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Abstract

The visibility index of a cell c in a grid terrain T is defined as the percentage of cells that are
visible from c. We consider the problem of computing the visibility index of all cells c in a grid
terrain T of size n× n. To this end we first study the 1-dimensional version of the problem. We
propose an algorithm that efficiently computes the visibility index in O(n log2 n) time for a given 1-
dimensional terrain of size n. The algorithm is able to compute the visibility index of 500,000 cells
within 150 seconds using real-life data sets, while the brute-force approach can only compute it for
5,000 cells within that time frame. Our proposed algorithm can be used to efficiently approximate
the 2-dimensional version of the problem and we present our ideas on how to do that.
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Chapter 1

Introduction

Determining the importance of points on a terrain is relevant for many applications. Examples
are telecommunications, archaeological sites, water and fire guards towers and even in military
logistics and building sites. Importance can be measured in various ways, but visibility usually
plays a role. Prominence, as suggested by Arge et al. [1], is also a measure for importance. E.g.
many archaeological sites have a good view of the surrounding area. So points with a high vis-
ibility are potentially interesting for archaeological research. Points that cannot be seen by many
other points can also be interesting, especially for military purposes. We define the visibility index
of a point p as the percentage of the terrain visible from p. The goal of our project is to compute
the visibility index of all points on the terrain.

A terrain can have different representations. The most commonly used representations are
triangular irregular networks (TIN’s) and digital elevation models (DEM). A TIN is mainly used to
represent a terrain more realistically and is based on triangles. The triangles form the continuous
surface of a terrain. The points that form the triangles can be placed arbitrarily. For non-triangle
points the elevation is interpolated based on the triangle points of the intersecting triangle. A
DEM, or grid terrain, represents a terrain as a regular grid of squares cells on the xy-plane in
which each cell is assigned an elevation. The interpretation of a DEM has two approaches. The
first approach is that all points within a cell have the same elevation. This means that the DEM
forms a stepped surface. The downside of this is that neighboring cells cannot see each other, due
to the edges of the steps. The second approach is to interpret the elevation as the z-coordinate of
the center of the cell. Connecting the centers of neighboring cells to form the surface of the terrain.
For non-grid points the elevation is interpolated based on the neighboring points. This approach
is more realistic then the stepped approach and easier to reason about than a TIN. DEM’s are
commonly used in GIS applications, while TIN’s are commonly used in visualization. The terrain
model used throughout this document is a DEM.

Using a DEM as terrain model we can more precisely state the problem we will be studying.
The terrain is represented as a grid of n2 cells (n× n) and for each cell the elevation is known. The
visibility index of a cell is now defined as the percentage of other cells that are visible from that cell.
Our goal is to compute the visibility index for all cells in the terrain. Determining the visibility
index for each cell naively would take O(n5). We will try to come up with a way to compute or
approximate the visibility indices of all points more efficiently.

We start by presenting possible solutions found in the literature in Chapter 2. As we will see,
those solutions do not solve our problem or do not solve it efficiently. Therefore we propose a
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CHAPTER 1. INTRODUCTION

new algorithm. First we discuss the 1-dimensional version in Chapter 3 and then we present our
ideas for the 2-dimensional version in Chapter 4. To verify the practical use of our algorithms
we have conducted various experiments. The experimental setup can be found in Chapter 5 and
their results are presented and discussed in Chapter 6. Chapter 7 presents our conclusions and
Chapter 8 presents some open questions and possible future research.

2 Visibility Index Computations



Chapter 2

Literature and Related Work

There are several different problems that can be studied, when it comes to visibility computations
on grid terrains. The most studied problem is to compute the viewshed of a single cell. These type
of algorithms are discussed in Section 2.1. The data used in GIS applications can be very large
and cannot be stored in main memory. Therefore I/O-efficient and parallel distributed algorithms
increase the performance drastically. Some adaptations of the single-cell viewshed algorithms can
be found in Section 2.2. Algorithms that address the observer placement problem and contain in-
teresting approaches or optimizations are addressed in Section 2.3. The one algorithm that is most
closely related to the problem we are interested in, namely total visibility index computations, can
be found in Section 2.4.

Different types of problems

We can distinguish several types of computations on terrains.

• Computing information about a single cell in the terrain, like the viewshed of a single cell.

• Computing information about all cells in the terrain, like the total-viewshed.

• Optimization problems on terrain, like finding a minimum-sized set of observers to see the
complete terrain.

In our study the main focus is visibility. The viewshed of a cell is the part of the terrain that is
visible from that cell. The viewshed of a single cell can be the complete terrain and therefore it is
possible that the output contains n2 cells. The total-viewshed of a terrain consists of the viewshed
of all cells in the terrain. The result can contain the complete terrain for each cell, which results in
an output size of Ω(n4) cells. Computing the total-viewshed is in many cases too much, often you
don’t need the actual viewshed of each cell. You only need a derived property of the viewshed,
for example the size. The visibility index is such a derived property. The visibility index of a cell is
the percentage of the terrain that is visible from that cell. The output would only have size Ω(n2).
The visibility index can be used to determine interesting points in the terrain. For those points the
viewshed can be computed in a later stage.

Partial terrain computations consist of many different problems. Most of them have to do with
optimization. Select a minimum/maximum number of cells to fulfill a certain property, for ex-
ample to cover 95% of the terrain with the minimum number of observers. Selected cells used to
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observe a terrain are called observers. This specific problem is called the observer placement problem
and is a well known problem in GIS applications. Placement of observers is relevant for many
communication and observation problems. For instance, to find good locations for telecommunic-
ation antennas, fire guard towers and water towers.

An overview of many visibility problems is given by De Floriani and Magillo [6], who describe
some basic notions concerning terrain models and visibility. They also define visibility structures
and visibility queries. The central part of the paper contains a survey of algorithms proposed
in the literature to compute visibility structures and to solve visibility queries. There are many
different possible definitions for visibility and each one has its own benefits and its own draw-
backs. Different data representations address different problems and require different approaches
to handle them. The different approaches, definitions and comparison are useful as a starting
point for visibility problems. This papers guides you through the different approaches.

Terrain models tend to be huge in size and therefore parallel visibility algorithms give interest-
ing results. According to De Floriani and Magillo [6] the most promising approaches are based on
domain partitioning, which can be implemented in a distributed environment. Reducing the size
of DEM’s can also be achieved by using multi-resolution terrain models. In many cases too many
details in far areas result in redundant information. Multi-resolution terrain models can reduce
the amount of redundancy in far areas without reducing the accuracy of the surface in the neigh-
borhood of the viewpoint. Another problem is that visibility structures are extremely sensitive to
data error, as well as conventions used both in DEM construction and in implementation. For this
reason, a probabilistic approach to visibility is perhaps more suitable than the traditional, exact,
classification of visibility. Below we discuss the papers most closely related to our work.

2.1 Single Viewshed Computations

An algorithm to compute a single viewshed was proposed by Van Kreveld [20]. He shows that a
single viewshed can be computed in O(n2 log n) time on a grid of elevation data. This means that
computing the total-viewshed can be done in O(n4 log n). The algorithms is simple to implement
and requires only little extra storage. This paper demonstrates the use of one of the most important
geometric algorithmic design methods, namely, that of plane sweep. Many of the future papers
on visibility computations refer to this paper.

The sweep algorithm computes the viewshed of a single point v by performing a radial sweep
centered at v. The sweep line is a half-line that rotates around v and makes a full turn. There are
three types of events. The first type occurs when the sweep line enters a cell, the second occurs
when the sweep line goes through the center of a cell and the third type occurs when the sweep
line leaves a cell. The status structure consists of a balanced binary search tree of cells intersecting
the sweep half-line. The leaves represent the cells and store the gradient of the line from v to that
cell. The internal nodes store the maximum of the gradients in their sub-tree.

There are several papers, e.g. Fishman et al. [9] and Ferreira et al. [8], which improve the
performance of this algorithm. They use interesting techniques, but they are not so relevant for
our problem.
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2.2. I/O EFFICIENCY AND PARALLEL DISTRIBUTED SINGLE VIEWSHED COMPUTATIONS

2.2 I/O Efficiency and Parallel Distributed Single Viewshed
Computations

I/O-efficient algorithms are important for huge data sets, which are common in the area of GIS
applications. Especially for single cell viewshed computations the I/O’s can be the bottleneck.
Haverkort et al. [12] describes an I/O-efficient algorithm for computing the viewshed of a point
on a grid terrain, which was latter improved by Fishman et al. [9]. Both algorithms are based on
the algorithm of Van Kreveld [20]. Ferreira et al. [8] propose an I/O-efficient algorithm, built from
scratch, that is faster than Haverkort et al. [12] and Fishman et al. [9]. The main idea of a radial
sweep is also present in this algorithm.

A different approach for improving the performance is proposed by Ferreira et al. [7]. They
propose a parallel algorithm based on the algorithm of Van Kreveld [20]. Kidner et al. [14] show
that parallel applications can be very useful for GIS applications, due to the symmetrical nature of
the computations. To achieve this, challenges have to be solved. For example the division of the
work, also called load balancing, is difficult and introduces additional communication costs.

I/O-efficient single-viewshed algorithms can be used to compute the total-viewshed. An I/O-
efficient algorithm is very useful in GIS applications, but the efficiency of the algorithm itself is
also important. The total-viewshed problem is already hard enough to do efficiently within main
memory. I/O-efficient algorithms are interesting and can play an important role, but are left for
future research.

2.3 Observer Placement Problem

Lee [15] compares different algorithms and proposes some heuristics for visibility computations.
Most of the heuristics can be used for the observer-placement problem. Lee also incorporates
practical information, like costs, to determine where to situate observers. The different definitions
of visibility and observer placement and their practical relevance are also addressed.

Speed-Accuracy Trade-offs

Franklin and Ray [10] propose various speed-accuracy trade-offs for viewshed algorithms. The
main goal of Franklin and Ray is to place observers in an efficient and accurate manner. The dif-
ferent trade-offs are discussed by comparing different approaches. The fastest approach, which
is an approximation, uses a ring that starts at the cell for which the viewshed is computed and
expands each iteration. The visibility of the cells on the ring is computed by using the cells of
the previous ring. The visibility line from the starting cell to a cell on the ring uses only two cells
of the previous ring, so each processed cell uses only information of two other cells. Hence the
complexity is O(n2), which would result in O(n4) if we would compute the total viewshed. The
most accurate approach, on the other hand, computes the visibility for each cell within the ring
with radius r in O(r3) time. For the total-viewshed the ring would have a radius of n, which result
in O(n5). The authors improved the running time by computing the visibility only for the cells on
the perimeter and use the line of sight for the cells within the ring. This reduces the running time
to O(r2). This speed-up reduces accuracy, but it remains pretty accurate compared to the previous
algorithm that runs in O(r3). This speed-up would result in O(n4) for total-viewshed computa-
tions. Approximating the visibility computations to gain a speed-up was the next algorithm the
authors propose. The approximation uses more points close to the viewpoint and less points far
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away. It uses only a small number (16) of rays from the viewpoint to the perimeter. The distance
to the perimeter doubles every 16 cells. This means that only log n cells are used to approximate
a line of sight of n cells. The experiments of the paper show that the approximation has a good
quality and that for the observer placement problem 32 rays per cell are almost as good as 128 rays
per cell.

The algorithms can be used as basis for an approximation of the viewshed. This is done in the
paper of Izrealevltz [13], who reuses the line of sight computations for points further away. The
results and techniques are applicable and useful for fast and accurate viewshed approximations.

These papers seems quite relevant, however they are not. The papers are written towards
an algorithm to select the best points for observers. This can also be noted by the title and the
introduction of the paper. The experiments and their findings about the terrain properties are
interesting. These findings can possibly be used to improve viewshed approximations (as done in
Izrealevltz [13]).

Goodchild and Lee [11] proposes an algorithm to maximize the viewshed for a fixed number
of observers or to find the minimum number of observers to make an area visible. They propose
several different definitions and encounter challenges for visibility and coverage problems.

2.4 Total-Viewshed Computations

Tabik et al. [18], which is an improved version of Tabik et al. [19], propose an algorithm that
computes the total viewshed of a terrain. The algorithm has a running time of O(sn2 log n), where
s denotes the number of sectors. A sector is a slice of the terrain in one single direction. The number
of sectors is typically 360, which means that sectors are 1◦. The cells along the line of a sector
together from a 1-dimensional representation of elevations. An example is given in Figure 2.1.

The main idea of the algorithm is that the sectors and viewsheds are similar for neighboring
points and therefore can be reused to a great extent. The techniques they use to accomplish this
are 1) reliable sampling points to represent the sub-areas of study (sectors), 2) using a compact
and stable data structure and 3) increasing the re-use of the data structures and computations of
neighboring points by adopting them from the previous step to the current step.

The algorithm works in two main phases. First it finds the end limits of the visibility region
within a sector, where an end limit denotes a point at which the visibility ends, for example a peak.
The next phase computes the start limits, a start limit represents the first point of a visible region.
Within a sector different visible regions can be found and they alternate with non-visible regions.
The intermediate results are stored in complex data structures. Also see Figure 2.1.

The results cannot be compared to other total-viewshed algorithms, as there are no other al-
gorithms. Instead they compare it to single-viewshed computations (r.viewshed under GRASS
and Viewshed under ArcMap). The performance can be compared by normalizing the time
needed for a single cell and taking the average of multiple runs of the single cell viewshed al-
gorithms. The results are compared by taking 30 sample cells and compare their viewsheds. The
experiments are run on a Intel(R) Core(TM)2 Duo Processor E8500 on a terrain of 2, 000× 2, 000
cells. The run time of the total-viewshed algorithms is 0.0032 seconds for a single cell compared
to 18 seconds of r.viewshed and 10 seconds of Viewshed. The different algorithms provide similar
values for about 69% of the total number of cells with a relative difference between [−20%,+20%],
which they consider more than acceptable due to the numerically instability of the viewshed prob-
lem. They state that differences in the order of 25% are acceptable for this kind of problem.

This paper is the first paper to address total-viewshed computations. The results look prom-
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ising and practical, the only downside is that the algorithm itself is quite complex. The different
parts, phases and the corresponding pseudo code are clearly explained, but they do not explain
how it actually computes the total-viewshed.

1 2 3 n− 1ni

pi

h = 0

startend

start

end

end start

end

end start

1D representation

Sector viewed from above

startend
end start end start end start end

pi

Figure 2.1: Illustrates a 1D representation of a sector, where the gray lines represent the visibility
regions for pi with start and end the respective start and end limits.
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Chapter 3

The 1-Dimensional Problem

In this chapter we study the 1-dimensional version of the problem. Thus we are given an array
T[1..n] and we want to compute the visibility index of each grid cell T[i]. Our algorithm is based on
the divide-and-conquer paradigm. A more detailed description can be found in Section 3.1. The
pseudo code can be found in Algorithm 1. Section 3.2 describes the degenerate cases of DVis-
ibilityIndex and provide solutions for handling them. The analysis of the running time can be
found in Section 3.3.

A small summary of the algorithm is as follows. In each recursive step the algorithm splits the
input in two halves and recurses on those two halves. This means that in a recursive step for both
halves the visibility index is known. Updating the visibility index, is done by computing for each
cell the number of cells that are visible in the other half and adding them to the intermediate result.
Computing the number of visible cells in the other half is done by determining the so-called critical
rays, which are the lines below cells of the other half are not visible, and representing these rays
in the dual plane. All dual elements from the left half are colored red, while those from the right
half are colored blue. Then the actual number of visible cells in the other half is determined by
counting the Red-Blue intersections in the dual plane. To efficiently update the critical rays, convex
hulls are used.

