
 Eindhoven University of Technology

MASTER

Analysis of a diffusion-reaction system modelling formation processes of solar cells, image
deblurring methods and methods for extracting interdiffusion coefficents

van der Heide, O.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3bf8929a-bc4f-4c4e-bbe0-c97e82f74696


Department of Mathematics and Computer Science
Centre for Analysis, Scientific computing and Applications

Analysis of a Diffusion-Reaction System Modelling Formation
Processes of Solar Cells, Image Deblurring Methods and

Methods for Extracting Interdiffusion Coefficients

Master Thesis
Industrial and Applied Mathematics

Oscar van der Heide

Supervisors:

prof.dr. I.S. Pop (Eindhoven University of Technology)
dr.habil A. Muntean (Eindhoven University of Technology)
dr.ing. J. Emmelkamp (TNO)

Eindhoven, July 2015



Abstract

In this thesis we explore several mathematical tools beneficial to modelling the formation process
of CIGS-based thin film solar cells. More specifically, we present methods for deblurring experi-
mentally obtained concentration profiles and methods for extracting interdiffusion coefficients
from these (deblurred) concentration profiles. We also discuss part of a model that is being
developed at TNO to describe the formation of absorber layers in CIGS-based solar cells and
we present a method to numerically solve the underlying set of non-linear reaction-diffusion.
The discussed model is subjected to a rigorous mathematical analysis where, under certain
assumptions, existence and uniqueness of solutions to the model is shown. This thesis also
includes a chapter in which the (quantum) physical principles are explained that govern the
working of basic solar cells.

Part of the work presented in this thesis was performed during an internship at TNO/Solliance
in Eindhoven.

Keywords: Image Deblurring, Identification of Interdiffusion Coefficients, Non-Linear Reaction-
Diffusion Equations, Finite Volume Scheme, Method of Rothe.
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1 Introduction

Solar cells are electrical devices that convert light energy into electrical energy that can be used
to power our electrical devices. The most common material used as absorber layer for solar
cells is crystalline silicon. A promising alternative to crystalline silicon absorber layers is to use
a crystalline structure consisting of copper, indium, gallium and selenide (Cu(InxGa1−x)Se2),
commonly referred to as CIGS. Whereas crystalline silicon absorber layers are typically required
to have a thickness of around 200µm to achieve good efficiencies, CIGS absorber layers typically
have a thickness of 1 to 2µm and they are considered thin film solar cells. Much less material is
needed to produce CIGS-based solar cells meaning that CIGS-based solar cells have the potential
to be cheaper than the traditional silicon-based solar cells. On top of that, thin film solar cells
like the CIGS-based solar cells have the potential to be flexible.

A common method to produce CIGS-based solar cells with such high efficiencies is through a
process called co-evaporation. In this process, a soda-lime glass subtrate with a conductive
coating of molybdenum (back contact) is put into a vacuum environment. Copper, indium,
gallium and selenium vapor are released and adhere to the substrate to form a layer of CIGS.
While this process results in solar cells with high efficiencies, it is not suitable for large scale
production.

On the other hand, there is the so called two-step process. In the first step a precursor is prepared
by depositing layers of copper, indium and gallium onto the molybdenum coated soda-lime glass
substrate. In the second step, the precursor is mounted in a furnace where it is selenized. That
is, the precursor is thermally annealed in a nitrogen environment in which vapor of selenium is
released. The selenium is absorbed by the precursor stack and through diffusion and reaction a
layer of Cu(InxGa1−x)Se2 (CIGS) forms eventually. The two-step process is more suitable for
large scale production but at the moment the process is not fully understood.

Part of the research at TNO/Solliance is focussed at better understanding CIGS-based solar cells
and to design methods to effeciently produce CIGS-based solar cells on a large scale. Among other
things, a model is being developed describing the physical phenomena that govern the formation
of the CIGS absorber layers in the two-step process. This model ‘starts’ at the moment the
precursor has been produced in step one of the process. It ‘ends’ after the selenization step has
been completed. In the end the model will be used to simulate the formation of CIGS-absorber
layers and hopefully the real production process can be taylored to produce better CIGS-based
solar cells with the help of these simulations.

The model requires several parameters as input. Among others, diffusion coefficients describing
the mobility of the different components in the system and reaction rates for the chemical reactions
that take place to form new binary/ternary/quaterny phases are needed. Little data is available
in the literature or databases on such multicomponent, multiphase systems. Hence methods
are needed to obtain these parameters from experimental data obtained from measurements
performed at TNO/Solliance. One of the objectives at TNO/Solliance was to develop such
methods.

Furthermore, the current method used to numerically solve the equations in the model turns
out to be relatively slow. Especially the the calculation of the diffusion processes take up too
much time. A second goal objective at TNO/Solliance was to develop a robust numerical method
that is fast and flexible in the sense that it can easily be adapted to include new components or
phases when needed.

The general outline of this work is as follows:

• In Chapter 2 we discuss solid-state diffusion in more detail and present methods to extract
concentration-dependent diffusion coefficients based on experimental concentration-depth
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profiles. MATLAB scripts are developed that implement these methods and the results are
discussed.

• At TNO/Solliance, concentration-depth profiles of CIGS layers were generated using so
called Cross-section Energy Dispersive X-ray Spectroscopy measurements. The resulting
profiles appear to be heavily blurred though. In Chapter 3 present methods to deblur the
profiles. All the methods described in this chapter are implemented in MATLAB.

• Chapter 4 contains part of a diffusion-reaction model that is being developed by TNO/Sol-
liance. We refer to this part of the model as the precursor model. The precursor model
describes the physical and chemical processes within precursor after the first step of the
two-step process but before the second step. We present a numerical method to solve the
system of equations of the precursor model that improves the currently used numerical
method at TNO/Solliance.

• In Chapter 6 the methods developed in the previous chapters are tested with data from
measurements performed at TNO/Solliance.

• The final chapter, Chapter 7, contains the conclusions and suggestions.

• The Appendix covers a textbook-like introduction into the working principles of basic
solar cells. We start by reviewing concepts from high school physics but then we quickly
dive into the realm quantum physics and semiconductor devices. The physical concepts
discussed here are also relevant to understanding the working principles of several of the
measurement devices used at TNO/Solliance.

The MATLAB scripts developed during this graduation project and digital drawings made for this
thesis are available upon request at oscarvanderheide@gmail.com.
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2 Identification of Diffusion Coefficients

The CIGS absorber layers form during a diffusion-reaction process. To model properly this process
one needs to know the relevant diffusion coefficients. In this chapter we present methods for
deriving concentration dependent diffusion coefficients in multicomponent solids from experimental
data. But, before we start discussing these methods, we have a look at diffusion in solids in
more detail in Section 2.1. We see that there are several types of diffusion coefficients and
this is related to the fact that fluxes can be expressed in different ways. As it turns out, the
so called interdiffusion coefficients are the ones we will be able to derive from measurements.
In Section 2.2 we describe the so called Boltzmann-Matano method for deriving interdiffusion
from concentration profiles for solids consisting of two different atomic components only. We
also discuss some refinements of this method. In Section 2.3 we discuss (the problems) with
multicomponent diffusion and partially extend the methods discussed in Section 2.2 to systems
with three components.

The main sources used in writing this chapter are the books Kinetics of Materials by Balluffi et
al [3] and Thermodynamics, Diffusion and the Kirkendall Effect in Solids by Paul et al [43].

2.1 Diffusion in Crystalline Solids

2.1.1 Diffusion Mechanisms in Crystalline Solids

Consider a crystalline solid. We think of such a solid as a large three dimensional lattice. The
lattice sites are occupied by the different components making up the solid. Different components
may be constrained to different lattice sites. For example, in an interstitional solid, the atoms
of one component are much smaller than the atoms of other components and the former may
occupy the spaces in between the latter. In substitutional solids all lattice sites are equivalent in
this respect. In this chapter we only focus our attention on substitutional alloys.

Atoms diffuse through a crystalline solid by jumping between lattice sites. When an atom leaves
a lattice site, it must be replaced in order to preserve the amount of lattice sites within the solid
(but it does not necessarily have to be replaced be another atom, it can also be replaced by
a vacanacy as will be explained in the next paragraph). It was believed at first that diffusion
of atoms in a substitional alloy is mainly facilitated by a direct exchange mechanism or a ring
mechanism [3]. Under a direct exchange mechanism an atom diffuses within the lattice by
swapping places with another atom. A ring mechanism is similar but involves more than two -
say N - atoms. Atom 1 jumps into the site of atom 2, atom 2 jumps into the site of atom 3, all
the way up to atom N which jumps into the site of atom 1. One can imagine that the energy
barrier to diffusion under these two mechanisms is high.

Through the revolutionary work of Ernest Kirkendall it was discovered that the dominant diffusion
mechanism in substitutional alloys is in fact a vacancy mechanism [31]. This mechanism can be
explained as follows. Thermodynamic considerations dictate that solids at temperatures above
absolute zero will always have some unoccupied lattice sites. We refer to unoccupied lattice
sites as vacancies. Neighbouring atoms can jump into such vacancies. Compared with direct
exchange and ring mechnisms the energy barrier for diffusion by a vacancy mechanism is much
lower. When an atom jumps into a vacancy, it leaves a behind vacancy itself. We could interpret
this as a vacancy diffusing through the crystalline solid. In fact, we could view the vacancies as
one of the components making up the solid.



2 Identification of Diffusion Coefficients

2.1.2 Fick’s Law and Onsager’s Transport Equations

Now that we know how atoms can diffuse through a crystalline solid, let us look at the driving
forces behind diffusion. Consider a solid consisting of n different interacting atomic components.
We refer to this setup as an n-component system. Let Ci denote the concentration of component
i ([Ci] = [mol/m3]). The flux Fi ([Fi] = mol/(m2s)) of component i across some unit section
within the solid is defined as

Fi := viCi,

where vi is velocity of component i relative to the section across which we are considering the
flux. The velocity vi should be interpreted as a mean atomic velocity. It is important to note
that vi, and hence Fi, depend on how the section across which we are measuring the flux moves
relative to the solid. For example, think of a situation where the section is fixed with respect to
the laboratory in which we are doing flux measurements. If you push a solid across this section,
then surely the above definition will give rise to fluxes - even if there is no diffusion process going
on within the solid! That is, Fi possibly includes a general bulk flux due to bulk velocity as well.
And we are not interested in this bulk flux - we are only interested in the flux due to diffusion
processes. Therefore we need to define the sections across which we are measuring fluxes in such
a way that the bulk flux is eliminated. This is by no means a trivial task and, unfortunately,
there is no single correct way to do this. We will come back on this issue in Section 2.1.4. For
now, assume that we have chosen our sections in such a way that each Fi represents a diffusion
flux. According to Fick’s law [22], the flux Fi then varies linearly with its own concentration
gradient. That is,

Fi = −Di∇Ci,
where Di is a symmetric positive definite second order diffusion tensor (with units [Di] = m2/s).
It is important to note that the components of Di are in general not constants. They may very
well depend on the thermodynamic quantities like concentrations Ci of the different components,
the pressure P and on the temperature θ. In this chapter we will generally assume P and θ to be
constant though. Only in the last section we will discuss the temperature dependence of diffusion
coefficients.

Fick wasn’t the only one who proposed a linear relationship between the flux of a component
and some thermodynamic driving force.1 For example, Ohm’s law states that the current - that
is, the flux of charged particles - varies linearly with a gradient in electric potential. Similarly,
Fourier’s law states that the heat flux in a system varies linearly with a temperature gradients.
Lars Onsager formulated a thermodynamical theory for systems undergoing irreversible (that is,
entropy producing) processes, generalizing all of the above into what is now called Onsager’s
transport equations [40, 41]. More specifically, the theory states that the material flux of
component i relative to some chosen reference frame can be written as

Fi =
∑
j

LijXj .

Here Xj are thermodynamic forces and Lij are the corresponding transport coefficients. Examples
of thermodynamic forces are temperature, pressure or electrical potential gradients and, for us
the most important forces, gradients in chemical potentials of the different species. In what
follows we restrict ourselves to systems in which the gradients in chemical potentials are the only
driving forces. Let’s denote the chemical potentials by µi. Then the transport equations reduce
to

Fi =

n∑
j=1

Lij∇µj .

1Strictly speaking, the concentration gradients are not forces because they have the wrong units. But, as we will
see in equation (2.2), concentration gradients can be related to the gradient of chemical potentials, which do have
the correct units (and this is compensated by the coefficients in front of them having different units).
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2 Identification of Diffusion Coefficients

Note that chemical potential gradients are independent of the choice of sections we use to express
the fluxes Fi. Because - of course - the fluxes Fi do depend on the choice of these sections, it
follows that the transport coefficients Lij depend on them as well.

One question that may arise at this point is how the Onsager Transport Equations and Fick’s Law
are related to one another. They both claim to describe the same process but at first sight they
look a bit different. As it turns out, by making several assumptions and an appropriate choice of
reference frame we can recover Fick’s law from the Onsager transport equations. We will do this
for binary systems first. In later sections we will look at systems with more than two atomic
components. But, before we do all of this, it is useful to look at some general thermodynamic
relations first.

2.1.3 Thermodynamic Relations

Consider a system of n different atomic components. Let the vacancies be the (n+1)-th component.
Let Ni be the molar fraction of component i (note that Ni is dimensionless). Assuming that the
atomic fraction of vacancies is neglible compared to the atomic fraction of the other components,
we can say that

n∑
i=1

Ni = 1.

The molar volume Vmol at a given composition in the solid is then given by

Vmol =
n∑
i=1

NiVi,

where Vi is the partial molar volume of component i (with [Vi] = m3/mol). We assume that all
the Vi are constants and are equal to the molar volume of the pure component i. In that case,
the total volume of the solid does not change under a diffusion process. The reader is referred to
the books by Balluffi et al [3] and De Groot and Mazur [16] for a proof of this statement.

The molar fractions of the components can be related to concentrations by

Ci =
Ni

Vmol
=

Ni∑n
i=1NiVi

. (2.1)

Using the above relations we see that

n∑
i=1

Ci =

∑n
i=1Ni

Vmol
=

1

Vmol

and
n∑
i=1

CiVi =
n∑
i=1

NiVi
Vmol

= 1.

Following Balluffi et al [3], we assume the chemical potentials and concentrations of the components
to be related by

µi = µ0
i + kθ ln (γiVmolCi) .

Here k is the so called Boltzmann-constant, θ is the temperature, γi is the so called activity-
coefficient of component i and µ0

i is a constant. Furthermore note that gradients ∇µi and ∇Ci

11



2 Identification of Diffusion Coefficients

are then related by

∇µi = ∇µ0
i + kθ∇ [ln (γiVmolCi)]

= kθ∇ [ln (γi) + ln (Vmol) + ln (Ci)]

= kθ [∇ ln (γi) +∇ ln (Vmol) +∇ ln (Ci)]

= kθ

[
∂ ln (γi)

∂ ln (Ci)
∇ ln (Ci) +

∂ ln (Vmol)

∂ ln (Ci)
∇ ln (Ci) +∇ ln (Ci)

]
= kθ

[
∂ ln (γi)

∂ ln (Ci)
+
∂ ln (Vmol)

∂ ln (Ci)
+ 1

]
∇ ln (Ci)

= kθ

[
∂ ln (γi)

∂ ln (Ci)
+
∂ ln (Vmol)

∂ ln (Ci)
+ 1

]
1

Ci
∇Ci. (2.2)

Finally, there is the so called Gibbs-Duhem relation (which can be found, for example, in the
article by Brady[5]). In our situation of constant temperature and pressure this relation can be
expressed as

n+1∑
i=1

Ci∇µi = 0. (2.3)

The Gibbs-Duhem relation is a way of stating that in a system of n+ 1 components there are
only n independent chemical potential gradients. Now we will also make the general assumption
that our solids have sufficient defects (edge dislocations, grain boundaries, etcetera) that can
act as sources or sinks for vacancies to keep the chemical potential µV constant. But then the
gradient ∇µV is zero and equation (2.3) reduces to

n∑
i=1

Ci∇µi = 0, (2.4)

leading to the conclusion that for the n different atomic components there only n− 1 independent
chemical potential gradients.

2.1.4 Reference Frames for Diffusion Couples

We need to be careful in how we decide to measure fluxes because we want to eliminate the
influences of general bulk flow. Unfortunately there is no unique way to do this. Before we make
specific choices in this respect it is convenient to note that in this chapter we will only be working
with so called diffusion couples [17]. A diffusion couple consists of two solid beams that are
brought in contact with each other. The beams may consist of different atomic components but,
at least initially, there are no concentration gradients present within each beam. As a result of
this assumption, there will only be concentration gradients in the direction normal to the initial
contact plane. Assuming diagonal diffusion tensors, Fick’s law tells us that the diffusion fluxes
point in the direction normal to the initial contact plane as well. In other words, the diffusion
problem can be considered as one-dimensional in this case and the diffusion tensors reduce to
scalar quantities. With this particular setup, the sections we use to express the fluxes will always
be parallel to the initial contact plane. Following Brady [5] and De Groot and Mazur [16], we
discuss three different ways of defining the sections:

• First of all, we may try to express fluxes in terms of sections that are at a fixed distance
relative to one of the ends of the diffusion couple. That is, we choose one of the ends
as the origin and then Fi(x) gives the flux across a section a distance x away from the
origin. This surely eliminates the influence of some external forces - like someone pushing

12



2 Identification of Diffusion Coefficients

against the solid - acting on the solid as a whole because the movement of the sections
themselves cancel against the movement of the solid. Because this setting coincides with
how most experiments are performed in real laboraties we will refer to this setup as having
measured the fluxes using laboratory-fixed section. We will denote such fluxes by F̌i. The
corresponding diffusion coefficients will be denoted by Ďij .
Problems arise with laboratory-fixed sections in situations where the solid happens to
shrink or expand during the diffusion process. In particular, the fluxes may then depend
on which end of the diffusion couple is fixed in the laboratory.

• As a second choice, it may seem more natural to attach sections to specific lattice planes
within the (crystalline) solid. To illustrate this, imagine yourself sitting at a lattice plane,
counting all of the atoms passing by. If somehow the lattice plane is able to move relative to
the ends of the diffusion couple - like when volume changes occur - then so will our section.
Fluxes defined in this manner are called instrinsic fluxes and they will be denoted by Ĵi [9].
The corresponding diffusion coefficients are called intrinsic diffusion coefficients and they
will be denoted by D̂ij . Even though the intrinsic fluxes seem to measure diffusion in its
most pure form, measuring the intrinsic diffusion coefficients turns out to be problematic
because it requires keeping track of specific lattice planes within the solid.

• Thirdly, we could try to be more specific about the bulk velocity itself. To this end, let v
represent the bulk velocity. Given the velocities vi of the separate components with respect
to some section, what should the bulk velocity be (with respect to the same section)?
Surely v would have to be some weighted average of the velocities of the components, i.e.

v =
∑
i

χivi,

where the χi ∈ [0, 1] are dimensionless quantities with the property that
∑n

i=1 χi = 1.
Whatever we choose for the weights χi, we then define the diffusion flux of component i
to be Ci(vi − v). That is, we look at how the flux of i differs from the flux of the bulk.
Because v and vi are expressed in terms of the same sections, the effects of these specific
sections cancel out. In other words, the expression Ci(vi − v) is independent of how we
decide to measure the vi. We will refer to Ci(vi− v) as the interdiffusion flux of component
i and denote it by F̃i. The corresponding interdiffusion coefficients will be denoted by D̃ij .
An important property of interdiffusion fluxes is that they are not all independent. Indeed,
note that

n∑
i=1

χi
Ci
F̃i =

n∑
i=1

χi(vi − v) =

n∑
i=1

χivi − v
n∑
i=1

χi = v − v = 0. (2.5)

As a result, there are only n− 1 independent interdiffusion fluxes.
As for the weights χi, several choices could be made. For example we could take χi := Ni,
i.e. the atomic fractions of the components. Alternatively - and this is the choice we will
settle for - we could work volume fractions χi := ViCi. In the latter case, note that equation
(2.5) reduces to

n∑
i=1

χi
Ci
F̃i =

n∑
i=1

ViF̃i = 0.

That is, the fluxes are defined in terms of sections across which there is no net volume flux.
We refer to this setup as using volume-fixed sections.

At this point, the interdiffusion fluxes seem a bit mysterious and it may be difficult to relate
them to real experiments. Luckily, as it turns out, if we make the assumption that each of the
partial molar volumes Vi is constant, then it can be shown that the total volume of the diffusion
couple remains fixed. In that case the fluxes F̌i and F̃i happen to coincide and hence also the

13



2 Identification of Diffusion Coefficients

diffusion coefficients Ďij and D̃ij coincide (see Chapter 3 of the textbook by Balluffi et al [3] for
a derivation). We get the best of both worlds: a practicle way to measure fluxes F̃i = F̌i and
additional relation

∑n
i=1 ViF̃i = 0 between them.

Now we look at what can be said about Onsager’s transport equations for diffusion couples in
the case of lattice-fixed and volume-fixed sections. We will work with binary diffusion couples
only. In such a system we have two different atomic components, say A and B. We will also
treat the vacancies in the solid as a separate component denoted V.

2.1.5 Onsager’s Transport Equations for Binary Intrinsic Diffusion

If we attach our sections to the lattice planes inside of the diffusion couple, the Onsager’s
transport equations for the intrinsic fluxes in the binary diffusion couple can be expressed asF̂AF̂B

F̂V

 =

L̂AA L̂AB L̂AV
L̂BA L̂BB L̂BV
L̂V A L̂V B L̂V V

∇µA∇µB
∇µV

 .

Now remember that we assumed ∇µV = 0, i.e. that there are sufficient sources and sinks for
vacancies to keep the chemical potential constant through the solid. Then we see that expression
for the intrinsic diffusion fluxes reduce toF̂AF̂B

F̂V

 =

L̂AA L̂AB
L̂BA L̂BB
L̂V A L̂V B

(∇µA
∇µB

)
. (2.6)

Now suppose an atom of type A crosses our lattice plane. When this movement is mediated by
a vacancy mechanism, a vacancy crosses the lattice plane in the opposite direction. Similarly,
in the rare case that the movement of the A atom is mediated by a direct exchange or ring
mechanism, an atom of type B must cross the lattice plane in the opposite direction (we don’t
count the exchange of atoms of the same type as diffusion). In other words, the instrinsic fluxes
must satisfy

F̂A = −F̂B − F̂V .

Alternatively, we could say that the total flux of A and B atoms must be opposed by the flux of
vacancies because

F̂A + F̂B = −F̂V . (2.7)

Using this relation between the intrinsic fluxes, it follows from equation 2.6 that transport
coefficients for the vacancies can be expressed in terms of the transport coefficients for the
components A and B:

L̂V A = −(L̂AA + L̂AB),

L̂V B = −(L̂BA + L̂BB).

Instead of the original nine coefficient, we see that at this point only four coefficients are needed
to describe the system. Using the Gibbs-Duhem relation (see equation (2.4)), which in this case
states that

CA∇µA + CB∇µB = 0,

we can further rewrite the expressions for the fluxes as

F̂A =

(
L̂AA −

CA
CB

L̂AB

)
∇µA,

F̂B =

(
L̂BB −

CB
CA

L̂BA

)
∇µB.
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2 Identification of Diffusion Coefficients

Following the book of Balluffi et al [3] we can rewrite the chemical potential gradients in terms
of the corresponding concentration gradients and find that

F̂A =

[
kT

(
L̂AA
CA
− L̂AB

CB

)(
1 +

∂ ln γA
∂ lnCA

+
∂ lnVmol

∂ lnCA

)]
∇CA,

F̂B =

[
kT

(
L̂BB
CB

− L̂BA
CA

)(
1 +

∂ ln γB
∂ lnCB

+
∂ lnVmol

∂ lnCB

)]
∇CB.

Here γi is the so called activity coefficient for component i and Vmol is the molar volume, but
they are not important at this point. What’s important to note here is that if we denote the
terms in brackets by −D̂A and −D̂B respectively then we see that Fick’s law has been recovered!

There is a problem though. The intrinsic diffusion fluxes F̂A and F̂B do not necessarily cancel
out. And if they don’t, we know from equation 2.7 that a net flux of vacancies arises within the
material. These vacancies can be annihilited (or created) by defects like edge dislocations within
the diffusion couple. When this happens it is possible for lattice planes in the diffusion couple to
move relative to the ends of the couple. In other words, our reference frame can move within the
diffusion couple. This behaviour was first observed by Ernest Kirkendall by placing so called inert
markers in the couple that are fixed to a lattice plane [31]. When the diffusion process started,
the inert markers were observed to move relative to the ends of the diffusion couple. It was
definite proof that the dominant diffusion mechanism is in fact a vacancy mechanism. If diffusion
only occurs by a direct exchange or ring mechanism, then it would follow that F̂A = −F̂B and
there would be no such thing as a Kirkendall effect.

Now we know that lattice planes can move within the diffusion couple. And different lattice plane
possibly move with different speeds. This makes a lattice-fixed frame impractical for describing
the diffusion process. Furthermore, we see that each of the intrinsic fluxes F̂A and F̂B have their
own diffusion coefficient. But there is really only one diffusion process going on: the process
which describes the mixing of atoms of components A and B. Why would we need two different
coefficients to describe this mixing?

2.1.6 Onsager’s Transport Equations for Binary Interdiffusion

Instead of working with lattice-fixed sections, let’s have a look at what happens when we consider
volume-fixed sections instead. In a completely similar way as for the lattice-fixed sections we
find that

F̃A = −D̃A∇CA, and F̃B = −D̃B∇CB.

This time, we also know from equation (2.5) that

VAF̃A + VBF̃B = 0.

But then we see that

−D̃B∇CB = F̃B

= −VA
VB

F̃A

=
VA
VB

D̃A∇CA

=
VA
VB

D̃A∇
(

1− VBCB
VA

)
= −D̃A∇CB.
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2 Identification of Diffusion Coefficients

In other words, the diffusion coefficients ĎA and ĎB are the same and we can simply define
Ď := ĎA = ĎB. That’s nice! If we assume constant partial molar volumes Vi then we also know
that D̃ is the correct diffusion coefficient to be used in a laboratory-fixed setting.

Note that we forget all about the flux of vacancies at this point. But that’s no problem since we
assume the vacancies to be in chemical equilibrium throughout the diffusion couple anyways. It
is really only the atomic components that we wish to describe.

2.1.7 Darken’s Equations

At this point it should also be noted that the interdiffusion and intrinsic diffusion coefficients are
related in the binary case by Darken’s second equation [51, 10]:

D̃ = CAVAD̂B + CBVBD̂A

= CAVAD̂B + (1− CAVA)D̂A

= NAD̂B + (1−NA)D̂A.

Note that both the intrinsic diffusion coefficients D̂A and D̂B - and hence D̃ - will generally be
concentration dependent. Since VACA + VBCB = 1, i.e. the concentrations are related by one
another, we can either say that D̃ = D̃(CA) or D̃ = D̃(CB).

We conclude that in a binary diffusion couple there are two intrinsic diffusion coefficients and
one interdiffusion coefficient. This behaviour generalizes to couples consisting of more than two
components. In Section 2.3 we will find that in general a couple of n components requires n(n−1)
intrinsic diffusion coefficients and (n− 1)2 interdiffusion coefficients. But first, let’s have a look at
how one can extract the concentration dependent interdiffusion coefficient D̃ for binary systems
from experimental measurements.

2.2 Extracting Interdiffusion Coefficients in Binary Systems

2.2.1 Boltzmann-Matano Method

Suppose we create a diffusion couple like before by joining together two solid beams. Each beam
consists entirely out of atoms of type A and B. Initially the concentrations of both the A and
B atoms are uniform throughout both beams separately. Let us say that the concentration of
atomic component i in the left beam is given by CL

i and in the right beam it is given by CR
i .

Furthermore let’s say that the initial interface between the two beams is positioned at x = 0 in a
laboratory-fixed reference frame. We make the very important assumption that the left and right
ends of the diffusion couple remain unchanged during the process. That is, Ci(−∞, t) = CLi and
Ci(∞, t) = CRi at all times t ≥ 0. In other words, we assume we are dealing with a semi-infinite
diffusion couple. We also make the assumption of constant partial molar volumes Vi again so that
the fluxes and diffusion coefficients are in fact interdiffusion fluxes and interdiffusion coefficients.
Fick’s second law (or alternatively, the continuity equation, see Chapter (4) for more details)
then tells us that the time evolution of the concentration of the atomic component i is described
by the partial differential equation

∂Ci
∂t

= −∂F̃i
∂x

=
∂

∂x

(
D̃(Ci)

∂Ci
∂x

)
=

∂D̃(Ci)

∂Ci

(
∂Ci
∂x

)2

+ D̃(Ci)
∂2Ci
∂x2

.
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In what follows, we make the arbitrary choice to express everything in terms of the concentration
CB.

Our goal in this section will be to derive expressions for D̃ as a function of CB that can be
evaluated from concentration profiles. A concentration profile is understood to be a plot of the
concentration CB versus the distance x from the origin of the laboratory-fixed reference frame at
some fixed time t∗. In other words, the concentration CB and hence the flux F̃B are functions of
x only with t acting more like a parameter. Unless necessary, we will not explicitly denote the
dependence of CB and F̃B on t.

The starting point for deriving expressions for D̃ is the so called Boltzmann-Matano method
[4, 36]. The general idea of this method is as follows. Suppose that at position x∗ (and time t∗)
the concentration of component B is given by C∗B. From the expression for the flux

F̃B(x∗) = −D̃(C∗B)

(
∂Ci
∂x

)
x∗
,

it follows that

D̃(C∗B) = − F̃B(x∗)(
∂CB
∂x

)
x∗

. (2.8)

Now the concentration gradient is something we can ‘easily’ measure from concentration profiles
(there are some issues, but more on that later). If somehow we could measure the flux at x∗ from
the concentration profile as well, we would be able to compute D̃ for the concentration C∗B. To
measure a flux, one would normally have to perform two measurements, one quickly after the
other, and then somehow count how many moles have crossed particular a section in the time
between the two measurements. In other words, there is a time and a space component involved.
At first sight, a single concentration profile cannot reveal anything about this time component.
However, as it turns out, time and space are not entirely independent of one another in diffusion
processes. This is revealed - and this is the first step in the Boltzmann-Matano method - by
introducing a new variable λ = (x− xM )/t1/2.2 Here xM refers to the location of the so called
Matano plane but more on that later. Using the chain rule we see that

∂

∂t
=

∂λ

∂t

d

dλ
= −1

2

x− xM
t3/2

d

dλ
= −1

2

λ

t

d

dλ
, (2.9)

∂

∂x
=

∂λ

∂x

d

dλ
=

1

t1/2
d

dλ
. (2.10)

With these relations, the diffusion equation(
∂CB
∂t

)
x,t

=
∂

∂x

(
D̃(Ci(x, t))

(
∂Ci
∂x

)
x,t

)
transforms into

−1

2

λ

t

dCB
dλ

(λ) =
1

t1/2
d

dλ

(
D̃(CB(λ))

1

t1/2
dCB
dλ

(λ)

)
=

1

t

d

dλ

(
D̃(CB(λ))

dCB
dλ

(λ)

)
.

