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Abstract

Remote photoplethysmography (rPPG) is a method of measuring cardiovascular activity using a
video camera. Currently, development of rPPG signal extraction methods is based on real videos
from human volunteers. In this research, we develop synthetic videos based on 3D morphable
models, which contain physiological signals of predictable amplitude and periodicity which mimic
the human facial skin regions. With this model, reproducible and realistic experiments under
different illumination and motion scenarios are developed. Using state-of-the-art rPPG algorithms,
we prove that the heart rate signal can be extracted precisely as encoded using an RGB camera
on a normal LCD. Synthetic models with dynamic illumination are used to validate an Automatic
Gain Tuning algorithm (AGT) which aims at increasing SNR by reducing pixel clipping. Results
show that the AGT leads to subtle changes in SNR with gains only being noticeable and consistent
with high clipping levels. We propose and implement improvements to the AGT which increases
gain tuning freedom by extending the implementation to include automatic exposure. Adjusting
exposure shows superior improvement in SNR compared to independent gain tuning.
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Chapter 1

Introduction

1.1 Background

The human cardiovascular system consists of the heart, blood vessels and blood. In clinical and
health monitoring systems, the cardiovascular system activity is used to detect vital human signs
such as heart rate (HR), oxygen saturation (pulse oximetry), respiration rate (RR), blood
pressure, cardiac output and in diagnosis of peripheral vascular diseases etc. Detection of
cardiovascular activity can be done by either contact-based methods such as electrocardiogram
(ECG), photoplethysmography (PPG), or contactless methods such as radar, thermal imaging
and remote photoplethysmography (rPPG). ECG is a classical contact-based technique used to
measure cardiac activity. In ECG, shown in Fig 1.1, the heartbeat signal is obtained by
measuring the heart’s electrical impulses generated by polarization and depolarization of cardiac
tissue using electrodes attached to the body. These impulses are translated into a waveform
whose periodicity corresponds to the heart rate.

PPG is the optical measurement of blood volume changes [1]. It is a popular non-invasive
contact-based method used for measuring several human vital signs including; pulse rate, oxygen
saturation and respiration[2]. In PPG, shown in Fig. 1.1, fluorescent body parts such as the skin
are illuminated with illumination of different wavelengths. The intensity of reflected or transmitted
light is measured using a photodiode. The measured intensity contains time varying signals, AC
components superimposed onto DC components. The time varying signal is as a result of variation
in the amount of blood in microvascular bed tissue[2],[3]. The DC components are as a result of
the properties of the illuminated skin surface of subjects and other lower frequency components
due to other body rhythmic processes such as respiration[2].

Contactless measurement of the heart rate (HR) can be achieved by using radar, thermal
camera or a video camera. The most promising of these methods is the use of the video camera
because of its inexpensive implementation. This implementation referred to as remote PPG
(rPPG), has motivated research interest in recent years as demonstrated in the papers [1], [4],
[5], [6], [7]. In rPPG, shown in Fig. 1.1, the minute optical absorption changes caused by blood
volume variations in the skin are detected by a video camera. Remote PPG is most desirable in
cases where contact has to be prevented because of extreme sensitivity (e.g. neonates ), or when
unobtrusiveness is essential or desirable e.g. in surveillance, fitness etc [7].

Subject motion and illumination changes affect the perceived color of skin pixels. To retrieve
a clean pulse signal independent of other changes other than the physiological changes, motion
and illumination robust methods are needed. Efforts have been made towards motion and
illumination robust rPPG by using various techniques including; Blind Source Separation (BSS)
techniques [5],[8], Chrominance method [6] and blood volume based pulse signature method[7].
The effects of dynamic illumination on rPPG signal measurements have also been studied by Liu
et al [9]. To improve the performance of the heart rate extraction methods under dynamic
illumination, Andreas Papageorgiou [10], a master student at Philips research, developed a
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Figure 1.1: Contact-based HR measurement Figure 1.2: Contact less HR measurement

camera based Automatic Gain Tuning algorithm (AGT) which uses a ROI based white and black
clipped pixels measurement to predict camera gains which give minimum clipping.

Development and benchmarking of current rPPG algorithms is based on actual video
recordings. Currently, it is impossible to reproduce an experiment with exactly the same
physiological signals. Therefore, this research’s aim was to create synthetic videos, with realistic
physiological and skin optical properties, which mimic the optical properties of the facial skin
regions under various illumination and motion conditions. This addresses the need for
reproducible experiments. The synthetic videos are benchmarked using current state-of-the- art
rPPG algorithms, the CHROM [6] and PBV methods.[7], and are consequently used to validate
and improve the AGT algorithm developed at Philips.

In summary, this paper’s main contributions are; i) Modelling synthetic rPPG videos based
on 3D morphable models (3DMM), ii) Benchmarking and validating a ROI based real time gain
tuning algorithm and, iii) Extending the implementation to automatic gain and exposure tuning.
The suggested improvements are based on signal-to-noise ratio (SNR) measurements and clipping
percentage benchmarking of the original AGT.

1.2 Research Motivation

The periodicity and amplitude of the pulse signal of any given subject are dynamic even in the most
controlled experiment conditions [1]. This typical nature is shown in Fig. 1.3. The observed trend
in amplitude and frequency can either increase or decrease over time. Consequently, it is unlikely
to reproduce an experiment in which the extracted PPG signal is the same. This complicates the
testing of specific algorithms for experiments which involve varying the subject’s pose, skin types
and dynamic illumination.

Detection of the rPPG signal involves pixel-based processing applied to video frames. Similar
to other computer vision research areas like face detection, skin detection, feature extraction etc,
a reliable and consistent database of videos for rPPG algorithm development, testing and
training is required. The first step of developing such a data set is to realise a synthetic human
face. In computer vision, realistic face models have been developed based on 3D morphable
models (3DMM)[11]. The use of 3DMM in generating synthetic faces is promising although, it
still faces challenges of generating very realistic faces using reasonable computation resources.
Many researchers believe that 3DMM constitutes the state-of-the-art for face image-based
analysis[12]. Based on this premise, 3DMM can be used to generate reliable and reproducible
synthetic experimentation videos for rPPG research.

The primary goal of this research is therefore, to bridge a gap in the area of rPPG
experimentation by developing synthetic and yet realistic videos from 3DMM with the required
skin attributes which contain the relevant vital signals. This shall address the need to have
experiments which are reproducible with the exact physiological signals.

The first step in calculating a heart rate from videos is to extract the mean raw RGB signals
which are obtained by spatial averaging of pixel values in the ROI. These raw signals contain
minute color variations due to changes in blood volume in the blood vessels and variations due
to an external light source i.e intensity and color changes. The current state-of-art algorithms i.e.
CHROM and PBV are robust under different light and color variations. It is important to note that
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Figure 1.3: Dynamic nature of the rPPG signal
Figure 1.4: Clipping of RGB normalised traces
due to very high and low light intensity changes

large changes in intensity (very high or very low intensity) will lead to clipped pixels (Pixels over
255 or under 0 for uint8 RGB pixel representation are clipped). The effect of clipping RGB sine
signals traces is shown in Fig. 1.4. The SNR of signals extracted by current rPPG methods reduces
when pixels are clipped because the minute color changes are no longer present. To improve the
performance of the PPG extraction methods, Andreas [10], implemented an automatic gain tuning
algorithm (AGT) with the CHROM algorithm. This algorithm was tested under different light
conditions (constant light, extreme ambient light and varying lighting mimicking cloud cover) on
one subject. The results from these experiments were not conclusive because the experiments in
the two scenarios ”AGT-OFF” and ”AGT-ON” were not identical. Therefore, the secondary goal
of this research is to use the synthetic models to validate the AGT under different illuminations
scenarios. The performance results are expected to be more accurate and conclusive. These results
shall also inform the areas of improvements to increase the robustness of the AGT.

1.3 Research Objectives

The main research objectives in this paper are;

1. Develop realistic human face model. These models should contain realistic human features

2. Implement physiological and optical properties of the skin. Model the skin using a suitable
skin color representation to represent the DC component and a suitable pulse model to
represent the AC component.

3. Study and model the effects of illumination on the rPPG signal. By using a suitable light
and shading model to reproduce various dynamic illumination.

4. Model different pose and motion scenarios. The motion scenarios include; Translation,
rotation and zoom

5. Benchmark the models for consistency and accuracy with state-of- the-art rPPG algorithms
and the Automatic Gain Tuning (AGT) algorithm developed by Papageorgiou. In addition,
validate and suggest/implement improvements to the Automatic Gain Tuning algorithm
developed at Philips.

6. Implement a user interface for rendering videos with different pose, illumination, pulse rates
and motion.
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1.4 Related Work

At the time of this writing, synthetic videos of human faces containing pulsatile signal information
have not been published in any accessible literature. It is important to note though that in
numerous medical applications, synthetic phantoms have been developed e.g. the phantoms with
tissue like properties for the human skin presented in [13] and other medical imaging phantoms
for CT scan based research.

