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Chapter 1 

Introduction 

1.1 Scope of thesis 

The electromagnetic modeling of reflection and transmission gratings has attracted considerable 
theoretical and practical interest in the last decades. 

In general, a diffraction grating can be defined as a periodic structure placed on the interface 
between two half spaces with different electromagnetic properties [1]. When the grating is illu
minated by a monochromatic electromagnetic plane wave, a discrete number of reflected waves 
results. Only a small number of propagating reflected waves, or spectral orders, contribute to 
the scattered field far away from the diffraction grating. The direction of the reflected waves, 
corresponding to the spectral orders, depends on the angle of incidence and wavelength of the 
incident field and on the period of the structure. The propagated reflected waves can be used to 
obtain information about the geometry of the grating. 

In novel lithography machinery periodic structures are placed on a wafer (a silicon substrate) 
for positioning purposes. From the diffracted waves, information about the shape of the structure 
and the position can be retrieved with an accuracy in the order of nanometers [2]. An example 
of a binary grating is shown in Fig. 1.1. To reconstruct the parameters of the actual geometrical 
dimensions of the grating, the scattered computed field is compared with the measured field. The 
actual geometrical parameters are retrieved by varying the parameters in the computed model 
and minimizing the difference with the measured data by using optimization techniques. For 
diffraction gratings applied in lithography machinery, the challenge is to compute rapidly and 
accurately the scattered electric field and the geometrical parameters of the structure. 

To calculate the reflected field originated from a diffraction grating as an electromagnetic 
scattering problem, numerous computational solution techniques are developed such as the 
Rigorous-Coupled-Wave Approach (RCWA), differential equation methods and integral equation 
methods [2] [3]. 

In the present thesis we will focus on a domain integral equation method [4] [5]. The basic 
idea of this method is to represent the electromagnetic field scattered by an object in free space in 
terms of secondary sources or contrast currents inside the domain of the object. Via constitutive 
relations, the contrast currents are expressed in terms of the total field. Then, by the integration of 
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Figure 1. 1: Example of a binary diffraction grating. 

the contrast currents, an integral representation for the scattered electromagnetic field is obtained. 
The total field is defined as the sum of the scattered field and the incident field from which, by 
imposing the boundary conditions, an integral equation for the total field results. To find the total 
field, the object is discretized in a number of subdomains, where at each subdomain the total field 
is expanded into a (finite) set of basis functions. By substituting the expanded field in the integral 
equation and taking at both sides of the equation the inner product with the testing functions, the 
integral equation reduces to a system of linear equations. This system must be solved to find the 
weighting constants corresponding to the basis functions. The described method is known as the 
method of moments (MoM). 

For periodic structures, the integral equation has as kernel a periodic Green's function which 
results in repeated evaluation of the domain integral. Without precautions, the evaluation of the 
Green's function series leads to large computation times as a consequence of the slow conver
gence of the series. 

Several authors have proposed acceleration techniques to reduce the computation time for 
evaluating Green's function series. By applying a spectral and spatial decomposition of the ker
nel of the integral equation and simultaneously making use of Kummer's, Ewald's, Poisson's 
or Shank's transformations, the rate of convergence of the Green's function series improves 
considerably [6] [7]. In [7] a special combination of the first three mentioned transformation 
techniques has drastically enhanced the convergence and reduced the computation time to eva
luate the integral equation with a periodic kernel. The general solution strategy for evaluating the 
integral equation is to decompose the periodic kernel in terms of a singular and a regular part. 
The domain integral, with singular kernel, can in general be written in a closed form, therefore 
solved analytically. For the domain integral with regular part, numerical quadrature schemes are 
required to accurately compute these integral contributions. 

To find the electromagnetic field in the diffraction grating accurately, a large number of 
subdomains inside the object should be defined to approximate the electromagnetic field. By 
applying the method of moments a large system of equations results. Although the diffracted 
electromagnetic field will be found accurately, the numerical solution strategy leads to relative 
large computation times, but the parameters related to the shape of the periodic structure can be 
found accurately. 
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1.2 Objective and outline of the solution 

The objective of this thesis is to develop a fast and efficient solving strategy for the electro
magnetic scattering problem for a periodic object placed on the interface between two half 
spaces. The general idea to accomplish this is based on the assumption that the wavelength 
of the electromagnetic field inside the object is large compared to the dimensions of the object. 
Therefore, the electromagnetic field can be expanded in a combination of linear basis functions. 
For this case, the object is divided into a small number of subdomains. In the formulation of the 
scattering problem the evaluation of the domain integral is restricted to only one single period 
of the structure. Hence, the convergence problems disappear. By applying the point matching 
method, a special case of the method of moments with linear basis functions and Dirac delta 
functions as t_est functions, a relative small system of linear equations formulated in a closed 
form results. This approach is extremely suitable to rapidly retrieve information about the geo
metrical parameters of the diffraction grating with limited accuracy. These retrieved parameters 
can be used as a initial estimate in more accurate but slower solution techniques. 

As a proof of principle, in this thesis, we only consider dielectric diffraction gratings which 
are periodic in one dimension and invariant in the other dimension so that a two-dimensional 
problem results. The incident field is a plane wave electrically polarized along the invariant di
rection of the configuration. However, the approach is capable of being generalized to arbitrary 
incidence and even 20 periodic structures. The arbitrarily chosen angle of incidence of the elec
tric field lies in the transverse plane. As a consequence, Maxwell's equations in vectorial form 
reduce to a scalar differential equation in two dimensions. The solution of the scalar problem 
is expressed in an integral form using a regularized Green's function formulation. For the elec
tric field we use a Floquet modal expansion, where the Floquet modal coefficients or reflection 
coefficients are written in terms of modified spatial Fourier transforms. These spatial Fourier 
transforms are solved in a closed form by using Green's second identity which transforms the 
surface integral into a boundary integral. 

1.3 Outline of the thesis 

This thesis is organized as follows. Chapter 2 is concerned with the formulation of scattering 
problems for the electric field for an arbitrary shaped object in free-space. In Chapter 3, we first 
consider the case of an infinitely long dielectric cylinder with triangular cross section embedded 
in free space. For this case, we demonstrate the feasibility of the assumed linear approximation 
of the electric field inside the object and of the proposed transformation techniques to obtain a 
closed form formulation. In Chapter 4, we use the methods developed in Chapter 3 to formulate 
the scattering problem for diffraction gratings which are periodic in one dimension. In Chapter 
5, we validate the developed methods and we discuss a few representative numerical results. 
Finally, in Chapter 6 we discuss some conclusions and we recommend a solution strategy for 
three-dimensional diffraction gratings illuminated by an incident field with arbitrary polarization. 
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Chapter 2 

Electromagnetic scattering problems 

In this chapter we introduce Maxwell's equations, the constitutive relations and the boundary 
conditions to formulate electromagnetic field problems. We decompose Maxwell's equations 
in terms of longitudinal and transverse components from which we obtain a coupled system of 
differential equations for the electric field. For the resulting Helmholtz equations for the electric 
field components, a Green's function formulation is employed. Finally, using Green's function, 
we formulate the electric field in the form of a frequency-domain integral representation for an 
object embedded in free space. 

2.1 Maxwell's equations 

To investigate electromagnetic field problems we first have to choose the framework of formu
lation. In a historical perspective, going back to 1864, James Clerk Maxwell postulated nine 
equations related to electricity and magnetism which are nowadays qualified as the most com
plete theory of macroscopic electromagnetism. With the introduction of the vector notation, 
these equations can be written in a more convenient form from mathematical and physical point 
of view. Although electromagnetic field problems are more easily imaginable in the time do
main, we consider the frequency domain representation since this reduces the complexity of the 
problem. Hence, a temporal Fourier transformation is used to transform the Maxwell equations 
to the frequency domain. The electromagnetic field is now dependent on the time by a complex 
time factor exp(-iwt) and the derivatives in the Maxwell equations reduces in a multiplication 
with a complex factor, i.e. at +-+ -iw. 

The Maxwell equations in the space-frequency domain are given by [8] 

V7 x E(r,w) - iwB(r, w) (2.la) 

V7 x H(r,w) - J (r,w) -iwD(r ,w) (2.lb) 

V7 · D(r,w) p(r,w) (2.lc) 

V7·B(r ,w) 0 (2.ld) 

5 
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and the continuity equation or the charge conservation law is given by 

\7 · J(r, w) = iwp(r, w) (2.2) 

where the vectorial electromagnetic field quantities {E(r,w), H(r,w), D(r,w), B(r,w)} are the 
electric field, magnetic field, electric flux density and the magnetic flux density, respectively. The 
sources of the electromagnetic fields are represented by the (external) source density J ( r, w) and 
the charge density p(r, w ), where the latter is a scalar quantity. The electromagnetic fields are 
two times continuously differentiable 1 vector functions, i.e. 

(2.3) 

where, from rtow on, we omit the explicit notation of the spatial and frequency dependence of 
the relevant (field and source) quantities. 

To model the effects of electromagnetic fields in matter, we introduce the constitutive re
lations. These relations provide a basis to relate the fluxes D and B to the fields E and H, 
respectively. In the most general form, the constitutive relations are given by 

D - €E 

B - ,UH 

(2.4a) 

(2.4b) 

where € and µ denotes the permittivity and the permeability tensors with spatial dependency, 
respectively. Since in this thesis we consider media which are linear, isotropic and nondispersive, 
the constitutive tensors reduce to a constant which are dependent on the material properties, 
i.e. € = EoEr and ,U = µoµr. The relative permittivity Er and the relative permeability µr are 
referenced to the free-space permittivity Eo and permeability µ 0 • For objects embedded in a 
homogeneous background medium, for instance free space, the difference between {D, B} in free 
space and {D, B} in materials is important. Therefore, we may write the constitutive relations as 

D - EoE + EoXeE 

B - µoH + µoxmH 

where the dimensionless electric and magnetic susceptibilities are defined as 

Xe= Er -1 and 

respectively. 

(2.5a) 

(2.5b) 

(2.6) 

In addition, in optics it is common to relate the speed of light in free space to that in a medium 
by the refractive index, n. For electromagnetic waves, the relation between the wavelength in free 
space >.0 and the wavelength in a dielectric medium >-mat is derived from the relative permittivity 
as 

>-mat = >.o/n with n = ..µ;.. (2.7) 

1Ck(n), k E Nu {O}: The vector space of k-times continuously differentiable functions on n, with c 0 (n) = 
C(H) the vector space of continuous functions from n to R. 
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Finally, substituting Eq. (2.5) in the Maxwell equations (2.1) results in 

V x E - iwµoH - iwµoxmH 

V X H + iwt:oE - J + iwEoXeE. 
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(2.8a) 

(2.8b) 

In order to get Maxwell equations which are well-posed, additional requirements have to 
be set for the field quantities at the boundaries between media with different electromagnetic 
properties. Therefore we introduce the boundary conditions at the interface between two adjacent 
regions D 1 and D 2. From Maxwell's equations we can easily derive the boundary conditions for 
the electric and magnetic field as 

D12 x (E1 - E2) - 0 

D12 X (H1 - H2) - Js 

(2.9) 

(2.10) 

where the normal n12 is directed into domain D2 and the subscript of the fields denotes the 
domain where the fields are evaluated. 

A special case occurs when the boundary lies at infinity. For that case, the so-called Som
merfeld radiation conditions and the finiteness conditions apply, which are respectively given 
by 

lim llrll{E(r) - Zon x H(r)} 
llrll-+oo 

lim {E(r), H(r)} 
llrll-+oo 

o(l) 

1 
a( nrrr) 

(2.11) 

(2.12) 

where the asymptotic behavior is denoted by the Landau order symbol 0 and Z0 is the impedance 
of free space. 

2.2 Transverse-longitudinal field decomposition 

For objects which are invariant along the y-coordinate, we will decompose the vectorial quanti
ties in Maxwell's equations. The relevant vectorial quantities will be represented as 

E Er+ Eylly 

V - Vr+uyoy 

(2.13) 

(2.14) 

and similar definitions for other quantities. The transverse components, denoted by the subscript 
r. lie in the (x, z)-plane and the longitudinal components are in they-direction. We assume that 
the fields are derived in free space, so that the electric and magnetic susceptibility vanish, i.e. 
Xe= Xm = 0. With this assumption and substituting Eqs. (2.13-2.14) in Eq. (2.8) we obtain the 
following expressions 

(Vr + uyoy) x (Er+ Eyuy) - iwµ0 (Hr + Hyuy) - 0 

(Vr + uyoy) x (Hr+ Hyuy) + iwt:0 (Er + Eyuy) - Jr+ lyuy. 

(2.15) 

(2.16) 
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The partial derivative with respect to they-direction, 8y, will be rewritten in an algebraic form 
by using a spatial transform since the configuration is invariant in the y-direction. We define the 
forward and inverse spatial Fourier transform pair as 

(2.17) 

(2.18) 

which are in accordance with the temporal Fourier transform. Using Eq. (2.17), the partial 
derivatives in Eqs. (2.13-2.14) will be replaced by an algebraic factor, i.e. 8y +-+ iky, and we find 
the following coupled system of equations 

"VT x ET 

"VT x Eyuy +Dy x ikyET 

"VT x HT 

- iwµ0 Hyuy 

iwµ0HT 

Jyuy - iwc0Eylly 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

We proceed by eliminating {HT, Hy} and rewriting {ET, Ey} in terms of {JT, Jy}· To this end, 
we take the transverse curl of Eq. (2.19) 

"VT x "VT x ET = iwµ0 "VT x Hylly (2.23) 

= iwµ0{JT - iwc0Er - ikyuy x HT} (2.24) 

where we have used Eq. (2.22). Substituting Eq. (2.20) in the right-hand side of Eq. (2.24) 
results in 

"VT x "VT x ET= iwµ 0 { JY - iwc0Er} - ikyuy x {"VT x Eyuy +Uy x ikyET }. (2.25) 

With the use of the following identities 

(uy · uy)"VTEy - (ny · "VT)DyEy ,,,,___, '-.....-' 
(2.26) 

1 0 

Dy x (uy x Er) = (uy · ET)uy - (ny · ny)ET ,,____.. ,,___.., (2.27) 

0 1 

"VT x "VT x ET = "VT("VT. ET) - "V2ET (2.28) 

Eq. (2.25) reduces to 
A 2A A 2 A A 2A 

"VT("VT ·ET) - "V ET= iwµ0JT + w EoµoET - iky "VTEy - kyET. (2.29) 

In the latter expression, the term with "VT ·ET is inconvenient so that we use Eq. (2.22) and 
(2.21) to rewrite this term 

iky"VT·(uyxHT) - "VT-JT-iwto"VT·ET (2.30) 

-ikyuy ·("VT x HT) -iky(Jy - iwc0Ey). (2.31) 
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Successively, we find for the gradient-divergence operator 

(2.32) 

(2.33) 

Finally, substituting Eq. (2.33) in Eq. (2.29) results in the 2D Helmholtz equation for ET 

2 2 2A 1 2 A ky A 
{\7T + (w coµo - ky)}ET = -. -{\7T\7T · +w coµo}JT + -\7TJy (2.34) 

iw~ w~ 

where ET is e_xpressed in terms of JY and JT. 
A similar 20 Helmholtz equation for By can now be derived in the same manner. The resul

ting expression is found as 

2 2 2 A 1 2 2 A ky A 
{\7T + (w coµo - ky)}Ey = -. -(w coµo - ky)Jy + -\7T · JT (2.35) 

iwc0 wc0 

where By is now expressed in terms of JY and JT. 