3.1 Detailed Description

In this section a detailed description and analysis of the algorithm is presented. Before we start
with the actual description (Section 3.1.2), notations and definitions that are used throughout the
algorithm and the proofs, are presented in Section 3.1.1. The algorithm to compute the Red-Blue
intersections is used as a subroutine in DVisibilityIndex and therefore its detailed description
can be found in Section 3.1.3.

3.1.1 Definitions

The input to our algorithm is an 1-dimensional grid terrain, stored in an array T[1...n], where
T[i] = hi denotes that (the center of) grid cell T[i] has an elevation of hi (z-coordinate) and the
x-coordinate of the center of T[i] is equal to i. Now define pi := (i, hi) as the point on the terrain
corresponding to (the center of) cell T[i]; see Figure 3.1 for an example. The visibility index of a cell
is the number of other cells in the terrain that are visible from that cell. This requires a notion of
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CHAPTER 3. THE 1-DIMENSIONAL PROBLEM

visibility. Intuitively we say that points are visible from each other if they can see each other. A
more formal notion is given in Definition 1.

Definition 1. A point pj is visible from pi (pi sees pj) if all points pk with i < k < j lie strictly below
the segment pi pj. A point pj is also visible from pi, if i = j; in other words a point is visible from itself.

The line segment pi pj is part of the line through pi and pj. This line is called the visibility line
of pi pj. We can also extend the line segment pi pj only on one side to create a visibility ray. The
visibility ray of pi starts in pi and goes through pj. The visibility ray of pi can be used to determine
if a point beyond pj is visible from pi with respect to pj.

Definition 2. The visibility ray from pi to pj, denoted by ρ(pi, pj), is a ray that starts at pi and passes
through pj.

The angle of the visibility ray ρ(pi, pj) is the smaller angle between the visibility ray of pi and
the ray starting at pi and pointing vertically up (ρvert(pi)), also see Figure 3.1. We also need the
concept of critical ray, as defined next, to efficiently determine visibility between sets. For two
indices l and r with l ≤ r, define P(l, r) := {pk : l ≤ k ≤ r}.

Definition 3. Let l ≤ i ≤ r. The left critical ray ρleft(pi, P(l, r)) of pi with respect to P(l, r), is the
visibility ray with the smallest angle that is, the steepest ray from pi to some ps with l ≤ s < i. If i = l
then ρleft(pi, P(l, r)) is defined as the ray pointing vertically down. The right critical ray ρright(pi, P(l, r))
of pi is the visibility ray with the smallest angle from pi to some pt with i < t ≤ r and pointing vertically
down for i = r.

The critical ray can be used to determine visibility between two points, as the following lemma
shows.

Lemma 1. Two points pi ∈ P(l, k) and pj ∈ P(k + 1, r) are visible from each other if and only if pi is
above ρleft(pj, P(k + 1, r)) and pj is above ρright(pi, P(l, k)).

Proof. Let ρright := ρright(pi, P(l, k)) be the right critical ray of pi and let ρleft :=
ρleft(pj, P(k + 1, r)) be the left critical ray of pj. Consider the line segment pi pj. Assume that pi is
above ρleft and that pj is above ρright. Then all points pi, pi+1, ..., pk are below the line segment, be-
cause ρright has the smallest angle. Symmetrically, all points pk+1, ..., pj are below the line segment,
due to ρleft. Hence pi and pj are visible from each other.

Now assume that pi and pj are visible from each other. That means that all points ps (i < s < j)
are below the line segment pi pj. All points that can possibly determine ρright and ρleft are therefore
also below the line segment. Hence pi is above ρleft and pj is above ρright. �

3.1.2 Algorithm DVisibilityIndex

As already mentioned DVisibilityIndex is based on the divide-and-conquer paradigm. In each
recursive step it computes the visibility index and the critical rays of each cell. A detailed de-
scription, accompanied by proofs, is presented below in a step-by-step fashion. The pseudo code
can be found in Algorithm 1. In the description references to the pseudo code’s line numbers are
presented between brackets, for example (ln:1-5) indicates lines 1 to 5.
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1 2 3 n− 1 ni

pi

hi

ρleft(pi, P(l, k))

ρright(pi, P(k + 1, r))

h = 0

current recursion interval

ρvert(pi)

l rk

Figure 3.1: Illustration of an 1-dimensional grid terrain and some important notions and defini-
tions.

Algorithm 1 DVisibilityIndex (T, l, r, VisIndex, CriticalRays)

Input: array T of n cells with elevations and two indices l and r.
Input: VisIndex[1..n], where VisIndex[i] denotes the visibility index of cell i before the call.
Input: CriticalRays[1..n], where CriticalRays[i].left and CriticalRays[i].right denotes ρleft and ρright

of cell i before the call, respectively.
Output: VisIndex[i] = # visible cells in P(l, r) for cell i for l ≤ i ≤ r.
Output: CriticalRays[i].left= ρleft(pi, P(l, k)) for k + 1 ≤ i ≤ r
Output: CriticalRays[i].right= ρright(pi, P(k + 1, r)) for l ≤ i ≤ k.

1: if l = r then
2: Set VisIndex[l] := 1 and set CriticalRays[l].left and CriticalRays[l].right to be rays pointing

downward. return
3: end if
4: k← b r−l

2 c+ l
5: DVisibilityIndex (T, l, k, VisIndex, CriticalRays)
6: DVisibilityIndex (T, k + 1, r, VisIndex, CriticalRays)
7: R ← {δright(pi, P(l, k)) : l ≤ i ≤ k}, B ← {δleft(pi, P(k + 1, r)) : k + 1 ≤ i ≤ r}
8: Count (for each half-line) the intersections betweenR and B and update VisIndex using Red-

BlueIntersectionCount (R,B, VisIndex).
9: Compute the upper convex hull for P(l, k),Hleft, and for P(k + 1, r),Hright.

10: For each cell in P(l, k) update ρright to the tangent of Hright, if the tangent has a smaller angle
than the current ρright. Symmetrically for the each cell in P(k + 1, r) update ρleft usingHleft.

Base Case

The base case (ln:1-3) is when the input contains a single cell. The visibility index is 1 and both the
critical rays point vertically down.

Visibility Index Computations 11
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Recursive Step

The recursive step (ln:4-10) consists of several steps. The first step recurses on the two halves of
the input (ln:5-6). This means that for both the halves the visibility index and the critical rays are
computed and therefore we only need to compute for each cell how many cells in the other half
are visible. At the end of the recursive step we also need to update the critical rays to cover the
entire input instead of only one half.

Visibility Index Computation

Computing the visibility index (ln:7-8) for each cell can be done by using duality. In the following
we denote by o∗ the dual of an object o. In particular the dual of the point p : (px, py) is the line
p∗ : y = pxx− py and the dual of the line l : y = ax + b is the point l∗ : (a,−b).

In the dual plane we can easily represent all visibility rays for a point pi with respect to P(l, r).
All possible visibility lines of pi go through pi and therefore all dual points, that represent the
visibility lines, lie on the dual line p∗i . The relevant visibility lines are bounded by the critical rays
of pi. Any visibility line with an angle greater than the critical ray is not relevant, because the
point that determines the critical ray is above that visibility line. Therefore we can define the dual
half-line as part of the dual line that contains all relevant dual points of the visibility rays. The dual
half-line forms a half line, because it is only bounded by the critical ray. The visibility rays are also
bounded by the line vertical up through pi, because you only look to the right (or to the left). The
dual point of the vertical line is located at infinity. So the dual half-line is a half line that starts in
the dual point of the critical ray and extends to infinity. An example is given in Figure 3.2. Given
two dual rays, we can compute if the two points are visible from each other.

Definition 4. Let δleft(pi, P(l, r)) denote the dual half-line of the critical ray ρleft(pi, P(l, r)). Symmet-
rically, let δright(pi, P(l, r)) denote the dual half-line of the critical ray ρright(pi, P(l, r)).

Lemma 2. Given two points pi ∈ P(l, k) and pj ∈ P(k + 1, r) and the critical rays
ρright(pi, P(l, k)) and ρleft(pj, P(k + 1, r)). Then pi and pj are visible form each other if and only if there is
an intersection between their dual half-lines δright(pi, P(l, k)) and δleft(pj, P(k + 1, r)).

Proof. Suppose pi and pj are visible from each other. Hence both points are above the critical ray
of the other (Lemma 1). The visibility line through both points has a smaller angle than that of
the critical rays, otherwise one of the points was below the critical ray of the other. This visibility
line is represented by a point in the dual plane and it lies both on the line p∗i and p∗j . This point
is the intersection between the two dual lines. As said before, the angle of the visibility line is
smaller than both critical rays and therefore it is present in both dual half-lines. Hence there is an
intersection between the two dual half-lines.

Let δleft := δleft(pj, P(k + 1, r)) be the dual half-line of pj and ρleft(pj, P(k + 1, r)) and let
δright := δright(pi, P(l, k)) be the dual half-line of pi and ρright(pi, P(l, k)), and suppose there is
an intersection, the dual point q∗, between the two dual rays δright and δleft. The dual point q∗ cor-
responds to a visibility line q that goes through both pi and pj (intersection dual rays). The angle
of q smaller than that of both critical rays. Therefore all points in between pi and pj are below q.
Hence pi and pj are visible form each other. �

Lemma 1 (visibility with respect to critical rays) explicitly states that if a point pj lies on the
critical ray of pi it is not visible from pi (and vice versa). This means that the starting point of the
dual half-line is not considered part of the dual half-line.
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Figure 3.2: An example with the elements in the primal and dual plane. The dual half-lines δleft
(blue) and δright (red) corresponds to the half-wedges corresponding to ρleft (blue) and
ρright (red), respectively, in the primal plane.

Counting all visible points in the right half (P(k + 1, r)) of the recursive step for a given point
pi in the left half (P(l, k)), can be done by counting the intersections between δright(pi, P(l, k)) and
the dual half-lines δleft(pj, P(k + 1, r)) of all pj in the right half. For each half we create a set with
all the dual half-lines of the points in that set; the right-oriented dual half-lines of the left half
in the red set R and the left-oriented dual half-lines of the right half in the blue set B. Finding
all intersections between R and B is called the Red-Blue intersection problem. This problem has
however an assumption, namely that the segments (in our case dual half-lines) within a set do not
intersect.

Lemma 3. Let pi and pj be two points in P(l, k). Then the dual half-lines δright(pi, P(l, k)) and
δright(pj, P(l, k)) do not intersect. Similarly, δleft(pi, P(l, k)) and δleft(pj, P(l, k)) do not intersect.

Proof. Suppose δright(pi, P(l, k)) and δright(pj, P(l, k)) do intersect, which means that there is a vis-
ibility line between the pi and pj (in the primal plane). It also means that both ρright(pi, P(l, k))
and ρright(pj, P(l, k)) have an angle that is greater than or equal to that of the visibility line. An
angle greater than the visibility line is not possible, due to the definition of the critical ray (Defini-
tion 3). Hence the angle must be equal to that of the critical ray and therefore the visibility line is
the critical ray. This means that the intersection is at the starting point of the dual half-line. The
starting point of a dual half-line is not considered part of the dual half-line and therefore l and k
do not intersect. �

Red-Blue intersections can be counted efficiently with the algorithm of Palazzi & Snoeyink [17].
That algorithm computes the total number of intersections and that is not what is needed for
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DVisibilityIndex . We need the number of intersections per ray, so we need to adopt it to our
needs. The main idea and steps of the algorithm are maintained and therefore their proofs remain
relevant. The modifications to the algorithm are explained in more detail in Section 3.1.3.

Critical Rays Update

Updating the critical rays (ln:9-10) is the next step in the recursive step. The critical ray of the
complete input (from l to r), is the critical ray with the smallest angle of the critical ray of the right
half (k + 1 to r) and the critical ray of the left half (l to k). For one of the halves the critical ray is
already known (from the recursion) and for the other half we need to compute it. This can be done
efficiently by finding the tangent of the upper hull of the convex hull of that half. The lower hull
is is not needed in DVisibilityIndex and therefore we restrict ourselves to the upper hull.

Lemma 4. The tangent at the upper hull of the right half (P(k + 1, r)) is the critical ray ρright(pi, P(k +
1, r)) of pi in the left half (P(l, k)). Symmetrically, the tangent at the upper hull of P(l, k) is the critical ray
ρleft(pi, P(l, k)) of pi in the right half (P(k + 1, r)).

Proof. Suppose a point pl , that is not on the upper hull, would determine the critical ray of pi, then
pl is outside the upper hull. If pl is inside the upper hull, the visibility line from pi to pl is below
a point on the upper hull. So, pl is outside the upper hull and therefore the convex hull is not a
valid convex hull. Hence only points on the upper hull can be candidates for the critical ray.

Let pl be the point on the upper hull, such that the tangent goes through pl . Then the visib-
ility line of pi to the other points on the upper hull are below the tangent (property tangent) and
therefore the tangent is the only visibility line that is not below any other point of the upper hull.
Hence the tangent is ρright(pi, P(k + 1, r)). �

Correctness of DVisibilityIndex

Correctness of DVisibilityIndex follows from the following lemma.

Lemma 5. DVisibilityIndex correctly computes the visibility index and the critical rays for a 1-
dimensional grid terrain T[1..n].

Proof. Correctness of DVisibilityIndex is proven by induction.
The base case is when r = l, so we have only one cell c. DVisibilityIndex correctly computes

the visibility index and the critical rays, by definition.
The induction step is for l < r. We first compute VisIndex[l..k], VisIndex[k + 1..r],

CriticalRays[l..k] and CriticalRays[k + 1..r]. We call the first half (l to k) the left half and the second
half (k+ 1 to r) the right half. By the induction hypothesis we know that within the halves VisIndex
and CiriticalRays are computed correctly. What remains to compute is for each cell in the left part
the number of cells that are visible in the right part and vice versa. For each cell i in the left part
we compute the dual half-line δright(pi, P(l, k)) that represents the right oriented visibility rays of
that cell and add it toR. Symmetrically we do the same for the cells j in the right half and add the
corresponding dual half-lines δleft(pj, P(k + 1, r)) to B. Due to Lemma 2, the number of intersec-
tions found between the dual half-lines in B and a dual half-line in R, correspond to the number
of visible cells of the right part for a certain cell in the left part. Symmetrically the number of in-
tersections with dual half-lines in R for a certain dual half-line in B, correspond to the number of
visible cells in the left part for a cell in the right part. Hence we have computed the total number of
visible cells in the other part for each cell. We have already proven that we can update the critical
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ray for a cell in the left part using the convex hull from the right part and vice versa in Lemma 4.
Hence the algorithm correctly computes the visibility index and the critical rays. �

3.1.3 Algorithm RedBlueIntersectionCount

The algorithm proposed by Palazzi & Snoeyink [17] computes the total number of intersections
between red and blue line segments. There are several modifications required to adapt the al-
gorithm to our needs. The main reasons for these modifications are the use of dual half-lines in-
stead of line segments and the need to count the number of intersections per dual half-line instead
of the total number of intersections. To clarify the algorithm and our modifications we present a
high-level description in pseudo code (Algorithm 2), followed by a step-by-step description in text.
References to different lines in the algorithm are done using the following notation: (ln:1-5), which
refer to lines 1 to 5. A detailed description of these steps can be found in Palazzi and Snoeyink [17].
Before we start describing the algorithm, we first introduce some definitions.

