
 Eindhoven University of Technology

MASTER

WirelessHART : a security analysis

Duijsens, M.F.H.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/4bc4b806-c690-4114-aa04-54a4e6970d08

/ Department of Mathematics and Computer Science

WirelessHART
A Security Analysis

Max Duijsens
28-09-2015

WirelessHART
A Security Analysis

Max Duijsens
28-09-2015

WirelessHART
A Security Analysis

Max Duijsens
28-09-2015

WirelessHART
A Security Analysis

Max Duijsens
28-09-2015

WirelessHART
A Security Analysis

Max Duijsens
28-09-2015

WirelessHART
A Security Analysis

Max Duijsens
28-09-2015

ii

WirelessHART
A security analysis

M����� �� S������ T�����

For obtaining the degree of Master of Science in Information Security Technology
at the department of Mathematics and Computer Science

of Eindhoven University of Technology.

Max Duijsens – �������
m.f.h.duijsens@student.tue.nl

IST

Monday ��th September, ����

Supervisors:

B. Škorić Eindhoven University of Technology
D. Maasland Fox-IT
D. Niggebrugge Fox-IT

iv

ABSTRACT v

Abstract

Network protocols play an important role in industrial automation and control. Due to the
di�erence in security requirements between industrial control systems and well-known o�ce
environments, di�erent protocols are used for such networks. Wireless connectivity is becoming
more prevalent in these industrial environments because it reduces the total cost of ownership
(wiring is expensive) and improves ease of scalability (new devices can be added easily). It is
very important that industrial wireless communications are secured against packet injection and
denial-of-service attacks such that the industrial process is not disturbed.

�ere are currently no general approaches to testing the security of these uncommon and o�en
proprietary wireless networking protocols. In this thesis a security analysis of the WirelessHART
protocol is presented. �e approach presented in this thesis can also be used to analyse other
wireless protocols.

�e main goal of this thesis is to �nd vulnerabilities in theWirelessHART protocol. Two issues
are addressed. First, a So�ware-de�ned radio (SDR) is used to build a generic implementation of
the physical component of the protocol. �is SDR is then used to capture network packets. Second,
the network packets are interpreted such that a penetration tester can read and build network
packets in order to perform a penetration test.

�e SDR implements the physical layer of the WirelessHART protocol. �is layer is based
on IEEE ���.��.� which is a protocol used in low-power wireless networks. �e IEEE ���.��.�
speci�cation de�nes what the components of the physical layer should be and how they work
together. �is layer was built using the SDR and GNURadio.

Furthermore, an implementation of theWirelessHART packet structure is built in Scapy. Scapy
is a tool which transforms a byte stream (the received packet) into a human-readable format and
vice-versa. Using this implementation, it is possible for a security researcher to examine and inject
network tra�c. Injecting network tra�c using the SDR failed due to an unknown bug in the
transmission component of the SDR implementation. It was possible to transmit packets correctly,
however the packets do not get accepted by the gateway. Hence, a Raspberry Pi in combination
with an IEEE ���.��.� compliant radio was used. It turned out that the Raspberry Pi was too
slow since the (vanilla) linux kernel with support for the IEEE ���.��.� radio chip did not support
the Raspberry Pi causing it to slow down to the point where it could no longer comply with the
WirelessHART timing requirements. �erefore it was not possible to transmit packets such that
they are accepted by the WirelessHART network.

Finally, using the Scapy implementation to interpret packets and the WirelessHART protocol
speci�cation, a vulnerability analysis was conducted.

VI CHAPTER 0

�e WirelessHART speci�cation has been studied extensively in order to �nd vulnerabilities
in the protocol. A total of �� vulnerabilities are identi�ed. Four of these vulnerabilities do not
require the attacker to know any information about the network except information he can learn
by listening to the network tra�c (with the SDR).�ese attacks include jamming and temporary
disruption attacks.

Seven attacks are identi�ed which require the attacker to know the join key (password) of the
network. If the attacker has the join key, he still can not communicate with individual devices
on the network, since per-device session keys are used to encrypt network packets. One of the
seven attacks is a mass de-authentication attack, triggering a join handshake for all devices in the
network, which the attacker can then decrypt using the join key. �e result of this attack is that he
obtains the session key for all devices and can now communicate with individual devices opening
the door to injecting spoofed packets and bringing down speci�c devices in the network.

None of these attacks could be tested, since there was no working solution to transmit network
tra�c such that it was accepted by the network. However, if the product to be tested is compliant
with the WirelessHART standard, the attacks will work.

�e mass de-authentication attack allows an attacker to shut down an entire plant network or
disrupt processes if he learns the join key of the network. �erefore, care must be taken that this
key is well protected and doesn’t fall into the wrong hands.

CONTENTS vii

Contents

Abstract v

Preface x

List of Figures xi

List of Tables xiii

Nomenclature xv

� Introduction �
�.� Research Description . �

�.�.� Setting the Scene . �
�.�.� Research Questions . �

�.� Scope & Demarcation . �
�.� Project Stages . �
�.� �esis Outline . �

� Background Information �
�.� Wireless Communication . �

�.�.� Digital to Analog Conversion . �
�.�.� So�ware De�ned Radio . �
�.�.� CDMA, FHSS and DSSS . �
�.�.� O�set Quadrature Phase-Shi� Keying . �
�.�.� OSI Model . �

�.� Relevant Standards . ��
�.�.� IEEE ���.��.� (����) . ��
�.�.� WirelessHART . ��

�.� Tools . ��
�.�.� GNURadio . ��
�.�.� Scapy . ��
�.�.� Linux-WPAN-Next . ��
�.�.� AT��RF��� . ��

VIII CHAPTER 0

� WirelessHART ��
�.� Network Architecture . ��
�.� Network Operation . ��
�.� Physical and Data-Link Layer . ��

�.�.� Time Synchronisation . ��
�.�.� Link Channel Calculation . ��

�.� Network and Higher Layers . ��
�.� Capturing WirelessHART Packets . ��

� Communicating with the Network ��
�.� Sni�ng Network Tra�c . ��

�.�.� WirelessHART Packet Structure . ��
�.�.� Reverse-engineering how a Legitimate Device Receives Packets ��
�.�.� WirelessHART Security Features . ��
�.�.� Building the Sni�er . ��
�.�.� Parsing WirelessHART Payloads . ��
�.�.� Implementation Problems . ��
�.�.� Conclusion . ��

�.� Transmitting Tra�c . ��
�.�.� Interpreting the Handshake . ��
�.�.� Preparing to Transmit a Packet . ��
�.�.� Raspberry Pi with AT��RF��� . ��
�.�.� Transmission Accuracy . ��
�.�.� Transmission Failures . ��
�.�.� Transmitting a Join Request . ��

�.� Conclusion . ��

� Attacks on aWirelessHART Network ��
�.� Setting the Scene . ��
�.� Attacks Without the Join Key . ��

�.�.� Jamming All Channels . ��
�.�.� Jamming Join Slots . ��
�.�.� Tra�c Analysis . ��
�.�.� Transmitting Fake Advertisements . ��
�.�.� Bruteforcing the Join Key . ��

�.� Attacks Requiring the Join Key . ��
�.�.� Mass De-Authentication and Denial of Service ��
�.�.� Nonce Exhaustion . ��
�.�.� Time Slot Saturation . ��
�.�.� Device Hijacking . ��
�.�.� Time De-Synchronisation . ��
�.�.� De-Authentication . ��
�.�.� Transmitting False Data from Network Devices ��
�.�.� Transmitting False Data to Network Devices ��

CONTENTS ix

�.� Conclusion . ��

� Conclusions and Future Work ��
�.� Conclusion . ��
�.� Future Work . ��

A GNURadio ���.��.� Transceiver ��

Bibliography ��

X CHAPTER 0

LIST OF FIGURES xi

Preface

A�er six months of hard work, the research was completed and achieved almost all goals set
at the beginning of the project. It was a lot of fun to work with real industrial hardware and a
so�ware-de�ned radio. Figuring out how an industrial wireless networking protocol works exactly
opened my eyes as to the di�erences between a regular IT environment and an industrial one.

I would like to take this opportunity to thankmymentors Donny and Daniel for their guidance
throughout this project, you have been very helpful pointing the research in the right direction
and helping out with technical details. Furthermore I would like to thank Boris for his insightful
comments and useful feedback during the project and the process of writing my master thesis.

Eindhoven, Netherlands Max Duijsens
Friday ��th September, ����

XII CHAPTER 0

LIST OF TABLES xiii

List of Figures

�.� CIA Triad of an o�ce environment on the le�, industrial environment on the right. �

�.� CDMA signal encoding [��] . �

�.� Di�erent types of devices in a WirelessHART network ��
�.� �e message sequence in a WirelessHART join handshake ��
�.� Structure of a superframe . ��

�.� WirelessHART network packet structure . ��
�.� WirelessHART packet sni�er component structure ��

A.� GNURadio Implementation of ���.��.� Transceiver. ��

XIV CHAPTER 0

LIST OF TABLES xv

List of Tables

�.� Network Layer Key Types . ��
�.� WirelessHART Frametype Field . ��
�.� Overview of Functions De�ned in Transceiver . ��

�.� Information Leakage without Join Key . ��

XVI CHAPTER 0

NOMENCLATURE xvii

Nomenclature

Acronym De�nition
TU/e Eindhoven University of Technology
IST Information Security Technology
ICS Industrial Control System
SDR So�ware De�ned Radio
ADC Analog to Digital Converter
DAC Digital to Analog Converter
DSSS Direct-sequence Spread Spectrum
FHSS Frequency Hopping Spread Spectrum
CDMA Code Division Multiple Access
MAC Media Access Control
WPAN Wireless Personal-Area Network
OSI Open Systems Interconnection model
MIC Message Integrity Code
O-QPSK O�set-Quadrature Phase Shi� Keying
LLC Logical Link Control
TDMA Time Division Multiple Access
TSMP Time Synchronised Mesh Protocol
ASN Absolute Slot Number

xviii

1

C�������
Introduction

Critical infrastructure has become a core part of our modern society. We depend on the availability
and reliability of water treatment plants, gas and electricity distribution networks, power plants
and many more types of critical infrastructure. �ese infrastructures are o�entimes controlled
by computer systems (called industrial control systems or ICS) to manage these complex and
potentially dangerous processes. �ese industrial control systems make sure that motors are
spinning at the correct speed, valves are opened at the correct time etc.

�eCIATriad In a regular o�ce automation environment, the con�dentiality-integrity-availability
(CIA) triad [�] is o�en used to describe security requirements. Con�dentiality of information
is the most important requirement and is therefore at the top of the triad. O�en, the o�ce can
continue with minor loss of availability or integrity of the computer systems, so these requirements
are placed at the bottom of the triad: important, but less than the con�dentiality requirement.
Refer to �gure �.� for a graphical representation. In industrial environments, the CIA triad is
turned upside down. �ese environments impose very strict requirements on the availability and
integrity of the ICS. Having to stop a plant from producing power or having to stop distribution of
gas or water because an ICS needs to be rebooted is not tolerated. Chemical processes can also
not be interrupted at any time for example because a chemical reaction is in progress. Minor loss
of con�dentiality can be accepted if the system can keep running as usual. �ink of for example
the temperature in a mixing barrel or the gas pressure in a gas pipeline is not critical to keep
con�dential. What is important is that the operator always gets those values from the sensors
(availability), and that these values are accurate and displayed correctly on the operator’s control
station (integrity). �erefore the integrity and availability requirements are on top of the (upside
down) “pyramid”, while con�dentiality is at the bottom.

Network Protocols Because of this di�erence in requirements, the network communication
protocols in industrial environments are also di�erent from regular o�ce and consumer computer
networks. Where the well known WiFi (���.��) communication protocol is built around high
throughput and doesn’t provide many mechanisms to prevent interference and replay attacks [�],
one can imagine that in an industrial environment, throughput is less important while resistance
to interference (availability) and replay attacks (integrity) is a hard requirement.

2 CHAPTER 1

Figure �.�: CIA Triad of an o�ce environment on the le�, industrial environment on the right.

WirelessHART An example of a wireless networking protocol used in these industrial environ-
ments is WirelessHART [�]. WirelessHART is a protocol which is developed as a multi-vendor
interoperable wireless networking standard. �is means that products from di�erent vendors
will be able to communicate with each other on the same WirelessHART network. It is designed
with industrial automation requirements in mind, and therefore has high resistance to jamming
and interference. It also provides (mandatory) mechanisms which increase the reliability of the
network.

�e development of theWirelessHART protocol was started in ���� by theHARTCommunica-
tion Foundation. �e HART Communication Foundation consists of �� companies that developed
the (wired) HART and FieldBus protocols. �e companies that worked on WirelessHART are
(amongst others): ABB, Emerson, Endress+Hauser, Pepperl+Fuchs and Siemens. �ese vendors
all sell devices which communicate using WirelessHART.

�e protocol was introduced to the market in September ����. In April ���� it received the
approval from the International Electrotechnical Commission (IEC).�is approval means that
WirelessHART was an o�cial wireless standard which can be used in industrial control networks
as of April ����.

A good use-case that uses WirelessHART’s capabilities is the monitoring and controlling of a
gas pipeline. Since in a WirelessHART network di�erent devices can pass packets between each
other it is possible to extend the wireless network over a very long range without having additional
gateways or router devices in themiddle. All sensors whichmonitor the pipeline (gas pressure, etc.)
can communicate with each other via WirelessHART. Between each pair of devices, authenticity
and integrity is guaranteed which means that on the entire path from source to destination these
requirements can be guaranteed. Using this multiple hop network architecture, measurements
from wireless connected sensors kilometres away can reach the operator, and the operator can
control devices far away without having a large (usually expensive) cable bundle.

INTRODUCTION 3

Penetration Testing Testing the security of network protocols is an important aspect of testing
the security level of the computer network. By using techniques such as fuzzing, potential bugs
in parsers of network packets can be discovered. When testing common network protocols like
ethernet, there are many tools available to be used by a penetration tester. However, for not so
common networking protocols likeWirelessHART these tools are not (yet) available. Furthermore,
interfacing with wireless networks is notoriously di�cult for a person without extensive knowledge
about the design of radio communication chips. O�entimes with these non-common network
protocols, there is only a handful of vendors that sell hardware capable of communicating with the
network and most of the time this hardware is closed source. Sometimes the speci�cation of the
protocol is open or can be obtained by paying a fee. �is is also the case with WirelessHART, the
protocol speci�cation can be purchased by anyone willing to pay the fee.

So�ware De�ned Radio A good solution to this problem is to use a universal so�ware-de�ned
radio (SDR). An SDR consists of two components: a so�ware component and a hardware com-
ponent. �e hardware component is connected to a computer, where all the signal processing is
performed in a so�ware program. �is means that communication with any wireless protocol
is possible without buying (closed-source) hardware for each new protocol, since the so�ware
component of the SDR can be modi�ed to be compliant with any wireless protocol.

In this thesis, a method is presented for using a so�ware-de�ned radio to communicate with
theWirelessHART network. �e work in this thesis, can be used to communicate with any wireless
networking technology given that the user knows the exact speci�cation of the protocol involved.
�ough this thesis focuses on WirelessHART, the work can be modi�ed to be compatible with
other wireless protocols as well.

An SDR is used to communicate with theWirelessHART network, a�er which Scapy (a python
tool used to interpret and build network packets) [�] is used to interpret and build WirelessHART
network packets. A wrapper is also programmed in Python to use Scapy and the SDR to mimic a
legitimate WirelessHART client. A penetration tester can use this client to test the security of the
WirelessHART network.

Finally, several attacks are considered. �ese attacks are focused around the availability and
integrity requirements of the WirelessHART network, since these requirements are the most
important in an industrial environment.

�.� Research Description

�.�.� Setting the Scene

In modern society, testing products for their security properties is critical to preventing unwanted
access, modi�cation and disruption of these products. For many of the common technologies
used (like WiFi or Ethernet) there are well-de�ned procedures and tools available on how to
test the security of these technologies. However these approaches may not work for industrial
environments, since the security requirements are di�erent.

Wireless technologies are even more di�cult to test, since the interface to communicate with
these networks is usually proprietary. Furthermore, wireless networks are prone to additional

4 CHAPTER 1

security risks on top of the risks already involved in common networking protocols. �is lies in
the fact that the attacker does not have to be visible or inside the building that hosts the wireless
network: it’s possible to use a powerful antenna to communicate with wireless networks from
kilometres away [�]. �erefore it is extra important that these networks are well secured.

Fox-IT is a company based in the Netherlands. One of the services Fox-IT provides is Pen-
etration Testing. During these penetration tests, a customer’s network is tested to verify the
penetration testers cannot gain access to con�dential data. Closed-source protocol testing oc-
curs regularly. Since there are no tools available to communicate with closed-source wireless
networks like WirelessHART, Fox-IT likes to have a method to communicate with these types of
networks. Furthermore Fox-IT is interested to con�rm whether there are any vulnerabilities in
the WirelessHART protocol.

�.�.� Research Questions

�e security testing of non-common wireless technologies is a problem for security researchers.
It is not straightforward to connect to any given wireless network with any computer and start
sending network packets. �e reason for this is that each of the di�erent networking technologies
use their own radios and their own packet structures, etc. �erefore, three research questions are
formulated that need to be answered in order to �nd attacks in the WirelessHART protocol:
�. Which (generic) hardware can be used to communicate with a WirelessHART network?
�. How can network packets of a WirelessHART network be interpreted and generated?
�. Which attacks are possible in a WirelessHART network?
�e answers to these questions can also be used to �nd attacks in other uncommon wireless
network protocols.

�.� Scope & Demarcation

In addition to the research questions de�ned in paragraph �.�.�, this paragraph will de�ne further
restrictions on the scope of this research:

�is research will only investigate the WirelessHART network. While the developed so�ware
can certainly be used for testing the security of other network protocols, this is not the goal of this
thesis. Other networking protocols will not be mentioned throughout this thesis except in the
chapter with background information.

WirelessHART uses channel hopping to provide some resistance against jamming and inter-
ference. Since channel hopping only adds overhead in the implementation and is not crucial to
the security of the protocol, channel hopping will not be implemented in this thesis.

Only attacks speci�c to WirelessHART will be considered. �ere are many well-known attacks
on wireless mesh networks. For example the attacks taught in the Security and Privacy in Mobile
Systems class part of the Kerckho�s Programme [�].

Attacks requiring physical access to the WirelessHART devices are excluded. �is excludes
amongst others side-channel attacks and analysis of hardware components.

INTRODUCTION 5

�.� Project Stages

�e method of research consisted of �ve phases. �e research was conducted in �� weeks.

Phase �: Literature Review First, a literature review was done on wireless communication
technologies, WirelessHART and how security tests are performed on networking technologies in
general. Also the di�erent so�ware-de�ned radio’s (SDR) available on the market at the time were
evaluated. �is phase took around three weeks. At the end of this stage, a speci�c SDR was chosen
and purchased.

Phase �: Building aWirelessHART Sni�er Second, a WirelessHART sni�er was built using an
SDR.�is phase took about three weeks. Reading and fully understanding the WirelessHART
physical layer took the most time. However, it was well-documented how network packets are to
be received in the WirelessHART protocol speci�cation.