After multiplying both sides by t - and leaving out the explicit dependence of the variables on λ
for shorter notations - we arrive at

− 1

2
λ
dCB
dλ

=
d

dλ

(
D̃(CB)

dCB
dλ

)
. (2.11)

2That is, we start looking for a similarity solution. It should be stressed that similarity solution only exists for
initial data where the concentration is constant on both sides of the origin - where in this case the origin is the
location of the initial contact plane.
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Note that we are dealing with an ordinary differential equation instead of a partial differential
equation now! The next step is to integrate the whole equation with respect to λ. Before we
do this, remember that the ends of the diffusion couple remain unchanged during the diffusion
process. In terms of λ, we could say that CB(λ)→ CLB and CB(λ)→ CRB as λ→∞. Now let λ∗

be some reference value for λ and define C∗B := CB(λ∗). Then, if we integrate the left-hand side
of equation 2.11 between λ = −∞ and λ = λ∗ and doing a substitution of variables we see that 3

ˆ λ∗

−∞

[
−1

2
λ
dCB
dλ

]
dλ = −1

2

ˆ CB(λ∗)

CB(−∞)
λ(CB)dCB

= −1

2

ˆ C∗B

CLB

λ(CB)dCB.

Note that it is only possible to perform the substituion of variables if CB is a monotonically
increasing or decreasing function (otherwise λ cannot be written as function of CB).

Now on the other hand, integrating the right-hand side of equation 2.11 gives

ˆ λ∗

−∞

[
d

dλ

(
D̃(CB)

dCB
dλ

)]
dλ =

(
D̃(CB)

dCB
dλ

)
λ∗
−
(
D̃(CB)

dCB
dλ

)
−∞

.

Since the ends of the diffusion couple have not yet been affected at the specific time t∗ at which
the concentration profile is produced, the gradient of CB vanishes as one approaches −∞ and
∞. In particular, (

D̃(CB)
dCB
dλ

)
−∞

= 0.

After equating the two integrals again we find that

D̃(C∗B)

(
dCB
dλ

)
λ∗

= −1

2

ˆ C∗B

CLB

λ(CB)dCB.

and - assuming
(
dCB
dλ

)
λ∗

to be non-zero - we obtain an expression for D̃(C∗B) :

D̃(C∗B) = − 1

2
(
dCB
dλ

)
λ∗

ˆ C∗B

CLB

λ(CB)dCB. (2.12)

It would be more convenient to express the right-hand side in terms of the variables x and t
again. To do this, remember that a concentration profile is assumed to be generated at some
fixed time t∗. Then, for a given value of λ, the Boltzmann transformation tells us that x can be
expressed as

x =
√
t∗λ+ xM .

3To make this a bit more precise, write CB = φ(λ) and suppose φ can be inverted (that is, λ can be written as a
function of CB) and denote the inverse by f . Using integration by substitution we see that

−1

2

ˆ λ∗

−∞
λ
dCB
dλ

dλ = −1

2

ˆ λ∗

−∞
f(φ(λ))φ′(λ)dλ

= −1

2

ˆ φ(λ∗)

φ(−∞)

f(CB)dCB

= −1

2

ˆ C∗
B

CL
B

λdCB .
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Because t∗ and xM are constants, it follows that if λ is a function of CB, then so is x. Hence the
integral in equation (2.12) can be written as

ˆ C∗B

CLB

λ(CB)dCB =
1√
t∗

ˆ C∗B

CLB

x(CB)− xMdCB.

Furthermore, using equation (2.10) we see that(
dCB
dλ

)
λ∗

=
√
t∗
(
∂CB
∂x

)
x∗
.

After substituting this into equation (2.12) we see that D̃(C∗) can be expressed as:

D̃(C∗B) = − 1

2t∗
(
dCB
dx

)
x∗

ˆ C∗

CLB

x(CB)− xMdCB. (2.13)

We see that the diffusion coefficient has been expressed in terms that, at least in principle, can
be evaluated from a concentration profile. Comparing equation (2.13) with equation (2.8) reveals
that the flux F̃B can be expressed as

F̃B(x∗) =
1

2t∗

ˆ C∗

CLB

x(CB)− xMdCB. (2.14)

But what about the xM? The value xM refers to the position of the so called Matano plane and
it determines a reference value for computing the integral.4 The Matano plane is in fact the
initial contact plane of the diffusion couple. As the diffusion process continues, it is possible
for this Matano plane to move with the couple. At the particular time t∗ at which the given
concentration profile is generated it can be found by solving the equationˆ xM

−∞

(
CB(x)− CLB

)
dx =

ˆ ∞
xM

(
CRB − CB(x)

)
dx

for xM . This procedure is illustrated in the left picture of figure (2.1). After having found the
Matano plane, the integral in equation (2.13) can be evaluated, as illustrated in the right picture
of figure (2.1).

Figure 2.1:
(Left) To find the Matano plane we must find the position xM for which I and II are equal.

(Right) After having located the Matano plane, the integral
´ C∗

CL
B
x− xMdCB corresponds to

the sum of the areas III and IV .

Putting everything together, the Boltzmann-Matano method can be summarized in algorithmic
form as follows:

4Normally, when integrating a function f = f(x), we automatically take f = 0 as a reference value for evaluating
position for the integral. That is,

´
f(x)dx =

´
(f(x)− 0)dx.
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1. Given a concentration profile at a time t∗, locate the Matano plane by finding the value of
xM for which

´ xM
−∞CB(x)− CLBdx =

´∞
xM

CRB − CB(x)dx;

2. For C∗B ∈ [CLB, C
R
B ] :

(a) Compute integral
´ C∗
CLB

x(CB)− xMdCB from the concentration profile;

(b) Compute the concentration gradient
(
dCB
dx

)
x∗

from the concentration profile;

(c) Compute D̃(C∗B) using equation (2.13).

There are a few problems with the Boltzmann-Matano method though. First of all, to evaluate
the integral

´ C∗
CLB

x(CB)−xMdCB , one basically needs to invert the graph of CB as a function of x.

But this may not be possible - for example in case CB has local extrema. It should be noted that
for diffusion couples with two different atomic components such local extrema should not occur.
However, as we will discuss later, for diffusion couples with three or more components the so
called cross-diffusion terms may give rise to uphill diffusion and hence to local extrema. Secondly,
one needs to determine the position of the Matano plane. A fine grid is needed to determine the
position accurately, and even then one introduces a numerical error into the solution. Thirdly,
for materials in which the partial molar volumes Vi are not constant, the Matano plane may
not be unique. Also, for systems with more than two components, different components may
have different Matano planes. And - of course - using different Matano planes ultimately results
in different diffusion coefficients. To overcome these issues, we use an improvement of the
Boltzmann-Matano method originally proposed by Den Broeder [18].

2.2.2 Den Broeder Method

Suppose we have a concentration profile as depicted below.

Figure 2.2: Illustration for Den Broeder method.

Note that ˆ C∗

CLB

x(CB)− xMdCB = I + II.

To find an expression for I + II that does not make use of the location of the Matano plane, Den
Broeder introduced the relative concentration YB defined as

YB =
CB − CLB
CRB − CLB

.
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With this definition, we see that

Y ∗B(II + III + IV ) = YB(xM − x∗)(CRB − CLB)

= (xM − x∗)(C∗B − CLB)

= II,

and (trivially)

I = Y ∗I + (1− Y ∗)I.

Furthermore, from the definition of the Matano plane we know that

I + II + III = V.

Putting all of this together we find that

I + II = Y ∗I + (1− Y ∗)I + II

= Y ∗I + (1− Y ∗)I + Y ∗B(II + III + IV )

= Y ∗I + (1− Y ∗)I + Y ∗B(IV + V − I)

= (1− Y ∗)I + Y ∗B(IV + V )

= (1− Y ∗)
ˆ x∗

−∞

(
CB(x)− CLB

)
dx+ Y ∗B

ˆ +∞

x∗

(
CRB − CB(x)

)
dx.

It follows that

D̃(C∗B) =
1

2t∗
(
dCB
dx

)
x∗

[
(1− Y ∗B)

ˆ x∗

−∞

(
CB(x)− CLB

)
dx+ Y ∗B

ˆ ∞
x∗

(
CRB − CB(x)

)
dx

]
. (2.15)

Comparing equation (2.15) with equation (2.8) reveals that the flux F̃B can be expressed as

F̃ (x∗) = − 1

2t∗

[
(1− Y ∗B)

ˆ x∗

−∞

(
CB(x)− CLB

)
dx+ Y ∗B

ˆ ∞
x∗

(
CRB − CB(x)

)
dx

]
. (2.16)

We see that it is no longer necessary to locate Matano plane. Furthermore, because we integrate
with respect to x this time, it is no problem if CB exhibits local extrema (like it does in the
(artificial) picture). The Den Broeder method can be summarized in algorithmic form as follows:

1. Given a concentration profile at a time t∗, pick a concentration C∗B ∈ [CLB, C
R
B ] :

(a) Compute the relative concentration Y ∗B =
C∗B−C

L
B

CRB−C
L
B

.

(b) Compute the integrals
´ x∗
−∞

(
CB(x)− CLB

)
dx and

´∞
x∗

(
CRB − CB(x)

)
dx from the con-

centration profile;

(c) Compute the concentration gradient
(
dCB
dx

)
x∗

from the concentration profile;

(d) Compute D̃(C∗B) using equation (2.15).

The Den Broeder method as presented above only works when the partial molar volumes Vi are
constant. When this is not the case the method needs to be - and in fact can be - modified. We
will assume the partial molar volumes to be constant though.
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2.2.3 Numerical Tests

We implemented both the Boltzmann-Matano method and the Den Broeder method in MATLAB.
We generated concentration profiles using an interdiffusion coefficient that is either constant,
linear in CB, quadratic in CB and finally some oscillating function of CB.

5 As expected, the
results for both methods are similar, assuming that the Boltzmann-Matano method can indeed be
used (as mentioned before, for the Boltmann-Matano method the concentration profile needs to
be inverted and that may not be possible). However, from a numerical point of view it could be
argued that the Den Broeder method is better. The reason being that the locating the position of
the Matano-plane introduces additional errors that are not present when using the Den Broeder
method. To illustrate this, we have computed the fluxes for some (random) test case using both
equation(2.14) and equation (2.16). The results are plotted in Figure 2.3. The difference in fluxes
at the right end of the diffusion couple between both methods are due to the error in exactly
locating the Matano plane. The error - and hence the difference between the methods - can
be reduced by introducing more numerical grid points. But this comes at the cost of making
the method more ‘expensive’. We conclude that the Den Broeder method is superior to the
Boltzmann-Matano method and therefore it will be our method of choice.
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Figure 2.3: Fluxes for the two atomic components computed using the Den Broeder method
(left) and the Boltzmann-Matano method (right).

The results obtained with the Den Broeder method are presented in figures (2.4) to (2.7). Each
time, on the left a concentration profile is shown at some time t∗. The initial conditions are
shown as dashed lines. The profile at time t∗ is generated using the numerical scheme to be
discussed in Chapter 4. The computed interdiffusion coefficients as function of concentration are
presented are shown in logplots.

5The numerical method used to generate the profiles is the finite volume scheme together with explicit Euler time
integration to be discussed in Chapter 4.
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Figure 2.4: Den Broeder method for constant interdiffusion coefficient. The purple and
yellow lines represent the concentrations of components A and B respectively. The solid red
lines represent the real diffusion coefficient. The blue o’s represent the diffusion coefficient as
recovered by the Den Broeder method.
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Figure 2.5: Den Broeder method for interdiffusion coefficient depending linearly on concen-
tration.
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Figure 2.6: Den Broeder method for interdiffusion coefficient depending quadratically on
concentration.
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Figure 2.7: Den Broeder method for linearly increasing interdiffusion coefficient with oscilla-
tions.

We see that the Den Broeder method does a pretty good job of recovering the concentration
dependent interdiffusion coefficients. Only at the left and right ends we see that the method
produces weird results. This is related to the fact that the Den Broeder method (and the
Boltzmann-Matano method as well) requires division by the concentration gradient. But the
concentration gradient vanishes near the ends of the diffusion couple because the ends remain
unaffected. This makes the calculation at the ends unstable. This is not a serious problem as we
can easily extrapolate the solution. For the oscillating case this is not so straightforward but
honestly we don’t expect to see such behaviour in real experiments. More importantly though,
what happens when the concentration gradient vanishes within the interdiffusion zone?

2.2.4 Phases with Narrow Homogeneity Range

When preparing diffusion couples of metallic elements it is common for new binary phases to
form within the diffusion zone. Often these phases have no or a very narrow homogeneity range.
That is, there is no or a very small concentration gradient within these phases. This makes
both the Boltzmann-Matano and the Den Broeder method unstable. To deal with this issue,
Wagner introduced the concepts of integrated interdiffusion coefficients and average interdiffusion
coefficients [57]. These concepts and their use are explained below.

Suppose a new phase grows at the initial interface between A and B. Let’s refer to this phase as
the β−phase. Suppose that the left end of the phase is located at xβL and the right end at xβR .

Let the molar fractions at these locations be denoted by NβL
B and NβR

B respectively. In other

words, NβL
B denotes the molar fraction of component B at the left end of the β−phase. Similarly,

NβR
B denotes the molar fraction of component B at the right end of the β−phase Futhermore,

define ∆Nβ
B := NβR

B −N
βL
B . Then the integrated interdiffusion coefficient D̃β

int is defined as

D̃β
int =

ˆ N
βR
B

N
βL
B

D̃(NB)dNB.

Assuming D̃ to be constant and equal to some value D̃β over the narrow composition range, we
can write

D̃β
int = D̃β∆Nβ

B.

The question is now how to compute this integrated interdiffusion coefficient. To this end, note
that Fick’s law, assuming constant molar volume Vmol in the phase of interest, tells us that the
diffusive flux F̃B can be written as

F̃B = −D̃∂CB
∂x

= − D̃

Vmol

∂NB

∂x
.
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But then we see that

D̃β
int =

ˆ N
βR
B

N
βL
B

D̃(NB)dNB = −Vmol

ˆ xβR

xβL

F̃B(x)dx.

On the other hand, remember from equation (2.16) that

F̃ (x∗) = − 1

2t∗

[
(1− Y ∗B)

ˆ x∗

−∞

(
CB(x)− CLB

)
dx+ Y ∗B

ˆ ∞
x∗

(
CRB − CB(x)

)
dx

]
. (2.17)

It follows that

D̃β
int

= −Vmol

ˆ xβ2

xβ1

F̃B(x)dx

= −Vmol

2t∗

ˆ xβ2

xβ1

[
(1− YB(x))

ˆ x

−∞

(
CB(y)− CLB

)
dy + YB(x)

ˆ ∞
x

(
CRB − CB(y)

)
dy

]
dx.(2.18)

Note that the integrated interdiffusion coefficient does not require the evalutation of a concen-
tration gradient. Given the integrated interdifusion coefficient, we can compute the average
interdiffusion coefficient using

D̃β
average =

D̃β
int

∆Nβ
B

. (2.19)

The suggested use of the concept of average interdiffusion coefficients is the following. Suppose it
is known that an intermetallic compound grows diffusion zone. Take [xβL , xβR ] to be the interval
in which this new phase has grown.6 Then the average interdiffusion coefficient over this range
could be interpreted as the interdiffusion coefficient in the new phase.

In phases where there is no composition range, i.e. line compounds, ∆Nβ
B is zero and the average

interdiffusion coefficient cannot be computed. In that case the integrated interdiffusion coefficient
can still be related to the growth rate of this new phase, as discussed by Wagner [57]. We will
assume that we do not have to deal with line compounds though.

The above method can be summarized in algorithmic form as follows.

1. Given a concentration profile at a time t∗, pick a range [xβL , xβR ]

(a) Evaluate the fluxes over the range [xβL , xβR ] using equation (2.17);

(b) Integrate the fluxes over [xβL , xβR ] and use this to compute D̃β
int from equation (2.18)

(c) Compute D̃β
average using equation (2.19).

The method is tested with an artificially generated concentration profile again. In figure (2.8)
a profile is shown that resembles the concentration profile with a pure A−phase (left end of
the couple), a B-phase (right end of the couple) and some new intermetallic phase that started
growing in between. In the middle and right plots of this figure the results of the Den Broeder
method are shown. The log(D̃) vs CB plot in the middle looks pretty good: it captures the peak
in the diffusion coefficient pretty good. But the plot of log(D̃) vs x shows some weird behaviour.
Near the left end of the couple it shows no results due to the concentration gradient being

6Note that it is assumed that new phases grow in layers over the complete height of the diffusion couple. For
systems of two components it can be shown using the so called Gibbs phase rule that this is indeed what happens.
For systems with three or more components, this behaviour is not guaranteed [54].
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(close to) zero there (so that MATLAB returning NaN when trying to divide by the concentration
gradient). Near the right end of the couple we see that the method is a few orders of magnitude
off.
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Figure 2.8: Den Broeder method for interdiffusion coefficient with a single peak.

In figure (2.9) the same concentration profile is shown. This time, we tried to compute the average
interdiffusion coefficient in the three phases separately. We see that the log(D̃) vs CB plot is quite
similar but the log(D̃) vs x plot is much better. The issue of ‘dividing by a zero-concentration
gradient’ is resolved. Note that the method is not spot-on (it also depends on how you choose
the concentration ranges over which the average interdiffusion coefficient is computed) but - at
least for this test case - the errors are within an order of magnitude.
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Figure 2.9: Average interdiffusion coefficients

On a side note, it is in itself interesting to note that having a diffusion coefficient with a single
peak over a small concentration range can give rise to a concentration profile that resembles one
in which an intermetallic phase grows at the initial contact plane. If we run the diffusion process
for a longer time, this new phase seems to grow in thickness. Furthermore, using an interdiffusion
coefficient that has several peaks gives rise to a concentration profile that resembles the situation
where several intermetallic phases grow at the initial contact plane. In other words, it seems
as if the growth of new phases can be encoded into the interdiffusion coefficient. Other ways of
modelling this behaviour is to keep track of boundaries between different phases explicitly (similar
to the so called Stefan Problem), or, to specifiy the chemical reactions that are responsible for
the growth of the new phases and incorporate them separately into the model (see Chapter 4).
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2.3 Interdiffusion in Multicomponent Systems

2.3.1 Onsager’s Transport Equations

Now suppose that the beams making up our diffusion couple contain more than 2, say n, atomic
components. In a completely similar fashion as before we could work out the Onsager transport
equations using both lattice-fixed sections and volume-fixed (or, assuming constant partial molar
volumes, laboratory-fixed) sections. Using volume-fixed sections the transport equations read as

F̃i =
n∑
j=1

L̃ij∇µi.

Using the Gibbs-Duhem relation we know there are only n− 1 independent chemical potential
gradients. Assume component n to be the dependent component. Furthermore, assuming Vegard’s
law to be obeyed we know we are dealing with a volume-fixed frame in which the relation

n∑
i=1

ViF̃i = 0

is satisfied. This shows there are only n− 1 independent fluxes. Following De Groot and Mazur
[16] and Brady [5] one can use these relations to show that

F̃i =

n−1∑
j=1

L̃ij

[
n−1∑
k=1

(
δjk +

vk
vn

)
∇µk

]
, i ∈ {1, . . . , n− 1},

with δij being the Kronecker delta function. Like before we can rewrite the chemical potential
gradients in terms of concentration gradients. In Balluffi et al [3] it is shown how one arrives at

J̃i = −
n−1∑
j=1

D̃n
ij∇Ci,

with

D̃n
ij = −

n−1∑
k=1

n−1∑
s=1

L̃is

(
δks −

vk
vn

)
∂µk
∂Cj

. (2.20)

We write D̃n
ij to emphasize that the n−th component has been chosen as the dependent component.

From the above expressions we see that each interdiffusion flux requires n − 1 interdiffusion
coefficients. There are n different atomic and hence n different fluxes in the system. However,
since we are working in a volume-fixed reference frame, we know that there are only n − 1
independent interdiffusion fluxes and hence the system can be described by using (n − 1)2

interdiffusion coefficients. Note here that we could do a similar analysis for intrinsic fluxes, only
then to arrive at the conclusion that we have n independent intrinsic fluxes and hence (n− 1)n
intrinsic diffusion coefficients. For the case n = 2 we have already seen this in Section 2.1 of this
chapter.

Compared with Fick’s law, which only ‘requires’ n intrinsic or n− 1 interdiffusion coefficients,
we see that the Onsager formalism gives rise to so called cross-diffusion terms. That is, in Fick’s
law the concentration of a component only evolves under the influence of this components’ own
concentration gradient. In the Onsager formalism, it can also evolve under the concentration
gradient of other components. This can give rise to behaviour like uphill diffusion which is indeed
observed in literature for multicomponent systems [13]. Only if we assume that Dn

ij = 0 for i 6= j
does the Onsager formalism reduce to Fick’s law.
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2.3.2 Problems with Interdiffusion Coefficients for Multicomponent Systems

As just discussed, we need (n − 1)2 interdiffusion coefficients to describe diffusion in an n-
component system. In fact, not all of them are independent. This is related to the result that
the transport coefficient matrix L̃ is symmetric. That is, the components L̃ij satisfy L̃ij = L̃ji
and as a result there are only 1

2(n− 1)n independent transport coefficients. Using these relations
together with equation 2.20 it can be shown that only 1

2(n − 1)n independent interdiffusion

coefficients exist. However, the relations between the D̃ij are not as simple as D̃ij = D̃ji. In
general the relations between the interdiffusion coefficients cannot be evaluated (they require
derivatives ∂µi/∂Cj to be known, as mentioned by Brady [5]) and we still need to determine the
(n− 1)2 interdiffusion coefficients independently.

To be able to calculate the (n − 1)2 interdiffusion coefficients from measurements, we need
at least (n − 1)2 equations. But where do we get the equations from? Remember from the
Boltzmann-Matano method that in a two component system the interdiffusion flux F̃B could be
expressed as

F̃B =
1

2t∗

ˆ C∗B

C−B

x(CB)− xMdCB,

see equation (2.14). Similarly, using the Den Broeder method we found F̃B to be

F̃B(x∗) = − 1

2t∗

[
(1− Y ∗B)

ˆ x∗

−∞

(
CB(x)− CLB

)
dx+ Y ∗B

ˆ ∞
x∗

(
CRB − CB(x)

)
dx

]
,

see equation (2.16)

According to Dayananda and Kim [13], the above two expressions for the interdiffusion flux
should hold for any component in a multicomponent system. That is, for each atomic component
i the interdiffusion flux F̃i is given by

F̃i(x
∗) =

1

2t∗

ˆ C∗i

C−i

x(Ci)− xMdCi (Boltzmann-Matano)

= − 1

2t∗

[
(1− Y ∗i )

ˆ x∗

−∞

(
Ci(x)− CLi

)
dx+ Y ∗i

ˆ ∞
x∗

(
CRi − Ci(x)

)
dx

]
(Den Broeder).

Each flux gives rise to an expression that can be evaluated from experimental measurements
using either of the two methods (but as discussed before we prefer the Den Broeder method).
But that’s not enough information yet to solve for the interdiffusion coefficients. This can be
illustrated using a ternary system. Consider a system consisting of atomic components A,B and
C. Choose C as the dependent component. From the general discussion above, we know that
the system has two independent interdiffusion fluxes F̃A and F̃B and we need to determine four
interdiffusion coefficients that are related to the fluxes by(

F̃A
F̃B

)
= −

(
D̃C
AA D̃C

AB

D̃C
BA D̃C

BB

)(
∇CA
∇CB

)
. (2.21)

As we just saw, experimental measurements allow us to evaluate the interdiffusion fluxes (and also
the concentration gradients). But that gives us two equations for four unknowns. To overcome
this issue, we need another diffusion couple of which the diffusion path in the phase diagram
crosses the diffusion path of the original couple.
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Figure 2.10: Two possible diffusion paths (yellow) in a ternary phase diagram. A diffusion
path represents the composition range present within a diffusion couple after the diffusion
process has started. The ends of the yellow lines represent the (unaffected) composition at
the left and right ends of the diffusion couples. The two diffusion paths intersect in the point
indicated by the circle.

At the composition where the paths intersect, we get four equations - two from each diffusion
couple - that can be solved for the four unknown interdiffusion coefficients. But even if we are able
to produce two diffusion couples whose diffusion paths intersect, we will only find the diffusion
coefficient at the concentrations / compositions at the intersection point. To get a general idea
of the concentration dependence of the interdiffusion coefficients, a lot of different diffusion
couples need to be prepared. This is experimentally challenging. And for systems of even more
components the situation gets worse. For example, in a system with four components, we need
nine interdiffusion coefficients. A single diffusion couple can give three expressions. Hence we
need three different couples whose diffusion paths intersect. This is practically impossible to
achieve experimentally.

On top of the above, there is another issue with (inter)diffusion coefficients in multicomponent
systems. Remember how the superscript in D̃n

ij refers to the choice of the dependent component?
As it turns out, the interdiffusion coefficients are not necessarily the same for different choices of
dependent components. That is, Dk

ij is not necessarily equal to Dl
ij for k 6= l. In Chapter 9.1 of

Paul et al [43] relations between Dk
ij for different k in the ternary case are presented. A possible

guide in choosing which component to consider as dependent component is that the resulting
matrix of interdiffusion coefficients should be positive definite [30] This requirement should be
interpreted as a generalization of the physical requirement that the interdiffusion coefficient in a
two component system should always be positive.

Taking the problems with multicomponent diffusion discussed in this subsection into account,
one can understand why there are no databases of (inter)diffusion coefficients for systems with
three or more components. Luckily, some methods have been proposed in literature that can
partially deal with the discussed problems. We explore these methods in the next subsection for
ternary systems, i.e. systems consisting of three components. The reason is that, as explained
in Chapter 6, we are interested in deriving interdiffusion coefficients for a system consisting of
copper, indium and gallium.
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2.3.3 Average Interdiffusion Coefficients for Ternary Systems

Instead of trying to compute interdiffusion coefficients at specific concentrations, Dayananda
and Sohn [15] proposed to compute average interdiffusion coefficients over concentration ranges
as follows. Let [xL, xR] be some interval in the spatial domain. Define average interdiffusion

coefficients ¯̃Dn
ij as

¯̃Dn
ij =

´ Cj(xR)

Cj(xL) D̃
n
ijdCj´ Cj(xR)

Cj(xL) dCj
.

Note that the ¯̃Dn
ij are constants over their specified concentration ranges. From now on we

will assume a ternary system again. By performing a clever integration one can find additional
independent equations for the average interdiffusion coefficients that can be evaluated using a
single concentration profile. Indeed, if we multiply 2.21 by (x− xM )p for some integer p over and
subsequently integrate over interval [xL, xR], we find for i ∈ {A,B} that

ˆ xR

xL

F̃i(x)(x− xM )pdx = − ¯̃DC
iA

ˆ xR

xL

∂CA
∂x

(x)(x− xM )pdx− ¯̃DC
iB

ˆ xR

xL

∂CB
∂x

(x)(x− xM )pdx

= − ¯̃DC
iA

ˆ CA(xR)

CA(xL)
(x(CA)− xM )pdCA − ¯̃DC

iB

ˆ CB(xR)

CB(xL)
(x(CB)− xM )pdCB.

For p = 0 this becomesˆ xR

xL

F̃i(x)dx = − ¯̃DC
iA [CA(xR)− CA(xL)]− ¯̃DC

iB [CB(xR)− CB(xL)] .

On the other hand, for p = 1 we find

ˆ xR

xL

F̃i(x)(x− xM )dx = − ¯̃DC
iA

ˆ CA(xR)

CA(xL)
(x(CA)− xM )dCA

− ¯̃DC
iB

ˆ CB(xR)

CB(xL)
(x(CB)− xM )dCA (2.22)

If we look closely at the integrals on the right-hand side, and remembering the Boltzmann-Matano
method (see equation (2.14)), we see that they are related to the fluxes by

ˆ Ci(xR)

Ci(xL)
(x(Ci)− xM )dCi = 2t∗

[
F̃i(xR)− F̃i(xL)

]
.

It follows thatˆ xR

xL

F̃i(x)(x− xM )dx = −2t∗ ¯̃DC
iA

[
F̃A(xR)− F̃A(xL)

]
− 2t∗ ¯̃DC

iB

[
F̃B(xR)− F̃B(xL)

]
. (2.23)

Putting (2.22) and (2.23) together, we arrive at a systems of four equations for the four unknowns
¯̃DC
ij , i, j ∈ {A,B}. If we introduce the notation

∆Ci = [Ci(xR)− Ci(xL)] , ∆F̃i =
[
F̃i(xR)− F̃i(xL)

]
,

then this system of equations can be written in matrix-form as:

−


∆CA ∆CB 0 0

0 0 ∆CA ∆CB
2t∗∆F̃A 2t∗∆F̃B 0 0

0 0 2t∗∆F̃A 2t∗∆F̃B




¯̃DC
AA

¯̃DC
AB

¯̃DC
BA

¯̃DC
BB

 =


´ xR
xL

F̃A(x)dx´ xR
xL

F̃B(x)dx´ xR
xL

F̃A(x)(x− xM )dx´ xR
xL

F̃B(x)(x− xM )dx

 . (2.24)
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The determinant of the matrix on the left-hand side is given by

−
(

2t∗∆CB∆F̃A − 2t∗∆CA∆F̃B

)2
,

and we assume it to be non-zero so that the system (2.24) has a unique solution.

One may be tempted to look for ‘real’ interdiffusion coefficients at specific concentrations by
making the interval [xL, xR] smaller and smaller. This approach was proposed byˇCermák et
al [6]. Later it was shown by Cheng et al [8] that this method is not at all reliable because the
matrix in (2.24) becomes increasingly ill-conditioned as xR → xL. In general, we will partition
the into two or three different

The method for extracting average interdiffusion coefficients can be summarized in algorithmic
form as follows.