Definitions

The main data structure used throughout the algorithm is a hereditary segment tree. A segment
tree is a data structure used to store intervals in 1D and can be used to report all intervals con-
taining a point. However, it can also store segments in 2D if an appropriate associated structure is
used. In a hereditary segment tree the x-coordinates of the endpoints of the segments subdivide
the x-axis in intervals. Then we construct a balanced binary search tree whose leaves are in 1-
1 correspondence with these intervals, ordered form left to right. Each internal node U of this
tree is associated with an interval Iu of the x-axis, consisting of the union of the intervals of its
descendant leaves. We can think of each such interval as a vertical slab Su whose intersection
with the x-axis is Iu. A more detailed explanation can be found in the book by De Berg et al. [4].
Palazzi and Snoeyink deviate from this common definition and use midpoints instead of end-
points to define the slabs. They allow several segments to be in the same leaf, provided that they
are of the same color. By allowing multiple segments in a leaf, they are able to reduce the number
of slabs, though in worst case there is still only one endpoint per leaf. A segment is called short
if it starts or ends in a slab and is called long if it completely cuts through a slab and not through
the parent’s slab. The crucial property used by Palazzi and Snoeyink is that it suffices to count for
each node v the number of long-long and long-short intersections; short-short intersections need
not to be considered.

The associated structures, which are stored in the nodes of the segment tree, depend on the
problem being solved. The associated structure used by Palazzi and Snoeyink are four linked-
lists per slab σ, a linked list with red long segments LLred(σ), a linked list of blue long segments
LLblue(σ), a linked list of red long segments and blue short segments SLred(σ) and a linked list
of blue long segments and red short segments SLblue(σ). The elements in these lists are in order
from high to low. To compute such an ordering Palazzi and Snoeyink define the aboveness relation.
The aboveness relation is a relation on sets in the plane and is defined as follows: A � B if there
are points (x, ya) ∈ A and (x, yb) ∈ B with ya > yb. The aboveness relation is used to compute the
order from high to low beforehand and, once computed, is used in each level of the segment tree
to fill the associated structures.
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Algorithm 2 RedBlueIntersectionCount(R,B, VisIndex)

Input: Set R of r red half-lines and a set B of b dual half-lines, where the red half-lines do not
intersect each other and the blue half-lines do not intersect each other.

Input: VisIndex[1..n], where VisIndex[i] denotes the visibility index of cell i. For each dual half-
line we know the corresponding index i.

Output: VisIndex[i] is increased with the number of intersections between the dual half-line cor-
responding to i and dual half-lines of the opposite color, for all i that correspond to a dual
half-line inR∪B.

1: Sort R lexicographically, first on x-value (left to right) of the starting points of the half-lines
and second on slope (high to low).

2: Idem for B (only slope order is from low to high).
3: Sort the red dual half-lines and the blue points according to the aboveness relation (ARred).
4: Sort the blue dual half-lines and the red points according to the aboveness relation (ARblue).
5: Build lowest level of the segment tree.
6: while #slabs > 1 do
7: For each slab σ create LLred(σ), LLblue(σ), SLred(σ) and SLblue(σ).
8: Count the red long - blue short intersections using a sweep-line approach.
9: Count the blue long - red short intersections using a sweep-line approach.

10: Count the red long - blue long intersections using a ordered walk.
11: Count the blue long - red long intersections using a ordered walk.
12: Merge slabs, update midpoints and update the start and end slabs of all segments.
13: end while

Pre-processing

Before the actual intersections can be counted efficiently, some pre-processing has to be done (ln:1-
5). An important step is to compute the aboveness relation between red half lines and blue starting
points. The result of this computation is saved in the linked-list ARred. Symmetrically, the above-
ness relation between blue half lines and red starting points is computed and stored in ARblue.
This is done by building two sweep trees and extracting the order with an in-order traversal. One
sweep tree is built for red half lines and blue starting points and one is built for blue half lines and
red starting points. The sweep trees are built by performing a sweep from left to right. During
the sweep, the sweep tree denotes the aboveness order at the vertical sweep line. In the sweep
tree the following binary-tree property is satisfied, the right child is below the parent and the left
child is above or on the parent. Important to note here is that red half lines, which are the duals
of right-oriented critical rays, start at their starting point and end at infinity, while blue half lines,
which are duals of left-oriented critical rays, start at minus infinity and end at their starting point.

Building the Segment Tree

Once the aboveness relation is know the segment tree can be built. The segment tree is not built
explicitly, because each level is constructed based on the children in the level below. The lowest
level of the tree only contains the leafs, which corresponds to the slabs only containing half lines
of the same color, as described above. We store all slabs, of the current level, in a list L, which is
ordered from left to right. Advancing to a higher level in the tree is quite simple, just remove the
shared slab boundary in between. The merged slabs correspond the slab of the parent, which is
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the union of the slabs corresponding to its children. Updating the start and end slab of each of the
half lines is quite trivial, as we can divide them by two. E.g. start slab of an element e was 4 and
now becomes 2, as the first two slabs are merged and the second two slabs are merged. Figure 3.3
illustrates the merging process using 6 slabs.

slab 1 slab 2 slab 3 slab 4 slab 5 slab 6

↓merging slabs
slab 1 slab 2 slab 3

↓merging slabs
slab 1 slab 2

↓merging slabs
slab 1

The list L containing all slabs The segment tree corresponding to L

root

1st level

2nd level

3rd level
r b

b

b

b

r

r

r

r

r

r

r

b

b

b

b

Figure 3.3: Illustration of the merging process of L using 6 slabs on the left. The resulting segment
tree is shown on the right. The red starting point r and the blue starting point b are
presented as reference for the start and end slab computation.

Traversing the Segment Tree

Counting the intersections is done per level in the segment tree (ln:6-13). The algorithm starts at
the lowest level in the tree and keeps on moving up till only one slab remains.

At each level of the tree, the algorithm first needs to create the associated structures of the slabs
(ln:7). The creation of these list is done, using the aboveness order of the corresponding color c.
Using this order makes sure that the elements inserted in the lists are also in this order.

The lists with short and long segments for a given slab σ (of color c), SLc(σ), initially does not
contain the clipping of the short segments to the slab walls. For long segments this clipping is not
relevant, as we know that they cut through the entire slab and the order already guarantees us the
aboveness order. The clipping points of the short segments need to be inserted into SLc(σ), as
the ranks of the start and clipping points determine if a short segment intersect a long segment or
not. We insert the clipping points of short segments in order according to slope, as half lines of the
same color do not intersect. Left-oriented half-lines are ordered from low slope to high slope and
right-oriented half-lines are ordered from high slope to low slope.
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Long-Short Intersection Sweep

Within each slab σ ∈ L we can perform a sweep from high to low to find all long-short intersec-
tions (ln:8-9). This sweep is performed for red long segments and blue short segments and for
blue long segments and red short segments. The sweep itself remains the same, so we describe it
below for red long segments and blue short segments.

The intersection count is based on the ranks of the half lines, where the rank of a half line s in a
slab v is the number of oppositely long segments above s in v. Consider the blue short segment b,
with start as its start point and end the point clipped to the slab wall. The number of intersections
between b and red long segments is the difference in rank between start and end. Figure 3.4
presents an example of a slab σ with some red long segments and some blue short segments. The
ranks of the endpoints of the blue short segments are also shown.

left slab wall of σ right slab wall of σ

rank = 1
rank = 0

rank = 1

rank = 2

rank = 1

rank = 4

rank = 4

rank = 4

Figure 3.4: Example of a slab σ with 4 long red segments and 4 short blue segments. The ranks of
the endpoints of the blue short segments are also presented.

SLred(σ) is ordered according to the aboveness relation, which means that the first element
is the highest one and the last element is the lowest one. Therefore a simple traversal though
SLred(σ) yields the sweep order. During the sweep we can maintain two relevant counts. The
first count is the number of red long segments we have encountered so far, call it longscount. The
second count is the number of blue short segments for which we have encountered its start point,
but not its end point, call it shortscount.

When we encounter an element e during the sweep, there are three cases.

• The first case is that e is a red long segment. We increment longscount and add shortscount
to the visibility index of e. shortscount denotes the number of short segments for which we
have encountered their start points, but not yet their end points. We already encountered
their start points, so we know that their rank must be lower than the current longscount and
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because their end points are not encountered yet, those ranks must be higher or equal to the
current longscount. Hence e intersects with shortscount number of blue short segments.

• The second case is that e is a start point of a blue short segment. We increment the shortscount
and set the rank of e to longscount. The number of red long segments above e is the number
of red long segments already encountered in the sweep.

• The third and last case is that e is an end point of a blue short segment. We decrement
shortscount, as for this short segment we have encountered both its start and its end point.
Then we add to the visibility index of e, the difference between the rank of e and longscount.
As mentioned before, the difference in rank is the number of red long segments intersected
by e.

Long-Long Intersection Sweep

For each slab σ ∈ Lwe count the long-long intersections using LLred(σ) and LLblue(σ) (ln:10-11).
Again the order of the list is according to the aboveness relation, which means that we can traverse
both lists and compute the ranks of the clipping points of the red long segments. The ranks are
computed for the clipping point on the left wall and the clipping point on the right wall. The
difference between these two ranks is the number of blue long segments intersecting the red long
segment. A symmetrical sweep is performed to compute the ranks of the clipping points of the
blue long segments. Figure 3.5 presents an example of red and blue long segments within a slab
σ, including the ranks for both set of long segments.

left slab wall of σ right slab wall of σ

rank = 0

rank = 0

rank = 1

rank = 1

rank = 2

rank = 4

rank = 3

rank = 2

rank = 0

rank = 3

rank = 3

rank = 2

rank = 1

rank = 2

Figure 3.5: Example of a slab σ with 3 long red segments and 4 long blue segments. The ranks of
the endpoints of the long segments are also presented.
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3.2 Degenerate Cases

This section describes degenerate cases that can occur in the proofs described above. The solutions
to handle these cases are also presented.

3.2.1 Dual Half-line Starting Point

The starting point of the dual half-line is not considered part of the dual half-line. This is, as
mentioned before, needed to make sure visibility remains well defined. When a point pj is visible
from pi, according to Lemma 1, pj is above the critical ray of pi and pi is above the critical ray of
pj. If either of the two points lies on the critical ray of the other, it means that the points are not
visible from each other. The critical ray corresponds to the starting point of the dual half-line. If
an intersection would occur at the starting point, the intersection cannot be counted as visible and
therefore it is not included in the dual half-line itself. Considering the starting point not part of
the dual half-line also handles the case were a dual half-line starts on an oppositely colored dual
half-line, because this is not considered an intersection.

3.2.2 Starting Points on a Vertical Line

It can occur that a red and a blue starting point are on the same vertical line. When this happens
we conceptually perturb the blue staring point to the left. In other words, we place the blue staring
point before the red starting point in the horizontal ordering. Blue half lines are left-oriented and
red half lines are right-oriented, which means that the starting point of a blue half line is the right-
most point of the half line and for red half lines the starting point is the left-most point. The
two half lines can never intersect, as the starting point is not considered part of the half line and
therefore perturbing it to the right can create an invalid intersection.

3.2.3 Intersection on the Slab Boundary

The intersection between two dual half-lines can occur at the slab boundary s. To make sure that
the intersection is only counted once, in other words only in one of the two slabs sharing s, we
conceptually move blue half lines below red half lines. In one of the two slabs, call it a, the blue
half line (blue) is above the red half line (red) and in the other slab, call it b, blue is below red. If
this is not the case, the intersection would not occur as either blue is completely above red or red
is completely above blue in a ∪ b. Moving blue below red increments the rank of blue’s clipping
point at s. The rank of the clipping point of blue in a at the other slab boundary is lower than
that of red, as red is below blue. This means that the difference in ranks between the two clipping
point is incremented by one, which corresponds to the counting of the intersection. The rank of
blue’s clipping point at the other boundary in b is higher than that of the clipping point of red, as
red is above blue. The difference between the ranks of the blue clipping points is not incremented
with one, as the ranks of both clipping points is higher than those of red. This means there is
no intersection counted. A symmetrically argument holds for red’s clipping points at the other
boundaries. In summary, this means that the intersection is counted in slab a and not in slab b and
hence is only counted once.
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3.3 Running Time

The running time analysis is split up in different paragraphs, each paragraph analyzes a part of
the algorithm and the last paragraph analyzes the complete running time. The line numbers refer
to Algorithm 1.

Building a Convex Hull

Building a convex hull takes O(m log m) time [5], where m denotes the number of points for which
the convex hull needs to be constructed. This is because it needs to sort the points lexicographic-
ally. In our case, the points are already sorted (cells are in order) and therefore the running time
can be reduced to O(m).

Duality Computations and Red-Blue Intersections

The duality computation consists of a conversion from the primal plain to the dual plane and
the intersection counting. The conversion takes O(1) per cell and therefore takes O(m) in total,
where m denotes the number of points of both sets. The red-blue intersection counting uses a
modified version of the algorithm from Palazzi & Snoeyink [17], which runs in O(m log m). The
modifications do not change the running-time analysis of Palazzi & Snoeyink [17] and therefore
their analysis remains valid.

Critical Rays

Updating the critical rays takes O(log h) per ray (binary search for the tangent), where h denotes
the number of points in the upper hull.

The Recursion

A single call on n cells excluding the time for the recursive calls takes O(n log n) time. The first
computation in the step is the duality computation at line 7 and 8. The duality computation takes
O(n log n) time, because for n cells the conversion needs to be done and there are n dual half-lines
in the intersection counting. Then the convex hulls for both halves are computed at line 9, which
takes O(n) per convex hull. The convex hulls are used to update the critical rays of the other part
at line 10. This means that for each cell the running time for updating is O(log n). So in total
updating costs O(n log n). Hence that a single call takes O(n log n).

Total Running Time

The complete algorithm takes O(n log2 n). Let T(m) denote the time needed for a recursive call
with r− l + 1 = m. Then T(m) satisfies

T(m) = 2T(
m
2
) + O(m log m) (3.1)

By the Masters Theorem we thus get T(m) = O(m log2 m), so the total running time is O(n log2 n).
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Chapter 4

The 2-Dimensional Problem

In this chapter we study the 2-dimensional version of the problem. The input for the 2-dimensional
version of the problem is a grid of n× n cells given as T[1..n][1..n], where T[i][j] denotes the elev-
ation of (the center of) the cell (i, j). As in the 1-dimensional version, the goal is to compute the
visibility index of each grid cell T[i][j]. If we compute the visibility index for each cell using the
single-viewshed approach proposed by Van Kreveld [20]. The running time per cell is O(n2 log n)
and therefore the complete running time would be O(n4 log n). The lower bound for computing
the total-viewshed of a grid terrain is Ω(n4), as for each cell it is possible that all other cells are
visible. Hence, using the total-viewshed for computing the visibility index is rather inefficient. We
think that an efficient exact algorithm is not very likely to exists and we will try to approximate
the visibility index by using DVisibilityIndex from Chapter 3. The basic idea of the algorithm
is to generate lines on the grid and then for each line compute the visibility index using DVis-
ibilityIndex . In the end we combine the results from the lines into a single visibility index
approximation. Before we describe the general idea of DVisibilityIndex (Section 4.2), we first
present how we define visibility of grid cells in Section 4.1.

4.1 Visibility Definition

The representation of the terrain plays an important role in the visibility of cells. As discussed
in Chapter 1 there are multiple ways of representing a terrain. We will be using a Digital Eleva-
tion Model (DEM). There are two approaches for representing a terrain using a DEM. In the first
approach the elevation of a cell corresponds to the elevation of its center point (the center point
representation). Non-center points are interpolated based on neighboring center points. The ad-
vantages of this is that it is more realistic and that the terrain is continuous. The disadvantages is
that you need to interpolate for non-center points. In the second approach all points in a cell have
the same elevation (the stepped representation). The advantage of this approach is that it is easier
to compute the elevations of non-center points. The disadvantages is that the elevation profile is
less realistic.