Phase �: Interpreting and Cra�ing Network Packets Once it was possible to sni� network
“packets” (which were still byte-streams at that point), these byte-streams had to be interpreted.
For this process the Scapy tool was used, and the WirelessHART network packet encodings where
programmed into Scapy. �is process took a long time since almost the entire WirelessHART
standard had to be implemented in Scapy. �is phase took the most time of the entire research,
about ten weeks. �e reason for this long duration is that the structure of the standard is not
convenient when implementing the protocol. Some chapters describe concepts required to under-
stand other chapters, but without cross-references so it is very di�cult to �nd those de�nitions
and explanations when reading the chapters on the actual implementation and packet structures.
Furthermore, there is room for interpretation when reading the standard and therefore simply
implementing it the way it is written, leads to an implementation which might be incompatible
with the WirelessHART hardware available.

Phase �: Transmitting WirelessHART Tra�c Once network tra�c can be interpreted and
packets can be created, it is trivial to also build network packets using the same protocol speci�-
cation and Scapy implementation. However, care must be taken that all default values in Scapy
are set correctly. Not all default values are documented in the WirelessHART speci�cation (like
source addresses, initial nonce value, default time-to-live, etc.). Furthermore, due to the focus on
availability and non-repudiation security requirements in the design of the protocol, it proved to
be very di�cult to transmit packets using an SDR.�e reason is that an SDR is not capable of very
strict timing requirements (accurate to <�ms). �is process took another six weeks.

During this phase, another piece of hardware was tested as well: an AT��RF��� chip which can
be connected to a Raspberry Pi or an Arduino. �is chip is compatible with the physical layer of
the WirelessHART network, but needs the Scapy implementation to build the network packets. It
turned out that this chip is not fast enough to cope with the high throughput of the WirelessHART
network. However, it was possible to sni� tra�c using this chip and build a prototype of a tiny
network sni�er, approximately �x�cm in size. Programming the network (linux kernel) driver for
the Raspberry Pi to be able to communicate with this chip took a lot of time and debugging as

6 CHAPTER 1

well as I had no previous experience programming a network driver. Building this kernel driver to
communicate with this chip, took around four weeks.

Phase �: Identify Potential Attacks �e last phase was a theoretical phase. Several attacks to
the WirelessHART protocol were found. However, it is noteworthy that none of these attacks are
possible if the attacker does not have the join key (���bit AES key, will be explained in �.�.�) to
the network. �is key is required in order to communicate with the network and is di�erent for
each network. It is the main security feature to prevent unauthorised access in the WirelessHART
protocol.

Also a brute-forcer for the last ��bits of the ���bit join key was programmed during this phase.
�e brute-forcer uses multi-core processing in order to speed up the brute-force of the last ��bits
of the key. �is all rides on the assumption that the attacker can get the �rst part of the key using
other methods such as social engineering.

�is phase took about three weeks.

�.� �esis Outline

�is thesis starts with background information required to understand the concepts discussed
in this thesis in chapter �. �is chapter covers the characteristics of wireless sensor networks in
section �.�, relevant standards in section �.� and gives an overview of the di�erent tools used in
this project in section �.�.

�e next chapter covers the architecture of a WirelessHART network in section �.�, followed
by section �.� which explains how packets traverse the network. Next, the di�erent layers of the
protocol are explained in sections �.� and �.�.

Chapter � explains how network communication was established. First, section �.� explains
how network tra�c can be captured including an overview of the security features and how these
can be used to capture and interpret network tra�c. Section �.� then builds upon this knowledge
to transmit tra�c.

Finally in chapter � attacks on the WirelessHART protocol are described in detail. �ese
attacks are divided into attacks for which the join key is not required (section �.�) and attacks for
which the attacker needs knowledge of the join key (section �.�).

Finally the thesis is concluded in chapter � and some thoughts on future work are provided.

7

C�������
Background Information

�is chapter elaborates on the concepts needed to understand the rest of this thesis. First an intro-
duction is given to wireless communication, digital to analog conversion and di�erent techniques
employed by wireless communication protocols. Furthermore a short overview of the relevant
standards is given. Finally an overview of tools used throughout this thesis is described.

Readers already familiar with wireless communication and common security tools may skip
this section, while for readers not so familiar withwireless communication techniques and common
security tools may �nd this section very useful.

�.� Wireless Communication

�.�.� Digital to Analog Conversion

A digital to analog converter (DAC) is an electronic component which converts a binary signal
into an analog one (current, voltage or electric charge). An analog to digital converter (ADC) does
the exact opposite. For converting an analog signal into a digital signal, samples are taken at a
pre-de�ned sample-rate. �is means that if the sample rate is x, the converter takes x samples per
second of the source signal and converts those to the output signal. An important characteristic of
a DAC or ADC is the sampling rate [�].

�.�.� So�ware De�ned Radio

When receiving radio signals (for example wireless network signals), these signals need to be
converted to a digital signal readable by the computer that wishes to process them. �is is done
using analog to digital signal converters (ADC’s) and vice versa. �ese converters then feed a
component which converts the digital signal into bytes that can be read by a computer or vice versa.
�at process is called (de-)modulation Since each wireless protocol uses their own modulation
scheme, separate hardware needs to be used for each wireless protocol. Such hardware is referred to
as a network adapter. �e problem for this research is that such adapters include an implementation
of the protocol as well. �e adapters will compute checksums, set headers with source/destination
addresses, etc. �ese are exactly the kind of things we want to test in this thesis in order to evaluate

8 CHAPTER 2

the security of the products. A solution is to use a So�ware De�ned Radio instead of a protocol
speci�c network adapter.

A so�ware de�ned radio (usually referred to as SDR) is a signal receiver with analog to digital
converters on board. It consists of two components: a hardware and a so�ware component. �e
hardware component is usually connected to a host computer via USB but could also be connected
using other interfaces like ethernet or PCI-e. An SDR does not perform any de-modulation and
hence cannot perform any alternations on the digital signal (at least not intentional protocol-
compliant modi�cations). �is also explains the "so�ware de�ned" part of the name, since all
(de-)modulation is performed in the so�ware component on the host computer.

An example of a so�ware package which can communicate with the hardware component of
an SDR is GNURadio [�]. In GNURadio, it is possible to do all the signal processing on the host
computer. �is means an SDR can be used to intercept and transmit almost any kind of wireless
communication.

Two popular SDR’s are the bladeRF developed by Nuand [�], and the USRP B��� series
developed by Ettus Research [��]. Both have similar functionality but have di�erent speci�cations.
For example the bladeRF is a full duplex SDR (transmit using one antenna while receiving using
the other antenna). �e USRP B��� supports full duplex as well as half-duplex (transmit and
receive using a single antenna) modes, meaning that both these SDR’s are capable of transmitting
and receiving radio signals simultaneously.

�.�.� CDMA, FHSS and DSSS

In wireless communications, both endpoints agree on using a speci�c frequency. �ere are di�erent
regulations worldwide on which frequency bands are open to the general public. However, almost
everywhere frequencies in the �.�GHz range are free to use by anyone, without requiring a license.
To enable multiple networks to operate in near proximity, the �.�GHz frequency band is divided
into channels. E�ectively a channel is simply a range in the frequency band (for example WiFi
channel �� spans �.���-�.���MHz). �e width of this channel is called the channel bandwidth.

Direct-sequence Spread Spectrum (DSSS) is a method to share one particular frequency
channel among di�erent devices. �is is done by encoding the radio signal in such a way that it
does not use the entire available bandwidth of the channel. One of the implementations (used
in ���.��.�, the protocol analysed in this thesis) is CDMA (Code Division Multiple Access). In
CDMA the original binary signal is XOR’ed with a device-speci�c pseudorandom code (see �gure
�.�). �is code has a higher frequency than the bit signal, which means that every bit is XOR’ed
with multiple bits of the code. �e result is a signal that is similar to the pseudorandom code.
Given that the receiver knows the code of the sending device, it can extract the original signal
by correlating the received signal with the sender’s pseudorandom code. �e result is that many
di�erent devices (each using a dissimilar pseudorandom code) can transmit data at the same time
on the same frequency. [��]

Frequency Hopping Spread Spectrum (FHSS) is an implementation/extension of CDMA. On
top of XOR’ing the bit signal with a random sequence, FHSS provides a mechanism to rapidly
change channels using another pseudo-random sequence known by both the receiver and the
transmitter. �is allows for even more devices to share the same frequency band.

BACKGROUND INFORMATION 9

Figure �.�: CDMA signal encoding [��]

�.�.� O�set Quadrature Phase-Shi� Keying

O�set Quadrature Phase-Shi� Keying is a digital modulation scheme that modulates the phase
of a reference signal (the carrier wave). It varies the phase of a sine and cosine wave in order to
transmit data [��].

To transmit a bit sequence, the sequence is �rst grouped in pairs of two bits. Such a group is
called a symbol. �ese symbols are then converted to a polar signal (meaning all bits equalling �
are converted to -�, where the bits equalling � remain �). �e symbols are then sent to di�erent
channels, the �rst bit of a symbol is sent to the so called I channel, the second bit of a symbol is sent
to the so called Q channel. �e I channel is then multiplied by a cosine wave of a given frequency.
�e Q channel is multiplied with a sine wave of the same frequency (usually implemented as the
same cosine wave but shi�ed �� degree so it becomes a sine wave). In O�set QPSK, the Q channel
is delayed by one bit (half symbol). As a result, the I and Q channels do not transition at the same
time. �is means that the transitions in the resulting signal is maximum �� degrees.

Now we have two signals, each containing a sequence of bits. �ese two signals can be added
together to form the resulting composite signal which can be transmitted.

�.�.� OSI Model

�e Open Systems Interconnection (OSI) Model is a conceptual model that standardises the
di�erent functions of a communication protocol or computer system [��]. �is model is used on
many occasions when describing networking protocols and communication systems. �e model
is built from di�erent layers, where each layer ful�ls a speci�c function.

�e OSI Model has � layers:

• Layer �: Physical Layer

• Layer �: Data Link Layer

• Layer �: Network Layer

• Layer �: Transport Layer

10 CHAPTER 2

• Layer �: Session Layer

• Layer �: Presentation Layer

• Layer �: Application Layer

Layers �-� describe the communicationmedium. �e Physical Layer consists of the byte stream
and analog signals and takes care of transmission and receipt via for example a cable or over the air.
�e exact encoding of those bits and how to transmit them is de�ned in this layer. �e Data Link
Layer takes care of building data frames and transmitting and receiving them (via the physical
layer) between two nodes. �e Network Layer takes care of structuring the network packets or
datagrams. It takes care of e.g. addressing, routing and tra�c control.

Layer �-� describe the host layers. �ese layers usually live in the operating system kernel and
not in the network adapter. �ey take care of building and presenting payloads to the end-user.

Upon passing a network packet through di�erent layers upon receipt, the header and footer of
that speci�c layer is stripped from the byte stream. E.g. the Data Link header is removed when the
packet is passed to the Network layer, the Network layer processes the packet and removes the
Network layer header before passing it to the Transport layer, etc. When transmitting a network
packet, this process occurs in reverse order. �e user or application builds a payload in the
Application layer. Each subsequent layer then adds a header (and in some cases footer) to the byte
stream in order to build a network packet that can be transmitted via the Physical layer.

�.� Relevant Standards

Two standards are relevant to this research. First of all the WirelessHART standard [�] which
de�nes the WirelessHART protocol. �is standard references the IEEE ���.��.� (version ����)
standard for the implementation of the physical layer [��]. Both these standards have been analysed
and relevant parts of the standards will be summarised in this section.

�.�.� IEEE ���.��.� (����)

�e IEEE ���.��.� (����) standard de�nes two layers of the OSI-model: a Physical layer and a
Data-Link Layer. �e Data-Link layer is also referred to as the MAC (Media Access Control) layer.
�is MAC layer is designed speci�cally for operating Low-Rate Wireless Personal Area Networks
(LR-WPANs). It is maintained by the IEEE working group, which released it in ����, updated it in
���� and ����. It forms the basis for many di�erent wireless mesh protocols like ZigBee, MiWi,
ISA���.�A, �LoWPAN andWirelessHART.�ese protocols each extend the physical and MAC
layers with upper protocol layers. �ese upper protocol layers are not de�ned in the IEEE ���.��.�
standard. �e IEEE ���.��.� standard supports three frequency bands. �e �.�GHz band is used
in this thesis.

Design Goals �e standard aims to o�er standardised networking tools to enable very low-
power network communications (transceivers powered by a button or coin cell for example). �e
focus of this standard is on low power consumption and simple network architectures, which

BACKGROUND INFORMATION 11

comes at the cost of low(er) speed. In contrast with for example WiFi, which o�ers much higher
bandwidths compared to ���.��.� at the cost of more power consumption and more complex
hardware. �e manufacturing costs of ���.��.� hardware is very minimal (a simple transceiver
costs around �� euro to buy) due to the simplistic requirements for the physical layer [��].

Protocol Architecture �e protocol de�nes two layers: the Physical layer and the MAC layer.
�e Physical layer de�nes three frequency bands (��� and ���MHz as well as �.� GHz). In

this thesis we focus on the �.� GHz band since this is used by the WirelessHART protocol. �e
physical layer also de�nes howmodulation should be performed. For the �.�GHz frequency, O�set-
Quadrature Phase Shi� Keying (O-QPSK) is used (see section �.�.�). �e Physical layer de�nes
�� channels in the �.�GHz band. �e centre frequency of a channel can be calculated as follows [��]:

∀k ∈ {�� . . . ��} ∶ F(k) = ���� + �(k − ��)MHz (�.�)

�eMAC (or Data-Link) layer of the ���.��.� protocol de�nes the structure of network packets.
It is important to note that this structure can be used to transmit raw data payloads over an ���.��.�
network, but in itself does not provide any security or availability guarantees to those payloads. It
merely de�nes the routing protocol and packet structure that should be used [��].

�.�.� WirelessHART

WirelessHART is a networking protocol which extends the ���.��.� (version ����) protocol. It
replaces the ���.��.�MAC layer with its own layer and furthermore de�nes an application layer
[�]. �e protocol is developed for use in industrial wireless networks, where the network payloads
contain HART (a wired networking protocol) commands. �e protocol uses a time synchronised,
self-organising (devices can maintain their own routing table) and self-healing (when a device
fails, the other devices make sure the network does not fail) network architecture. It uses only the
�.�GHz frequency band. WirelessHART packets can be transmitted using any ���.��.�-compliant
radio.

More details about the technical operation of WirelessHART will be presented in Chapter �.

�.� Tools

�is section describes the tools used in this project. Only functionality which is relevant for this
thesis is presented.

�.�.� GNURadio

GNURadio is a program which can interface with the hardware component of a so�ware-de�ned
radio (SDR) [�]. GNURadio is open-source and versions for Linux, Windows and OSX exist for a
wide range of platforms. As explained in chapter �.�.�, the hardware component of an SDR converts
an analog signal (radio waves) into a digital signal and then conveys it to the host computer it is
connected to. Upon transmission this process happens reversed. GNURadio can be used on the

12 CHAPTER 2

host computer to receive this signal. �e digitised signal can then be processed using well-known
digital signal processing techniques. �ese techniques are included in a GNURadio installation
and are called blocks. Using these blocks, signal processing chains can be built. �ese chains are
called �owgraphs. A �owgraph takes as input the bits received by the SDR, and give any type of
output. As an example: it is possible to tune the SDR to a speci�c FM radio frequency. �e input
will be a signal which contains audio, modulated as an FM signal. Using blocks, a �owgraph can
be built that takes as input this signal, performs the FM de-modulation (using multiple blocks
chained together) and gives as output a (raw) audio stream.

�.�.� Scapy

Scapy is a tool written in Python used to process network packets [��]. In essence its functionality is
converting a byte-stream received from a network interface, into a Python object using a protocol
speci�cation. �is Python object can then be modi�ed by other programs and be converted back
into a byte-stream by Scapy according to the (same) speci�cation. �ese speci�cations de�ne
which byte in the byte stream represent which �elds of the network packet. �e speci�cation is
called a layer.

Many network protocols have been implemented in Scapy such as WiFi, TCP/IP, Bluetooth
and many more. WirelessHART (or ���.��.�) is not one of them, so Scapy cannot handle this
protocol out of the box [��]. �ere is however a very basic implementation of ���.��.� which will
be presented in section �.�.�.

�ere exists an add-on for Scapy which makes it communicate (receive and transmit byte-
streams) over UDP sockets instead of a physical interface. �is add-on is called Scapy-Radio
developed by the Defence and Space group part of Airbus [�]. By sending packets (in byte format)
over network sockets, they can be received by other (local) applications such as GNURadio which
can then process it further.

�.�.� Linux-WPAN-Next

Linux-WPAN-Next is a custom Linux kernel, maintained by Alexander Aring which supports
WPAN networking [��]. It contains drivers for several microchips that can receive and transmit
network packets compliant with the ���.��.� standard. Furthermore it de�nes how network packets
should be processed by the kernel such that they can be received and transmitted to and from
user-space. Promiscuous (aka. monitor or sni�er) mode is currently not supported by the kernel
driver for the AT��RF��� chip (see next section).

�.�.� AT��RF���

�e AT��RF��� is a microchip developed by Atmel. [��]�is chip can handle the Physical and
MAC layers of the ���.��.� standard, and can be used to receive and transmit network packets
in a ���.��.� network. It is possible to communicate with this chip over an SPI (Serial Peripheral
Interface) link. �e full communication protocol with the chip will not be detailed here, as it is
irrelevant to this thesis. It can be found in the data sheet of the chip [��]. In this project a printed
circuit board developed by OpenLabs is used [��] which can be connected to a Raspberry Pi.

BACKGROUND INFORMATION 13

A kernel driver in combination with a custom kernel that supports WPAN networking (Linux-
WPAN-Next) will then be used to de�ne how the kernel should communicate with the board and
how network packets can be received and transmitted to and from user-space. �e costs of the
AT��RF��� PCB board (including headers to connect it to a Raspberry Pi) is �� euro excluding
shipping. For comparison, a cheap (new) WiFi adapter costs around �� euro.

14 CHAPTER 2

15

C�������
WirelessHART

�is chapter will elaborate on the WirelessHART and ���.��.� protocols. �e aim of this chapter is
to give the reader su�cient background information about the WirelessHART protocol.

�.� Network Architecture

In [��], an overview is given of the di�erent components of aWirelessHART network. �e network
is composed of at least the following network devices:

• Network Manager

• Security Manager

• Gateway

• Nodes

�e nodes can either communicate using a gateway (also known as a router in other protocols,
there can be multiple gateways in a single network), or using multiple hops. A network topology
using a gateway is called a star-topology. In a multiple-hop topology a node sends a packet
through another node to the destination, it is called a mesh-topology. �e network architecture is
clearly de�ned in the standard to be a star topology combined with a mesh topology [�]. Devices
cannot communicate directly to other devices, but have to send their packets through the gateway.
However they do not need to be in direct reach of the gateway and can use mesh networking to
reach the gateway. �is is the default operating mode of a WirelessHART network.

Refer to �gure �.� for an overview of how these components are connected.

Besides connecting network devices, the gateway in a WirelessHART network also acts
as a bridge that connects the WirelessHART network to the plant network. Devices on the
WirelessHART network can send and receive HART commands to and from the plant network. A
single WirelessHART network can have many gateways. Gateways can communicate directly with
each other via the WirelessHART network.