1. Given a concentration profile at a time t∗, locate the Matano plane by finding the value of
xM for which

´ xM
−∞Ci(x)− CLi dx =

´∞
xM

CRi − Ci(x)dx (the location of the Matano plane
should be independent of i under the assumption of constant partial molar volumes);

2. Choose a dependent component and label it C. The independent components will be labeled
A and B respectively;

3. Pick a range [xL, xR];

(a) Evaluate the fluxes over the range [xL, xR] using equation 2.17;

(b) Use the fluxes to evaluate the integrals in the right-hand side of equation (2.24);

(c) Set up the matrix in equation (2.24).

(d) Solve equation (2.24) for the average interdiffusion coefficients ¯̃DC
AA,

¯̃DC
AB,

¯̃DC
BA,

¯̃DC
BB;

(e) Check whether the matrix (
¯̃DC
AA

¯̃DC
AB

¯̃DC
BA

¯̃DC
BB

)

is positive-definite. If not, choose different range [xL, xR] or choose a different compo-
nent as dependent component and try again.

2.3.4 Numerical Tests

We implemented the algorithm for extracting average interdiffusion coefficients in MATLAB. In
Figures 2.11 and 2.12 two test results are presented. The results are generated as follows. We
assume to be working with a diffusion couple for which initially the concentrations at both sides
of the initial contact plane are uniform (we do not show the initial conditions in the plots). In the
first test case a concentration profile at some time t∗ is generated with four constant interdiffusion
coefficients. In the second test case the interdiffusion coefficients are given a linear dependence
on one of the concentrations. In both cases we computed the average interdiffusion coefficients
over the region left and right of the Matano plane respectively.
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Figure 2.11: (Left) Concentration profile with dependent component shown in red. (Right)
Computed average interdiffusion coefficients for ternary system with constant interdiffusion
coefficients.
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Figure 2.12: (Left) Concentration profile with dependent component shown in red. (Right)
Computed average interdiffusion coefficients for ternary system with interdiffusion coefficients
depending linearly on one of the concentrations.

In Figure 2.11, we see that the three out of four of the constant interdiffusion coefficients are
recovered nicely. For the linear case the results as presented in Figure 2.12 seem worse. At first
we thought there must have been programming errors because Dayananda and Sohn seemed
to arrive at good results.7 But then it would be strange to arrive at good results for constant

7It should be noted here that Dayananda and Sohn [15] use a different method to recover the concentration profiles
from the computed average interdiffusion coefficients. They make use of the fact that a ternary system with
constant diffusion coefficients has an exact (similarity) solution. To recover the concentration profile, they divide
the measured concentration profile into ranges, compute the average interdiffusion coefficients over these ranges
and then they use the ‘exact’ solution in each of these ranges and patch them together. As boundary conditions
for the exact (similarity) solutions they use the values known from the measured concentration profiles. See
Chapter 3 of the Phd thesis Analysis of interdiffusion and diffusion paths in multicomponent systems by Day [11]
for more details as well. But then, if the number of ranges used increases (i.e. as the intervals [xL, xR] become
smaller), the result is going to resemble the measured concentration profile better and better simply because
more exact values (the boundary points) are known (it is as if one is doing numerical computations using more
and more grid points). On the other hand, as explained in the paper by Cheng et al [8], the computed average

32



2 Identification of Diffusion Coefficients

coefficients because exactly the same method is used. We decided to ‘turn a blind eye’ to the
bad results and we tried to use the computed coefficients to recover the concentration profile (as
shown on the let in Figure) from the initial concentrations by using the numerical scheme to be
discussed in Chapter 4.8 Not surprisingly, for the case of constant interdiffusion coefficients we
are able to recover the concentration profile to good accuracy (results not shown). However, and
this was quite surprising, Figure 2.13 reveals that for the case of linear interdiffusion coefficients
we also obtain good results. Even though the computed interdiffusion coefficients appeared to be
pretty bad.
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Figure 2.13: The concentration profile used to compute average interdiffusion coefficients is
shown in solid lines. The circles represent the profile that has been recovered using the average
interdiffusion coefficients.

A possible explanation for the observation that seemingly ‘bad’ interdiffusion coefficient may still
recover the concentration profile to good accuracy is that the interdiffusion coefficients may not
be unique in the sense that different sets of interdiffusion coefficients may give rise to the same
concentration profile at time t∗.

It should also be noted that to recover the concentration profile shown in Figure 2.13, we
fit interdiffusion coefficients depending linearly on one of the concentrations to the computed
average interdiffusion coefficients. But, of course, we already knew beforehand that the diffusion
coefficients had a linear dependence on one of the concentrations. In real situations, it may not
be obvious how one should do the fit. And since diffusion is a sensitive process, doing a ‘wrong’
fit may lead to unstable results.

We conclude from the test results that although theoretically it is possible to recover (average)
interdiffusion coefficients in ternary systems, the results should be treated with great care. Results
obtained from a single measurement may not be reliable. If possible, a single diffusion couple

interdiffusion coefficients become less reliable as the intervals [xL, xR] become smaller. So, while the method
from Dayananda and Sohn may show good results if the correct interdiffusion coefficients are found, it may also
show good results if ‘bad’ interdiffusion coefficients are found but one uses enough ranges over which average
interdiffusion coefficients are computed. The method we use to test the computed coefficients is a finite volume
scheme paired with Euler forward time integration, starting from the initial concentrations. If the computed
coefficients are bad, then the ’recoverd’ concentration profile is expected to be bad as well.

8We only computed average interdiffusion coefficients over certain concentration ranges. To use these computed
coefficients in the method to be discussed in Chapter 4 we used a (second order) polynomial interpolation to
obtain interdiffusion coefficients as a function of one of the concentrations.
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2 Identification of Diffusion Coefficients

should be measured at different times and the resulting average interdiffusion coefficients should
be compared. If they coincide within reasonable margins of error, this could be an indication
that the ‘correct’ coefficients have been computed. It would be even better if multiple diffusion
couples could be prepared with crossing diffusion paths so that the diffusion coefficients at some
specific concentrations can be computed using the ‘normal’ Boltzmann-Matano / Den Broeder as
explained in Subsection 2.3.2. For thin films the latter may be practically impossible to achieve
though.

2.4 Temperature Dependence

So far we have assumed the temperature to be constant at all times during the experiments.
If temperature is allowed to vary, it is generally assumed that diffusion coefficients D have a
temperature dependence that follows the so called Arrhenius formula [2]:

D(T ) = D̊ exp

(
− Q

RT

)
.

Here D̊ is a temperature-independent coefficient called the pre-exponential factor, Q is called
the activation energy and is also assumed to be independent of temperature. Finally R is the
so called universal gas constant. The activation energy is related to the energy required for a
single atom to make a jump in the crystal lattice. The higher the activation energy, the more
difficult it is for atoms to jump and hence the diffusion coefficient will be lower. We also see that
the diffusion coefficient increases as T increases. That should not be too surprising. The atoms
within a crystal lattice will vibrate around their equilibrium lattice positions with higher energies
as temperature increases, making it easier for them to jump within the lattice.

To find D̊ and Q, note that

log [D(T )] = log

[
D̊ exp

(
− Q

RT

)]
= log

[
D̊
]
− Q

RT
.

It follows that in a plot of log [D(T )] versus 1/T the slope of the graph is given by −Q/R and

the value at which the graph intersects the y-axis gives us log
[
D̊
]
. Note that at least two data

points are needed - that is, measurements at at least two different temperatures need to be
performed - in order to compute the slope and the intersection with the y-axis.

In general D and hence D̊ may be concentration dependent. In that case we would have to fix
concentrations first and then perform the above steps to find D̊ at these specific concentrations.
A similar thing applies to Q.
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3 Image Deblurring Methods

An important tool in analyzing CIGS samples produced at TNO/Solliance is cross-section Energy
Dispersive X-Ray Spectroscopy, hereinafter referred to as ‘EDX’. EDX measurements can be used
to produce profiles atomic fraction versus depth in a sample. The method can be explained as
follows. After a substrate - think of a piece of glass precursor - has been produced it is cut into
smaller samples. Then high energy electrons are fired at the cut plane of the samples in a vacuum
environment. These electrons kick out electrons of the atoms present in the sample, basically
creating electron vacancies in the atoms. The electron vacancies in the atoms are subsequently
filled by other electrons within the atoms and in doing so, X-rays are emitted. The emitted
X-rays are different for different kind of atoms. By localizing the emitted X-ray at different
positions from the cut plane it is possible to generate a profile of atomic fractions versus depth.
By making certain assumptions on the molar volume within the samples - see Chapter 2.1.3 -
the atomic fraction profiles can be converted into concentration profiles.

There is a problem with the EDX measurements though. We are interested in creating atomic
fraction profiles of layers that have a depth on micrometer level. In order to get clear images
on this length scale the measurement device must have a resolution on the nanometer scale.
That is, it must be able to distinguish between things that are only a few nanometers apart.
Unfortunately, as it turns out, the resolution of the EDX measurement device is insufficient to
produce clear profiles on the length scale we are interested in. As a result, the measured profiles
appear blurred. For instance, when sharp interfaces between different components are expected,
the profiles would suggest that the components have diffused into one another. To get a better
understanding of the different processes that lead to the formation of CIGS layers - and also to
be able to obtain concentration profiles that can be used for extracting interdiffusion coefficients
- it is necessary to deblur the measured profiles. In this chapter we will formulate the above
problem in a more mathematical language and work on deblurring methods.

The main source used in writing this chapter is the book Computational Methods for Inverse
Problems by Vogel [55].

3.1 Deblurring as an Inverse Problem

3.1.1 Inverting Ill-Conditioned Matrices

Let Ω be a domain in Rd for some d ∈ N. A black-and-white image on Ω can be represented
by a function f : Ω→ [0, 1] that gives the intensity of the image at point x ∈ Ω. For example,
for a black-and-white image we could have f(0) represent a black dot, f(1) a white dot and
f(x) represents a shade of gray for x ∈ (0, 1). Now suppose that some ‘true’ image t is measured
with a measurement device. The measurement device outputs a ‘measured’ image m. Besides
introducing noise - to be represented by η - the measurement device may also blur the image. If
we let B be the corresponding blurring operator then the measured image m can be represented
as

m = B(t) + η.

(This should be read as: measured image = Blurring operator applied to true image + noise).
Theoretically speaking, the real image can be obtained from the measured image by inverting
the blurring operator:

t = B−1(m− η). (3.1)

Note that we are dealing with a so called inverse problem here: we use the output (m) to recover
the input (t). Of course, to compute t as in (3.1) both the blurring operator B and the noise η
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need to be known then. In this section we will assume B to be known. In reality, of course, we
do not know B and we have to guess it. This is the subject of Section 3.3.

Now, given B, one could try to approximate t by computing B−1(m). If the noise is not too bad,
we should at least get close to t, right? Unfortunately, this procedure leads to terrible results - as
we will later see in figure 3.2. To explain why this is the case we start by formulating everything
in a discrete setting. For simplicity assume Ω is a one-dimensional interval that can be covered
by equidistant gridpoints x1, . . . , xn for some n ∈ N. Define vectors t,m,η ∈ Rn by

ti := t(xi),

mi := m(xi),

ηi := η(xi).

Furthermore, we assume the blurring operator B to be linear. Then its discrete counterpart B
can be represented by an n×n matrix. To obtain t from m we would have to invert the matrix B.
Of course we know how to invert matrices. But the problem is, to obtain a good approximation to
t, we need n to be large. And typically deblurring operators become increasingly ill-conditioned
as n becomes large. That is, small perturbations in the data - like noise - get amplified and
cause the numerical solution to blow. Even the tiny errors resulting from finite arithmetic in
computers may cause blow-up in this respect.

The above behaviour can be better understood by considering the singular value decomposition
of B. That is, decompose B as B = UΛV T , where U = [u1, . . . ,un] and V = [v1, . . . ,vn]
are orthogonal matrices (U−1 = UT and V −1 = V T ) and Λ = diag{σ1, . . . , σn} is a diagonal
matrix whose entries are the singular values of B. Assume that the singular values are ordered
σ1 ≥ . . . ≥ σn. Then we see that

B−1(m) = B−1 (B(t) + η)

= t+B−1η

= t+
(
UΛV T

)−1
η

= t+ V Λ−1UTη

= t+
n∑
i=1

σ−1
i 〈ui,η〉vi.

We see that, for small σi, even a little bit of noise in the direction of ui results in a huge amount
noise in the direction of vi. And usually for blurring operators the singular value σn → 0 as
n→∞.9

3.1.2 Tikhonov Filter

To deal with this issue, a filter could be imposed that excludes the influence of singular values
σi that are smaller than some chosen threshold α > 0. That is, instead of computing an

9Hansen [25] mentions how this statement is difficult / impossible to prove in general. As an example, think of a
diffusion process being responsible for blurring. For simplicity assume the diffusion coefficient to be constant and
equal to 1. Using a finite difference approximation to the spatial derivatives we end up with an n× n Toeplitz
matrix. It can be shown that the eigenvalues of this matrix are given by

λi = 2

(
1− cos

(
πi

n+ 1

))
.

Because the matrix is real and symmetric the eigenvalues coincide with the singular values. We see that
λn = σn → 0 as n→∞.
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approximation to t using

B−1m = V Λ−1UTm =
n∑
i=1

σ−1
i 〈ui,m〉vi,

one computes an approximation tα to t as a truncated sum

tα =
∑
σi≥α

σ−1
i 〈ui,m〉vi.

Following Yagle and Vogel [59, 55] at least three issues can be identified with this method of
deblurring. First of all, it is required to compute the singular value decomposition of B. For
one-dimensional images this is not really a problem. For higher dimensional images this may be
too expensive, especially in applications where real-time image enhancement is required. Secondly,
truncating the sum may give rise to ringing artifacts comparable to the Gibbs phenomenon
seen in Fourier series. Thirdly, it is not possible to add constraints - like requiring the solution
approximation to be positive everywhere - to the problem.

Luckily, all of the above issues can be dealt with. To deal with the second issue, a filter could be
imposed that gradually kills the effect of small singular values rather than sharply cutting them
off. For example, consider the Tikhonov filter function ωα, α > 0 defined as

ωα(σ) =
σ

σ + α
.

We see that ωα(σ) ≈ 1 for large σ while

lim
σ↓0

ωα(σ2)

σ
= lim

σ↓0

σ

σ2 + α
= 0.

Now define

Λα := diag
[
ωα(σ2

1)σ−1
1 , . . . , ωα(σ2

n)σ−1
n

]
,

and approximate t by

tα := (V ΛαU
T )m,

=
n∑
i=1

ωα(σ2
i )σ
−1
i 〈ui,m〉vi

=
n∑
i=1

σi
σ2
i + α

〈ui,m〉vi.

The Tikhonov filter functions in such a way that the effect of large singular values is left intact
while the effect of small singular values is gradually mitigated. Now it is interesting to note that(

BTB + αI
)−1

BTm =
(
V ΛUTUΛV T + αI

)−1
V ΛUTm

=
(
V
(
Λ2 + αI

)
V −1

)−1
V ΛUTm

= V
(
Λ2 + αI

)−1
V −1V ΛUTm

= V
(
Λ2 + αI

)−1
ΛUTm

=
n∑
i=1

σi
σ2
i + α

〈ui,m〉vi

= tα.
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In other words, tα can be computed as tα =
(
BTB + αI

)−1
BTm. We see that it is in fact not

necessary to compute the singular value decomposition in order to compute tα.

But keep in mind that the result so far is specific to the choice of the filter function. For filter
functions other than the Tikhonov filter function ωα we still have not solved the issue of needing to
compute the singular value decomposition of B. In order to do so, it is convenient to reformulate
the inverse problem as a minimization problem.

3.2 Deblurring as a Minimization Problem

3.2.1 Tikhonov Functional

Suppose we want to minimize a function h : R→ R. Assuming the function to be convex, all we
have to do is find its critical points. That is, we have to find the points where the derivative h′ is
equal to zero. As it turns out, in our situation there is a convex functional Jα : Rn → R - let’s
call it the Tikhonov functional - defined as

Jα(f) =
1

2
‖Bf −m‖22 +

α

2
‖f‖22,

whose gradient at f ∈ Rn is given by

BT (Bf −m) + αf . (3.2)

This fact will be derived further below in Subsection 3.2.6. For now, let’s just work with it.
Setting the gradient equal to zero and solving for f gives

f =
(
BTB + αI

)−1
BTm. (3.3)

We see that the right-hand side coincides with the expression we found earlier for tα: the solution
approximation to the true image t obtained under the Tikhonov filter. By the above arguments,
we can say that tα is a minimizer of the functional Jα. Hence the problem of deblurring m using
the Tikhonov filter can be reformulated as: find tα such that

tα = argminf∈RnJα(f) = argminf∈Rn
1

2
‖Bf −m‖22 +

α

2
‖f‖22. (3.4)

Thinking of the deblurring problem as a minimization problem has several advantages. First of all
it is not necessary to compute singular value decompositions to solve the minimization problem.
Furthermore, we might impose conditions on the solution approximations by minimizing over
different domains. For example, if we want to find positive solution approximations only then we
should minimize over {x ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n} instead of the whole Rn.

In the minimization problem (3.4), the first term of Jα (i.e. 1
2‖Bx−m‖

2
2) is ‘responsible’ for

making sure that the solution approximation fits the measured data. The second term (i.e.
α
2 ‖f‖

2
2) comes from the Tikhonov filter function and adds a penalty to solution approximations

having large Euclidean norms. The larger the α, the larger the penalty. This is how the method
prevents blow-up caused by noise in the measured data. As a result, the method may be biased
towards solutions that are ‘dragged down’ (as can be seen in the last plot of Figure 3.2).

3.2.2 Generalized Tikhonov Penalty Functional

Alternatively, we might penalize on the 2−norm of the derivative of f instead of penalizing
on the 2−norm of f itself. That way we only penalize oscillations in the solutions without
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introducing a bias for smaller normed solutions (i.e. without dragging down the solution). Since
noise is highly oscillatory blow-up should be prevented. To make this method more precise for
a one-dimensional setting (the concenration profiles we want to deblur have only one spatial
dimension), let L be the so called first-difference matrix defined as

L =

−1 1
. . .

. . .

−1 1

 ∈ R(n−1)×n. (3.5)

Under the assumption that f is sampled from some continuous image f on equidistant gridpoints
with a distance ∆x between the gridpoints, we define the discrete derivative of f as Df , where

D :=
1

∆x
L

is the first-derivative matrix. The corresponding minimization problem can then be formulated
as: find tα such that

tα = argminf∈RnJα(f) = argminf∈Rn
1

2
‖Bf −m‖22 +

α

2
‖Df‖22.

One could also try to penalize on both ‖f‖22 and ‖Df‖22. Furthermore, note that
(
DTD

)
f can

be interpreted as the discrete second derivative of f . Then, if we let α = (α0, α1, α2) ∈ R3, we
define a generalized Tikhonov penalty functional Tikhonovα : Rn → R as

Tikhonovα(f) = α0‖f‖22 + α1‖Df‖22 + α2‖
(
DTD

)
f‖22.

We could generalize this even further by including third and higher order derivatives as well. We
will stop at the second derivative though.

3.2.3 Total Variation Penalty Functional

A problem with including derivatives in the penalty functional as in Tikhonovα) is that sharp
edges may not be recovered in the deblurring process. Indeed, if we consider a piecewise constant
signal, then the derivatives blow up at the jumps and the generalized Tikhonov functional will
prevent us from recovering these sharp edges. As explained in the introduction to this chapter,
we want to deblur concentration profiles of components that diffuse in one another. However, it
is expected that - at least at room temperature - some of the components will hardly participate
in the diffusion process. As a result there may be sharp edges in the concentration profile.
Furthermore, newly formed line compounds (as discussed in Chapter (2)) may give rise to sharp
edges as well. Hence the Tikhonov filter may not be an appropriate filter in our case. Luckily,
now that the problem has been reformulated as a minimization problem, it is easy to introduce
other types of filters as well by working with other types of penalty functionals.

One possible choice would be to penalize on the total variation, as proposed by Rudin et al [50].
The total variation of a (smooth enough) function f : Ω→ R is defined as

TV(f) :=

ˆ
Ω
|∇f(x)|dx = ‖∇f‖1.

Note that having oscillations significantly adds to the total variation of a function. Since noise is
usually highly oscillatory, one can image how penalizing total variation surpresses noise.

For the discrete counterpart we define the total variation as

TV (f) := ‖Lf‖1,
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where L was defined in (3.5). Note that

‖Lf‖1 =
n−1∑
i=1

|f i+1 − f i|

and from the latter expression one observes that sharp edges or discontinuities in the solution
pose no problem.

3.2.4 Tikhonov and Total Variation Combined

A problem with Total Variation deblurring is that the resulting images may appear too ‘blocky’.
It may tend to create sharp edges where in reality there should be smooth edges (see Figure 3.5).
Perhaps combining the Total Variation penalty functional together with the generalized Tikhonov
penalty functional gives us enough flexibility to reproduce images that have both sharp edges
and smooth edges. To this end, we combine both the generalized Tikhonov penalty functional
and the Total Variation penalty functional in the functional Jα,β : Rn → R defined as:

Jα,β(f) :=
1

2
‖Bf −m‖22 +

1

2
Tikhonovα(f) + βTV(f).

The corresponding minimization problem can then be formulated as: find t such that

t = argminf∈RnJα,β(f). (3.6)

3.2.5 Smooth Approximation to Euclidean Norm

To solve the minimization problem (3.6), we compute the gradient of Jα0,α1,α2,β and set it equal
to zero. But there’s one issue here: the Euclidean norm that is used in the Total Variation
penalty functional is not differentiable at the origin and this messes up the differentiability of
Jα0,α1,α2,β . To overcome this issue we will with a smooth approximation to the Euclidean norm.
As suggested in Chapter 8 of the book by Vogel [55] we let γ > 0 be some small parameter and
work with the approximation √

x2 + γ2 ≈
√
x2 = |x|.

To approxiate the total variation of a vector, we first define a function ψγ : R→ R by

ψγ(x2) = 2
√
x2 + γ2.

Now define TVγ by

TVγ(f) :=
1

2

n−1∑
i=1

ψγ

(
[Df ]2i

)
∆x,
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where D is the first-derivative matrix defined earlier. Then TVγ(f) smoothly approximates
TV(f) since

TVγ(f) =
1

2

n−1∑
i=1

ψγ

(
[Df ]2i

)
∆x

=

n−1∑
i=1

√(f i+1 − f i
∆x

)2

+ γ2

∆x

=

n−1∑
i=1

√(
f i+1 − f i

)2
+ (γ∆x)2

≈
n−1∑
i=1

√(
f i+1 − f i

)2
=

n−1∑
i=1

∣∣f i+1 − f i
∣∣

= TV(f).

Our new functional to be to be minimized becomes:

Jα,β,γ(f) :=
1

2
‖Bf −m‖22 +

1

2
Tikhonovα(f) + βTVγ(f). (3.7)

We will refer to the first term in Jα,β,γ as the Data-Fitting term, the second as the Tikhonov
term and the third as the Total Variation term. In order to minimize Jα,β,γ we compute its
gradient first. Let’s do that.

3.2.6 The Gradient of Jα,β,γ

Computing the gradient of Jα,β,γ at some vector f boils down to computing the directional
derivative of Jα,β,γ at f in an arbitrary direction g and expressing the result in an appropriate
form (inner product of ‘something’ with g, where something will then be the gradient of Jα,β,γ at
f). See Chapter 2 of Vogel [55] for the underlying mathematical details. Therefore, we proceed
by computing the directional derivatives of each of the terms of Jα,β,γ separately. Then we
combine them and derive an expression for the gradient of Jα,β,γ at some arbitrary vector f .

For the Data-Fitting term, the directional derivative at f in the direction of g is given by

d

dτ

1

2
‖B(f + τg)−m‖22 |τ=0=

d

dτ

1

2
〈B(f + τg)−m,B(f + τg)−m〉2 |τ=0

=
1

2
[〈Bf ,Bg〉2 + 〈Bg,Bf〉2 − 〈Bg,m〉2 − 〈m,Bg〉2]

= 〈Bf ,Bg〉2 − 〈m,Bg〉2
= 〈Bf −m,Bg〉2
=

〈
BT (Bf −m) , g

〉
2
. (3.8)

For the Tikhonov term, note that if M is some matrix, then

d

dτ

α

2
‖M(f + τg)‖22 |τ=0 =

d

dτ

α

2
〈Mf + τMg,Mf + τMg〉2 |τ=0

=
α

2
[〈Mg,Mf〉2 + 〈Mf ,Mg〉2]

=
〈
αMTMf , g

〉
2
.
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It follows that the directional derivative at f in the direction of g of the Tikhonov term is given
by

d

dτ
Tikhonovα(f + τg) =

〈
α0f + α1D

TDf + α2(DTD)T (DTD)f , g
〉

2
(3.9)

For the Total Variation term, we use the differentiability of ψ together with the chain rule to
find that

d

dτ
βTVγ(f + τg) |τ=0 =

β

2

n∑
i=1

d

dτ
ψγ

(
[Df + τDg]2i

)
∆x |τ=0

=
β

2

n∑
i=1

ψ′γ

(
[Df ]2i

)
[Df ]i [Dg]i ∆x

If we define a matrix Ψ′
f as

Ψ′
f :=


ψ′γ

(
[Df ]2i

)
. . .

ψ′γ

(
[Df ]2i

)


then the expression for the directional derivative can be more conveniently written as

d

dτ
TVγ(f + τg) |τ=0 = β∆x (Dg)T Ψ′

fDf∆x

= β
〈

∆xΨ′
fDf ,Dg

〉
2

=
〈
β
(

∆xDTΨ′
fD
)
f , g

〉
2
. (3.10)

Putting (3.8), (3.9) and (3.10) together we find that

d

dτ
Jα,β,γ(f + τg)

=
〈
BT (Bf −m) + α0f + α1D

TDf + α2(DTD)T (DTD)f + β
(

∆xDTΨ′
fD
)
f , g

〉
2
.

The term in the left slot of the inner product is called the gradient of Jα,β,γ at f - to be denoted
by GradJα,β,γ(f) (again, see Chapter 2 of Vogel [55] for more mathematical details). That is,

GradJα,β,γ(f) = BT (Bf −m)+α0f +α1D
TDf +α2(DTD)T (DTD)f +β

(
∆xDTΨ′

fD
)
f .

Note that the earlier claim about the gradient of Jα at f is seen to be true when setting α1, α2

and β equal to zero (see equation (3.2)).

3.2.7 Lagged Diffusivity

If Jα,β,γ attains its minimum at f , then GradJα,β,γ(f) = 0. As a result, assuming Jα,β,γ to be
convex, we only need to look for the zeros GradJα,β,γ in order to minimize Jα,β,γ . Let’s try to
do that:

GradJα,β,γ(f) = 0

⇔ BT (Bf −m) + α0f + α1D
TDf + α2(DTD)T (DTD)f + β

(
∆xDTΨ′

fD
)
f = 0

⇔
[
BTB + α0I + α1D

TD + α2(DTD)T (DTD) + β
(

∆xDTΨ′
fD
)]
f = BTm

⇔ f =
[
BTB + α0I + α1D

TD + α2(DTD)T (DTD) + β
(

∆xDTΨ′
fD
)]−1

BTm.(3.11)
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Note that we cannot directly use the expression on the right-hand side to compute f since the
right-hand side itself depends on f (in a non-linear fashion) due to the matrix Ψ′

f . However,
if we set β = 0 for now (no Total Variation penalty), we see that we can directly compute the
minmizer f as

f =
[
BTB + α0I + α1D

TD + α2(DTD)T (DTD)
]−1

BTm. (3.12)

Note that setting α1 and α2 equal to zero as well yields an expression obtained earlier in equation
(3.3).

As for the general case, note that even though equation (3.11) cannot be used directly, it can be
manipulated easily into an iterative scheme for finding the minimizer. Indeed, suppose that tk is
an approximation to the minimizer (i.e. tk is an approximation to the true image t), then we
compute a new solution approximation tk+1 as

tk+1

=
[
BTB + α0I + α1D

TD + α2(DTD)T (DTD) + β
(
∆xDTΨ′

tkD
)]−1

BTm

= tk −
[
BTB + α0I + α1D

TD + α2(DTD)T (DTD) + β
(
∆xDTΨ′

tkD
)]−1

GradJα,β,γ(tk).

This method is called the method of Lagged Diffusivity (the ‘diffusion coefficient’ Ψ′
tk

lags behind
because it is evaluated using the solution approximation at the old time step) [56]. We continue
iterating until the gradient is sufficiently close to zero or when there is no longer any real difference
between tk+1 and tk.

3.2.8 Existence, Uniqueness and Convergence

So far we have ignored two very important issues. The first issue is related to the question
whether the functional Jα,β,γ has a minimizer to begin with. And if that’s the case, is it perhaps
a local minimum or, preferably, a global minimum? And if there is a global minimum, is it
unique? Proving these kind of results require advanced mathematical techqniues that are outside
the scope of this work. In the case of either a pure Tikhonov problem (i.e. β = 0) or a pure
Total Variation problem (α = (0, 0, 0)) such results can be found in the book by Vogel [55]. That
does not guarantee anything about the combined method though.

Furthermore, we have written down an iterative scheme for finding a minimizer of Jα,β,γ . Even
if Jα,β,γ admits a unique minimizer, how do we know that the iterative scheme will find this
solution? Again, the discussion of this issue is outside the scope of this work. For results in
this respect, the reader is referred to an article by Vogel and Oman and an article by Chan and
Mulet[7, 56].

3.2.9 Newton-Raphson Method

As an alternative to the method of Lagged Diffusivity, we could use the well-known Newton-
Raphson method to iteratively find the vectors at which the gradient of Jα,β,γ vanishes. Say we
are trying to minimize a convex function h : R → R by finding the zeros of its derivative h′.
Given some initial approximation x0 to a zero of h′, the Newton-Raphson method tells us to
compute an update x1 as:

x1 = x0 −
h′(x0)

h′′(x0)
. (3.13)

We see that the second derivative of h is needed. In the case of our functional Jα,β,γ the equivalent
of a second derivative is the Hessian matrix. We compute it by working out the second directional
derivatives of Jα,β,γ . The computations are similar to what has been done previously in the case
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of the gradient (see Section 3.2.6) and they won’t be written down here. We only present the
results. For the second directional derivative we find that

∂2

∂ξ∂τ
Jα,β,γ(f + τg + ξh) |τ,ξ=0

=
〈(
BTB + α0I + α1D

TD + α2

(
DTD

)T (
DTD

)
+ β∆xDT

(
Ψ′
f + Ψ′′

f

)
D
)
g,h

〉
2
,

where the matrix Ψ′′
f is defined as

Ψ′′
f :=


2ψ′′

(
[Df ]21

)
[Df ]21

. . .

