along the easy direction for all films investigated

has been plotted in Fig. 14. At a glance, the coercivity decreases as the film thickness

increases, independently of the substrate used. A similar scenario but with smaller

coercivity values is found for the other angular conditions. The coercivity follows an

inverse law with the film thickness, whose accuracy is evident in the inset of the figure.
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Figure 14. Thickness-dependent coercivity of epitaxial magnetite films. Inset:

corresponding coercivity vs. 1/thickness plot. The experimental HC values (symbols)

have been derived from the hysteresis loops acquired with the field along the [100]

direction, i.e., e.a., as those shown in Fig. 12. Different colors have been used for the

films grown on different substrates. The dashed line is a fit to the coercivity using an

inverse law with thickness, as discussed in the text.

4. Discussion

The substrate symmetry is related to the isotropic and anisotropic magnetic behavior

found in the different films. Amorphous and hexagonal (non-cubic) substrate surfaces

promote polycrystalline magnetite films and isotropic magnetic behavior, whereas (001)-

oriented (cubic) substrate surfaces provide epitaxial (001)-oriented magnetite films with

an effective fourfold (biaxial) magnetic anisotropy. In order to understand the rest of

the observed features, i.e. the particular orientation of the easy axes, the changes in the

out-of-plane magnetization or the evolution of the Verwey temperature and the changes

in remanence and coercivity with temperature it is necessary to introduce the effects of

the natural growth defects,(i.e., APBs), as well as thickness effects on (pinned) domain

wall dynamics.

Thus we suggest that the magnetic features of IR-PLD grown pure magnetite films

have three origins which are not independent of each other:

• Substrate-control of magnetic symmetry, resulting in the isotropic magnetic
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behavior in the polycrystalline magnetite films and the fourfold magnetic anisotropy

in the (001)-oriented epitaxial magnetite films.

• Antiphase boundaries (APBs)-control TV and promote a magnetic symmetry along

the 〈100〉 directions, i.e., rotated 45◦ with respect to the bulk projected directions.

• Dimensionality-control of coercive field, following an inverse law dependence with

the film thickness.

We start by discussing the role of antiphase domain boundaries.

4.1. Antiphase Boundaries

Observations of high coercivities, high saturation fields, out-of-plane magnetization [36],

superparamagnetism in ultrathin films [47], biaxial anisotropy induced by growth of

magnetite films on MGO stepped substrates [48], as well as pinned magnetic domain

structures [49] have all been attributed to antiphase domain boundaries (APBs) [36].

An antiphase domain boundary (APB) in a magnetite film appears when two islands

of magnetite, separated by a non-integer multiple of the unit cell, coalesce. In such

case, while the atomic lattice is continuous across the boundary, the cations order is

disrupted. The presence of APBs in magnetite films has been extensively investigated

in films grown on MgO(001) [13, 46], which have an almost perfect lattice mismatch but

with different structures (spinel/cubic), and more recently on MAO (111) [50] which

share the same structure (spinel/spinel) but have an small lattice mismatch (3%). In

both cases, magnetite films show APBs. Moreover, it was found that the density of

APBs is related to the deposition temperature, and can be decreased by post-deposition

annealing. Under the same temperature growth conditions, the average domain size

within the APB increases with the square root of the thickness, i.e., APBs density

decreases following an inverse law with the square root of the thickness [13]. The

increase in domain size and the decrease in the number of boundaries is a consequence

of the APBs annealing out of the films with time at high temperature during growth

and during annealing [46], as expected from diffusive antiphase boundary coarsening

theory [51].

The effective magnetic easy axes found in the epitaxial films of this study, i.e., along

the in-plane 〈100〉 directions, can be correlated with the directionality and the magnetic

coupling of the APBs formed during growth [13]. APB shifts can be formed based on the

different translation and rotation symmetry respectively for the case of the first Fe3O4

monolayer and the (001)-oriented surface. The influence of APBs on magnetic properties

comes from the existence of specific geometries of the Fe-O-Fe arrangements not present

in perfect bulk magnetite. The nature of magnetic coupling across APBs can be either

antiferromagnetic or ferromagnetic, as recently show by atomic-resolution transmission

electron microscopy and differential phase contrast imaging measurements [56]. For

example, a given fraction of APBs comprises aligned Fe+3-O-Fe+3 bonds (see Fig.1 of

ref. [13]) which are known to create extremely strong antiferromagnetic superexchange

interaction, resulting in a strong antiferromagnetic coupling along the 〈110〉 magnetite



Towards magnetic control of magnetite 20

surface directions. This might hinder the magnetic orientation along this direction, even

in the case that it would correspond with the expected (bulk) anisotropy direction. In

contrast, 〈100〉 APBs are expected to couple ferromagnetically. This might favor the

magnetic orientation along 〈100〉 directions.