16 CHAPTER 3

Figure �.�: Di�erent types of devices in a WirelessHART network

�e gateway communicates directly with a network manager. �e network manager is respon-
sible for the con�guration (like key distribution, routing, etc.) of the WirelessHART network.
Each network can only have one network manager. Communication from a node to the network
manager is always done via the gateway.

A security manager assists the network manager in the security side of the network commu-
nications. It generates session keys, join keys and network keys (this will be further detailed in
section �.�.�). Multiple networks can be managed by a single security manager, but each network
has at most one security manager. �e devices on the network never communicate directly to the
security manager, this is done via the network manager.

Upon initialisation of the network, the network manager requests (and receives) a unique
Network ID from the security manager, as well as the required keys (speci�cally two broadcast
keys and a join key). �e network manager then sets up a connection with the gateways. When a
new device joins the network, it must supply the network manager with the correct network ID as
well as proof that it knows the join key for that network.

A device (also referred to as node) can join the network if it is con�gured with a join-key and
a network id. �is is either a manual process, or devices are shipped with pre-con�gured join-keys
and network id’s. In the simple (default) con�guration of WirelessHART, it is important that these
two parameters are the same for all network devices or they will not be able to join the network.�

�.� Network Operation

Before going into details how network packets are actually transmitted, this section describes the
operation of a WirelessHART network at a conceptual level [�]. Please keep in mind the di�erence
between a network manager (a device taking care of the network con�guration like routing, key
distribution, etc.) and a network administrator (a human which is setting up the network).

�Note: there are actually other modes of operating the security as well, for example using a device-speci�c joinkey.
However since this is not default behaviour, this con�guration will not be considered in this thesis.

WIRELESSHART 17

We assume a WirelessHART network has been set up as described above. �is means that
there is a gateway, networkmanager and security manager in place and they all share two broadcast
keys, a global join key and a network id. Only the network id and join key are known by the
network administrator (a human usually), the other keys are stored in the network manager and
cannot be extracted during normal (intended) operations.

�e WirelessHART standard speci�es that a gateway should transmit network advertisements
(as o�en as possible). �ese advertisements contain information for the joining device on how to
join the network (network id, timestamps and time slots being the most important, this will be
explained in section �.�.�). �e advertisements are usually the same, but it is possible that they
change over time as the network becomes more populated. �is means that there are fewer time
slots available for joining the network (because they are occupied by the various devices), so the
advertisements are adjusted accordingly.

In order to join a new node to the network, the network administrator con�gures the node
with the network id and the join key. �e device also has a EUI-�� address, which can be compared
to a MAC address in the Ethernet protocol. �is address is set in the hardware of the device by the
manufacturer and is not intended to be changed. �e node begins by listening for advertisements
on a random channel. If it receives nothing within a certain period of time (usually approximately
�� seconds) it switches to another random channel. As soon as the node receives an advertisement
for the network it has been con�gured for, it parses the advertisement. By parsing the advertisement
it learns which channels are in use by the network, and it can synchronise its clock with the network
by using the timestamp contained in the advertisement and the local time (will be further detailed
in section �.�.�). A�er receipt of the �rst advertisement, the node will be able to calculate which
channel will be used by the gateway to transmit the next advertisement. It calculates the next
channel, switches its radio to that speci�c channel and listens for another advertisement. It will
capture three more advertisements like this in order to synchronise its local clock with the network.
Note that there is no actual clock, rather a timer which increments by � every ��milliseconds. �e
value of this timer is called the Absolute Slot Number (ASN) and must be exactly the same across
all devices on the network.

Once the ASN is synchronised, the node transmits a join request in one of the time slots
speci�ed in the advertisements. �e join request is targeted towards the network manager, but
the packet will have to traverse the gateway to get to the network manager. �erefore, a part
of the packet required for routing (the Data-Link layer, will be further detailed in section �.�.�)
is encrypted using a so called well-known key. �is key is public and is documented in the
WirelessHART standard. �e payload (the Network layer, will be further detailed in section �.�.�)
is encrypted using the join key as con�gured by the network administrator. �e join request
contains a nonce and an encrypted payload with information about the node (e.g. battery power
level).

Upon receipt of the join request, the network manager can validate that this is a valid join
request if it is possible to decrypt the packet with this network’s join key. Furthermore some
parts of the packet are “authenticated” using a message integrity code, which is calculated using
the join key. �is proves to the network manager that this device has knowledge of the join
key and is therefore allowed to join the WirelessHART network. In the default con�guration
of a WirelessHART network, checking for knowledge of the join key is the main mechanism

18 CHAPTER 3

for checking whether a device is allowed to join the network. �ere are other con�guration
possibilities like physical address �ltering/whitelisting, but these features are not documented in
the WirelessHART standard. �erefore these alternate features for further restricting access to the
WirelessHART network will not be considered in this thesis.

A�er the join request, a handshake will be performed between the network manager and the
node. �ey will �rst exchange a session key and all further communications between the network
manager and this speci�c node are encrypted using this session key. In this �rst message exchange,
the network manager assigns a nickname to the joining device. �is nickname can be compared to
an IP address in an Ethernet network and is � bytes long. Subsequent communication addressed to
and from the device will use this nickname instead of the EUI-�� address. Furthermore a session
key between the node and the gateway as well as the broadcast key will be sent to the node (which
stores them). Finally, routing information is exchanged de�ning in which time slots this node is
allowed to transmit and at which time slots it is supposed to listen for incoming tra�c.

A�er the handshake, the node is successfully joined to the network and it can receive and
transmit packets.

For a graphical overview of the handshake see �gure �.�. �e following notations are used:

• {m}key is used to denote a symmetric encryption of m using key;

• �(m)key is used to denote a message integrity code over m using key;

• “hdrs” denotes the headers of the network packet;

• jk is used to denote the join key;

• wk is used to denote the public well-known key.

Figure �.�: �e message sequence in a WirelessHART join handshake

WIRELESSHART 19

�.� Physical and Data-Link Layer

�is section further details on howWirelessHART devices transmit and receive packets.
�e WirelessHART protocol’s physical layer is based on IEEE ���.��.� (����) [�]. It uses

O-QPSK (O�set Quadrature Phase Shi� Keying, see section �.�.�) and operates in the �.�GHz
band with a data rate up to ���kbps. To resist interference and jamming, DSSS in combination
with FHSS is used. �is is also known as channel hopping. �e radio hops over multiple frequency
bands (channels) using a pseudorandom sequence [��][�]. �ere are �� channels (out of ��) used
in the �.�GHz band for channel hopping. �e remaining channel (��) is not used, since it requires
a license to use in some countries. �e other channels are part of the ISM band, meaning that
these channels are free to use all over the world.

�e physical layer encapsulates the Data-Link layer. �e Data-Link layer takes care of routing
between two devices that can directly communicate with each other. �ese devices do not have to
be the actual sender and �nal destination of the packet, since a packet can travel multiple hops
from the sender before reaching the �nal destination. �e data-link layer consists of two sub-layers:
the MAC (Medium Access Control) layer and the LLC (Logical Link Control) layer. �e MAC
layer takes care of the actual routing of packets while the LLC layer takes care of priority, �ow
control and error detection. �is means that the MAC layer is below the LLC layer, but both are
inside the Data-Link layer of the OSI model.

�e MAC layer uses TDMA (Time Division Multiple Access) for link scheduling. It uses
time slots, where each time slot has a duration of ��ms. �is time slot duration has been reverse-
engineered from sni�ng packets on a running network, it does not appear to be documented.
�is time slot provides enough time for a single data unit including acknowledgement to be sent
and received.

TDMA uses superframes to perform the actual link scheduling [�]. A superframe is a series of
time slots. �e size of this superframe may vary between networks, but must be the same across
all devices in a single network. A superframe can be visualised as a series of ‘slots’ in which data
can be transmitted or received. Each of the slots in the superframe has a number, which is based
on the Absolute Slot Number (ASN) which can be seen as a global timestamp in the network. �e
slot number of a slot in a speci�c superframe can be calculated as follows:

slotnr = ASN mod superframe_size (�.�)

Where the superframe_size is the total number of slots in this superframe. Refer to �gure
�.� for an overview of what a superframe looks like. So if a device wants to transmit a packet
at a given time (ASN), it can calculate whether it is allowed to do that by calculating the slot
number in the superframe. As an example take a superframe of size ���� (it has ���� time slots),
the slot number can be calculated as in equation �.� and checked against the slots designated for
this node during the handshake. �e timestamp when the next packet can be transmitted can
also be calculated using the knowledge that the ASN increments by � every ��ms. A device can
calculate the time until the next allocated transmission time slot before sending the packet using
the following formula:

wait = (current_ASN - next_transmission_slot mod sf_size) ∗ ��ms (�.�)

20 CHAPTER 3

A�er calculating how long the device has to wait before the next transmission slot arrives, it
simply sleeps for this many milliseconds before transmitting the packet. �e receiver can follow
this same process and sleep until the next time slot designated for receiving.

Figure �.�: Structure of a superframe

It is clear that when handling these strict timing requirements, it is very important that the
ASN counter is the same on all devices. Otherwise one device may be transmitting while another
is not listening yet. More details on how the ASN is synchronised will be explained in section �.�.�.

�e connection between two devices is called a link. �e link is set up using the superframe,
neighbour id and time slot (ASN) [�]. All the devices in the network share a list of channels which
can be used (identical across all devices), which is set by the network manager. Furthermore each
device maintains a list of links it has set up with other devices.

�.�.� Time Synchronisation

In order for two nodes to communicate successfully over a link, their transmission and reception
should be timed correctly in the time slots de�ned in the superframe. �is requires synchroni-
sation of clocks between every two nodes in the network. While the standard states that time
synchronisation is important, it does not provide any mechanism to achieve it. Since the Linear
WirelessHART Development Kit [��] which was available for this project is closed source, it
was not possible to �nd the time synchronisation mechanism immediately. However, the micro
controller which provides theWirelessHART stack in these devices is developed by Dust Networks.
�e founder of Dust Networks, published a paper in ���� which describes a time synchronisation
protocol called TSMP (Time Synchronised Mesh Protocol) [��]. �is was two years before the
WirelessHART standard was published but the similarities between the two protocols are very big.
Furthermore, on theWikipedia page ofWirelessHART there is a statement that theWirelessHART
protocol is based on Dust Networks’ TSMP protocol. Although it cannot be said with absolute
certainty that this is the time synchronisation protocol implemented in the Dust Networks chip, it
is very likely that it is. Using techniques described in chapter �.�, it was con�rmed that the TSMP
protocol is actually used to synchronise network time in Dust Networks’ WirelessHART chips.

As an illustration of how time synchronisation works in the TSMP protocol we give the
following example: Assume there are two nodes A and B. A and B have a link already set up

WIRELESSHART 21

between them (which means their clocks are already somewhat in sync), and A transmits a packet
to B over this link. A transmits the �rst bit of the packet as close to the starting time as possible in
(one of) the link’s time slot(s). Upon receipt, B will take note of the local time of the receipt of the
�rst bit. Let’s call this local timestamp b�. Since every data packet which is a unicast (� sender to �
receiver) must be acknowledged by the receiver in TSMP, B will send an ACK (acknowledgement
of reception) packet back to A. Before transmitting the ACK packet, B calculates the di�erence
between the start of the time slot and b�. �is di�erence is then included in the ACK packet sent
to A.�is way A knows how much the di�erence between the transmission and receipt of the �rst
bit of the original packet was, and can adjust the local clock accordingly. �is creates the concept
of time parent (B is the parent in this case)[��].

�is describes how synchronisationworks if the devices are already somewhat in sync. However,
initial synchronisation is needed. �is is achieved using network advertisements which contain the
actual absolute slot number (ASN).�e joining node will listen for network advertisements. Once
it receives an advertisement, it records the local time of the receipt of the �rst bit of the packet. It
will record the ASN from the advertisement together with this local timestamp. �is process is
performed three times (three advertisements are parsed), a�erwhich the node is able to estimate the
network’s ASN by calculating the di�erence between the timestamps at which the advertisements
are received and the di�erence in the ASN’s that where listed in those advertisements.

�e joining node will transmit a keep-alive packet (used to announce its presence) in a time
slot dedicated to joining devices (which it learns from the received advertisements as well). �e
gateway will respond with an ACK containing the time o�set allowing for the joining node to
synchronise its clock with the gateway.

�.�.� Link Channel Calculation

When two devices in the network want to communicate with each other, they have to negotiate
(or be assigned) several parameters (like time slots, each other’s addresses, etc.) required to
communicate with each other and route packets on theWirelessHART network. �ese parameters
de�ne how two devices communicate and is referred to as a link.

Each link is assigned a channel o�set by the network manager. �is o�set is an integer, which
is used to calculate the actual channel (frequency) a transmission will take place on [�].

When a node wants to send a packet onto the WirelessHART network, it has to calculate the
channel on which it can transmit in the next time slot available for transmission. �is is done as
follows:
Each device keeps an array of enabled channels. �is list is de�ned by the network manager
upon initialisation of the network (or manually con�gured), and is conveyed via the network
advertisements. �is list is an ordered array containing the channel numbers active for the network.
(For example, if channels �� and �� are enabled the array would contain A[�] = ’��’, A[�] = ’��’).
Upon transmission, the sending device chooses a link from the (local) link list that can reach the
destination and calculates the channel to transmit as follows [��]:

index = (Channel O�set +Absolute Slot Number) mod Nr of Active Channels (�.�)

22 CHAPTER 3

�e channel to transmit on is then A[index]. Note that Nr of Active Channels equals the size
of A, and the channel o�set is negotiated during the establishment of the link. �is ensures that
each slot number has a di�erent channel. Since modulus is used over a predictable number, the
sequence of channels can be pre-computed given that the slot numbers are known by the sender
and receiver.

Transmission is then initiated at the designated time slot. �is process repeats at the next
designated time slot, which may be in the same superframe or in a consecutive one.

In case of a collision at the receiving device (two senders send a packet in the same time slot),
the receiver will not send out an acknowledgement of receipt. �e sender uses a random back-o�
mechanism and waits for the next opportunity for transmission. How this mechanism works is
not relevant for this thesis.

�.� Network and Higher Layers

�e payload of the Data-Link layer is called the Network layer. �e Network layer takes care of
routing from source to destination, so it includes the source and destination address amongst
other �elds that are relevant for routing a packet from the source to its destination. More details
on the actual �elds will be given in section �.�.�.

�e payload of the Network layer is called the Transport layer. �is layer has only a single
header �eld used to indicate the payload type. �e payload of the Transport layer is the Application
layer which are the actual HART commands.

�.� CapturingWirelessHART Packets

�e o�cial method to perform an assessment of a WirelessHART network is to use the WiAnalys
toolkit distributed by the HART foundation. �e problem is that this toolkit is only available to
members of the HART foundation (the vendors that sell WirelessHART equipment). It is a sni�er
capable of capturing packets on all �� channels simultaneously and storing the packets for later
analysis using a so�ware package. �is toolkit is not available to end-users and security testers, so
a di�erent tool is needed.

In [��] such a tool is developed. �e authors use �� IEEE���.��.� receivers (Freescale MC�����)
interconnected using an FPGA development board (Altera Stratix-II). Packets captured by the
�� radio receivers are forwarded to the FPGA, which wraps the WirelessHART packets in the
ethernet protocol. It then transmits these ethernet frames to a computer via a regular ethernet
connection. �e computer can then analyse the WirelessHART packets using a packet analyser.

However, the code used on the FPGA is not published. Furthermore, their set-up requires
the engineering of a circuit-board which is a process that takes too long for a penetration tester
without knowledge of electrical engineering. �erefore, a less complex solution is needed.

23

C�������
Communicating with the Network

�is chapter describes the setup (and problems encountered) in order to communicate with the
network using a “home-made” WirelessHART-capable device. First, a sni�er was built. Part
of building this sni�er is analysing how a legitimate device receives tra�c, which checks are
performed and when a packet is considered valid. Once this is known, a sni�er can be built. �e
next section explains how this knowledge can be expanded in order to transmit network packets.

�.� Sni�ng Network Tra�c

�is section describes how network tra�c of the WirelessHART network was captured. All of the
work presented in this chapter has been developed or reverse-engineered by the student except
when noted otherwise. First the structure of WirelessHART network packets will be detailed, a�er
which the actual implementation of the network sni�er will be explained.

�.�.� WirelessHART Packet Structure

Figure �.� gives an overview of the structure of WirelessHART network packets [�]. �e top layer
is the Data-Link layer. �e second layer is the Network layer and the bottom layer re�ects the
Transport layer which consists of a single header �eld (TL Control Byte) and the payload. �e
payload of the Transport layer is the actual HART command, which is also called the Application
layer.

�e Physical Layer �e physical layer of the packet consists of a physical header. �is header
starts with � null-bytes signalling the receiving device that a packet is coming (the receiver can
detect energy on the speci�c frequency). �e null-padding is followed by a single byte �xA�
(�������� in binary), which allows the receiver to synchronise his clock rate to the sender’s [�]. �e
physical layer de�nes �� channels to be used by WirelessHART.

24 CHAPTER 4

Figure �.�: WirelessHART network packet structure

�e Data-Link Layer �e Data-Link layer de�nes a header and a footer. �e header starts with
a static byte �x�� which indicates the data mode and security mode of the IEEE ���.��.�-����
standard are enabled. �is byte is always static in aWirelessHART network because these �elds are
not used, and by setting the rest of the bits to � allows for any ���.��.� compatible radio to receive
WirelessHART packets [�]. In the header there are also �elds which indicate routing information.
�e network id, destination and source addresses indicate whether the receiver has to further
parse this packet. �e Data-Link layer parser drops the packet if either one of these �elds does
not match its con�guration. For example the packet is not destined for the network the parser is
connected to or the destination address at the Data-Link layer does not match the parser’s address.

�e addresses at the Data-Link layer indicate the source and destination of this “hop”. For
example a packet destined to the network manager (which has an address of �xf���), will have to
traverse the gateway �rst. �e sender of such a packet would set the Data-Link layer destination
address to �x���� (the gateway), and the Network layer destination address to �xf��� (see next
paragraph). �is means that in a multi-hop con�guration these Data-Link layer �elds are changed
upon each hop.

Furthermore a sequence number is included. �is sequence number is the least-signi�cant
octet of the absolute slot number (ASN) in which this packet was transmitted. �e parser can
check whether this packet was actually transmitted in the speci�c ASN or whether the packet is
“old”. Receipt of an old packet can happen for example when a packet echoes in a room or in the
case of a replay attack.

In the footer of the packet, the Data-Link layer contains a MIC and a CRC�� checksum (also

COMMUNICATING WITH THE NETWORK 25

referred to as a Frame Checksum or FCS).�is CRC checksum is calculated via a “regular” ITU-T
CRC�� polynomial [��]. �is CRC checksum is calculated over the entire packet starting from
the �rst byte of the Data-Link layer header up to and including the �� bit CRC checksum �eld. A
property of CRC�� calculations is that if the CRC checksum is in place, and the CRC is calculated
over the same data again, the CRC �eld will end up being �. �is is the way a receiver could check
whether the CRC is valid: calculate the CRC over the entire packet and check whether the outcome
of this calculation equals �.

More details on the MIC calculation can be found in paragraph �.�.�.
�e payload of the Data-Link layer is the Network layer.