We are not interested in the complete elevation model of the terrain, but in the elevation pro-
file along a line `. So for every cell that intersects `, we want a vertex in the elevation profile.
For the different approaches the position of the chosen vertex/vertices in the grid differs. For the
stepped representation the complete elevation profile can be constructed using two vertices per
step, while for the center point representation there are a lot of vertices required for the complete
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elevation profile. Therefore we use a representation that is a simplified version of the center point
representation, as it is more realistic than the stepped representation and still only needs one ver-
tex per intersected cell. It is a simplified variant of the triangulation of the terrain, therefore we
will call it the simplified representation. An example is presented in Figure 4.2. For each cell
we conceptually create a diagonal. The intersections of the line and the diagonals are included
in the 1-dimensional terrain we generate along `. The elevation of the intersection point is inter-
polated using the four neighboring center points (just like the center point representation). The
interpolation is a weighted average of the elevations, where the weights are the distances from the
intersection point to the center points. Note that we will address challenges for both the simplified
representation as the stepped representation, as both (or a variant of) are commonly used.

Figures 4.1 and 4.2 present examples of the implications the different approaches have. All ap-
proaches can be used in the visibility definition presented in Definition 1. Each figure presents the
vertices that form the elevation profile. Figure 4.1 uses the stepped representation and Figure 4.2
the simplified representation. For the stepped and the simplified representation the number of
relevant points can be determined based on the number of cells intersecting the line. The stepped
representation needs two points per cell and the simplified representation needs one point per
cell. This means that in total we only need O(n) points to create the elevation profile of a line, as a
line intersects at most 2 · n cells. Determining the location of the intersection points is also easier.
We will leave other representations and the evaluations to future research (also see Chapter 8).

c2,4

c4,1
place on the line

elevation

c4,1 c2,4

Figure 4.1: An example of the vertices on the segment c4,1c2,4 using the stepped representation.
On the right the elevation profile along the line depicted on the left is shown.

c2,4

c4,1
place on the line

elevation

c4,1 c2,4

Figure 4.2: An example of the vertices on the segment c4,1c2,4 using the simplified representation.
On the right the elevation profile along the line depicted on the left is shown.
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4.2 General algorithm

The general approach of the algorithm is presented in pseudo code in Algorithm 3. The idea is to
generate lines, according some scheme, and combine the results. The different schemes for gen-
erating lines are discussed in Section 4.2.1. Generating different lines give different results for the
visibility index of a cell. How we combine these results is discussed in Section 4.2.2. The analysis
of the running time can be found in Section 4.2.3. To be able to use DVisibilityIndex , DVis-
ibilityIndex and its input needed to be modified slightly. These modifications are discussed in
Section 4.2.4.

Algorithm 3 DVisibilityIndex(T)

Input: grid T of n× n cells with elevations.
Output: VisIndex[i][j] is an approximation of the visibility index of cell T[i][j].

1: D ← GenerateLines (T) . Generates lines according to some scheme
2: VisIndex[i][j]← 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ n.
3: for all l ∈ D do
4: S ← CreateArray (l)
5: VisIndexLine[k]← 1 for 1 ≤ k ≤ S .size
6: Crits[k]← initial critical rays straight down for 1 ≤ k ≤ S .size
7: result← DVisibilityIndex (S , 1,S .size, VisIndexLine, Crits)
8: for all cells c in S do
9: Determine indices i, j such that c corresponds to the cell T[i][j] and combine the visibility

index from result[c] with VisIndex[i][j]
10: end for
11: end for
12: return VisIndex

4.2.1 Generating Lines

In this section we will present a scheme for approximating the total visibility index. The most
simple approach is to generating lines randomly. Randomly generating lines can be done effi-
ciently, but the downside is that there are cells without a line intersecting them or with only a few
lines intersecting them. To overcome this, we will present a structured approach. The idea of this
approach is to make sure all cells have m lines intersecting them and those lines are in m different
equally-spaced directions.

There are m equally-spaced directions, which means that we have angles of 180
m degrees

between consecutive directions. For each of the m lines we generate n parallel lines to make sure
that each cell intersects with m lines. Figure 4.3 shows an example of generating these lines for a
single cell and m = 4. For m = 4 there is a horizontal, a vertical and two diagonal lines intersecting
each cell. Figure 4.4 shows the lines that are generated for m = 3. Using this generation scheme
there are in total m · n lines.

4.2.2 Combining Line Results

Combining the visibility index results of different lines can be done in several ways. A simple way
is to use the (unweighted) average. Although it is simple to use, it ignores the area for which the
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Figure 4.3: An example of generating lines (blue) in a structured manner for m = 4. The lines
intersecting a single cell (gray) are depicted in red.

Figure 4.4: An example of generating lines (blue) in a structured manner for m = 3.

visibility index is averaged. Figure 4.5 shows that the area for which the results are averaged can
differ a lot. Instead an weighted average, which takes into account the area for which the visibility
index is averaged, is probably better. Such a weighted average can be computed in the following
fashion. The visibility index of DVisibilityIndex of a cell c is separated into two values, cells that
are visible to the left of c and cells that are visible to the right of c. For each partition we compute
the average visibility index based upon the two lines that envelope that partition. To compute the
overall visibility index we use the unweighted average and leave this idea for improvement to
future research (also see Chapter 8).

This requires DVisibilityIndex to compute visibility index information separate for cells that
have a lower index and cells that have a higher index. This modification is straightforward as the
algorithm is based upon left-right separation of data (see the recursion pattern in Chapter 3). This
and some other modifications are discussed in Section 4.2.4.
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Figure 4.5: An example of partitions for a cell (gray), the overall visibility index is computed using
a weighted average. The weights are the area of the corresponding partition. Two
example partitions are shown in green and red.

4.2.3 Running Time Analysis DVisibilityIndex

As DVisibilityIndex is not an exact algorithm, we do not need to analyze its correctness. How
good the approximation is something we do want to know and will be tested by the experiments
from Section 5.3 and can be found in Section 6.2. However, analyzing the running time is straight-
forward. For simplicity we assume that there are m lines generated by GenerateLines. We know
that T is a grid of n× n cells and therefore we know that the amount of cells covered by a line is at
most 2 · n. DVisibilityIndex is split in two phases, the first phase is the generation of the lines
and the second phase is the visibility index computation of the lines.

The running time of the first phase depends on the scheme used to generate them. We assume
that we can generate m lines in O(m) time.

The second phase of the algorithm consists of three parts. First we construct the array S of cells
that are covered by l. This requires O(n) time, as we can compute the indices of the cells that are
below l and if needed interpolate between different (neighboring) cells in O(n) time. We used a
modified version of the algorithm presented by Bresenham [2].

The second part is the call of DVisibilityIndex . The running time of DVisibilityIndex is
O(n log2 n) (see Section 3.3).

The last part is to incorporate the results of DVisibilityIndex for m lines. If we use the
unweighted average, we can combine this in O(m) time per cell. If we use the weighted partitioned
average, the running time per cell is also O(m) per cell. For each partition we can compute the
size of its area in O(1), as they can be represented as a couple of triangles (also see Figure 4.5). So
the running time of the third part is O(m · n2).

These two examples use averages to combine the results. For averages it is possible to do some
extra work after each call to DVisibilityIndex and thereby reducing the total amount of work
in the end. There are two approaches to compute the average more efficiently. The first approach
computes the running average after each call to DVisibilityIndex and the second approach is to
sum the results and only compute the average at the end. The first approach can be done in O(1)
per cell and there are at most 2 · n cells intersecting a line, resulting in O(n) time per call. While
the second approach can be done in O(1) per cell intersecting a line and an extra step at the end
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of the algorithm of O(1) per cell in the grid, resulting in O(n) per call and a O(n2) in the end. We
generate m lines, so the total time needed for the first approach is m ·O(n) and the time for the
second approach is m ·O(n) + O(n2).

We prefer to use the first approach as it is slightly faster and easier to analyze. It is clear that
different combing approaches result in different running times. We generate m lines and therefore
the total running time of the second phase is m · (O(n) +O(n log2 n) +O(n)) = m ·O(n log2 n) =
O(m · n log2 n).

Hence the total running time of DVisibilityIndex is O(m) + O(m · n log2 n) =
O(m · n log2 n). The total running time of a combing approach that cannot be done efficiently
during execution and is therefore postponed to the end of the algorithm would be
O(m) + O(m · n log2 n) + O(m · n2) = O(m · n2) (assuming O(m) time needed to combine the
results of m lines per cell).

4.2.4 Modifications of DVisibilityIndex and Its Input

Modifications to DVisibilityIndex

There are two small and simple modifications required to DVisibilityIndex to better integrate
DVisibilityIndex into DVisibilityIndex . DVisibilityIndex requires an array with elev-
ations, where the T[i] denotes the elevation of cell i, which corresponds the point (i, T[i]) (see
Chapter 3). DVisibilityIndex uses these points to determine if cells are visible from one another.
We modify the algorithm slightly to use the points (T[i].x, T[i].y) instead of the point (i, T[i]). This
means that the point of cell i now corresponds to (T[i].x, T[i].y).

The second modification to the DVisibilityIndex is, that we split the visibility index into
two parts. The visibility index of cells to the left of cell i and the visibility index of cells to the
right of cell i or as mentioned before, the visibility index is separated for cells with a lower index
and cells with a higher index. This modification is very simple, as DVisibilityIndex already
executes the computations separately for left and right. DVisibilityIndex is based upon the
left-right separation of the input (see the recursion pattern in Chapter 3). The second modification
is required for some of our ideas and can be used in future research.

Input Modifications for DVisibilityIndex

DVisibilityIndex uses DVisibilityIndex as a subroutine and DVisibilityIndex has a few
preconditions. The first precondition is that all input data must be non-negative and integral and
the second precondition is that all cells must have a unique index. For the stepped DEM represent-
ation the first precondition is satisfied, as all elevations in the grid are non-negative and integral.
For the simplified representation the elevations of non-center points could be non integral. Those
elevations are positive, as they are computed based on positive center point elevations. We solve
this by just rounding the elevations to the nearest integer (ties are rounded up). The index of
a point on the line could be non-integral, as the distance from that point to the staring point of
the line is non-integral. They are non-negative, as distances are non-negative. We round all the
computed indices down to the nearest integer.

The second precondition requires that cells have a unique index. For the simplified represent-
ation this is not really a problem, as at each intersection of the line and a diagonal there is only one
point needed to represent the elevation. For the stepped representation we cannot satisfy this pre-
condition trivially, as we need to represent the terrain with steps. At the boundaries of the steps
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there are two points required to indicate the elevation change. The index of these two points is
identical, as the elevation change is instant. Both DVisibilityIndex and the implementation do
not accommodate for this. DVisibilityIndex initializes the critical rays straight down. Points on
the critical ray are not considered visible, as the closest point obstructs the visibility of the farthest
point. If all cells have a unique index this is not a problem. In our implementation we simpli-
fied this a bit further, by initializing the critical rays to go through the neighboring cell at -1 (see
Appendix A.1.2).

To mediate this problem we can do the following. First scale all data with a factor f . Then we
compute the points and move them slightly if there are points with the same index. The points
on the line where this occurs is at the edges of a step, points where we go from one cell to the
next. Consider such a point p with distance d to the starting point of the line. The point from the
current step is placed at distance d− 1 and the point of the next step at distance d. An example is
presented in Figure 4.7. It could be the case that an intersection point occurs at one of the corners
of a step, for example a line with angle of 45◦. In that case we place the point of the current step
at d− 1, the point of the next step at d + 1 and at the intermediate index we place a point with the
maximum index of the neighboring steps (excluding the step we just processed). Figures 4.6 to 4.8
present different examples. This last point is required to make sure you cannot look beyond the
edge of a step.

Figure 4.6: An 3-dimensional example of the stepped representation. The red cells have a higher
elevation as the lower left corner cell (gray) and the green cells have a lower elevation.
The visibility from the corner of the lower left corner cell to the center of the upper
right corner cell (denoted by the blue line) is obstructed by the edge of the step of the
red cell, the square denotes the point of obstruction.
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Figure 4.7: An example of the result of the steps we do to mediate the problem with non-unique
indices in the stepped representation with f = 100. The numbers within the cell rep-
resent the elevation of that cell.
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Figure 4.8: An example of the result of the steps we do to mediate the problem with non-unique
indices with f = 100 in the stepped representation with a intersections between the
line and four cells. The numbers within the cell represent the elevation of that cell.
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Chapter 5

Experiments

The theory presented in Chapters 3 and 4 is tested in practice by performing experiments. The
details of the experiments and the experimental set-up are presented in this chapter. Some import-
ant design decisions and their implications on the implementation are presented in Appendix A.
Section 5.1 describes how the experiments are performed, the input is generated and presents
the environment specifications. The actual experiments are presented in Sections 5.2 and 5.3 for
DVisibilityIndex and DVisibilityIndex , respectively.

5.1 Experimental Set-up

The running time of both algorithms, DVisibilityIndex (Algorithm 1) and DVisibilityIndex
(Algorithm 3), are compared against a brute-force approach to verify that they are indeed efficient.
Running the brute-force approach also means that we can check the outcome of both algorithms.
DVisibilityIndex is an exact algorithm and DVisibilityIndex is an approximation algorithm,
therefore we can verify the correctness of DVisibilityIndex and test how good the approxima-
tion is of DVisibilityIndex .

5.1.1 Experiments

This subsection gives a general overview of the experiments. The detailed experiments are de-
scribed in Sections 5.2 and 5.3 for DVisibilityIndex and DVisibilityIndex , respectively. The
experiments are executed as C++ unit tests. Each unit test, corresponding to an experiment, fol-
lows the same structure. First it loads the data into the correct structures. Then it calls the brute-
force approach and measures the time it took from calling the function till returning from the
function. The time needed to execute the function is then outputted. In a similar fashion DVisib-
ilityIndex is called and its execution time is measured and outputted. The last step is to verify
the correctness by comparing the results from the brute-force approach to the results from DVis-
ibilityIndex . A similar approach is used to conduct the experiments for DVisibilityIndex .
Instead of verifying the correctness in the last step, we check how good the approximation is.

The time measurement is done in milliseconds and using the std::chrono::steady_clock
package. Each experiment is repeated ten times, with the exception of running the brute-force
approach. The brute-force approach is run only three times, due to its long running time. The im-
plementation is compiled using the standard compiler options without any flags for optimization.
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5.1.2 Data Set Generation

There are two different kinds of data, the first is used in the experiments of DVisibilityIndex
and the second is used in the experiments of DVisibilityIndex . First we will discuss the data
generation for DVisibilityIndex and then for DVisibilityIndex . For DVisibilityIndex we
can generate data using a GUI. The created data sets can be exported in three different file formats.
The first format is used for importing it back into the GUI and is text based, the second format is
used for inclusion into the code and the last export option is used to generate TikZ output for
image inclusion in this document.

Data Set Generation for DVisibilityIndex

To generate the inputs for the experiments, we use a graphical user interface (GUI). Screenshots of
the GUI can be found in Figures 5.1 and 5.2. Screenshots showing the less interesting parts of the
GUI, e.g. the menu structure, can be found Appendix D. The GUI is used for viewing and creating
data sets. There are different ways of creating data sets, ranging from using formulas to simply
clicking inside a drawing panel.

Figure 5.1: An annotated screenshot of the GUI.