2.3 Scalar and vector potentials 

In order to find a solution for ET and By in Eqs. (2.34-2.35), we employ a Green's function 
formulation. We define Green's function Go as the point source solution of the following scalar 
wave equation 

(2.36) 

that satisfies the radiation condition as lrTI ---+- oo. This function is given by 

(2.37) 

where 6 is the Dirac delta distribution representing a point source located in r~. In Eq. (2.37) 
the axial wave number is found as 12 = k; - w2cµ0 and Ko is the zero-order modified Bessel 
function of the second kind. The modified Bessel function (of the second kind) can be written as 
a Hankel function using the relation 

(2.38) 

where a is the order of the Bessel function. By including the effects of a general source term JT 
at the right-hand side of Eq. (2.36), the wave equation results in 

(2.39) 
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where A(rT) is a vector potential. Owing to the superposition principle, we combine the results 
of Eq. (2.36) and (2.37) to obtain the solution of Eq. (2.39) as 

A(rT) = - J loo Go(rT, r'T )JT(r'T )dA' (2.40) 

where the domain of integration D 00 is unbounded so that the current distribution specifies the 
domain of integration. Similar reasoning apply for the source term, JY. Hence we find 

(V7~ - 12)w(rT) - ly (2.41) 

w(rT) - - J loo Go(rT, r'T)Jy(r~)dA' (2.42) 

where w(rT) .is a scalar potential. Finally, with the found potentials we can express ET and Ey 
as 

- .-
1 

(V7TV7T. +w2 Eoµo)A(rT) - ky V7Tw(rT) 
ZWEo WEo 

(2.43) 

- .-l (w2 Eoµo - k;)w(rT) - ky (V7T · A(rT )) 
1,WEo WEo 

(2.44) 

where the scalar and the vector potentials W and A are written in terms of Green's function, 
respectively. 

2.4 Integral representation 

In the previous section we derived expressions for the electric fields in free space, in terms of 
potentials. In this section we discuss the effects of non-magnetic objects embedded in free space 
in the framework of scattering problems. Hence, we consider free space as the background 
medium and the object as the scatterer. The inclusion of a medium with dielectric properties 
means that the permitivity now depends on the position, i.e. E(rT) ~ Eo. For this case, Maxwell's 
equations for the total field are given by 

V7 x E - iwµ0H - 0 

V7 x ff+ iwE0E J - iWEoXe(rT )E 

with Xe(rT) = Er(rT) - 1 dependent on the position rT. 

(2.45) 

(2.46) 

We assume that the source term J is an impressed current which means that we may write the 
Ai A i 

incident field {E , H } as 

V7 x Ei - iw µ 0Hi - 0 

V7 x Hi + iwE0Ei - J. 
(2.47) 

(2.48) 

The total field is defined as the sum of the incident field and of the secondary or scattered field 

(2.49) 
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As a consequence of the linearity of the Maxwell equations, we may subtract Eq. (2.47) from 
(2.45) to find the equation governing the scattered field {Es, Hs} 

\7 X Es - iwµoHs 0 

\7 x Hs + iwEoEs - -iWEoXe(rT )E. 

(2.50) 

(2.51) 

The term at the right-hand side of Eq. (2.51) is recognized as a Fourier transformed polarization 
term or, in the context of scattering problems, as an induced contrast source and given by 

-iwEoXe(rT )ET 

- -iWEoXe(rT )Ey· 

(2.52) 

(2.53) 

Since the support of the polarization term is localized in a finite domain, the scattered field 
satisfies the radiation and causality conditions so that the potential evaluated over an unbounded 
domain as discussed in the previous section can be used. The electric field expressed in terms of 
potentials are thus applicable. 

Using the induced contrast source term, we define the scaled potentials as 

As(rT) 
-1 
-. -A(rT) 
ZWEo 

(2.54) 

- J Loo Go(rT, r'T)xe(r~)Er(r~)dA' (2.55) 

and 

Ws (rT) 
-1 
-. -w(rT) (2.56) 
ZWEo 

J L
00 

Go(rT, r~)xe(r~)Ey(r~)dA'. (2.57) 

In a similar manner we express the scattered electric field in terms of the above given potentials, 
i.e. 

E~(rT) - (\7T\7T · +w2Eoµo)As(rT) + iky \7T'11s(rT) 

.E;(rT) - (w2Eoµo - k;)ws(rT) - iky('VT · As(rT)). 

(2.58a) 

(2.58b) 

When applying the boundary conditions on Eq. (2.58a), one can shown that the tangential com
ponent of the electric field is continuous across the interface between the two media. For the 
normal component, the right-hand side of Eq.(2.58a) is discontinuous so that in Eq. (2.58a) we 
consider rewriting the \7 T \7 T" term. We use the following identity 

(2.59) 
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With the definitions of the potential A8 and of the Green's function G0 , we write the term at the 
right-hand side of Eq. (2.59) as 

V'~As = J L
00 

V'~Go(rT, r~)Xe(r~)ET(r~)dA' 

- f L
00 

(k; - W
2t:oµo)Go(rT, r'T)xe(r~)ET(r~)dA' 

-J Loo o(r~ - rT )Go(rT, r'T)Xe(r~)Er(r~)dA' 
2 2 A (ky - w t:oµo)A 8 (rT) - Xe(rT)ET(rT) (2.60) 

Substituting Eq. (2.60) in (2.58a) results in 

The electric field is now fully specified by Eqs. (2.58) and (2.61). Because of the choice of 
Green's function, the left-hand side of (2.61) represents an outgoing or scattered field as lrTI --t 

oo. In the next chapter we will use these equations to formulate the scattered electric field for 
an infinitely long dielectric cylinder with triangular cross section illuminated by an electrically 
polarized plane wave. 



Chapter 3 

Non-periodic dielectric cylinder 

In this chapter we consider the scattering of an electrically polarized plane wave by an infinity 
long dielectric cylindrical object with triangular cross section. In this scattering problem, the 
unknown electric field inside the object is determined with the aid of an integral equation, as 
derived in Chapter 2. We assume that the wavelength of the electric field inside the object is 
large compared to the dimensions of the cross section of the cylinder. Therefore, the electric 
field inside the object may be expanded in terms of linear basis functions. With the use of the 
linear functions, we reduce the integral over the surface of the object to a contour integral along 
the boundary of the object [13]. The result is a closed-form expression for the integral equation. 
We apply the point matching method, a special case of the method of moments, to solve the 
integral equation from which the electric field inside the object is found. Finally, we formulate 
the scattered electric far field, where we use Green's second identity to obtain a closed-form 
representation. 

3.1 Electric field in cylinder with triangular cross section 

The problem to be solved is the calculation of the scattered electric field due to an electrically 
polarized plane wave with an arbitrary angle of incidence in the presence of an infinitely long 
dielectric cylinder with triangular cross section (see Fig. 3.1) [13]. We assume that the confi
guration has infinite length along the longitudinal direction i.e. the y-coordinate and that the 
transverse cross section is in the (x-z)-plane. The domain D of the object consist of a homoge
neous dielectric material with permittivity tmat and permeability µ 0, while the embedding is free 
space with permittivity t:o and permeablility µ0• The incident electric field with time dependence 
exp(-iwt) is directed along they-coordinate, i.e. EP(r) = E:(r)uy . 

Since the incident field is polarized in the y-direction and has no spatial dependence on the 
invariant direction of the configuration, the coupling in the system of equations in Eq. (2.58) 
vanishes. This means that for the total electric field the following domain integral equation is 
found 

Ey(rT) = E~(rT) + k5 J L Go(rT, r~)xe(r'T)Ey(r'T)dA' 

13 

(3.1) 
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Figure 3.1: Transverse cross section of an object embedded in free space. 

where rr = (x, z) represents the spatial position. The free-space wave number is k0 = w..,j€0jIQ 
and Xe(rr) is the contrast function which is Xe = ( f.mat/ to) - 1 for rr E D and zero elsewhere. 
Green's function Go in Eq. (3.1) is defined as 

Go(rr, r'r) = 2_Ko(llr~ - rrl) with 1 2 = ky2 
- k~ (3.2) 

27l' 

where Ko denotes the zero-order modified Bessel function of the second kind. The axial wave 
number reduces then to I = -ik0 since the incident field and the configuration are invariant in 
the y-direction, i.e. ky = 0. 

We define the maximum dimension of the object Lmax as 

(3.3) 

where (Pi, Pi) are the vertex positions of the object and 11 ·I I is the Euclidean norm representing 
the distance between the vertex positions, see Fig. 3.1. 

We assume that the wavelength of the electric field inside the object Amat is considerably 
larger than the maximum dimension of the object, namely Lmax < 0.25.Amat· This means that, 
locally, the electric field is approximately linear such that we can consider it as a quasi-static 
field. Therefore we may use a small-argument approximation for the modified Bessel function 
Ko in Eq. (3.2) 

Ko(Y) ~ -{ln(y/2) + c} if y « 1 (3.4) 

where c denotes Eulers constant [9]. By substituting Eq. (3.4) in Eq. (3.1), the following 
expression for the total electric field is found as 
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Figure 3.2: Variables definitions for the basis functions and the three basis functions defined for 
triangular domain D. 

As shown in Eq. (3.5), when the observation position rr and the integration variable r'r coin
cide, the integrand becomes singular. This is a consequence of the singular behavior of Green's 
function when the distance function (lr'r - rrl) becomes zero. Therefore we consider rewriting 
the integrand of Eq. (3.5) in a regular part and a singular part. The integral over the 2D domain 
with singular integrand can be solved analytically. Similar arguments apply for the integral over 
the 2D domain with regular integrand. By applying the discussed solution method, the electric 
field is found as 

(3.6) 

with 

Ireg {ln(2/1) - c} J L Ey(r~)dA' (3.7) 

Ising(rr) - J L ln(lr'r - rrl)Ey(r~)dA' (3.8) 

where we have written the kernel of the surface integral in Eq. (3.5) as a sum of a regular part 
and a singular part, which leads to two domain integrals. 

3.1.1 Triangular basis functions 

In the foregoing section we have assumed that the electric field inside the object is quasi-static. 
Therefore, we may approximate the total electric field inside the object using a combination of 
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linear functions. For the given domain of the object, we use triangular basis functions. The total 
field is then found as the sum of weighted basis functions, i.e. 

3 

Ey(rT) = L Ey,ifj(rT) 
j=l 

if rT ED (3.9) 

where the triangular basis functions fj that have support only inside the triangular domain and 
they are defined as 

(3.10) 

which is inspired by the RWG functions [14]. The variables and constants in Eq. (3.10) are 
presented in Fig. 3.2 and they represent the following quantities 

Ey,j field amplitudes at vertex Pj, vj 

dmax,j - Dj · (rT,i - rT,j), Vj =/:- i 

length of vertex j to edge j 

rT,i position of vertex Pi 
Dj outward pointing normal on edgej 

where the edge j is the line segment located opposite to the vertex Pi. The value of each basis 
function f i is 1 at the particular vertex Pi and 0 at the other vertex positions as shown at the right 
of Fig. 3.2. 

The fundamental unknowns are the weighting field amplitudes Ey,j in Eq. (3.9). Once the 
unknowns Ey,i are found, the resulting field outside the object is calculated by using Eq. (3.6) 
and (3.9) as an integral representation of the electric field in the whole space. 

3.1.2 Surface integral to boundary integral transformation 

Next, we will evaluate the integral with singular kernel in Eq. (3.8) in a closed form [13]. 
Substitution of Eq.(3.9) in (3.8) shows that the domain integral occurs in the following form 

J l g(rT) ln(rT )dA (3.11) 

where g(rT) = [, E span{l, rT} and rT = v'x2 + z2 • Since we consider an object with pie
cewise straight lines as boundaries, we will rewrite Eq. (3.11) in a closed form. For a defined 
volume V enclosed by a closed surface Sand an open surface D with boundary EJD we write 

fl Uy· (\7T X v)dA 

ill \7TvdV -

j V • Tdl 
IaD 
f 1 vndA 

(3.12) 

(3.13) 
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which are known as Stokes' theorem and Gauss' theorem, respectively. In Eqs. (3.12-3.13), v 
is a scalar function, v is a vector function and -r is the vector tangent to the boundary 8 D and 
Il =TX Uy. 