Further effects of these structural defects on the magnetic and transport properties

of magnetite films are the high fields required to saturate the magnetization [36] and

the large magnetoresistive effects [48]. The presence of APBs is the origin of rotation

of the spins in the material and the formation of a complicated spin structure, due

to the strong antiferromagnetic coupling at APBs and with a partial out-of-plane spin

orientation around them, which depends on the external field [57]. Therefore, a smaller

density of APBs will result in a decrease of the effective out-of-plane spin orientation.

The density and directionality of APBs have been analyzed extensively by Celotto

and coworkers for different magnetite thicknesses and thermal treatments by using rose

diagrams from image analysis on dark field images [13]. The density of APBs (domain

size) decreases (increases) with film thickness and with increasing growth or annealing

temperature. In turn, the directionality of the APBs is predominantly oriented close to

± [100] and ± [010] directions. This would make easier the magnetic orientation along

this direction. Remarkably, the APBs directionality depicted in the rose diagrams of

Fig.4 in ref. [13] closely resemble the polar-plots of magnetic properties discussed and

presented previously (see Fig. 8 and Fig. 13).

We thus suggest that the epitaxial films (i.e., those grown on STO:Nb, STO, MAO,

and MgO) present substantial densities of APBs oriented as reported in ref. [13]. Within

this scenario, APBs may act as pinning centers making harder the magnetic orientation

along specific directions, and making easier the most distant to the latter. In this sense,

the effective hard axis directions lie along the 〈110〉 directions, from antiferromagnetic

coupling between APBs, whereas the effective easy axes are aligned along the 〈100〉
directions.

The presence and inferred evolution of APBs explains the dependence of our

ICEMS observations with thickness. All films investigated by ICEMS present an out-

of-plane perpendicular component, which has not been detected by MOKE. This out-

of-plane component is presumably originated from APBs in the films wiht a local anti-

ferromagnetic ordering [57, 58], which have extremely high coercive fields [57] and are

thus not detectable with our MOKE setup. This component is more prominent (lower

x) for the thinner films (Fig. 10). So thinner films should have a somewhat higher APBs

density. This is in line with the known behavior of APBs, which is reduced for samples

annealed at high temperature: as all the films were grown at 750 K and at the same

rate, the thicker films are kept at high temperature for longer times.

4.2. Reversal processes

Magnetization reversal is determined by the film microstructure (morphology, roughness,

defects density), and by the magnetic properties including the anisotropy. The basic
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magnetization processes in ferromagnetic systems are magnetization rotation, nucleation

of inverted magnetic domains and motion of magnetic domains walls.

In the case of magnetic film with well defined magnetic anisotropies, coming from

a saturated state and decreasing the applied field strength, the magnetization rotates

in order to be aligned with the magnetization easy axis direction. At zero field the

magnetization remanence depends on the angle between the direction of the last external

field used and the anisotropy axis. From the remanent state, upon reversing the field

orientation, the magnetization rotates until at an specific field a reversed magnetic

domain nucleates, usually at a low coordination site. The reversal then continues by

a further propagation of the magnetic domain wall, driven by the pressure exerted by

the external field. Within this scenario, coercivity is a property related to the rate at

which magnetic relaxation between the remanent and demagnetized states takes place.

The relaxation process involves displacements of magnetic domain walls. For instance,

APBs can act as pinning centers for the domain wall movement hardening the reversal.

Simple models based on the energy stored in a domain wall have been proposed in

order to analyze the dependence of HC with the thickness of a FM film tFM. This energy

arises, among others, from exchange, anisotropy, and magnetostatic contributions, and

depends on the type of wall under motion (i.e., Bloch or Neel type). In particular,

while in both cases the models predict that the coercivity scales with the saturation

magnetization, in the case of Neel wall motion the coercivity is proportional to tFM
whereas for Bloch wall motion it is inversely proportional to tFM. Neel walls are

common in (ultrathin) films where the exchange length, c.a. few nm in FM, is very

large compared to the thickness. For the case of our films, with thicknesses between 30

to 450 nm, Bloch type (bulk-like) domain walls must be considered. The inverse law

with thickness predicted by the bulk-like model has been already proved experimentally

in FM films [52, 53].