2ψ′′
(

[Df ]2n

)
[Df ]2n

 .

Then the Hessian of Jα,β,γ at (f) - to be denoted by HessJα,β,γ(f) - is given by the matrix

HessJα,β,γ(f) = BTB + α0I + α1D
TD + α2

(
DTD

)T (
DTD

)
+ β∆xDT

(
Ψ′
f + Ψ′′

f

)
D.

Given a solution approximation tk, we could try to follow (3.13) and compute an update tk+1 as

tk+1 = tk −HessJα,β,γ(tk)−1GradJα,β,γ(f).

Better convergence of the method is obtained when performing a so called line search. To this
end, we first define the search direction Sk as

Sk := −HessJα,β,γ(tk)−1GradJα,β,γ(f).

Then we perform a line search along this search direction, i.e. we look for τ∗ ≥ 0 that satisfies

τ∗ := argminτ≥0Jα,β,γ(tk + τSk)

and we set
tk+1 = tk + τ∗Sk.

The reason for doing the line search is that the method may not converge otherwise - even if
there is a unique minimizer. Incorporating the line search is not a straightforward task though.
See Chapter 3 of the book ‘Numerical Optimization’ by Nocedal and Wright [39] for details on
how one can do this. A MATLAB script found on the Mathworks File Exchange Database that
implements a line search algorithm is used.10

Note that the Newton-Raphson algorithm and the Lagged Diffusivity algorithm look very
similar in the end: the term β∆xDTΨ′

tk
D for the Lagged Diffusivity is replaced by the term

β∆xDT
(
Ψ′
tk

+ Ψ′′
tk

)
D. We worked out both methods to increase our chances of converging.

3.3 Blurring Operator

3.3.1 Convolution

All this time we have assumed that the blurring matrix B is somehow known. In reality, we do
not know B though (in fact, we don’t even know if the blurring operator is linear and can be

10http://nl.mathworks.com/matlabcentral/fileexchange/44315-newton-method-with-line-
search/content/LINESEARCH/line search.m
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represented as a matrix but let’s not assume the situation to be that bad though). In this section
we will try to describe possible candidates for the blurring operator B. We start by remarking
that a common way to blur an image t is to convolve it with some response function r. More
specifically, assuming t and r to defined on the whole of R, their convolution product t ? r is
defined as

(t ? r)(x) =

ˆ
R
t(x− y)r(y)dy.

Note that for a fixed response function r the convolution with r is linear in t (and the other way
around as well but we don’t need that).

For our purposes it will be more convenient to work in a discrete setting again. Like before, place
equidistant gridpoints xi in our domain and define the vector t by ti := f(xi). Similarly, define
the vector r by ri := r(xi). Then the discrete convolution product (t ? r) is defined as

(t ? r)i =

∞∑
j=−∞

ti−jrj .

The discrete convolution could be interpreted as follows: the i-th component of the convolved
signal, i.e. (t ? r)i, is a combination of all components of t. The value rj gives the strength of
the influence of ti−j on (t ? r)i.

Figure 3.1: Convolution visualised

In our case, we assume each ti to have influence only over a finite range. This can be achieved
by giving the response function r finite support. That is, we assume ri to be zero for |i| > k,
where k is some positive integer. In that case the convolution product reduces to

(t ? r)i =
k∑

j=−k
ti−jrj .

In general, the response vector r depends on the measurement device that introduced blur
(assuming that the blur is indeed the result of a (linear) convolution). In the case at hand there
is no information available on the response function. Therefore we will try to make ‘reasonable’
guesses. First of all, we have no reason to expect the blur to be stronger in one direction than in
others. That is, we expect the response function to be symmetric (ri = r−i). For example, we
could give r a Gaussian shape. With this choice, the influence on (t ? r)i is the strongest for ti
and it gradually weakens as |i − j| increases. Another possible option would be to give r the
shape of a square. Both choices have been implemented in MATLAB as we will see later.

Whatever we end up choosing for r, it would be convenient to write the convolution operation in
terms of some matrix B - the blurring operator - because then we can readily use the machinery
developed in the previous section. Let’s see how we can do that.
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3.3.2 Boundary Conditions

Suppose we measure a blurred image b over n equidistant gridpoint x1, . . . , xn and define the
vector b ∈ Rn by bi := b(xi). Furthermore, forgetting about noise for now, we assume b to be
the convolution product of some ‘true’ signal t with a finitely supported response function r. In
matrix-vector form the convolution can be expressed as


rk · · · r0 · · · r−k 0

rk · · · r0 · · · r−k
. . .

. . .
. . .

. . .
. . .

rk · · · r0 · · · r−k
0 rk · · · r0 · · · r−k





t−k+1

...
t1
...
tn
...

tn+k


=

b1

...
bn

 . (3.14)

We see that b, a vector of length n, is determined by the vector [t−k+1, . . . , tn+k] of length
n+ 2k. To deal with this issue, we have to introduce boundary conditions. Before we do this, it
is convenient to introduce the following notation:

tL := [t−k+1, . . . , t0] ∈ Rk,
tM := [t1, . . . , tn] ∈ Rk,
tR := [tn+1, . . . , tn+k] ∈ Rk,

and

BL :=



rk · · · r1

0
. . .

...
...

. . . rk
... 0

...
...

0 · · · 0


∈ Rn×k,

BM :=



r0 · · · r−k 0
...

. . .
. . .

. . .

rk
. . .

. . .
. . . r−k

. . .
. . .

. . .
...

0 rk · · · r0


∈ Rn×n,

BR :=



0 · · · 0
...

...

0
...

r−k
. . .

...
...

. . . 0
r−1 · · · r−k


∈ Rn×k.

With this notation, equation 3.14 can be expressed as

BLtL +BMtM +BRtR = b. (3.15)
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Note that tL and tR correspond to the true image left and right of b while tM is really the true
version of b. In the end, given b, the vector tM is what we want to compute. A naive, formal
calculation shows that

tM = B−1
M (b−BLtL −BRtR) .

Of course this does not work, even under the assumption that B−1
M can be computed and does

not cause stability issues, simply because the tL and tR are unknown. This is an alternative way
of stating that the problem in (3.14) is underdetermined. To deal with this issue we need to
make assumptions on tL and tR. Because tL and tR lie outside the boundaries of our domain
of interest (we really only care about the true image tM ) so we refer to these assumptions as
boundary conditions. As we will see, different boundary conditions give rise to different kinds
of blurring matrices. We will discuss two different options: Dirichlet boundary conditions and
(anti)reflexive boundary conditions.

3.3.3 Dirichlet boundary conditions

Remember from the chapter on interdiffusion coefficients how it was important to assume that
the ends of the diffusion couple remain unaffected? Suppose that tM represents a concentration
profile over a domain that covers the interdiffusion zone. Then left of the domain it is natural to
assume the concentration to be the same as t1 while right of the domain it would make sense for
the concentrations to be equal to tn. That is, we could make the assumption that

tL = [t1, . . . , t1],

tR = [tn, . . . , tn].

Then we see that

BLtL =



rk · · · r1

0
. . .

...
...

. . . rk
... 0
...

...
0 · · · 0



t1...
t1

 =



∑k
i=1 ri 0 · · · 0
...

...
...

rk
...

...

0
...

...
...

...
...

0 0 · · · 0


︸ ︷︷ ︸

:=BDirichlet
L ∈Rn×n

tM .

In a similar fashion,

BRtR =



0 · · · 0
...

...

0
...

r−k
. . .

...
...

. . . 0
r−1 · · · r−k



tk...
tk

 =



0 · · · 0 0
...

...
...

...
... 0

...
... r−k

...
...

...

0 · · · 0
∑k

i=1 r−i


︸ ︷︷ ︸

:=BDirichlet
L ∈Rn×n

tM

Now define
BDirichlet := BDirichlet

L +BM +BDirichlet
R .

Then equation (3.15) reduces to
BDirichlettM = b

and BDirichlet is our blurring operator.
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3.3.4 Reflexive boundary conditions

For reflexive boundary conditions, we assume the image outside of the domain of interest to be a
reflection of the image on the inside. More specifically, we assume

t0 = t1, t−1 = t2, . . . , t−k+1 = tk,

and

tn+1 = tn, tn+2 = tn−1, . . . , tn+k = tn−k+1.

Then

tL = [tk, . . . , t1],

tR = [tn, . . . , tn−k+1],

and we see that

BLtL =



rk · · · r1

0
. . .

...
...

. . . rk
... 0

...
...

0 · · · 0



tk...
t1

 =



0 · · · 0 rk · · · r1

...
... 0

. . .
...

...
. . . rk
... 0

...
...

0 · · · · · · 0


︸ ︷︷ ︸

:=BReflexive
L ∈Rn×n



tn
...
tk
...
t1

 = BReflexive
L Y tM ,

where

Y =

0 1

. .
.

1 0

 ∈ Rn×n.

is the n× n matrix that flips vectors upside-down. In a similar fashion we see that

BRtR =


0

rk−1

...
. . .

r−1 · · · r−k 0 0


︸ ︷︷ ︸

:=BReflexive
R ∈Rn×n

Y tM .

Now define

BReflexive := BReflexive
L +BM +BReflexive

R

to reduce equation 3.15 to

BReflexivetM = b.

Yet another possibility would be to have anti-reflexive boundary conditions. The corresponding
blurring operator BAnti-Reflexive is given by

BAnti-Reflexive :=
(

2BDirichlet
L −BReflexive

L

)
+BM +

(
BDirichlet
R −BReflexive

R

)
.

All three options have been implemented in MATLAB.
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3.4 Constrained Optimization

In the test results that follow in the next section we see that sometimes the deblurring methods
result in images that attain negative values. If the images we are trying to deblur correspond to
concentration profiles or atomic fraction profiles then negative values make no physical sense.
In order to avoid negative values, we could try to minimize the functional Jα,β,γ over the set
Rn,+ := {f ∈ Rn | fi ≥ 0, 1 ≤ i ≤ n} instead of over the whole of Rn. Incorporating constraints
such as non-negativity constraints as not a straightforward task: simply projecting each of the
iterations tk onto Rn,+ may result in a method that simply does not convergence. In Vogel [55]
methods for performing the contrained minimization are discussed for the case α = (0, 0, 0) (i.e.
pure Total Variation filter). These methods have been implemented in MATLAB and for the test
cases considered they seem to be working for general α (i.e. when including the Tikhonov filter)
as well.

3.5 Test Results

The deblurring methods discussed in Sections 3.2, 3.3 and 3.4 been implemented in a MATLAB

script. The script basically works as follows:

1. Load a blurred and noisy concentration profile mi.

2. Make a guess on the response function. Two options have been implemented: a Gaussian
shaped and a square shaped response function. A parameter σ determines the ‘width’ of
the shape.

3. Choose a type of boundary condition: Dirichlet, reflexive or anti-reflexive.

4. Choose parameters α = (α0,α1, α2) (Tikhonov) and β and γ (Total Variation).

5. Choose an iterative scheme: Lagged Diffusivity or Newton-Raphson.

6. Choose stopping criteria for the iterative scheme. For example, stop when both the norm
of the update tk+1 − tk and / or the norm GradJα,β,γ(tk) are smaller than some specified
tolerance. We also want to set an upper limit to the amount of iterations to be performed.

7. To start the iterative procedure, we need to supply an initial guess t0. The most straight-
forward option is to set t0 = m.

8. Now given tk, compute tk+1 using either the Lagged Diffusivity method or the Newton-
Raphson method. Quit when stopping criteria are met.

We now present some test cases. To start we create a ‘true’ image t, apply the chosen blurring
operator B to it and add some random noise to obtain a ‘measured’ image m. Then we try to
recover the true image t using combinations of the Tikhonov and Total Variation methods. As
for the true image, we use an image that contains both sharp and smooth edges. To blur the
image, in each case a Gaussian shaped response function with reflexive boundary conditions is
used. Whenever applicable, the parameter γ was set to 10−5. We try blurring using the Tikhonov
method first with α = (α0, 0, 0) and we do not incorporate the non-negativity constraints yet.
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Figure 3.2: Deblurring with a Tikhonov filter for different values of α0.

The upper left plot in the figure shows the real image and the measured image that is a blurred
and noisy version of the real image. In the upper right plot we see the result of trying to deblur
without applying any filter (corresponding to α = (0, 0, 0) and β = 0)). As expected, the result
is terrible. By increasing α0 the results seem to get better. The plot for α0 = 10−2 shows that
working with the Tikhonov filter method allows one to obtain smooth edges nicely. The sharp
edge is a problem though. Because sharp edges require high frequency components - which we
kill using the Tikhonov filter - it is impossible to recover sharp edges. Moreover, the deblurred
image gets ‘dragged down’ as α0 becomes larger, as can be seen from the plot for α0 = 0.1. This
behaviour can be explained from the expression (3.4), which shows that the norm of the image
(interpreted as a vector) gets penalized more and more as α0 increases. And images with lower
values have smaller norms. We also see that the deblurred images attain negative values. This
is unphysical and illustrates the need for a constrained algorithm that produces non-negative
images only. Results obtained with the constrained algorithm are presented later.
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3 Image Deblurring Methods

For now, let us try deblurring using the Tikhonov method with α = (0, α1, 0).
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Figure 3.3: Deblurring with a Tikhonov filter for different values of α1.

We see that the results are similar as the ones obtained for different values α0. Smooth edges can
be recoverd nicely while sharp edges are problematic. The solutions do not get dragged down
this time though (because penalizing the norm of the gradient does not necessarily result in
lower-valued images). The problem of negative solution values is still present.
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3 Image Deblurring Methods

Next, we try deblurring using the Tikhonov method with α = (0, 0, α2).
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Figure 3.4: Deblurring with a Tikhonov filter for different values of α2.

The plots appear similar to the ones obtained for α1 (with the same type of problems associated
to them), except that the solutions are even smoother than before.
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3 Image Deblurring Methods

Let us try the Total Variation method now.
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Figure 3.5: Deblurring with a Total Variation filter for different values of β.

The results are completely different from the ones obtained with the various Tikhonov filters.
This time we see that the sharp edge can be recovered nicely while it is the smooth edge that is
problematic. We see that the Total Variation method has the tendency to produce piecewise
constant solutions. In the deblurred images there are still some small artifacts present. This can
be explained by the fact that the Total Variation method requires the use of an iterative scheme
to find solutions this time (for the pure Tikhonov filters we could compute the solutions directly
using equation (3.12)). The iterative scheme needs stopping criteria as explained earlier. The
small artifacts show that the method has not fully converged yet. By tightening the stopping
criteria, the artifacts will be removed and the resulting deblurred images will indeed be piecewise
constant.

It should be noted that in the above case we used the Lagged Diffusivity method. The results
obtained with the Newton-Raphson method are similar.

Now we are going to try to combine the Tikhonov method and the Total Variation and hopefully
get a ‘best of both worlds’ solution.
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Figure 3.6: Deblurring with Tikhonov and Total Variation filters for different values of β
and α2.

We see, especially in the last two plots, that the resulting method produces images that are in
between the two extremes of the pure Tikhonov and the pure Total Variation deblurring methods.
The sharp edge is not as good as for the pure Total Variation deblurring, but the smooth edge is
better. On the other hand, the smooth edge cannot be recovered as nicely as for a pure Tikhonov
filter but the sharp edge is much better. By adjusting the weights β and α2 (or more general, α)
we can get more edgy images or more smooth images. It seems as if we can never recover both
the sharp edge and the smooth edge perfectly using the above methods though. This is not too
surprising: imagine that we do a Fourier decomposition of the image. The Tikhonov filters then
surpress high frequency components from the image because that is where the noise can be found.
But high frequency components are needed to produce sharp edegs. Hence ‘the more Tikhonov,
the less sharp edges’. On the other hand, the Total Variation filter tends to produce piecewise
constant images, which is of course not how one would want to reproduce smooth edges. Hence
‘the more Total Variation, the less smooth edges’. There will always be a tradeoff between these
methods.

We note that, even though it is difficult to see in some of the plots, negative values may be
attained. This is unwanted behaviour if one is trying to recover atomic fraction or concentration
profiles. In the next series of plots we present results obtained under the constrained minimization
algorithm mentioned in Section 3.4. The parameters used are the same as in 3.6. We see that
the results are similar to the results from 3.6, except that the solutions are positive everywhere
this time.
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Figure 3.7: Deblurring under positivity constraints with Tikhonov and Total Variation filters
for different values of β and α2.

Finally, we mentioned that we also tried to deblur using so called Perona-Malik anisotropic
diffusion [44]. While we were able to remove noise from images without introducing additional
blur, we could not get the method to actually deblur the images. Hence, while the method in
itself is interesting, it is not further discussed here and the results are not presented.

The above deblurring methods will be applied to real measurement data obtained by TNO/Sol-
liance in Chapter 6.
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4 Precursor Model and Numerical Implementation

In the introductory chapter we briefly mentioned the two-step process that is used to produce
CIGS absorber layers at TNO/Solliance. Remember that in the first step of this process, layers
of copper, indium and gallium are deposited on a soda-lime glass substrate coated with a layer of
molybdenum. This deposition step is carried out either by sputtering or by electroplating. In
the second step of the two-step process, the subtrate is loaded into a furnace for the selenization
process.

Experiments performed at TNO/Solliance have shown that already during the storage of the
substrate before selenization diffusion and chemical reactions take place. More specifically, it is
observed that the layers of copper, indium and gallium diffuse into one another and reactions
occur which lead to new intermetallic phases - even at room temperature! Because the precursors
form the basis of what are to become CIGS solar cells, it is desired to have a model which describes
the underlying physical and chemical processes. The goal of the model should be to describe
the concentrations (in moles per unit volume) of the various components - including newly
formed phases - throughout the precursor over time. The model is currently being developed at
TNO/Solliance and in this chapter we will describe only a part this model. More specifically, we
will focus on the physical and chemical processes that take place in the precursor stack during
storage before the actual selenization step. We refer to this part of the model as the precursor
model.

The reason for describing the precursor model in this work is that the current numerical
implementation of the diffusion process is relatively slow. A faster method is desired. Since a
numerical method is ultimately a way of solving equations, and the equations to be solved come
from the model, we present the model first. Then we develop a numerical method to solve the
equations.

As for the modelling part, we will start very general and along the way we will make observations
and assumptions to taylor the model to the case at hand.

4.1 General Precursor Model

4.1.1 Continuity Equations

In the case at hand we are interested in the time evolution of the concentrations Ci of different
components i inside a physical domain Ω ⊂ R3. Each concentration Ci is a function of both
space and time, i.e. C = C(x, t), where x = (x1, x2, x3) ∈ Ω and t ∈ [0,∞). Now think of a small
control volume U contained in Ω. Assume this control volume to be stationary with respect to
some laboratory fixed reference frame. The total amount of component i present in U is given
by the integral

´
U C(x, t)dx. Now we stipulate that the amount of component i in U can only

change due two processes: it either changes due to particles of component i leaving / entering U
as a flux through the boundary ∂U , or, it changes due to sources / sinks of this component being
present inside of U . That is,

d

dt

ˆ
U
Cidx = −

ˆ
∂U
F i · ndx+

ˆ
U
Sidx,

where F i and Si are the flux and source functions respectively and n is the outward-pointing
normal. Note that bold symbols refer to vector quantities. In general, the F i and Si depend on
the concentration Ci, on x and on t and possibly on other factors as well. More on that later. For
now, note that the surface integral can be rewritten to a volume integral using Gauss’ divergence
theorem. With this theorem the above equation becomes

d

dt

ˆ
U
Cidx = −

ˆ
U

divx(F i)dx+

ˆ
U
Sidx,
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or, equivalently, ˆ
V

[
∂Ci
∂t

+ divx(F i)− Si
]
dx = 0.

This equation is generally referred to as the continuity equation in integral form. Because this
equation is assumed to hold for all possible control volumes U ⊂ Ω and for all times (and
assuming all functions under consideration to be smooth enough), it follows that the integrand
must be identically zero. That is,

∂Ci
∂t

= −divx(F i) + Si in Ω× [0,∞).

This partial differential equation - the continuity equation in differential form - describes the
dynamics of component i only but it can easily be generalized to multicomponent systems. To
this end, define the vector C := [C1, . . . , Cn], where each Ci is a function for the concentration of
component i and n is the number of different components in the system. Similarly, define vectors
of functions F := [F 1, . . . ,F n] and S := [S1, . . . , Sn]. With this notation, the system of partial
differential equations decsribing the dynamics of all the components can be written as

∂C

∂t
= −divx(F ) + S in Ω× [0,∞).

Here the divergence operator is understood to be applied to each component of F separately.
Note that this system of partial differential equations is very general and can describe the time
evolution of basically any ‘conserved’ quantity. However, because it is so general, it is not saying
much either! To better describe what is going on for our specific precursors, we have to make
some choices.

Note the general trend that subscripts refer to the component under consideration and that
bold symbols indicate the use of a vector. This trend will be continued throughout this chapter.
Moreover, matrices will be denoted by bold symbols with bars.

4.1.2 Physical Domain of Interest

First of all, we have to define what our physical domain of interest is. The most obvious choice
would be to say that the domain consists of the layers of molybdenum, copper, indium and
gallium. The soda-lime glass substrate will not be included because it is inert and pretty much
impermeable at the temperatures we will be dealing with - that is why glass was chosen as
a substrate in the first place. Now let L,W and H be the length, width and height of the
initial precursor stack together with the molybdenum (but without the soda-lime glass). As
the components diffuse and react with each other, new phases form. Assuming constant partial
molar volumes for the components the total volume of the system will not change, see Chapter
2.1.3. Then, at all times before the selenization step, our physical domain of interest will simply
be the box Ω := [0, L]× [0,W ]× [0,H]. Typically, H is around 2µm while L and W are on the
order of centimeters. It should be noted that initially the precursor is assumed to be uniform in
the horizontal direction as depicted in Figure (4.1). Therefore, we only expect to see changes
over in time in the vertical direction and as a result we will only be working with one spatial
dimension (the vertical direction) in doing numerical simulations. To keep the model as general
as possible we will keep on working with the domain Ω though.

During the selenization, the domain Ω changes because of the uptake of selenium but that is
outside the scope of the present work.
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Figure 4.1: Graphical representation of the precursor in its initial state.

4.1.3 Components in the System

Next, we have to say what components we will be modelling. Obviously we have to include
molybdenum, copper, indium, gallium and in the end Cu(InxGa1−x)Se2. However, X-ray diffrac-
tion measurements performed at TNO/Solliance and at other research institutes have shown that
many intermediate binary and ternary phases form within the precursor. This proces already
starts before the selenization step, when precursors are stored at room temperature. Among
others, the phases Cu2Ga,Cu9Ga4,CuIn,Cu1In2 and Cu11In9 have been observed to form within
the precursor. Following upon the previous modelling work, each of these newly formed phases
will be considered as separate components in the model. Unfortunately, at this moment it is
not yet possible to say exactly which phases form during the two step process. In-Situ X-ray
diffraction measurements should be able to us more about the reaction paths once it is operational.
For now, we will work towards a very general model that can deal with an arbitrary amount of
components. The details can be dealt with at a later time.

A subtle issue here is whether we should distinguish between different physical phases (i.e. liquid,
solid, gas) as well. The first question in this respect is of course whether such different physical
phases occur at all. Since initially the different layers of the precursor are all assumed to be in a
solid state it would be surprising to see liquid or gas phases occur so this may not even be an
issue at room temperature. But, as it turns out, gallium itself has a relatively low melting point
and when it mixes with indium, the melting point decreases to a point where melting occurs
even at room temperature.11 It was decided at TNO/Solliance not model this liquidification.
The reason being that it is of no particular interested whether gallium or indium are (partially)
liquid: as soon as they react with other components to form new crystalline phases they become
part of a solid crystal anyways. And it is the formation of the new crystalline phases that are of
most interest. The possible liquid phase of We could try model the higher mobility of indium and
gallium in their liquid phases by increasing their ‘mobility’ in the model, i.e. a higher diffusion
coefficient.

Furthermore it should be noted that we chose not to include the vacancies within the precursor
as a separate component. Like in Chapter 2, we assume the concentration of vacancies to be
negligible compared with the concentrations of other components.

As stated before we will assume the partial molar volumes Vi of all the components to be constant.
For atomic components we will assume Vi to be equal to the molar volume of the pure component
i. For intermetallic phases, we will take linear combinations of the partial molar volumes of the
constituents. For example, for Cu9Ga4 we will say that VCu9Ga4 = 9VCu + 4VGa.

11A video demonstrating this behaviour can be found at https://www.youtube.com/watch?v=4-ZDDkamfAc
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4.1.4 Diffusion Fluxes

Transport Equations and Interdiffusion Coefficients

Next up is the vector of fluxes F . A lot has already been said about fluxes in Chapter 2. We
repeat the most important conclusions here. Given a choice of sections to measure fluxes, the
diffusion fluxes for the different components within the precursor can be expressed as

F i =
∑
j

LijXj ,

with Xj the different driving forces and Lij the corresponding transport coefficients. In general
the transport coefficients are rank two tensors. For the precursor model, we assume temperature
and pressure to be constant. We also assume the precursor to be electrically neutral. Only the
chemical potential gradients ∇µi of the different components are assumed to be responsible for
driving the fluxes. The above transport equations reduce to the following equations for the
diffusion fluxes:

F i =
n∑
j=1

Lij∇xµj .

In Chapter 2 we discussed in detail the importance of specifying a reference frame relative to
which fluxes are measured. For our model, we will be working with laboratory-fixed sections.
Assuming constant partial molar volumes for the components, this choice of sections coincides
with volume-fixed sections. Hence we can refer to the fluxes as interdiffusion fluxes and we may
denote them with tildes. Since we will only be working with one frame of reference in this chapter
- a laboratory fixed frame of reference - there is no need to use this specific notation though.

By rewriting the chemical potential gradients in terms of concentration gradients the interdiffusion
fluxes could also be expressed as

F̃ i =
n∑
j=1

−D̃ij∇xCj .

Here the Dij are the interdiffusion coefficients. Like the transport coefficients, they are in general
rank two tensors. However, if we assume the precursor to be isotropic then the interdiffusion
coefficients will be scalar quantities.

In Chapter 2 we saw that for an n-component system there are in fact only n− 1 independent
interdiffusion fluxes and (n− 1)2 interdiffusion coefficients are needed to describe these fluxes. In
general these interdiffusion coefficients depend on the concentrations of the different components.
We worked on methods to derive (approximations to) the interdiffusion coefficients for the
one-dimensional based on experimental measurements with diffusion couples.12

Current Working Assumptions for Diffusion Coefficients

At the moment there is not enough data to establish (estimates for) all the relevant interdiffusion
coefficients. And even if there is data - it may be difficult to deduce the interdiffusion coefficients

12It should be noted here that in Chaper 2, we only considered different atomic components. Newly formed
intermetallic phases were not considered as separate components. This raises the question how to interpret and
determine D̃ij in case i or j refers to an intermetallic phase. A possible solution is to set D̃ij = 0 whenever i
refers to an intermetallic phase. In other words, one could render the intermetallic phases immobile. In order for
an intermetallic phase to ‘diffuse’, it would have to decompose (through its reaction term Si) into its atomic
constituents which can then diffuse separately through the precursor. In a similar fashion one could set D̃ij = 0
whenever j refers an intermetallic phase, meaning that atomic components only diffuse under the influence
of concentration gradients of atomic components and not under the influence of concentration gradients of
intermetallic phases.
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because of the difficulties encountered in Chapter 2 with multicomponent diffusion (see also the
discussion in Chapter 6. To (partially) overcome these difficulties a few working assumptions
have been made at TNO/Solliance. First of all, components are only assumed to diffuse under
the influence of their own concentration gradients, i.e.

F i = −D̃ii∇xCi.

In other words, Fick’s law is followed and the so called cross-diffusion terms are ignored by setting
D̃ij = 0 whenever i 6= j.

Secondly, assumptions have been made on the concentration dependence of the interdiffusion
coefficients D̃ii. Say we are following a few particles of component i as they diffuse through
an environment consisting entirely of particles of component j. Let Dij be diffusion coefficient
associated with this process (note that D̃ij and Dij have a completely different meaning. From
now on, just forget about the interdiffusion coefficients D̃ij). If i = j, then this coefficient is
commonly referred to in literature as the self or tracer diffusion coefficient. Otherwise, if i 6= j, it
is referred to as impurity diffusion coefficient [37]. The tracer and impurity diffusion coefficients
Dij are related to (the solid-state equivalent of) infinite dilutely diffusion processes in which
the environment of the diffusing particles is chemically homogenous. But what happens to the
diffusion coefficient D̃ii for a particle in an environment that is not infinitely dilute? As a simple
approximation we could take a weighted average of the different tracer and impurity diffusion
coefficients. More specifically, let Nj denote the molar fraction of component j. In Chapter 2 we
have seen that the molar fractions are related to the concentrations by

Nj = CjVmol,

where the molar volume Vmol can be expressed as

Vmol =
n∑
i=1

NiVi =
1∑n
i=1Ci

.

We then make the assumptions that the diffusion coefficient D̃ii for component i can be expressed
as

D̃ii(C(x, t)) =
n∑
j=1

Nj(x, t)Dij =
n∑
j=1

(
Ci(x, t)∑n
k=1Ck(x, t)

)
Dij .

The advantage of this approach is that some of the tracer and impurity diffusion coefficients can
be found in literature. On the downside it is not clear how the resulting diffusion coefficients D̃ii

relate to interdiffusion coefficients that can be derived from measurements. And of course the
possible effects of cross-diffusion are ignored.

Temperature Dependence of Diffusion Coefficients

In the precursor model we work with a constant temperature θ. However, if at a later time
the precursor is selenized, temperature of course starts playing a role. As already mentioned
in Chapter 2 diffusion coefficients are assumed to follow the general Arrhenius formula. More
specifically, we will say that the Dij have a temperature dependence that can be expressed as

Dij(θ) = D̊ij exp

(
−Qij
Rθ

)
.
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Here D̊ij is the pre-exponential factor, Qij the activation energy and R is the universal gas
constant. With this assumption we can write

D̃ii(C(x, t), θ) =

n∑
j=1

(
Ci(x, t)∑n
k=1Ck(x, t)

)
D̊ij exp

(
−Qij
Rθ

)
.

To conclude the above discussion, we introduce a diffusion matrix D̄ :=
[
D̃ij

]n
i,j=1

, with

D̃ii(C(x, t), θ) =
n∑
j=1

(
Ci(x, t)∑n
k=1Ck(x, t)

)
D̊ij exp

(
−Qij
Rθ

)
and

D̃ij = 0 whenever i 6= j.