First, in Eq. (3.11) we consider the logarithmic term proportional to ln(rr ). In order to use 
the Stokes' theorem in Eq. (3.12), we have to find an expression for the unknown vector field v. 
Therefore we write the integrand at the left-hand side of Eq. (3.12) as 

(
'7 ) _ l ( ) _ 1 (8(rrv<1>) OVrT) Uy · v T x v - n rr - - - --

rr 8rr 8</> 
(3.14) 

from which, by solving the partial differential equation in cylindrical coordinates, an expression 
for the unknown vector function v is found 

with v</> = ~ln(rr) - ~. 
2 4 

(3.15) 

Then the surface integral in Eq. (3.12) reduces to a boundary integral 

(3.16) 

In a similar manner, the term which is proportional torr ln(rr) in Eq. (3.11) can be found. 
For that we use Gauss' theorem where the integrand is written as 

rrln(rr) = V7r(v) (3.17) 

from which the unknown scalar v is found as 

(3.18) 

By applying Gauss' theorem for a volume of unit thickness in the longitudinal direction and 
taking into account that the contribution of the two surfaces cancels because the normal are 
vectors pointing in opposite directions, the volume integral in Eq. (3.13) is reduced to a boundary 
integral 

1 vndA. (3.19) 
hw 

The boundary integrals in Eq. (3.16) and (3.19) will now be divided into three line integrals, 
so that they can be written as a sum of line integrals, where at each line the tangent and the 
normal vectors are constant. To make use of these constant vectors, the position vector rr along 
a straight line segment is defined as 

rr = (rr · n)n + (rr · -r)-r = dn + s-r (3.20) 

where dis a constant ands is a coordinate along one particular line segment, see Fig. 3.3. 
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Figure 3.3: Parameterization definitions. 

For each line segment we cast the integrals occurring in Eq. (3.16) and (3.19) in the following 
standard form 

(3.21) 

where sa,I and Sb,I denote the begin and the end positions on the line segment l, respectively. 
They are defined as 

with {l + 1, l + 2} =modulo(., 3). 

Sa,I T1 · rr,1+1 

sb,1 - T1 · rr,1+2 

(3.22) 

(3.23) 

Finally, the integral with logarithmic kernel over the 20 domain, in Eqs. (3.16) and (3.19), is 
rewritten as a linear combination of line integrals 

f L In(rr)dA (3.24) 

j L rr ln(rr )dA 

(3.25) 

The primitives of the standard integrals 10 and / 2 can be found in Appendix A. 

3.1.3 Method of Moments 

With the introduction of the triangular basis functions and the evaluation of the integral over a 
20 domain in closed form, we are now able to solve the domain integral equation occurring in 
Eq. (3.6). Therefore we apply a special case of the method of moments, where we use Dirac 
delta functions as test functions [15]. This case is called the point matching method, since the 
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solution is approximated at a discrete set of points in the domain of interest. To explain the point 
matching method we generalize Eq. (3.6) into the following equation 

(3.26) 

where L is the electric field integral operator defined inside the domain D. The total electric 
field in now expanded in terms of linear basis functions, as given in Eq. (3.9). Substituting Eq. 
(3.9) in left-hand side of Eq. (3.26) and taking at both sides the inner product with Dirac delta 
functions we obtain the following system of equations 

L(fi(rT)- L(fj(rT)) ,<5(rT- rT,i)) = (E~(rT) , <5(rT- rT,i)) for i E (1,3) (3.27) 
j=3 

where(. , .) denotes the inner product on domain D defined as 

(g(rT) , h(rT)) = L g(rT)h(rT)drT . (3.28) 

For this point matching method, the integral equation reduces to a system of linear equations. 
This system of equations from which the field amplitudes Ey have to be found can be solved 
by matrix inversion. The points where the electric field is approximated are called collocation 
points and are indicated by the subscript i i.e. rT,i · Therefore, the aim is to find a solution for 
total electric field at the collocation points. 

Next, we will formulate the matrix elements in Eq. (3.27) in a closed form 

Ey(rT,i) - k~~e [Ireg + lsing(rT,i)] = ~(rT,i) (3.29) 

where Ireg and lsmg(rT,i) are defined in Eq. (3.7) and (3.8), respectively. 
First, we consider the integral with singular kernel 

lsing(rT,i) = J L ln(lr'T,i - rTl)Ey(r~)dA' . (3.30) 

Substituting Eq. (3 .9) and (3 .10) in the above equation leads to 

Jr r ln(lr'T - rT,i l)Ey(r'T)dA' = t Ey,j Jr r [(1 + n~ . r~,j - °1 "r'~)] ln(lr~ - rT,il)dA'. 
JD j=l JD max,3 ""max,3 

(3.31) 
In order to make use of the expressions found in Eqs. (3.24-3.25) for the integral with singular 

kernel, we have to solve the problem of spatial discretization occurring at the right-hand side of 
Eq. (3.31). This problem is solved by rewriting the integrand in Eq. (3.24) and (3.25) as 

where RT = Ir~ - rT,i l is the difference between the collocation vector position rT,i and the 
vector position r~, and {A, B} are an arbitrary chosen scalar and vector, respectively. 
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We proceed by casting the linear function in the kernel of Eq. (3.31) in the same form as the 
argument of the logarithmic function of the kernel, i.e. 

j L ln(lr~ - rT,il)Ey(r~)dA' = 

t Ey,j Jr r [(1 + Dj. (:T,j ~ rT,i)) - dllj .. (r~ - rT,i)] ln(lr~ - rT,il)dA'. (3.33) 
j=l JD max,J roax,3 

In the above equation, we recognize the linear function in front of the logarithmic function as 
the sum of a constant term which does not depend on the integration variable and of a linear 
term which depends on the integration variable. Analog to the solving strategy used in Section 
3.1.2, we first consider the case where the integrand is proportional to the logarithmic function 
ln(lr'T - rT,i l). Omitting the constants in Eq. (3.33), we transform the integral over surface D 
into an integral along the boundary of D. The integral over surface D with logarithmic kernel 
will now be written in a sum of line integrals corresponding to the line segments of the boundary 
of the object 

11 ln(lr'T-rT,il)dA' = t [(dmax,I ~ dcoi,il)] Io(sa,1-Scol,il, sb,1-Scol,il; dmax,1-dcol,il) (3.34) 
D ~1 

where the standard integrals In are used, defined in Eq. (3.21). The collocation points, indicated 
by the subscript i, are parameterized in the local coordinate system relative to the line segment l, 
i.e. 

Scol,il = 7"1 ' (rT,i - rT,I) 

dcol,il = D1 · (rT,i - rT,1). 

(3.35) 

(3.36) 

In a similar manner, we find the integrand which is proportional to (r'T - rT,i) ln(lr'T - rT,il), 
in Eq. (3.33) while omitting the occurring constants 

j L (r'T - rT,i) ln(lr~ - rT,il)dA' = 

3 

L :l { (dmax,l - dcol,il)2 Io(sa,I - Scol,il, Sb,I - Scol,il; dmax,I - dcoi,il) 
l=l 

+I2(sa,I - Scol,il, Sb,I - Scol,il; droax,I - dcoi,i!) }· (3.37) 

Substitution of Eqs. (3.34) and (3.37) in Eq. (3.33) results in an expression written in terms of 
standard integrals I 0 and I 2 

3 3 

LL Ey,j{ Mijlio(sa,I - Scol,il, Sb,I - Sco1,il; dmax,I - dcoi,i!) 
j=l 1=1 

-Nj1I2(sa,I - Scol,il, Sb,I - Scol,il; dmax,I - dcoi,i!)} (3.38) 
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where we have introduced the two matrices M and N as 

[ 1 + Dj · (rT,j - rT,i) _ Dj · D1 (..l _ d . )] (dmax,l - dcol,il) 
- d . d . Umax,l col,il 4 max,3 max,3 
_ Dj ·Dz 

dmax,j . 

(3.39) 

(3.40) 

Now, the regular integral will be solved in a closed form, by applying the linear expansion 
functions for the electric field 

Ireg = {ln(2) - E - ln(T)} J l Ey(r~)dA' 
3 

- {ln(2) - E - ln(T)} f; Ey,j j l fj(r~))dA' 
Area(D) ~ ~ 

{ln(2) - E - ln( 1)} 
3 
~ Ey,j 
j=l 

(3.41) 

where Area(D) is the area of the triangular surface, D. Since / may be a complex number, 
attention is required for the logarithm in Eq. (3.41) so that we write 

7r 
ln(T) = ln(-ik0 ) = ln(ko) + 2i. (3.42) 

Hence, the surface integral with regular kernel in Eq. (3.41) is 

3 
7r . Area(D) ~ ~ 

Ireg={ln(2/ko)-c+2i} 
3 

~Ey,j· 
j=l 

(3.43) 

Finally, using the expressions found for the integral with regular and singular kernel in Eqs. 
(3.41-3.38), the discretized electric field integral equation is found as 

3 

- L Mijllo(sA,l - Scolil, Ss,l - Scol,il; dmax,l - dcol,il) 

1=1 

+Nj1I2(sA,l - Scol,il, SB,l -. Scol,il; dmax,l - dcol,il)} (3.44) 

where we have expressed the surface integrals in terms of standard line integrals and the constants 
(M, N) given in Eq. (3.39). As mentioned at the begin of this section, to solve the integral 
equation via the point matching method, an appropriate set of collocation points must be chosen. 
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For triangular basis functions, we have to solve a 3x3 matrix. The matrix counterpart of the 
electric field integral equation is found as 

(3.45) 

with 

[K] = fj(rT,i)[U] and (3.46) 

where [U] is the unit matrix, i.e. the matrix with elements Uii = 1. The 3 x 3 matrix elements 
resulting from the evaluation of the surface integral with singular kernel is found as 

3 

sij = - L { Mijilo(sa,I - Scol,il, Sb,l - Scol,il; dmax,l - dcoI,il) 

l=l 

+Njzf2(sa,l - Scol,il, Sb,l - Scol,il; dmax,l - dcoI,il) }· 

3.2 Electric Far-Field 

(3.47) 

Once the field amplitudes Ey,j are known, the scattered field at position rT far away from the 
object can be easily evaluated from the integral representation 

k2 3 

E;(rT) = 
2
;xe L Ey,i j 1 Ko(-ikolrT - r~l)fj(r~ )dA. 

j=l D 

(3.48) 

In the far-field region, we may use a large-argument approximation for the modified Bessel 
function [9] 

Ko(-ip) = ~exp(ip-in/4) v 2p 
for p » 1 

where for the distance function lrT - r~I. the approximation below is valid 

for 

(3.49) 

(3.50) 

Substituting Eq. (3.49) and (3.50) in Eq. (3.48) results in the following expression for the 
scattered electric far-field 

E;(rT) = fo(rT )<I>(O) 

where we identify r 0 as the equivalent line source 

(3.51) 

(3.52) 
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and ~(e) as the radiation pattern 

3 

~(e) = -xe L Ey,j j 1 exp(-ikT · r~)fj(r~)dA. 
j=l D 

(3.53) 

The two-dimensional integral over the domain D in Eq. (3.53) will be transformed into a 
integral over the boundary 8D by using Green's second identity 

J L a'V~b- b'V~adA = iD {a8nb- b8na} dl (3.54) 

where a and b are scalar functions and 8n denotes the directional derivative along the outward 
pointing normal n with respect to boundary 8D. The surface integral, as found in Eq. (3.53), 
will now be casted in the form of the left-hand side of Eq. (3.54) 

-:2 j { fj{r~)'V~ exp(-ikT · r~) - exp(-ikT · r~)'V~fj(r~)} dA' = 
0 D 

1 1 { I • I I I } -k
5 

hw fj(rT)8nexp(-ikT · rT) - exp(-ikT · rT)8nfj(rT) dl (3.55) 

where 'V~fj(r~) = 0 as a consequence of the linear behavior of the basis functions. The two 
derivatives at the right-hand side of Eq. (3.55) can be written as 

- (ikT · n) exp(ikT · rT) 8n exp( -ikTrT) 

Bnfj(rT) -
_ Dj ·D 

dmax,j. 

(3.56) 

(3.57) 

Next, we write the boundary integral in Eq (3.55) as a sum of line integrals. Therefore, we use 
the parameterization procedure as defined in Eq. (3.20), i.e. rT = dn1 + s-ri. where n1 and -r1 are 
constant vectors with respect to a single line segment indicated by subscript, l. Substituting Eqs. 
(3.56-3.57) in Eq. (3.55) and using the defined parameterization yields 

1 2:3 
1Bb,I [( D·. rT. - D·. n1d l) (D •. D1)] - 2 1 + 3 

'
3 3 max, ( ikT · D1) + -3

-- + 
k d · ,l · 0~1 ~J m~ ~~ 

[-(ikT · n1) d. T.i] s exp(ikT · {d1n1 + s-r1))ds (3.58) 
max,3 

with d1 is constant at a single line segment ands vary between sa,l and sb,l· In short-hand notation 
we write for the right-hand side of Eq. (3.58) 

1 
3 1Bbi 

- k2 L ' [Ali + B1is] exp( C1 + D1s )ds 
0 !=1 Ba,i 

(3.59) 
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where the constants are given by 

A1i [ ( 1 + Dj . rT,j - Dj .· Dzdrnax,I) ( ikT . Dz) + ( Dj . D.1)] 
dmax,3 dmax,3 

(3.60) 

[ D· · T·] B1i = -(ikT · Dz)-3- -.i (3.61) 
dmax,3 

C1 ikT · Dzdmax l 
' 

(3.62) 

Dz - ikT · Tz. (3.63) 

We have now obtained the representation for the scattered electric far-field in a closed form. 
In Chapter 5 we will compare the electric field inside the object and the electric far-field com
puted with the in this chapter developed method with an alternative solution method. Numerical 
computations have demonstrated that for a large wavelength of the electric field inside the object 
the difference between the approximated electric far-field and the actual electric far-field is small. 

In the next chapter, which is concerned with diffraction gratings, we will use the knowledge 
gained in this chapter with respect to the point matching method, the assumption of the wave
length of the electric field and the triangular basis functions and the surface integral to boundary 
integral transformation technique. 



Chapter 4 

Diffraction gratings 

In this chapter we consider the scattering of an electrically polarized plane wave by a diffraction 
grating which is periodic in one dimension. The diffraction grating consists of a periodic struc
ture placed on the planar interface between two half spaces with different electromagnetic pro
perties. The assumption introduced in Chapter 3, namely that the wavelength of the electric field 
inside the object is much larger than the maximum dimension of the object (Lmax < 0.25Ama1) 

also applies for the next derivations. We formulate the scattering problem as a domain inte
gral equation, where the appearing integrals over a 2D domain will be solved in a closed form. 
Finally, the aim is to find the reflection coefficients using a spectral and spatial domain approach. 