�e Network Layer �e Network layer of the packet de�nes a header. �is header contains
�elds which mainly relate to the security features of the protocol. A time-to-live or hop-to-live
(TTL/HTL) �eld is included, which makes sure that packets can only be forwarded at most ���
times. �is counter is decremented upon receipt and checked whether it is non-zero. If the TTL
reaches zero, the packet is dropped. It also includes a sequence number which is di�erent from
the Data-Link layer sequence number. �e Network layer sequence number is again the least
signi�cant octet of the absolute slot number (ASN), but it does not have to be equal to the time
slot the packet was received in. �is �eld is �lled as soon as the network layer receives a transmit
request, so it is a coarse way to measure how long ago this packet was created. Furthermore
the source and destination address are included. �e source and destination addresses of the
network layer are the actual �rst source address and �nal destination address of the packet. So in a
multi-hop route, these addresses remain the same when traversing other devices.

�ere are also a few �elds containing meta-data for the AES encryption. �e Security control
�eld determines the key type used to encrypt the payload (�x��, �x�� and �x��mean session key,
join key and handheld key respectively). �e handheld key was not used by the WirelessHART
product tested. �ere is also a counter which is either the least signi�cant � bits of the nonce used
to encrypt and sign the packet when the session key is used, or it is the full �� bits of the nonce
when the join or handheld keys are used.

As last header �eld, a Message integrity code (MIC) is included. �is MIC is calculated over
the full Network layer of the packet using the source address and nonce.

�e payload of the Network layer is encrypted using AES-��� in CCMmode using the meta-
data from the headers (nonce and key type). More details on how the payload is encrypted and
signed can be found in paragraph �.�.�.

�e Transport Layer �e Transport layer of the packet contains a single header byte. �e �rst
three bits of this control byte indicate whether the payload is supposed to be acknowledged by the
destination, whether it is a response to a previous request and whether it is a broadcast payload.
Furthermore the last � bits of the control byte indicate the Transport layer sequence number.
�is sequence number is only used to detect duplicate and missing commands and to correlate a
response with a request.

�e payload of the Transport layer contains the actual HART commands (wrapped in another
layer, which is not relevant for this thesis).

26 CHAPTER 4

�.�.� Reverse-engineering how a Legitimate Device Receives Packets

In the Linear WirelessHART Development Kit, a chip by Dust Networks is used [��] which
contains the WirelessHART implementation. �is Dust Networks chip handles the Physical and
Data-Link layers of the protocol. It forwards only the Network (and higher) layer of the protocol
to the kernel of the device. �e Network layer is then parsed by the kernel. �is behaviour is not
documented in public documentation and has been reverse engineered by using a packet sni�er
which will be detailed in section �.�.�.

Since the Dust chip does not provide any debugging methods (at least not publicly available),
it was impossible to debug the Data Link layer of the protocol. �erefore a sni�er had to be built
in order to �nd out how the Data Link layer of the protocol operates.

�.�.� WirelessHART Security Features

WirelessHART has multiple security features which allow it to guarantee con�dentiality, integrity
and authenticity. In this section, the security features of the WirelessHART protocol will be
explained per network layer.

Key types

�ere are seven di�erent key types used in the WirelessHART network [�]. All keys are ��� bit
AES keys.

At the Data-Link layer, a well-known key as well as a network key is used. �e well-known
key is equal to: ���� ���E ���� ���� ���F �D�D �E�F ���� in hexadecimal notation. �is key is
speci�ed in the standard. It is speci�ed to be “randomly chosen”, but when decoded into ASCII it
reads: “www.hartcomm.org” so it is not so random a�er all. Furthermore, specifying the key in
the standard makes it public. �erefore, using the well-known key provides no security guarantees
at all since everyone has this key.

�e network key is a keywhich is generated by the securitymanager upon network initialisation.
It is distributed to the network devices during the join handshake. �is key is random and unique
for each initialisation of a network and is therefore not known by an attacker. It is used to verify
whether a packet transmitted on a speci�c network is valid for that speci�c network.

Both the well-known key as the network key must be the same across all devices successfully
joined in the same network. �e well-known key is hard-coded because the key is speci�ed in
the standard, the network key will have to be conveyed to the network devices during the join
handshake.

In the Network layer there are �ve di�erent keys, see table �.�. �ere is a unicast session key
between the device and the network manager, a unicast key between the device and the gateway
and two broadcast keys: one for communication originating from the network manager and one
for communication originating from the gateway. Finally there is a join key.

�e join key is a globally set key, which can be changed by the network administrator (human).
�is is the only key which is directly changeable via the maintenance port (also known as a
con�guration interface like SSH, telnet, etc.) on the network devices.

COMMUNICATING WITH THE NETWORK 27

�e unicast keys are used for one-on-one communication. Devices do not have peer-to-peer
unicast keys by default so all communication has to traverse the gateway in order to reach the
destination.

�e broadcast keys are used to transmit broadcast commands from the network manager or
gateway to all devices. �ese four keys are conveyed to the joining device during the handshake.

Table �.�: Network Layer Key Types

Key Key Type Used for
Unicast Network
Manager

Unique for each device One-on-one communication between
the network manager and the device

Unicast Gateway Unique for each device One-on-one communication between
the gateway and the device

Broadcast Network
Manager

Equal for all devices Broadcast packets to all devices from
the Network Manager

Broadcast Gateway Equal for all devices Broadcast packets to all devices at once
from the Gateway

Join Key Equal for all devices, precon-
�gured by network adminis-
trator

Joining the network. It must be
the same across all devices and pre-
con�gured by the network administra-
tor.

Nonces

Both the Data-Link and Network layers of the protocol include Message Integrity Codes (MICs).
�e algorithm used for calculating these MICs is AES-��� in CCMmode. �is AES mode expects
a nonce to be used in order to compute the MIC.

In the Data-Link layer, the nonce is constructed from the ASN (which is not transmitted in
the packet, but can be deduced if the receiver is in sync with the network) and the sender’s address
(from here on: source address). �e source address is either the full EUI-�� address (for a join
request packet), or the nickname of the device zero-padded. �is means the length of the source
address or nickname �eld is always � bytes. �e size of the ASN is � bytes meaning the Data-Link
layer nonce is �� bytes in total.

�e nonce used for calculating the MIC in the Network layer consists of the following: �e
�rst byte of the nonce is set to � for join responses, � for all other packets. �e next three bytes
shall be the three most signi�cant bytes of the counter for that speci�c device. �e next byte will
be the counter �eld as it is transmitted in the Network layer of the packet. �e last � bytes of the
nonce will be the source address (either the EUI-�� address or zero-padded nickname). �erefore
the nonce has a total length of �� bytes.

28 CHAPTER 4

Data-Link layer

�e �rst layer of the packet (a�er the Physical layer), the Data-Link layer contains a checksum
calculated over the entire frame using CRC-��, as well as a Message Integrity Code (MIC) [�]. �e
CRC checksum provides integrity of the network packet. �e packet will be discarded instantly
without doing any further checks if the CRC fails.

Furthermore the Data-Link layer contains a Message Integrity Code (MIC). �e MIC is
calculated using either the Well-Known key or the network key�. �e well-known key is used for
PDU’s (packets) that have to be parsed by devices which are not yet joined in the network (for
example advertisements), or which are in the process of de-authenticating from the network. For
all other packets, the network key is used.

�e MIC is calculated using a nonce which is constructed as described in the previous para-
graph.

When a packet traverses the network, all devices in the network will be able to validate this
MIC since the network key is known by all devices which are part of the network. According to
the speci�cation, this provides authenticity. But since every device in the network knows this key,
it merely shows that this packet was transmitted by a device which has successfully joined the
network. �e only authenticity provided by this key is that this packet is valid for this network
since devices not part of the network do not know this key.

�e Network Layer

�e second layer of the packet, the Network layer contains another MIC.�is MIC is calculated
using either the join key for devices that are in the process of joining the network, or using the
applicable session key for all other packet types (see table �.�). �e MIC is not calculated over
the entire packet. Speci�cally the TTL, MIC and counter �elds are set to �x�� when calculating
the MIC.�ese �elds are �lled later, before handing over the packet to the Data-Link layer for
transmission.

According to the speci�cation, the Network layer MIC provides proof of authenticity to the
receiver. However, since any device which knows the join-key can intercept the joining handshake,
all devices on the network may know each other’s session keys (even though that is not part of
the speci�cation and not part of the intended behaviour). So this MIC actually provides no more
authenticity than the MIC already present in the Data-Link layer and is therefore super�uous.

�e payload of theNetwork layer is encrypted usingAES-���CCM, using the same nonce as the
one used for calculating the MIC (see section �.�.�). �e key used to encrypt the payload depends
on the packet type: for join requests the join key is used, for all other packets the corresponding
session key is used. �is does not provide complete con�dentiality, since any device that knows
the join-key can intercept the session key of another device and therefore decrypt payloads sent by
these other devices. Although this is not intended behaviour (each device should only listen to
packets destined for itself), this is de�nitely a possible attack vector.

Other layers of the protocol do not have any additional security features and rely on the
authentication and con�dentiality provided by the Data-Link and Network layers of the protocol.

�Note: When calculating the MIC using the well-known key, it does not provide any authenticity guarantees since
this key is publicly known

COMMUNICATING WITH THE NETWORK 29

Authentication

Authentication of the packet is provided by checking whether the nonce can be successfully
reconstructed and the received packet is not a duplicate of a previously received packet (the nonce
is fresh). If the nonce is not fresh, the packet will be dropped. Otherwise the MIC will be checked.
If the MIC check fails, the packet will be discarded.

�is is implemented by each device keeping a table of devices it has received packets from.
�e last nonce used in those packets is stored in a table. For the next packet, the nonce must be
higher than the one stored in the table. If this is the case we speak of a fresh nonce.

Note that this process provides authentication (via the MIC) but also replay protection (via
the nonces).

�.�.� Building the Sni�er

�is section describes the process of building a WirelessHART sni�er and how packets can be
interpreted.

Choosing a So�ware De�ned Radio

In order to capture network packets, a So�ware-De�ned Radio (SDR) was used in combination
with GNURadio. For this project a bladeRF x��� (see section: �.�.�) was used. �e bladeRF was
chosen since it can transmit and receive signals in full-duplex mode (at the same time) and has a
larger FPGA than other devices on the market. Another SDR which was investigated is the USRP
B��� [��]. �is SDR is comparable to the bladeRF but has slightly di�erent speci�cations. �e
USRP supports a wider band of frequencies (��MHz - � GHz) than the bladeRF (���MHz - �,�
GHz). �e USRP also supports a higher sampling rate (��Msps vs. ��Msps in the bladeRF).�ese
di�erences also translate to the pricing of the devices. �e bladeRF is priced at ���� where the
USRP costs ����� when buying from the manufacturer. �e bladeRF has su�cient capabilities
to receive and transmit WirelessHART packets, and it can also be repurposed to analyse other
wireless protocols in the �.�GHz band as well as in the ���MHz band a�er this project is �nished.
Furthermore, with a sampling rate of ��Msps it should be possible to capture several channels at
the same time (to defeat channel hopping). �erefore it was decided to order a bladeRF x��� for
this project.

Fox-IT ordered a USRP B��� at a later stage (for a di�erent project), which was later compared
to the bladeRF. Both devices are suited to communicate with the WirelessHART network.

Building the Physical Layer

�e handling of the Physical layer was done in GNURadio (see Figure �.�). �e Physical layer
consists of two parts: hardware and so�ware. �e hardware used is the hardware component of the
So�ware-De�ned Radio (the bladeRF x���) which communicates with GNURadio, the so�ware
component which is running on a laptop or virtual machine. �e bladeRF sends samples of a radio
signal over a USB�.� connection to GNURadio. GNURadio should then de-modulate this signal
and extract bytes from that de-modulated signal. In order to accomplish this, an implementation
of the (de-)modulation scheme (called a �owgraph) needs to be built in GNURadio. For this the

30 CHAPTER 4

IEEE ���.��.� standard was used which gives a detailed description on the design of radio chips
able to communicate with the network [��].

In ����, Choong et al. developed a GNURadio module which is able to de-modulate an
���.��.� signal and send it to a packet sink[��][��]. A packet sink is a block in GNURadio that
takes a byte stream and chops it into network packets that can be forwarded to other blocks
so it can be saved in a �le or printed in the terminal. Since WirelessHART uses ���.��.� as its
physical layer, it should be possible to use this module for capturing “raw” ���.��.� packets. When
developing the �owgraph it turned out the demodulating �owgraph developed by Choong et al.
[��] was not usable for this project since the packet sink was only compatible with Wireshark.
Since Wireshark cannot be used to transmit packets (will be explained in section �.�.�), a di�erent
tool for analysing the WirelessHART network packets is used in this project. Furthermore the
�owgraph was much too elaborate which was not needed for this project (since its executed in a
lab environment and doesn’t need any signal �ltering, etc.). �erefore a new �owgraph was created
which would provide only the features absolutely necessary.

Hence, a �owgraph was developed in GNURadio which demodulates the O-QPSK (O�set-
Quadrature Phase Shi� Keying) modulation which is used by the ���.��.�-���� standard. �is
was accomplished using a Quadrature Demod. block with a gain setting of �. A gain of � is chosen
because we are in a lab setting without much interference and the devices are very near to each
other. A�er the demodulation, a single-pole IIR �lter was used to clean up the demodulated signal.
�en, a Clock Recovery block was used to recover the actual bits from the demodulated signal.
�ese bits were fed into a Packet Sink, which chops the byte stream into packets and strips o� the
physical header (synchronisation pre-amble and a "start of packet" indicator and the total packet
length). �is results in a stream of network packets properly formatted to be interpreted by any
network tra�c analyser so�ware.

WirelessHART uses channel hopping (see section �.�). Since channel hopping makes it more
di�cult to process the signals, it was decided to disable the channel hopping feature so the rest of
the transceiver could be built �rst. Channel hopping could be added later, for example using the
process described in another one of Choong’s papers [��].

Choosing a Tool to Interpret Network Packets

�e output of the GNURadio �owgraph is a stream of network packets. �ese packets are still just
bytes which are not easy to read and interpret. To solve this issue a parser is needed to read the
network packets and display them in a human-friendly manner.

�ere are many di�erent tools for analysing network tra�c, Wireshark being the most well-
known and common tool. However, Wireshark does not support WirelessHART packets out of
the box so it requires WirelessHART to be implemented as a Wireshark dissector (a protocol
speci�cation instructing Wireshark how to display the packet). Furthermore Wireshark cannot be
used to “build” packets, only to interpret them.

Another tool to analyse network tra�c is Scapy [��]. Scapy is a Python module which can
transform a byte stream (network packet) into human-readable form and vice versa. It also does
not support WirelessHART out of the box so the protocol needs to be implemented as a Scapy
layer. Refer to chapter �.�.� for more details on Scapy.

COMMUNICATING WITH THE NETWORK 31

�e bene�t of using Scapy over Wireshark is that Scapy can use the same protocol implemen-
tation not only to interpret packets it receives, but also to build packets in a user-friendly way.
It’s possible to create a packet by initialising a Python object which inherits a speci�c Scapy class
and then set values in the packet by simply calling the setfieldval() function on that object.
Furthermore, Scapy is written in Python which allows for easy wrapping with other Python scripts.
Having a wrapper around the protocol interpreter is very convenient in order to keep track of
network information.

�erefore it was decided to use Scapy as packet analyser and builder.

Sending Packets from GNURadio to Scapy

In order to send the byte stream coming from GNURadio into Scapy, GNURadio needs to com-
municate with Scapy. �e only way for GNURadio to send packets to Scapy without saving them
to a �le is to use network sockets. �e problem here is that Scapy can only listen on physical
network interfaces, not on network sockets. �erefore Scapy had to be modi�ed in order to listen
to network sockets instead of a physical network interface.

�ere exists an add-on for GNURadio called gr-scapy_radio, part of the scapy-radio project
[�]. �is module contains various components, but the most important two components needed
for this project are:

• An “Add GR Header” block for GNURadio. �is block prepends a speci�c �-byte header
to each network packet coming out of the packet sink. �is header can then be used by
Scapy to determine which protocol speci�cation should be used to translate the bytes into
human-readable format.

• A Scapy module which can receive packets in binary format from a network socket. �is
module allows Scapy to receive packets from a network socket instead of an actual network
interface.

In the add_gr_header block, a protocol id has to be set. For this project, the protocol id
�x�� was chosen since this protocol id was not used in the gr-scapy_radio implementation yet.
Connecting the output of the packet sink with the input of the Add GR Header blocks, results
in network packets which each contain an �-byte pre�x with the last byte equal to �x��. �ese
packets can then be transmitted via a socket to Scapy-Radio (which listens on this socket) using
the network socket block in GNURadio [�].

�e resulting GNURadio �owgraph is attached as appendix (see appendix A). Refer to �gure
�.� for an overview of how network packets are parsed using the bladeRF, GNURadio and Scapy.

ImplementingWirelessHART in Scapy

�e next step is to build a protocol speci�cation in Scapy such that it can interpret bytes in the
stream. As stated earlier, there was already a very basic implementation of ���.��.� in Scapy [��].
�is implementation was taken as a basis and extended to include the WirelessHART-speci�c
Data-Link and Network layers. Furthermore WirelessHART uses speci�c (static) values for some
�elds in the MAC layer of the IEEE ���.��.� standard. �ese values have also been programmed

32 CHAPTER 4

Figure �.�: WirelessHART packet sni�er component structure

into the Scapy layer. �e programming language used is Python since Scapy is built in Python.
�e layer does not include any processing of Transport and Application layer payloads.

Components of a Scapy Layer A Scapy layer (or protocol speci�cation) consists of a Python
�le which inherits the Scapy.Packet superclass. It then overwrites and de�nes several functions
which are called by Scapy. Scapy expects these functions to do a certain level of processing and
return speci�ed values (for example the full packet, the payload or some header �elds) in speci�c
formats (binary, integer, etc.). Which functions are required is de�ned very roughly in the Scapy
documentation. Since there is no debugging functionality, implementing these functions is quite
hard. �erefore the easiest way to build a layer is to take a pre-existing layer and modify it to
suit the WirelessHART protocol. As explained earlier, the Dot15d4 class (part of the scapy-radio
project) was used for this purpose.

How a Packet is Parsed By�e Layer �e parsing of a packet using a Scapy layer is achieved
using the “main” layer. In our case this layer is called Dot15d4, and is de�ned in the Dot��d�
class. �is class inherits the Scapy.Packet superclass to de�ne default methods. In each class,
at least the name and fields_desc variables need to be de�ned. �e name variable is a simple
string containing a display name which will be displayed to the user, where the �elds_desc variable
de�nes a list of �elds. �ese �elds can be many di�erent types (as de�ned in the Scapy.Fields
class). �e types de�ne the length in bytes and how the data is displayed. For example, a BitField
can be used to grab a single bit from the byte stream. �is bit can then be given a name and a default
value. Custom data types can also be added by adding a class which inherits the Scapy.Fields
superclass.

When parsing the packet, Scapy reads through these �elds and grabs the corresponding
bytes and adds them to the Python object representing this packet. Before it does this, the

COMMUNICATING WITH THE NETWORK 33

pre_dissect() function is called. �is function can perform checks or modify the packet before
it is parsed. In the WirelessHART layer we will use this function to verify the Frame Checksum
(CRC��, see chapter �.�.�).