Morphable models for 2D and 3D image processing have been developed in various studies; by
Blanz and Vetter [11], Paysan et al [12], Chung et al [14], Lee et al [15]. These generative models
provide pose and illumination invariance. They achieve shape, pose and skin color from real world
data captured using high definition 3D scanners. The morphable models can be used to generate
numerous random faces by using statistical model fits to real data.

Modelling different skin types requires a comprehensive skin model. Kakumanu et al [16],
presents a synopsis of skin modelling and detection methods. It is noted that representation of skin
color in digital images depends largely on spectral reflectance, prevailing illumination conditions
and camera characteristics. It also presents a variety of color spaces used in skin representation
including; basic color spaces RGB, normalised RGB, CIE-XYZ; perceptual color spaces HSI, HSV,
HSL and TSL; orthogonal color spaces YCbCr, YIQ, and YUV. A mixture of the different color
spaces has also been used in skin models such as the RGB-H-CbCr skin model presented by Anwar
et al [17].

Yang et al [18] presents a statistical human skin model using a multivariate normal distribution
in the normalised color space under specific lighting conditions. For dynamic lighting conditions,
an adaptive model is proposed. Hayit et al [19] proposes a model for face color modelling which
uses a mixture of Gaussians for robust representation of the skin colors under different conditions
of shadows and illumination. Ming-Hsuan et al [20] uses a Gaussian mixture model for human
skin color modelling.

Skin color has also been modelled using illumination reflection. This offers sufficient accuracy
in mimicking the skin color as recorded by a camera [21]. Human skin reflectance is an important
parameter in skin representation and detection in the visible and near-infrared imaging [22]. The
dichromatic reflection model used to characterize a variety of reflectance properties of materials
proposed by Tominaga [23] provides such a representation. Weyrich et al [24], developed a skin
reflectance database and model to achieve Torrance-Sparrow and Blinn-Phong analytic BRDF
face model for different skin types according to the Fitzpatrick scale [25] given in Table 3.2.

Hüelsbusch and Blazek [1], elaborate the dynamic nature of the pulse signal obtained by PPG
as shown in Fig. 1.3. Allen [2], presents the characteristics of the PPG signal and its relation
in appearance to the ECG waveforms shown in Fig. 3.14. Martin-Martinez et al [26], present a
stochastic model of the PPG signal based on the shape parameterization of the PPG wave and
non-stationery model of its time evolution. The PPG signal is reproduced by a mixture of different
Gaussian-shape like waves which vary with time.

To accurately represent the actual lighting conditions, scene illumination models are needed.
Existing illumination models represent unidirectional or point light source types. In [27] a unified
general light source model is presented which models illumination of different types within a single
unified framework.

1.5 Paper Overview

The rest of this paper is organised as follows; In Chapter 2, PPG-based heart rate detection
methods are elaborated. The existing attempts to reduce the effect of dynamic illumination and
motion in the current state-of-the-art algorithms are also given. In Chapter 3, the synthetic
video development and implementation details are discussed. The implementation of dynamic
illumination and animations are further detailed. Finally the limitations of the implemented
models are presented. In Chapter 4, the AGT implementation, the proposed and implemented
improvements are discussed. In Chapter 5, the experiment results for the implementations,
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”agt-off”, ”agt-on” and improved ”agt-exp” and ”agt-imp” are discussed. The results are based
on the measured SNR and reduction in the clipping percentage and finally Chapter 6 contains
the general conclusions and observations.
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Chapter 2

PPG-Based Heart Rate Detection

2.1 Introduction

In this chapter, the theory and implementation of of heart rate extraction from videos is presented.
Special attention is given to the effect of light and motion on PPG measurement. This gives a
strong background to the AGT benchmark experiments under different illuminations presented in
chapter 5.

2.2 PPG Measurement Principle

PPG measurements require a light source to illuminate a body part with blood vessels. Depending
on the wavelength of the light source, the light can penetrate up to a depth of 3 mm into the skin
and be partially backscattered [1]. The reflected light is detected by a camera sensor. The reflection
consists of a diffuse (body) reflection which has penetrated the skin and specular reflection which
is directly reflected from the surface of the skin see Fig 2.1. The diffuse reflection shows the color
variations due to the rythmic movement of the blood in the micro-vascular tissues under the skin
and a stationery component due to the skin colour. The specular reflection contains a constant
color component due to the light source and no pulse signal. Using a camera, the sum total of the
observed color of a measured skin contains the diffuse and specular reflection.

Figure 2.1: Specular and diffuse Reflection Figure 2.2: PPG Imaging

2.3 Effect of Light and Motion on PPG

The amplitude of the reflected light depends on the wavelength of the light source. Near infra-red
light (NIR) penetrates the skin (epidermis) deeper whereas visible light i.e red, green and blue have
a lower skin penetration. Additionally, the absorption of haemoglobin is about 10 times higher
than that of bloodless tissue. Therefore, there is high illumination absorption if the blood contents
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in the skin is high and vice versa. Using the normal RGB camera, the pulse signal amplitude is
highest in the green channel compared to the red and blue because of the high absorption and
of green light by haemoglobin. PPG measurements are influenced by angles between the camera,
skin and the light source. Changes in position of the skin, camera and the light source affect the
relative contribution of specular and diffuse reflection to the total skin reflection.

2.3.1 Effect of illumination Illumination Colour(wavelength of light)

Measurement of PPG is effected by color variations of the illumination source. The variation
of measured rPPG amplitude with wavelength of the light source is shown in Fig. 2.3 and Fig.
2.4. The green 495 − 570 nm component of the PPG signal from an RGB camera has a higher
amplitude than that of the red 620 − 750 nm and blue 450 − 495 nm channels. It has also been
established that above 590 nm, physiological pulsations are more apparent in the red channel than
that of the green and blue channels [9].

Figure 2.3: PPG amplitude as a function of
wavelength

Figure 2.4: PPG signal amplitude vs
illumination wavelength

2.3.2 Effect of Light Intensity

In chapter 3, and in [6] the Dichromatic model [23] is used to mimic the appearance of skin
pixels in terms of intensity of the light, the stationery component of reflection(DC), the pulsatile
component (AC) and the specular reflection. From this model, it is predicted that increase in light
intensity leads to an increase in the PPG amplitude. It is also obvious that this increase also leads
to an increase in the DC and specular reflection. In the next section, current rPPG extraction
methods which attempt to improve motion robustness are presented.

2.4 Heart Rate Extraction Methods

Several methods have been proposed in literature for heart rate extraction from RGB videos.
The existing methods include; i) Blind Source Separation-based methods i.e. Independent
Component Analysis (ICA) based method by Poh [5] and Principal Component Analysis method
by Lewandowska [4], ii) CHROM method of de Haan and Jeanne [6] and iii) PBV method of de
Haan and Leest [7].

2.4.1 BSS-based methods

BSS is a technique for noise removal from physiological signals. BSS refers to the separation of
a set of mixed signals (with or without little information about the source or the mixing of the
signals). This is used where a source signal is recorded using a set of sensors where each sensor
receives a different combination of the source signals. In rPPG, BSS has been applied by either
using ICA or PCA. The Independent Component Analysis (ICA) is a statistical and computational
technique used to separate independent signals from a set of observations that consist of linear
mixtures of underlying sources [28]. PCA is a statistical transformation that identifies patterns in
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data and expresses the data in such a way that it highlights the similarities and differences. The
extraction of a signal from videos using BSS-methods is shown in Fig. 2.5.

Figure 2.5: Pulse rate extraction using ICA and PCA

Signal extraction using BSS-based methods i.e the ICA involves; (a) Face recognition within a
suitable face recognition algorithm and automatic detection of the ROI, (b) the ROI is decomposed
into red, green and blue channels which are spatially averaged to obtain the raw signals, (c) the raw
signals are detrended and normalised, (d) Independent component analysis is applied to separate
the three independent sources. (e) The pulse rate is obtained from one of the sources i.e the

second source. The The pulse-signal
#»

S obtained with the BSS-method is written as a linear
combination of the individual mean-centered normalised color channels Cn;

#»

S =
# »

WCn, where the
linear weighting

# »

W with
# »

WWT = 1 is obtained using the BSS methods (ICA and PCA). Each of
the rows of the 3XN matrix Cn contains N samples of the mean-centered normalised color signals,
#  »

Rn,
#  »

Gn,
#  »

Bn. These are given by;

#  »

Rn =
1

μ
#»

R

#»

R − 1,
#  »

Gn =
1

μ
#»

G

#»

G − 1,
#  »

Bn =
1

μ
#»

B

#»

B − 1 (2.1)

Where μ corresponds to the temporal mean (over N frames), and the vectors
#»

R,
#»

G,
#»

B contain the
spatial mean of the red, green and blue pixels.

2.4.2 Chrominance method

Extraction of a pulse signal from a video using the CHROM method consists of five major steps
shown in Fig 2.6 [6].