Then the flux vector F can be written as

F = −D̄∇xC,

where the gradient operator ∇x is understood to be applied component-wise to the vector of
concentrations C.

4.1.5 Chemical Reactions

The only possible sources or sinks for the components in the precursor during the first step of the
process will be chemical reactions. It is only during the second step that a ‘real’ selenium source
is added but let’s forget about that for now. Chemical reactions occur when different atoms meet
under the right conditions where they form new bonds and thus new chemical components. X-ray
Diffraction measurements performed at TNO/Solliance and other research institutes revealed
that, among others, the following chemical reactions may occur at room temperature.

9Cu + 4Ga ⇀ Cu9Ga4,

Cu + In ⇀ CuIn,

Cu + 2In ⇀ CuIn2,

2Cu + In ⇀ Cu2In.

Note that all these equations are of the form

aA+ bB ⇀ cC,

where A,B and C are certain components and a, b and c stoichiometric coefficients. The reaction
equations tell us nothing about the rate at which the reaction occurs though. The only thing
can be said is that the rate at which c moles of C are produced should be equal to the rate at
which a moles of A are removed. Similarly, the rate at which c moles of C are produced should
be equal to the rate at which b moles of B are removed. If we let [X] denote the concentration of
component X for a moment, then what we just said can be summarized as:

Reaction rate =
1

c

d[C]

dt
= −1

a

d[A]

dt
= −1

b

d[B]

dt
.

Now let f be the function which describes the reaction rate. We will assume that f depends on
the concentrations [A], [B] and [C] as well as on the temperature θ. Usually f is assumed to take
the form

f([A], [B], [C], θ) = f̊ exp

(
−
Ef
Rθ

)
[A]α[B]β[C]γ .
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Here f̊ is the temperature-independent pre-exponential factor, Ef the activation energy for the
reaction and R is the universal gas constant again. In other words, the reaction rate is assumed
to follow the same Arrhenius-type behaviour for temperature as the diffusion coefficients do. The
sum α+ β + γ is called the order of the reaction and should be determined experimentally. No
matter what the particular form of f is, it does give rise to the following system of time evolution
equations:

d[A]

dt
= −af([A], [B], [C], θ),

d[B]

dt
= −bf([A], [B], [C], θ),

d[C]

dt
= cf([A], [B], [C]).

Experimentally determining the orders of the reactions, the pre-exponential factors and the
activation energies for the different reactions may not always be possible. The reason is that the
growth of new intermetallic phases in solids is usually diffusion limited. This can be explained as
follows. Suppose we have a diffusion couple that consists of a beam of pure component A and a
beam of pure component B. As the beams are put together, a new phase AxB1−x grows as a
layer in the interdiffusion zone. To keep on growing, atoms of type A need to diffuse through the
layer to meet with atoms of type B and react, or, alternatively, atoms of type B must diffuse
in the other direction through the layer and meet with atoms of type A. The thicker the layer
grows, the longer it takes for the atoms to diffuse through the layer. If the diffusion rates are
slow compared to the reaction rates than the reaction rates may not at all be oservable: the rate
at which the layer grows is limited by diffusion and hence only reveals information about the
diffusion rates. But if we are dealing with diffusion limited growth, it may not be necessary to
have an accurate reaction rate in the model. It may simply be enough to say that reactions rates
are several orders of magnitudes larger than the diffusion coefficients.

It should also be mentioned that most reactions only occur within a certain temperature range.
This could be incorporated into the model by multiplying each reaction rate by a factor that is
equal to one for temperatures within the correct temperature range and zero otherwise.

Furthermore it should be noted that it is possible for two or more new phases to grow at the
same position. But possibly some phases grow in layers, preventing different phases to be present
at the same position in space. This behaviour could perhaps be incorporated in the reaction
rates by setting them to zero if some other phase is already present.

In the end, deciding which reactions to include and how to model them is part of the ongoing
research at TNO/Solliance and is not the aim of this work. For the numerical method to be
developed (and for the subsequent mathematical analysis of the model in the final thesis for the
TU/e) the particular choices made in this respect are not really important. We will just say that
the reactions for component i are all covered by the general source term Si = Si(C, T ).

4.1.6 Boundary and Initial Conditions

To complete the model we need boundary conditions and initial conditions. For the initial
conditions, it is assumed at TNO/Solliance that assembly of the precursor results in uniform
layers of molybdenum, copper, indium and gallium (in that order). This was already illustrated
in Figure (4.1). Initially there are no intermetallic compounds present. As for the boundary
conditions, it is assumed that no particles can leave the system. In other words, there is zero
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flux across the boundaries. For each component 1 ≤ i ≤ n this condition can be expressed as

F i(x, t) · n = −

 n∑
j=1

D̃ij(C(x, t), θ)∇xCj(x, t)

 · n = 0, x ∈ ∂Ω.

Here ∂Ω is the boundary of Ω and n is the outward pointing normal to the boundary. For the
system as a whole, we will formulate these conditions as

F (x, t) · n = −
(
D̄(C(x, t), θ)∇xC(x, t)

)
· n = 0, x ∈ ∂Ω.

Here the inner product with the outer normal n is understood to be applied component-wise to
the vector of fluxes.

4.1.7 The Precursor Model

Putting all of the above together we arrive at the following model.

Required Data:

1. A choice of n components (Molybdenum, Copper, Indium, Gallium and intermetallic
compounds that form during the diffusion process), whose (unknown!) concentrations will
be denoted by Ci = Ci(x, t) are stored in the vector of functions C = [C1, . . . , Cn];

2. Chemical reactions functions Si = Si(C(x, t), θ) for each i ∈ {1, . . . , n}, collected in the
vector of functions S = [S1, . . . , Sn];

3. Interdiffusion coefficient functions D̃ij = D̃ij(C(x, t), θ) for each i ∈ {1, . . . , n}, collected in

a matrix of functions D̄ =
[
D̃ij

]n
i,j=1

;

4. Initial concentrations CInitial
i = CInitial

i (x) for each i ∈ {1, . . . , n}, collected in the vector of
functions CInitial =

[
CInitial

1 , . . . , CInitial
n

]
.

System of Equations:

Given the data, time evolution of the n concentrations stored in C is governed by the following
system of non-linear, coupled partial differential equations with no-flux boundary conditions:


∂tC(x, t) = divx

(
D̄(C(x, t), θ)∇xC(x, t)

)
+ S(C(x, t), θ) (x, t) ∈ Ω× [0,∞),(

D̄(C(x, t), θ)∇xC(x, t)
)
· n = 0 (x, t) ∈ ∂Ω× [0,∞),

C(x, 0) = CInitial(x) x ∈ Ω.

(4.1)

Like before, ∇x,divx and the inner product with n are understood to be applied component-wise.

Now that we have written down a system of equations we would like to know how to solve them
for C. Analytically solving a system of coupled, non-linear partial differential equations is out of
the question though. Numerical methods have been developed at TNO/Solliance in this respect
and they will be discussed in the next section.

From a more theoretical point of view we would like to know whether it can be shown upfront
that the above system of equations admits a vector of solutions C(x, t) on Ω× [0,∞) in some
appropriate setting. If that’s the case we would like to know whether the solution is unique,
positive and depends smoothly on the data.
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4.2 Numerical Implementation

4.2.1 Current Numerical Method

The model (4.1) is formulated in a three-dimensional setting. Because the initial sample is
assumed to have a layered structure as depicted in figure (4.1), we only expect to see changes
along the vertical direction. Therefore, in doing calculations, we will restrict ourselves to a
one-dimensional case. The variable x will be used to denote the depth within the layer.

The current numerical method used at TNO/Solliance [35] to the diffusion-reaction equations
is based on the following. Suppose we have a concentration of some species in an inifite, one-
dimensional domain. The species is only allowed to diffuse, no reactions occur. The diffusion
coefficient D is assumed to be constant. As for the initial condition, we suppose a point source is
present at the some point y ∈ R. This is modelled by the Dirac-delta function δy. If C denotes
the concentration then the above assumptions lead to the following set of equations for the time
evolution of the species: {

∂tC(x, t) = D∆C(x, t), (x, t) ∈ R,
C(x, 0) = δy(x), t ∈ [0,∞).

This equation can be solved exactly [37] with the solution being

C(x, t) =
1√

2πDt
exp

(
−(x− y)2

4Dt

)
.

The solution can be interpreted as a Gaussian curve that spreads out over time. In reality,
the domain is not infinite dimensional though. To deal with this numerically, the Gaussian
curve is reflected inwards at the physical boundaries. When the reflections meet the physical
boundaries at the other side, they are reflected inwards again. And so on. To deal with general
initial conditions, note that in principle any initial condition can be written as a superposition of
Dirac-delta functions. Because the diffusion coefficient is constant, the diffusion equation is linear
and hence the solution C in case of a general initial condition can be written as the superposition
of solutions corresponding to different Dirac-delta functions. After computing diffusion using this
‘superpositions-and-reflections method’, the reactions are computed separately. Then diffusion
again, rections, etcetera.

There are a few downsides to this method though. First of all, the method is built around
the assumption that the diffusion coefficients are constant. This may not be the case. But
then the exact solution is not really an exact solution to begin with and it is unclear how
‘superpositions-and-reflections’ solutions compare with ‘real’ solutions. Furthermore, doing all
the superpositions and all the reflections at the boundaries is computationally expensive. It is
the bottleneck in the current numerical method used for simulating the CIGS formation process.

Below we will work out a numerical method to treat diffusion - and also reactions - using a
computationally effecient method that allows us to work with non-constant diffusion coefficients
as well. Care has been taken to allow easy incorporaton of new components, intermetallic phases
or reactions in the method because it is not yet known which components and reactions to
include.

The proposed numerical method can be summarized in two steps:

1. Discretize the partial differential equations in space first (Method of Lines) using a finite
volume discretization;

2. Discretize the remaining systems of ordinary differential equations in time.

Both of the steps will be worked out below.
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4.2.2 Finite Volume Discretization

Equations for Volume Averages

For the first step, note that the time evolution equation for a single component i in the one-
dimensional case reads as

∂tCi(x, t) = ∂x

 n∑
j=1

D̃ij(C(x, t), θ)∂xCj(x, t)

+ Si(C(x, t), θ).

As one of the working assumptions we said that D̃ij = 0 whenever i 6= j. If we use the notation
Di for D̃ii, then the above equation reduces to

∂tCi(x, t) = ∂x (Di(C(x, t), T )∂xCi(x, t)) + Si(C(x, t), T ). (4.2)

Now we apply the method of lines to this partial differential equation. That is, we first discrete
the spatial derivatives. This reduces the partial differential equation to a system of ordinary
differential equations that will be solved by a particular choice of time integration method. But
more on time integration later. For now, note that in the one-dimensional case our physical
domain of interest is the interval [0,H]. For the spatial discretization of our equations we will
employ the so called finite volume method. For this method we partition the interval [0, H] into
N smaller intervals that we refer to as finite volumes. Let Ωj denote the j-th finite volume, let
xj denote its center and denote the left and right boundaries of the volume by xj−1/2 and xj+1/2

respectively. With this notation, we see that Ωj = [xj−1/2, xj+1/2]. The length of Ωj will be
denoted by ∆xj . Because the current numerical method used at TNO/Solliance involves adaptive
meshing procedures we do not make the assumption that all ∆xj are equal.

To proceed, we integrate equation (4.2) over a finite volume Ωj . This yields:ˆ
Ωj
∂tCi(x, t)dx =

ˆ
Ωj
∂x (Di(C(x, t), θ)∂xCi(x, t)) +

ˆ
Ωj
Si(C(x, t), θ)dx

= [Di(C(x, t), T )∂xCi(x, t)]
xj+1/2
xj−1/2

+

ˆ
Ωj
Si(C(x, t), θ)dx. (4.3)

Now define
F
j+1/2
i (t, θ) := −Di(C(xj+1/2, t), θ)∂xCi(xj+1/2, t). (4.4)

Note that F
j+1/2
i represents the flux of component i across the boundary between Ωj and Ωj+1.

With this notation, equation (4.3) can be expressed asˆ
Ωj
∂tCi(x, t)dx = −

[
F
j+1/2
i (t, θ)− F j−1/2

i (t, θ)
]

+

ˆ
Ωj
Si(C(x, t), θ)dx. (4.5)

Next, define CAvg,j
i (t) to be the average of Ci over volume Ωj at time t :

CAvg,j
i (t) :=

1

∆xj

ˆ
Ωj
Ci(x, t)dx.

In a similar fashion, we define volume average reactions as

SAvg,j
i (t, θ) :=

1

∆xj

ˆ
Ωj
Si(C(x, t), θ)dx.

Then the integrated evolution equation (4.5) can be reformulated as

d

dt
CAvg,j
i (t) = −

F
j+1/2
i (t, θ)− F j−1/2

i (t, θ)

∆xj
+ SAvg,j

i (t, θ). (4.6)

Note that this equation is exact.
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Numerical Average Concentrations

In doing simulations it is the quantities CAvg,j
i that we will be trying to compute. To this end,

let CNum,j
i (t) denote the (unknown) numerical approximation to CAvg,j

i (t). For convenience, we

also define the vectors CNum,j(t) and CNum
i (t) and a matrix C̄

Num
(t) as

CNum,j(t) :=
[
CNum,j

1 (t), . . . , CNum,j
n (t)

]
∈ Rn,

CNum
i (t) :=

[
CNum,1
i (t), . . . , CNum,N

i (t)
]T
∈ RN ,

C̄
Num

(t) :=
[
CNum

1 (t), . . . ,CNum
n (t)

]
=
[
CNum,1(t), . . . ,CNum,N (t)

]T ∈ Rn×N .

Numerical Source Terms

Now let’s have a look at the source terms SAvg,j
i . Because the SAvg,j

i depend on the exact
concentrations - which we do not know - we need to approximate the source terms in terms of the
numerical solution values contained in C̄

Num
. To this end, let SNum,j

i (t, θ) denote the numerical

approximation to SAvg,j
i (t, θ). The most straightforward choice would be to define SNum,j

i (t, θ) as

SNum,j
i (t, θ) := Si(C

Num,j(t), θ), (4.7)

simply because

Si(C
Num,j(t), θ) =

1

∆xj

ˆ
Ωj
Si(C

Num,j(t), θ)dx ≈ 1

∆xj

ˆ
Ωj
Si(C(x, t), θ)dx = SAvg,j

i (t, θ).

Numerical Fluxes

We see from expression (4.4) that the flux term F
j+1/2
i is (minus) the product of the diffusion

coefficient and the concentration gradient at the boundary between volumes Ωj and Ωj+1. Of
course we don’t know these quantities exactly so we need to introduce approximations. In this
respect, we make the assumption that the diffusion coefficients are constant in each respective
finite volume. More specifically, we define numerical diffusion coefficients DNum,j

i in the finite
volume Ωj as

DNum,j
i (t, θ) := Di(C

Num,j(t), θ). (4.8)

To obtain an approximation for the diffusion coefficient at the boundary between Ωj and Ωj+1,

one may be tempted to simply take the arithmetic mean
(
DNum,j+1
i +DNum,j

i

)
/2 of the diffusion

coefficients DNum,j
i and DNum,j+1

i in Ωj and Ωj+1 respectively. A better idea would be to take
the harmonic mean though. To see this, suppose we introduce an artificial grid point xj+1/2

at the boundary between Ωj and Ωj+1. Doing a simple finite difference approximation to the
derivative at xj+1/2 - and surpressing the time and temperature dependence from the notations

for a moment - we could approximate the flux F
j+1/2
i as

F
j+1/2
i ≈ −DNum,j

i

C
Num,j+1/2
i − CNum,j

i

∆xj/2
. (4.9)

Note that we only use information from the volume Ωj in this approximation. In a similar spirit

we could approximate the flux F
j+1/2
i using information from Ωj+1 as

F
j+1/2
i ≈ −DNum,j+1

i

CNum,j+1
i − CNum,j+1/2

i

∆xj+1/2
. (4.10)
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Figure 4.2: Graphical representation of the finite volume method. On the left we see
the domain divided into N finite volumes. The heights of the bars represent the average
concentrations within these volumes. On the right we see that the average concentration
Ci

Avg,j over the volume Ωj can only change due to material flowing through the boundaries of

Ωj and due to sources within Ωj itself.

Now, of course, we want the two approximations for the flux to be equal. Equating (4.9) and

(4.10) and solving for C
Num,j+1/2
i yields

C
Num,j+1/2
i =

∆xjD
Num,j+1
i CNum,j+1

i + ∆xj+1D
Num,j
i CNum,j

i(
∆xjD

Num,j+1
i + ∆xj+1D

Num,j
i

) .

The reason for solving for C
Num,j+1/2
i is that we do not really want to introduce additional grid

points. Substituting the above expression back into either (4.9) or (4.10) and doing some basic
algebra shows us that (with time and temperature dependence back in the notation)

F
j+1/2
i ≈ −

2DNum,j
i DNum,j+1

i

∆xjD
Num,j+1
i + ∆xj+1D

Num,j
i

(
CNum,j+1
i − CNum,j

i

)
.

This motivates us to define F
Num,j+1/2
i and F

Num,j−1/2
i as

F
Num,j+1/2
i (t, θ) := −

2DNum,j
i (t, θ)DNum,j+1

i (t, θ)
(
CNum,j+1
i (t)− CNum,j

i (t)
)

∆xjD
Num,j+1
i (t, θ) + ∆xj+1D

Num,j
i (t, θ)

, (4.11)

F
Num,j−1/2
i (t, θ) := −

2DNum,j−1
i (t, θ)DNum,j

i (t, θ)
(
CNum,j
i (t)− CNum,j−1

i (t)
)

∆xj−1D
Num,j
i (t, θ) + ∆xjD

Num,j−1
i (t, θ)

. (4.12)

Note that if ∆xj = ∆x for all j = 1, . . . , N then

F
Num,j+1/2
i = −

(
2DNum,j

i DNum,j+1
i

DNumj+1
i +DNum,j

i

)
CNum,j+1
i − CNum,j

i

∆x
,

and we recognize the diffusion coefficient in this expression as being the harmonic mean (and
hence not the arithmetic mean) of DNum,j

i and DNum,j+1
i and not that arithmetic mean.

At the boundaries (j = 1, N), we cannot use the above definitions without invoking artificial
volumes. But there is no need to: the no-flux conditions at the boundary of the domain in the
model simply tell us to set

F
Num,1/2
i (t, θ) = F

Num,N+1/2
i (t, θ) = 0. (4.13)

It should be noted that, while we are working with the assumption that the components only
diffuse under the influence of their own concentration gradient (Fick’s law), the method can
easily be extended to include cross-diffusion terms as well.
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Semi-Discrete System of Equations

Replacing all the quantities in equation (4.6) by their numerical counterparts (4.7), (4.11) and
(4.12) we obtain the semi-discrete system

dCNum,j
i

dt
(t) = −

F
Num,j+1/2
i (t, θ)− FNum,j−1/2

i (t, θ)

∆xj
+ SNum,j

i (t, θ) (4.14)

=
1

∆xj

[
2DNum,j

i (t, θ)DNum,j+1
i (t, θ)

∆xjD
Numj+1
i (t, θ) + ∆xj+1D

Num,j
i (t, θ)

] [
CNum,j+1
i (t)− CNum,j

i (t)
]

− 1

∆xj

[
2DNum,j−1

i (t, θ)DNum,j
i (t, θ)

∆xj−1D
Num,j
i (t, θ) + ∆xjD

Num,j−1
i (t, θ)

] [
CNum,j
i (t)− CNum,j−1

i (t)
]

+ SNum,j
i (t, θ),

for j = 2, . . . , N − 1, and at the boundaries

dCNum,1
i

dt
(t) =

1

∆x1

[
2DNum,1

i (t, θ)DNum,2
i (t, θ)

∆xjDNum2
i (t, θ) + ∆xj+1D

Num,1
i (t, θ)

] [
CNum,2
i (t)− CNum,1

i (t)
]

+SNum,1
i (t, θ),

dCNum,N
i

dt
(t) = − 1

∆xN

[
2DNum,N−1

i (t, θ)DNum,N
i (t, θ)

∆xN−1D
Num,N
i (t, θ) + ∆xjD

Num,N−1
i (t, θ)

] [
CNum,N
i (t)− CNum,N−1

i (t)
]

+SNum,N
i (t, θ).

All diffusion related terms can be put into a triadiagonal N ×N matrix that we will denote by
Ai(t, θ). Careful bookkeeping reveals that

Ai(t, θ) =



−A1
i A

1+ 1
2

i

A
2− 1

2
i −A2

i A
2+ 1

2
i

. . .
. . .

. . .

A
j− 1

2
i −Aji A

j+ 1
2

i
. . .

. . .
. . .

A
(N−1)− 1

2
i −AN−1

i A
(N−1)+ 1

2
i

A
N− 1

2
i −ANi


, (4.15)

where

A
j+1/2
i = A

j+1/2
i (t, θ) :=

1

∆xj

[
2DNum,j

i (t, θ)DNum,j+1
i (t, θ)

∆xjD
Numj+1
i (t, θ) + ∆xj+1D

Num,j
i (t, θ)

]
,

A
j−1/2
i = A

j−1/2
i (t, θ) :=

1

∆xj

[
2DNum,j−1

i (t, θ)DNum,j
i (t, θ)

∆xj−1D
Num,j
i (t, θ) + ∆xjD

Num,j−1
i (t, θ)

]
,

Aji = Aji (t, θ) := A
j+1/2
i (t, θ) +A

j−1/2
i (t, θ).

If we further define a source term vector SNum
i (t, θ) ∈ RN as

SNum
i (t, θ) :=

[
SNum,1
i (t, θ), . . . , SNum,N

i (t, θ)
]T
∈ RN ,

then the semi-discrete system can be conveniently written as

dCNum
i

dt
(t) = Ai(t, θ)C

Num
i (t) + SNum

i (t, θ). (4.16)
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4.2.3 Time Integration

Explicit Euler Scheme

To numerically solve the system (4.16), we discretize the equations in time as well. To this end,
let ∆t be the time step and define tk := k∆t. The most straightforward time integration method
is the so called explicit Euler scheme. For this scheme, we apply a finite difference approximation
to the time derivative in equation (4.16) as follows:

CNum
i (tk+1)−CNum

i (tk)

∆t
= Ai(t

k, θ)CNum
i (tk) + SNum

i (tk, θ). (4.17)

Upon rewriting, we find that - given the solution at time tk - we can compute the solution at
time tk+1 as

CNum
i (tk+1) =

(
I + ∆tAi(t

k, θ)
)
CNum
i (tk) + SNum

i (tk, θ).

Here I is the N ×N identity matrix. This scheme is referred to as the explicit Euler scheme is
easy to implement but it may put severe constraints on the allowed time step ∆t. For ∆t larger
than the allowed time step the method may become unstable and return useless results. The
allowed time steps may be too small for the method to be useful in practice.

Implicit Euler Scheme

To overcome the stability issue issue with the explicit Euler scheme, we might want to use an
implicit scheme. In general implicit schemes are able to handle much larger time steps. They
may even be unconditionally stable. As an example, we consider the implicit Euler scheme. For
the implicit Euler scheme, we replace all the tk’s in the right-hand side of equation (4.17) with
tk+1’s:

CNum
i (tk+1)−CNum

i (tk)

∆t
= Ai(t

k+1, θ)CNum
i (tk+1) + SNum

i (tk+1, θ).

Solving this system for CNum
i (tk+1) is not straight-forward though. Iterative schemes may be

needed.

Semi-Implicit Scheme

As an alternative, we could work with a semi-implicit method. That is, we discretize (4.16) in
time as

CNum
i (tk+1)−CNum

i (tk)

∆t
= Ai(t

k, θ)Ĉi(t
k+1) + Ŝi(t

k, θ).

After rewriting, we see that(
I −∆tAi(t

k, θ)
)
CNum
i (tk+1) = CNum

i (tk) + SNum
i (tk, θ).

To solve for CNum
i (tk+1) - the solution at the new timestep - we have to invert the matrix

I −Ai(t
k, T ):

CNum
i (tk+1) =

(
I −∆tAi(t

k, θ)
)−1 [

CNum
i (tk) + SNum

i (tk, θ)
]
. (4.18)

The downside of the semi-implicit scheme compared with the explicit Euler scheme is that we have
to invert the matrices. For large matrices, this may be computationally expensive. However, for
TNO/Solliance, N will be approximately equal to 250 and then MATLAB can invert the matrices
quickly. More importantly though, semi-implicit schemes can handle much larger time steps than
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the explicit Euler scheme. The full implicit Euler scheme is expected to be able to handle even
larer time steps, but, as we saw it is more difficult to implement. In practice the semi-implicit
method was found to be stable for the time steps used at TNO/Solliance. Hence this is the
suggested time integration method for TNO/Solliance. Note that with the current compact
matrix-vector notation it is easy to work out - if necessary - other time integration methods as
well, like the more general Runge-Kutta methods.

4.2.4 Full Algorithm

The complete finite volume scheme with semi-implicit time integration can be summarized in
algorithmic form as follows.

1. Given the numerical solution matrix

CNum(tk) =
[
CNum

1 (tk), . . . ,CNum
n (tk)

]
∈ RN×n

at time tk, do the following for each i ∈ {1, . . . , n}:

(a) Evaluate the numerical diffusion coefficients matrix

DNum(tk, θ) :=
[
DNum,j
i (tk, θ)

]
1≤i≤n,1≤j≤N

∈ RN×n

using definition (4.8);

(b) Use the entries from CNum(tk) and DNum(tk, θ) to set up the diffusion matrix
Ai(t

k, T ) ∈ RN×N using definition (4.15);

(c) Use the entries from CNum(tk) to evaluate the reaction vector

SNum
i (tk, T ) =

[
SNum

1 (t, θ), . . . , SNum
1 (t, θ)

]
∈ RN

using definition (4.7);

(d) Invert the matrix I + ∆tAi(t
k, θ);

(e) Compute the concentration vector at the new time CNum
i (tk+1) as

CNum
i (tk+1) =

(
I −∆tAi(t

k, θ)
)−1 [

CNum
i (tk) + SNum

i (tk, θ)
]
.

Even though the reactions have been included in the numerical scheme, it is of course still possible
to compute diffusion and reactions separately (as may be preferred by TNO/Solliance).

Now that we have a numerical scheme, we would have to show that the numerical solution
obtained using this scheme converges to the ‘real solution’ (assuming it exists) to the equations
described in section 4.1.7 as the time step ∆t and the spatial steps ∆xj go to zero. Showing the
convergence and deriving orders of convergence will be outside the scope of this work though.

The scheme is implemented in a stand-alone MATLAB script for testing. The scheme has also been
incorporated into the current MATLAB script used at TNO/Solliance. It is seen to be approximately
400 times faster than the method based on error functions described in section 4.2.1. The diffusion
mechanism is no longer the bottleneck in the full script used at TNO/Solliance and it can handle
non-constant diffusion coefficients. Moreover, because everything has been formulated in terms
of vectors and matrices it is easy to change the number of components, reactions, etcetera. The
scheme also satisfies an important conservation property, as explained in the next paragraph.
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4.2.5 Conservation Property

Suppose that no reactions occur within the precursor. Then, if the concentration Ci of component
i satisfies the exact equation (4.2), we see that

∂t

ˆ
[0,H]

Ci(x, t)dx =

ˆ
[0,H]

∂tCi(x, t)dx

=

ˆ
[0,H]

∂x (Di(C(x, t), T )∂xCi(x, t)) dx

= [Di(C(x, t), T )∂xCi(x, t)]
x=H
x=0 (4.19)

= 0.

In other words, the total amount of component i is conserved. For TNO/Solliance it is important
that a numerical scheme respects this conservation property. The numerical scheme worked out
above satisfies this property. Indeed, suppose that at some point in time (most likely at the first
timestep) the numerical solutions CNum,j

i coincide with the exact solutions CAvg,j
i . Then we see

that

N∑
j=1

CNum,j
i (tk)∆xj =

N∑
j=1

CAvg,j
i (tk)∆xj

=
N∑
j=1

ˆ
Ωj
Ci(x, t

k)dx

=

ˆ
[0,H]

Ci(x, t
k)dx. (4.20)

Comparing equations (4.19) and (4.20) we deduce that our numerical method should conserve
the sum

∑N
j=1C

Num,j
i (t)∆xj over time. And it does, since

N∑
j=1

CNum,j
i (tk+1)∆xj

(4.14)
=

 N∑
j=1

CNum,j
i (tk)∆xj


−∆t

 N∑
j=1

F
Num.j+1/2
i (tk+1, θ)− FNum,j−1/2

i (tk+1, θ)


(4.13)

=

 N∑
j=1

CNum,j
i (tk)∆xj


−∆t

[
F

Num,N+1/2
i (tk+1, θ)− FNum,1/2

i (tk+1, θ)
]

=

N∑
j=1

CNum,j
i (tk)∆xj .

For the last equality we used the no-flux boundary conditions (4.13). We conclude that the
proposed numerical scheme respects the conservation property, as desired. Note that this
statement is true for any choice of step sizes {∆xj}Nj=1 and not just in a limiting sense when the
step sizes go to zero.

71
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In Chapter 4 we presented the so called precursor model. In this chapter we show that the
precursor model is well-posed. To this end, we first have to provide a weak formulation for the
precursor model. Then, assuming the problem is linear for a moment, we employ the so called
Method of Rothe to show that it is indeed well-posed. Then we return to the non-linear problem
and treat the case of a single, scalar concentration first. We will not show well-posedness of the
full non-linear problem in this thesis.

The main sources used in this chapter are the book Partial Differential Equations by Evans
[19], Applied Functional Analysis by Zeidler [61], Nonlinear Partial Differential Equations with
Applications by Roub́ıček [49] and the lecture notes Parabolic Equations by Pop [45]. The
reader is assumed to have taken courses in functional analysis and (theory of) partial differential
equations.

5.1 Towards a Weak Formulation

5.1.1 The Problem and the Objectives

Remember from Chapter 4 the following precursor model :

(Problem P ) Given D̄,S,CInitial and θ, find C = C(x, t) such that


∂tC(x, t) = divx

(
D̄(C(x, t), θ)∇xC(x, t)

)
+ S(C(x, t), θ) for (x, t) ∈ Ω× (0,∞),

D̄(C(x, t), θ)∇xC(x, t) · n = 0 for (x, t) ∈ ∂Ω× (0,∞),

C(x, 0) = CInitial(x) for x ∈ Ω.