The first option is to use the drawing panel (also see Figure 5.2). Each click creates a point and
repeatedly clicking creates a data set. This created data set will typically be small, as we probably
will not click a thousand times. Therefore we added the option to add extra points in between
two consecutive user points. These points are placed along the line between the two consecutive
user points at even spacing. There is also an option to allow the points the deviate a bit from their
original position. When the dispersion d is set, each point with y-value y will be placed randomly
in the range from [y− d, y + d] using an uniform distribution. These two values are used during
the export of the data when you choose the option “export with randomization”. The original
data set, without added randomization, can also be exported with the option “export”. These two
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options can also be used to add randomization to a data set loaded in the main program. This is
especially handy for increasing the size of the real-life data sets.

Figure 5.2: An annotated screenshot of the GUI when in input mode.

There is a second option to create data sets, which generates semi-random data sets. The pre-
vious two data generators are based around a skeleton input, often created by the user. This
approach lacks a decent randomization. Another approach would be to generate a completely
random data set. This approach is far from ideal as the elevations would hop around from low
to high and vice versa. So we have tried to create a method that tries to be in the middle of these
two (opposite) approaches. We fix the dispersion d and the number of points n and let the method
generate a semi-random data set. Some examples are presented in Figures 5.4 and 5.5. The method
generates points in the following manner. For each point it generates, it uses the elevation of the
last generated point. So we have the last point (x, y), then the next point is (x + 1, y′) where
y′ ∈ [y − d, y + d] (uniformly distributed). We repeat this step until we have n points. The first
point is fixed at (0, 0) and after the generation is complete we shift the data set in such a way that
all elevations are non-negative.

Because both of these options generate data without a real structure, we have also included the
option to generate data using three formulas. The formulas we use are a parabola, a line and a sine.
The parabola allows us to generate data sets in which all cells are visible from all other cells, a line
to make only the neighbors visible and the sine to vary the number of peaks and valleys present
in the data set. With the parabola data sets it is possible to limit the visibility to the neighbors,
but due to some implementation limitations (see Appendix A.4) we use the line data sets for that.
For each of these formulas some parameters (subset of a, b and n) can be specified, where n is the
number of cells, a is the coefficient or the amplitude and b the number of peaks. After the data sets
are generated, the points are shifted to make sure all values are non-negative. An example of the
sine data set can be found in Figure 5.3.
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Name Formula Parameter usage
Parabola y = a · i2 i ∈ [− n

2 , n
2 ], a ∈ {1,−1}

a determines whether it is a peak or valley parabola
Line y = i i ∈ [0, n− 1]

Sin y = a · sin 2·π·b
n i i ∈ [0, n− 1]

b is the number of peaks in [0, n− 1]
a is the amplitude

Table 5.1: Table with the different formulas used for generating data sets and their parameters

Data Set Generation for DVisibilityIndex

The data sets for DVisibilityIndex are generated using the DEM Explorer of GeoBrain [23]. The
advantages of the DEM Explorer is that you just can select the cells you want to export using a
web-based interface. The generated data sets we use comes from the GTOPO30 data set and are
in the ArcASCII format. Other data sets and formats are available. We did some small manual
modifications to the format to be able to use it in our implementation and to visualize them for
inclusion in this document. The experiments for DVisibilityIndex only use real-life data sets
and we leave the study of other (synthetic) data sets for future research.

5.1.3 Environment

The implementation of the algorithms is done in C++11 using NetBeans [29] with CygWin [22]
and Qt Creator [30] with MinGW [28]. NetBeans was used to implement the algorithms and Qt
Creator was used to create the GUI. For all software it holds that the 64-bit version was used,
when available. The operating system running on the machine is Windows 7 Professional 64-bit
with Service Pack 1.

The machine is a HP Elitebook 8540w with a Intel Core i5-540M dual core processor (2.53 GHz
with hyper-threading) and 4 GB of DDR3 RAM. Besides the normal hard-disk of 320 GB it also has
a Samsung 840 EVO solid-state drive of 120 GB. The software used for the implementation and
the experiments is installed on the solid-state drive, just like the operating system.

5.2 Experiments DVisibilityIndex

The experiments for DVisibilityIndex only consists of running-time comparisons. The verific-
ation of the correctness is only used to test the implementation. For each of the experiments it
must hold that the outcome of DVisibilityIndex is the same as that of the brute-force approach.
The data sets used for the experiments are presented below. For each of the experiments we will
present a table of the different parameters and where possible a figure of the skeleton input.

The different parameters to generate the data sets are presented in Table 5.2. The number
of cells for the parabola are clipped at 2000, because using more cells would trigger an integer
overflow (discussed in Appendix A.4). Figures 5.4 and 5.5 present examples of data sets generated
by the semi-random approach for different values of d, more examples of semi-random generated
data sets can be found in Appendix B. Figure 5.3 presents an example of the data set generated by
using the sine formula.
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Formula Parameters Number of cells
Line for increasing n from 1,000 to 500,000.
Parabola a = {1;−1} for increasing n from 100 to 2,000.

Sine
a = 25, 000
b = {15; 30} for increasing n from 1,000 to 500,000.

Semi-Random d = {10; 15} for increasing n from 1,000 to 500,000.

Table 5.2: The parameters for the generated data sets.

We also conducted experiments using real-life data sets. We used several sources for generating
this data. The first source is the Geocontext-Profiler [25] and we use it to generate an elevation
profile from a point to another point. The second source we use has two steps. Firsts we create a
route on CycleRoute [21]. Then we load this route into GPSVisualizer [27] and export the elevation
profile. For each generation type we present an elevation profile below. For some data sets the
number of cells is rather large and that means there are a lot of elevations points. To make the
image readable we sample only a part of the elevation profile in the figure. Important to note is
that the elevations can differ per source, for example Figure 5.7 versus Figure 5.8. The data is from
different sources, but from the same region. To be more precise, the start and end points are the
same and therefore have the same elevation in the real world, but they do have different elevations
in the data sets. More examples of real-life data sets can be found in Figures 5.6 and 5.9.

Figure 5.3: Generated data set with 500 cells using the sine formula, with a is 1,000, b is 4.
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Figure 5.4: Semi-random generated data set with 150 cells and elevations in between 0 and 79, the
dispersion was set to 15.

Figure 5.5: Semi-random generated data set with 150 cells and elevations in between 3 and 170,
the dispersion was set to 10.

Figure 5.6: The elevation profile of the cycle route from Baden-Baden to Freudenstadt (in Ger-
many) with 3,113 cells and elevations in between 8,000 and 42,000 (sampled at every
10th cell).

36 Visibility Index Computations



5.2. EXPERIMENTS DVISIBILITYINDEX

Figure 5.7: The elevation profile from Raggal-Plazera to Lech (in Austria) with 512 cells and elev-
ations in between 889 and 2,484.

Figure 5.8: The elevation profile of the cycle route from Raggal-Plazera to Lech (in Austria) with
4,299 cells and elevations in between 8,000 and 42,000 (sampled at every 10th cell).

Figure 5.9: The elevation profile from Innerbraz to Warth (in Austria) with 513 cells and elevations
in between 705 and 2,648.
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5.3 Experiments DVisibilityIndex

The experiments for DVisibilityIndex are conducted to see how good the approximation is. We
have conducted a specific experiment to see how many lines we need to get close to the actual
visibility index. We do this by increasing m in each step. For each step we generate m lines in m
different directions for the lower left corner cell. Figure 5.10 shows an example of the experiment
for m = 5. In this experiment the brute-force approach is relatively fast, as it only requires to check
the visibility of each cell with respect to the lower left corner cell. The different values for m range
from 2 to 21 lines, where the horizontal and the vertical line are always present.

Figure 5.10: Illustrates how the lines (blue) will be generated for single corner cell (gray), m = 5

Several data sets are presented below, Figures 5.11 to 5.13, and the rest of the data sets can be
found in Appendix C. The visualization of the data sets uses a heat map to indicate the elevation
of each cell. A cell with a low elevation is yellow and a cell with a high elevation is red. The
minimum and maximum elevation are presented in the legend of the heat map to indicate the
boundaries of the color spectrum.
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549 2138

Figure 5.11: The data set with the cell of the
Glatthorn (Austria) in the lower
left corner. The data set consists
of 20× 20 cells

490 2538

Figure 5.12: The data set with the cell of
the Schesaplana (Austria) in the
lower left corner. The data set
consists of 30× 30 cells

1084 3307

Figure 5.13: The data set with the cell of the
Piz Badile (Italy) in the lower
left corner. The data set consists
of 29× 29 cells





Chapter 6

The Results and Discussion

This chapter we will present and discuss the results from the experiments. Section 6.1 presents the
results and their discussion for the experiments of DVisibilityIndex . Similarly for DVisibil-
ityIndex , Section 6.2 presents and discusses the results.

6.1 The Results and Discussion of DVisibilityIndex

The results for the experiments of DVisibilityIndex are presented and discussed per aspect. The
first aspect is the scalability of DVisibilityIndex and can be found in Section 6.1.1. The second
aspect, Section 6.1.2, focuses on the characteristics of the data set, in our case the average visibility
of the profile. All results are presented in Appendix E

6.1.1 Running Time Plots

Figure 6.1 shows the running time of DVisibilityIndex for various data sets of various sizes.
The running time of the brute-force approach can be found in Figure 6.3. Note that for data sets
with more than 10,000 cells, the brute-force approach took too long and is therefore omitted. The
parabola data sets are also excluded, because their sizes are only up to 2,000 cells. Therefore
Figure 6.4 shows the running time of the parabola data sets separately.

Figures 6.1, 6.3 and 6.4 show that DVisibilityIndex scales well with respect to the data set
size and that DVisibilityIndex is very efficient compared to the brute-force approach. This is
expected, as the brute-force approach has a running time of O(n3) and DVisibilityIndex of
O(n log2 n). The running time of the brute-force approach for the line data sets and the peak
(a = −1) parabola data sets is very low, because the neighbors are the only cells that are visible.
Hence the running time of the brute-force approach becomes quadratic instead of cubed for those
data sets. The standard deviation of the running time of DVisibilityIndex is below 5% for all
data sets with a size of at least 10,000 cells, except for the two largest sine (b = 30) data sets, they
are just around the 6.5%. The standard deviation of the running time of the brute-force approach
is in general below 3%. For the parabola data sets most of the standard deviations for the different
sizes are larger, as many running times are very close to 0.

In Table 6.1 and Figure 6.2 the running time is divided by n log2 n. In most cases the value
becomes constant, for large data sets. There are two data set types that deviate from this behavior,
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namely the sine (b = 15) and the real-life data sets. The reason for this is the way they are gen-
erated. The generation of the data sets can introduce some artifacts. We will discuss the artifacts
and their source for each of these two types of data sets in a separate paragraph. Note that the
semi-random data sets are generated with randomness in mind and therefore a rapid increase or
decrease is not surprising.

For the sine data set there are only 15 peaks and valleys and therefore there are cells that have
the same elevation. Especially, around the top of the peaks and the bottom of the valleys. During
the generation of the data sets, non-integer values are rounded down to the nearest integer. This
is needed as DVisibilityIndex only works with non-negative integral input values. The steeper
the curve is, the less likely it is that neighboring cells have a different elevation. This generation
artifact is also present in the sine (b = 30) data sets, only there it is smaller as there are twice as
many peaks and valleys.

The real-life data sets are based upon the base data set of 3,000 cells. To increase the size of the
data sets, we have added extra cells in between two neighboring cells. The elevation of these cells
is interpolated along the line from one neighbor to the next. The way we generate the real-life data
sets decreases the average visibility index. For all types of data sets it is the case that the average
visibility index decreases, when the number of cells increases (see Figure 6.5). Figure 6.5 shows
that for the real-life data sets this decrease is more rapidly than for the other type of data sets.
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Figure 6.1: Running time of DVisibilityIndex for various data sets of various sizes.
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# cells Line
Semi
(d = 10)

Semi
(d = 15)

Sine
(b = 15)

Sine
(b = 30)

# cells
(for
Real)

Real

1,000
4.03·10−4 3.88·10−4 3.42·10−4 4.34·10−4 4.64·10−4 - -

5,000
3.40·10−4 3.32·10−4 2.95·10−4 3.59·10−4 4.73·10−4 3,000

3.578·10−4

10,000
3.34·10−4 3.37·10−4 3.00·10−4 3.59·10−4 5.49·10−4 8,997 .45·10−4

50,000
4.15·10−4 4.18·10−4 3.17·10−4 4.74·10−4 7.44·10−4 29,990

4.18·10−4

100,000
4.52·10−4 4.53·10−4 3.35·10−4 5.76·10−4 8.84·10−4 89,970

5.26·10−4

125,000
4.73·10−4 4.64·10−4 3.30·10−4 6.17·10−4 8.61·10−4 119,960

5.73·10−4

250,000
5.15·10−4 5.10·10−4 3.37·10−4 7.66·10−4 8.04·10−4 239,920

6.68·10−4

375,000
5.46·10−4 5.50·10−4 3.59·10−4 9.11·10−4 7.75·10−4 359,880

7.95·10−4

500,000
5.61·10−4 5.60·10−4 3.59·10−4 1.04·10−3 8.31·10−4 509,830

7.99·10−4

Table 6.1: The running time divided by n log2 n, where n denotes the number of cells.
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Figure 6.3: Running time of the brute-force approach for various data sets of various sizes.
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Figure 6.5: The average visibility index for various data sets of various sizes.
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6.1.2 Characteristic Plots

Figure 6.1 hints that the visibility of the cells also plays a role in the running time, as for example
DVisibilityIndex is fastest on the line data sets. The line data sets have minimal visibility pos-
sible, as the visibility of each cell is only limited to the neighbors of each cell. It seems that this
phenomenon is also visible when we compare the two sine data sets. The sine data sets with 30
peaks (b = 30) has a lower average visibility index then the sine data sets with 15 peaks (b = 15)
and DVisibilityIndex has a lower running time for the sine data sets with 30 peaks. Figure 6.7
shows this phenomenon more explicitly. The data sets are generated with the sine formula using
different values for b. The size of all data sets are fixed at 100,000 cells and each run is executed 10
times.

The reason for this lower running time is the lower computation time of the red-blue intersec-
tions. RedBlueIntersectionCount uses a segment tree for the actual intersection computation
(also see Section 3.1.3). The segment tree is built out of slabs and each slabs contains a number of
dual half-lines. During the initialization of the segment-tree dual half-lines are grouped together,
as long as there are only dual half-lines of the same color in each slab. In a higher level recursion
step all cells in a valley are grouped together as their critical rays have a relative large angle and
go through cells around the same point. The visibility of theses cells is relatively similar, as it is
limited to the valley they are part of; they cannot see beyond the peaks that enclose the valley, as
illustrated in Figure 6.6. This is also visible in Figure 6.8, as the number of slabs is in general larger
for the data set with the higher average visibility index. Note that the number of slabs during
RedBlueIntersectionCount only influences the practical running time. The data sets we have
created are explicitly constructed according to a certain structure. The semi-random data sets also
contain this valley structure, only on a much smaller scale and are therefore less smooth than the
real-life data sets. Hence they have a lower average visibility index and running time.

pi

ρleft of pi ρright of pi

pj

ρleft of pj ρright of pj

Figure 6.6: Illustration of how valleys are grouped together in the same slabs during initialization
of the segment tree during RedBlueIntersectionCount . The visible region for pi
or pj are depicted in green.
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Figure 6.7: Running time and visibility index for the sine data sets with different values for b and
100,000 cells.
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Figure 6.8: The number of slabs used during RedBlueIntersectionCount and visibility index
for the sine data sets with different values for b and 100,000 cells. The “Number of slabs
used in the last step” denotes the number of slabs during the last recursive step and
the “Maximum number of slabs” denotes the maximum number of slabs used in any
recursive step.
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6.2 The Results and Discussion of DVisibilityIndex

This section presents and discusses the results of the experiments for DVisibilityIndex . For
each of the data sets we present a graph with the visibility index of the brute-force approach (red
line) and the approximation of DVisibilityIndex for various m (blue lines) in Figures 6.9 to 6.11
and F.1 to F.4. Figures 6.12 to 6.14 and F.5 to F.8 presents the number of visible cells instead of the
visibility index. The graphs of the data sets not presented here can be found in Appendix F.1. All
results are presented in Appendix F.2.