When all de�ned �elds in this main layer are parsed, the guess_payload_class() function
is called. �is function receives the network packet parsed so far, and should make an educated
guess on which sub-layer should be used to parse the rest of the packet. It should return this
sub-layer class which Scapy will then use to parse the rest of the packet. �is class can be chosen
based on values of �elds in the packet. Each of these sub-layers then has the same structure
de�ning the same functions. �ere can be as many sub-layers as needed.

At some point there will be a sub-layer which does not de�ne the guess_payload_class()
function (or has this function return False). When this sub-layer is reached, processing of the byte
stream stops and the packet object will be returned.

�e output of this process is a Python object which contains all �elds with their respective
values as they are described in the layers and sub-layers. If there are remaining bytes in the stream,
these will be stored in the payload �eld.

De�ning WirelessHART Layers and Fields As mentioned earlier, the “main” layer is called
Dot15d4. �is layer �rst parses the ���.��.� headers of the packet. �e guess_payload_class()
function returns Dot15d4Data if the IEEE���.��.� fcf_frametype �eld (third bit of the �rst byte)
equals �. �is means the packet is a ���.��.�Data packet. In WirelessHART, all packets are ���.��.�
data packets since the �rst byte of the headers is �xed to �x��.

Furthermore the Dot��d� class performs CRC checking using the pre_dissect() function.
It also implements CRC generation using the post_build() function which is called immediately
a�er the packet is fully built (using all the sub-layers de�ned later).

It is also important to de�ne a custom �eld. �is �eld inherits the Scapy.Field superclass
and de�nes a way to interpret WirelessHART network addresses. Since these can be variable in
length (either a full EUI-�� address, or a nickname), it is important to convert these addresses
to readable format correctly. �e dot15d4address �eld was de�ned to do this, meaning in
all other sub-layers we can simply call this �eld and have the bytes interpreted correctly. �e
dot15d4address �eld takes one parameter, namely the length of the address in bytes. Based on
this length it decides how the address should be interpreted.

�e Dot15d4 layer calls the Dot15d4Data sub-layer which parses the Data-Link layer headers
of theWirelessHARTpacket.�eguess_payload_class() function of this sub-layer determines
the type of the WirelessHART packet based on the wh_frametype �eld (the last � bits of the last
byte of the Data-Link layer headers). �is �eld has the following valid values:

If the packet has the frame type Advertisement, the sub-layer WHAdvertisement is returned.
If the frame type is Data, the WHPayload sub-layer is returned. Furthermore, if the frame
type is Data a decision is made based on the format of the source and destination addresses
to determine whether this packet is perhaps a join request (WHJoinRequest) or a join response
(WHJoinResponse). �e corresponding sub-layers are returned based on these values.

�e WHAdvertisement sub-layer parses the �elds in the WirelessHART network advertise-
ment. �is sub-layer needs a helper class to extract the superframe details. �is helper class is

34 CHAPTER 4

Table �.�: WirelessHART Frametype Field

HEX Value Packet Type
�x�� Acknowledgement
�x�� Advertisement
�x�� Keep-alive
�x�� Disconnect
�x�� Data

needed in order to extract as many superframes as there are superframes in the packet. How
many superframes are in the advertisement is de�ned by the wh_nr_superframes �eld. For each
superframe, the id, size (amount of slots) and link details are extracted. �e link details contain
details needed for the transceiver to operate successfully (slot numbers in which join requests can
be transmitted and channel o�sets required for channel hopping).

�e WHPayload class parses the Network layer headers of the WirelessHART protocol. �is
class is very straightforward since the header �elds are static in length. It does not parse the
Transport and Application layer payloads and leaves those payloads encrypted in the payload
section of the packet such that the wrapper script can decrypt them using the correct keys later.

�e result of implementing WirelessHART as a Scapy layer is that the network packet bytes
from GNURadio can now be displayed in a user-friendly manner. �is means that the values of
the di�erent �elds in the packet can be examined by the user. However, since the WirelessHART
protocol uses encryption of the payloads and “random” channel hopping, additional parsing of
payloads inside the packet is required.

Many problems arose during the building of the Scapy layer. �e issues were mainly caused
by the poor structuring of the WirelessHART standard. Detailed information required to parse
WirelessHART packets is spread across the entire standard. �e problems that occurred during
this phase are described in chapter �.�.�.

�.�.� ParsingWirelessHART Payloads

Since the WirelessHART protocol exchanges information during the initial join-handshake which
is crucial to the network operation and the possibility to sni� network tra�c, we want to capture
and decrypt this handshake. A wrapper script was developed which uses Scapy to receive (and
later transmit) network packets via GNURadio. �is wrapper is written in Python, since it’s the
easiest way to communicate with Scapy. �e wrapper receives an interpreted packet as a Python
object, allowing it to parse payloads, etc. We call this wrapper theWirelessHART transceiver, since
it receives, parses and will later be extended to transmit WirelessHART packets.

Since the session key used to encrypt all subsequent tra�c is exchanged during the join
handshake, an attacker has to know the key to encrypt that handshake: the join key. It is possible
to decrypt all subsequent network communications by decrypting a valid handshake between a
legitimate device and the Network Manager. �erefore the assumption was made that the attacker

COMMUNICATING WITH THE NETWORK 35

has obtained the join key for the network. �is assumption is actually a reasonable assumption
since some network devices come pre-con�gured with a join key and the network administrator
is not forced to change this key. Furthermore the attacker does not have to obtain this key using
purely technical means. Social engineering can also be used for example.

First the sni�er imports the di�erentmodulesmade available by Scapy (speci�cally scapy.main,
scapy.layers.Dot15d4 and scapy.GnuRadio). By importing these modules, the sni�er is able
to communicate with GNURadio and interpret packets it receives as Python objects. Also the
numpy, time and pycryptomodules [��] are required to do the decryption of network packets,
to be able to wait/sleep and do mathematics on timestamps and convert them into slot numbers
relative to the superframe size.

�e sni�er then de�nes various functions required to parse network packets as can be seen in
table �.�.

Table �.�: Overview of Functions De�ned in Transceiver

Function Name Arguments Description
parsePacket packet Parses the (scapy-)packet. If it’s a network advertisement it

extracts the crucial network parameters (superframe details,
channel hopping o�sets and slot numbers). If the packet is a
data packet (and thus encrypted), it calls the parsePayload()
function.

parsePayload packet Extracts and decrypts the Network layer payload (NPDU).
For that it has to extract the counter and source address in
order to compute the nonce. It then decrypts this payload
by calling the decrypt() function, and does minimal pars-
ing of the payload. It checks whether there are any routing
details exchanged and stores these routing details (super-
frames and links). It also extracts the session key and stores
that for later use. Finally, the time slot within the super-
frame in which this packet was received is calculated and
compared with the value of the Data-Link layer sequence
number (the least-signi�cant byte of the sequence number
that is) contained in the packet type. �ese values should
be roughly equal.

decrypt ciphertext, counter,
srcaddr, packet
type, key type

Decrypts a ciphertext using counter and src. addr. to build
the nonce. Decryption is dependent on the packet type
(join request, response, data packet, etc.) and key type (join
key, well-known key, session key, etc.). It uses pycrypto to
do the actual AES-��� CCMmode decryption.

We now have a functional sni�er which is able to receive WirelessHART packets using Scapy
and GNURadio in combination with the bladeRF. Furthermore this sni�er can decrypt the join

36 CHAPTER 4

handshake and extract crucial routing details which are required to sni� subsequent communica-
tions between the joining device and the network.

�.�.� Implementation Problems

�ere were many problems while building the protocol layer in Scapy. �e protocol speci�cation
does not de�ne some �elds well enough, so there is room for interpretation by the developers
of the WirelessHART hardware. One example is the link details in the network advertisements.
Paraphrased, the speci�cation states that it should look as follows:

First a byte containing the number of superframes is transmitted. �e following should be
performed as many times as indicated by this counter: �e next � bytes indicate the superframe id,
amount of slots and amount of links. �e link details are transmitted following this counter, as
many times as there are links.

In the standard it is not clear whether the link details for this superframe are to be transmitted
a�er each superframe id, or a�er �rst sending all superframe id’s. It was determined by reverse
engineering that for each superframe, all link details are transmitted for all links belonging to that
superframe. A�er this the next superframe is sent including details for the links belonging to that
superframe, etc.

Another problem was endianness. �e standard speci�es that a byte should be transmitted
most signi�cant bit �rst. Multi-byte �elds should be transmitted little-Endian meaning the least
signi�cant byte of the �eld is transmitted �rst. It turned out that this convention was not always
followed, leading to confusion. It took a lot of time to �gure out the exact byte and bit-order for
each �eld in the packet. As an example the hardware address is a multi-byte �eld and should be
transmitted most-signi�cant byte (MSB) �rst. But this is against the "general" recommendation
that each multi-byte �eld is transmitted least-signi�cant byte (LSB) �rst. In some sections of the
speci�cation it states that a network address should be transmitted MSB �rst while in other parts
of the standard it’s le� implicit. �e network address at the Network layer is transmitted MSB
�rst by the Dust chip, while it is not speci�ed explicitly in the speci�cation that this should be
the case. A developer implementing the WirelessHART protocol could also follow the general
de�nition and have his device transmit the network address LSB �rst. �is is legitimate since it is a
multi-byte �eld and the speci�cation does not explicitly mention it is to be transmitted MSB �rst.

Encryption and CRC checking had �rst been implemented in the Scapy layer, but later it
turned out to be more convenient to do the encryption in the wrapper that “reads” packets via
Scapy and do the checksums in Scapy. See chapter �.�.� for more details about the di�erent levels
of encryption used.

Another big problem was the structure of the WirelessHART speci�cation. It reads as a “story”
and the structure is not very clear for implementors of the protocol. As a result, while reading
the chapter on the structure of the Data-Link layer headers, the developer has to go back and
forth through the speci�cation in order to �nd detailed descriptions of how each �eld should be
computed.

COMMUNICATING WITH THE NETWORK 37

�.�.� Conclusion

Following the procedure described in this chapter, a WirelessHART sni�er has been built using a
bladeRF which sends digitised samples of an analog radio signal to GNURadio running on a laptop.
GNURadio de-modulates the signal into bytes which are sent to Scapy over a network socket. �e
wrapper picks up these packets and converts and displays the packets in human-readable form
using a WirelessHART layer (speci�cation).

As a result, it is now possible to intercept any WirelessHART tra�c and display the contents
of the network packets in a readable form. If a handshake is caught, this handshake is decrypted
using the join key (if known by the attacker) and the session key extracted from this handshake.
All subsequent tra�c originating and destined for the device that performed the handshake can
now be decrypted and displayed by the WirelessHART wrapper.

�.� Transmitting Tra�c

�is section describes how to transmit tra�c to the WirelessHART gateway. �is is the fourth
phase of the project. Transmitting tra�c is much more di�cult than receiving (sni�ng), and
many problems occurred when building the transmitter. From a high-level perspective the steps
are very clear:

• Sni� a valid handshake

• Get the link details and encryption keys from that handshake

• Transmit packets on those links with spoofed source address of the node to which that link
belongs

�is chapter will go into detail for each of these steps. Problems that occurred are described
at the end of this chapter. It was not possible to build a successful transmitter, but the work
presented in this section could prove useful for other researchers looking to transmit tra�c onto a
WirelessHART or other IEEE ���.��.� based network.

First o�, sni�ng a legitimate handshake is straightforward using the sni�er that was built in
section �.�.�. However, the interesting information is encrypted using AES-��� in CCMmode.

�.�.� Interpreting the Handshake

When the attacker has obtained the handshake and decrypted it using the join key, timing infor-
mation can be extracted such that it is known to the attacker at which time slots a speci�c node
is designated to transmit a packet. It took me a lot of time and e�ort to �gure out how the time
slots actually work (detailed in chapter �.�.�). �e goal was to create a tool that would extract all
information from a handshake concerning timing information, channel hopping information and
session keys (unicast-gateway, unicast-network manager and the two broadcast keys). �is tool
would later be integrated with the WirelessHART transceiver.

Since the Linear WirelessHART Development kit is closed-source and the speci�cation did
not specify explicitly which commands are to be used during a join handshake, this had to be

38 CHAPTER 4

reverse engineered from the byte stream of the payload. �e payloads are HART commands. �ese
commands consist of a unique command identi�er (�rst two bytes), followed by parameters which
are speci�c to each command. �e commands have logical names like “Write session” and “Write
device nickname” but it is not obvious exactly which commands have to be used during a join
handshake.

�is problem was solved by manually reverse engineering a join handshake. �e HART
commands related to WirelessHART network management (timing, channel hopping, session
keys, address assignment, etc.) have a command identi�er ranging from ��� (�x����) until ���
(�x��D�). By reading through the bytes of the join handshake in hexadecimal representation, it is
a straightforward process to identify two-byte values that start with �x��. �ese identi�ers were
then converted to decimal and searched for in the WirelessHART speci�cation. �e parameters
to these commands are described in the speci�cation and can be implemented in the handshake
interpreter tool.

It turned out that at the start of the payload there are some additional bytes which indicate
a status. �ese bytes indicate whether this payload is a request or a response and whether the
previous payload was processed successfully (see section �.�.�).

�e interpreter was built such that it only extracts speci�c information. To be precise it extracts
the following information from a join handshake:

• Timestamps fromAdvertisement packets.�ese are required to synchronise the transmitter’s
ASN if it wants to transmit packets later on;

• Superframe information (command ���). �is includes the size of each superframe and the
amount of active slots within that superframe;

• Link information (command ���). �is includes for each superframe: time slot numbers,
link type (transmit or receive), time slot type (normal, broadcast, join, discovery) and
channel hopping information;

• Encryption keys. �is includes the unicast session keys (command ���) and broadcast keys
(command ���);

• Assigned nickname for the device (command ���). �is is used to keep track of this device
a�er the handshake is performed, since as of that moment the source address in the packet
will be the device nickname.

�is information is stored in a table, such that it can later be referenced to by the transmitter.

�.�.� Preparing to Transmit a Packet

Now that the attacker has the link details, it is possible to transmit a packet. As a �rst (test) packet,
a join request was used. In this join request, a fresh (not previously used on this gateway) EUI-��
address was used to imitate a new device joining the gateway. All theMICs as well as the encryption
of the join request payload (which was extracted from a legitimate join request captured earlier)
were calculated according to the speci�cation (see section �.�.�).

COMMUNICATING WITH THE NETWORK 39

However, the next problem arose immediately: timing. Since timing requirements in this
protocol are so strict (accuracy < �.�ms required), it turned out to be very di�cult to transmit a
(spoofed) packet at the exact time slot in which the gateway accepts join requests. �e receiver
listens to his radio at the exact start of the time slot. He then activates a timer which lasts �.��ms,
a�er which the receiver expects a packet to arrive. �e receiver waits for another �.�ms to start
receiving the synchronisation header. If it does not receive anything it turns o� the radio for the
remainder of the time slot. To solve this accuracy issue, various solutions were attempted.

Up until this point, a virtual machine had been used to run GNURadio and communicate
with the bladeRF. GNURadio was moved to the physical machine instead of inside a VM.�is
appeared to run slightly faster but packets were still not received by the gateway, leading to believe
the timing was still not accurate enough. It was not known whether timing was the only issue
causing the gateway to not receive the join request. However, if timing accuracy was the only issue,
it would mean the bladeRF was not suited for communicating with a WirelessHART network.

Next, an attempt was made to �nd out if there was a delay in the transmission by shi�ing the
time of transmission such that the command to transmit a packet was sent to the SDR before the
actual time slot started. �e transmission was shi�ed in steps of �.�ms. Making steps of �.�ms
until the transmission started ��ms (duration of one slot) before the actual start of the target time
slot, did not give any result. �is means the gateway did not receive the join request.

According to [��], a GNURadio implementation working with a USRP, has a delay of about
�.�ms when transmitting tra�c. It is safe to assume the delay when sending a packet through the
bladeRF is in this same order of magnitude. Taking steps of �.�ms and taking into account the �.�
ms tolerance, we should have come near the correct starting point of a slot at some point. However,
the gateway never accepted the packet, indicating the timing may actually not be the issue.

As a last resort to solve the timing issues, di�erent hardware was used: an AT��RF��� chip in
combination with a Raspberry Pi.

�.�.� Raspberry Pi with AT��RF���

To use an Atmel AT��RF��� chip connected to a Raspberry Pi model B, a driver is needed to
facilitate communication between the two devices. �e Linux-WPAN-Next (a custom Linux
kernel) was used for this purpose. �is kernel includes a driver for the AT��RF��� chip, but was
not developed to support the Raspberry Pi. �e Linux-WPAN-Next kernel is based on a Vanilla
Linux kernel (the mainstream kernel), while the Raspberry Pi requires speci�c modi�cations
to this Vanilla kernel (distributed as the raspberrypi-linux kernel). When running a Vanilla(-
based) kernel on the Raspberry Pi, the speed is decreased signi�cantly because of the lack of these
modi�cations. An attempt was made to get this set-up to work.

First, the Linux-WPAN-Next kernel had to be compiled for the Raspberry Pi. Since compiling
a kernel requires a signi�cant amount of processing power, it was cross-compiled from a server
running Debian �.� using the tools distributed by the Raspberry Pi Foundation [��]. A�er the
kernel is compiled, the result is a zImage �le, which is a gzipped kernel image. Furthermore a
modules folder is created, which contains (amongst others) the kernel driver for the AT��RF���
chip. Finally, a device-tree had to be generated in order for the Raspberry Pi to recognise the
OpenLabs ���.��.� board which holds the AT��RF���. �ese �les have to be transferred to the
Raspberry Pi’s SD card for it to boot this kernel. Booting a vanilla kernel is not possible out of

40 CHAPTER 4

the box. A bootloader has to be used. For this project, a modi�ed version of U-Boot was used
[��] since it provided a Raspberry Pi version which was straightforward to compile and run.
Transferring everything to the SD card, connecting the AT��RF��� to the Raspberry Pi and giving
it power, would boot up the new kernel. As expected, the speed of this kernel is really slow. Writing
any random �le to the SD card will lock up the kernel.

Once booted into the kernel, the sni�er implemented in section �.�.� was installed on the
Raspberry Pi. It turned out the kernel module did not support promiscuous (sni�er) mode for the
AT��RF��� chip. So, the Linux-WPAN-Next kernel had to be modi�ed in order to support this
sni�er mode (also known as monitor mode in the AT��RF��� data sheet [��]). In order to support
the sni�er mode, the driver has to be modi�ed. Two con�guration �ags have to be set: disable the
veri�cation of the CRC checksum and disable the incoming packet �lter. �is packet �lter is a
built-in function of the AT��RF��� chip which will drop packets not destined for its own EUI-��
address and packets that have an invalid checksum, amongst other things. �ese features can be
turned o� by setting speci�c con�guration registers in the AT��RF��� chip. �e exact memory
addresses and possible values of these registers can be found in the AT��RF��� data sheet [��].

�is modi�ed kernel was compiled and installed on the Raspberry Pi. Now that it is possible
to put the AT��RF��� chip in monitor mode, it is also possible to run the sni�er. We can now use
the Raspberry Pi in combination with the AT��RF��� to capture packets traveling back and forth
between the legitimate network devices.