(5.1)

Remember the general convention that bold symbols without bars refer to vector-like quantities
while bold symbols with bars refer to matrices. The divergence operator, the gradient operator
and the inner product with the normal derivative were understood to be applied component-wise.
From now on, we will refer to the above set of equations as problem P . Our goal in this chapter
will be to show that problem P is well-posed, meaning that:

1. Problem P admits a solution C in an appropriate setting to be specified later (the weak
formulation as defined in problem WP );

2. The solution C is unique in this setting;

3. The solution C depends smoothly on the data D,S, θ and CInitial;

4. Because we are dealing with concentrations, we want each component of the solution vector
C to take on positive values only.

In this chapter we will only work on proving existence and uniqueness. As a first step, we cast
problem P in dimensionless form because we do not want to worry about dimensions when doing
the mathematics.
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5.1.2 Dimensionless Model

Let L and T represent dimensions of length and time respectively. Then Ci, Di and Si are seen
to have dimensions

[Ci] =
mol

L3
,

[Di] =
molL2

T
,

[Si] =
mol

L3T
,

respectively.

Now introduce new independent, dimensionless variables x̂, t̂ and θ̂ as:

x̂ := x/xref,

t̂ := t/tref,

θ̂ := θ/θref.

Here xref, tref and θref are reference quantities having the same dimensions as x, t and θ respectively.
It will not be necessary to further specify them here. With these independent, dimensionless
variables we define new dependent, dimensionless variables:

Ĉi(x̂, t̂) := Ci(x, t)/Cref,

Ĉ(x̂, t̂) :=
[
Ĉ1(x̂, t̂), . . . , Cn(x̂, t̂)

]
,

Ŝi(Ĉ(x̂, t̂), θ̂) := Si(Ci(x, t))/Sref

Ŝ(Ĉ(x̂, t̂), θ̂) :=
[
Ŝ1(Ĉ(x̂, t̂), θ), . . . , Ŝn(Ĉ(x̂, t̂), θ)

]
,

D̂ij(Ĉ(x̂, t̂), θ̂) := Dij(C(x, t)θ)/Dref,

ˆ̄D(Ĉ(x̂, t̂), θ̂) :=
[
D̂1(Ĉ(x̂, t̂), θ), . . . , D̂n(Ĉ(x̂, t̂), θ)

]
.

Again, Cref, Dref and Sref are reference quantities having the same dimensions as Ci, Dij and Si
respectively. Now, using the chain rule it follows that

∂tC(x, t) = Cref∂tĈ(x̂, t̂)

=
Cref

tref
∂t̂Ĉ(x̂, t̂), (5.2)

D̄(C(x, t), T )∇xC(x, t) = CrefDref
ˆ̄D(Ĉ(x̂, t̂), θ̂)∇xĈ(x̂, t̂)

=
CrefDref

xref

ˆ̄D(Ĉ(x̂, t̂), θ̂)∇x̂Ĉ(x̂, t̂), (5.3)

and

divx
(
D̄(C(x, t), T )∇xC(x, t)

)
=

CrefDref

xref
divx

(
ˆ̄D(Ĉ(x̂, t̂), θ̂)∇x̂Ĉ(x̂, t̂)

)
=

CrefDref

x2
ref

divx̂

(
ˆ̄D(Ĉ(x̂, t̂), θ̂)∇x̂Ĉ(x̂, t̂)

)
. (5.4)

Substituting (5.2) and (5.4) into the partial differential equation of Problem P yields

Cref

tref
∂t̂Ĉ(x̂, t̂) =

CrefDref

x2
ref

divx̂

(
ˆ̄D(Ĉ(x̂, t̂), θ̂)∇x̂Ĉ(x̂, t̂)

)
+ SrefŜ(Ĉ(x̂, t̂), θ̂).

73



5 Mathematical Analysis of the Precursor Model

After dividing both sides by Cref/tref we find that

∂t̂Ĉ(x̂, t̂) =
trefDref

x2
ref

divx̂

(
ˆ̄D(Ĉ(x̂, t̂), θ̂)∇x̂Ĉ(x̂, t̂)

)
+
trefSref

Cref
Ŝ(Ĉ(x̂, t̂), θ̂).

If we choose Dref = xref/t
2
ref and Sref = Cref/tref then we see that

∂t̂Ĉ(x̂, t̂) = divx̂

(
ˆ̄D(Ĉ(x̂, t̂), θ̂)∇x̂Ĉ(x̂, t̂)

)
+ Ŝ(Ĉ(x̂, t̂), θ̂).

Finally, using the initial conditions for the dimensional concentrations we arrive at initial
conditions for the dimensionless concentrations:

Ĉ(x, 0) = CInitial(x)/Cref for x ∈ Ω.

Similarly, for the boundary conditions use equation (5.3) together with the boundary conditions
for the dimensional concentrations to arrive at

ˆ̄D(Ĉ(x̂, t̂), θ̂)∇x̂Ĉ(x̂, t̂) · n =
xref

CrefDref
D̄(C(x, t), T )∇xC(x, t) · n = 0 for (x, t) ∈ ∂Ω× (0,∞).

From now on we drop the hats from the notation. Note that all the equations are the same
as before then, except for the initial conditions. Since dividing the initial conditions by Cref is
not going to have any influence on the analysis below, we will simply think of problem P being
dimensionless already.

5.1.3 Notations and Preliminaries

Before we start the mathematical analysis of the (dimensionless) model we introduce notations
and state results that will be used throughout this chapter. Most of the definitions and results
should be familiar, or at least understandable, to the reader with a background in functional
analysis. References to proofs of the results will be given when appropriate.

Hilbert and Banach Spaces: Let H be a real Hilbert space with inner product 〈·, ·〉H :
H ×H → R. Recall that the inner product gives rise to a norm ‖ · ‖H : H → R defined as

‖f‖H =
√
〈f, f〉H .

A fundamental inequality that relates the norm and the inner product on a Hilbert space is the
Cauchy-Schwartz inequality, which can be expressed as

|〈f, g〉H | ≤ ‖f‖H‖g‖H
for all f, g ∈ H. Now suppose thatH1, . . . , Hn are Hilbert spaces with inner products 〈·, ·〉H1

, . . . , 〈·, ·〉Hn
and consider the product space

H := H1 × · · · ×Hn.

Then 〈·, ·〉H : H ×H → R defined as

〈f , g〉H :=
n∑
i=1

〈fi, gi〉Hi ,

is an inner product on H that turns it into a Hilbert space. In a similar fashion we find that for
Banach spaces X1, . . . , Xn the product space

X := X1 × . . .×Xn

is a Banach space again when endowed with the norm

‖f‖X :=

(
n∑
i=1

‖fi‖Xi

)1/2

.
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L2 Spaces: Let Ω ⊂ Rd. The space L2(Ω) consists of equivalence classes of measurable functions
f : Ω→ R which are square-integrable over Ω. For ease of notation, when f ∈ L2(Ω), we simply
think of f being a square-integrable function and gently ignore the fact that f is an equivalence
class of functions. The space L2(Ω) becomes a Hilbert space if we endow it with the inner product

〈f, g〉L2(Ω) :=

ˆ
Ω
f(x)g(x)dx.

Weak Derivatives: Given a function f ∈ L2(Ω), we say that f has a weak i − th partial
derivative in L2(Ω) if there exists a function gi ∈ L2(Ω) such thatˆ

Ω
f(x)∂xiϕ(x)dx = −

ˆ
Ω
gi(x)ϕ(x)dx

holds for all ϕ ∈ C∞c (Ω), where C∞c (Ω) is the space compactly supported smooth functions on
Ω. We denote the weak i− th partial derivative gi of f by ∂xif . The vector of (weak) partial
derivatives will be denoted by ∇f. With these notations the Sobolev space W 1,2(Ω) is defined as

W 1,2(Ω) :=
{
f ∈ L2(Ω) | ∂xif ∈ L2(Ω) for all 1 ≤ i ≤ d

}
.

A natural inner product that turns W 1,2(Ω) into a Hilbert space is given by

〈f, g〉W 1,2(Ω) :=

ˆ
Ω
f(x)g(x)dx+

d∑
i=1

ˆ
Ω
∂xif(x)∂xig(x)dx

=

ˆ
Ω
f(x)g(x)dx+

ˆ
Ω
∇xf(x) · ∇xg(x)dx.

Dual Spaces: Given a Banach space X, its dual space X ′ is defined as

X ′ := {ϕ : X → R | ϕ linear and bounded} .

The duality pairing between X and X ′ will be denoted by 〈·, ·〉X′,X . That is,

〈ϕ, f〉X′,X := ϕ(f).

A natural norm on X ′ which turns it into a Banach space is given by

‖ϕ‖X′ := sup
f∈X,‖f‖X=1

∣∣∣〈ϕ, f〉X′,X ∣∣∣ .
In the particular case of X = W 1,2(Ω) we denote the dual space by W−1,2(Ω). If X = X1×. . .×Xn

then - in the same way as for inner product on products of Hilbert spaces - we define the duality
pairing 〈·, ·〉X′,X : X ′ ×X → R as

〈ϕ,f〉X′,X :=

n∑
i=1

〈ϕi, fi〉X′i,Xi .

A Banach space X is said to be reflexive if it is isomorphic to (X ′)′, the dual of its dual.

Strong and Weak Convergence: Let X be a Banach space. A sequence {fn}n≥0 in X is
said to converge strongly to f ∈ X if

‖fn − f‖X → 0

as n→∞. A sequence {fn}n≥0 in X is said to converge weakly to f ∈ X if for each ϕ ∈ X ′ we
have that

〈ϕ, f − fn〉X′,X → 0

as n→∞.

75



5 Mathematical Analysis of the Precursor Model

Eberlein–
↪
emulian Theorem: An important result in real analysis is that bounded sequences

in X = Rn have strongly convergent subsequences. If X is an infinite dimensional space this
statement is no longer true. However, the Eberlein– ↪emulian theorem tells us that if X is a reflexive
Banach space, then any bounded sequence {xn} in X has a weakly convergent subsequence.
Moreover, if all subsequences of {xn} converge weakly to the same limit x in X, then {xn} itself
converges weakly to x. See Appendix D of Evans [19].

Riesz’ Representation Theorem: Riesz’ Representation theorem establishes a connection
between a Hilbert space H and its dual H ′. More specifically, the theorem states that if H is a
Hilbert space, then for each ϕ ∈ H ′ there exists a unique f ∈ H such that

〈ϕ, g〉H′,H = 〈f, g〉H

and ‖ϕ‖H′ = ‖g‖H . See Appendix D of Evans [19].

Lax-Milgram Theorem: Riesz’ Representation theorem is in fact a special case of a more
general theorem: the Lax-Milgram theorem. This latter theorem is an important tool in showing
well-posedness of time-independent (elliptic boundary value) problems. Given B : H ×H → R
and F : H → R, the linear Lax-Milgram theorem states that if B is bounded and bilinear, and
there exists a positive constant α such that B(f, f) ≥ α‖f‖2H for all f ∈ H (i.e. B is coercive),
then for any ϕ ∈ H ′ there exists a unique g ∈ H such that for every f ∈ H the equality

B(f, g) = ϕ(f)

holds. A proof of the linear Lax-Milgram theorem can be found in Chapter 6.2.1 of Evans [19].

There is also a non-linear version of the Lax-Milgram theorem. This version states that if for each
fixed f ∈ H, the functional B(f, ·) : H → R is bounded and linear, and if there exist positive
constants α and β such that for every f, g, h ∈ H

B(f, f − g)−B(g, f − g) ≥ α‖f − g‖2H

and

|B(f, h)−B(g, h)| ≤ β‖f − g‖H‖h‖H ;

then for any ϕ ∈ H ′ there exists a unique g ∈ H such that for every f ∈ H the equality

B(f, g) = ϕ(f)

holds. A proof of the non-linear Lax-Milgram theorem can be found in Chapter 2.15 of Zeidler
[61].

Continuous and Compact Embeddings: Let X and Y be Banach spaces such that X ⊂ Y.
We will say that X is continously embedded in Y if there exists a constant C > 0 such that for
every f ∈ X we have that

‖f‖Y ≤ C‖f‖X .

If, on top of that, every bounded sequence has a strongly convergent subsequence in Y , then we
say that X is compactly embedded in Y.

The space W 1,2(Ω) is compactly embedded in L2(Ω), see Chapter 5.7 of Evans [19]. The space
L2(Ω) is easily seen to be continuously embedded in W−1,2(Ω).
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L2(0, T ;X) Spaces: Note that a solution C = [C1, . . . , Cn] to Problem P is expected to have
both a space (x) and a time (t) dependence. However, instead of thinking of the functions Ci as
being defined on the whole space-time domain Ω× [0,∞), we will think of each Ci as a function
mapping a the time interval [0, T ] into some appropriate set of functions on Ω. For example, let
t ∈ [0, T ] and suppose that Ci(t) ∈ L2(Ω). Then [Ci(t)] (x) ∈ R can be identified with Ci(x, t).
As for conditions on Ci itself, it will be convenient to work in a Hilbert space setting. To make
this more precise, let X be a Banach space. Then the space L2(0, T ;X) is defined as the set of
all (equivalence classes of) measurable functions f : [0, T ]→ X for which(ˆ T

0
‖f(t)‖2Xdt

)1/2

<∞.

It should be noted here that measurability - and also (Lebesgue) integrability - of functions
taking on values in a Banach space is defined in exactly the same way as for real-valued functions.
The norm

‖f‖L2(0,T ;X) :=

(ˆ T

0
‖f(t)‖2Xdt

)1/2

turns L2(0, T ;X) into a Banach space. The dual of L2(0, T ;X) is given by L2(0, T ;X ′) (see
Proposition 1.38 of Roub́ıček [49]). Moreover, if X is a Hilbert space then L2(0, T ;X) endowed
with the inner product

〈f, g〉L2(0,T ;X) :=

ˆ T

0
〈f(t), g(t)〉X dt

is a Hilbert space as well. The notions of continuity and of weak derivatives can easily be
extended to Banach-valued functions as well. This allows us to work with spaces like C(0, T ;X)
and W 1,2(0, T ;X). See Chapter 5.9.2 of Evans [19] for more details on these types of spaces. In
this chapter the space X will either be L2(Ω),W 1,2(Ω) or W−1,2(Ω).

The space W: Another important space will be

W :=
{
f ∈ L2(0, T ;W 1,2(Ω)) | f has a weak derivative ∂tf ∈ L2(0, T ;W−1,2(Ω))

}
.

This space resembles W 1,2(0, T ;W 1,2(Ω)), but the difference is that we impose less strict conditions
on the weak derivative. Indeed, since W 1,2(Ω) ⊂ L2(Ω) it follows directly that the reverse inclusion
holds for their dual spaces. Identifying L2(Ω) with its dual L−2(Ω) using Riesz’ Representation
theorem we find that

W 1,2(Ω) ⊂ L2(Ω) = L−2(Ω) ⊂W−1,2(Ω).

The space W is a Banach space when endowed with the norm

‖f‖W :=
(
‖f‖2L2(0,T ;W 1,2(Ω)) + ‖∂tf‖2L2(0,T ;W−1,2(Ω))

)1/2

=

(ˆ T

0
‖f‖2W 1,2(Ω) + ‖∂tf‖2W−1,2(Ω)dt

)1/2

Moreover, it is continuously embedded in C(0, T ;W 1,2(Ω)) and compactly embedded in L2(0, T ;L2(Ω)),
see Theorem 3 in Chapter 5.9.2 of Evans [19] and Lemma 7.7 of Roub́ıček [49].

In the space W we also have an analogue of integration by parts: Let f, g ∈ W, then for a.e.
t ∈ [0, T ] the equality

d

dt

ˆ
Ω
f(t)g(t)dx = 〈∂tf(t), g(t)〉W−1,2,W 1,2 + 〈∂tg(t), f(t)〉W−1,2,W 1,2 (5.5)

holds, see Lemma 7.3 of Roub́ıček [49].

The need for the space W will be motivated later.
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Limits and Derivatives: Suppose X and Y are Banach spaces such that X is continuously
embedded in Y. Let {fn}n≥0 be a sequence in L2(0, T ;X) converging weakly to f ∈ L2(0, T ;X)
and let {gn}n≥0 be a sequence in L2(0, T ;Y ) converging weakly to g ∈ L2(0, T ;Y ). If ∂tfn = gn
for all n ≥ 0 then ∂tf = g (in a weak sense).

We will be using this theorem in the setting of the space W where X = W 1,2(Ω) and Y =
W−1,2(Ω).

5.1.4 The Weak Formulation of Problem

With the notations and preliminaries from the previous subsection in mind, we define the weak
formulation of problem P as follows:

(Problem WP) Find C ∈ Wn such that C(0) = CInitial and for all ϕ = [ϕ1, . . . , ϕn] ∈
[
W 1,2(Ω)

]n
the equality

〈∂tC(t),ϕ〉[W−1,2]n,[W 1,2]n = −
〈
D̄(C(t), θ)∇xC(t),∇xϕ

〉
[L2]n

+ 〈S(C(t), θ),ϕ〉[L2]n (5.6)

holds for a.e. t ∈ [0, T ].

To motivate the particular form of the weak formulation, consider the following model diffusion
equation defined on the space-time domain Ω× [0, T ] :

PModel :=


∂tC = ∆xC in Ω× (0, T ],

∇xC · n = 0 on ∂Ω× (0, T ],

C = CInitial on Ω× {0}.

To show existence of solutions to such a problem we have to decide what kind of solutions we are
looking for in the first place. More specifically, in what kind of function space do we want/expect
our possible solution to be found?

• Suppose we have found a solution C to PModel. As mentioned before, instead of thinking of
C as being defined on Ω× [0, T ], we think of C as mapping [0, T ] into some appropriate
function space on Ω. But what should this appropriate function space be? The strong
formulation of the partial differential equation in PModel, i.e. ∂tC = ∆C, requires C(t) to
be twice differentiable. However, if we multiply the equation by some smooth test function
ϕ, integrate over Ω and apply partial integration - as one also does for time independent
problems - we find that ˆ

Ω
∂tC(t)ϕdx = −

ˆ
Ω
∇xC(t) · ∇xϕdx. (5.7)

In terms of this weak formulation, we see that it is sufficient for C(t) to have weak
first (spatial) derivatives only. This motivates us to require C(t) ∈ W 1,2(Ω). That is,
C : [0, T ]→W 1,2(Ω).

• What about C itself? From the weak formulation (5.7) we deduce that C should have a
weak derivative with respect to time. And because it is convenient to work in the setting
of Hilbert spaces, we should require C to be square-integrable. Hence, we may be tempted
to require C ∈W 1,2(0, T ;W 1,2).

• If C were in this space W 1,2(0, T ;W 1,2), its weak derivative ∂tC would have to be square
integrable as well. We can relax this requirement though. This can be seen by looking at
the weak formulation (5.7) again. For C(t) ∈W 1,2(Ω), the mapping

f 7→ −
ˆ

Ω
∇xC(t) · ∇xfdx.
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defines a bounded linear functional on W 1,2(Ω). In other words, the mapping is an element
of W−1,2(Ω), the dual space of W 1,2(Ω). On the other hand,

ˆ
Ω
∂tC(t)ϕdx = 〈∂tC(t), ϕ〉L2(Ω) .

Using Riesz’ Representation theorem we identify a unique element in W−1,2(Ω), which we
will simply denote by ∂tC(t) as well, such that

〈∂tC(t), ϕ〉W−1,2(Ω),W−1,2(Ω) = 〈∂tC(t), ϕ〉L2(Ω) .

Putting the above together, we see that the weak formulation (5.7) can be rewritten as

〈∂tC(t), ϕ〉W−1,2(Ω),W−1,2(Ω) = −
ˆ

Ω
∇xC(t) · ∇xϕdx.

This equality shows us that it is sufficient for ∂tC(t) to be in W−1,2(Ω).

• Putting everything together we see that C should be in the space{
f ∈ L2(0, T ;W 1,2(Ω)) | f has a weak derivative ∂tf ∈ L2(0, T ;W−1,2(Ω))

}
,

and that is precisely the space W defined earlier.

• One problem that we ignored so far is that in an L2 setting specifying a function at a
particular point is meaningless. Hence the initial condition C(0) = CInitial is no condition
at all in such a setting! Luckily though, as mentioned in the preliminaries, the space W
is continuously embedded in C(0, T ;L2(Ω)). This means that any function in W can be
interpreted as a continuous function of time (after a possible redefinition on a set of measure
zero). And then it makes sense again to impose an initial condition.

• For the real problem, we proceed as above for each component i (where this time a source
term but that does not change anything) and in the end we sum over i. This yields Problem
WP .

It should be noted that problem WP is a non-linear problem. In general non-linear problems are
difficult to solve. Therefore we will first reduce the problem to a linear problem WPLinear. After
having showed well-posedness of the linear problem WPLinear we will return to the non-linear
problem WP .

5.2 The Linear Case

5.2.1 Formulation of the Linear Problem

To make the problem linear, we assume that the diffusion coefficients do not depend on the
concentrations. That is, the diffusion coefficient matrix D̄ is assumed to be independent of C
(but it is still allowed to depend on the temperature θ). Furthermore, we assume the source
terms only to depend on the concentrations in a linear fashion. That is, we assume the function
Si to be of the form

Si(C(t)) =

n∑
j=1

Sij(θ)Cj(t),

where the Sij are possibly temperature-dependent reaction coefficients. We use the notation S̄(θ)
for the matrix with entries Sij(θ). Then the problem PLinear becomes:
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(Problem PLinear) Find C = C(x, t) such that


∂tC(x, t) = divx

(
D̄(θ)∇xC(x, t)

)
+ S̄(θ)C(x, t) for (x, t) ∈ Ω× (0,∞),

D̄(θ)∇xC(x, t) · n = 0 for (x, t) ∈ ∂Ω× (0,∞),

C(x, 0) = CInitial(x) for x ∈ Ω.

(5.8)

Note that the equations are linear in C. The corresponding weak formulation problem WPLinear

becomes:

(Problem WPLinear) Find C ∈ Wn such that C(0) = CInitial and for all ϕ ∈
[
W 1,2(Ω)

]n
the

equality

〈∂tC(t),ϕ〉[W−1,2]n,[W 1,2]n = −
〈
D̄(θ)∇xC(t),∇xϕ

〉
[L2]n

+
〈
S̄(θ)C(t),ϕ

〉
[L2]n

holds for a.e. t ∈ [0, T ]. For similar problems of this type, see the paper Multiscale Modeling of
Colloidal Dynamics in Porous Media: Capturing Aggregation and Deposition Effects by Krehel et
al [33].

In what follows we are going to make the following assumptions:

(HLinear,1) The entries Dij of the diffusion coefficient matrix D̄ are continuous functions of
temperature θ. For each temperature θ the matrix D̄(θ) is symmetric positive-definite.

(HLinear,2) The entries Sij of the reaction coefficient matrix S̄ are continuous functions of
temperature θ. For each temperature θ the matrix S̄(θ) is symmetric negative-definite.

(HLinear,3) The initial conditions are weakly differentiable in space, i.e. CInitial ∈
[
W 1,2(Ω)

]n
.

We refer to these assumptions collectively as the assumptions HLinear. Note that under the
assumptions HLinear the eigenvalues of D̄(θ) are real and positive whereas the eigenvalues of S̄(θ)
are real and negative.

Now how do we proceed in showing existence and uniqueness of problem WPLinear? To this
end, remember that in deriving a numerical scheme for finding numerical approximations to
the solution of problem P in Chapter 4 we used the so called Method of Lines. That is, we
first discretized the equations of problem P in space to arrive at systems of ordinary differential
equations. Then we discretized the ordinary differential equations in time using either an
explicit, implicit or semi-implicit scheme. This time, we are going to start discretizing the weak
formulation in time using the implicit Euler scheme and a time step ∆t. This results in a bunch
of time-independent (elliptic) problems that can be solved rather easily. Then the idea is to patch
together these solutions to obtain a ‘solution’ defined on the whole time interval [0, T ]. If we
then pass to the limit ∆t→ 0, this ’solution’ turns out to be the solution to problem WPLinear.
This method of showing existence and uniqueness to partial differential equations is referred to
as the Method of Rothe [49, 48].

Let us start now by discretizing the weak formulation in time.

5.2.2 Discretizing in Time

Given the time interval [0, T ] and a natural number N, we define a time step ∆t and introduce
discrete times tk := k∆t. For each k ∈ {1, . . . , N} we introduce the problem WP kLinear,∆t as:

(Problem WP kLinear,∆t) Given Ck−1 ∈
[
W 1,2(Ω)

]n
, find Ck ∈

[
W 1,2(Ω)

]n
such that for all

ϕ ∈
[
W 1,2(Ω)

]n
the equality〈

Ck −Ck−1

∆t
,ϕ

〉
[L2]n

= −
〈
D̄(θ)∇xCk,∇xϕ

〉
[L2]n

+
〈
S̄(θ)Ck,ϕ

〉
[L2]n

(5.9)
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holds. The sequence of problem is initialized by C0 := CInitial. Our claim is that each WP kLinear,∆t

has a unique solution.

Lemma 1. Under the assumptions HLinear, the problem WP kLinear,∆t admits a unique solution

Ck ∈
[
W 1,2(Ω)

]n
for each k ∈ {1, . . . , N}.

Proof. Note that each problem WP kLinear,∆t is independent of time as a result of the time-
discretization. Hence we can apply the Lax Milgram theorem to show the existence and
uniqueness of solutions to WP kLinear,∆t. To this end define Bk

∆t :
[
W 1,2 (Ω)

]n × [W 1,2 (Ω)
]n → R

as

Bk
∆t(u,v) := 〈u,v〉[L2]n + ∆t

〈
D̄(θ)∇xu,∇xv

〉
[L2]n

−∆t
〈
S̄(θ)u,v

〉
[L2]n

and F k∆t :
[
W 1,2 (Ω)

]n → R as

F k∆t(v) :=
〈
Ck−1,v

〉
[L2]n

.

Then the time-discretized weak formulation (5.9) can be expressed as

Bk
∆t(C

k,ϕ) = F k∆t(ϕ).

To apply the Lax-Milgram theorem, we have to show that Bk∆t and F k∆t are linear and bounded and
that Bk

∆t is coercive. Showing linearity is easy and will not be presented here. For boundedness
of F k∆t, let v ∈

[
W 1,2(Ω)

]n
. Then

|F k∆t(v)| =

∣∣∣∣〈Ck−1,v
〉

[L2]n

∣∣∣∣
Cauchy-Schwartz

≤ ‖Ck‖[L2]‖v‖[L2]

= ‖Ck
i ‖[W 1,2]n‖v‖[W 1,2]n ,

which proves that F k∆t is bounded. For boundedness of Bk∆t, remember first that the matrix D̄(θ)
is assumed to be symmetric. Hence we can diagonalize D̄(θ) as

D̄(θ) = Ū
T

(θ)Λ̄(θ)Ū(θ),

with Ū(θ) an orthogonal matrix and Λ̄(θ) a diagonal matrix containing the eigenvalues of D̄(θ)
as entries. Let λ1(θ), . . . , λn(θ) be the eigenvalues of ¯D(θ) and define

λ∞(θ) := max
1≤i≤n

|λi(θ)|

Then, for any u,v ∈
[
L2(Ω)

]n
we find that〈

D̄(θ)u,v
〉

[L2]n
=

〈
Ū
T

(θ)Λ̄(θ)Ū(θ)u,v
〉

[L2]n

=
〈
Λ̄(θ)Ū(θ)u, Ū(θ)v

〉
[L2]n

=
n∑
i=1

λi(θ)
〈(
Ū(θ)u

)
i
,
(
Ū(θ)v

)
i

〉
L2

Ū(θ) orthogonal
=

n∑
i=1

λi(θ) 〈ui, vi〉L2 .

≤ λ∞

n∑
i=1

〈ui, vi〉L2

= λ∞ 〈u,v〉[L2]n . (5.10)
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Similarly, we can decompose S̄(θ) as

S̄(θ) = V̄
T

(θ)M̄(θ)V̄ (θ),

with V̄ (θ) an orthogonal matrix and M̄(θ) a diagonal matrix containing the eigenvalues
µ1(θ), . . . , µn(θ) of S̄(θ). Like before, define

µ∞(θ) := max
1≤i≤n

|µi(θ)|

By following the same steps as in equation (5.10) we find that〈
S̄(θ)u,v

〉
[L2]n

≤ µ∞(θ) 〈u,v〉[L2]n (5.11)

for all u, v ∈
[
L2(Ω)

]
. Using equations (5.10) and (5.11) we can show that Bk

∆t is bounded.
Indeed, let u, v ∈W 1,2(Ω). Then

|Bk
∆t(u,v)| ≤

∣∣∣〈u,v〉[L2]n

∣∣∣+ ∆t
∣∣∣〈D̄(θ)∇xu,∇xv

〉
[L2]n

∣∣∣+ ∆t
∣∣∣〈S̄(θ)u,v

〉
[L2]n

∣∣∣
(5.10),(5.11)

≤
∣∣∣〈u,v〉[L2]n

∣∣∣+ ∆tλ∞

∣∣∣〈∇xu,∇xv〉[L2]n

∣∣∣+ ∆tµ∞

∣∣∣〈u,v〉[L2]n

∣∣∣
Cauchy-Schwartz

≤ ‖u‖[L2]n‖v‖[L2]n + ∆tλ∞‖∇u‖[L2]n‖∇v‖[L2]n + ∆tµ∞‖u‖[L2]n‖v‖[L2]n

≤ (1 + ∆tλ∞(θ) + ∆tµ∞(θ)) ‖u‖[W 1,2]n‖v‖[W 1,2]n ,

and we see that Bk
∆t is bounded.

Finally, for coerciveness of Bk
∆t, let u ∈

[
W 1,2(Ω)

]n
.Remember that the eigenvalues of D̄(θ) are

real and positive whereas the eigenvalues of S̄(θ) are real and negative. Let λ−(θ) be the smallest
eigenvalue of D̄(θ) and µ+(θ) the largest (but still negative!) eigenvalue of S̄(θ). Then we see
that

Bk
∆t(u,u) = 〈u,u〉[L2]n + ∆t

〈
D̄(θ)∇xu,∇xu

〉
[L2]n

−∆t
〈
S̄(θ)u,u

〉
[L2]n

≥ ∆tλ−(θ) 〈∇xu,∇xu〉[L2]n −∆tµ+(θ) 〈u,u〉[L2]n

≥ ∆tmin{λ−(θ),−µ+(θ)}
(
‖∇u‖2[L2(Ω)]n + ‖u‖2[W 1,2(Ω)]n

)
= ∆tmin{λ−(θ),−µ+(θ)}︸ ︷︷ ︸

:=β(θ)

‖u‖2[W 1,2(Ω)]n . (5.12)

This proves the coercivity of Bk∆t. Now all the conditions for the linear Lax-Milgram theorem are
fulfilled and we are allowed to conclude for each k ∈ {1, . . . , N} the problem WP kLinear,∆t admits

a unique solution Ck in
[
W 1,2(Ω)

]n
.