Before we continue with the discussion of the results, we must note that the results are prelim-
inary and therefore their discussion is limited and only serves as starting point for future research.
The results show that the average of the visibility index along the different lines stabilizes relat-
ively soon (Figures 6.9 to 6.11 and F.1 to F.4). For m > 10 the average visibility index is relatively
stable. This would mean that the approximation is rather efficient, but therefore the approximation
must also be relatively accurate.

The results show that this is not really the case (Figures 6.12 to 6.14 and F.5 to F.8). The visibility
index of the brute-force approach is much lower than the visibility index of DVisibilityIndex .

There are two reasons that can explain this. The first reason has to do with the density of the
lines. All lines start at the corner cell and therefore the density of the lines in that part of the grid
is much higher. Cells that are relatively close to the corner cell are more likely to be visible, as
there are less cells in between that can obstruct the visibility and cells in the neighborhood tend to
have similar elevations. Figures 6.15 to 6.17 and F.9 to F.12 show the cells that are visible according
to the brute force approach and they show that the cells relatively close are often visible from the
corner cell. The area close to the corner cell weights heavier than other areas of the grid, because
the density of the lines in the bottom left area of the gird is higher. Figure 5.10 shows this for
m = 5, as there is only one line that covers the the top right area of the grid and 5 lines that cover
the bottom left area.

The second reason has to do with ratio itself. The visibility index is the ratio of visible cells
with respect to the total number of cells. The total number of cells in the brute-force approach is
the entire grid of n2 cells, while the total number of cells for each line is at most 2 · n (and at least
n). Therefore the visibility index of the brute-force approach can be substantially lower, even if the
number of visible cells is similar.

What the results show that for future research a better combine metric must be used. A metric
that takes into account the number of cells in the grid and the number of cells intersecting a line.
The metrics we propose in Section 4.2.2 and Chapter 8 could increase the accuracy.
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Figure 6.9: The visibility index of the brute-force approach (0.1000) and the approximation of
DVisibilityIndex for the Glatthorn data set.
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Figure 6.10: The visibility index of the brute-force approach (0.0033) and the approximation of
DVisibilityIndex for the Schesaplana data set.
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Figure 6.11: The visibility index of the brute-force approach (0.0785) and the approximation of
DVisibilityIndex for the PizBadile data set.
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Figure 6.12: The number of visible cells for the brute-force approach and the approximation of
DVisibilityIndex for the Glatthorn data set.
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Figure 6.13: The number of visible cells for the brute-force approach and the approximation of
DVisibilityIndex for the Schesaplana data set.
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Figure 6.14: The number of visible cells for the brute-force approach and the approximation of
DVisibilityIndex for the PizBadile data set.
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plana data set.
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Chapter 7

Conclusions

We have studied the total visibility index problem, where the visibility index of a cell c in a grid
terrain T is defined as the percentage of cells in T that are visible from c. We have proposed DVis-
ibilityIndex for the 1-dimensional version of the problem that runs in O(n log2 n) time, where
n is the size of the terrain. DVisibilityIndex follows the divide-and-conquer paradigm and
uses duality and RedBlueIntersectionCount to compute the total visibility index. We have
implemented DVisibilityIndex and shown that the implementation adheres to the theoretical
running time. DVisibilityIndex is able to compute the total visibility index for 500,000 cells
within 150 seconds, whereas the brute-force approach can only compute it for 5,000 cells within
that time frame (using the real-life data sets). We have also shown that terrains with a lower
average visibility index have a slightly lower running time in practice.
DVisibilityIndex forms the bases of our ideas to approximate the total visibility index of a

(2-dimensional) grid terrain. DVisibilityIndex generates m lines and calls DVisibilityIndex
on each of those lines. The resulting visibility index is the average of the visibility indices from
the different lines. The theoretical running time of DVisibilityIndex would be O(mn log2 n),
where m is the number of lines and n the size of the n× n grid. Although this depends on the way
we combine the visibility indices from the calls to DVisibilityIndex . DVisibilityIndex is
relatively fast and therefore we can choose m fairly high. For example, consider a grid of 2,000 by
2,000 cells. The size of the input for each of the calls to DVisibilityIndex has at most 4,000 cells
and DVisibilityIndex needs less than 0.5 seconds to compute the visibility index. This means
that DVisibilityIndex can approximate the visibility index using 7,200 different lines per hour.

For the 2-dimensional version we did a basic experiment and thereby we left the evaluation of
different schemes to generate lines for future research. We have shown that DVisibilityIndex
has the possibility to be an efficient approximation, on the condition that it is also relatively ac-
curate. We have several ideas to possibly improve the accuracy of DVisibilityIndex . The most
simple improvement is to use different ways of combining the results from DVisibilityIndex .
Another improvement is to use different line generating schemes. DVisibilityIndex can also be
improved by using different grid terrain representations. All of these improvements require rel-
atively small modifications of DVisibilityIndex and are mainly limited to DVisibilityIndex
.
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Chapter 8

Future Work

This chapter discusses several aspects that could be studied more extensively or are open ques-
tions, e.g. different schemes for generating lines for the total visibility index approximation. We
also discuss some modifications that could improve the running time of DVisibilityIndex .
These modifications are not necessarily improving the worst-case running time, but could im-
prove the constants within the big-O.

The approximation of the 2-dimensional version uses lines to approximate the total visibility
index. An example of generating lines was the random approach. In combination with the know-
ledge that the total visibility index along these lines is computed exactly, a statistical analysis
could be used to determine how good the approximation is theoretical. Thereby also analyzing
how many lines you need for a decent approximation (in theory).

The current approximation uses a weighted average to combine the results from the different
lines. There are a lot of different possibilities in combining results. We did not test if our current
idea is the best, so it is interesting to see which approach works best. We have seen that the ap-
proximation can be efficient if it would be accurate (enough). A similar, but different, approach for
combining results is to use more auxiliary information of DVisibilityIndex . Currently our idea
is to partition the grid in areas between two lines. It is possible to extent that by also partitioning
the line in a number of sectors. Figure 8.1 shows an example of such a sectioning of the partitions.
In this sectioning the visibility index for that section is computed using the average visibility in-
dex along the lines that envelope that section. Using different ways of combining the results of
DVisibilityIndex , also means we could use other grid representations. We restricted ourselves
to a simplified representation of DEM’s, but for future research (and to make the algorithm more
practical) it could be converted to work on DEM’s using interpolation or on TIN’s.

Another possible study is to compare different approaches to the approximation of the 2-
dimensional problem. For example dividing the grid into four quadrants and recursively approx-
imate the total visibility index for each quadrant and then compute the visibility index for each
quadrant with respect to the other quadrants. This approach would use the divide-and-conquer
paradigm and could lead to an efficient and better approximation.

To speed-up the approximation, DVisibilityIndex could also be improved. The most simple
way is to improve the performance of the implementation. Another way of possibly improving
performance is to improve the algorithm. A way to improve DVisibilityIndex is to tweak the
splitting decision. DVisibilityIndex could split the input at a peak and not halfway. Splitting
at the peaks can reduce the number of slabs that occur during the RedBlueIntersectionCount
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Figure 8.1: An example of dividing the partitions (green and red) into sections (dashed) for comb-
ing the results (blue) for a single cell (gray) with m = 4 lines

and thereby speeding up the algorithm. Another way is to replace the pre-processing step in which
the topological order is computed. Currently we use a sweep from left to right and maintain a
sweep-tree. Once we have handled all the points we do an in-order traversal of this sweep-tree to
obtain the topological order (according to aboveness). Maybe it is possible to use a sweep from
high to low to directly compute the topological order.

Both DVisibilityIndex and DVisibilityIndex are in-memory algorithms. To be relevant
for GIS-applications they need to be able to cope with very large data sets. So it will be interesting
to see what the I/O-efficiency of DVisibilityIndex and DVisibilityIndex is and if they can be
modified to be I/O-efficient.
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Appendix A

Design Decisions

This section presents some important notions and choices made during the implementation of
the algorithms. In many cases it will describe the non-trivial design decision made in the im-
plementation and their rationale. The decisions are categorized in five sections. The first four
sections are limited to DVisibilityIndex and the last section is limited to DVisibilityIndex .
Appendix A.1 presents the decisions with respect to the representation of the data. Appendix A.2
describes how we handle internal computations and their internal use. The third section, Ap-
pendix A.3, describes some non-trivial decisions within the implementation of the algorithms.
The fourth section, Appendix A.4 describes an important limitation in the implementation due to
integer overflow. The main limitation is the number elevations in the input and the value of the
elevations themselves. It also presents ways to deal with those limitations. The implications of the
implementation of DVisibilityIndex for DVisibilityIndex are discussed in Appendix A.5.

A.1 Data Representation

The most convenient way to show the data representation and their use is by means of a class
diagram, shown in Figure A.1. The class diagrams shows that the implementation is separated in
two packages, the Data package and the Algorithms package. Within these packages the classes
used to implement the concepts of the algorithms are grouped together. The usage between classes
is shown to show the interaction and dependencies of the different classes. The implementation is
constructed in a modular fashion, such that each (part of the) algorithm can be replaced easily.

A.1.1 Input Values

The first thing to notice is that we restrict the elevation values to non-negative values. If we would
use doubles, the internal representation plays a role. In C++, for example, doubles are represented
using fractions. Although it is possible to use exact arithmetic, representing the input as integers
is also more convenient. In the real-life setting elevations of terrains are measured within a finite
accuracy, for example in meters or centimeters. So to model the elevations as integral values is
representative for the real world. If an input would have negative data, it can be simply trans-
formed by shifting the values such all values are non-negative. In summary the input data only
contains non-negative integral values.
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A.2. COMPUTATIONAL DECISIONS

A.1.2 Initial Critical Rays

The critical rays are represented using a starting point and another point. The initial critical rays
are constructed using an artificial point. After the initialization the critical rays point downwards.
In the implementation the critical rays are initialized to go through the point directly below its
neighbor at y = −1. All elevations are non-negative and therefore any critical ray that goes
through a point from the input has a smaller angle than the initial critical ray. Hence this repres-
entation does not interfere with the correctness of the algorithm. The reason for this representation
is that some computations divide by ∆x, which would be 0 if the ray points downwards, and an
unwanted division by 0 would occur.

A.2 Computational Decisions

The first and most important decision is that no precision-reducing operations are used. Examples
of precision-reducing operations are division and square-root. Normally we would compute cer-
tain values by using divisions and use them in a comparison (or other computations). To remove
the division from the computations, we do not actually compute the outcome and instead rewrite
the computations. An example of this is given below for a simple comparison between two frac-
tions. To decide if y1

x1
< y2

x2
we check if x2 · y1 < x1 · y. One has to take care that the outcome

remains valid, so if either x1 < 0 or x2 < 0 we need to flip the sign.

The second decision is that each computation has its own function, this to improve the readab-
ility of the implementation and allowing for a modular structure of computations. The rewritten
computations are not necessarily as readable as the original computation, so using a modular
structure increase the readability of the algorithm. Almost all of the computations (and comparis-
ons) are used to compute whether one element is above/below or before/after another element.
The outcome of the computations are represented using -1, 0 and 1. -1 represents below/be-
fore, 0 represent co-linear and 1 represent above/after. Adding the co-linearity resolution from
Palazzi & Snoeyink [17] can be done easily in a modular structure without modifying the com-
putation itself. We do this by using a wrapper around the computations and adding a call to the
co-linearity resolution.

The third computational decision has to do with how we compute certain proper-
ties. As mentioned above, almost all comparisons are used to determine below/before or
above/after. The above and below are used with respect to the aboveness relation defined by
Palazzi & Snoeyink [17]. Computing whether a point is above a segment is done by using the
counter-clock-wise test. When a point is to the right of a left-oriented dual half-line it is above
that dual half-line. Symmetrically, when a point is to the left of a right-oriented dual half-line, it
is above that dual half-line. The aboveness relation is not only defined on points and segments,
but also on segments and segments. The aboveness relation between segments is only used to
compare elements within the same colored set. Segments within the same set do not intersect and
are half-lines, therefore aboveness can be determined by slope. For left-oriented dual half-lines it
holds that a higher slope corresponds to a lower aboveness and for right-oriented dual half-lines a
higher slope corresponds to a higher aboveness. Comparing segments from different colored sets
is useless as those can intersect. To be more precise, those intersections are what we are looking
for.
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A.3 Algorithmic Decisions

In the implementation of the Red-Blue Intersection algorithm (Algorithm 2), there are a few non-
trivial modifications. These modifications do not change the correctness, but simplify the imple-
mentation.

The first modification has to do with the aboveness order. The aboveness order within a slab σ
is represented by a list SL(σ). The wall intersections of the shorts in σ need to be added to SL(σ).
The modification is that the aboveness relation between the wall intersections themselves does not
have to be maintained, only the aboveness order betweenR short and B long segments. For all red
wall intersections that are above a blue long segment b1 and below a blue long segment b2 (where
b2 is directly above b1 if we only consider blue long segments), the aboveness order is irrelevant.
Symmetrically for blue short and red long segments. During the short-long slab sweep the ranks
of red short segments and number of open red short segments are used to compute the number of
intersections per element. The ranks of the red short segment is only based on the number of blue
long segments above it. The number of open shorts for a blue long segment only depends on the
number of starting points of red short segments for which its endpoint is not encountered in the
sweep. So the internal order is not relevant for those two values. Also see the example presented
in Figure 3.4. This means that we can use this modifications to speed up the implementation by
only checking the list with blue long segments of σ instead of the complete SL(σ). The addition
of the wall intersection to this list can be done based on the location of b2 in SL(σ). This location
is stored whit the elem itself, as SL(σ) is a linked list. Symmetrically, this modifications can be
applied for blue short and red long segments.

Computing in which slab a dual half-line is long is a key part in the algorithm. Luckily
Palazzi & Snoeyink [17] present a simple property of computing this: If the start slab and the end slab
are not adjacent, then and only then the segment can be long in between the start and end slab. If a segment
starts in slab s and s is even, then the segment is long in slab s + 1 and if a segment ends in slab e and e is
uneven, then the segment is long in slab e− 1. Palazzi & Snoeyink [17] present some more “tricks” to
simplify the algorithm. Examples of those “tricks” are that the construction of the segment tree is
done on a level-by-level basis, reducing the space complexity to linear, and that merging the slabs
is done by simply halving the start and end index of each element.

The sweep tree used in Palazzi & Snoeyink [17], during the first phase of the algorithm (com-
puting the topological order), must be a balanced binary search-tree in order to get the O(n log n)
running time. As a reminder the topological order is computed form red dual half-lines and blue
starting points and for blue dual half-lines and red starting points. The implementation uses a
red-black tree in order to get a balanced binary search-tree. A detailed explanation of red-black
trees can be found in the book by Cormen et al [3]. The tree stores the aboveness order of dual
half-lines of the same color and is used to locate the dual half-line that is directly above an op-
posing colored starting point. The dual half-lines either start at minus infinity (left-oriented) or
end at plus infinity (right-oriented). For simplicity we color the left-oriented dual half-lines blue
and the right-oriented dual half-lines red. Computing the topological order uses a sweep-line ap-
proach and constructs a sweep-tree that corresponds to the aboveness order at the sweep line. All
blue dual half-lines start at minus infinity, so the sweep-tree is just a completely balanced binary
search tree that contains all blue dual half-lines. We can construct such a tree by simply ordering
the dual half-lines on slope (also see modification in Appendix A.2). These half-lines are deleted
when we encounter their starting point. Therefore we can perform the normal deletion and the
height of the tree remains at most O(log n). For red dual half-lines it is the other way around. We
start with an empty tree and add dual half-lines when we encounter their starting point. Red dual
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half-lines are never deleted, as those end at plus infinity. Therefore we only need to make sure the
tree is kept balanced during insertions. So we can simplify the implementation by implementing
the insertions from a red-black tree and the deletions from an ordinary binary search tree.