1. Color Normalisation: To produce a pulse signal that is independent of the stationary color of
the light source, as well as its brightness levels, each color channel is normalised by dividing
its samples with their mean over a temporal interval. This color normalization makes the
algorithm robust under different color and intensity variations of the ambient light. The
length of the temporal interval must guarantee that it contains at least one pulse period.

2. Color signal definition: The color signals
#»

X and
#»

Y are defined by the following equations:

#»

X = 0.77
#  »

Rn − 0.51
#  »

Gn,
#»

Y = 0.77
#  »

Rn + 0.51
#  »

Gn − 0.77
#  »

Bn (2.2)

Using color difference signals (chrominance), ensures that the light component that is directly
reflected from the surface of the skin is eliminated. To eliminate motion which affects
chrominance signals identically, a ratio of the two chrominance signals is taken.
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3. Skin-tone standardization: To enable correct functionality under different colored light
sources, a standard skin tone is used to normalize the color channels with the fixed
standardized vector [R,G,B]=[0.7682,0.5121,0.3841].

4. Distortion Minimization: The human heart rate ranges between ≈ 40−240 beats per minute
(BPM), distortions out of this range are removed by using a band-pass filter.

5. Overlap Add The overlap-add procedure makes the algorithm more adaptive to quick changes
in the Heart rate which occur under different-intensity or motion intervals. It improves the
PPG signal by separately optimizing partially overlapping time intervals. The resulting
pieces are stitched together in an overlap-add fashion which is accommodated with the use
of a Hann window. In practice, after normalizing and minimizing the signal, it is multiplied
with a hanning window of a specified size Hann-size = 32. A step size of; Step-size = Hann-
size/4 is used along the time axis and this procedure is repeated. To construct the final
signal the partially overlapping signals are added.

The pulse signal is computed from the normalised color channels as

#»

S =
#»

X − α
#»

Y , α =
δ(

#»

X)

δ
#»

Y
(2.3)

Figure 2.6: CHROM algorithm

2.4.3 PBV-method

The Pulse Blood Volume(PBV) method is based on the unique ’signature’ of blood volume changes

expressed as a vector. The
#   »

Pbv vector is the relative PPG-amplitude in the normalised RGB-color
channels is given by;

#   »

Pbv =
[σ(

#»

Rn), σ(
#»

Gn), σ( #»n)]√
σ2(

#»

Rn) + σ2(
#»

Gn) + σ2(
#»

Bn)
(2.4)

In [7], the pbv vector is found to be relatively stable under white illumination for different skin
tones. The pulse signal is built as a linear combination of normalised color channels. To achieve
this, a

# »

WPBV is sought, that gives a pulse-signal for which the correlation with the color channels
#  »

Rn,
#  »

Gn
#  »

Bn equals
#»

P bv according to the expression in equation 2.5.

#»

SCn
T = k

#»

P bv ⇔ #            »

WPBV CnCn
T = k

#»

P bv (2.5)

The scale factor k is chosen such that
# »

WPBV has unit length.The ovelap-add procedure similar
to the CHROM method is used to construct the pulse signal.

2.5 Summary

In this chapter, effects of light and motion on the PPG signal have also been discussed. The
existing heart rate extraction methods have also been presented. In the next chapter, we present
the modelling of the synthetic face model with PPG signals.
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Chapter 3

The PPG Face Phantom

3.1 Introduction

Synthetic videos with physiological and skin optical properties, which mimic the human facial skin
under various illumination and motion conditions developed and implemented in this research, are
based on synthetic 3D Morphable models(3DMM). In computer vision synthetic 3DMM have
become a powerful tool in face recognition tasks. 3DMM was first proposed and developed by
Blanz and Vetter of the University of Basel as a sibling of 3D AAM [11]. 3DMM statistically builds
a joint model based on 3D shape and texture in 2D. Human face phantoms based on 3DMM are
generated from several 2D images or 3D face scans by using feature points on the human face. The
current state-of-the art methods used involve face registration (triangulation) and parametrisation.
Triangulation/reconstruction is a process by which a point in 3D space is calculated from two or
more images where that point is visible [29]. 3DMM parametrisation involves specifying a model
to represent the shape and the skin color of the human face. Parametrisation can also be useful
in changing the shape and texture attributes of the face in a natural way to generate other faces.
In most cases it is sufficient to use the cartesian (X,Y, Z) or spherical co-ordinate system (r, θ, φ)
to define a point in space(the shape form). The skin color model used varies depending on the
purpose of the 3DMM. Commonly used skin color representation are presented in the section
3.3. 3DMM is suitable for 3D face animation and potentially useful for 3D face recognition tasks.
Construction of PPG simulating videos requires animation of 3DMM adding parameters (model)
which mimics the skin colour changes with time.

3.2 The Basel Face Model

In this research, the Basel Face Model (BFM) presented in [12] shown in Fig. 3.1 was used. This
model assumes independence between human shape and texture (color). Dense triangulations
are used to achieve higher resolution and detailed facial features and landmarks like the cheek
elevations. These dense triangulations produce a realistic face shape. The BFM model uses a
triangulation of 53,490 vertices each with associated RGB color. Each vertex is associated with
a position vector [x, y, z] and a color vector, [R,G,B]. Since face shape is not as important to
this research as the face color variations, the parametrised shape model of the BFM is adopted
for generating random faces upon which a unique face color model is superimposed. The BFM
shape model, also provides capability to change shape and incorporate various characteristics like
age, weight, gender etc. These are of less importance for this research’s objectives but they are
an added benefit for exploration purposes. The main disadvantage of the BFM shape is that it
only achieves a natural expression of the face. Therefore, it is difficult to produce various facial
expressions like smile, anger etc. These properties too are of less importance to the research topic.
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Figure 3.1: The Basel Face Model

3.2.1 BFM Model construction

The construction of a reliable 3DMM requires a training set with a variety of shapes and
appearance. The BFM is based on face scans of 100 females and 100 males mostly Europeans
with ages ranging between 8 and 62 years with an average age of 24.7 years and weights between
40 and 123 kg with an average of 66.48 kg.

To effectively parameterize data from the 3D scans to achieve a fit of scan data to model
correspondence i.e. data from a noise tip should be represented by only one point in the model,
registration is performed as shown in Fig. 3.3. Each BFM is parameterised by triangular meshes
each with m = 53, 490 vertices and a shared topology. Each vertex (xi, yj , zj)

T ∈ R has an
associated color (rj , gj , bj)

T ∈ [0, 1]3. The face is represented by 3m dimensional vectors.

s = (x1, y1, z1, ...xm, ym, zm)T (3.1)

t = (r1, g1, b1, ...rm, gm, bm)T (3.2)

A Guassian distribution is fit to the data using Principle Component Analysis(PCA), resulting
into a parametric face model consisting of

Ms = (μs, δs, Us) and Mt = (μt, δt, Ut) (3.3)

Where μs,t ∈ R
3m are the mean, δs,t ∈ R

n−1 the standard deviation and Us,t = [u1, u2, ...un] ∈
(R)3mxn−1 are the orthonormal basis of principal components of shape and texture. New faces
with different attributes of age, weight, height, gender, etc. are generated as shown in Fig.3.3 are
generated from this parametric model.

Figure 3.2: Each entry in shape and color vector correspond to the same point on the faces i.e the
tip of the nose for this case.
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Figure 3.3: The parameterised model is used to produce faces with different attributes

3.3 The Skin Color Model

Although the RGB color space used in the BFM is adequate to accurately represent the color of
the face, its skin types are limited to subjects of one ethnicity (mainly Europeans). It has already
been noted that a skin model based on skin reflectances can sufficiently reproduce the required
skin representation achieving a wide variety of skin types. The dichromatic model is one of the
the classical models based on skin reflectance. According to the dichromatic model, the intensity
of a given pixel in image number i in each color channel C ∈ R,G,B is represented as;

Ci = Ici(ρCdc + ρCic + Si) (3.4)

Where Ici is the intensity of the light source integrated over the exposure time of the camera
in image i for the particular color channel, ρCdc is the stationery part of the reflection coefficient
of the skin in that particular color channel and ρCic is the pulsatile component. The DC and
pulsatile coefficients account for the diffuse reflection. The diffuse reflection is due to illumination
which has penetrated the skin surface and contains the cardiac cycle due to blood volume changes
in blood vessels underneath the skin. Si is the specular reflection coefficient which accounts for
the percentage of light which is reflected directly from the skin surface without skin penetration.

Each substance has its own unique reflectance characteristics [22]. The human skin has lower
reflectance at shorter wavelengths (about350 nm) than at longer wavelengths (about 1050 nm).
Therefore, in the RGB color space, the skin reflects more red light (≈ 620− 740 nm) followed by
green light (≈ 495 − 570 nm) and least blue light (≈ 450 − 495 nm). Furthermore, for different
ethnicities, i.e. Negroid, Mongolid and Caucasoid, these coefficients are different as shown in Table
3.1. With this data, typical skin types as shown in Fig. 3.5 can be rendered.