4.1 Formulation of the problem 

The diffraction grating under consideration is invariant in the y-direction and consist of a struc
ture, periodic in the x-direction, placed on the planar interface between two half spaces. The 
transverse cross section of the diffraction grating is shown in Fig. 4.1. In the next considerations, 
the upper half space, i.e. z ~ 0, is free space thus the permittivity is given by «:1 = «:0 . For 
the lower half space (z < 0) we use a medium which has a complex permittivity «:2 = E~ + ic~. 
The structure embedded in the upper half space is made of a material with complex permittivity 
«=mat = E~at + ic'~ai· All media in the configuration are non-magnetic, therefore the permeabilities 
are µ 1 = µ2 = µmat = µ0 • The length of one period of the structure is indicated by dimension a. 
We assume that the object has a trapezoidal transverse cross section. 

The grating is illuminated by an electrically polarized plane wave which is aligned in the 
invariant y-direction of the configuration. The angle of incidence of the incident field lies in the 
transverse plane, such that we consider planar diffraction. Since the incident field is polarized 
in the y-direction and has no spatial dependence in the invariant direction of the configuration, 
the three-dimensional electromagnetic scattering problem reduces into a two-dimensional pro
blem. The resulting electric field is then found as the solution of the two-dimensional Helmholtz 
equation in two half spaces with different material properties. 

The formulation of the scattering problem is based on the decomposition of the total electric 
field in a primary electric field and a secondary electric field. We define the primary electric field 

25 
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Figure 4.1: Transverse cross section of 1 D diffraction grating. 

as the electric field due to the polarized incident electric plane wave in the presence of two half 
spaces. The secondary electric field is defined as the field which results from the combined effects 
of a secondary current distribution caused by an impressed source or an inhomogeneity in the 
permittivity and of the two half spaces. These two field problems will be discussed successively 
where we start with the primary field problem. 

4.2 Primary electric field 

The incident field is defined as the electrically polarized unit-amplitude plane wave in free space 
with time dependence exp(-iwt) 

(4.1) 

where k~x = ko cos( ei) and k~z = ko sin( ei) with oi the angle of incidence lying in the transverse 
plane (x, z). The free-space wave number is defined as k0 = w..fii0€0. The inclusion of two half 
spaces leads to the following expression for the primary electric field in the upper half space 

E~(x, z) = exp(ik~xx - ik~zz) + RPrim exp(ik~xx + ik~zz) for z ~ 0 (4.2) 

where the superscript P refers to the primary electric field. The reflection coefficient Rprim resul
ting from the reflection of the lower half space is found as 

Rprim = Fi cos(Oi) - ../€2 - €1 cos2 (0i) 

Ficos(Oi) + ../€2 - €1cos2(0i) 
(4.3) 

For the evaluation of the square root of the complex permittivity €2 in Eq. (4.2-4.3) special 
attention is required. The choice of the square root is determined by the requirement that the 
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total electric field should remain bounded and/or representing outgoing propagating waves when 
lzl ~ oo. Since the primary electric field in Eq. (4.2) is bounded and represents propagating 
waves, the choice of the square root is determined by the radiation condition applied to the 
primary electric field in the lower half space, i.e. for z < 0. The electric field in the lower half 
space is found as 

for z < 0 (4.4) 

where TPrim = 1 + Rprim is the transmission coefficient and k2x = k~x· The wave number k 2z 
in Eq.(4.4) is now a complex number as a consequence of the complex permittivity in the lower 
half space. Applying the boundary conditions to the electric field in the upper half space and the 
lower half space leads to the determination of the complex wave number 

(4.5) 

Substitution of Eq. (4.5) in Eq. (4.4) shows that the primary electric field in the lower half 
space is only bounded and represents propagating waves when Re(k2z) > 0 or Re(k2z) = 0 and 
Im(k2z) > 0 for z ~ -oo. This means that the principal value of the square root of the complex 
permittivity leads to the conditions 

Re(yl€2) > 0 or Re(ylf2) = 0 and Im(y'€2) > 0. (4.6) 

4.3 Secondary electric field 

4.3.1 Homogeneous space 

We start to formulate the scattered field in a homogeneous space with constant complex permit
tivity € in terms of a general electric current distribution J. The current distribution J originates 
from an impressed source or an inhomogeneity in the permittivity enclosed by an and is de
picted in Fig. 4.2(a). The general solution for the electric field can be found from Maxwell 
equation's in the frequency domain 

V' x Hs - J - iwcE8 

V' x E8 iw µoH8 

(4.7) 

(4.8) 

where the field quantities with superscript 8 denote the scattered fields. When we take the curl of 
Eq. (4.8) and combine Eq. (4.7) and (4.8) we find that 

(4.9) 

The left-hand side can be written as 

(4.10) 
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(a) (b) 

Figure 4.2: Transverse cross section of object (a) in homogeneous space (b) 
in two half spaces. 

Since we consider the special case where E = Ey(x, z)uy, the divergence term on the right-hand 
side of Eq. (4.10) can be rewritten as 

(4.11) 

so that Eq. (4.9) results in 

(4.12) 

where the relative permittivity is given by Er = €/ €0 . 

Since we will include the effects of a half space composed of two media, where E(z) de
pends only in z, we may introduce a single spatial transformation over the remaining spatial 
variable, i.e. x, so that the second-order differential equation can be reduced to a sequence of 
one-dimensional differential equations. The spatial Fourier transform pair is given by 

Ey(kx, z) 1-: exp(-ikxx)Ey(x, z)dx (4.13) 

1 100 

A Ey(x, z) -
2

71" -oo exp(ikxx)Ey(kx, z)dkx (4.14) 

which is in accordance with the temporal Fourier transform pair. By applying Eq. (4.13) to Eq. 
(4.12), the following one-dimensional wave equation results 

2 
".\2A w 2 A A 

u;E; + ( d €r - kx)E; = -iwµoJy. 
0 

(4.15) 

In the case of one homogeneous space with relative complex permittivity En we define Green's 
function as the solution of 

a:G1 - 1~G1 = -£5(z - z') for z E JR (4.16) 
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where Tl = Jk; - ~fr1 and 6 is a Dirac delta distribution representing a point source located 
Co 

at z'. In the most general form, the solution of Eq. (4.16) is found as 

(4.17) 

which in addition should remain bounded or representing outgoing waves when lzl --+ oo. The 
requirement that Green's function must satisfy the radiation condition implies that P = Q = 0 
and results in the solution of Eq. ( 4.16) 

(4.18) 

where the appearance of the square root of Tl results in the choice of the branch cut to be 
Re( Tl) 2::: 0 and Im( Tl) < 0 which is in accordance with the radiation condition for a homo
geneous space with complex permittivity. 

Owing to the superposition principle, the solution of Eq. (4.15) can be easily generalized 
from the results of Eq. (4.17), i.e. 

(4.19) 

which expresses Ey in terms of the spatial Fourier transform of JY ( kx, z). 

4.3.2 Half space 

Next, we include the effects of two half spaces. The upper half space (z 2::: 0) consist of free 
space (€1 = fo) and the lower half space (z < 0) is made a medium with a complex permittivity 
€2 • The configuration is shown in Figure 4.2(b). For the two half spaces Eq. (4.16) changes to 

a2G-T2a = -6(z - z') for z 2::: 0 z 1 (4.20) a2G-T2a =0 for z < 0. z 2 

The general solution of Eq. (4.20) can be written as 

G _ { G1(z, z') + Aexp(-T1z) for z 2::: 0 
(4.21) 

- Bexp(T2z) for z<O 

where Ti = Jk; - k5fr,i with i E (1, 2). The requirement that G must satisfy the radiation 
condition leads to the choice of the square root of Ti· The upper half space consist of free space 
so that T~ is real (positive and negative) which means that Re(T1) > 0 or Re(T1) = 0 and 
Im(T1) < 0. The lower half space has a material property with complex permitivity so that the 
radiation condition is fulfilled when Re( T2) 2::: 0 and Im( T2) < 0. 
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The coefficients in Eq. (4.21) are found from the boundary conditions at the interface between 
the two media at z = 0. It follows that Ey and Hx are continuous and consequently G and 8zG 
thus it means that Eq. (4.21) can be written as 

with the solution 

2
1 

exp( -11z') + A - B 
/1 

! exp(-11z') - /1A - 12B 
2 

1 ( ')'1 - /2 A - -
2 

exp -11z 
/1 /1 + /2 
1 211 , 

B - - exp(-11z) 
211 /1 + /2 

where the Fresnel reflection and transmission coefficient are recognized as 

R /1 -12 
-

/1 +12 

t 211 
-

/1 +12 

It means that the final expression for Green's function G can be written as 

for z ~ 0 
for z < 0. 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

Because we are only interested in the (far-) field in the upper half space we combine Eq. (4.14), 
(4.19) and (4.28) to find a spectral representation for the (far-) field at z > 0 

iwµo 100 
dkx . 1Zmax 1 A 1 1 -

2
- -

2 
exp(ikxx) exp(-11lz - z l)Jy(kx, z )dz 

Tr -oo /1 0 

. 100 

dk 1Zmu iw µ0 x . , A , z' 
+ -

2
- -

2 
Rexp(ikxx - /1z) exp(-11z )Jy(kx, z )d , 

Tr -oo /1 0 
(4.29) 

which is the expression that would have to be evaluated for a source distribution or an inhomo
geneity at z > 0. 

4.3.3 Periodicity 

Next, we specify our configuration to a source distribution or an inhomogeneity which is periodic 
along the x-coordinate. Since we consider a medium which is periodic, the current distribution 
and the corresponding electric field are also periodic, so that we write for the current distribution 
[11] 

Ji(x +a, z) = exp(ik~xx)j(x, z) (4.30) 
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with j(x + na, z) = j(x, z) for n = (0, ±1, ±2, ... ). The formulation used in Eq. (4.30) 
is known as Floquet's theorem which is a special case of Bloch's theorem, valid for three
dimensional periodicity. In Appendix B, we prove Bloch's theorem for macroscopic electro
magnetic fields. 

For the periodic function j(x, z), an infinite series of orthonormal expansion functions also 
known as the discrete Fourier transform are used [12] 

j(x, z) = f Jn(z) exp(i
2
: nx) (4.31) 

n=-oo 

where the Fourier coefficients ]n(z) are given by 

]n(z) = ~ r exp(-i
2

7r nx)j(x, z)dx. 
a }0 a 

(4.32) 

Substituting Eq. (4.30) in (4.32) yields 

11a . 27r Jn(z) = - exp(-ik~x - i-nx)l:(x, z)dx 
a 0 a 

(4.33) 

i.e. the one-dimensional Fourier transform of 1; ( x, z) at kxn = k~x + n 2;. 
Comparison of Eq. (4.33) with Eqs. (4.13)-(4.14) shows that the integration is only evaluated 
over one period and the factors a and 27r occur at different positions. 

In order to use Eq. (4.29) we transform Eq. (4.31) by means of a spatial Fourier transform 
over variable x which result in a discrete series, i.e. 

(4.34) 

When substituting Eq. (4.34) in Eq. (4.29), we obtain the final expression for the scattered 
electric field in z > 0 

oo exp( ik X) 1zma:i: 
E;(x, z) = iwµo L xn exp(-'Y1nlz - z'l)jn(z')dz' 

n=-oo 2'Yln 0 

. ~ Rn exp( ikxnX - 'YinZ) 1Zma:i: ( ') · ( ')d I + iwµo L..J 
2 

exp -'Y1nZ )n z z 
n=-oo 'Yln O 

(4.35) 

which gives the scattered electric field in terms of a series of Fourier integrals of 1: ( x, z) where 
'Yi,n and Rn depends on the spectral order n as a result of kxn· 

When considering the last integral in Eq. (4.35) in more detail and using the results of Eq. 
( 4.34) we find that 

1
Zma:i: 11a 1Zmax 

exp(-'Y1nz')jn(z')dz' = - dx' exp(-ikxnX - 'Yinz)l;(x', z')dz' 
o a o o 

(4.36) 
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which is in fact a normalized modified spatial Fourier transform. A similar expression can now 
be derived in the same manner for the first integral, i.e. 

1
Zma:i: 

0 
exp(-11nlz - z'l)jn(z')dz' = 

exp(-/InZ) r dx' r exp(-ikxnX1 + /Inz')l;(x', z')dz' 
a lo lo 

exp(/ z) la lzma:i: + In dx' exp(-ikxnX1 
- /1nz')1;(x', z')dz' 

a o z 
(4.37) 

where a linear combination of two spatial Fourier transforms are used to account for observation 
positions between z = 0 and z = Zmax· This means that the surface integral over domain D splits 
into a sum of integrals over two subdomains. As shown at the right-hand side of Eq. (4.37), the 
two spatial Fourier transforms differ only in the sign in the exponent but have a similar form. 
Therefore, knowing that the first spatial integral can be found by replacing 11 by -11 we rewrite 
the second spatial integral in Eq. (4.37) in terms of line integrals. For that purpose we use 
Green's second identity 

~ r dx' r exp(-ikxnX - /1nz')l;(x', z')dz' = 
a lo lo 

( 2 ~ k2 ) 1 { 1; ( x', z') V7~ exp( -ikxnX - /1nz') 
lln xn a D 

- exp(-ikxnX -11nz')V7~1;(x', z')} dx'dz' 

= k2

1 J { 1;(x', z')on exp(-ikxnX -11nz') 
- otr1a hw 

- exp(-ikxnX - /1nz')8nl;(x', z')} dl' (4.38) 

where 8D is the boundary which encloses the trapezoidal shaped cross section of the object. We 
have also used that /fn - k;n = -~ Er1 = -k5trI· 

In analogy with the formulation for the electric field used in Chapter 3, we write the current 
density 1; in terms of the total electric field 

(4.39) 

where Emat is the permitivitty of the material in domain 8D and t 1 is the permitivitty of the 
background medium, in this case free space with t 1 = t 0 • 

Since we have assumed that the wavelength of the electric field inside the object is large 
compared to the maximum dimensions of the object we use for the electric field a weighted sum 
of linear expansion functions 

3 

Ey(x, z) = L Ey,j(x, z)fj(x, z) 
j=l 

(4.40) 
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Figure 4.3: Definition of subdomains for trapezoidal cross section of object. 

where the expansion function fj is defined in Section 3.1.1 and Ey,j denotes the field amplitudes 
in the vertex positions of the object. 