Another modification to the sweep tree we did, was making it non-recursive and stack-less. We
did this to overcome the relatively small amount of stack space available when we are traversing
the sweep-tree. The algorithm we used was the algorithm of Morris [16] and it is a tree traversal
algorithm without the use of a stack or any recursion.

A.4 Overflow Limitation

As mentioned in Appendix A.2, all computations with divisions are transformed in such a way
that they no longer use precision-reducing operators. This has a major effect on the types used
in these computations. For example computing the counter-clockwise test with input values in
the range of a couple of thousand already results in a 32-bit integer overflow, as the internal com-
putations use multiplication with three operands. The computations are relatively simple, but
because of the possibly large numbers the auxiliary values can take it is very likely to overflow
32-bit integers.

We can cope with this by using 64-bit integers for all computations and auxiliary values. How-
ever, this just shifts the problem and does not solve it. A solution would be to require that compu-
tations can handle arbitrarily large integers. An example library that can handle arbitrarily large
integers is GMP [24]. There are some other libraries and each has its own advantages and disad-
vantages. However, using such a library can reduce the performance, as there is more work to be
done during computations. It also requires a lot of work to implement the current computations
within this library. We do not consider the large numbers within the scope of this project and
therefore we did not use such a library and used 64-bit integers instead.

The implications of this decision is that there is a maximum number of cells and a maximum
elevation for those cells. To compute what the actual limitations are for the input data, we abstract
from the actual meaning of the computations and only consider the ranges of variables. Thereby
we can express the maximum value the computations can handle. The input or parameters for
the computations are based on the input data and are therefore 32-bit signed integers. For some
computations the difference between elevations and/or indices is required and because the input
is always positive, as described in Appendix A.1, the absolute value of the difference also remains
within the same range as the input data. Therefore we can restrict ourselves to the same range as
the input, as we use signed integers to accommodate for the difference. The maximum index and
elevation in the implementation can be 1,154,704. As long as the values remain below 1,154,704,
we know that an integer overflow cannot occur.
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A.5 Implications for the 2-Dimensional Problem

DVisibilityIndex requires non-negative integral input. DVisibilityIndex interpolates the el-
evation for non-center points. These elevations need to be rounded, to satisfy the preconditions of
DVisibilityIndex . Therefore we scale the generated input along the line with a factor f of 100.
We picked f = 100, as the elevations in the order of thousands is common in real-life data sets
and we do not want to cross the overflow limit (discussed in Appendix A.4). The larger the factor
the more precise the visibility computations will be, as the number of significant digits increases
in the computation. The scaling is also discussed in Section 4.2.4.
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Appendix B

Data Sets for the 1-Dimensional
Problem

In this chapter we will present some more examples of semi-randomly generated data sets. From
these inputs it is clear that a decent value for d is important. If the value is low, you get a smoother
profile and if d is high, you get a very rough profile.

Figure B.1: Semi-random generated data set with 150 cells and elevations in between 0 and 82, the
dispersion was set to 5.
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Figure B.2: Semi-random generated data set with 150 cells and elevations in between 0 and 113,
the dispersion was set to 10.

Figure B.3: Semi-random generated data set with 150 cells and elevations in between 0 and 211,
the dispersion was set to 20.
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Appendix C

Data Sets for the 2-Dimensional
Problem

The visualization of the data sets uses a heat map to indicate the elevation of each cell. A cell with
a low elevation is yellow and a cell with a high elevation is red. The minimum and maximum
elevation are presented in the legend of the heat map to indicate the boundaries of the color spec-
trum. The visualization is on the left-hand side and on the right-hand side is a screenshot of the
map [26] of the area depicted. The map has two markers, the red one (with dot) shows the bottom
left corner and the other one (often gray) shows the top right corner. Note that the markers are
not placed at the border of the cells, but are placed around the center of the cell. More specifically,
when the bottom left corner cell includes a mountain peak (also included in the name) the marker
is placed upon that peak. The map is included to give the data sets more context.
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549 2138

Figure C.1: The data set with the cell of the Glatthorn (Austria) in the lower left corner. The data
set consists of 20× 20 cells

490 2538

Figure C.2: The data set with the cell of the Schesaplana (Austria) in the lower left corner. The data
set consists of 30× 30 cells
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544 2220

Figure C.3: The data set of the top right 20× 20 cells of the Schesaplana data set (Figure C.2).

1084 3307

Figure C.4: The data set with the cell of the Piz Badile (Italy) in the lower left corner. The data set
consists of 29× 29 cells
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396 1628

Figure C.5: The data set with the cell of the Furgglenfirst (Austria) in the lower left corner. The
data set consists of 20× 20 cells

868 3331

Figure C.6: The data set with the cell of the WildSpitze (Austria) in the lower left corner. The data
set consists of 37× 37 cells
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222 3628

Figure C.7: The data set containing a part of the Italian Alpes. The data set consists of 75× 75 cells
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Appendix D

GUI Screenshots

In this chapter we will show some more screenshots of the GUI. Many of these screenshots show
the less interesting features of the application.

Figure D.1: The file menu structure for opening and exporting data.
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Figure D.2: The input menu structure for creating data sets.

Figure D.3: The formula menu structure for adjusting the formula parameters.
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Appendix E

Results of the Experiments for the
1-Dimensional Problem

In this chapter all results of the experiments from Section 5.2 are presented. The results are presen-
ted per data set. A brief description of the table format is presented in Appendix E.1. After the
description we first present the results of DVisibilityIndex in Appendix E.2 and then the res-
ults of the brute-force approach in Appendix E.3. In the last section, Appendix E.4, we present the
results for the experiment where we look at the visibility index and its influence on the running
time.

E.1 Description of the Tables

Before we present the tables with the results, we give a brief description of the format of the tables
and the values within.

# cells The number of cells.

# slabs in last step The number of slabs in the segment tree used by RedBlueIntersection-
Count in the last step of the recursion (the step in which the two halves of the (complete)
data set are merged).

Max. # slabs The maximum number of slabs in the segment tree in any call to RedBlueInter-
sectionCount during the execution of DVisibilityIndex .

Avg. visibility The average visibility index.

Max. visibility The maximum visibility index.

Avg. running time The average running time of the the different runs in milliseconds.

St. dev. The percentage of standard deviation of the different runs with respect to the average
running time.

Run i The running time of the ith run of the experiment in milliseconds.
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E.2 DVisibilityIndex Running Times and Results

# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. dev.

3,000 66 488 2.36·10−2 1.43·10−2 143 4.71
8,997 158 1318 2.06·10−2 1.38·10−2 535 1.45
29,990 408 1318 1.89·10−2 1.34·10−2 2,772 2.37
89,970 1,144 11,336 1.67·10−2 1.24·10−2 12,806 3.20
119,960 1,534 14,644 1.58·10−2 1.22·10−2 19,584 1.07
239,920 2,740 26,542 1.28·10−2 1.15·10−2 51,168 3.04
359,880 1,534 35,862 1.11·10−2 1.13·10−2 97,518 2.48
509,830 396 44,840 832·10−3 3.29·10−2 146,493 1.79

Table E.1: The results of DVisibilityIndex on the real-life data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
3,000 140 140 140 140 140

156 140 140 140 156
8,997 530 530 530 546 530

546 530 530 530 546
29,990 2,652 2,698 2,730 2,761 2,745

2,839 2,808 2,808 2,854 2,823
89,970 12,027 12,370 12,495 12,682 12,823

12,916 13,150 13,135 13,182 13,275
119,960 19,078 19,390 19,624 19,702 19,702

19,796 19,656 19,531 19,656 19,702
239,920 48,001 49,296 50,200 50,949 51,495

52,431 52,072 52,197 52,400 52,634
359,880 93,054 94,738 96,189 98,794 96,922

96,704 99,668 100,741 99,231 99,138
509,830 140,727 142,963 146,952 148,761 147,357

147,389 147,607 147,248 147,950 148,247

Table E.2: The running times of the different runs of DVisibilityIndex on the real-life data set.
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# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. Dev.

1,000 6 6 3.00·10−3 3.00·10−3 34 18.60
5,000 6 6 5.99·10−4 6.00·10−4 223 3.47
10,000 6 6 3.00·10−4 3.00·10−4 530 4.39
50,000 6 6 6.00·10−5 6.00·10−5 3,859 3.37
100,000 4 6 3.00·10−5 3.00·10−5 9,232 2.24
125,000 4 6 2.40·10−5 2.40·10−5 11,800 1.29
250,000 4 8 1.2·10−5 1.2·10−5 27,112 1.83
375,000 12 12 8.00·10−6 8.00·10−6 46,132 1.87
500,000 16 16 6.20·10−6 6.20·10−6 64,295 0.78

Table E.3: The results of DVisibilityIndex on the line data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
1,000 31 31 46 31 31

31 31 46 31 31
5,000 218 234 218 218 234

218 218 218 218 234
10,000 499 499 514 546 514

546 520 561 530 561
50,000 3,681 3,759 3,837 3,837 3,884

3,822 3,837 3,837 3,915 4,180
100,000 9,718 9,188 9,172 9,204 9,469

9,219 9,063 9,094 9,094 9,094
125,000 11,559 11,809 11,637 11,637 11,887

11,934 11,762 12,027 11,934 11,809
250,000 26,161 26,738 26,988 27,112 26,910

27,393 27,237 28,080 27,112 27,393
375,000 44,304 45,364 45,879 46,958 45,786

46,581 46,737 47,158 47,158 45,957
500,000 63,242 64,218 64,584 64,209 65,104

63,975 64,272 64,849 64,209 64,287

Table E.4: The running times of the different runs of DVisibilityIndex on the line data set.
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# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. Dev.

1,000 122 122 1.97·10−3 1.24·10−1 40 19.36
5,000 212 212 4.41·10−3 5.90·10−2 257 4.31
10,000 60 210 1.68·10−3 2.16·10−2 589 2.43
50,000 570 570 4.26·10−3 1.33·10−2 5,059 1.76
100,000 300 494 2.13·10−3 6.41·10−2 12,467 1.13
125,000 1,102 1,102 2.06·10−4 1.26·10−2 16,938 0.80
250,000 1,326 1,326 9.69·10−5 5.81·10−3 41,359 1.09
375,000 438 1,076 6.38·10−5 9.31·10−3 70,229 1.80
500,000 1,402 1,402 4.83·10−5 3.75·10−3 100,568 1.55

Table E.5: The results of DVisibilityIndex on the semi-random (d = 10) data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
1,000 46 46 31 46 46

46 31 31 46 31
5,000 249 265 249 249 265

249 265 280 249 249
10,000 577 577 592 592 577

592 577 624 592 592
50,000 4,867 4,976 4,992 5,054 5,070

5,116 5,132 5,148 5,116 5,116
100,000 12,168 12,292 12,402 12,542 12,495

12,511 12,573 12,495 12,573 12,620
125,000 16,816 16,894 16,957 17,019 17,050

17,191 16,770 16,894 16,770 17,019
250,000 40,950 41,589 41,386 41,464 41,968

41,636 41,542 41,277 41,464 40,310
375,000 67,953 68,842 69,420 69,638 70,231

71,214 71,463 71,136 71,931 70,465
500,000 98,155 98,514 98,779 99,964 101,306

101,571 101,977 102,008 101,743 101,655

Table E.6: The running times of the different runs of DVisibilityIndex on the semi-random (d =
10) data set.
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E.2. DVISIBILITYINDEX RUNNING TIMES AND RESULTS

# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. Dev.

1,000 44 44 1.15·10−2 6.00·10−2 39 20.53
5,000 36 140 3.25·10−3 4.66·10−2 251 4.53
10,000 154 184 1.86·10−3 2.65·10−2 595 3.21
50,000 290 598 4.94·10−4 1.17·10−2 5,088 2.03
100,000 422 634 2.10·10−4 5.74·10−3 12,505 0.79
125,000 358 970 1.65·10−4 6.94·10−3 16,628 0.94
250,000 506 1,236 1.04·10−4 6.64·10−3 41,032 1.99
375,000 2,732 2,732 7.12·10−5 4.83·10−3 70,752 1.22
500,000 812 1,264 4.96·10−5 3.14·10−3 100,378 1.25

Table E.7: The results of DVisibilityIndex on the semi-random (d = 15) data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
1,000 46 46 31 46 31

31 46 31 31 46
5,000 249 249 280 249 249

249 234 249 294 249
10,000 577 592 592 639 608

592 592 577 608 577
50,000 4,867 4,960 5,038 5,086 5,148

5,148 5,132 5,163 5,163 5,179
100,000 12,292 12,386 12,480 12,604 12,589

12,526 12,511 12,573 12,573 12,511
125,000 16,660 16,489 16,536 16,816 16,894

16,801 16,567 16,536 16,520 16,458
250,000 39,592 40,154 40,653 40,856 40,856

40,950 41,125 41,917 41,995 42,135
375,000 70,215 70,590 69,934 70,371 71,448

71,650 71,728 71,838 70,418 69,326
500,000 98,592 99,450 99,684 99,590 99,715

100,074 102,086 102,164 101,164 100,494

Table E.8: The running times of the different runs of DVisibilityIndex on the semi-random (d =
15) data set.
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APPENDIX E. RESULTS OF THE EXPERIMENTS FOR THE 1-DIMENSIONAL PROBLEM

# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. Dev.

1,000 68 122 4.05·10−2 5.00·10−2 43 22.51
5,000 320 620 3.91·10−2 4.96·10−2 271 6.78
10,000 570 1,182 3.89·10−2 4.96·10−2 635 3.28
50,000 1,680 4,910 3.83·10−2 4.94·10−2 5,776 3.22
100,000 3,050 9,542 3.77·10−2 4.92·10−2 15,882 4.23
125,000 3,738 11,774 3.74·10−2 4.89·10−2 22,118 4.56
250,000 1,382 22,808 3.63·10−2 1.48·10−1 61,544 4.65
375,000 1,240 27,048 3.56·10−2 1.25·10−1 117,192 4.77
500,000 112 20,450 3.49·10−2 4.31·10−1 186,939 4.95

Table E.9: The results of DVisibilityIndex on the sine (b = 15) data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
1,000 46 62 46 31 46

46 46 46 31 31
5,000 296 249 265 265 312

265 265 265 265 265
10,000 592 624 624 639 639

624 670 639 655 639
50,000 5,366 5,596 5,662 5,928 5,756

5,818 5,881 5,928 5,896 5,928
100,000 14,570 15,022 15,459 15,787 15,943

16,286 16,348 16,473 16,520 16,411
125,000 20,014 20,904 21,724 22,105 22,354

22,354 22,620 23,259 22,651 23,197
250,000 55,645 58,406 59,946 60,902 61,916

62,431 63,944 64,116 63,913 64,225
375,000 106,984 108,997 113,419 116,766 119,215

120,759 121,305 121,305 121,524 193,362
500,000 171,959 171,725 179,010 188,838 188,675

193,721 192,285 193,580 196,232 193,362

Table E.10: The running times of the different runs of DVisibilityIndex on the in (b = 15) data
set.
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E.2. DVISIBILITYINDEX RUNNING TIMES AND RESULTS

# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. Dev.