The general idea is to patch together these solutions to cover the whole time interval [0, T ], take
the limit ∆t → 0 and show that the result is a solution to the original weak formulation. Of
course there are technicalities that need to be dealt with. As a first step, we will derive so called a
priori estimates. These estimates - together with the Eberlein– ↪emulian theorem (see Subsection
5.1.3) - ensure that the solutions converge to a limit as ∆t→ 0.

5.2.3 A Priori Estimates

We obtain a priori estimates by inserting the solutions Ck to the problems WP kLinear,∆t as test

functions in the weak formulation (5.9). We do the same for the gradients ∇Ck. The following
technical prosposition will be needed.
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Proposition 2. Let a, b ∈ R and ρ > 0. Then

2a(a− b) = a2 − b2 + (a− b)2, (5.13)

(a+ b)2 ≤ 2a2 + 2b2, (5.14)

|ab| ≤ ρa2 +
b2

4ρ
. (5.15)

Proof. See Appendix B of Evans [19].

Lemma 3. Let {Ck}Nk=1 be the sequence of solutions to the problems WP kLinear,∆t obtained under
the assumptions HLinear, then for any p ∈ {0, . . . , N} the following inequality holds:

‖Cp‖2[L2]n +

p∑
k=1

‖Ck −Ck−1‖2[L2]n + ∆tβ(θ)

p∑
k=1

(
‖∇xCk‖2[L2]n + ‖Ck‖2[L2]n

)
≤ ‖CInitial‖2[L2]n .

Proof. We insert the solution Ck ∈
[
W 1,2(Ω)

]n
to problem WP kLinear,∆t in the weak formulation

(5.9). This yields〈
Ck −Ck−1,Ck

〉
[L2]n

+ ∆t
〈
D̄(θ)∇xCk,∇xCk

〉
[L2]n

−∆t
〈
S̄(θ)Ck,Ck

〉
[L2]n

= 0. (5.16)

For the first term in (5.16), we use equation (5.13) from Proposition 2 to find that〈
Ck −Ck−1,Ck

〉
[L2]n

=
1

2

(
‖Ck‖2[L2]n − ‖C

k−1‖2[L2]n + ‖Ck −Ck−1‖2[L2]n

)
.

For the second and third term in (5.16), when proving the coerciveness of Bk
∆t in (5.12), we saw

that

∆t
〈
D̄(θ)∇Ck,∇Ck

〉
[L2]n

−∆t
〈
S̄(θ)Ck,Ck

〉
[L2]n

≥ ∆tβ(θ)
(
‖∇xCk‖2[L2]n + ‖Ck‖2[L2]n

)
≥ 1

2
∆tβ(θ)

(
‖∇xCk‖2[L2]n + ‖Ck‖2[L2]n

)
,

where β is the coercivity constant. Then it follows that

1

2

(
‖Ck‖2[L2]n − ‖C

k−1‖2[L2]n + ‖Ck −Ck−1‖2[L2]n

)
+

1

2
∆tβ(θ)

(
‖∇xCk‖2[L2]n + ‖Ck‖2[L2]n

)
≤ 0. (5.17)

Now let p ∈ {1, . . . , N), sum up equation (??) from k = 1 to p and multiply by 2 to find that

‖Cp‖2[L2]n +

p∑
k=1

‖Ck −Ck−1‖2[L2]n + ∆tβ(θ)

p∑
k=1

(
‖∇XCk‖2[L2]n + ‖Ck‖2[L2]n

)
≤ ‖C0‖2[L2]n .

Because C0 = CInitial, we see that the lemma has been proven.

Lemma 4. Let {Ck}Nk=1 be the sequence of solutions to the problems WP kLinear,∆t obtained under
the assumptions HLinear. There exists a positive constant γ(θ) such that for any p ∈ {0, . . . , N}
the following inequality holds:

1

∆t

p∑
k=1

∥∥∥Ck −Ck−1
∥∥∥2

[L2]n
+ ‖∇xCp‖2[L2]n +

p∑
k=1

‖∇xCk −∇xCk−1‖2[L2]n ≤ γ(θ)‖CInitial‖2[W 1,2]n .
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Proof. This time, we are going to test with Ck −Ck−1 ∈
[
W 1,2(Ω)

]n
in the weak formulation

(5.9). We find that∥∥∥Ck −Ck−1
∥∥∥2

[L2]n
+∆t

〈
D̄(θ)∇xCk,∇x

(
Ck −Ck−1

)〉
[L2]n
−∆t

〈
S̄(θ)Ck,Ck −Ck−1

〉
[L2]n

= 0

(5.18)
Using the fact that D̄(θ) is diagonalizable under the assumptions H, and recalling some of the
steps taken in (5.10) to show boundedness of Bk

∆t, we find that

∆t
〈
D̄(θ)∇xCk,∇x

(
Ck −Ck−1

)〉
[L2]n

(5.10)
= ∆t

n∑
i=1

λi(θ)
((
∇xCk

)
i
,
(
∇xCk −∇xCk−1

)
i

)
L2

(5.13)
=

∆t

2

n∑
i=1

λi(θ)
{
‖∇Ck

i ‖2L2 − ‖∇Ck−1
i ‖2L2 + ‖∇xCk

i −∇xCk−1
i ‖2L2

}
≥ ∆t

2
λ−(θ)

{
‖∇xCk‖2[L2]n − ‖∇xC

k−1‖2[L2]n + ‖∇xCk −∇xCk−1‖2[L2]n

}
(5.19)

Next, using the fact that S̄(θ) can be diagonalized and using Proposition 2 with ρ = α∆tµ∞,
where α is some positive constant to be determined later, we find that

∆t
〈
S̄(θ)Ck,Ck −Ck−1

〉
[L2]n

= ∆t

n∑
i=1

µi(θ)
(
Ck
i ,C

k
i −Ck−1

i

)
L2

Cauchy-Schwarz
≤ ∆tµ∞(θ)

n∑
i=1

‖Ck
i ‖L2‖Ck

i −Ck−1
i ‖L2

(5.15) with ρ=α∆tµ∞
≤ ∆tµ∞(θ)

n∑
i=1

{
α∆tµ∞‖Ck

i ‖2L2 +
1

4α∆tµ∞
‖Ck

i −Ck−1
i ‖2L2

}

=
n∑
i=1

{
α (∆tµ∞(θ))2 ‖Ck

i ‖2L2 +
1

4α
‖Ck

i −Ck−1
i ‖2L2

}
= α (∆tµ∞(θ))2 ‖Ck‖2[L2]n +

1

4α
‖Ck −Ck−1‖2[L2]n .

(5.22)

≤ α (∆tµ∞(θ))2 ‖CInitial‖2[L2]n +
1

4α
‖Ck −Ck−1‖2[L2]n . (5.20)

Combining equation (5.18) with equations(5.19) and (5.20) allows us to conclude that∥∥∥Ck −Ck−1
∥∥∥2

[L2]n
+

∆t

2
λ−(θ)

{
‖∇Ck‖2[L2]n − ‖∇C

k−1‖2[L2]n + ‖∇Ck −∇Ck−1‖2[L2]n

}
≤ ∆t

〈
S̄(θ)Ck,Ck −Ck−1

〉
[L2]n

≤ α (∆tµ∞(θ))2 ‖CInitial‖2[L2]n +
1

4α
‖Ck −Ck−1‖2[L2]n .

Now let p ∈ {1, . . . , N} and sum up the above equation from 1 to p to find that(
1− 1

4α

) p∑
k=1

∥∥∥Ck −Ck−1
∥∥∥2

[L2]n
+

∆t

2
λ−(θ)

{
‖∇Cp‖2[L2]n +

p∑
k=1

‖∇Ck −∇Ck−1‖2[L2]n

}

≤ ∆t

2
λ−(θ)‖∇CInitial‖2[L2]n + α (∆tµ∞(θ))2 p‖CInitial‖2[L2]n . (5.21)
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Next, let α be such that (
1− 1

4α

)
=

1

2
λ−(θ)

and assume α to be positive.13 Then, finally, we divide both sides of equation (5.21) by
(∆t/2)λ−(θ) to find that

1

∆t

p∑
k=1

∥∥∥Ck −Ck−1
∥∥∥2

[L2]n
+ ‖∇xCp‖2[L2]n +

p∑
k=1

‖∇xCk −∇xCk−1‖2[L2]n

≤ ‖∇xCInitial‖2[L2]n +
2α

λ−(θ)
(µ∞(θ))2 p∆t‖CInitial‖2[L2]n

≤ ‖∇xCInitial‖2[L2]n +
2α

λ−(θ)
(µ∞(θ))2 T‖CInitial‖2[L2]n

≤ max

{
1,

2α

λ−(θ)
(µ∞(θ))2 T

}
︸ ︷︷ ︸

:=γ(θ)

‖CInitial‖2[W 1,2]n .

Corollary 5. Let {Ck}Nk=1 be the sequence of solutions to the problems WP kLinear,∆t obtained
under the assumptions HLinear. There exists a positive constant γ(θ) such

‖Ck‖2[L2]n ≤ ‖CInitial‖2[W 1,2]n , (5.22)

‖∇xCk‖2[L2]n ≤ γ(θ)‖CInitial‖2[W 1,2]n ,

and hence
‖Ck‖2[W 1,2]n ≤ (1 + γ(θ))‖CInitial‖2[W 1,2]n

for each k ∈ {0, . . . , N}. Observe that each of the above three upper bounds is independent of the
time step ∆t.

5.2.4 Time Interpolation of the Discrete-Time Solutions

Now the idea is to patch together the solutions {Ck}Nk=1 obtained under Lemma 1 to obtain a
solution defined on the whole time domain [0, T ]. We do this in two different ways: we either
extend the solutions in a (piecewise) constant manner or in a (piecewise) linear over the time
domain. More specifically, we define CConstant

∆t ,CLinear
∆t : [0, T ]→

[
W 1,2(Ω)

]n
as

CConstant
∆t (t) := Ck, t ∈ (tk−1, tk], (5.23)

and

CLinear
∆t (t) := Ck−1 +

t− tk−1

∆t

(
Ck −Ck−1

)
, t ∈ (tk−1, tk]. (5.24)

The reasons for choosing these two interpolations will present themselves later. For now, we
claim the following.

Lemma 6. Let ∆t > 0. Then CConstant
∆t ∈

[
L2(0, T ;W 1,2(Ω)

]n
and

CLinear
∆t ∈ Wn =

{
C ∈

[
L2
(
0, T ;W 1,2(Ω)

)]n | ∂tC ∈ [L2(0;T ;W−1,2(Ω))
]n}

.

Moreover, the norms ‖CConstant
∆t ‖[L2(0,T ;W 1,2(Ω))]n and ‖CLinear

∆t ‖Wn are bounded uniformly with
respect to ∆t.

13Solving for α gives α = (4− 2λ−(θ))−1 . We have to make sure that the scaling parameter Dref from Subsection
5.1.2 is chosen in such a way that λ−(θ) < 1/2, otherwise α becomes negative.
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Figure 5.1: Graphical representations of CConstant
∆t and CLinear

∆t .

Proof. Since CConstant
∆t is a piecewise constant function (with respect to time), it is measurable.

Furthermore, we see that

ˆ T

0
‖CConstant

∆t (t)‖2[W 1,2]ndt =

N∑
k=0

∆t‖Ck‖2[W 1,2]ndt

≤ T max
k=0,...,N

‖Ck‖2[W 1,2]n

Corrollary 5
≤ T (1 + γ(θ))‖CInitial‖2[W 1,2]n

< ∞.

We conclude that CConstant
∆t ∈

[
L2(0, T ;W 1,2(Ω)

]n
. Moreover, the second to last inequality shows

us that the norm ‖CConstant
∆t ‖2

[L2(0,T ;W 1,2(Ω)]n
is bounded uniformly with respect to ∆t.

To show that CLinear
∆t is measurable, let p ∈ N and define

tkj := tk−1 +
j

p
∆t.

With this notation, we can define a piecewise constant (with respect to t) function C∆t,p :
[0, T ]→

[
W 1,2(Ω)

]n
as

C∆t,p(t) := Ck−1 +
tkj − tk−1

∆t

(
Ck −Ck−1

)
, t ∈ (tkj−1, t

k
j ].

Like CLinear
∆t , each C∆t,p is measurable. Now, for t ∈ (tkj−1, t

k
j ], we see that

‖CLinear
∆t (t)−C∆t,p(t)‖[W 1,2]n =

t− tkj
∆t
‖Ck −Ck−1‖[W 1,2]n

≤ 1

p
‖Ck −Ck−1‖[W 1,2]n .

The upper bound clearly goes to zero as p → ∞. That means CLinear
∆t is the pointwise limit

of sequence of measurable functions and from measure theory we know that CLinear
∆t is itself

86



5 Mathematical Analysis of the Precursor Model

measurable in that case. Because
ˆ T

0
‖CLinear

∆t ‖2[W 1,2]ndt =
N∑
k=1

ˆ tk

tk−1

∥∥∥∥Ck−1 +
t− tk−1

∆t

(
Ck −Ck−1

)∥∥∥∥2

[W 1,2]n
dt

=

N∑
k=1

ˆ tk

tk−1

∥∥∥∥ t− tk−1

∆t
Ck +

tk − t
∆t

Ck−1

∥∥∥∥2

[W 1,2]n
dt

(5.14)

≤ 2

N∑
k=1

[ˆ tk

tk−1

(
t− tk−1

∆t

)2 ∥∥∥Ck
∥∥∥2

[W 1,2]n
+

(
tk − t

∆t

)2 ∥∥∥Ck−1
∥∥∥2

[W 1,2]n
dt

]

=
2∆t

3

N∑
k=1

[∥∥∥Ck
∥∥∥2

[W 1,2]n
+
∥∥∥Ck−1

∥∥∥2

[W 1,2]n

]

≤ 4∆t

3

N∑
k=0

∥∥∥Ck
∥∥∥2

[W 1,2]n

< ∞,

we can conclude CLinear
∆t ∈

[
L2
(
0, T ;W 1,2(Ω)

)]n
. Moreover, using Corollary 5 we state that∑N

k=0

∥∥Ck
∥∥2

[W 1,2]n
and hence ‖CLinear

∆t ‖2
[L2(0,T ;W 1,2)]n

is bounded uniformly with respect to ∆t.

The next step is to show that ∂tC
Linear
∆t ∈

[
L2(0;T ;W−1,2(Ω))

]n
. To this end, note that the

piecewise linear form of CLinear
∆t suggests that it has a strong derivative (defined for a.e. t ∈ (0, T ]).

Indeed, let t ∈ (tk−1, tk) and suppose h is small enough for t+ h to be in (tk−1, tk) as well. Then

CLinear
∆t (t+ h)−CLinear

∆t (t)

h
=
Ck −Ck−1

∆t

and hence

lim
h→0

∥∥∥∥CLinear
∆t (t+ h)−CLinear

∆t (t)

h
− C

k −Ck−1

∆t

∥∥∥∥
[L2]n

= 0.

We conclude that ∂tC
Linear
∆t =

(
Ck −Ck−1

)
/∆t for t ∈ (tk−1, tk). Moreover,

ˆ T

0
‖∂tCLinear

∆t (t)‖2[L2]ndt =
N∑
k=1

ˆ tk

tk−1

∥∥∥∥Ck −Ck−1

∆t

∥∥∥∥2

[L2]n
dt

=

N∑
k=1

{∥∥∥Ck −Ck−1
∥∥∥2

[L2]n

ˆ tk

tk−1

1

(∆t)2dt

}

=
1

∆t

N∑
k=1

∥∥∥Ck −Ck−1
∥∥∥2

[L2]n

< ∞,

and we can say that CLinear
∆t ∈ Wn. From Lemma 4 we see that 1

∆t

∑N
k=1

∥∥Ck −Ck−1
∥∥2

[L2]n
and

hence ‖∂tCLinear
∆t (t)‖2

[L2(0,T ;L2)]n
is bounded uniformly with respect to ∆t as well. Note that we

have in fact shown that ∂tC
Linear
∆t ∈ L2(

[
0, T ;L2(Ω))

]n
. Since L2(Ω) is continuously embedded

in W−1,2(Ω) (see Subsection 5.1.3), it follows that ∂tC
Linear
∆t ∈

[
L2(0, T ;W−1,2(Ω))

]n
and the

norm in the latter space is then bounded uniformly with respect to ∆t as well. This concludes
the proof that CLinear

∆t ∈ Wn and that

‖CLinear
∆t ‖Wn =

(
‖CLinear

∆t ‖2[L2(0,T ;W 1,2)]n + ‖∂tCLinear
∆t ‖2[L2(0,T ;W−1,2)]n

)1/2

is bounded uniformly with respect to ∆t.

Having all these norm-estimates ready, it is finally time to pass to the limit ∆t→ 0.

87



5 Mathematical Analysis of the Precursor Model

5.2.5 Passing to the Limit

Let {(∆t)j} be a sequence of time steps such that (∆t)j → 0 as j → ∞. In the previous

section we have seen that CLinear
∆t and ∂tC

Linear
∆t are bounded uniformly with respect to ∆t in[

L2(0, T ;W 1,2(Ω)
]n

and
[
L2(0, T ;W−1,2(Ω)

]n
respectively. Hence the sequences {CLinear

(∆t)j
} and

{∂tCLinear
(∆t)j

} remain bounded in their respective spaces. Using the Eberlein– ↪emulian theorem we
can then extract weakly converging subsequences. That is, we can deduce the existence of a
CLinear ∈

[
L2(0, T ;W 1,2(Ω)

]n
, a ∂tC

Linear ∈
[
L2(0, T ;W−1,2(Ω)

]n
and a subsequence of time

steps {(∆t)jk} such that{
CLinear

(∆t)jk

}
⇀ CLinear weakly in

[
L2(0, T ;W 1,2(Ω)

]n
, (5.25){

∂tC
Linear
(∆t)jk

}
⇀ ∂tC

Linear weakly in
[
L2(0, T ;W−1,2(Ω)

]n
. (5.26)

From now on we will no longer specify the particular subsequence along which the weak con-
vergence takes place. We will simply say that CLinear

∆t converges weakly to CLinear as ∆t → 0
and similarly for ∂tC

Linear
∆t . Note that the theorem stated under Limits and Derivatives in the

preliminaries (Section 5.1.3) allows us to conclude that ∂tC
Linear really is the weak derivative of

CLinear and hence CLinear ∈ Wn.

For the sequence {CConstant
(∆t)j

} we can use similar arguments to deduce the existence of aCConstant ∈[
L2(0, T ;W 1,2(Ω))

]n
such that

CConstant
∆t ⇀ CConstant weakly in

[
L2(0, T ;W 1,2(Ω))

]n
. (5.27)

Lemma 7. The weak limits of CConstant
∆t and CLinear

∆t coincide. That is, CConstant = CLinear.

Proof. The idea of the proof is to show that〈
CLinear −CConstant,ψ

〉
[L2(0,T ;L2)]n

= 0

for allψ ∈
[
L2(0, T ;L2(Ω))

]n
. Then it would follow thatCLinear = CConstant in

[
L2(0, T ;L2(Ω))

]n
.

To show that this is the case, we use the triangle inequality and find that∣∣∣〈CLinear −CConstant,ψ
〉

[L2(0,T ;L2)]n

∣∣∣ ≤ ∣∣∣〈CLinear −CConstant
∆t ,ψ

〉
[L2(0,T ;L2)]n

∣∣∣
+

∣∣∣〈CConstant
∆t −CConstant,ψ

〉
[L2(0,T ;L2)]n

∣∣∣ . (5.28)

For the second term on the right-hand side of equation (5.28), we observe that for any given
ψ ∈

[
L2(0, T ;L2(Ω))

]n
, the mapping on

[
L2(0, T ;W 1,2(Ω))

]n → R defined by

φ 7→ 〈φ,ψ〉[L2(0,T ;L2)]n

is linear and bounded. Hence φ 7→ 〈φ,ψ〉[L2(0,T ;L2)]n is in the dual space of
[
L2(0, T ;W 1,2(Ω))

]n
.

Since CConstant
∆t converges weakly to CConstant in

[
L2(0, T ;W 1,2(Ω))

]n
(see (5.27)) it follows

directly that 〈
CConstant

∆t −CConstant,ψ
〉

[L2(0,T ;L2)]n
→ 0, (5.29)

as ∆t→ 0. For the first term on the right-hand side of equation (5.28), we want to show that
CConstant

∆t converges weakly to CLinear as ∆t → 0. To this end, we use the triangle inequality
again to find that∥∥CConstant

∆t −CLinear
∥∥

[L2(0,T ;L2)]n
≤

∥∥CConstant
∆t −CLinear

∆t

∥∥
[L2(0,T ;L2)]n

(5.30)

+
∥∥CLinear

∆t −CLinear
∥∥

[L2(0,T ;L2)]n
.
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Using the fact that W is compactly embedded in
[
L2(0, T ;L2(Ω))

]n
(see Section 5.1.3) we can

say that CLinear
∆t converges strongly to CLinear in

[
L2(0, T ;L2(Ω))

]n
. Hence the second term on

the right-hand side of (5.30) goes to zero as ∆t→ 0. For the first term on the right-hand side of
(5.30), let t ∈ (tk−1, tk]. Then

CConstant
∆t (t)−CLinear

∆t (t) = Ck −
(
Ck−1 +

t− tk−1

∆t

(
Ck −Ck−1

))
=

tk − t
∆t

(
Ck −Ck−1

)
.

It follows that∥∥CConstant
∆t −CLinear

∆t

∥∥2

[L2(0,T ;L2)]n
=

ˆ T

0

∥∥CConstant
∆t (t)−CLinear

∆t (t)
∥∥2

[L2]n
dt

=
N∑
k=1

ˆ tk

tk−1

(
tk − t

∆t

)2 ∥∥∥Ck −Ck−1
∥∥∥2

[L2]n
dt

=
∆t

3

N∑
k=1

∥∥∥Ck −Ck−1
∥∥∥2

[L2]n

(3)
< ∆t‖CInitial‖2[L2]n .

We conclude that first term on the right-hand side of (5.30) also goes to zero as ∆t → 0 and
hence CConstant

∆t converges strongly to CLinear in
[
L2(0, T ;L2(Ω))

]n
. Since strong convergence

implies weak convergence, it follows that〈
CLinear −CConstant

∆t ,ψ
〉

[L2(0,T ;L2)]n
→ 0

as ∆t→ 0. Now equation (5.28) allows us to conclude thatCLinear = CConstant in
[
L2(0, T ;L2(Ω))

]n
.

Corollary 8. There exists a C ∈ Wn such that

CConstant
∆t ⇀ C, weakly in

[
L2(0, T ;W 1,2(Ω))

]n
,

CConstant
∆t → C, strongly in

[
L2(0, T ;L2(Ω))

]n
CLinear

∆t ⇀ C, weakly in
[
L2(0, T ;W 1,2(Ω))

]n
,

CLinear
∆t → C, strongly in

[
L2(0, T ;L2(Ω))

]n
,

∂tC
Linear
∆t ⇀ ∂tC, weakly in

[
L2(0, T ;W−1,2(Ω))

]n
,

as ∆t → 0. Like before, the convergence is to be understood as taking place along a particular
sequence of time steps converging to zero.

What remains to be shown is that the limit C is in fact a (weak) solution to the problem
WPLinear.

Lemma 9. The limit C ∈ Wn obtained under the assumptions HLinear is a (weak) solution to
the problem WPLinear.

Proof. Let ϕ ∈
[
L2(0, T ;W 1,2(Ω)

]n
. From the problem WP kLinear,∆t we know that〈

Ck −Ck−1,ϕ(t)
〉

[L2]n
= −∆t

〈
D̄∇xCk,∇ϕ(t)

〉
[L2]n

+ ∆t
〈
S̄Ck,ϕ(t)

〉
[L2]n
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for a.e. t ∈ (tk−1, tk] (wherever ϕ is defined). Also remember from (5.23) and (5.24) that
CConstant

∆t (t) = Ck and ∂tC
Linear
∆t (t) =

(
Ck −Ck−1

)
/∆t on t ∈ (tk−1, tk]. Hence the above

equality can be rewritten as〈
∂tC

Linear
∆t (t),ϕ(t)

〉
[L2]n

= −
〈
D̄(θ)∇xCConstant

∆t (t),∇ϕ(t)
〉

[L2]n
+
〈
S̄(θ)CConstant

∆t (t),ϕ(t)
〉

[L2]n
.

Integrating the whole equation in time yields
ˆ T

0

〈
∂tC

Linear
∆t (t),ϕ(t)

〉
[L2]n

dt = −
ˆ T

0

〈
D̄(θ)∇xCConstant

∆t (t),∇ϕ(t)
〉

[L2]n
dt

+

ˆ T

0

〈
S̄(θ)CConstant

∆t (t),ϕ(t)
〉

[L2]n
dt. (5.31)

Using the weak convergence results summarized in Corollary (8) we know that
ˆ T

0

〈
∂tC

Linear
∆t (t),ϕ(t)

〉
[L2]n

dt =

ˆ T

0

〈
∂tC

Linear
∆t (t),ϕ(t)

〉
[W−1,2]n,[W 1,2]n

dt

→
ˆ T

0
〈∂tC(t),ϕ(t)〉[W−1,2]n,[W 1,2]n dt. (5.32)

Furthermore, because
ˆ T

0

〈
∇xCConstant

∆t (t),∇ϕ(t)
〉

[L2]n
dt→

ˆ T

0

〈
D̄∇xC(t),∇ϕ(t)

〉
[L2]n

dt,

it follows thatˆ T

0

〈
D̄(θ)∇xCConstant

∆t (t),∇ϕ(t)
〉

[L2]n
dt =

n∑
i=1

ˆ T

0
λi(θ)

〈(
∇xCConstant

∆t

)
i
(t),∇xϕi(t)

〉
L2 dt

→
n∑
i=1

ˆ T

0
λi(θ) 〈(∇xC)i (t),∇xϕi(t)〉L2 dt (5.33)

=

ˆ T

0

〈
D̄(θ)∇xC(t),∇xϕ(t)

〉
[L2]n

dt.

In a similar fashion,
ˆ T

0

(
S̄(θ)CConstant

∆t (t),ϕ(t)
)

[L2]n
dt =

n∑
i=1

ˆ T

0
µi(θ)

〈(
CConstant

∆t

)
i
(t),ϕi(t)

〉
L2 dt

→
n∑
i=1

ˆ T

0
µi(θ) 〈Ci(t),ϕi(t)〉L2 dt

=

ˆ T

0

〈
S̄(θ)C(t),ϕ(t)

〉
[L2]n

dt. (5.34)

Putting (5.31), (5.32), (5.33) and (5.34) together we find that C satisfies
ˆ T

0
〈∂tC(t),ϕ(t)〉[W−1,2]n,[W 1,2]n +

〈
D̄(θ)∇C(t),∇xϕ(t)

〉
[L2]n

−
〈
S̄C(t),ϕ(t)

〉
[L2]n

dt = 0.

(5.35)
Because this is true for all ϕ ∈

[
L2(0, T ;W 1,2(Ω)

]n
, we can conclude that for all ϕ ∈

[
W 1,2(Ω)

]n
the equation

〈∂tC(t),ϕ〉[W−1,2]n,[W 1,2]n +
〈
D̄(θ)∇xC(t),∇xϕ

〉
[L2]n

−
〈
S̄C(t),ϕ

〉
[L2]n

(5.36)

holds for a.e. t ∈ [0, T ]. Indeed, suppose there exists a ϕ ∈
[
W 1,2(Ω)

]n
and subset S ⊂ [0, T ] with

non-zero measure on which (5.36) is non-zero. Let χS be the characteristic function of S and use
ψ(t) := χSϕ ∈

[
L2(0, T ;W 1,2(Ω)

]n
as a test function in (5.36) to arrive at a contradiction.
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Lemma 10. The limit C obtained under the assumptions HLinear is the unique (weak) solution
to problem WPLinear.

Proof. To show uniqueness, we start by substituting the solution C as a test function in the
weak formulation WPLinear and integrating from 0 to T to find that

ˆ T

0
〈∂tC(t),C(t)〉[W−1,2]n,[W 1,2]n dt+

ˆ T

0

〈
D̄(θ)∇xC(t),∇xC(t)

〉
[L2]n

=
〈
S̄(θ)C(t),C(t)

〉
[L2]n

dt.

(5.37)
Using partial integration, see equation (5.5), it follows that

ˆ T

0
〈∂tC(t),C(t)〉[W−1,2]n,[W 1,2]n dt =

1

2

ˆ T

0

[
d

dt
〈C(t),C(t)〉[L2]n

]
dt

=
1

2
‖C(T )‖2[L2]n −

1

2
‖C(0)‖2[L2]n

=
1

2
‖C(T )‖2[L2]n −

1

2
‖CInitial‖2[L2]n .

By repeating arguments used to show that the functionals Bk
∆t were coercive (see Lemma 1), we

can show that
ˆ T

0

〈
D̄(θ)∇xC(t),∇xC(t)

〉
[L2]n

−
〈
S̄(θ)C(t),C(t)

〉
[L2]n

dt ≥
ˆ T

0
β(θ)‖C(t)‖2[W 1,2]ndt.

Substituting these last two expressions into equation (5.37) reveal that

1

2
‖C(T )‖2[L2(Ω)]n + β(θ)

ˆ T

0
‖C(t)‖2[W 1,2(Ω)]ndt ≤

1

2
‖CInitial‖2[L2(Ω)]n . (5.38)

Now suppose suppose C̃ is another weak solution. Using linearity of the problem, it follows that
C − C̃ is a solution as well. Substituting this ‘new solution’ into equation (5.38) yields

1

2

∥∥∥C(T )− C̃(T )
∥∥∥2

[L2]n
+ β(θ)

ˆ T

0
‖C(t)− C̃(t)‖2[W 1,2]ndt ≤

1

2
‖C(0)− C̃(0)‖2[L2]n

=
1

2
‖CInitial −CInitial‖2[L2]n

= 0.

Because both terms on the left-hand side are positive, it follows that

ˆ T

0
‖C(t)− C̃(t)‖2[W 1,2]ndt = ‖C − C̃‖2[L2(0,T ;W 1,2)]ndt = 0.