Weyrich et al [24], present a face reflectance model with surface reflectance and sub-surface
reflectance which accurately reproduces the appearance of the human skin as seen in a digital
photograph. This is particularly relevant for rPPG signal modelling because the pulsatile signal
originates from the subsurface reflection. With these skin reflectance and dichromatic models,
skin and pulse rate signals are appropriately modelled. The various skin types according to the
Fitzpatrick scale, Table 3.2, are also rendered.
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Table 3.1: Ethnicity skin reflectances

Ethnicity Red Green Blue
Negroid 0.1− 0.4 0.05− 0.08 0.01− 0.05

Caucasoid 0.9− 0.99 0.35− 0.38 0.3− 0.35
Mongoloid 0.9− 0.99 0.3− 0.35 0.3− 0.35

Table 3.2: Fitzpatrick Scale

Skin Type Skin Color
I Pale white
II White
III Cream White
IV Moderate Brown
V Dark brown
VI Dark Skin

Figure 3.4: Fitzpatrick scale

Figure 3.5: Fitzpatrick Skin color modelling using Dichromatic model and Ethnic Reflectances

3.4 Scene Illumination

The light intensity and spectra (different wavelengths) used in a PPG experiment have a
measurable effect on the DC and AC components. In [9], it is shown that with an increase in
light intensity, the measured DC and AC components increase. Furthermore, it is premised that
background scene lighting, whatever color this may be may have significant effect on the rPPG
signal. To model the effects of lighting, a suitable light model is needed. Extensive light source
models have been used in computer vision and computer graphics, among which the most
common are point light source, directional light source and area light sources. It is important to
note that in the real world, the situation could be very complex where multiple different types of
light sources co-exist in the same scene. Such a scenario is investigated in the rPPG signal
measurements in an automotive environment under dynamic illumination conditions by Jeanne
et al [30]. In Fig. 3.6, the effect of illumination sources of different colours on the skin
appearance are illustrated.
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Figure 3.6: Different illumination scenarios

3.4.1 Light source

Realism is added to the 3DMM using light objects in Matlab graphics environment. A light object
is characterised by its color, position and style. The light color is an RGB triplet [IR, IG, IB ] where
I is the intensity in the different color channels in the range [0, 1]. Depending on the nature of a
light source, the light ray direction is either modelled as parallel rays(see Fig. 3.7) emitting from
a distant source(infinity) represented using a three element direction vector [x, y, z] or a point
source(see Fig. 3.8) defined by the position vector. The light position is defined using either
the cartesian system using a three element vector, [x, y, z] or using spherical coordinate system
represented by the azimuth(az) and elevation(el) angles in relation to the target 3DMM object.

Figure 3.7: Parallel light
represented using light
direction, intensity and color

Figure 3.8: Point light
source represented using
light position, intensity and
color

Figure 3.9: Phong shading
vectors

3.4.2 Shading model

To render 3DMM objects realistically to approximate specular,diffuse and ambient reflection
from the 3DMM triangulated faces, the phong reflection model and interpolation method
developed by Tuong Phong [31] is used. The Phong reflection is an empirical model for local
illumination. It describes the way a material reflects light as a combination of the diffuse,
specular and ambient reflection. Specifically, it is based on interpolation of incident light surface
normals across rasterized polygons and computes pixels colors based on the interpolated normals
and a reflection model. The illumination of each point in a scene is computed as
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Ip = kaia +
∑

m∈lights

(kd(L̂m · N̂)im,d + ks(R̂m · V̂ )αim,s). (3.5)

Where ks, kd, ka and α are material properties defined as; ks Is a specular reflection constant, the
ratio of reflection of the specular term of incoming light,
kd, Is a diffuse reflection constant, the ratio of reflection of the diffuse term of incoming light
(Lambertian reflectance),
ka, Is an ambient reflection constant, the ratio of reflection of the ambient term present in all
points in the scene rendered, and
α, which is a shininess constant for this material, which is larger for surfaces that are smoother
and more mirror-like. When this constant is large, the specular highlight is small.

For all lights placed in the scene, the parameters defined are; L̂m, which is the direction vector
from the point on the surface toward each light source (m specifies the light source),
N̂ , which is the normal at this point on the surface,
R̂m, which is the direction that a perfectly reflected ray of light would take from this point on the
surface, and
V̂ , which is the direction pointing towards the viewer (such as a virtual camera).
where the direction vector R̂m is calculated as the reflection of L̂m on the surface characterized
by the surface normal N̂ using R̂m = 2(L̂m · N̂)N̂ − L̂m. The vectors are shown in Fig 3.9.

3.5 PPG Signal Modelling

3.5.1 PPG Signal Waveform Model

The PPG signal waveform is typically a periodic signal with the same periodicity as the ECG
signal. Fig. 3.14 shows typical ECG, PPG and rPPG signal waveforms which are extracted using
current methods. The appearance of the pulse wave in Fig. 3.11, is defined in two phases: the
anacrotic phase being the rising edge of the pulse, and the catacrotic phase being the falling
edge of the pulse. The first phase is due to systole and the second diastole events of the cardiac
cycle. Martin-Martinez et al [26], model the PPG signal waveform as a combination of statistical
Gaussian-shaped waveforms which adequately mimic the actual observed PPG signal shape. In
this model, the pulse signal corresponding to a measurement period T , is split into single pulses
each with ton as the start time and tend the end time of the pulses respectively. As shown in
Fig.3.13, each pulse is then modelled using a combination of two Gaussian curves S1 and S2

corresponding to the start and end of the pulse respectively. Since the pulses are dynamic, the
subsequent pulses over the entire period of measurement T , are constructed from the parametrized
Gaussian models S1 and S2.

3.5.2 Pulse Signal in RGB-Space

Hülsbusch [32], explained that the measured relative PPG signal amplitude is a function of the
wavelength, λ, modelled according to Equation 3.6. This relationship is determined by the contrast
between the blood (absorption spectra of oxy-and de-oxy haemoglobin) and the blood-free tissue.
In Fig. 3.15, the variation of the PPG amplitude with the wavelength, λ is shown.

RPPG(λ) = σ(PPG(λ))/μ(PPG(λ)) (3.6)

The sensitivity of the red, green and blue sensors in the RGB camera used in rPPG measurement
is shown in Fig. 3.16. A larger area of the AC signal amplitude in Fig.3.15, falls under the green
channel of the camera spectral sensitivity. Therefore, the pulse signal amplitude in the RGB color
channels is highest in the green channel as compared to the the blue and red channels respectively.
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Figure 3.10: ECG
Figure 3.11: PPG

Figure 3.12: rPPG

Figure 3.13: Pulse model

Figure 3.14: HB pulsatile waveforms

In [6], it is further shown that the normalised relative amplitudes due to the PPG signal in
the RGB color channels can be approximated with a unique vector, [R,G,B] = [0.34, 0.77,0.54].
The AC pulsatile component is modelled based on these observations. For each pixel (vertex) in
the BFM, an AC pulsatile waveform in the RGB color space is added to the DC value using three
sine waveforms whose amplitudes satisfy the normalised vector and 0.01% of the DC level. As
already observed in Section 3.4.1, the PPG signal is not a perfect sine wave, but for purposes of
benchmarking the first implementation, a sine wave is used since the sinusoidal peaks mimic the
systole and diastole events present in the PPG signal.⎡

⎣ PulseR
PulseG
PulseB

⎤
⎦ =

⎡
⎣ AR

AG

AB

⎤
⎦ sin(2πft/fs) (3.7)

The simple pulsatile signal model is given by Equation 3.7. Where AR,G,B are the pulse
signal amplitudes in each color channel, f is the pulse rate and fs the sampling frequency.

Figure 3.15: PPG amplitude as a function of
wavelength

Figure 3.16: Spectral responses from the color
channels of an RGB camera

3.6 Motion and Dynamic Lighting generation

To mimic motion and moving light sources, translations are imposed on either the 3DMM object
or light object in each movie frame as explained hereafter

1. 3DMM objects can be translated, rotated, zoomed using the cameraview angles. The same
effect can also be achieved by changing the [x, y, z] position.
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2. Dynamic lighting is achieved by changing the position or direction or light color of the light
object per frame. This requires predefinition of a path along which the plotting of the light
positions is defined. The position change my occur along the vertical plane, horizontal plane
or both.

3. Periodic light flicker is generated by toggling lights in the scene by sampling ’1’s on a
simple square wave whose frequency is pre-set depending on the required flickering
frequency according to Equation 3.8

4. Periodic motion is generated by varying the position of the camera view or 3DMM object
along a given trajectory(horizontal, vertical or zoom) by sampling different points on a sine
wave according to equation 3.9.

New Light Position = Old Light Position ∗ square(2πft/fs) (3.8)

New Object Position = Old Object Position ∗ sin(2πft/fs) (3.9)

where ft is the frequency of motion and fs is the sampling frequency.

3.7 Complete model generation

The complete synthetic model is generated according to the steps shown in the flow chart in Fig.
3.17 and Fig. 3.18. The DC level is selected and set to standardized skin. The AC pulse signal
is set to 60 BPM in all models. The AC amplitude is set to 0.05 of the DC level and not the
empirical value of 0.001. This is because at 0.001, the LCD screen induced noise is comparable to
the AC level.