To approximate the electric field in the trapezoidal domain we realize this by defining two 
adjacent triangular domains with two sets of basis functions because the support of the expansion 
functions in Eq. (4.40) are defined inside a triangular domain. For the case that observation 
positions are chosen at the vertex positions the spatial Fourier transforms in Eq. ( 4.36) and ( 4.37) 
are evaluated over two triangular subdomains. For observation positions between z = 0 and 
z = Zmax the spatial Fourier transform in Eq. (4.37) leads to four subdomains. The decomposition 
of the trapezoidal domain is shown in Fig. 4.3. 

As an example we will proceed with the evaluation of the spatial Fourier transform in Eq. 
(4.38) for subdomain D1 since the contribution of the other subdomains to the scattered electric 
field can be evaluated in a similar manner. 

The subdomain D1 is delimited by four straight line segments. Substituting Eq. (4.39-4.40) 
in (4.38) then results in 

-iw(Emat - Ei) Jr { exp(-ikxnX - 'Y1nz'))Ey(x', z')dx'dz' = 
a ln1 

iw( Emat - E1) ~ h i { ( I ') ( . I ') k2 L..t Ey,j fj x ' z an exp -ikxnX - 'Y1nZ 
0Er1a j=l 8D1 

- exp(-ikxnX1 
- /1nz')8nfj(x', z')} dl'. (4.41) 

The resulting boundary integral on the right-hand side in Eq. (4.41), will be divided into four 
line integrals along the piecewise constant line segments that delimitates domain D1. Further, 
the individual line integrals are rewritten into a local coordinate system, where at each line the 
tangent and the normal vectors are constant. To make use of these constant vectors the position 
vector along a straight line segment is defined as follows 

rr = dn+ ST (4.42) 

where d is constant and s the integration variable, analog to the parameterization procedure 
defined in Section 3.1.2. 
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Using this parameterization, the two directional derivatives in Eq. (4.41) can be written as 

_Dz· Dj 
dmax,j 

(4.43) 

(4.44) 

where the derivatives are evaluated corresponding to a particular straight line segment indicated 
by the subscript, l. In similar manner, the spatial variables x' and z' are transformed in local 
coordinates 

x' - Ux · rr,1 = Ux · (dmax,zDz + s-r1) 

Z
1 llz · rr,! = llz · (dmax,zDz + S'Tz) 

(4.45) 

(4.46) 

valid for straight line segment l. Substituting Eq. ( 4.43-4.46) in the right-hand side of Eq. (4.41), 
and omitting the constant in front of the integral, we find 

3 

L Ey,j i fj(x', z')8n exp(-ikxnX1 
- /1nz') - exp(-ikxnX1 + /1nz')8nfj(x', z')dl' = 

j=l 8D1 

3 4 

LL Ey,j exp(Df) [A~jLo(sa,li Sb,!, C/) + B~jL1(sa,1, Sb,z, C/)] (4.47) 
j=l l=l 

where we have defined the standard integral Lo and L1 as 

1
Sbl 

La(sa,z, Sb,!, /3) = s°' exp(/3s)ds 
Sa,l 

(4.48) 

where sa,l and Sb,l denote the begin and end positions on the line segment l, respectively. The 
constants A, B, C and Dare found as 

Af · [i+Dj·rr,j-dmax,1Dz·Dj] · ( ·(- ·k _ ))+Dz·Dj (4.49) - dm . Dz i xnllx /nllz dm . ,J axJ axJ 

Bf· (ni · Tz) . (4.50) - -d--· (ikxn{Ux ·Dz)+ 'Yn(D1 · llz)) ,J max,3 
C/ - (ikxn(Ux · Tz) + 'Yn(Uz · Tz)) (4.51) 
Dn l - - (ikxndmax,z(Ux ·Dz)+ /ndmax,z(Uz ·Dz)). (4.52) 

A similar procedure can be applied to find the other spatial Fourier transform for the remaining 
subdomains. Once these contributions are known, the total electric field is found as the sum of 
the primary electric field and the secondary electric field. 

For the discussed configuration, the total electric field is expanded in 6 linear basis functions 
inside the two subdomains. To find the fundamental unknowns corresponding to the basis func
tions, i.e. the electric field amplitudes at the vertex positions Ey,j• we apply the point-matching 



4.4. REFLECTION COEFFICIENTS 35 

method in a similar manner as discussed in Section 3.1.3 so that we have to choose test functions 
and collocation points to obtain a system of linear equations. In Fig. 4.3 we have indicated by 
the cross and the dot two sets of collocation points. The number of collocation points is equal 
to the number of basis functions, so by applying the point matching method we obtain a system 
of 6 equations with 6 unknowns characterized by a 6x6 matrix where the 6 field amplitudes Ey,j 
can be found by solving the system of equations. Once the fundamental unknowns are found, the 
secondary electric field in z > 0 results from reusing Eq. (4.35). 

4.4 Reflection coefficients 

As mentione~ in the introduction of the thesis, when a diffraction grating is illuminated by an 
electromagnetic plane wave a discrete number of reflected waves results. The total electric field 
may therefore be written in terms of Floquet waves 

00 

Ey(x, z) = L R~1 exp(ikxnX - /InZ) + E~(x, z) (4.53) 
n=-oo 

where the reflection coefficient R~1 and the phase exp( ikxnX - /InZ) depends on the shape of 
the diffraction grating. 

In this chapter we have decomposed the scattered electric field into a primary electric field 
and a secondary field so that therefore we rewrite Eq. (4.53) in the following form 

00 

Ey(x, z) = L R~ec exp(ikxnX - /InZ) + E~(x, z) 0 :::; z :::; 00 (4.54) 
n=-oo 

where the reflection coefficient at (x, z) = (0, 0) corresponding to the primary electric field is 
easily found as Rprirn and is defined in Eq. (4.3). The reflection coefficient R~ec at (x, z) = (0, 0) 
corresponding to the secondary field is given by 

R~ec = iwµo-
2

1 [1zmax exp(i1nz')jn(z')dz' 
/In O 

+Rn 1zmax exp(-11nz')jn(z')dz'] · 

The total reflection coefficient at (x, z) = (0, Zrnax) can be written as 

R~1 
- R8;c exp(-2/inZrnax) 

m01 
- ( Rprirn + R~ec) exp( -211nZrnax) 

for 

for 

n~O 

n=O 

(4.55) 

(4.56) 

(4.57) 

where the additional phase factor exp( -2/inZrnax) is due to the choice of the position of the 
reference plane from which where the reflection coefficients are defined. Once the reflection 
coefficients of the reflected waves and the phase are known the electric far field is fully specified 
by Eq. (4.53). 
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In Chapter 5 we will use the reflection coefficients to derive an expression for a related quan
tity, namely the diffraction efficiency. The diffraction efficiency gives a relation between the 
power of the reflected electromagnetic field in the different directions relative to a surface paral
lel to the mean plane of the grating and the power of the incident field. The diffraction efficiencies 
computed with the developed methods in this chapter will be compared with the diffraction effi
ciencies computed with the Rigorous-Coupled-Wave Approach (RCWA). For large wavelengths 
of the electric field inside the periodic structure accurate values of the diffraction efficiencies are 
found. 



Chapter 5 

Numerical Results 

In this chapter, we validate the developed methods to compute the scattered electric field for a 
dielectric cylinder with a triangular and a trapezoidal cross section, embedded in free space and 
for a diffraction grating. Therefore, we will use alternative solution methods to compare the elec
tric field computed with the developed methods, where we vary the wavelength of the incident 
electric field, the geometrical parameters and the material properties of the object. Finally, we 
will demonstrate the possibility to retrieve some geometrical parameters of the dielectric cylinder 
and of the diffraction grating. 

5.1 Non-periodic dielectric cylinder 

5.1.1 Reference program 

To compare the electric field calculated with our method with an existing method, we use a in
house developed program [13] as reference. In this section, we refer further to the electric field 
calculated with this program as the reference or the measured field. This program computes 
the scattered electric field (both near-field and far-field) for a given object illuminated by an 
electrically polarized incident field. The electric field problem for the reference method is for
mulated in terms of a domain integral equation. The integral equation is numerically solved by 
the "marching-on-in-angle" method which facilitates the frequency-domain computations. The 
domain of interest is discretized using a fixed mesh size. The object is enclosed by a rectangular 
domain (x, z) E [-1, 1] which have Ne x Nz subregions. The convolution type structure of the 
continuous integral equation is preserved with this discretization procedure so that the integral 
equation can be solved with the aid of a repeated evaluation of the "conjugate-gradient FFT" 
method. From now on, we solve the electric field in the reference method with a grid consisting 
of 65 x 65 rectangular subregions. This leads to small mesh sizes and an accurate approximated 
electric field which resembles very closely the exact field. 

37 
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Figure 5.1: Transverse cross section of dielectric cylinder embedded in free space. 

5.1.2 Electric field in object 

We start to validate the developed method, discussed in Chapter 3, for the scattered electric field 
for an infinity long dielectric cylinder with a triangular cross section embedded in free space. The 
incident field is an electrically polarized plane wave, E~ny, which propagate in the -x-direction. 
The object is made of a homogeneous dielectric with refractive index nmat = ~ = 1. 51 where 
the embedding is free space. The structure under consideration is visualized in Fig. 5.1. We 
consider the shape of this object as the most general form since other triangular shapes will lead 
to similar results and other more complicated shapes can be constructed from the combination of 
triangular objects. The used solution method was based on the assumption that the wavelength 
of the electric field inside the object Amat is large compared to the maximum dimension of the 
object. Under this assumption the electric field inside the object can be approximated by linear 
basis functions. The wavelength inside the object is related to the fixed maximum dimension of 
the object denominated by the parameter Lmax. The wavelength inside the object Amat is varied 
according to 4Lmax ~Amat~ 20Lmax· 

To find the electric field inside the object the integral equation should be solved. This is 
done via the point matching method, discussed in Chapter 3. Therefore, we have to choose an 
appropriate set of collocation points. We choose two sets of collocation points. The first set of 
points are the vertex points indicated by the dots(•) in Fig. 5.1. The second set is chosen at the 
centers of the edges between the two vertex points and is indicated by the cross ( x) in Fig. 5 .1. 

To evaluate the influence of the collocation points on the value of the electric field, we will 
compute the electric field at the positions where the collocation points are taken with our ap-
proximated method. The electric field corresponding to these two cases are compared with the 
reference electric field at the collocation points. To that end, we define the relative error in the 
electric field at observation position rT as 

(5.1) 
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Figure 5.2: Relative error[%] at the observation positions chosen at (a) the vertices and (b) at 
the centers of the edges for a dielectric object with refractive index n = 1.51. 

where the reference electric field is indicated by ref and our approximated electric field by approx. 
The relative error in the electric field calculated at the vertex points and at the center points are 
shown in Fig. 5.2(a) and 5.2(b ), respectively as function of the maximum dimension of the object 
normalized to the wavelength inside the object, i.e. Lmax/ Amat· Since we have chosen a fixed 
dimension of the object, this normalized dimension Lmax/ Amat only depends on the variation in 
the wavelength inside the object. As shown in Fig. 5.2(a) and 5.2(b ), the evolutions of the relative 
error with respect to increased Lmax/ Amat for both sets of collocation points are approximately 
similar. It is shown that for larger wavelengths, thus smaller Lmax/ Amai. the relative error reduces 
since the electric field inside the object is better approximated with linear functions. 

Since we have used the point matching method to solve the integral equation, the electric field 
at the collocation points is approximated the best. Therefore, we consider the error distribution 
inside the object for the two sets of collocation points. The error distribution for the collocation 
points chosen at the vertices and at the center are shown in Fig. 5.3(a) and 5.3(b), respectively. 
These distributions are calculated for Lmax/ Amat=0.151 which corresponds to a wavelength of 
the electric field inside the object of Amat = Lmax/0.151 = 6.62 m and a free-space wavelength 
of Ao = Lmax/0.1 = 10 m. In Fig. 5.3 is shown that the lowest errors are obtained at the 
observation positions which coincides with the different collocation points. This was expected 
since a property of the used solution method is that the field is approximated the best at a discrete 
set of points. Comparison of the two error distributions in Fig. 5.3 shows that the maximum 
error is approximately equal and that the largest errors are observed at positions with the largest 
distance from the collocation points. For these positions, the linear approximated electric field 
has the largest difference with the exact electric field as a consequence of the point matching 
method. 

To get some measure for the error over the domain of the object, we introduce the mean 



40 

0.5 

" 
0 

--0.5 
--0.5 0 

x 

(a) 

0.5 

5 

4 

3 

2 

0.5 

" 

0 

--0.5 

CHAPTER 5. NUMERICAL RESULTS 

--0.5 0 
x 

0.5 

(b) 

6 

5 

4 

3 

2 

0 

Figure 5.3: Relative error [%] distribution for collocation points (a) at the vertices and collocation 
points (b) at the centers of the edges for dielectric object with nmat = 1.51 and Ao = 10 m. 

relative error which is defined as 

(5.2) 

where ND = Nx x Nz is the total number of observation positions inside domain D. For the 
two sets of collocation points, the mean relative error as function of the normalized maximum 
dimension Lmax/ Amat is shown in Fig. 5.4. As shown in Fig. 5.4(b) the mean relative error for 
collocation points chosen at the centers of the edges is significantly lower than the mean relative 
error for collocation points chosen at the vertices, as in Fig. 5.4(a). The reason for this is that the 
approximation of the electric field solved for collocation points at the vertices over a larger area 
of the object differs from the reference field. 

As a consequence of all the considerations above, in the next configurations we will use 
collocation points at the centers of the edges since this gives the lowest errors. In the discussed 
experiments we have varied only the wavelength of the electric field inside the object, but for a 
fixed wavelength of the electric field in free space, the error increases for a larger magnitude of 
the refractive index. This can be explained by the fact that the wavelength of the field in matter 
is related to the material properties, i.e. Ao = nmatAmat· If the wavelength of the electric field in 
free space is much larger than the maximum dimension of the object with relative low refractive 
index, the electric field inside the object can be quite well approximated with linear functions. 
Therefore, in the next sections we use the wavelength in free space Ao which is at least ten times 
the maximum dimension of the object (Ao > lOLmax) since we will use dielectric objects with 
relative low refractive index (nmat = 1.51). This suffices the condition Amat » Lmax· 
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Figure 5.4: Mean relative error [%] for collocation points (a) at the vertices and (b) at the centers 
of the edges for the dielectric object with nmat = 1.51. 