In the case of the films studied, apart from the weak expected evolution of the

density of APB defects with the thickness inferred from ICESM, the rest of structural

parameters are similar between each of the epitaxial films. In fact, all have well-

defined fourfold-symmetric magnetic anisotropy (which is however rotated 45◦ from

the projected bulk directions) and similar values of crystal grain size (40 to 60 nm),

strain (< 1%), and surface roughness (< 1 nm) on flat areas). Therefore the 1/tFe3O4

law found in these films, independently of the substrate used, can be explained by the

general behaviour of thin layers with Bloch type domain walls, i.e., bulk-like layers,

mediated by the APBs. This is also supported by the thickness dependence of the

remanent magnetization. The thinnest samples show an MR/MS ratio close to 1, ratio

which decreases as the thickness increases. The APB-induced unexpected magnetic

anisotropy also diminishes, as the density of APBs is somewhat reduced with thickness.

Further proof that the origin of observed magnetic anisotropy in the (001)-oriented

films is related to the morphological distribution of the APB defects is the fact that the

associated phenomena is different from that usually found in epitaxial (001)-oriented

cubic films. Fig. 15 compares representative vectorial-resolved measurements of the
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Figure 15. Selected vectorial-resolved hysteresis loops of films with fourfold

magnetic symmetry acquired at indicated angles αH: Fe3O4(001) (a); Fe(001) (b).

The corresponding measure geometries, where the e.a. directions (magnetization

components) are indicated by thick continuous (thin dashed) arrows are shown in

the middle. The M‖(H) and M⊥(H) loops are represented by circles and squares,

respectively. The two branches have been depicted with different filled symbols to

clarify the evolution of the magnetization.

epitaxial films (left graphs) with the ones of a cubic Fe(001) film (right) acquired with

the field oriented nearby the characteristic easy (top) and hard (bottom) directions.

In general, both systems present fourfold symmetry, i.e., the magnetic properties are

repeated every 90◦, but the reversal pathways are quite different. For example, for the

Fe(100) film, the reversal is characterized by a strong angular dependence in the number

of irreversible transitions [42]. In particular, when the field orientation is closed to the

easy directions, an irreversible transition (corresponding to nucleation and propagation

of 180-oriented domain walls) is observed, whereas two irreversible transitions (related

to nucleation and propagation of 90-oriented domain walls) are found close to the hard

directions. Note that this is also easier to identify in the M⊥(H) loop. In clear contrast,

the vectorial-resolved loops of any of the epitaxial magnetite films investigated show

just one irreversible transition and only in the M‖(H) loop, being almost negligible

the M⊥(H) loop. The latter could be explained by opposite magnetization rotation

pathways, i.e., above and below the field direction, taking place before and after the

sharp transition. This would cancel out the M⊥ signal at any field, i.e., M⊥(H) ≈ 0, as

observed experimentally.
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5. Conclusions

High quality stoichiometric magnetite (Fe3O4) films grown by infrared pulsed

laser deposition (IR-PLD) on different substrates (i.e., SrTiO3(001), MgAl2O4(001),

MgO(001), Al2O3(0001) and amorphous Si/SiO2) have been investigated in order to

study the influence of the substrate, orientation, and thickness on their magnetic

behavior.

All films consist of nanocrystalline stoichiometric magnetite with very small

strain (< 1%) and a Verwey transition (TV) between 110-120 K, i.e., close to the

transition temperature of bulk magnetite (125 K). TV depends on microstructure and

thickness, increasing as the thickness increases. Room temperature angular-dependent

measurements reveal isotropic behavior for magnetite films grown on Al2O3(0001) and

Si/SiO2, whereas an in-plane fourfold symmetry magnetic behavior for all films grown

on (001)-oriented surfaces, and with the easy axes lying along the Fe3O4 [010] and [100]

directions, i.e., rotated with respect to the bulk projected directions. Remarkably, the

fourfold magnetic symmetry is shown even in 400 nm thick films. In turns, the coercive

field (HC) depends on microstructure and film thickness. The largest (lowest) HC value

has been found for the thinner film grown on a single crystal SrTiO3(001) (amorphous

Si/SiO2) surface. Moreover, the coercivity follows an inverse law with film thickness, as

predicted with a simple bulk-like model.

These results demonstrate that it is possible to artificially control the magnetic

behavior of stoichiometric IR-PLD grown Fe3O4 films by exploiting substrate-induced

anisotropy and thickness-controlled coercivity, helping paving the way to incorporate

magnetite in future magnetic-based applications.
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