Figure 3.17: steps in generation of the complete model
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Figure 3.18: Construction of the complete model takes the BFM to which a suitable RGB skin
tone is added. A pulse model is added depending to the corresponding skin tone. The rendering
of each individual frame depends on each illumination condition for the model. Motion and pose
is added to generate realistic motion which may occur during experimentation like head rotation,
scaling and translation

3.8 Model Verification

The developed synthetic models are verified using the CHROM and PBV heart extraction
algorithms. Sample signal and frequency spectrum using a static ROI are shown in Fig. 3.19 and
Fig. 3.20.

Figure 3.19: ROI Figure 3.20: Pulse signal and frequency spectrum

3.9 Graphical User Interface (GUI)

This tool is developed as an aid in generation of video sequences with different attributes. To render
video and image sequences with different attributes discussed, a prototype GUI implemented in
was developed, shown in Fig. 3.21. The major functionalities of the GUI include: setting skin types
according to the Fitzpatrick scale, setting illumination intensity, point source position and source
color, setting the pulse signal amplitude and periodicity, simulating head motion i.e. translation,
rotation, scaling etc. and finally simulating background lighting effects including setting flickering
lights.
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3.10 Model Limitations

The model implements a simplified version of the pulse signal from the human face. In a realistic
situation, the heart signal amplitude varies both spatially and temporally. It is also noteworthy
that no noise is added which makes the modelling on the real situation less perfect.

Figure 3.21: GUI prototype

3.11 Summary

In this chapter, we have presented the methods for the 3D generation of the synthetic face, the
skin color model used, the AC pulse model and finally the illumination models used. Finally, the
steps taken to generate a movie with a PPG signal are explained.
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Chapter 4

The Automatic Gain Tuning
Algorithm

4.1 Introduction

In this chapter, the concept of camera gains, clipping and the effect thereof on the pulse signal
extraction from videos is explained. The steps of the Automatic Gain Tuning (AGT) algorithm
developed by Papageorgiou, a masters student at Philips research are also detailed. Based on
initial benchmarking results, the possible areas of improvement of the AGT are identified and
implemented.

4.2 Camera Gains and Clipping

In digital imaging, a voltage proportional to the amount of incident light is output by a sensor
embedded in a camera. To increase image brightness and contrast, this signal can be amplified
by an a gain factor before the digitizing process [33]. Depending on the sensor type, a global gain
value for all pixels(master gain) or a separate gain value for each color(RGB gain) can be set.

A gain factor is the magnitude of amplification that a given system will produce. It refers
to the conversion factor between electrons (e-) recorded by a camera sensor and the number of
digital counts. It is expressed as the number of electrons that get converted into a digital number,
or electrons per ADU (e-/ADU), i.e. a gain factor of 1.8 e-/count means that the camera will
produce 1 count for every 1.8 recorded electron.

Increasing gains increases the brightness of an image, it is reasonable to assume that this
magnifies the minute colour changes due to blood volume changes. Most cameras in use today
are 8-bit cameras[pixels are represented in the range 0-255]. Therefore, depending on the ambient
light conditions, increasing or decreasing gains will increase or decrease the pixel intensity and
thus some pixels may fall out of the this range. This phenomenon is called clipping (black clipping
for pixels below zero or white clipping for pixels above 255). Since clipping is as a result of very
low or very high intensity, it can be naturally caused by intensity changes in the illumination
source.

It is hypothesized by Papageorgiou [10] that clipping has a negative impact on the quality of
the PPG signal because it renders the minute colour changes absent/lost from the clipped pixels.
To reduce this effect, camera gains can be used to reduce or increase the intensity in case of white
or black clipping respectively. This can recover the minute colour variations due to PPG.
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Figure 4.1:
Red:SNR vs clipping %age

Figure 4.2:
Green:SNR vs clipping %age

Figure 4.3:
Blue:SNR vs clipping %age

Figure 4.4: AGT algorithm

4.3 Effect of clipping on SNR

To prove the hypothesis, Papageorgiou measures the signal to noise ratio (SNR) metric for different
levels of clipping in the different channels, red Fig. 4.1, blue Fig. 4.3 and green Fig. 4.2. In Fig.
4.1, the results for increasing the red gain from 0 to 100, while keeping the green and blue to 0 are
given. The mean SNR for each experiment against the white clipping percentage is plotted. The
x-axis corresponds to [0 - 100 %] clipping, while the y axis corresponds to the mean SNR value. It
is clear that once clipping occurs, the SNR drops. This observation is consistent with the blue and
green channels respectively. It is concluded that clipping reduces the quality of the PPG signal.
Therefore, setting optimal camera gains can reduce the level of clipping and concurrently amplify
the minute colour changes for the PPG signal extraction. The AGT algorithm is elaborated further
in the next section.

4.4 The AGT Algorithm

Fig 4.4 visualizes the basic structure of Papageorgiou’s AGT algorithm. The AGT runs in real
real time for each frame, to predict the optimum gains, before the heart extraction algorithm, the
CHROM algorithm for this example. The AGT consists of two major phases; the 1) Individual
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phase where each channels gains are adjusted individually and the 2) Master phase where all
RGB channel gains are adjusted by equal margins and a minor phase the Idle phase where no
gain changes are made. A watchdog component is added to monitor the change between the 2
major phases.

4.4.1 Individual Phase

In the individual phase, the gains are adjusted individually. This is performed in a few iterations
before the master phase because repetitive gain level change would introduce unnecessary noise
and potentially corrupt the pulse signal which is constructed from the chrominance signals in the
CHROM algorithm. Optimization of each gain initially does not individually affect the CHROM
algorithm because it is brightness and hue invariant as long as there is no clipping.

White Clipch =

N∑
i=1

M∑
i=1

val(i, j)ch > White Clip Thres

Total pixels
(4.1)

BlackClipch =

N∑
i=1

M∑
i=1

< BlackClip Thres

Total Pixels
(4.2)

Total Clipch = White Clipch + Black Clipch (4.3)

Where N,M =total number of rows and columns of the captured frame, val(i, j)ch, the value
of each pixel at the ith and jth column on the ch channel, the White Clip Thres = 245 and
Black Clip Thres = 10.

The clipping percentage in each channel is calculated according to equations4.1 and 4.2. Using
the current gains, the hypothetical clipping at all the different gain levels [0-100] is calculated
according to the equation 4.4. The gain factor is an estimated gain multiplier for all the gain
levels. Equation 4.4 gives a clipping percentage at all the gain levels. The algorithm selects
the maximum gain with the minimum clipping. Gain prediction is subject to estimation errors,
therefore gain estimation in the first phase is performed iteratively for 30 frames while checking
with the actual clipping before entering the master phase.

Hypothetical ClipGain = k =
Actual Clipping

Gain Factor
∗Gain Factor (Gain = k). (4.4)

4.4.2 Master Phase

In the master phase, the hypothetical clipping is estimated following the same approach in the
individual phase. Adjusting all the gains is equivalent to adjusting the brightness level. The white
and black clip percentages are calculated according to the equations 4.5 and 4.6. In this phase
the hypothetical clipping in all the different channels are not calculated. In the master phase, it is
assumed that there are no large variations, therefore a spread threshold = 10 is set with in which
an optimal gain is set.

Total White Clip = μ(White ClipR +White ClipG +White ClipB) (4.5)

Total Black Clip = μ(Black ClipR + Black ClipG + Black ClipB) (4.6)

Page 23



4.4.3 Idle Phase

In this phase, no gain optimization is performed. It is based on the assumption that if there are no
changes in the master phase after a given number of iterations, then there is no need to perform
expensive calculations.

4.4.4 Watchdog

The watchdog module triggers the change from the masterphase back to the individual phase in
case of a monochromatic light variation. In such a case, there is need to optimize the individual
colour channel to counter for the changes. The pbv vector introduced in chapter 2 and shown
in equation 4.7 is used to monitor for colour changes in the RGB colour space. A change in
colour leads to a change in the angle of the vector in equation 4.8. If the angle is larger than an
empirically derived threshold (0.015◦), then the algorithm triggers a roll back to the individual
phase.

#»

V fr =
[μ(R), μ(G), μ(B)]

norm[μ(R), μ(G), μ(B)]
(4.7)

Angle = ArcCos

(
#»

V frcur.
#»

V frprev

||Vfrcur|| · ||Vfrprev||

)
(4.8)

Figure 4.5: AGT by Papageorgiou Figure 4.6: AGT with Exposure Adjustments
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Figure 4.7: Benchmark

Figure 4.8: Black clipping

Figure 4.9: White clipping

4.5 Preliminary benchmarking

To evaluate the performance of the AGT algorithm under different illumination scenarios, three
synthetic videos are initially developed.