5.1.3 Electric far-field 

Next, we consider the scattered electric field far away from the object. In the far-field region, the 
scattered electric field as derived in Section 3.2 is given by 

(5.3) 

where 

'11(0, 'l/J) =Xe J L exp(-ikT · r~)Ey(r~))dA' (5.4) 

is the radiation pattern and f 0(rT) represents the equivalent line source. We recall that the 
normalized contrast function Xe is defined as Xe = n~at - 1. To calculate the scattered field, 
we use the cylindrical object with triangular cross section (see Fig. 5.1) placed at the origin, see 
Fig. 5.5. In Fig. 5.5, the angle of incidence of the incident electric field is denoted by 'ljJ and 
the angle of observation is denoted by e. The distance between the object at the origin and the 
observation position, indicated by 0, is fixed and large, i.e. lrTI » 1, such that the expression 
in Eq. (5.3) is valid. For this large distance, the value of the equivalent line source, contributing 
to the scattered electric field, is approximately constant. The variations in the scattered electric 
field are thus only due to the contributions of the radiation pattern. Therefore, in this chapter we 
compute only the radiation pattern since this quantity contains the most relevant information. 

We define wrec. and wapprox. as the reference radiation pattern and the approximated radiation 
pattern, respectively. To compare the radiation patterns, the following error measure is defined 

(5.5) 
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Figure 5.5: Far-field domain with angle of incidence Wand angle of observation e. 

The modulus and phase of the radiation pattern and the errors between the reference method and 
approximated method in Fig. 5.6 are shown for two wavelengths of the incident electric field. In 
Fig 5.6 (a,c,e) we have used a wavelength in free space of Ao = 10 m and in Fig. 5.6 (b,d,t) we 
have used a wavelength in free space of Ao = 15 m. The angle of observation is varied from 0° 
to 360° in 50 equal steps. In this case we use a fixed angle of incidence, namely () = 0°. 

In Fig. 5.6 (a-b ), the modulus of the reference radiation pattern and the approximated radia
tion pattern are approximately equal. For large wavelengths, the modulus of the radiation pattern 
is approximately equal to the area of the object (Area(D)) multiplied by the contrast function 
(Xe), i.e. 1'11"1 ~Xe x Area(D). This can be deduced from·Eq. (5.4) for large wavelengths. For 
the given object, the modulus of the radiation pattern is then equal to I '11" I = 1.2801* 0.25 = 0.32. 
This is in good agreement with the computed data as shown in Fig. 5.6 (a-b). As shown, the mo
dulus of the radiation pattern corresponding to the largest wavelength Ao = 15 m in free space is 
approximated the best. 

For the phase of the radiation patterns in Fig. 5.6 (c-d) are no significant difference observed. 
The relative error for the two wavelengths are shown in Fig. 5.6 (e-t). Comparing these two 
cases, shows that the relative error is larger for smaller wavelengths of the electric field. This is 
(again) attributed to the approximation of the electric field inside the object by linear functions. 
The differences in the relative error with respect to the variation in the wavelengths Ao, found in 
Fig. 5.6, are in accordance with the results as obtained in Section 5.1.2. As shown in Fig. 5.6, 
for the two different wavelengths the relative errors are in the range of 0.004-0.16 %. Compared 
to the error in the electric field inside the object, the error in the radiation pattern is reduced. 

Next, for the given object, we vary the angle of incidence W and the angle of observation 
() between 0° and 360° in 50 equal steps. The modulus and the phase for the approximated 
radiation pattern are shown in Fig. 5.7 (a) and (b), respectively. We used the wavelength in free 
space of Ao = 10 m and the object is made of a dielectric with refractive index nmat = 1.51. 
In Fig. 5.7(c), the relative error between the reference and approximated radiation pattern is 
shown. The relative error is found in the range of 0.08-0.18% which is really small such that the 



Figure 5.6: Modulus, phase and relative error [%] of the reference and approximated radiation 
pattern for a dielectric object with triangular cross section with nmat = 1.51 and angle of the 
incident electric field '11 = 0 and wavelength in free space in (a,c,e) Ao = 10 m and in (b,d,f) 
Ao·= 15 m. 
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Figure 5.7: Approximated radiation pattern \llapprox as function of the angle of the incident electric 
field '!/; and angle of observation e for the dielectric object with triangular cross section and 
wavelength of free space ,\0 = 10 m. (a) Modulus radiation pattern, (b) phase radiation pattern 
and ( c) relative error [ % ] between reference and approximated radiation pattern. 

approximated electric far field resembles the exact electric field very closely. 
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Figure 5.8: Dimensions of trapezoidal shaped cross section of the infinitely long cylindrical 
dielectric object. 

Trapezium 

So far, we have only considered an infinitely long cylindrical object with a triangular cross sec
tion. To demonstrate that also other geometries are suitable for the developed method we consi
der now an object with a trapezoidal cross section. The trapezoidal domain may therefore be 
decomposed into two triangular domains since the electric field inside the object is constructed 
with expansion functions which have a support only over a triangular domain. This means that 
the electric field is now expanded in 6 linear functions, i.e. 3 for each triangular subdomain. We 
start with an object with the cross section dimensions as shown in Fig. 5.8 having height h = 1 
m, width w = 1 m and bottom width b = 1 m. The modulus, phase and the relative error for the 
approximated radiation pattern are shown in Fig. 5.9. The results are computed with the wave
length in free space of .A0 = 15 m and the refractive index of the dielectric object is nmat = 1.51. 
We observe that the mean value of the modulus of the radiation pattern is approximately equal to 
the contrast function multiplied by the area of the cross section of the object. The relative error 
between the reference radiation pattern and the approximated radiation pattern is in the order of 
0.1 %. These errors are small and comparable with the errors found in the radiation pattern for 
an infinitely long object with triangular cross section. 
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Figure 5.9: Approximated radiation pattern wapprox as function of the angle of the source 'I/; and 
angle of the observation e for object with rectangular cross section (w = h = b = 1 m.) with 
an incident electric field with wavelength >.0 = 10 m. (a) Modulus radiation pattern, (b) phase 
radiation pattern and ( c) relative error[%] between reference and approximated radiation pattern. 
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5.1.4 Reconstruction 

In the last sections, we have shown that the relative error between the approximated radiation 
pattern and the reference radiation pattern is very low. These low errors suggest that from the 
radiation pattern it may be possible to retrieve information with respect to the structure geometry. 
For large wavelengths of the electric field inside the object, we have concluded that the modulus 
of the radiation pattern is approximately equal to the product of the contrast function and the area 
of the cross section of the object. In this thesis, the material properties of the object are known and 
thus the contrast function is known. It means that given the contrast function, the area of the cross 
section of the object can be retrieved from the modulus of the radiation pattern. The computed 
modulus gives a rough estimate of the area of the object. This information can be used as a start 
guess in inversion methods for exact retrieval of the geometrical parameters of the object. To 
retrieve the dlfferent geometrical parameters accurately, the variations in the radiation pattern 
contain the most valuable information. To illustrate this, we consider the following example. 

In Fig. 5.10, two radiation patterns corresponding to two different objects with a trapezoidal 
cross section with equal area, i.e. Area = 0.855 m2 , are shown. The geometrical parameters 
of the two objects can be found in Table 5.1. The radiation patterns are computed with the 

h [m] w [m] 
case A 0.9 0.9 
case B 0.855 1.0 

Table 5 .1: Dimensions of two objects with equal areas (Area = 0.855 m2) of the cross section of 
object and fixed bottom width b = 1 m. 

approximated method and we have used a free-space wavelength >.0 = 15 m and the object 
consist of a material with refractive index nmat = 1.51. 

As shown in Fig. 5 .10, the modulus of the two radiation patterns differs only very little. The 
areas of the cross section of the object reconstructed from these radiation patterns are approxi
mately equal. This means that although the two objects seems equal on basis of the value of 
the area, they differ in shape. Other techniques are then necessary to retrieve the geometrical 
parameters of the object. 

Therefore, we formulate the problem as an inverse-scattering problem where we have to solve 
the following minimization problem 

min F(p) 
pE{w,h} 

where F(p) is the objective function defined as 

F(p) = L ~ll<I>ref.(p,Bn, Wn)- <I>approx.(p,Bn, '1Fn)ll2 

On,IJlnE{0,360°} 

(5.6) 

(5.7) 

where we vary the angle of incidence 'lF and observation B between 0°-360° in 50 equal steps. 
Next, the aim is to retrieve the two geometrical parameters (w and h) of the in table 5.1 defined 
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Figure 5.10: Radiation pattern for two objects with equal area Area=0.855m2
• (a) Case A: 

h = 0.9 m, w = 0.9 m. (b) Case B: h = 0.855 m, w = 1 m and fixed bottom width b = 1 m for 
both cases. 

objects from the reference measured data. To avoid 'inverse crime', we treat the data from the 
reference method as the reference measured data and our data as the approximated computed 
data. 

First we consider case A with height h = 0.9 m, width w = 0.9 m and bottom width b = 1 m. 
We start with computing the objective function by varying the width w and keeping the height h 
fixed. The objective function is shown in Fig. 5 .11 (a). In a similar manner the width is fixed and 
the height is varied and the results is shown in Fig. 5.ll(b). For the two individual parameters 
(w, h) a minimum forthe objective function is found. As shown, when one geometrical parameter 
is fixed, the other parameter can be accurately retrieved. Both parameters are reconstructed with 
a relative error of 0.4-0.9%. 

Next, we vary the width w and the height h at the same time to simultaneously retrieve 
information about the two parameters (w, h) of the object. The objective function with respect 
to the width wand the height his shown in Fig. 5.12. As shown, multiple local minima are 
found and the global minimum corresponds to a width w = 0.908 m and a height h = 0.9 m. 
Compared to the reference object, the height h is exactly retrieved and the error in the width w is 
~0.93. When considering the local minima it is found that they are aligned on a line for which 
the total area of the cross section of the object is approximately constant (see Fig. 5.12(b)). 

In a similar manner, we have reconstructed the geometrical parameters for the second object, 
i.e. case B where the height h = 0.855 m, the width w = 1 m and the bottom width b = 1 m. The 
reconstructed parameter values for case A and case Bare tabulated in Table 5.2. The width and 
height parameters corresponding to the minimum of the objective function are indicated by the 
subscript opt· Experiments have shown that the behavior of the objective function for case B is 
comparable with case A, thus the local minima in the objective function are (again) found along 
a line corresponding to a constant area. As shown in Table 5.2, for the two cases the differences 
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Figure 5.11: Objective function F(p) as function of (a) the width w for fixed height h, (b) and 
as function of the height h with fixed width w. 

in the parameters are approximately equal. 

case A 
case B 

hopt [m] 
0.908 
0.854 

Wopt [m] 
0.900 
1.000 

max relative error [%] 
0.93% 
0.04% 

Table 5.2: Reconstructed parameters for two objects, case A and case B and maximum relative 
error[%]. 

In summary, we can conclude that we can reconstruct the shape of the object, accurately if 
the material properties of the object are given. This is only the case when the wavelength of 
the electric field inside the object is large compared to the maximum dimension of the cross 
section of the object. We have observed that the local minima in the objective function are 
found along a line for which the area is constant. This information can be used to increase 
the speed of the reconstruction process. Therefore, we propose the following reconstruction 
strategy: in the first step we consider a rectangular cross section w = h = b and vary the 
dimension of the rectangle until a global minimum is found. Therefore, only one parameters 
should be optimized. Within a small number of minimization steps the area of the rectangular 
can be retrieved. Next, the individual width and height can be found in more steps precisely 
using the value of dimensions ( w, h, b) of the rectangular object as starting point. Therefore 
more advanced optimization techniques are necessary to increase the speed of the reconstruction 
process. 

JI 
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5.2 Diffraction Gratings 

In this section, we consider the diffraction of electromagnetic plane waves by a diffraction grating 
which is periodic in one direction. 

The diffraction grating under consideration is invariant along the y-direction and is composed 
of a lower half space (z < 0) consisting of a homogeneous medium with complex refractive 
index. The upper half space (z ~ 0) consist of free space. Additionally, a structure periodic 
along the x-direction is included in the upper half space. This structure is made of medium with 
a complex refractive index. One period of the cross section of the grating with an object in the 
upper half space with a trapezoidal shape is shown in Fig. 5.12. The grating is illuminated by an 
electrically polarized plane wave E&uy with an angle of incidence lying in the transverse plane. 
This means that we consider only the planar diffraction. The region of interest lies in the upper 
half space since this is the region where the electromagnetic field or related quantities can be 
detected and measured. 

5.2.1 Reference program: RCWA 

To validate the electric field formulation for the diffraction grating with the method derived in 
Chapter 4, we use the rigorous coupled-wave analysis (RCWA) method [2]. In the RCWA me
thod the electromagnetic field is found from rigorously solving Maxwell equations. The core of 
this method is the assumption that the field above and below the periodic structure can be des
cribed by a Rayleigh expansion. The amplitudes corresponding to the reflected and transmitted 
fields can be found by applying the boundary conditions to the expression of the field inside the 
periodic structure. For structures periodic in one direction and with arbitrary shape, the refrac
tive index of the material depends on two spatial coordinates. Therefore, the periodic structure is 
modeled as a stack of lamellar gratings, thus divided in M layers in the direction perpendicular 
to the periodicity of the grating. The field inside each layer is expanded in a Fourier series where 
the series is truncated by a finite number of terms or harmonics. For each layer, an algebraic 
eigenvalue system is found. The coupling between the different layers is accomplished by ensu
ring that the continuity of the tangential components of the electromagnetic field at the interface 
between successive layers is satisfied. This results in a large system of linear equations that can 
be solved by matrix inversion. We consider further the results obtained with the RCWA method 
as the reference solution. 