However, a�er about ��� captured packets (this number �uctuates, but was always less than
����) the chip stopped working. Once the chip was restarted (by reloading the kernel module), it
would work again for a couple hundred packets before crashing again. �is took a lot of time to
debug, since I was not familiar with the chip and debugging network drivers in the linux kernel. It
turned out that the interrupt sent from the AT��RF��� to the Raspberry Pi indicating a packet was
ready to be read from the bu�er, sometimes was not received correctly causing the chip to wait for
the Raspberry Pi to read the packet, while the Raspberry Pi was waiting to receive the interrupt. As
a solution, level-triggered interrupts were used instead of edge-triggered. Edge-triggered interrupts
can be visualised as a short pulse given on the interrupt line. �e Raspberry Pi sometimes missed
this pulse causing it to not see the interrupt. When using level-triggered interrupts, the chip would
maintain the interrupt line at a high level until it is serviced causing the interrupt to stop and
normal operations to continue. �is way, the Raspberry Pi does not miss any interrupts and as a
result the chip is now stable.

As soon as the chip was stable, I noticed that the AT��RF��� chip missed packets while sni�ng.
It appeared as if it could not keep up with the speed of the WirelessHART network. In the data
sheet of the AT��RF��� [��] it is stated that this chip can handle the same speed as the maximum
speed of the WirelessHART network (���kbps). However, this did not seem to be the case when
running it with a Raspberry Pi. �e cause is the vanilla kernel, which slows down the Raspberry
Pi tremendously causing it to not read packets fast enough from the AT��RF���’s bu�er, which
causes packets to be missed. �e AT��RF��� cannot receive anything while it is being serviced by
the Raspberry Pi (a packet is being read from the bu�er for example).

Since the AT��RF��� was not working well enough as a sni�er, transmission of the join
request constructed earlier was attempted. �e transmission of the join request works (can be
captured by the bladeRF) and is transmitted correctly without bits getting �ipped, etc. However, the

COMMUNICATING WITH THE NETWORK 41

WirelessHART gateway did not accept the packet transmitted by the Raspberry Pi. �e suspected
cause of this, is the speed of the Raspberry Pi running the vanilla kernel. It is simply not fast
enough to transmit packets in correct time slots: when a packet needs to be transmitted, there is a
signi�cant (more than one slot) delay before it is actually transmitted. �is means this set-up is
not able to transmit packets to the WirelessHART network since such a delay is simply too much.

�e Raspberry Pi setup was used for many other debugging purposes. It was very convenient
to have, since it could intercept packets transmitted via the bladeRF which allowed for a lot of
debugging possibilities. �e WirelessHART gateway had to be con�gured not to send network
advertisements, since otherwise the chip would miss the packets sent from the bladeRF. �is
allowed for debugging the issues with the bladeRF’s transmission.

�.�.� Transmission Accuracy

�e packets transmitted via the bladeRF still did not get accepted by the WirelessHART gateway
and network manager. Using the AT��RF��� chip as a receiver, it was determined that the packets
transmitted via the bladeRF actually had a lot of bits �ipped. Meaning the packets where being
transmitted totally scrambled. Using trail and error it was determined that the sampling rate
of the SDR system was the problem. �e bladeRF is connected via USB to the host computer.
�e USB port is a USB�.� port, which has a maximum data-rate of ��MB/s which turned out to
be not enough for a sampling rate of �MS/s. �MS/s was determined using trail and error to be
the minimum amount of samples per second that need to be sent from the computer in order
to successfully transmit a packet without it getting scrambled. �is problem could have been
expected since the speed of the USB�.� port is known, however it was not known how many
samples per second were required to successfully transmit a packet, this had to be determined by
trail and error.

�e solution to this problemwas to alternate between receiving and transmissionmodes on the
bladeRF, such that a full �MS/s was available when transmitting packets as well as when receiving.
�e problem with this solution is that it is now no longer possible to have full-duplex operation
(receive and transmit at the same time). So this solution was not great, but at least it was now
possible to transmit packets successfully.

Since this solution was not ideal, the computer was exchanged for a laptop with a USB� port.
USB� supports much higher data rates and allows for the transmission plus receiving of samples at
�MS/s (so ��MS/s in total) without any problems. Now it is possible to transmit while also receiving
WirelessHART packets at full speed, and the packets are no longer transmitted scrambled.

�.�.� Transmission Failures

It was now possible to transmit packets with a spoofed source address of a node, but they still don’t
get accepted by the gateway. �e reason for this is that the network chip in the gateway which
takes care of decoding the radio signal and sending bytes to the kernel (the Dust Networks chip),
performs some processing of the packets. It appears this chip processes the Data-Link layer. �is
was found by analysing a valid join handshake with both the SDR and a built-in sni�er, which runs
on the gateway. �e sni�er running on the gateway could only see the Network and higher-up
layers of the protocol and not the Data-Link layer. Since the Data-Link layer contains a CRC and

42 CHAPTER 4

an integrity code (MIC, refer to chapter �.�.�), it makes sense that if these values are invalid that the
packet is dropped at the network chip and never forwarded to the kernel of the gateway. �is made
it very di�cult because it was not possible to see exactly which keys are used for the Data-Link
MIC computations. �e reason for this is that keys are always conveyed to the joining device using
Command ��� for unicast keys and Command ��� for broadcast keys. �ere are two unicast keys
(unicast-network manager and unicast-gateway). �e goal is to �nd the unicast-gateway key to
compute the MIC at the Data-Link layer, so it is expected to be one of the Command ��� payloads.

As a solution, all keys that were extracted from a previously sni�ed handshake were tested
to see which one is used for computing the Data-Link layer MIC in subsequent packets. It was
determined that this unicast key is always the second unicast key (the second Command ���) sent
to the device during the handshake. I did not see any other di�erences in these HART payloads
that could indicate what the purpose of the key being sent to the device is.

A�er implementing this MIC computation using the correct keys, the gateway still did not
receive any packets in its kernel transmitted via the bladeRF. �e decision was made to try to
get a join request packet accepted by the gateway since this packet was encrypted using the join
key. �is key was known, hence it should be trivial to transmit a valid join request in a time slot
allocated for joining.

�.�.� Transmitting a Join Request

�e join request is the initial packet a device would send to the network manager (via the gateway,
see section �.�) in order to join the network. �e network manager will reply to this join request
with a session key, a�er which all subsequent communication is encrypted using this session key.
�e join request packet is a good test since it triggers a log entry in the gateway and therefore
should be easy to debug.

�e payload of a join request contains a single HART command (�x��) followed by some
parameters of the device like the battery level and signal strength. In order to successfully transmit
this join request, the attacker has to �rst sni� three advertisements to synchronise his local ASN
with the network. �is can be done using the sni�er built in the previous chapter. A�er the
attacker’s network clock is synchronised with the network, the actual time slot and channel on
which join requests are accepted by the gateway can be obtained from the advertisements (see
chapter �.�.�). A�er the attacker has this information the join request can be transmitted.

�is transmission was successful, meaning the packet was encrypted correctly, the MIC was
correct, the CRC was correct and all �elds contain legitimate values. However, the packet was still
not accepted by the gateway. �e only reason this could be was timing. �is could be debugged
using the AT��RF��� as a receiver while transmitting packets via the bladeRF. An attempt was
made to �nd the delay in the bladeRF’s transmission by sending ���� packets with a delay between
each packet of �ms. If the delay between the receive time (at the Raspberry Pi) of the packets was
static, that would mean the delay of the bladeRF transmitting packets is also static. �e result of
this test was that the packets were received by the Raspberry Pi at intervals of about �,�-�,�ms. �is
means there is a �,�-�,�ms delay in the transmission of the bladeRF and this delay is pretty much
static. �is meant that the delay between the start of the time slot and the actual transmission was
at most �,�ms, which is accurate enough for the WirelessHART network (<�,�ms is required).
Furthermore, as described in section �.�.� and in [��] the latency should be static and hence it

COMMUNICATING WITH THE NETWORK 43

should have been identi�ed using the procedure in section �.�.�. It was now obvious to conclude
that timing was not an issue with the bladeRF and there had to be some other problem.

Since the gateway does not provide any mechanism to debug the Data-Link layer (in which
the unidenti�ed problem occurs), it is not possible to further debug why the gateway does not
accept network packets transmitted by the transceiver. �erefore the decision was made to abort
this phase of the project and continue studying attacks.

�.� Conclusion

In this chapter a WirelessHART transceiver was developed using a bladeRF. Sni�ng and transmit-
ting valid network packets was achieved. However, there was still a bug in the transmission of
the packets causing the WirelessHART gateway to not accept a join request required to initiate a
handshake to join our transceiver onto the network.

Furthermore, an AT��RF��� chip was used in combination with a Raspberry Pi in order to
test whether transmission using this set-up would work. Unfortunately, it did not work since the
kernel used for the Raspberry Pi was not fast enough to support the AT��RF���’s ���kbps speed
resulting in loss of timing accuracy. �e AT��RF��� chip in combination with the Raspberry
Pi was then used to debug the bladeRF’s transmission. It was determined that the transmission
timing was accurate enough. �e packet structure was exactly according to the WirelessHART
speci�cation but still did not get accepted by the gateway. Furthermore the payload of the packet
was copied from a legitimate packet so it should be correct as well. From this observation we can
conclude there must be some undocumented behaviour in the gateway which causes it to drop the
network packets transmitted by the bladeRF. Since there were not enough debugging capabilities
in the gateway, it was decided to stop trying to get a join sequence to work and focus on the attacks
on the WirelessHART protocol.

44 CHAPTER 4

45

C�������
Attacks on a WirelessHART Network

�is chapter describes attacks on the WirelessHART network. First, a short introduction will be
given with argumentation why these speci�c attacks are presented. �en, attacks without requiring
the join key are presented followed by attacks which are only possible if the attacker does have the
join key.

Attacks requiring physical access to the devices are not considered, so side-channel attacks
and hardware hacking attacks are excluded from the scope of this chapter.

�.� Setting the Scene

As described in chapter �, the security of the WirelessHART protocol depends on the join key. If
an attacker obtains the join key for the network its possible for him to decrypt all tra�c, given
that he can sni� the handshake between the network manager and each device in the network
(the nodes). Its also possible to transmit packets with a spoofed source address, since the key used
for calculating the MICs and performing encryption in each device is also exchanged during the
handshake. Conversely if the attacker does not have the join key, he cannot decrypt the handshake
and therefore cannot obtain the session keys used for encryption and computation of MICs for
communicating with the nodes. Furthermore he cannot join his own node onto the network
without encrypting a packet with the correct join key.

Since it was not possible to transmit tra�c to the WirelessHART gateway (see chapter �.�), the
attacks presented in this chapter are theoretical and not validated on actual WirelessHART hard-
ware (with the exception of a generic jamming attack described in section �.�.�). �eWirelessHART
speci�cation has been studied extensively in order to determine whether the attacks are actually
possible. �is chapter will only cover attacks which are possible according to the WirelessHART
speci�cation.

�ere are many well known attacks on wireless mesh networks. Although these attacks were
originally excluded from the scope of this project, it was decided to include these known attacks
in this chapter and to investigate whether they are applicable to the WirelessHART protocol or
whether the WirelessHART security features thwart them. Please note that this chapter does not
provide an exhaustive overview of all attacks possible. �e attacks described in this chapter are

46 CHAPTER 5

focussed on breaking the availability and integrity of the WirelessHART network, since these are
the most important security requirements of an industrial communication protocol.

�ere are a couple of paperswritten about the security of IEEE ���.��.�networks andWirelessHART
networks. For example the paper by Raza et al. [��] gives an overview of attacks that might be
applicable to WirelessHART networks. However, these attacks are not described in detail. �is
chapter aims to go into detail of the applicable attacks to WirelessHART and explain why they will
work with which restrictions.

�.� Attacks Without the Join Key

�is section describes attacks for which the attacker does not require the join key. If the attacker
does not have the join key, it means he cannot know any of the session keys and can therefore not
decrypt encrypted payloads or calculate integrity codes (MICs). He can however interpret header
�elds, since these are transmitted in the clear.

�.�.� Jamming All Channels

Perhaps the most simple attack on the availability of a WirelessHART (or IEEE ���.��.�) network
is jamming. Jamming is the intentional disruption of a radio signal by introducing another radio
signal with the samemodulation technique on the same frequency as the original radio signal. �is
creates a disturbance in the receiving of the legitimate signal. WirelessHART uses channel hopping
in order to provide resistance against jamming attacks. �e assumption from the WirelessHART
designers is that an attacker can never jam all channels at the same time.

Furthermore, WirelessHART uses channel blacklisting [�] in an attempt to evade jamming
attacks. As soon as another signal is detected on one channel, the channel is blacklisted by all
devices and will be excluded from the available channel list causing that particular channel not to
be used anymore for a certain period of time.

In order to perform a jamming attack, the attacker can use common devices which operate in
the �.�GHz band. For example cheap WiFi adapters (that support promiscuous transmit mode)
can be used to continuously transmit arbitrary WiFi packets. �is type of jamming is called
continuous power emission. However, if he uses non WirelessHART-compliant devices like WiFi
adapters, the signal strength of these devices must greatly exceed the one of the WirelessHART
devices. �is can be hard given the environments WirelessHART may be deployed in (factories,
manufacturing plants, etc.). �e goal is to transmit a strong enough signal on all channels, causing
WirelessHART to blacklist all channels. �is is hard because the signal strength of these network
adapters must greatly exceed the legitimate devices to be able to interfere with the network.

A better way would be to use an AT��RF��� chip (or any other IEEE ���.��.� compliant radio)
which can actually transmit valid IEEE ���.��.� packets at a fast enough rate. �is type of jamming
is called concurrent packet transmission. �e attacker would need to develop a PCB (Printed
circuit board) which contains (or connects to) a large enough antenna and a signal ampli�er
in order to gain enough signal strength to have a signal strength which is comparable to the
legitimate devices’ signal strength. �e WirelessHART speci�cation states that the transmit power
of legitimate devices should be a nominal �� mW, ±� dB (in line with the Equivalent Isotropic

ATTACKS ON A WIRELESSHART NETWORK 47

Radiated Power or EIRP) [�]. An attacker could calculate based on the surroundings and rough
layout of the WirelessHART network what the average signal strength will be from a legitimate
device to the gateway, and then adjust his radio for this value. Using an ampli�er he can get much
higher transmit power to overpower the other devices. �e receiver sensitivity de�ned in the
WirelessHART speci�cation is not relevant here, since the goal is to overpower the other devices
and disrupt the legitimate communications.

A study on the e�ectiveness of these two types of jamming (continuous power emission and
concurrent packet transmission) has been done in [��]. It was found that when the jamming
device transmits ���.��.� compliant packets, a little over ��� of the legitimate packets are still
received. �is number is quite high and is thus this type of jamming is not very e�ective. It is
not documented in the WirelessHART speci�cation exactly when a channel will be blacklisted.
Testing is required to see whether the ��� packet loss is enough to get the network manager to
blacklist a speci�c channel.

Since there are �� channels in use by default, an attacker would require (approximately) ��
devices to cover all channels simultaneously (its possible that some other devices transmit packets
with channel overlap, so less than �� devices may work). However, the AT��RF��� chips cost
around � euro each. Add a little bit of cost to develop and print a PCB and antenna and the total
cost of one unit to jam a single channel would be roughly �� euro. �e total cost of �� units would
be: �� euro ∗ �� units = ��� euro which is relatively cheap considering a so�ware-de�ned radio
which can only handle one channel simultaneously costs upwards of ��� euro. �ese �� devices
must be controlled by a micro-controller, an FPGA or a computer. Using a cheap system on a
chip like an Arduino or a Raspberry Pi would make this attack device �t in a shoebox and make
it highly portable and hard to detect. Furthermore these mini computers are cheap and do not
consume large amounts of power. A much nicer solution would be if the attacker included a
micro-controller on the PCB that holds the AT��RF��� chip with required components. He has to
manufacture these PCB’s anyway. �en, the size of this attack device could be made very small.

It is unknown whether the WirelessHART Network Manager will always keep one channel
available. In the best case, the Network Manager will keep one channel available to communicate
with the legitimate devices, and keep checking the other channels whether the interference has
stopped. However, this is not speci�ed in the WirelessHART speci�cation so it is unclear how this
scenario is handled by the WirelessHART network manager. �erefore it is also unclear whether
this attack would actually disrupt the network. It will however decrease the total throughput of
the network since not all channels are available for transmission and a smaller set of channels has
to be shared by the same amount of devices.

�.�.� Jamming Join Slots

It is possible to further optimise the jamming attack by jamming only the slots allocated for
new devices to join the network. �is will prevent legitimate devices from joining the network.
Note that this attack will only disrupt the network if combined with a de-authentication attack
forcing legitimate devices o� the network. Such an attack does not appear to be possible without
knowledge of the join key, and this jamming attack might therefore be ine�ective. �is attack has

48 CHAPTER 5

not been tested since it was not known whether the transmission of packets via the transceiver
was actually accurate enough.

Since the network advertisements of a WirelessHART network are not encrypted, it is possible
for an attacker to gather information on the exact time slots during which the network manager
(and gateway) expects join requests from legitimate devices. �ese time slots are the links and
slot numbers mentioned in the WirelessHART network advertisement (see chapter �.�). Also the
channel o�set required for the attacker to follow the channel hopping sequence is included in the
advertisement so the attacker has all information required to transmit (invalid) join requests. �e
join requests transmitted by the attacker are invalid since he does not have the join key required for
encrypting the payload and calculating theMIC on the Network Layer. However, a valid Data-Link
layer can be assembled by the attacker since this layer has a MIC calculated using the well-known
key which is public.

�e attacker can transmit invalid join requests (encrypted with a di�erent key) during all time
slots allocated for joining. If the attacker can transmit such awell-formed but erroneously encrypted
packet, the gateway will send back an Acknowledgement packet to the attacker acknowledging the
receipt of the packet. �is behaviour happens because at the Data-Link layer, the packet appears to
be legitimate. �e decryption will then fail at the networkmanager’s Network layer processor, since
the Network layer payload must be encrypted and signed using this network’s join key (which the
attacker doesn’t have). It has not been tested whether the Network Manager will actually transmit
a failure report back to the attacker, but this behaviour is not documented in the WirelessHART
speci�cation so it is unlikely that the Network Manager will transmit any packets as response to
this false join request.

�e attacker could use the Scapy implementation built in chapter �.�. Combining this Scapy im-
plementation with a Raspberry Pi and any IEEE ���.��.� compatible radio (such as the AT��RF���
chip), will result in the attacker being able to transmit (invalid) join requests. He should time these
join requests to start transmission sooner than the legitimate devices, since the gateway will accept
the �rst packet it receives.

Since the WirelessHART protocol makes use of a back-o� timer in case of a collision (brie�y
explained in chapter �.�.�), any legitimate device wanting to join the network will detect a collision
if the attacker’s packet reached the gateway earlier than the legitimate device since the gateway
will only acknowledge the �rst packet it receives in a time slot. If a device detects a collision, it will
wait a variable amount of seconds before re-transmitting the join request in another time slot. But
a�er waiting, the attacker will �ood that slot too, so the legitimate device will wait another variable
amount of seconds. �is creates a loop that will run as long as the attacker is able to transmit
packets in these join slots.