1. A benchmark video: With zero clipping throughout the measuring period.

2. White clip video: With 0% clipping in the first 30 seconds, ≈ 60% white clipping in the
following 30 seconds and finally 0% clipping in the last 30 seconds

3. Black clip video: With 0% clipping in the first 30 seconds, ≈ 60% black clipping in the
following 30 seconds and finally 0% clipping in the last 30 seconds).
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The set up and experiment procedure is detailed in chapter 5. Preliminary results of SNR and the
temporal gain settings are shown in figures 4.7, 4.8 and 4.9. These results reveal a major AGT
drawback, we shall refer to as the gain trap.

4.6 Gain trap

In Fig. 4.7, there is no deference between the ”agt-off” and ”agt-on” implementations. The
gains are stable throughout the entire recording period because there is no clipping in the video
sequence and no need for Auto-gain tuning. In Fig. 4.8, the SNR drops during the clipping
interval. Investigation of the gains shows that the blue gain is set to the maximum possible value
while the other gains are not at their maximum. The gains cannot be adjusted anymore because
there are no individual gain changes in the master phase. This traps the rest of the gains. As a
result of the gain trap, the clipping cannot be entirely reduced to zero.

In Fig 4.9, the red gain is trapped to 0%. As a result of this phenomenon, the blue and green
gain cannot be adjusted any longer. Thus, the clipping percentage cannot be entirely reduced to
zero.

It is also clear that in both scenarios the gain oscillations are periodic. These oscillations are as
a result of the minute light changes which are as a result of setting the amplitude of PPG model
from 0.001% to 0.05% of the DC level. This leads to increase or decrease of pixels which fall
out of the RGB range[0-255]. The oscillation are removed by implementing a higher gain change
threshold explained in the improvements in section 4.7.

From the observations, it clear that once in the masterphase, the AGT does not optimize the
gains effectively because it cannot trigger a roll back to the individual phase to reset to other gains.
It is also evident that depending on the ambient lighting, setting gains alone cannot effectively
reduce the clipping percentage. In section , several suggestions are presented to reduce/eliminate
the gain trap.

4.7 Eliminating the gain trap

To eliminate the gain trap, the watchdog component which monitors and triggers changes between
the phases is modified, the design choices for the delays (duration of each phase) are also modified,
and finally adaptive exposure is suggested as shown in the flow diagrams Fig. 4.5 and Fig. 4.6.
The major improvements are summarized into 4 major areas,

1. Adaptive Exposure. Increasing or decreasing gains cannot eliminate clipping in certain
cases of extreme clipping. it is also noted from device manufacturers, that increasing gains
also increases/amplifies the noise levels. Therefore, a new improvement shown in Fig. 4.6 is
proposed.

In the adaptive exposure strategy, in case of black clipping, an increase in exposure is first
effected before allowing a dynamic gain setting. This is based on the premise that in case
of black clipping, the AGT will increase all gains to 100 which is not desirable because this
also amplifies the noise. Increasing the exposure also allows for a more dynamic gain change
instead of clipping all gains to one value. In case the maximum exposure is reached i.e
(1/Frame rate), a lower frame rate is set(decrease by one) allowing for a longer exposure
setting. Decrease of the frame rate should also ensure that the lower limit of the Nyquist
sampling frequency for the heart rate is not exceeded. The heart rate is expected to lie
between 0.5 and 3.5 Hz, therefore the lowest frame rate is not permitted below 7 Frames per
second(7 FPS which is twice 3.5 Hz)

In case of white clipping, a gain setting is effected before effecting an exposure setting. This
is based on the evidence that extremely high gain settings also lead to noise amplification
but setting lower optimum gains is desirable. Therefore setting gains takes precedence over
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Figure 4.10: Automatic gain and Exposure
Tuning Algorithm Figure 4.11: Additional Master Phase Watchdog

Figure 4.12: Exposure vs clipping
Figure 4.13: Pixelsubsampling

setting exposure. The adaptive exposure methods are illustrated in the flow diagram in Fig
4.10.

The exact profile guiding the selection of the exposure times is shown in Fig 4.12. This
graph is based on experiments performed to determine the clipping percentages at different
exposure settings. In the first experiment, the clipping percentage is initially set to 98% ,
at an initial exposure of 71 ms (maximum for frame rate of 14 FPS). It is then repeated
with the initial clipping, set using a shutter set to 98 % and an initial exposure of 30 ms.
The exposure is then divided by 1,2,3,45... until the clipping achieved is ≈ 0%. It is noted
that in both scenarios the exposure settings achieve zero clipping at level 5. The exposure
vs clipping approximately follows the profile given by;

Expsoure = A · expB.Clip%age, A =
Exposure at 100%clipping

5
, (4.9)

Where A is the value of exposure setting at zero clipping. From experiment B ≈ 0.02.

2. Introduce Master watchdog
There is no trigger in the master phase to enforce a roll back to the individual phase in case
of a significant brightness changes which causes gain trapping. Additional logic is added to
watchdog as shown in Fig 4.11. The additional watchdog monitors for a large brightness
change by comparing the current and previous clipping levels. If this change is a greater
than a predefined threshold (20%), the watchdog triggers a roll back to the individual phase.

3. Eliminate Idle Phase
From the AGT implementation, in Fig 4.5, the algorithm does not effect any gain change
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during the idle phase. For 100 iterations at 14 FPS frame rate, this is equivalent to up to
7 seconds without gain optimization. Light changes can occur randomly and therefore this
phase is completely eliminated from the algorithm.

4. Adjust Thresholds:
The effective gain threshold is increased to eliminate gain changes due to minute light
variations. Trigger from the master phase to any other phase is as a result of light color
change or large intensity variation.

4.7.1 Clipping Percentage and Gain Freedom

Fig. 4.14 to Fig. 4.18, show results of experiments performed with clipping percentages between
10 % white and 10% black clipping. The purpose of the experiment is to motivate the fact that
with such low levels of clipping, AGT is not desirable. It can be seen that in case of black clipping,
the implementations of AGT(AGT Papageorgiou and AGT from Richard) have lower SNR and
the average clipping percentage is not entirely reduced to zero in all cases. This stems from the
fact that all experiments are performed with an initial gain set up of [RGB=19,0,35] obtained
from benchmarking of default IDS camera gains at start up. These initial gains give a smaller
dynamic range in case of black clipping where gains are reduced towards zero. In case of black
clipping, the gain freedom is higher because gains are increased towards 100. The observations
suggest two main conclusions 1) The performance in black clip is superior to the white clip due
to the gain freedom, 2) The AGT is not necessary for low clipping percentages(below 10 %).

4.7.2 Pixel Sub-sampling

We have seen that a small change in clipping percentages does not have large effects on the SNR.
The AGT is also a computational intensive algorithm because of the computations performed in
measuring the hypothetical clipping and the actual clipping. Instead of measuring all pixels in the
ROI, we can sub sample the pixels i.e skipping rows or columns or skipping a pixel shown in Fig
4.13 without greatly affecting the clipping percentage predictions.
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Figure 4.14: SNR and Clipping percentage 10% white clipping

Figure 4.15: SNR and Clipping percentage 5% white clipping

Figure 4.16: SNR and Clipping percentage 0% white and black clipping

Figure 4.17: SNR and Clipping percentage 5% black clipping

Figure 4.18: SNR and clipping percentage 10% black clipping
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4.8 Summary

In this chapter, the concept of clipping and camera gains has been presented. It has been shown
that a high level of clipping (black or white) affects SNR while low level of clipping have minute
effect on SNR. The AGT algorithm reduces clipping by adjusting the gains. Camera gains can
not be adjusted indefinitely [only 1-100 gains] and additionally the current AGT implementation
creates a gain trap. To improve the current AGT, adaptive exposure and an additional master
phase watchdog is suggested. The current implementation is a computational-resource intensive
implementation. The computation overheads can be greatly reduced by sub-sampling, increasing
effective gain thresholds and avoiding AGT completely for clipping percentages below 10 %.
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Chapter 5

Experimentation and Results

5.1 Introduction

In this chapter, the experiments to validate the different AGT algorithm implementations are
discussed. These include; clipping based on exposure, real life scenarios (movement of cloud
cover, glare and dynamic room lighting) and finally white and monochromatic flicker. The
evaluation of the experiments is based on SNR and clipping percentage. The different AGT
algorithm implementations are referred to as;

1. agt-off : Experiments with no automatic gain or exposure tuning.

2. agt-on: Experiments with Andreas’ AGT implementation

3. exp-on: Experiments with Andreas’ AGT implementation and automatic exposure, and

4. imp-on: Experiments with Andreas’ AGT and suggested changes based on the initial
benchmarking described in chapter 4

5.2 Experiment Procedure

Synthetic videos developed using the approach in chapter 3 are displayed on an LED monitor
using a suitable high bit rate video player(VLC) because the data rate from such a video i.e
uncompressed AVI is high(≈ 364kbps). The synthetic video properties are listed in Table 5.1. The
experiment set up is as shown in Fig. 5.1. A facial ROI of (230x250) pixels is used for pulse signal
extraction implemented using the CHROM algorithm described in chapter 2. Videos are recorded
for a minimum of 60 seconds, specific experiment timings depend on the different experiments.
To extract the pulse-rate from pulse signals, peak detection in the frequency domain using a 512
point FFT (for stationary scenarios) or 250 point FFT (for dynamic scenarios) using a 20 frames
moving window is implemented. For each experiment, SNR, temporal gains and clipping history
is measured.