5.2.2 Diffraction efficiency 

To compare the results obtained with the reference method and with the approximated method 
discussed in Chapter 4 we will introduce a measure known as the diffraction efficiency. The 
diffraction efficiency for a given spectral order is defined as the ratio of the reflected power 
and of the incident power through the surface parallel to the mean plane of the grating [16]. 
The spectral orders are an effect of the with an electromagnetic field illuminated diffraction 
grating since this leads to a discrete number of reflected waves. This was shown in Chapter 4, 
where for the electric field a Floquet modal expansion was used and the modal coefficients or 
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Figure 5.12: Cross section of one 
period of the diffraction grating. 
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case nm at n2 
1 
2 
3 
4 
5 

1.51+0.00i 1.51 +O.OOi (resist) 
1.51+0.00i 3.77+0.0li (silicon) 
1.51+0.00i 0.22+6.7li (metal) 
3.77+0.0li 3.77+0.0li 
0.22+6.7li 0.22+6.7li 

Table 5.3: Material compositions of 
the diffraction grating. 

reflection coefficients were derived. We define the diffraction efficiencies related to the reflection 
coefficients as follows 

(5.8) 

where n is the order of the diffraction efficiency and R~ is the complex conjugated of Rn. 
Next, we compute the diffraction efficiencies for five different material compositions of the 

diffraction grating. The numerical values of the refractive index of the periodic object and the 
lower half space are shown in Table 5.3. As shown, the grating is composed of a combination 
of resist, silicon and metal as indicated between the brackets in Table 5.3. The geometrical 
parameters are defined by the width w, height h, bottom width band the periodicity length a. We 
use for the grating configuration the following parameters w = h = b = 1 m and a = 2 m. The 
diffraction efficiencies computed with the reference method and with the approximated method 
are now compared. We define the maximum relative error in the diffraction efficiency as 

(5.9) 

where the angle of the incident field (Ji is varied between 0° and 45° since at these angles the 
diffraction efficiencies can be measured by a detector. In Eq. (5.9), the reference diffraction 
efficiency is indicated by ref and the approximated diffraction efficiency by approx. For the given 
geometrical parameters, only zero-order diffraction orders are present for (Ji E (0, 45). This 
can be understood from the definition of /H which is only imaginary when n = 0. Hence, the 
maximum relative error for the zero-order diffraction efficiencies as function of the free-space 
wavelength are shown in Fig. 5.14 for the five different material compositions of the grating. The 
scattered electric field is found from solving the integral equation with a truncated series with n E 
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Figure 5.14: Maximum relative error L%] in zero-order diffraction efficiencies DE0 as function 
of the wavelength in free space for five different compositions of the material of the diffraction 
grating. The used geometrical parameters of the grating are h = w = b = 1 m and a = 2 m. The 
approximated diffraction efficiencies are computed with T = 5 terms in the series evaluation of 
the scattered electric field. For the RCWA results M = 10 layers and (2N + 1) = 21 harmonics 
are used. 

(-N, N) in the secondary electric field in Eq. (4.35). The approximated diffraction efficiencies 
are computed with T = 5 terms (T = 2N + 1) in the series. The RCWA diffraction efficiencies 
are computed with M = 10 layers and (2N + 1) = 21 harmonics. As shown in Fig. 5.14 for 
a given relative error, the free-space wavelength differs for the five considered cases. This is a 
direct consequence of the used material properties. As mentioned in the previous section, the 
wavelength of the electric field inside the object depends on the refractive index. It means that 
the wavelength of the electric field inside the object should be at least 4 times the maximum 
length of the object if the electric field has to be approximated by linear functions. For the given 
diffraction grating, the electric field is approximated with linear function only in the periodic 
structure in the upper half space. We know that the relation between the free-space wavelength 
Ao of the incident field and the wavelength inside the object is found by Amat = Ao/Re{ nmat}. For 
the refractive index only the real part depends on the wavelength inside the object since this part 
corresponds to propagating waves. When we compute the corresponding wavelengths inside the 
object for case 1, case 2 and case 3 for a fixed relative error, it is observed that wavelength inside 
the object is approximately equal. This is in accordance with the expectations. The difference in 
the diffraction efficiencies between case 1, case 2 and case 3 are due to the material properties of 
the lower half space. The effects of the lower half space are evaluated analytically as shown in 
Eq. (4.35). As shown in Fig. 5.14 the lower half space has a small influence on the error in the 
diffraction efficiencies. It is obvious that the error in the diffraction efficiencies can be reduced by 
increasing the wavelength of the incident electric field in free space. Therefore, the wavelength 
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of the electric field inside the object is larger so that the electric field is better approximated with 
linear functions. 

When the diffraction grating is made of metal, i.e. case 5, the imaginary part of the re
fractive index is much larger than the real part of the refractive index. The physical interpre
tation of an imaginary refractive index is that the field decreases exponentially according to 
exp(-k0Im{ nmat} lzl). It means that the exponentially decreasing behavior of the electric field 
may be approximated with linear functions only when the argument of the exponential function 
is small. Since the imaginary part of the refractive index is large, the wavelength of the incident 
electric field should be large to get a small free-space wavenumber k0 • This is shown in Fig. 
5.14, where for the case of a metal grating similar relative errors are observed for much larger 
wavelengths Ao compared to the other material compositions of the grating. 

Next, we consider the effects of variations in the width w and height h for the diffraction 
grating as defined in case 1 on the diffraction efficiencies. For this we use a fixed wavelength 
in free space Ao = 15 m, a fixed bottom width b = 1 m and a fixed length of one period of 
the grating a = 2 m. The numerical results for the zero-order diffraction efficiencies computed 
with the RCWA method and the approximated method for three different angles of the incident 
electric field can be found in Table 5.4. In the approximated method, the electric field is solved 
with the evaluation of only one term (T = 1) in the expression for the scattered electric field 
in Eq. (4.35). Higher-order terms in the scattered electric field decrease exponentially for the 
given geometrical parameters of the diffraction grating and may therefore be neglected. In the 
evaluation of the diffraction efficiencies using the RCWA method, the periodic structure in the 
diffraction grating is divided in a stack of lamellar gratings. This means that the number of 
layers, which are used to approximate the grating, depends on the shape of the object in the 
upper half space. When there is a large difference between the top width and the bottom width of 
the trapezoidal object a larger number of layers are necessary. In the next results, we use M = 10 
layers and (2N + 1) = 21 harmonics in the RCWA method since this results in low errors in the 
diffraction efficiencies. 

RCWA Results Our Results 
h [m] w [m] 0= 0° 0=22.5° 0=45° 0=0 0=22.5° 0=45° 
1.0 1.0 0.03126 0.04748 0.07953 0.03129 0.04753 0.07960 
0.8 1.0 0.03466 0.0516 1 0.08469 0.03469 0.05165 0.08475 
1.0 0.8 0.03194 0.04831 0.08057 0.03184 0.04817 0.08034 
0.8 0.8 0.03513 0.05217 0.08539 0.03507 0.05209 0.08525 

Table 5.4: Diffraction efficiency DE0 for case 1 (n2 = nmat=l.51) with Ao = 15 m, T = 1 and 
M = 10 layers and (2N + 1) = 21 harmonics (RCWA). 

In the first row of Table 5.4, the height h and the width w are both equal, i.e. h = w = 1 m. 
As shown, the differences in the zero-order diffraction efficiencies between the RCWA results 
and the approximated results are observed in the third digit corresponding to a relative error in the 
order of 0.1 %. For the given wavelength of the electric field in free space, this relative error is in 
accordance with the results in Fig. 5.14. When the height hand the width ware varied, in rows 
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2-4 in Table 5.4, the relative error in the diffraction efficiencies increases. The relative errors 
are then found in the range of 0.1-0.2%. The differences in the diffraction efficiencies in Table 
5.4 are all caused by the assumption that the electric field inside the object can be approximated 
by linear functions. The differences between the actual electric field inside the object and the 
approximated electric field lead to an error in the diffracted field and finally in the diffraction 
efficiencies. Hence the error is related to the maximum dimension of the trapezoid, the material 
properties and the wavelength in free space. 

As already mentioned, the truncation of the series for the evaluation of the integral equation 
has little influence on the scattered electric field for the above discussed configuration. To dis
tinguish between the errors due to the influence of the linear approximation of the electric field 
and errors due to the truncation of the series, we consider the case where the period is chosen 
much larger than the maximum dimension of the object a » Lmax· For the evaluation of the 
scattered electric field, a sum of closed-form two-dimensional Fourier integrals is used, see Eq. 
(4.35). These separate spatial Fourier transforms depends on 'Yin = Jk'fxn - k3n1 which has a 
contribution to the scattered electric field when the value of 'Yin is real and small or imaginary. 
Since 'Yin depends on kxn = k~x + n 2: which is small when a » n, the value of 'Yin is also 
small. 

Therefore we consider a diffraction grating with dimensions a = 10 m, h = w = b = 1 m 
and the material properties as defined in case 1 (nmat = n2 = 1.51). The relative error in the 
diffraction efficiencies DEo and DE1 as function of the number of terms in the evaluation of the 
scattered electric field are shown in Fig. 5.15. As shown, for this case more terms are needed 
to accurately solve the electric field and to obtain the corresponding diffraction efficiencies. The 
relative error is in the range of 0.1-7% for the first 15 terms, after which the relative error oscil
lates and finally reaches a stable point. This final relative error is fully caused by the difference 
in the linearly approximated electric field and the exact electric field. 

5.2.3 Reconstruction 

Finally, the aim of evaluating the diffraction efficiencies is to retrieve information about the 
structure from the measured data and thereby to reconstruct the shape of the trapezoidal cross 
section of the object. To facilitate this, we use a similar reconstruction strategy as we did for the 
non-periodic case. We define the objective function as 

G(p) = L ~llDE~f·(p, Bn) - DE~pprox.(p, Bn)ll2. (5.10) 
OnE{0,45°} 

Since we are restricted to observation positions in the upper half space, in Eq. (5.10) we vary 
the angle of incidence (}between 0° and 45° in 50 equal steps. We treat the RCWA data as 
the reference measured data, indicated by ref., and our data as the approximated computed data 
indicated by approx .. 

As an illustrative example, we consider the diffraction grating with width w = 0.9 m, height 
h = 0.9 m, bottom width b = 1 m, period a = 2 m and refractive index nmat = n2 = 1.51. We 
compute the objective function by varying the width w and keeping the height h fixed and vice 
versa. The results can be found in Fig. 5.16(a) and Fig. 5.16(b), respectively. 
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Figure 5.15: Relative error[%] as function of the number of terms for the diffraction efficiencies 
DEo and DE1 for Ao = 15 m, w = h = b = lm and n2 = nmat = 1.51. 

For the two individual parameters ( w, h) a (global) minimum for the objective function is 
found. This gives the optimal values for both the width and the height as presented in Table 5.5. 
Both parameters are reconstructed with a relative error of 0.2-3.8%. In Fig. 5.16 is shown that 
the maximum value of the objective function to variations in the height his two orders 0(102 ) 

larger compared to the value of the objective function to variations in the width w. The minimum 
of both objective function are approximately equal. This means that a variation in the height has 
the largest effects on the objective function. Hence, the objective function is more sensitive to 
variations in the height h than to variations in the width w. 

value 
Wopt 0.866 
hopt 0.898 

G(p) Relative error [%] 
l.7E-09 3.8% 
l .4E-09 0.2% 

Table 5.5: Reconstructed parameters p E ( w, h) of the geometry and relative error for a grating 
with dimensions: w = h = 0.9 m, b = 1 m, a= 2 m, nmat = n 2 = 1.51 and Ao= 15 m. 

Next, we vary the width w and the height h at the same time to simultaneously retrieve 
information about the two parameters of the object. We use the similar reference trapezoid, i.e. 
h = w = 0.9 m. The objective function with respect to the two geometrical parameters (w, h) 
is shown in Fig. 5.17, where multiple local minima of the objective function can be observed. 
The lowest value of the objective function is found for w = 0.952 m and h = 0.892 m. The 
maximum relative error for the width reconstruction is ~5.8% and for the height ~0.9%. These 
values are summarized in Table 5.6. In Fig. 5.17 we observe again that the objective function is 
more sensitive to variations in the height. 
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Figure 5.16: Objective function G(p) as function (a) of the width w when height his fixed and 
(b) of the hight h when width w is fixed for reference trapezoid with w = h = 0.9 m, b = 1 m, 
a= 2 m, nmat = n2 = 1.51 and ..\o = 15 m. 

Therefore, the reconstruction strategy should be revised. Since the height is the parameter 
which has the largest effects on objective function, this is the parameter which should be recons
tructed firstly. Once this parameter is found, the width can be subsequently found. As a final 
step, the two parameters can be varied at the same time to obtain a global minimum in the objec
tive function, while it should be avoided that local minima are found. As shown in Fig. 5.18, the 
local minima are aligned on a straight line. Therefore, for a local minimum on this line the value 
of two neighboring local minima can be compared to asses that a global minimum is found. 

Wopt hopt G(p) Relative error [%] 
0.952 0.892 l .2E-11 0.9-5.8% 

Table 5 .6: Reconstructed values of the geometry for parameters p E ( w, h) of the grating and 
relative error for reference trapezoid with values b = 1 m, w = h = 0.9 m, a = 2 m, nmat = 
n2 = 1.51 and ..\0 = 15 m. 
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Figure 5.18: Contour graph for objective function Fig. 5.17. 



Chapter 6 

Conclusions and Recommendations 

As formulated in the introduction, the objective of the thesis, was to find a fast and efficient 
solution method for the scattered electric field when a diffraction grating was illuminated by 
an electrically polarized plane wave. The diffraction gratings were made of a structure perio
dic in one direction and placed on the planar interface between two half spaces with different 
electromagnetic properties. The incident field was a plane wave electrically polarized along the 
invariant direction of the grating with an arbitrary angle incidence lying in the transverse plane. 

Since a large part of the research was devoted to the formulation of the scattering problem we 
will discuss briefly the solution strategy. The scattering problem for the electric field was formu
lated in the form of a domain integral equation. In this formulation, the scattered electric field 
was expanded into an infinite series of Floquet modes. The corresponding Floquet modal coef
ficients were written in the form of a spatial Fourier transform where the domain of integration 
was restricted to one period of the diffraction grating. The electric field was found from solving 
the integral equation using the point matching method, a special case of the method moments 
where linear functions as basis functions and Dirac delta functions as test functions are used. On 
the assumption that the wavelength of the electric field inside the structure was large compared 
to the maximum dimension of one period of the periodic structure, the electric field inside the 
object can be approximated with linear basis functions. Via the point matching procedure, the 
integral equation reduces in a system of linear equations. In the evaluation of the system of equa
tions, the occurring surface integral over the interior of the object are transformed in a sum of 
line integrals which encloses the boundary of the object. 

In this thesis, we have first demonstrated the solution method for the case of an infinitely long 
dielectric cylinder with trapezoidal cross section embedded in free space. The object was illumi
nated by a plane wave electrically polarized in the invariant direction of the cylindrical object. 