1,000 40 72 2.15·10−2 2.60·10−2 46 15.86
5,000 166 304 2.00·10−2 2.48·10−2 357 5.64
10,000 316 620 1.98·10−2 2.48·10−2 969 2.45
50,000 998 2,754 1.96·10−2 2.48·10−2 9,065 3.25
100,000 1,698 4,910 1.94·10−2 2.47·10−2 24,393 1.99
125,000 2,036 6,054 1.93·10−2 2.47·10−2 30,859 1.54
250,000 516 11,774 1.91·10−2 1.41·10−1 64,662 4.90
375,000 112 14,230 1.84·10−2 4.61·10−1 99,610 6.40
500,000 78 22,808 1.92·10−2 4.78·10−1 148,902 6.36

Table E.11: The results of DVisibilityIndex on the sine (b = 30) data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
1,000 46 31 46 46 62

46 46 46 46 46
5,000 343 343 343 343 343

390 358 343 390 374
10,000 936 936 967 967 1,014

967 967 967 998 967
50,000 8,439 8,642 9,110 9,126 9,204

9,172 9,204 9,157 9,438 9,157
100,000 23,384 24,226 24,523 24,694 24,897

24,944 24,788 24,398 24,117 23,961
125,000 30,662 31,090 30,778 31,590 30,544

31,125 31,137 31,153 30,560 29,905
250,000 59,794 59,155 61,900 65,223 66,175

65,894 66,799 67,501 67,298 66,877
375,000 86,112 93,334 95,752 98,233 100,651

102,195 103,178 104,816 105,751 106,080
500,000 128,591 139,183 144,830 147,342 150,041

152,069 153,223 155,735 158,355 159,650

Table E.12: The running times of the different runs of DVisibilityIndex on the sine (b = 30)
data set.
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APPENDIX E. RESULTS OF THE EXPERIMENTS FOR THE 1-DIMENSIONAL PROBLEM

# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. Dev.

100 4 4 1 1 3 210.82
250 4 4 1 1 5 161.02
500 4 4 1 1 15 0.00
750 4 4 1 1 25 33.59
1,000 4 4 1 1 31 0.00
1,250 4 4 1 1 46 15.86
1,500 4 4 1 1 57 26.11
1,750 4 4 1 1 65 10.35
2,000 4 4 1 1 70 12.05

Table E.13: The results of DVisibilityIndex on the parabola (a = 1) data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
100 0 0 0 15 0

0 0 0 0 15
250 0 0 15 0 15

0 15 0 0 0
500 15 15 15 15 15

15 15 15 15 15
750 31 15 31 31 15

31 15 31 15 31
1,000 31 31 31 31 31

31 31 31 31 31
1,250 46 46 46 46 46

31 46 46 46 46
1,500 62 46 46 46 46

46 31 46 46 46
1,750 93 46 62 62 46

46 62 46 62 46
2,000 62 62 78 62 78

78 62 78 62 78

Table E.14: The running times of the different runs of DVisibilityIndex on the parabola (a = 1)
data set.
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E.2. DVISIBILITYINDEX RUNNING TIMES AND RESULTS

# cells
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. Dev.

100 6 6 2.98·10−2 3.00·10−2 2 316.23
250 6 6 1.20·10−2 1.20·10−2 6 129.10
500 6 6 5.99·10−3 6.00·10−3 15 0.00
750 6 6 4.00·10−3 4.00·10−3 23 36.66
1,000 6 6 3.00·10−3 3.00·10−3 34 18.60
1,250 6 6 2.40·10−3 2.40·10−3 45 19.58
1,500 6 6 2.00·10−3 2.00·10−3 54 15.62
1,750 6 6 1.71·10−3 1.71·10−3 71 19.35
2,000 6 6 1.50·10−3 1.50·10−3 76 9.79

Table E.15: The results of DVisibilityIndex on the parabola (a = −1) data set.

# cells Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
100 0 0 0 15 0

0 0 0 0 0
250 15 0 0 15 0

15 0 15 0 0
500 15 15 15 15 15

15 15 15 15 15
750 15 31 31 15 31

31 15 15 31 15
1,000 46 31 31 31 46

31 31 31 31 31
1,250 46 46 31 62 31

46 46 46 46 46
1,500 62 46 46 62 46

46 62 46 62 62
1,750 62 62 62 62 62

78 93 96 60 70
2,000 70 70 80 80 70

70 71 78 78 93

Table E.16: The running times of the different runs of DVisibilityIndex on the parabola (a =
−1) data set.
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APPENDIX E. RESULTS OF THE EXPERIMENTS FOR THE 1-DIMENSIONAL PROBLEM

E.3 Brute-Force Approach Running Times

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

3,000 16,572 0.24 16,567 16,614 16,536
8,997 485,739 0.31 485,769 484,240 487,207

Table E.17: The results of the brute-force approach on the real-life data set.

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

1,000 15 0.00 15 15 15
5,000 473 1.83 483 468 468
10,000 1,955 0.44 1,950 1.965 19.50

Table E.18: The results of the brute-force approach on the line data set.

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

1,000 556 1.56 561 561 546
5,000 31,605 1.56 31,044 31,964 31,808
10,000 66,501 2.31 67,251 67,516 64,738

Table E.19: The results of the brute-force approach on the semi-random (d = 10) data set.

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

1,000 166 5.22 171 156 171
5,000 8,923 0.70 8,860 8,965 8,923
10,000 91,759 1.14 92,960 91,057 91,260

Table E.20: The results of the brute-force approach on the semi-random (d = 15) data set.
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E.3. BRUTE-FORCE APPROACH RUNNING TIMES

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

1,000 315 4.76 300 315 330
5,000 33,312 8.56 36,603 31,761 31,574
10,000 253,432 0.18 253,032 253,921 253,344

Table E.21: The results of the brute-force approach on the sine (b = 15) data set.

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

1,000 145 6.36 140 156 140
5,000 16,187 0.95 16,364 16,114 16,083
10,000 132,459 0.74 133,411 132,506 131,461

Table E.22: The results of the brute-force approach on the sine (b = 30) data set.

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

100 5 173.21 0 15 0
250 83 10.43 93 78 78
500 41 21.12 46 31 46
750 2,246 0 2,246 2,246 2,246
1,000 5,303 0.51 5,319 5,272 5,319
1,250 10,415 0.61 10,452 10,452 10,342
1,500 18,241 0.94 18,142 18,142 18,439
1,750 29,848 0.06 29,858 29,827 29,858
2,000 45,234 0.46 45,286 45,411 45,006

Table E.23: The results of the brute-force approach on the parabola (a = 1) data set.

# cells
Avg.
running
time

St. dev. Run 1 Run 2 Run 3

100 0 × 0 0 0
250 5 173.21 0 15 0
500 5 173.21 0 15 0
750 10 86.60 0 15 15
1,000 15 0 15 15 15
1,250 26 35.99 31 15 31
1,500 36 24.06 31 31 46
1,750 57 16.30 62 62 46
2,000 78 0 78 78 78

Table E.24: The results of the brute-force approach on the parabola (a = −1) data set.
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APPENDIX E. RESULTS OF THE EXPERIMENTS FOR THE 1-DIMENSIONAL PROBLEM

E.4 Average Visibility Index and its Influence on the Running
Time Experimental Data

b
# slabs in
last step

Max. #
slabs

Avg.
visibility

Max.
visibility

Avg.
running
time

St. dev.

15 3,050 9,542 3.77·10−2 4.92·10−2 16,421 4.40
30 1,698 4,910 1.94·10−2 2.47·10−2 15,837 3.83
45 1,270 3,588 1.30·10−2 1.65·10−2 15,498 3.95
60 998 2,574 9.84·10−3 1.24·10−2 15,251 3.90
75 842 2,112 7.90·10−3 9.91·10−3 15,410 4.33
90 788 1,942 6.60·10−3 8.27·10−3 14,964 4.57

Table E.25: The results of DVisibilityIndex on the sine data sets of size 100,000 cells and various
values for b.

b Run 1/2 Run 3/4 Run 5/6 Run 7/8 Run 9/10
15 15,027 15,586 16,009 16,198 16,429

16,756 16,805 16,937 17,209 17,258
30 14,767 15,352 15,808 15,726 15,953

15,124 16,423 16,593 16,274 16,379
45 14,446 14,752 14,993 15,252 15,493

14,780 15,939 16,139 16,098 16,090
60 14,045 14,584 14,912 15,136 15,264

15,469 15,676 15,822 15,793 15,809
75 14,211 14,434 16,304 15,008 15,536

15,399 15,696 15,887 15,869 15,758
90 16,969 14,039 14,372 14,979 15,290

15,255 15,327 15,483 15,605 15,597

Table E.26: The running times of the different runs of DVisibilityIndex on the sine data sets of
size 100,000 cells and various values for b.
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Appendix F

Results of the Experiments for the
2-Dimensional Problem

The graphs of the results for the data sets not presented in Section 6.2 are presented in Ap-
pendix F.1. All results of the experiments from Section 5.3 are presented in Appendix F.2.

F.1 Graphs of data sets not already presented
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Figure F.1: The visibility index of the brute-force approach (0.3000) and the approximation of
DVisibilityIndex for the top right part of the Schesaplana data set.
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APPENDIX F. RESULTS OF THE EXPERIMENTS FOR THE 2-DIMENSIONAL PROBLEM
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Figure F.2: The visibility index of the brute-force approach (0.0100) and the approximation of
DVisibilityIndex for the Furgglenfirst data set.
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Figure F.3: The visibility index of the brute-force approach (0.0292) and the approximation of
DVisibilityIndex for the Wildspitze data set.
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Figure F.4: The visibility index of the brute-force approach (0.0011) and the approximation of
DVisibilityIndex for the Alpes data set.
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F.1. GRAPHS OF DATA SETS NOT ALREADY PRESENTED
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Figure F.5: The number of visible cells for the brute-force approach and the approximation of
DVisibilityIndex for the top right part of the Schesaplana data set.
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Figure F.6: The number of visible cells for the brute-force approach and the approximation of
DVisibilityIndex for the Furgglenfirst data set.
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Figure F.7: The number of visible cells for the brute-force approach and the approximation of
DVisibilityIndex for the Wildspitze data set.
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APPENDIX F. RESULTS OF THE EXPERIMENTS FOR THE 2-DIMENSIONAL PROBLEM
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Figure F.8: The number of visible cells for the brute-force approach and the approximation of
DVisibilityIndex for the Alpes data set.

Visible Not Visible

Figure F.9: The visible cells for the brute-
force approach for the right top
part of the Schesaplana data set.

Visible Not Visible

Figure F.10: The visible cells for the
brute-force approach for
the Furgglenfirst data set.
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F.1. GRAPHS OF DATA SETS NOT ALREADY PRESENTED

Visible Not Visible

Figure F.11: The visible cells for the brute-
force approach for the right top
part of the Wildspitze data set.

Visible Not Visible

Figure F.12: The visible cells for the brute-
force approach for the Alpes
data set.
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APPENDIX F. RESULTS OF THE EXPERIMENTS FOR THE 2-DIMENSIONAL PROBLEM

F.2 All Results of the Experiments for DVisibilityIndex

# lines (m)
Glat-
thorn

Schesa-
plana

Near
Schesa-
plana

Piz
Badile

Furgglen-
first

Wild-
spitze

Alpes

Brute-force 0.1000 0.0033 0.3000 0.0785 0.0100 0.0292 0.0011
2 0.2000 0.3500 0.4250 0.1379 0.2000 0.2568 0.2267
3 0.1684 0.2908 0.3798 0.1336 0.1947 0.2082 0.2142
4 0.2312 0.3583 0.3601 0.1591 0.2398 0.2327 0.2197
5 0.1667 0.3094 0.3660 0.1852 0.2563 0.2181 0.2066
6 0.2002 0.3308 0.3959 0.1838 0.2688 0.2551 0.2072
7 0.2057 0.3336 0.3750 0.1723 0.3157 0.2358 0.2073
8 0.2161 0.3412 0.3856 0.1836 0.2732 0.2530 0.2008
9 0.1971 0.3198 0.3924 0.1871 0.3214 0.2390 0.2042
10 0.2304 0.3072 0.3855 0.1989 0.3292 0.2428 0.2071
11 0.2049 0.3352 0.3873 0.2084 0.3145 0.2506 0.2040
12 0.2173 0.3339 0.3971 0.2109 0.3050 0.2479 0.2095
13 0.2187 0.3268 0.3887 0.1997 0.3370 0.2408 0.2048
14 0.2231 0.3315 0.3909 0.2262 0.3241 0.2401 0.2048
15 0.2211 0.3440 0.3911 0.2139 0.3126 0.2437 0.2017
16 0.2209 0.3350 0.3963 0.2062 0.3436 0.2477 0.1983
17 0.2162 0.3159 0.3968 0.2232 0.3365 0.2525 0.2032
18 0.2195 0.3333 0.3955 0.2101 0.3389 0.2516 0.2050
19 0.2165 0.3120 0.3846 0.2126 0.3618 0.2450 0.2112
20 0.2245 0.3195 0.3895 0.2133 0.3437 0.2448 0.2054
21 0.2183 0.3273 0.3901 0.2206 0.3338 0.2506 0.2078

Table F.1: The visibility index of the brute-force approach and the visibility index of DVisibil-
ityIndex for the various data sets.
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F.2. ALL RESULTS OF THE EXPERIMENTS FOR DVISIBILITYINDEX

# lines (m)
Glat-
thorn

Schesa-
plana

Near
Schesa-
plana

Piz
Badile

Furgglen-
first

Wild-
spitze

Alpes

Brute-force 40 3 120 66 4 40 6
2 4.0000 10.5000 8.5000 4.0000 4.0000 9.5000 17.0000
3 4.0000 10.3333 9.3333 5.0000 5.0000 9.0000 20.6667
4 6.0000 13.7500 8.7500 6.0000 6.2500 10.7500 21.0000
5 4.2000 11.8000 9.4000 7.2000 6.8000 10.2000 20.6000
6 5.3333 12.8333 10.1667 7.0000 7.1667 12.3333 20.5000
7 5.4286 13.1429 9.7143 6.7143 8.2857 11.2857 21.1429
8 5.8750 13.5000 10.0000 7.1250 7.1250 12.5000 20.2500
9 5.2222 12.5556 10.2222 7.3333 8.4444 11.6667 21.0000
10 6.3000 12.2000 10.1000 7.8000 8.5000 11.9000 21.5000
11 5.4546 13.3636 10.1818 8.0909 8.2727 12.2727 21.0000
12 5.9167 13.2500 10.4167 8.2500 8.0000 12.3333 21.7500
13 5.9231 13.0769 10.2308 7.6923 8.7692 11.8462 21.2308
14 6.0714 13.2857 10.2857 8.7857 8.4286 11.9286 21.2143
15 6.0000 13.7333 10.3333 8.2667 8.1333 12.1333 21.0000
16 6.0625 13.5000 10.5000 8.0000 9.0000 12.3125 20.6250
17 5.8824 12.5882 10.4706 8.7059 8.7647 12.5294 21.1765
18 6.0556 13.5000 10.5000 8.1667 8.8333 12.5000 21.3333
19 5.8947 12.5789 10.2105 8.2632 9.3684 12.1579 22.1579
20 6.1500 12.9500 10.3500 8.3000 8.9500 12.2500 21.2500
21 5.9524 13.2381 10.3810 8.5714 8.7143 12.4286 21.7143

Table F.2: The number of visible cells of the brute-force approach and the average number of vis-
ible cells of DVisibilityIndex for the various data sets.
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