Table 5.1: Synthetic video specifications

Frame width 1000
Frame height 759
Data rate 364, 329kbps
Total bit rate 364, 329kbps
Frame rate 20frames/second
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Figure 5.1: Using RGB camera to capture a video displayed on the LCD monitor for PPG

5.3 Measurement Equipment

To display the synthetic video, a desktop computer of with Intel(R) core(TM) i5-4570 CPU @
3.20 GHz and RAM 4GB and LED monitor 1680x1050 @ 60 Hz) is used. The Ueye IDS CCD
camera, model UI-222x/UI-622x is used, The camera auto functions: i) Auto gain tuning, ii) Auto
white balance, iii) auto shutter and iv) Color correction are disabled to prevent any camera color
corrections. The Frame rate is set to 14 FPS to reduce processing overheads at higher frame rates.
The initial static gains are set to [RGB = 19 0 35] based on benchmarking steady state camera
gains under zero clipping ambient lighting conditions.

5.4 Measurement Metrics

The first metric used is the percentage of clipped pixels in the ROI of interest. The measurement
of this metric is described in chapter 4. The second metric is the SNR which is computed as
the ratio of the energy around the fundamental frequency and the energy around the first two
harmonics contained in the rest of the spectrum within a frequency range of (0.5 Hz to 3.5 Hz)
given as

SNR = 10 log

⎡
⎢⎢⎢⎣

f=3.5∑
f=0.5

(
#»

U t(f)
#»

Ŝ (f)2

f=3.5∑
f=0.5

(
#»

( 1− Ut(f))
#»

Ŝ (f)2
)

⎤
⎥⎥⎥⎦ (5.1)

Where
#»

Ŝ (f) is the spectrum of the pulse-signal
#»

S (f), f is the frequency(Hz), and
#»

U t(f) is the
binary template as shown in Fig. 5.2
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Figure 5.2: SNR template

5.5 Exposure experiments

This set of experiments is based on varying the exposure/shutter to achieve different levels of
white (80%, 40%, 20 %, 0%) and black(80%, 40%, 20 %, 0%) clipping. The performance of the
different AGT implementations is compared based on SNR and clipping percentages. All gain
charts referred to in this section can be found in appendix A.

1. 80 % White Clipping. From Fig. 5.3, the average SNR of agt-on (14.79 dB) and agt-imp
(15.23 dB) is greater than exp-on(10.54 dB) and agt-off(11.98 dB). Reducing the clipping
percentage increases the SNR. Exp-on achieves 0% clipping while imp-on and agt-on achieve
40% and zero gains in all channels. Exp-on achieves an unexpectedly low SNR because
in the process of reducing exposure to achieve 0% clipping, the agt algorithm measures a
temporary clipping percentage increasing gains and thus amplifying the sensor noise too.

2. 40 % White Clipping. The average SNR of agt-on(12.73 dB), agt-imp (12.40 dB) agt-off
(12.30 dB) and exp-on (11.66 dB). Exp-on achieves 0% clipping but has a worse SNR because
in the process of predicting the exposure to achieve zero clipping, the gains are increased,
thus amplifying the noise too. It is worth noting that the signal response for 40 % and 80
% is largely due to the first harmonic because of the distortions to the sine wave at these
levels of clipping. These distortions are shown in Appendix chapter:allother.

3. 20 %White clipping. All AGT implementations; agt-imp (12.28 dB), agt-on (12.46) and exp-
on (11.08 dB) achieve better SNR compared to agt-off (7.48 dB). This is a result of reduction
in amount of clipped pixels to ≈ 0%. This is different from the above observations because,
there is no sine wave signal distortion and only the fundamental frequency is recorded.

4. 0% There are subtle differences between the different AGT implementations and agt-off. As
already noted in the initial benchmarking, in chapter 4, gain changes around 0% clipping
may lead to a lower SNR or are not beneficial at all.

5. 20% Black Clipping. There are minute differences in SNR measurements although all agt
implementations achieve zero clipping. The exp-on has slightly higher average SNR
compared to all other implementations because it achieves zero clipping without adjusting
all gains to the maximum gain level. Increasing exposure also increases the amount of light
making the minute color changes due to blood volume flow more visible and detectable
compared. With less lighting, noise is more dominant.

6. 40 % Black Clipping: agt-exp(11.94 dB) achieves a higher average SNR compared to the
other implementation, because zero clipping is achieved at a slightly higher intensity since
the exposure is increased. All agt achieve zero clipping.

7. 80 % Black Clipping; The agt-exp (12.14 dB) achieves a higher average SNR compared to the
other implementations because it achieves zero clipping with lower gain settings compared
to agt-on (10.89 dB) and agt-imp(12.14 dB). The agt-on and agt-imp does not achieve total
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Figure 5.3: 80% white clipping

Figure 5.4: 40% white clipping

Figure 5.5: 20% white clipping

Figure 5.6: 0% Clipping

0% clipping. With exp-on, the light-intensity is increased thus amplifying the minute color
changes due to blood flow.

From the experiments above, the AGT has subtle improvements in SNR with high (above
80 %) white and black clipping. At lower levels of clipping (Below 20 %) gain tuning is not
beneficial. The rPPG pulse signal amplitude is more dependent on the amount of light falling
on the ROI and less dependent on a constant clipping percentage. This is supported by i) The
black clip experiments where increasing exposure time(light) greatly increases the SNR compared
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Figure 5.7: 20% black clipping

Figure 5.8: 40% black clipping

Figure 5.9: 80% black clipping

to increasing gains which have less effect. ii) The white clip experiments where changing gains
(i.e at 40 % clipping) has no effect on SNR because the high light intensity is enough to amplify
minute color changes due to blood volume change.

5.6 Dynamic Lighting

In real experiments, dynamic lighting manifests itself in several forms;

1. In an exposed environment, light changes occur as a result of cloud cover movement.

2. In an a room environment, light changes occur as result of toggling room lighting, opening or
closing doors/windows and movement of a highly reflective object, e.t.c. These experiments
are investigated using three main synthetic videos whose results are representative of dynamic
lighting in general. Sample frames from these experiments are presented in Appendix B.

1. Cloud Cover: PPG experiments taken in the open are subject to light changes that can
arise as a result of the cloud cover movement casting shadows or exposing light rays in the
experiment scene. Such light changes are non-uniform over the facial regions. A synthetic
video of 90 seconds is rendered in which light changes mimicking a cloud movement leading
to decrease and increase in light in the middle 30 seconds are mimicked. In Fig. 5.10,
dynamic increase and decrease of clipping reduces SNR in all cases. The agt implementations
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show no improvements because in a highly dynamic setting, the gain predictions based on
hypothetical clipping are applied with a frame delay of 2 frames. This implies that the gain
change doesn’t affect the right frames which results in low SNR of agt-on and agt-imp in
particular. It is also noticeable that the gain change alone doesnot get rid of the clipping,
thus the exp-on achieves the desired effect and has a slightly higher average SNR compared
to the agt-on and agt-imp. The agt-imp performs worse because dynamically changing gains
results into distortions.

2. Glare: Glare is a strong and dazzling light. Glare can be as a result of a primary light
source or reflected light of very high intensity like the sun or focussed light from sources i.e
headlights and torches. Glare leads to white clipping. In Fig. 5.11, agt-imp has the lowest
average SNR because the predictions lead to amplification of the clipping. This is because
allowing a free play of all gains in a dynamic situation can causes an off prediction.

3. Toggling of overhead room lighting: Switching on room lights leads to an sudden increase in
light intensity while switching off lights leads to a decrease in light intensity. In both cases
white or black clipping is likely to occur. In Fig. 5.12, it is evident that the gradual increase
in light intensity leads to increase in clipping which leads to a decrease in SNR. The agt
implementations lead to a decrease in clipping and an increase in SNR. The agt-exp achieves
zero clipping and thus the highest average SNR after the disruptive lighting event. This is
different from the cloud cover and glare experiment because the light changes are gradual
and predictable.
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Figure 5.10: Cloud cover

Figure 5.11: Glare

Figure 5.12: Dynamic Room Lighting

5.7 Periodic Light and Monochromatic Light changes

Light changes can also occur as a result of periodicity in lights causing flickering. This flickering
can occur directly in the face or in the background. In addition, changes in lighting can occur in
only one color channel. These lighting conditions are investigated in a three experiments;

1. Face flicker: In this experiment, facial illumination frequency is varied from 0.05 Hz to 0.50
Hz in a single video to investigate the performance of the agt under different frequencies.
In Fig. 5.13, flickering decreases the SNR because of clipping (the flicker causes a clip of
≈ 30%). The general trend observed shows that below 0.5 Hz, the agt-off is lower than
agt-on, therefore gain tuning corrects for the changes in illumination. Beyond 0.5 Hz, at a
frame rate of 14 FPS, there are 2 or more clipping changes in one frame therefore, clipping
based prediction cannot help to estimate the correct gains even when the clipping percentage
is the same.