To find the best solution for the electric field inside the dielectric cylinder with triangular cross 
section, we have first investigated the influence on the choice of collocation points on the value 
of the electric field. Numerical computations have shown that the lowest relative errors in the 
electric field with respect to an alternative solution method are obtained for collocation points 
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chosen at the center between two vertices for an object with triangular cross section. For a free
space wavelength Ao that is ten times the maximum dimension of the object (Ao = lOLmax) the 
mean relative errors, distributed over the domain of the object are below 2%. This is the case 
for objects with relative low electric contrast (in this example n = 1.51) since the wavelength in 
matter is related to material properties. For the electric far-field, even lower relative errors in the 
order of 0.5% are found for different observation and incidence angles. 

From reference electric far-field data we have retrieved two geometrical parameters of the 
trapezoidal shaped object, i.e. the top width and the height, with the developed methods. The 
height was exactly found and the width was found with a relative error of 0.9%. The proposed 
reconstruction strategy was to retrieve the area of the cross section of the object within a small 
number of minimization steps after which the individual width and height can be found precisely 
with more iteration steps. 

For diffraction gratings, we have considered periodic structures which are made of an array of 
infinitely long cylindrical objects placed at the interface between two half spaces. The cylindrical 
object had a trapezoidal cross section with a maximum width of 1 m, a maximum height of 1 
m and the length of the one period was a = 2 m. We have investigated five different material 
compositions of the diffraction grating to compute the diffraction efficiencies. The used mate
rials were resist (n = 1.51), silicon (n = 3. 77 + O.Oli) and metal (n = 0.22 + 6. 71i). We have 
shown that the electric field inside the grating depends on the electromagnetic properties of the 
structure. It means that the accuracy of the diffraction efficiencies depends on the wavelength of 
the incident electric field in free space and the material properties. This is in agreement with the 
expectations because we have assumed that the electric field inside the grating can be approxi
mated with linear functions. From the numerical results found in Chapter 5 we may conclude 
that the diffraction efficiencies can be found with an accuracy of 99.9% when the wavelength 
of the electric field inside the periodic object is at least eight times the maximum dimension of 
the cross section of the object (Amat > 8Lmax). Variations on the width and the height of the 
trapezoidal shape of the diffraction grating has a negligible effect on the error of the diffraction 
efficiencies. Under the condition that Amat > 8Lmax. the electric field was solved with only one 
term in the integral equation because the truncation of the series for the evaluation of the scatte
red field has less influence on the error for gratings with periods smaller than the wavelengths as 
a consequence of the fast decaying exponentially kernel in the integral equation. 

We have reconstructed two structure parameters, the top width and the height, with a relative 
error of 5.8% and we have shown that the objective function is two orders ( 0(102

)) more sen
sitive for variations in the height than in the width. Therefore we argued that the reconstruction 
strategy should be revised. Firstly, the height should be retrieved since this has the largest effects 
on the objective function while at the second step the width should be retrieved. 

The main advantage of the discussed approximated solution method is that the electric field 
is derived in a closed form which can be computed very fast. The corresponding geometrical 
parameters are found with limited accuracy. These parameters can be used as an initial estimate 
in more advanced but relative slower solution methods to find the exact parameters. 
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Figure 6.1: Infinite array of apex-truncated pyramids placed on the interface between two half 
spaces (a) and definition of three-dimensional basis functions (b ). 

Recommendations 

More research is needed to formulate the scattering problem for arbitrary polarization of the 
incident field and for diffraction gratings which are periodic in two dimensions. We propose a 
solving strategy, where we mention the main steps to realize this. The diffraction grating under 
consideration consist now of an infinite array of objects with a shape an apex-truncated pyramid, 
which is periodic in two dimensions and is placed on the interface between two half spaces, see 
Fig. 6.1 (a). The object will be divided into 5 tetrahedral shaped subdomains, where for each 
subdomain three-dimensional linear basis function may be chosen to represent the field inside 
the object. The three-dimensional basis functions are defined as 

(6.1) 

where V is the volume of the subdomain, Ai is the surface opposite to vertex j which is posi
tioned at r i as shown in Fig. 6.l(b). At the surfaces Ai , we require that the normal component 
of the dielectric flux density is constant for each basis function different from zero on only one 
triangular surface of the tetrahedral subdomain. The electric field expressions derived in Chapter 
2 and the solution strategy for periodic structures discussed in Chapter 4 can be combined to 
formulate the 30 scattering problem as a coupled system of integral equations. With the aid of a 
suitable weighting procedure, the domain integral equation results in a system of linear equations 
which should be solved to find the scattered electromagnetic field. 

The accuracy of the diffracted field can be increased by dividing the object in a larger num
ber of subdomains so that the field is better approximated with linear functions. This is valid for 
both 2D and 30 diffraction gratings. 

To increase the speed of the reconstruction process, more advanced optimization methods are 
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necessary. Therefore, sensitivity analysis should be applied to decrease the number of iteration 
steps [ 17]. Since all the formulations are written in closed form, the directional derivatives in the 
optimization methods can be evaluated analytically with similar accuracy. 

So the proposed method seems to be a promising method to compute the scattered electro
magnetic field for 20 periodic diffraction gratings with arbitrary polarization of the incident 
field. 



Appendix A 

Defined Integrals 

10(81, 82; d) - lB2 

[ln(82 + d2) - l]d8 = 
Bl 

- { 8[1n(82 + d2) - 3] + 2d arctan (~)} i:: (A.2) 

h(81, 82; d) - lB2 

82[ln(82 + d2) - l]d8 = 
Bl 

_ { ~ ln(82 + d2
) + 

2~
3 

[ arctan (~) + ~ - ~ (~)3]} 1:: (A.3) 

Approximation when d ~ 0 for the integral In 

- _1_1B2[ln(82)-l]d(8n+1) 
n + 1 Bl 

- { 8n+l [ln(82) - 1]} IB2 -1B2 28n d8 

n + 1 B1 Bl n + 1 

- -- ln(8 )---
{ 

8n+I [ 2 n + 3]} IB2 
n + 1 n + 1 B1 

(A.4) 

Hence, when 8 1 or 8 2 ~ 0 then the primitive vanish. 
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Appendix B 

Proof Bloch's Theorem 

In Section 4.3.3 we have discussed the effects of periodic media in relation to electric fields. On 
a physical level, when the scale of the periodicity are in the order of an electron, periodic pheno
mena are accurately investigated for an electron in a periodic potential. A quantum mechanical 
approach is essential when the scale of periodicity of the potential is in the order of the de Bro
glie wavelength of the electron. The mathematical formulation of a single electron in a periodic 
potential is governed by the Schrodinger equation which is a partial differential equation and can 
be solved using Bloch's theorem. In this section we will proof Bloch's theorem according to the 
work presented in [ 11]. Since, in this thesis, we investigate the electric field in periodic media, 
we will proof Bloch's theorem for the macroscopic case following the same procedure as for the 
electron in a periodic potential. 

Let the Maxwell equations in the frequency domain are given by 

'\J x H - J - iwtE 

'\J x E - iwµ0H 

where both the current distribution J and the permitivitty t are periodic such that holds 

J(x+a) - J (x) 

t(x+a) - t(x) 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

with the period indicated by a in a lattice with three primitive vectors ni, such that x = u1n1 + 
u2n2 + u3n3• Rewriting (B.l) in matrix form results in 

or (L-wl) ( ~) =0 (B.5) 

where the operator L is defined as 

( 
0 i'\J x . - y ) 

_..i..'\J x. £ 0 £ • 

µ.o 

(B.6) 

Since J and t are periodic, operator L is also periodic. 

65 



66 APPENDIX B. PROOF BLOCH'S THEOREM 

Next we define a translation operator Ta which shifts the argument of the electromagnetic 
field with one period, i.e. 

Ta ( ~~~) = ( ~~::~) · (B.7) 

The periodicity of the operator L and translation operator Ta implies that 

(B.8) 

meaning that Ta commutes with L. Two successive translations operating on the fields results in 

TaTa
1 

( ~~~ ) =Ta ( ~~:::',~ ) = ( ~~:::',:~ ) = Ta'+a (B.9) 

showing that the translation operator commutes. Since the two operators from a set of commuting 
operator, the eigenvectors of Eq. (B.5) and the eigenvectors of operator Ta lie in the same space. 
This implies that we may express the electromagnetic field as the solution of eigenvectors of Ta, 

i.e. 

[Ta - c(a)] ( ~ ) = 0 (B.10) 

where the eigenvectors, c( a), are related to the translation operator by 

TaTa' ( ~ ) = c(a)Ta' ( ~ ) = c(a)c(a') ( ~ ) (B.11) 

where we used Eq. (B.9). From calculus we known that the solution of partial differential 
equations are harmonic functions so that we assume that the solution of (B.10) can be written in 
the following form 

c(ni) = exp(iki) for j = {1, 2, 3} (B.12) 

for an appropriate choice of ki. As a consequence of (B.9), the substitution of x in Eq. (B.12) 
leads to 

(B.13) 

When we define a vector composed of reciprocal lattice vectors, bi, which satisfies the condition 
that bi· Dj = oii• we rewrite (B.13) as 

c(x) = exp(ik · x) (B.14) 

where 
k = k1b1 + k2b2 + k3b3. (B.15) 

Hence, from Eq. (B.7), (B.10) and (B.14) we find the Bloch condition, i.e. 

( 
E(x+a) ) . ( E(x) ) 
H(x+a) = exp(ik. a) H(x) . (B.16) 

In conclusion, we have proven that the solutions of the electromagnetic equations for a per
iodic medium can be expressed in terms of Bloch waves which satisfies the Bloch condition 
(B.16). By including only one primitive vector in x and k we easily find the expression, as used 
in Chapter 4, where periodicity is along one spatial coordinate. 
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Summary 

The developments in electromagnetic modeling of inverse scattering problems has become an im
portant topic for analysis of periodic structures called diffraction gratings. An application where 
diffraction gratings are used is in novel lithography machinery. In this applications diffraction 
gratings are placed on a wafer (a round substrate) for positioning purposes. To obtain position 
information and in general information about shape of the grating, the structure is illuminated 
by a monochromatic electromagnetic plane wave. The result is a discrete set of diffracted waves 
radiating in different directions which are prescribed by the angle of incidence of the incident 
field, the wavelength and the period of the grating. 

In numerical models, the scattered electromagnetic far-field is computed for a diffraction gra
ting with an arbitrary chosen geometry after which the computed field can be compared with the 
measured field. The measured field contains information with respect to the shape of the grating 
which is a priori not known. Then by varying the geometrical parameters in the numerical model, 
the difference between the measured field and the computed field can be minimized in a number 
of iterations. The geometrical parameters corresponding to the lowest difference give the best 
reconstruction of the actual grating. The reconstruction strategy is quite time consuming since 
the electromagnetic field should be computed for a large number of different geometrical para
meters in the numerical scattering model. In lithography applications, the requirement is that the 
shape of the grating should be fastly retrieved and with an accuracy in the order of nanometers. 

Therefore, in this thesis, we propose a fast and efficient solution strategy to compute the scatte
red electric field for an object periodic in one direction placed on the interface between two half 
spaces with different electromagnetic properties. We have considered only the case where the 
diffraction grating is illuminated by a plane wave electrically polarized in the invariant direction 
of the grating. The scattering problem for the electric field is therefore formulated in the form of 
a domain integral equation valid in a two dimensional domain. The periodicity is expressed in 
the electric field by using a Floquet modal expansion. The Floquet modal coefficients, or reflec
tion coefficients, are written in terms of spatial Fourier transforms where a spectral and spatial 
domain approach is used to accomplish this. The evaluation of the spatial Fourier transform in 
the scattering problem is restricted to only one single period of the grating. The general idea to 
solve this scattering problem is based on the assumption that the wavelength of the electric field 
inside the object is large compared to the maximum dimension of the object. The electric field 
can therefore be approximated by linear functions. To solve the integral equation for the electric 
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field, we have used the point matching method, as special case of the method moments where 
linear functions as basis functions and Dirac delta functions as test functions are used. The inte
gral equation reduces to a relative small system of equations where furthermore all formulations 
are expressed in a closed form. 

As a feasibility study, we have first considered the case of a non-periodic infinitely long die
lectric cylindrical object with trapezoidal object is placed in free space. The developed method 
was compared with an alternative solution method. Numerical computations have shown that the 
diffracted electric far-field is found with a relative error in the order of 0.2% when the wavelength 
of the electric field in free space Ao is at least ten times larger than the maximum dimension (Lmax) 
of the object (Ao > lOLmax) for objects with relative low electric contrast. The trapezoidal object 
is discretized in two triangular subdomains where at each subdomain three linear basis functions 
are used to approximate the electric field. 

For diffraction gratings, the diffraction efficiencies are found with an error in the order of 
0.1 %. The corresponding geometrical parameters (the top width and the height and a priori 
known bottom width) of a diffraction grating consisting of a array of cylindrical objects with a 
trapezoidal cross section placed on the interface between two half spaces are reconstructed with 
a relative error in the range of 1-6%. We have observed that the height is more sensitive to va
riations in the reconstruction process such that height should be optimized first after which the 
width can be found. 

The fact that the scattering problem is formulated in a closed form means that the electric field 
can be computed very fast. It allows thus a quick reconstruction of the shape of the diffraction 
grating, but with limited accuracy. This method delivers a quite good rough estimate of the geo
metry of the grating which is extremely suitable for an first guess of the shape of the grating in 
more accurate but slower solution methods. 

Further, the proposed solution strategy can be easily extended to three-dimensional diffraction 
gratings illuminated by an arbitrary polarization of the incident field. For the three-dimensional 
case, the accuracy of the reconstruction process and computational effort will be comparable with 
the methods derived and discussed in this thesis. Since the scattering problem is formulated in a 
closed form, the application of the sensitivity analysis on the electromagnetic field formulation 
can be done analytically, which will increase the speed of the iterative reconstruction process. 

So, for diffraction gratings periodic in one direction, the solution strategy has proven to be fast 
and efficient in reconstructing the geometrical parameters of the grating. The general set-up of 
the formulation of the scattering problem enables the possibility to express the electromagnetic 
field for other shaped diffraction gratings and polarization of the incident field. 
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