For this attack to work it is required that the attacker can time the transmission of a packet
very precisely. Since the gateway will accept the �rst packet to arrive (intact) within a certain time
slot and forward it to the network manager, the attacker needs to beat the legitimate device by
making sure the gateway will receive his packet �rst. Furthermore the attacker must make sure
that his signal is more powerful than the legitimate device’s signal since otherwise interference may
happen and both packets may be dropped. If both packets are dropped, the attack is considered
successful too since the legitimate device will activate the back-o� timer again and wait for the
next slot to re-transmit its join request. It is not known whether there is a maximum amount

ATTACKS ON A WIRELESSHART NETWORK 49

of retries before the legitimate device gives up. �is does not appear to be documented in the
WirelessHART standard and can therefore be dependent on the implementation.

In this attack, an attacker would require just a single IEEE���.��.� radio. Since this con�gura-
tion uses a very small amount of power, its possible to build a very small battery powered device
that performs this attack.

�.�.� Tra�c Analysis

Sni�ng tra�c in itself is an attack on the con�dentiality security requirement. As stated earlier,
this security requirement is less important than the availability or integrity requirements. However,
this attack can be used to gather information in order to make other attacks on availability or
integrity possible.

Using a sni�er such as the one developed in chapter �.�, it is possible for the attacker to analyse
metadata contained in the packets. Since large parts of the packets are not encrypted (the Data-
Link and Network layer headers to be speci�c), its possible to perform an analysis on which devices
are currently active in the network. �e headers contain source and destination addresses and
routing information. Table �.� provides an overview of which �elds of a packet can be seen by an
attacker that does not have the session key (nor the join key).

Table �.�: Information Leakage without Join Key

Field Name Values
Slot Number �e attacker can obtain synchronisation with the absolute

slot number using the Sequence Number in the Data-Link
layer header.

Network ID �e attacker can get an overview of all WirelessHART net-
works in range. If there are multiple networks running in
an area, its possible to detect this without having any access
to any of the networks.

Src/Dst Addresses �e attacker can obtain a list of MAC addresses of the de-
vices operating on the WirelessHART network. �e MAC
addresses tell the attacker which brand of devices are in use,
and may give the attacker information about the join key
(some brands use a preset key which does not have to be
changed by the Administrator).

Src/Dst Addresses �e attacker can also obtain a list of “nicknames” (similar to
IP addresses in a TCP/IP network). �is does not give the
attacker much information besides the amount of devices
active on the network.

NLPDU Nonce �is �eld provides the attacker with information regard-
ing the nonce used in the AES encryption and signatures
generated at the Network layer.

50 CHAPTER 5

�.�.� Transmitting Fake Advertisements

Transmitting fake advertisements is another attack on the join procedure of the network. An
attacker can transmit “valid” network advertisements since these advertisements do not require
knowledge of the join key. Only the well-known key is required, which is documented in the
WirelessHART speci�cation.

Using tra�c analysis, the attacker can determine the network ID of the legitimate network by
sni�ng legitimate network advertisements. Using this information, he can build spoofed network
advertisements using the Scapy layer described in this thesis. It is not documented how a joining
device decides which advertising device will be used to join the network. �e standard speci�es
that any device which is taking part in the network is able to transmit network advertisements.
Other devices can then join the network via these advertising devices. It’s likely that the joining
device chooses the advertising device which is nearest to itself. �is can be done using the RSSI
(Receiver Signal Strength Indicator), which indicates the signal strength of a received packet.

If an attacker can build a transmitter that can overpower the gateway (which transmits the
legitimate advertisements), it might be possible for joining devices to start transmitting join
requests to the attacker instead of the gateway. �e attacker can not perform the handshake
with the legitimate device since he does not have the join key with which the device expects the
response packet to be encrypted. It is also very likely that the legitimate device will choose another
advertising device to join the network if it does not receive a reply from the attacker. �erefore it
is not likely that this attack will be very e�ective without the attacker having the join key.

�.�.� Bruteforcing the Join Key

�e initial join key for a network is usually con�gured by the vendor. Some vendors may use
schemes to generate this join key, making it prone to brute-force attacks if the attacker knows this
scheme. �e problem for users is that changing the initial join key requires the network to be
booted �rst. Once aWirelessHART network is formed, Command ��� (Write Session) can be used
to change the join key for future handshakes over the air. However, changing the initial join key
requires this command to be sent viawiredHART.�is involves opening the device and connecting
it to a computer using the wired HART protocol. �e problem with this procedure is that when
opening a device, it voids any certi�cations the device has. For example a certi�cation that the
device can operate under high temperatures/pressures or in nuclear environments. �erefore it is
expected that end-users will use the pre-con�gured join key to start the network the �rst time.

Since it is highly likely that vendors of WirelessHART devices use a scheme to generate this
initial join key, a brute-forcer was implemented to brute-force the last � bytes of the join key. If the
vendor uses a scheme where the last eight bytes are unique, this brute-forcer can �nd the join key
used to encrypt a sni�ed join request packet in a few hours on a quad-core computer. It requires
maximum ��� AES decryptions which can be completed in a reasonable amount of time. �e input
to the brute-forcer is a join request (or a join response). It is not necessary to have both the request
and response to guess the join key, since the payload structure of both packets can be recognised
when decrypted successfully.

ATTACKS ON A WIRELESSHART NETWORK 51

�.� Attacks Requiring the Join Key

�is section will describe attacks in the scenario that the attacker has obtained the join key for
the network. �is can be done using non-technical means like social engineering or by guessing
the key (some join keys might be predictable). It is noteworthy that if the attacker only has the
join key it does not mean that he can communicate with all devices. He also needs to capture a
handshake between the target devices and the legitimate network manager. He can decrypt this
handshake using the join key in order to obtain the Network and Data-Link layer session keys.
�e Network layer session keys (used to encrypt the payload) are unique for each device so he
needs to capture handshakes of all devices he wants to target.

If the attacker captures a handshake for a speci�c device and he has the join key to decrypt
it, he can transmit packets in the name of the network manager by setting the Network layer
source address to �xF��� which is the address of the Network Manager and the Data-Link layer
source address to �x���� and encrypting the packets with the keys extracted from the handshake.
�e target devices will accept these packets as if they are from the legitimate network manager
transmitted via the gateway.

�.�.� Mass De-Authentication and Denial of Service

Mass de-authentication is the most important attack found during the study of the WirelessHART
speci�cation. It is a very noisy attack: if the network manager keeps logs, it can be observed by
the Network Administrator very easily. Furthermore this attack will disrupt the operations of
the network, meaning the WirelessHART devices will not transmit any sensor values anymore,
causing a process operator to immediately notice that something is wrong.

Command ��� (Write Network Suspend) can be used by the network manager to temporarily
suspend a WirelessHART network for a speci�ed number of time slots. Suspension means that all
devices that receive this packet will cease all radio communication for the speci�ed amount of
time slots. In the speci�cation it is stated that this command can be used when safety procedures
do not allow radio communication in a certain area for example during mining blast operations.
�e command takes two arguments: the time (ASN) at which suspension should start and the
time (ASN) at which the network should resume communications. Both these numbers are ��bit
unsigned integers meaning the maximum value of the variables is ���. �e devices will then go
to sleep for this many slots, which have a duration of ��ms each. �erefore, the network can be
suspended for at most (��� ∗ ��ms)����� seconds (which equals ���,� years).

�is command is allowed to be transmitted as a broadcast or as unicast, and can therefore be
encrypted with the broadcast-network manager key at the Network layer. Also the MIC can be
generated using this same key. At the Data-Link layer the broadcast-gateway key can be used. �e
attacker can obtain these keys by decrypting any sni�ed handshake using the join key or joining
his own device onto the network, since this key is the same for all devices. �erefore this attack
can be used to force a mass re-authentication allowing the attacker to capture all handshakes.

�e attacker transmits a packet with Network layer source address �xF��� (the network
manager) and Data-Link layer source address �x���� (the gateway). �e payload of the packet
should be the command ���, encrypted using the broadcast-network manager key at the Network
layer and the MIC at the Data-Link layer should be calculated using the broadcast-gateway key.

52 CHAPTER 5

In the WirelessHART speci�cation it is speci�ed that a device which receives a command ���
packet will “clear all its network information” [�]. �is sentence is further explained in another
chapter of the speci�cation which describes the Network layer state machine. It is clear from that
chapter that the target device will delete all session keys and disable its radio until the speci�ed
resume ASN is reached. Once the resume time is reached, it will re-join the network by performing
a handshake with the gateway.

�e value of the resume time depends on the attacker’s goal. If he wants all devices to re-
authenticate so he can capture the handshakes, he might set the resume time to a very low o�set
from the suspend time. If his goal is to disrupt the network, he should set the resume time to a very
high value causing the devices to go to sleep permanently (until the administrator reboots them).
Practically this would mean all sensors have to be power cycled, causing massive disruption in the
plant processes.

�ere is a possibility that there exists a resume command (although it is not documented in
the WirelessHART speci�cation). �e HART Communication Foundation has a patent [��] which
describes how a wireless network can be suspended temporarily. �e patent also describes that the
devices will keep on listening while they are in suspended state such that one device (presumably
the Network Manager) can transmit a resume broadcast command. �is will cause the network
to wake up from its suspended state. However, this resume command is not documented in the
WirelessHART speci�cation. Furthermore, the Network layer state machine clearly states that the
device will turn o� its radio upon receiving the suspend command. �is means there can not be a
resume command, since no device would receive this command as all the radios are turned o�.s

�is attack has a very high potential. �e attacker can force devices to perform a handshake,
knowing only the join key for the target network. Since handshakes are required for almost all
other attacks, this is a very good entry point. Furthermore it is possible to selectively bring down a
certain node if the attacker already has the unicast session keys for that node. He can then transmit
the attack packet directly to the target node instead of sending it as broadcast.

Care must be taken, since the attack will generate a lot of noise. �ere might be log entries
in the Network Manager and a process operator will notice the devices going down for a short
(or long) period of time since his operating interface will not receive any sensor values until the
network has converged again (all devices are joined).

�.�.� Nonce Exhaustion

As described in chapter �, WirelessHART uses AES-��� in CTR mode to encrypt Network layer
payloads. Since this algorithm uses a nonce, it also provides replay protection. �e network
manager keeps a list of all Network layer nonces associated with all devices joined on the network.
If the network manager receives a packet from a device, with a nonce counter lower than the nonce
it has on record it will drop the packet [�].

An attacker can abuse this feature if he has the session key between the network manager and
a target device. He then waits for the device to transmit at least one packet using this key, so the
attacker can extract the nonce from that packet. �e attacker should aim to obtain the nonce used
in combination with the Unicast-network manager key used by the device to communicate with
the network manager at the Network layer.

ATTACKS ON A WIRELESSHART NETWORK 53

�e attacker can then transmit a packet using the Scapy layer described earlier in this thesis
with a spoofed source address of the target device, and destination address of the network manager.
�e nonce (aka. counter) �eld (� byte, see �.�.�) in the Network layer of this attack packet can
be set to the maximum value minus one (which is �xFE). It must be set to the maximumminus
one, because when the nonce counter in the session table of the network manager reaches the
maximum value it will roll-over to �x��. �e problem with the roll-over is that if the network
manager has a nonce counter of �x�� in its session table, any nonce transmitted by the legitimate
device will be accepted since it is larger than the one stored in the session table.

�e payload of this packet does not have to be valid, but the packet has to be encrypted using
the correct session key (unicast-network manager key) otherwise the packet will be dropped. All
other �elds in the Data-Link and Network layer headers need to be set correctly, like the ASN and
sequence numbers.

Upon receipt, the gateway will �rst check the checksum (CRC-��), parse the Data-Link layer
headers and then the network manager will start parsing the Network layer headers. It will extract
the source address (which is the attacker’s target) and the nonce (aka. counter) �eld from the
packet which it uses to reconstruct the full nonce. It will perform a lookup to see whether the
reconstructed nonce is greater than the nonce it has on record in its session table. �is check will
pass since the attacker knows the nonce which the network manager has in its session table and
knows that it is less than the maximum value (namely the maximum value minus one). Next, the
network manager will decrypt the payload using the nonce and unicast-network manager key
associated with the source-address from the packet. Upon decryption, the nonce record will be
updated.

It is unknown whether the nonce record in the session table is incremented before parsing
the payload or whether it is incremented a�er parsing the payload. �is is not speci�ed in the
speci�cation. If it is incremented before parsing the payload, the payload does not need to be valid.
However, since the attacker can build valid payloads using the Scapy layer described in this thesis
and the WirelessHART speci�cation, he might as well construct a valid payload. �is could be for
example a device health report (WirelessHART command ���) or a ping request.

As soon as the nonce counter in the session table of the network manager is updated to its
maximum value minus one, the network manager expects the next packet from this device to have
a nonce counter of �xFF. All packets subsequently transmitted by the legitimate device will have
a nonce counter lower than this value since the legitimate device increases its local counter by
one upon each new packet. �e expected result is that the network manager �ags the legitimate
packets as replays since it cannot successfully reconstruct the nonce (see section �.�.�), and will
drop the packets. It is not documented a�er how many failed retries from the legitimate device
it will initiate another handshake. It is expected that at some point the device will notice that it
cannot reach the network manager anymore and will re-join the network. �is will likely happen
before it reaches the maximum nonce value.

In [��] this attack is also described. �e authors claim that this attack can be used to perform
a permanent disruption of the communication between a single device and the network manager.
However thismight not be true since the devicemight keep on trying to reach the networkmanager,
increasing its nonce upon each transmission. At some point it will reach the maximum value of

54 CHAPTER 5

the nonce counter, causing the packet to be accepted by the network manager (this process will
take millions of packets). �is behaviour is not documented in the WirelessHART speci�cation.

In order for an attacker to make this into a permanent attack, he constantly needs to sni�
the network tra�c monitoring the nonces transmitted by the target device. As soon a the target
device transmits a packet with the maximum nonce value, the attacker must transmit the denial of
service packet again with the nonce counter of the maximum minus one.

Testing of this attack is required to observe how a legitimate device acts when it cannot
communicate with the network manager anymore (because the nonce is out of sync). It might be
possible that the device initiates a join handshake, in which case this attack may be interesting to
perform in combination with other attacks mentioned like transmitting fake advertisements.

�.�.� Time Slot Saturation

If an attacker has obtained the unicast-gateway key for a target device, he can then transmit
network packets to the gateway in each time slot allocated to the target device. It is also possible
to use statistical analysis to determine which time slots are allocated to which device, however
it cannot be determined with absolute certainty whether the time slots observed are all the time
slots allocated to the device. Assuming the attacker can time the transmission of these packets
accurately enough, a denial of service will happen.

When a legitimate device wants to transmit a packet, it will detect energy on the channel
causing it to wait for a speci�c amount of time (the back-o� timer, see section �.�.�). A�er this
timer has expired, it will try to retransmit the packet in the next time slot, however the attacker will
transmit a packet in that time slot too causing the legitimate device to go in back-o�mode again.
�is way it is possible to completely block a speci�c device from the network without the gateway
noticing that the device is unreachable. Testing of this attack is required to validate whether the
legitimate device will attempt to re-join or perhaps try to communicate with the gateway outside
of its allocated time slots.

�.�.� Device Hijacking

As described in section �.�.� it is possible for an attacker to transmit valid network advertisements.
If the attacker has the join key, it is possible for him to perform a handshake with a device that
wants to join his malicious gateway. Up until that point, it is important that transmission of the
packets between the attacker and target do not get interrupted by WirelessHART tra�c of the
legitimate network, since this will greatly slow down the joining process. If it is slowed down
too much or there is too much interference, the target may choose another gateway to join the
network.

Once the handshake has been performedwith a target device, it will not be able to communicate
with the legitimate gateway since the legitimate gateway does not have the corresponding session
key. �is gives the attacker full control over the target, since he has a one-on-one session with
it. He can now issue management commands originating from a malicious Network Manager in
order to change con�guration settings on the target. �is will work because the target accepts
packets with a (Network layer) source address of �xF��� as coming from the Network Manager

ATTACKS ON A WIRELESSHART NETWORK 55

(remember there is only one per network). If these packets are encrypted with the correct session
key the target executes whatever command is in the payload of the packet.

One of the parameters that can be changed over the air is the network ID (usingWirelessHART
command ���). Once the network ID is changed, the devicewill not join the legitimateWirelessHART
network anymore since it is now con�gured for a di�erent network. �is new network ID will be
used upon the next join, so it is important to send a disconnect command to the target (command
���).

�e attacker can now set up a WirelessHART network with this new network ID and start
transmitting advertisements. He can then perform a handshake with the target that tries to join
his network. �e target is now fully joined onto the attacker’s WirelessHART network and will not
join the legitimate network anymore unless the Network Administrator (human) re-con�gures
the device.

�.�.� Time De-Synchronisation

If the attacker has the unicast-gateway and unicast-network manager keys, he can issue command
��� (Write UTC timemapping). �is command has two parameters, the date and time at which the
network’s absolute slot number (ASN) was zero. If the attacker provides an erroneous timestamp,
the device will fail to calculate the correct ASN and superframe slot numbers for the network
causing its slot timing to be de-synchronised with the network. �is command is only accepted by
the target if the sender is the Network Manager, so the Network layer source address needs to be
set to �xF���.

�is attack needs to be tested since it is not clear from the speci�cation what should happen
when a device loses time synchronisation. It is possible that the device tries to re-synchronise
its time with the network manager however this does not seem likely since it can no longer
communicate with the gateway (thus also not reach the network manager) because their slot
timing is di�erent. If this is not the case, it might re-join the network as if it got disconnected.

�.�.� De-Authentication

If the attacker has obtained the unicast-gateway and unicast-network manager keys, he can use
command ��� (Disconnect device) to force a device o� the network. �e Network layer source
address of that packet must be equal to �xF��� and the packet must be encrypted using the unicast-
network manager key between the Network Manager and the target device. �is command will
cause the legitimate device to transmit an acknowledgement to the legitimate network manager
a�er which it will disconnect from the network.

�e documented behaviour is that a device will automatically reconnect to the network. Once
it joins the network again, the attacker can capture the handshake including all session keys again.
He can then simply send another command ��� packet with a spoofed source address of the
network manager in order to disconnect the target again.

�is behaviour was also observed by sending a command ��� packet from a real network man-
ager to a speci�c device using the WirelessHART Development Kit. �e target device announced
it was going to disconnect to the rest of its neighbours a�er which it would disconnect. �e target
would then automatically re-join the network.

56 CHAPTER 5

�.�.� Transmitting False Data from Network Devices

If the attacker has obtained the unicast-gateway and unicast-network manager keys for a target
device, it is trivial to inject network packets whichmay include forged sensor values. �e result may
be that the process operator makes wrong decisions, and for example speed up a motor or open or
close a valve causing physical damage. �is is an attack on the integrity security requirement. It
has the potential to cause physical damage so depending on the attacker’s motive, this might be an
interesting attack.

�.�.� Transmitting False Data to Network Devices

Packet injection is also possible in the opposite direction once the attacker obtained the unicast
session keys. He can transmit packets as if they are coming from the process operator’s workstation
instructing the WirelessHART device to perform an operation like open or close a valve or speed
up a motor. �e downside of this type of packet injection is that the device will report the result of
the command back to the process operator’s console allowing the him to see that something is
wrong (e.g. the valve closed without the operator issuing the command).