2. Background Flicker: In this experiment, the background flicker frequency is set to 0.1 Hz.
From Fig. 5.14, there is no large difference in SNR values for all implementations because
in the implementation of our model, a flicker in the background has no effect on the facial
ROI because only the primary reflection from the background is modelled. Therefore, since
no clipping occurs in the ROI during the entire experiment time, there is no gain change
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Figure 5.13: Increasing Flicker Frequencies from 0.05 Hz to 0.5 Hz

Figure 5.14: Background Flicker

Figure 5.15: Monochromatic Facial Flicker

effected. In a realistic situation, background flicker may cause secondary reflections from
surfaces which will affect the facial ROI pixel values.

3. Monochromatic face flicker. A low frequency blue light of 0.05 Hz is used to simulate a
scenario in which a light color change occurs. From Fig. 5.15, the SNR in all implementations
decreases as a result of a facial flicker despite the 0% lipping percentage in ROI. Since the
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agt-performs a cross-check on the color changes, an update of gains is performed. This
update nonetheless has no effect on SNR.

Illustrations of these scenarios are shown in the Appendix B

5.8 Validation with real-world subjects

To draw a valid conclusion from the different AGT implementations, the synthetic experiments
are replicated in realistic scenarios. From Fig 5.16 to Fig 5.20, we observe that generally, exp-on
implementation has the best SNR performance because it reduces clipping to zero by not only
adjusting the gains but by also increasing light. At 0 % clipping , gain tuning is not desirable,
this is evidenced by the SNR value of agt-off in Fig. 5.18. Gain tuning in all cases has minute
gains in terms of SNR if there are low levels of clipping(Below 50 % clipping). Gain tuning is only
profitable at high levels of clipping.

Figure 5.16: 70% white clipping

Figure 5.17: 40% white clipping
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Figure 5.18: 0% Clipping

Figure 5.19: 50% Black clipping

Figure 5.20: 80% Black clipping

Figure 5.21: Switching on Lights

5.9 Summary

In this chapter, the effect of dynamic lighting, gain and exposure tuning has been investigated
by using a series of realistic synthetic videos. It has been experimentally shown that adjusting
gains reduces clipping, but as seen in extreme clipping scenarios, this does not reduce the clipping
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percentage completely in most cases because gains cannot be adjusted indefinitely (They range
between 0 and 100). Adjusting exposure times is inevitable and preferred in reducing the clipping
percentages to zero. The effect of gain changes is high if gains have a higher dynamic range in
which they can be adjusted i.e, if initially gains are set to zero and the desired effect is an increase,
then a gain change is very effective, otherwise it is not. The SNR, in general, shows subtle changes
with low clipping irrespective of whether gain tuning is performed or not. Increase in SNR under
AGT is more noticeable with a high initial level of clipping. Changing gains individually during
the experiment is not desirable because in most cases it leads to a lower SNR as evidenced in
our ’improved version’ agt-imp. We have also shown through a series of experiments that highly
dynamic lighting leads to a decrease in SNR in all scenarios even if gain tuning is applied. Gain
tuning my lead to a decrease in SNR in dynamic situations because of gain predictions applied to
the wrong frames.
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Chapter 6

Conclusions

6.1 Synthetic rPPG Model

In this paper, we have created realistic synthetic models which contain physiological signal using
3D morphable models. It is possible to embed different minute color changes in pixels of 3D
models, whose variations contain a specific reproducible frequency mimicking the pulse rate. Using
CHROM and PBV, we have shown that the minute color variations in the 3D models can be
detected from rendered lossless AVI movies. We have also shown how to add realistic motion and
illumination effects to the synthetic models. These models can be used to develop new rPPG
algorithms aimed at improving motion robustness without requiring real world experiments.

6.2 Automatic Gain Tuning

A comprehensive benchmark of the Automatic Gain Tuning algorithm developed by a masters
student at Philips has been presented. The benchmark mark is based on the synthetic models
developed in this research. The aim of the AGT is to reduce black and white clipping. It is
hypothesised that this increases the SNR because reducing clipping increases the count of pixels
with physiological signals. Based on initial benchmarks of white and black clip videos, it is
established tha the effect of gain tuning depends on the ambient light conditions and the initial
gains. Gain tuning will have significant effect on clipping if the initial ambient condition for
example are; a bright environment and the initial gains are high or a dark environment and the
initial gains are low. In both cases, the gain change counteracts the current ambient conditions
to reduce clipping. We refer to this phenomenon as gain freedom, the higher the gain freedom
the better the performance of the AGT. In its implementation, the AGT does not reduce
clipping by a large margin because of a gain trap. This occurs when all gains are changed
simultaneously such that the first gain to get to 0 or 100 traps the other gains and thus no
further gain change can be made. Improvement are suggested to avoid the gain trap. It is
observed that from the suggested improvements, allowing individual gain changes during PPG
experiments does not improve the AGT performance. Adjusting camera exposure is preferred
and indeed achieves better SNR compared to adjusting individual gains. Finally, very low
clipping percentages i.e below 20 % for synthetic videos and below 50% yield only subtke
difference in SNR for all agt implementations. Reducing clipping achieves better SNR at high
clipping levels, otherwise only subtle differences occur.

6.3 Future work

Future work should focus on improving the robustness of the synthetic model to accurately
represent the specular and diffuse reflection and implementation of an accurate spatial
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representation of the PPG signal amplitude over the different facial regions. The exposure
prediction model should be improved empirically.
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Appendix A

Camera Gain History

A.1 Gains at different Exposure Settings
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Figure A.1: 80% white clipping

Figure A.2: 40% white clipping

Figure A.3: 20% white clipping
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Figure A.4: 0% Clipping

Figure A.5: 20% black clipping

Figure A.6: 40% black clipping

Figure A.7: 80% black clipping
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A.2 Dynamic Lighting

Figure A.8: Cloud cover

Figure A.9: Glare

Figure A.10: Dynamic Room Lighting

Figure A.11: Background Flicker Gains
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Figure A.12: Monochromatic Facial Flicker

A.3 Real Experiments

Figure A.13: 70% white clipping

Figure A.14: 40% white clipping

Figure A.15: 0% Clipping
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Figure A.16: 50% Black clipping

Figure A.17: 80% Black clipping

Figure A.18: Switching on Lights
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Appendix B

All Experiments

B.1 Experiment Phantoms

B.1.1 Black clip

Figure B.1: First 30 seconds Figure B.2: Middle 30 seconds Figure B.3: Last 30 seconds

Investigation using black clip synthetic video

In this experiment, the response of the AGT to black clip conditions during experimentation is
tested. A synthetic video of 90 seconds with black clip was rendered using the model explained
in chapter. In the video, the ambient Light intensity is set to [0.8, 0.8, 0.8], A headlamp (camera
headlight) of intensity [1,1,1] is used for the initial and final 30 seconds. These conditions reproduce
standard room light conditions. During the black out, the intensity of ambient lighting is reduced
to [0 0 0] and the intensity of the headlamp is reduced to [0.5, 0.5, 0.5]. The artificial black
out is introduced in the middle 30 seconds of the synthetic video. The positioning of the test
conditions(black out) in the middle of normal conditions enables a valid comparison between the
normal conditions and the black out.

B.1.2 White clip

The white clip video sequence is illustrated in Figure ??. The first 30 seconds of the video sequence
have 0 % white clip. The middle 30 seconds have white clip which is set with different desired
percentages depending on the light intensity of the face facing light added to the model.
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Figure B.4: First 30 seconds Figure B.5: Middle 30 seconds Figure B.6: Last 30 seconds

Figure B.7: Frames from cloud cover video sequence

Figure B.8: Synthetic video with Glare

B.1.3 Cloud Cover Experiment

B.1.4 Glare

B.1.5 Face Flickering Light

Figure B.9: Face Flicker

B.1.6 Background light Flicker

B.1.7 Room lighting switch

Page 56



Figure B.10: Effect of switching on and off of lighting

B.2 Monochromatic light Flicker

Figure B.11: Effect of Monochromatic Flicker

B.3 Effect of Gain Tuning on Raw RGB signals

Figure B.12: Raw signals
RGBgains=[0,0,0]

Figure B.13: Raw signals
RGBgains=[50,50,50]

Figure B.14: Raw signals
RGBgains=[100,100,100]

B.4 SNR at different Frequencies
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Figure B.15: 0.05 Hz Figure B.16: 0.10 HZ

Figure B.17: 0.15 Hz Figure B.18: 0.20 Hz

Figure B.19: 0.25 Hz Figure B.20: 0.30 Hz

Figure B.21: 0.35 Hz Figure B.22: 0.40 Hz

Figure B.23: 0.45 HZ Figure B.24: 0.50 Hz
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