�.� Conclusion

In this chapter, several attacks have been described in detail. �e attacks are focussed on the two
most important security requirements in the WirelessHART protocol: availability and integrity.
First, a number of attacks were presented that do not require the attacker to have any knowledge
about the network. Disruption of the network is possible using jamming, however this attack does
not seem to be very e�ective as proven in [��].

More e�ective attacks are possible when the attacker has knowledge of the join key. A mass
de-authentication attack is described, allowing an attacker with knowledge of the join key to shut
down the entire WirelessHART network (including gateway(s)) for either a short period of time
or for a very long period of time. When shutting it down for a short period of time this attack can
be conceptualised as a network reboot, allowing the attacker to capture session keys between all
devices. �ese keys can then be used for other attacks.

Once the attacker has obtained the correct session keys, he has full control over the network.
He can inject packets with false measurements (integrity) and disrupt communication to and from
speci�c devices in various ways (availability).

57

C�������
Conclusions and Future Work

�.� Conclusion

�e main research question this thesis answers is: Which attacks are possible in a WirelessHART
network? In order to �nd the answer and to develop tools for security researchers, two sub-
questions were answered.

�. Which (generic) hardware can be used to communicate with a WirelessHART network?
�is question was covered in section �.� where a method is developed to communicate with a

WirelessHART network. Using a So�ware-De�ned Radio (SDR), it is possible to build any type of
signal modulation scheme in a so�ware program running on a computer, using a single piece of
hardware (in this case the bladeRF). When building such an implementation, it is important to
understand the physical layer of the target protocol. In the case of WirelessHART, this is based on
IEEE ���.��.�, which is an open speci�cation. Hence it was trivial to build the modulation scheme
for this communication protocol as it is well-documented in the IEEE ���.��.� speci�cation. Care
must be taken that the hardware component of the SDR (bladeRF) has a high enough throughput.
For the WirelessHART protocol, ��MS/s was determined to be the minimum amount of samples
per second required to be able to receive and transmit simultaneously (�MS/s for receiving and �
MS/s for transmitting).

An easier solution was to use readily available radios which can receive and transmit tra�c on
a speci�c physical layer. In the case of WirelessHART, any IEEE ���.��.� compliant radio can be
used. An AT��RF��� transceiver was used in combination with a Raspberry Pi in section �.�.�.
If such radios are available in future protocol security assessments, it might be quicker to use
such a radio to perform the security assessment instead of re-building the physical protocol in an
SDR. Care must be taken that these radios must be able to be connected to a computer in order to
dynamically transmit network packets. For some protocols this might not be the case and it might
be more simple to use an SDR instead.

�. How can network packets of a WirelessHART network be interpreted and generated?
Interpreting WirelessHART network packets is described in section �.�.�. �e tool used to

interpret network packets is Scapy. �is tool translates a stream of bytes into readable network

58 CHAPTER 6

packets and vice versa. It is �exible in the sense that it can perform this task for any given network
protocol. Each protocol must be implemented as a protocol speci�cation called a layer. Scapy then
allows the security researcher to interpret packets by taking an input byte stream which it will
output in a readable format (python object) according to the given layer. It also allows the security
researcher to execute attacks by translating a python object back into a properly formatted byte
stream. �is byte stream can then be transmitted over a wireless network via the SDR.

Transmitting tra�c is more di�cult than receiving tra�c. Transmission of network packets is
covered in section �.�. Since WirelessHART has very strict timing requirements, and the available
WirelessHART hardware had almost no debugging capabilities it was very di�cult to transmit
packets onto a WirelessHART network using the SDR. In this project, we did not succeed in
transmitting packets such that they are accepted by the network. Both methods (SDR and the
Raspberry Pi setup) were attempted, both did not succeed. Using both methods it was possible to
transmit packets correctly and at the correct timestamp, but the packets did not get accepted by
the WirelessHART gateway, meaning that there is still an open (unknown) issue. More research
and testing is required to be able to successfully transmit WirelessHART packets using this generic
hardware.

Main question: Which attacks are possible in a WirelessHART network?
In chapter �, eleven attacks are listed. None of these attacks could be tested, since there was

no way to get packets accepted by the gateway (or other network devices). However, the protocol
speci�cation has been studied extensively in order to determine that these attacks are possible.

Four of these attacks do not require the attacker to know the join key of the network, but these
attacks are not really e�cient or are expected to be ine�ective. �ese attacks include a passive attack
(sni�ng network tra�c in order to gain a picture of the network) and two types of jamming attacks.
Furthermore it is possible to transmit malicious network advertisements without knowledge of
the join key, causing the legitimate devices to try to join the attacker’s network instead of the real
network. �is is expected to be ine�ective since without the join key, the attacker cannot perform
a handshake with the joining device and the joining device will simply try to join one of the other
advertising devices which belong to the legitimate network.

Seven attacks are described which do require knowledge of the join key. Due to the use of
per-device session keys, the attacker needs to capture a handshake between each target device and
the network manager, which he can then decrypt using the join key to obtain the session key. �e
problem is that these devices generally do not perform handshakes anymore once they are joined
to the network.

An attack was found which has no other requirements besides knowledge of the join key (and
a working transmission device). It can be used to de-authenticate all legitimate devices by sending
a single attack packet. �ere are two variants: it can be used for denial-of-service or to force all
devices to perform a handshake. It works by having the attacker join his own device onto the
network to obtain the broadcast session key between the network manager and the legitimate
devices. He then uses this broadcast session key to broadcast a Command ��� packet in order to
suspend the network for a speci�ed amount of time. If he picks this time to be very short (must be
greater than ��ms), all devices will re-authenticate with the network causing all devices to perform
handshakes. If the attacker then captures these handshakes, he obtains all the session keys by

CONCLUSIONS AND FUTURE WORK 59

decrypting the handshakes with the join key. With these session keys the other six attacks become
possible like injecting false data (measurements) or performing a selective denial-of-service for
a single device instead of the entire network using Command ��� or one of the other attacks
described in chapter �.

If the attacker has the join key, he can also hijack devices. He can transmit malicious advertise-
ments and then perform a handshake acting like the network manager. �is allows the attacker to
hijack and permanently disrupt service for speci�c devices as he can change the network con�gura-
tion on those devices (network id or other parameters) causing it to not join the legitimate network
anymore. �e only way to �x the hijacked device a�er this attack is for the network administrator
to re-con�gure the device manually which usually involves opening the device.

�.� Future Work

Since it was not possible to build a transmitter capable of getting network packets accepted by
the WirelessHART network, this is a future research possibility. If in the future it is possible to
transmit arbitrary packets, all of the attacks mentioned in chapter � can be tested.

�e AT��RF��� driver can be ported to the rpi-linux kernel, enabling the full speed of the
Raspberry Pi device. �e result of porting the driver to the rpi-linux kernel will be a dramatic speed
increase, allowing transmission in speci�c time slots while also performing encryption/decryption
and calculating MIC’s. �e Scapy implementation of chapter �.�.� can then be used to test the
attacks.

Channel hopping can be implemented using the AT��RF��� chip. �is chip is capable of
switching channels in ��microsecondswhich is fast enough for communicating on aWirelessHART
network. Channel hopping can also be built using the bladeRF. Since the �.� GHz frequency band
is ��.�MHz wide and the bladeRF supports a bandwidth of ��MHz in optimal conditions, two
bladeRF’s are required to capture tra�c on all �� channels simultaneously without the need to
actively hop in the hardware (change the bladeRF frequency). �is is of course assuming that the
computer connected to the bladeRF is fast enough to process this amount of data simultaneously.

Once it is possible to transmit network packets, the attacks described should be tested. �ese
attacks should work if the implementation is done according to the speci�cation. �e impact of
the attacks can be determined by testing the results of performing the attack.

Since the SDR (GNURadio) implementation of the IEEE ���.��.� protocol allows for receiving
and transmitting IEEE ���.��.� compliant network packets, other protocols based on this standard
can be evaluated as well (ZigBee, ISA���.A, �LoWPAN,MiWi, etc.). As long as they do not include
strict timing requirements like WirelessHART, this should be possible.

60 CHAPTER

61

A�������A
GNURadio ���.��.� Transceiver

�e �gure below shows the implementation of the ���.��.� transceiver used in this thesis. Behind
each block is code which performs the actual signal processing.

62 CHAPTER A

Figure A.�: GNURadio Implementation of ���.��.� Transceiver.

BIBLIOGRAPHY 63

Bibliography

[�] Wikipedia, “Information security (CIA Triad),” ����. [Online]. Available: https:
//en.wikipedia.org/wiki/Information_security

[�] “IEEE Standard for Information technology– Local andmetropolitan area networks– Speci�c
requirements– Part ��: Wireless LAN Medium Access Control (MAC)and Physical Layer
(PHY) Speci�cations Amendment �: Enhancements for Higher �roughput,” IEEE Std
���.��n-���� (Amendment to IEEE Std ���.��-���� as amended by IEEE Std ���.��k-����, IEEE
Std ���.��r-����, IEEE Std ���.��y-����, and IEEE Std ���.��w-����), Oct ����.

[�] Nederlands Elektrotechnisch Comité NEN, “Industrial communication networks - Wireless
communication network and communication pro�les - WirelessHART, NEN-EN-IEC �����,”
pp. �–���, ����.

[�] AirbusDS, “Scapy-Radio.” [Online]. Available: http://bitbucket.cassidiancybersecurity.com/
scapy-radio

[�] E. Pietrosemoli, “Setting long distanceWiFi records: proo�ng solutions for rural connectivity,”
�e Journal of Community Informatics, vol. �, no. �, ����.

[�] University Twente, “Security and Privacy in Mobile Systems.” [Online]. Avail-
able: https://osiris.utwente.nl/student/OnderwijsCatalogusSelect.do?selectie=cursus&
collegejaar=����&cursus=���������

[�] Wikipedia, “Digital-to-analog converter.” [Online]. Available: http://en.wikipedia.org/wiki/
Digital-to-analog_converter

[�] Open source project, “GNURadio.” [Online]. Available: http://gnuradio.org/

[�] nuand, “bladeRF.” [Online]. Available: http://nuand.com

[��] Ettus Research, “USRP B���.” [Online]. Available: http://www.ettus.com/product/details/
UB���-KIT

[��] “IEEE Standard for Information technology– Local andmetropolitan area networks– Speci�c
requirements– Part ��.�: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Speci�cations for Low Rate Wireless Personal Area Networks (WPANs),” IEEE Std ���.��.�-
���� (Revision of IEEE Std ���.��.�-����), pp. �–���, Sept ����.

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Information_security
http://bitbucket.cassidiancybersecurity.com/scapy-radio
http://bitbucket.cassidiancybersecurity.com/scapy-radio
https://osiris.utwente.nl/student/OnderwijsCatalogusSelect.do?selectie=cursus&collegejaar=2014&cursus=201100023
https://osiris.utwente.nl/student/OnderwijsCatalogusSelect.do?selectie=cursus&collegejaar=2014&cursus=201100023
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://gnuradio.org/
http://nuand.com
http://www.ettus.com/product/details/UB210-KIT
http://www.ettus.com/product/details/UB210-KIT

64 CHAPTER A

[��] Wikipedia, “Code division multiple access,” ����. [Online]. Available: https://en.wikipedia.
org/wiki/Code_division_multiple_access

[��] C. Langton, “All About Modulation,” ����. [Online]. Available: http://people.seas.harvard.
edu/~jones/cscie���/papers/modulation_�.pdf

[��] Recommendation, ITUTX, “ISO/IEC ����-�: ����,” Information technology–Open systems
interconnection–Basic reference model: �e basic model, ����.

[��] P. Biondi, “Scapy,” ����. [Online]. Available: http://www.secdev.org/projects/scapy

[��] A. Aring, “linux-wpan-next Kernel.” [Online]. Available: https://github.com/linux-wpan/
linux-wpan-next

[��] Atmel Corporation, “Wireless MCU AT��RF��� Datasheet.” [Online]. Available: http:
//www.atmel.com/Images/Atmel-����-MCU_Wireless-AT��RF���_Datasheet.pdf

[��] openlabs, “Raspberry Pi ���.��.� radio.” [Online]. Available: http://openlabs.co/OSHW/
Raspberry-Pi-���.��.�-radio

[��] A. N. Kim, F. Hekland, S. Petersen, and P. Doyle, “When HART goes wireless: Understand-
ing and implementing the WirelessHART standard,” in Emerging Technologies and Factory
Automation, ����. ETFA ����. IEEE, ����, pp. ���–���.

[��] Linear Technology, “SmartMesh WirelessHART.” [Online]. Available: http://www.linear.
com/products/smartmesh_wirelesshart

[��] K. Pister and L. Doherty, “TSMP: Time synchronized mesh protocol,” IASTED Distributed
Sensor Networks, pp. ���–���, ����.

[��] Winter, JeanMichel andMuller, Ivan andPereira, Carlos Eduardo andNetto, JoãoC, “Towards
a WirelessHART Network with Spectrum Sensing,” in Preprints of the ��th World Congress,
International Federation of Automatic Control, vol. ��, no. �, ����, pp. ����–����.

[��] P. Ferrari, A. Flammini, D. Marioli, S. Rinaldi, and E. Sisinni, “On the implementation and
performance assessment of a wirelessHART distributed packet analyzer,” Instrumentation
and Measurement, IEEE Transactions on, vol. ��, no. �, pp. ����–����, ����.

[��] L. Choong and M. Tadjikov, “GNURadio ���.��.� demodulation.” [Online]. Available:
https://github.com/septikus/gnuradio-���.��.�-demodulation.git

[��] L. Choong and M. Tadjikov, “Using USRP and GNURadio to decode ���.��. � packets,” ����.

[��] L. Choong, “Multi-channel IEEE ���.��. � packet capture using so�ware de�ned radio,”UCLA
Networked & Embedded Sensing Lab, vol. �, ����.

[��] “PyCrypto - �e Python Cryptography Toolkit,” ����. [Online]. Available: http:
//www.dlitz.net/so�ware/pycrypto/

https://en.wikipedia.org/wiki/Code_division_multiple_access
https://en.wikipedia.org/wiki/Code_division_multiple_access
http://people.seas.harvard.edu/~jones/cscie129/papers/modulation_1.pdf
http://people.seas.harvard.edu/~jones/cscie129/papers/modulation_1.pdf
http://www.secdev.org/projects/scapy
https://github.com/linux-wpan/linux-wpan-next
https://github.com/linux-wpan/linux-wpan-next
http://www.atmel.com/Images/Atmel-8351-MCU_Wireless-AT86RF233_Datasheet.pdf
http://www.atmel.com/Images/Atmel-8351-MCU_Wireless-AT86RF233_Datasheet.pdf
http://openlabs.co/OSHW/Raspberry-Pi-802.15.4-radio
http://openlabs.co/OSHW/Raspberry-Pi-802.15.4-radio
http://www.linear.com/products/smartmesh_wirelesshart
http://www.linear.com/products/smartmesh_wirelesshart
https://github.com/septikus/gnuradio-802.15.4-demodulation.git
http://www.dlitz.net/software/pycrypto/
http://www.dlitz.net/software/pycrypto/

BIBLIOGRAPHY 65

[��] N. B. Truong, Y.-J. Suh, and C. Yu, “Latency analysis in GNU radio/USRP-based so�ware
radio platforms,” inMilitary Communications Conference, MILCOM ����-���� IEEE. IEEE,
����, pp. ���–���.

[��] Raspberry Pi Foundation, “Raspberry Pi Kernel Compilation Tools.” [Online]. Available:
https://github.com/raspberrypi/tools

[��] Open Source, “U-Boot.” [Online]. Available: https://github.com/swarren/u-boot

[��] S. Raza, A. Slabbert, T. Voigt, and K. Landernas, “Security considerations for the
WirelessHART protocol,” in Emerging Technologies & Factory Automation, ����. ETFA ����.
IEEE, ����, pp. �–�.

[��] A. Chakraborty and P. Banala, “An experimental study of jamming ieee ���.��. � compliant
sensor networks.”

[��] W. Pratt, M. Nixon, E. Rotvold, R. Pramanik, and T. Lennvall, “Suspending transmissions
in a wireless network,” Dec. �� ����, eP Patent App. EP��,���,���,���. [Online]. Available:
https://www.google.com/patents/EP�������A�?cl=en

[��] N. Sastry andD.Wagner, “Security considerations for IEEE ���.��. � networks,” in Proceedings
of the �rd ACM workshop on Wireless security. ACM, ����, pp. ��–��.

https://github.com/raspberrypi/tools
https://github.com/swarren/u-boot
https://www.google.com/patents/EP2677699A1?cl=en

	Abstract
	Preface
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Research Description
	1.1.1 Setting the Scene
	1.1.2 Research Questions

	1.2 Scope & Demarcation
	1.3 Project Stages
	1.4 Thesis Outline

	2 Background Information
	2.1 Wireless Communication
	2.1.1 Digital to Analog Conversion
	2.1.2 Software Defined Radio
	2.1.3 CDMA, FHSS and DSSS
	2.1.4 Offset Quadrature Phase-Shift Keying
	2.1.5 OSI Model

	2.2 Relevant Standards
	2.2.1 IEEE 802.15.4 (2006)
	2.2.2 WirelessHART

	2.3 Tools
	2.3.1 GNURadio
	2.3.2 Scapy
	2.3.3 Linux-WPAN-Next
	2.3.4 AT86RF233

	3 WirelessHART
	3.1 Network Architecture
	3.2 Network Operation
	3.3 Physical and Data-Link Layer
	3.3.1 Time Synchronisation
	3.3.2 Link Channel Calculation

	3.4 Network and Higher Layers
	3.5 Capturing WirelessHART Packets

	4 Communicating with the Network
	4.1 Sniffing Network Traffic
	4.1.1 WirelessHART Packet Structure
	4.1.2 Reverse-engineering how a Legitimate Device Receives Packets
	4.1.3 WirelessHART Security Features
	4.1.4 Building the Sniffer
	4.1.5 Parsing WirelessHART Payloads
	4.1.6 Implementation Problems
	4.1.7 Conclusion

	4.2 Transmitting Traffic
	4.2.1 Interpreting the Handshake
	4.2.2 Preparing to Transmit a Packet
	4.2.3 Raspberry Pi with AT86RF233
	4.2.4 Transmission Accuracy
	4.2.5 Transmission Failures
	4.2.6 Transmitting a Join Request

	4.3 Conclusion

	5 Attacks on a WirelessHART Network
	5.1 Setting the Scene
	5.2 Attacks Without the Join Key
	5.2.1 Jamming All Channels
	5.2.2 Jamming Join Slots
	5.2.3 Traffic Analysis
	5.2.4 Transmitting Fake Advertisements
	5.2.5 Bruteforcing the Join Key

	5.3 Attacks Requiring the Join Key
	5.3.1 Mass De-Authentication and Denial of Service
	5.3.2 Nonce Exhaustion
	5.3.3 Time Slot Saturation
	5.3.4 Device Hijacking
	5.3.5 Time De-Synchronisation
	5.3.6 De-Authentication
	5.3.7 Transmitting False Data from Network Devices
	5.3.8 Transmitting False Data to Network Devices

	5.4 Conclusion

	6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Future Work

	A GNURadio 802.15.4 Transceiver
	Bibliography