We conclude that C̃ = C.

The results obtained in this section are summarized in the following theorem.

Theorem 11. Under the assumptions HLinear the problem WPLinear has a unique solution.

5.3 Non-Linear Case: Single Component

5.3.1 Problem Formulation and Assumptions

With the results for the linear case in mind, it is time to go back to the non-linear problem. But
not the full one yet. First we show well-posedness of a non-linear diffusion reaction equation in
case there is just one component. The corresponding weak problem can be formulated as follows:
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(Problem WP1) Find C ∈ W such that C(0) = CInitial and for all ϕ ∈W 1,2(Ω) the equality

〈∂tC(t), ϕ〉W−1,2,W 1,2 = −〈D(C(t), θ)∇xC(t),∇xϕ〉L2 + 〈S(C(t), θ), ϕ〉L2 (5.39)

holds for a.e. t ∈ [0, T ].

(H1) The diffusion coefficient D depends continuously on C and on θ. Moreover, there exists
constants m(θ) and M(θ) such that

m(θ) ≤ D(x, θ) ≤M(θ)

for all x ∈ R.

(H2) The chemical reaction function S is Lipschitz continuous with positive Lipschitz constant
L depending on temperature θ only. That is,

|S(x)− S(y)| ≤ L |x− y|

for all x, y ∈ R. Moreover, we assume that S(x) = 0 for x ≤ 0 (no concentrations, no
chemical reactions).

(H3) The initial condition is weakly differentiable in space, i.e. CInitial ∈W 1,2(Ω).

From now on we fix the temperature θ and surpress it from the notations. It is nothing but a
parameter.

Furthermore, note that assumption H2 leads to the growth condition

|S(x)| = |S(x)− S(0)| ≤ L |x|

for all x ∈ R.

5.3.2 Kirchoff Transform

The non-linearity due to the diffusion coefficient being concentration dependent may be difficult
to deal with. Luckily, by making a a clever transformation - the so called Kirchoff transformation
- we can get rid of this non-linearity [1]. Indeed, define κ : [0,∞)→ [0,∞) by

κ(C) =

ˆ C

0
D(y)dy.

Because D is continuous, it follows that κ is differentiable with κ′(x) = D(x). Because D is
assumed to be strictly positive, the inverse function theorem then tells us that κ is invertible and
that its inverse κ−1 is continuously differentiable with(

κ−1
)′

(κ(C)) =
1

κ′(C)
=

1

D(C)
. (5.40)

Now observe that

∇xκ(C) =
dκ

dC
∇xC = D(C)∇x.

Substituting this into equation (5.39) yields

〈∂tC(t), ϕ〉W−1,2,W 1,2 = −〈∇xκ(C(t)),∇xϕ〉L2 + 〈S(C(t)), ϕ〉L2 .
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If we further define U(t) := κ(C(t)) (so U is the Kirchoff transform of C) problem WP1 can be
reformulated as follows:

(Problem WPK1) Find U ∈ W such that U(0) = UInitial := κ(CInitial) and for all ϕ ∈W 1,2(Ω)
the equality 〈

∂tκ
−1(U(t)), ϕ

〉
W−1,2,W 1,2 = −〈∇xU(t),∇xϕ〉L2 +

〈
S(κ−1(U(t)), ϕ

〉
L2 (5.41)

holds for a.e. t ∈ [0, T ].

We see that the non-linearity due to the concentration dependent diffusion coefficient is gone.
But this comes at a price: we have introduced a non-linearity in the time derivative. Fortunately,
we can deal with this. Because κ−1 is differentiable the mean value theorem familiar from real
analysis tells us that for every 0 ≤ a < b there exists a ξ ∈ (a, b) such that

κ−1(b)− κ−1(a)

b− a
=
[
κ−1

]′
(ξ) =

1

κ′(κ−1(ξ))

(5.40)
=

1

D(κ−1(ξ))
.

Because of the bounds on the diffusion coefficient D, see assumption H1, it follows that

b− a
M

≤ κ−1(b)− κ−1(a) ≤ b− a
m

. (5.42)

Now note that κ(0) = 0 and hence κ−1(0) = 0 as well. If we take a = 0 then the above equation
shows us that

b

M
≤ κ−1(b) ≤ b

m

for every b ≥ 0. In particular, if U ∈ W then

U(t)

M
≤ κ−1(U(t)) ≤ U(t)

m
(5.43)

for all t ∈ [0, T ]. This shows that whenever we have an upper or a lower bound for κ−1(U), we
have an upper or lower bound for U and it works the other way around as well.

With all of this in mind, we are going to proceed like in the linear case. That is, we are going to
discretize in problem WPK1 in time using the implicit Euler scheme. We show existence and
uniqueness to the time-discrete problems. Then we derive a priori estimates, interpolate in time
and pass to the limit. For some of the steps we will not work out the proofs because they are
basically copies of the proofs for the linear case.

5.3.3 Discretizing in Time

As in the linear case, we employ the Method of Rothe.14That is, we discretize the weak formulation
WPK in time. If ∆t denotes the time step again, this yields the problems WPKk

∆t defined as
follows:

(Problem WPKk
1,∆t) Given Uk−1 ∈W 1,2(Ω), find Uk ∈W 1,2(Ω) such that for all ϕ ∈W 1,2(Ω)

the equality〈
κ−1(Uk)− κ−1(Uk−1)

∆t
, ϕ

〉
L2

= −
〈
∇xUk,∇xϕ

〉
L2

+
〈
S(κ−1(Uk)), ϕ

〉
L2

(5.44)

holds. The sequence of problem is initialized by U0 := κ1(CInitial). Our claim is that each
WPKk

Linear,∆t has a unique solution.

14More specifically, for the a priori estimates and the existence proof that will follow we refer to the articles
Regularization schemes for degenerate Richards equations and outflow conditions by Pop and Schweizer [46] and
Error estimates for the finite volume discretization for the porous medium equation by Pop et al [47].
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Lemma 12. Under the assumptions H, the problem WPKk
1,∆t admits a unique solution Uk ∈

W 1,2(Ω) for each k ∈ {1, . . . , N}.

Proof. Given Uk−1, define the functional Bk
∆t : W 1,2 (Ω)×W 1,2 (Ω)→ R as

Bk
∆t(u, v) =

〈
κ−1(u), v

〉
L2 + ∆t 〈∇xu,∇xv〉L2 −∆t

〈
S(κ−1(u)), v

〉
L2

and the functional F k∆t : W 1,2 (Ω)n → R as

F k∆t(v) =
〈
κ−1(Uk−1), v

〉
L2
.

Then problem WPKk
1,∆t can be formulated as: find Uk ∈W 1,2(Ω) such that for all ϕ ∈W 1,2(Ω)

the equality

Bk
∆t(U

k, ϕ) = F k∆t(ϕ)

holds. The idea is, of course, to apply the non-linear Lax-Milgram theorem. To this end, note
that F k∆t is easily seen to be linear bounded and for each fixed u, we see that Bk

∆t(u, ·) is linear
and bounded as well. Now let u, v, w ∈ W. Then∣∣∣Bk

∆t(u,w)−Bk
∆t(v, w)

∣∣∣ ≤
∣∣〈κ−1(u)− κ−1(v), w

〉
L2

∣∣
+∆t |〈∇xu−∇xv,∇xw〉L2 |
+∆t

∣∣〈S(κ−1(u))− S(κ−1(v)), w
〉
L2

∣∣
≤

∥∥κ−1(u)− κ−1(v)
∥∥
L2 ‖w‖L2

+∆t ‖∇xu−∇xv‖L2 ‖∇xw‖L2

+∆t
∥∥S(κ−1(u))− S(κ−1(v))

∥∥
L2 ‖w‖L2

(5.42)

≤ 1

m
‖u− v‖L2 ‖w‖L2 + ∆t ‖∇xu−∇xv‖L2 ‖∇xw‖L2

+
L
m

∆t ‖u− v‖L2 ‖w‖L2

≤ max

{
1

m
, 2∆t,

L
m

∆t

}
‖u− v‖W 1,2 ‖w‖W 1,2 .

Moreover, we see that

Bk
∆t(u, u− v)−Bk

∆t(v, u− v) =
〈
κ−1(u)− κ−1(v), u− v

〉
L2

+∆t 〈∇x(u− v),∇x(u− v)〉L2

−∆t
〈
S(κ−1(u))− S(κ−1(v)), u− v

〉
L2

≥ 1

M
‖u− v‖2L2 + ∆t ‖∇xu−∇xv‖2L2

−∆t
〈
S(κ−1(u))− S(κ−1(v)), u− v

〉
L2

H2,(5.42)

≥ 1

M
‖u− v‖2L2 + ∆t ‖∇xu−∇xv‖2L2

+∆t
L
M
‖u− v‖2L2

≥ min

{
1

M
+ ∆t

L
M
,∆t

}
‖u− v‖2W 1,2 .

We see that all the conditions for the non-linear Lax-Milgram theorem are fulfilled and we are
allowed to conclude for each k ∈ {1, . . . , N} the problem WPKk

1,∆t admits a unique solution Uk

in W 1,2(Ω).
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5.3.4 A Priori Estimates

Lemma 13. Let {Uk}Nk=1 be the sequence of solutions to the problems WPKk
1,∆t obtained under

the assumptions H, then there exists a constant C1 such that for any p ∈ {0, . . . , N} the following
inequality holds:

‖Up‖2L2 +

p∑
k=1

‖Uk − Uk−1‖2L2 + ∆t

p∑
k=1

(
‖∇xUk‖2L2 +

2ML
m
‖Uk‖2L2

)
≤ C1‖UInitial‖2L2 .

Proof. Take ϕ = κ−1(Uk) as a test function in problem WPKk
1,∆t to find that

〈
κ−1(Uk)− κ−1(Uk−1), κ−1(Uk)

〉
L2

+∆t
〈
∇xUk,∇xκ−1(Uk)

〉
L2

= ∆t
〈
S(κ−1(Uk), κ−1(Uk)

〉
L2
.

For the first term, we use equation (5.13) to find that

〈
κ−1(Uk)− κ−1(Uk−1), κ−1(Uk)

〉
L2

=
1

2
‖κ−1(Uk)‖2L2 −

1

2
‖κ−1(Uk−1)‖2L2

+
1

2
‖κ−1(Uk)− κ−1(Uk−1)‖2L2

For the second term, we use equation (5.43):

∆t
〈
∇xUk,∇xκ−1(Uk)

〉
L2
≥ ∆t

ˆ
Ω
∇xUk · ∇xκ−1(Uk)dx

= ∆t

ˆ
Ω
∇xUk ·

(
κ−1

)′
(Uk)(∇xUk)dx

≥ ∆t

M

ˆ
Ω
∇xUk · ∇xUkdx

≥ ∆t

2M
‖∇xUk‖2L2 .

Finally, for the third term, we use the Lipschitz-continuity of the chemical reaction term S:

∆t
〈
S(κ−1(Uk)), κ−1(Uk)

〉
L2

= ∆t

ˆ
Ω
S(κ−1(Uk(x)))κ−1(Uk(x))dx

H2

≥ −L∆t

ˆ
Ω

[
κ−1(Uk(x))

]2
dx

= −L∆t
∥∥∥κ−1(Uk)

∥∥∥2

(5.43)

≥ −L∆t

m

∥∥∥Uk∥∥∥2
.

Combining the above results, it follows that

1

2
‖κ−1(Uk)‖2L2−

1

2
‖κ−1(Uk−1)‖2L2+

1

2
‖κ−1(Uk)−κ−1(Uk−1)‖2L2+

∆t

M
‖∇xUk‖2L2+

L∆t

m

∥∥∥Uk∥∥∥2
≤ 0
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Now take p ∈ {1, . . . , N}, sum from k = 1 to p and use equation (5.43) to find that

1

2M
‖Up‖2L2 +

p∑
k=1

{
1

2M
‖Uk − Uk−1‖2L2 +

∆t

2M
‖∇xUk‖2L2 +

L∆t

m

∥∥∥Uk∥∥∥2
}

(5.43)

≤ 1

2
‖κ−1(Up)‖2L2 +

p∑
k=1

{
1

2
‖κ−1(Uk)− κ−1(Uk−1)‖2L2 +

∆t

2M
‖∇xUk‖2L2 +

L∆t

m

∥∥∥Uk∥∥∥2
}

≤ 1

2
‖κ−1(U0)‖2L2 .

(5.43)

≤ 1

2m
‖U0‖2L2

=
1

2m
‖UInitial‖2L2 .

We multiply both sides by 2M to conclude the proof.

Lemma 14. Let {Uk}Nk=1 be the sequence of solutions to the problems WPKk
1,∆t obtained under

the assumptions H. There exists a positive constant C2 such that for any p ∈ {0, . . . , N} the
following inequality holds:

1

∆t

p∑
k=1

∥∥∥Uk − Uk−1
∥∥∥2

L2
+ ‖∇xUp‖2L2 +

p∑
k=1

‖∇xUk −∇xUk−1‖2L2 ≤ C2‖UInitial‖2W 1,2 .

This proof is basically the same as the linear case, except that we have to use the mean value
theorem every now and then to obtains bounds on U from bounds on κ−1(U).

Corollary 15. Let {Uk}Nk=1 be the sequence of solutions to the problems WPKk
1,∆t obtained

under the assumptions H. There exist a positive constants C1 and C2 such that

‖Uk‖2L2 ≤ C1‖UInitial‖2W 1,2 , (5.45)

‖∇Uk‖2L2 ≤ C2‖UInitial‖2W 1,2 ,

and hence
‖Uk‖2W 1,2 ≤ (C1 + C2)‖UInitial‖2W 1,2

for each k ∈ {0, . . . , N}. Observe that each of the above three upper bounds is independent of the
time step ∆t.

5.3.5 Time Interpolation of Discrete-Time Solutions

As in the linear case, we define piecewise constant and piecewise linear interpolations UConstant
∆t , ULinear

∆t :
[0, T ]→W 1,2(Ω) as follows:

UConstant
∆t (t) := Uk, t ∈ (tk−1, tk], (5.46)

ULinear
∆t (t) := Uk−1 +

t− tk−1

∆t

(
Uk − Uk−1

)
, t ∈ (tk−1, tk]. (5.47)

Lemma 16. Let ∆t > 0. Then UConstant
∆t ∈ L2(0, T ;W 1,2(Ω)) and

ULinear
∆t ∈ W =

{
U ∈ L2

(
0, T ;W 1,2(Ω)

)
| ∂tU ∈ L2(0;T ;W−1,2(Ω))

}
.

Moreover, the norms ‖UConstant
∆t ‖L2(0,T ;W 1,2(Ω)) and ‖ULinear

∆t ‖W are bounded uniformly with respect
to ∆t.

This lemma can be proved in exactly the same way as its linear counterpart Lemma 6.
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5.3.6 Passing to the Limit

Using similar arguments as in the linear case we can deduce the existence of (sub)sequences{
ULinear

∆t

}
and

{
UConstant

∆t

}
such that{

ULinear
∆t

}
⇀ ULinear weakly in L2(0, T ;W 1,2(Ω)), (5.48){

∂tU
Linear
∆t

}
⇀ ∂tU

Linear weakly in L2(0, T ;W−1,2(Ω)), (5.49){
UConstant

∆t

}
⇀ UConstant weakly in L2(0, T ;W 1,2(Ω). (5.50)

Like before, the theorem stated under Limits and Derivatives in the preliminaries (Section
5.1.3) allows us to conclude that ∂tU

Linear really is the weak derivative of ULinear and hence
ULinear ∈ W.

Lemma 17. The weak limits of UConstant
∆t and ULinear

∆t coincide. That is, UConstant = ULinear.

The proof mimics the proof of the linear counterpart Lemma 7. During the proof, one actually
discovers that UConstant

∆t → U and ULinear
∆t → U strongly in L2(0, T ;L2(Ω)). Combined with the

continuity of κ−1 we arrive at the following corollary.

Corollary 18. There exists a U ∈ Wn such that

UConstant
∆t ⇀ U, weakly in L2(0, T ;W 1,2(Ω)),

UConstant
∆t → U, strongly L2(0, T ;L2(Ω)),

ULinear
∆t ⇀ U, weakly in L2(0, T ;W 1,2(Ω)),

ULinear
∆t → U, strongly in L2(0, T ;L2(Ω)),

∂tU
Linear
∆t ⇀ ∂tU, weakly in L2(0, T ;W−1,2(Ω)),

κ−1(UConstant
∆t ) → κ−1(U), strongly in L2(0, T ;L2(Ω)),

κ−1(ULinear
∆t ) → κ−1(U), strongly in L2(0, T ;L2(Ω)),

as ∆t → 0. Like before, the convergence is to be understood as taking place along a particular
sequence of time steps converging to zero.

What remains to be shown is that the limit U is in fact a (weak) solution to the problem WPK.

Lemma 19. The limit U ∈ W obtained under the assumptions H is a (weak) solution to the
problem WPK.

Proof. Let ϕ ∈ L2(0, T ;W 1,2(Ω). From the problem WP kLinear,∆t we know that〈
κ−1(Uk)− κ−1(Uk−1), ϕ(t)

〉
L2

= −∆t
〈
∇xUk,∇xϕ(t)

〉
L2

+ ∆t
〈
S(κ−1(Uk), ϕ(t)

〉
L2

(5.51)

for a.e. t ∈ (tk−1, tk] (wherever ϕ is defined). Also remember from (5.46) and (5.24) that
UConstant

∆t (t) = Uk and ∂tU
Linear
∆t (t) =

(
Uk − Uk−1

)
/∆t on t ∈ (tk−1, tk].

Unlike before, we also define

K∆t(t) = κ−1(Uk−1) +
t− tk−1

∆t

(
κ−1(Uk)− κ−1(Uk−1)

)
, t ∈ [tk−1, tk).

Note that one can use the same arguments as for ULinear
∆t to show that K∆t ∈ W with ∂tK∆t(t) =(

κ−1(Uk)− κ−1(Uk−1)
)
/∆t for t ∈ (tk−1, tk). With this notation, equality (5.51) can be rewritten

as
〈∂tK∆t, ϕ〉L2 = −∆t

〈
∇xUConstant

∆t (t),∇xϕ(t)
〉
L2 + ∆t

〈
S(κ−1(UConstant

∆t ), ϕ
〉
L2
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Integrating the whole equation in time yields

ˆ T

0
〈∂tK∆t(t), ϕ(t)〉L2 dt = −

ˆ T

0

〈
∇xUConstant

∆t (t),∇xϕ(t)
〉
L2 dt

+

ˆ T

0

〈
S(κ−1(UConstant

∆t (t)), ϕ(t)
〉
L2 dt.

Our first goal will be to show that

ˆ T

0
〈∂tK∆t(t), ϕ(t)〉L2 dt→

ˆ T

0

〈
∂tκ
−1(U(t)), ϕ(t)

〉
L2 dt

as ∆t→ 0. To this end, note that in a similar way as for ULinear
∆t we can prove that there exists a

K ∈ W such that

K∆t ⇀ K, weakly in L2(0, T ;W 1,2(Ω)),

K∆t → K, strongly L2(0, T ;L2(Ω)).

Similar to Lemma 17 it can be shown that K∆t and κ−1(UConstant
∆t ) have the same limits as

∆t→ 0. Now, because UConstant
∆t converges strongly to U in L2(0, T ;L2(Ω)) it follows from the

continuity of κ−1 that κ−1(UConstant
∆t ) converges strongly to κ−1(U) in L2(0, T ;L2(Ω)) and hence

K = κ−1(U). Now, if we assume φ ∈ C∞0 (0, T ), ψ ∈ W 1,2(Ω) and consider ϕ = φψ as a test
function, then we can use partial integration to find that

〈∂tK∆t(t), ϕ(t)φ〉L2

Partial Integration
= −〈K∆t(t), ∂tφ(t)ψ〉L2

→ −〈K(t), ∂tφ(t)ψ〉L2

= −
〈
κ−1(U(t)), ∂tφ(t)ψ

〉
L2

= −
〈
∂tφ(t)ψ, κ−1(U(t))

〉
W−1,2,W 1,2

Partial Integration
=

〈
∂tκ
−1(U(t)), φ(t)ψ

〉
W−1,2,W 1,2

for a.e. t ∈ [0, T ]. Because test functions of the type φψ are dense in L2(0, T ;W 1,2(Ω)), we
conclude that

ˆ T

0
〈∂tK∆t(t), ϕ(t)〉L2 dt →

ˆ T

0

〈
∂tκ
−1(U(t)), ϕ(t)

〉
W−1,2,W 1,2 dt

for all ϕ ∈ L2(0, T ;W 1,2(Ω)) as ∆t→ 0.

Next, because UConstant
∆t ⇀ U weakly in L2(0, T ;W 1,2(Ω)), we see that

ˆ T

0

〈
∇UConstant

∆t (t),∇ϕ(t)
〉

[L2]n
dt→

ˆ T

0
〈∇U(t),∇ϕ(t)〉L2 dt

as ∆t → 0. Because S and κ−1 are continuous we know that S(κ−1(UConstant
∆t )) → S(κ−1(U))

strongly (and hence also weakly) in L2(0, T ;L2(Ω)). That is,

ˆ T

0

〈
S(κ−1(UConstant

∆t (t)), ϕ
〉
L2 dt →

ˆ T

0

〈
S(κ−1(U(t))), ϕ(t)

〉
L2 dt

as ∆t→ 0. Putting the three limits together we find that U satisfies

ˆ T

0

〈
∂tκ
−1(U(t)), ϕ(t)

〉
W−1,2,W 1,2 dt+

ˆ T

0
〈∇U(t),∇ϕ(t)〉L2 dt−

ˆ T

0

〈
S(κ−1(U(t))), ϕ(t)

〉
L2 dt = 0.

(5.52)
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As in the linear case, it follows that for all ϕ ∈W 1,2(Ω) the equality〈
∂tκ
−1(U(t)), ϕ

〉
W−1,2,W 1,2 + 〈∇xU(t),∇ϕ〉L2 −

〈
S(κ−1(U(t))), ϕ

〉
L2

holds for a.e. t ∈ [0, T ]. We conclude that U is a (weak) solution to problem WPK1.

The next step would be to prove uniqueness of the solution to problem WPK1. While we were able
to prove this in case of Dirichlet boundary conditions (on at least a part of the boundary), showing
uniqueness turned out to be problematic for the homogeneous Neumann boundary conditions
and is left as an open problem. Showing existence and uniqueness for the full non-linear (system)
case is also left as an open problem.
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6 Applying the Tools to Real Data

In this chapter we are going to apply the tools developed in Chapters 2, 3 and 4 to real data. The
data was obtained at TNO as follows. Early in the morning a sample was prepared by depositing
layers of copper (Cu), indium (In) and gallium (Ga) (in that order) on top of molybdenum (Mo)
coated soda-lime glass (Si and O). Then the sample was loaded into an EDX device where it
was measured by E. Balder Msc. The raw data output of the EDX was processed into atomic
fraction profiles by dr.ing. J. Emmelkamp. The idea in this chapter will be as follows:

1. The experimentally obtained atomic fraction profiles suffer from blur and noise. Using
the methods discussed in Chapter 3 we will try to deblur (and denoise) the profiles. The
deblurred profiles may reveal more information about the diffusion-reaction process occuring
within the precursor stack.

2. We will then utilize the methods developed in Chapter 2 to extract diffusion coefficients
from the deblurred atomic fraction profiles.

3. To check whether the computed diffusion coefficients are ‘correct’ we will try to recover the
deblurred profiles using the model and numerical scheme described in Chapter 4.

Before performing the above steps, it will be useful to say something about what we expected
to see from the measurements. To this end, we note that the production of the sample and
the subsequent measurements took place at room temperature. The glass is not expected to
participate in the diffusion process or react with any of the other components (that is why glass
is chosen as a substrate!). Furthermore, as a general rule, components with a high melting
diffuse slowly while components with low melting points diffuse much faster. Hence, because the
melting point of molybdenum is high (2623◦C), we do not expect molybdenum to participate in
the diffusion process. X-ray diffraction measurements at room temperatures also show that no
intermetallic phases with molybdenum form (during the selenization process the molybdenum is
seen to react with selenium though). The melting points of copper (1085◦C), indium (156, 6◦C)
and gallium (29, 77◦C) are much lower and hence it is expected that these three components will
interdiffuse and possibly form new intermetallic, solid phases. The EDX and X-ray diffraction
measurements have confirmed this is indeed the case. More specifically, new intermetallic phases
of copper and gallium atoms (CuxGay) and intermetallic phases of copper and indium atoms
(CuxIny) have been observed to form. Gallium and indium do not form new intermetallic, solid
phases. In fact, it may even be possible that gallium and indium form a liquid mixture at room
temperature. The reason is that alloys of indium and gallium can have melting points below
room temperature, as was mentioned already in Chapter 4. Hence we expect that in really short
times the indium and gallium form a uniform mixture on top of the layer of copper. If we assume
this to be the starting point of the diffusion process, then we are dealing with a diffusion couple
as defined in Chapter 2. And that is good because the Den Broeder method for extracting
interdiffusion coefficients requires such a setup (i.e. uniform concentrations to the left and the
right of the initial contact plane).

Either way, for gallium and indium to react with copper an interdiffusion process must take place.
We were hoping capture this process in the EDX measurements. Let us have a look at what the
EDX measurements reveal now.

6.1 Deblurring EDX Measurements

In Figure 6.1 a plot of the atomic fraction profiles after 75 minutes obtained with the EDX device
is presented. The horizontal axis represents the depth into the precursor as measured from the
top, i.e. where initially the gallium was present.
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Figure 6.1: Raw data from EDX Measurement 75 minutes after prepartion of the sample.

We observe that the results are polluted with random noise. Moreover, remember that the sample
consists of molybdenum (Mo) coated soda-lime glass (Si and O) on top of which layers of copper
(Cu), indium (In) and gallium (Ga) have been deposited. Now Figure 6.1 seems to suggest
that the glass (Si and O) has mixed with the other components. In reality this is not expected,
certainly not after such a short time at room temperature! In the left half of the plot (i.e. the
top of the sample) we see that glass seems to be present while there should be none. It appears
as if there is a certain base level of noise present. The base level of noise appears to be different
for different components. In the right half of the plot it appears as if the molybdenum and glass
have diffused into each other. Again, this is not what we expect to happen at room temperature.
The mixing is most likely the result of the limited resolution of the EDX measurement device
(i.e. blur). We conclude that at least three types of errors are present in the plots: random noise,
blur and base level noise. Before we try to mitigate these errors, note that in the end we are not
interested in the glass and the molybdenum because they are not expected to participate in the
diffusion-reaction process at room temperature. Therefore we eliminate these components and
normalize the remaining components. This yields the plot presented in Figure 6.2.
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Figure 6.2: Raw data from EDX Measurement 75 minutes after prepartion of the sample
with Si, O and Mo eliminated.
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Note that we have cut off the plot at a depth of approximately 2, 75µm: at this depth the
layer of molybdenum is expected to be found and we do not expect there to be any copper,
indium or gallium. To proceed, we could mitigate the random noise in the results by smoothing
with a simple moving average scheme. This would introduces more blur though. As we saw
in Chapter 3, our deblurring schemes are capable of dealing with noise so there is no need to
smoothen the profile before deblurring. To mitigate the base level errors, we could subtract for
each component the minimum value attained by this component and then renormalize. Because
of the random noise currently present it is more effective to do this after the deblurring. So, now
is the time to try the deblurring algorithms presented in Chapter 3. Employing these algorithms
is not straightforward though. This can be explained as follows. In Chapter 3 we saw that the
deblurring algorithms require a lot of input parameters: a parameter α = (α0, α1, α2) for the
Tikhonov filters and parameters β and γ for the Total Variation filter. Moreover, we do not have
details on the blur caused by the EDX device, i.e. we do not know the blurring operator. As in
Chapter 3.3 we will make the assumption that blurring operator is linear and can be represented
by convolution with a response function. For the response function we make the assumption that
it is either Gaussian- or square shaped with a certain width σ. In the test cases considered in
Chapter 3.5 we tested the deblurring methods by taking some (random) profile, blurring it with
a chosen blurring operator, adding some random noise and then we tried to deblur the resulting
profile. The methods looked promising but in a certain sense we were cheating because we knew
the blurring operator that was used. Moreover, because we knew what the real, original profiles
looked like, we could compare the deblurred images with the true images to get a feeling for
what would be ‘good’ parameters.15 But this time, we do not know what the true image would
look like. We only have physical intuition to guide us in choosing the parameters. Let us it give
it a try though. In the next three figures some results are presented. The profiles are deblurred
using three different sets of parameters. Note each time after deblurring, the fractions do not
sum up to 1 everywhere (the yellow dashed lines). This is because the deblurring algorithm is
applied to each component separately. We tried to implement an algorithm that deblurs all the
profiles simultaneously under the constraint that at all times the profiles should sum to 1 (using
Lagrange multipliers), but without succes: the constraint was too strong in the sense that the
method did not feel any freedom to do actual deblurring. That is why we decided to simply
normalize the profiles after deblurring. We also remove the base level noise for each component
before normalizing. The resulting ‘Corrected’ profiles are shown in the right-most plot in the
figures.
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Figure 6.3: Data from Figure 6.2 deblurred with α = (0, 0, 10−8), β = 1, γ = 10−6 and a
Gaussian response function with standard deviation 0.23µm and reflexive boundary conditions.
Afterwards, the base level noise was removed and the profiles were normalized.

15Although we did not work this out in Chapter 3, one could try to work out an optimization scheme that looks
for the best parameters, i.e. the parameters which minimize the error between the true and deblurred profiles (in
some appropriate norm).
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Figure 6.4: Data from Figure 6.2 deblurred with α = (0, 0, 10−6), β = 0, γ = 10−6 and a
Gaussian response function with standard deviation 0.23µm and reflexive boundary conditions.
Afterwards, the base level noise was removed and the profiles were normalized.
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Figure 6.5: Data from Figure 6.2 deblurred with α = (0, 0, 10−4), β = 1, γ = 10−6 and a
Gaussian response function with standard deviation 0.23µm and reflexive boundary conditions.
Afterwards, the base level noise was removed and the profiles were normalized.

The question is now: which profile resembles best the real physical situation? And the problem
is that we do not know. But more on that later.

For now, remember how initially the gallium and indium were assumed to form a uniform mixture
on top of the layer of copper? And how we were hoping to see it migrate towards the copper?
In the above figures we see that there is no gallium to be found on top. All the gallium has
already diffused towards the copper (and most likely reacted with it). And all of this happened
before the first measurement. And that is a problem for the Den Broeder method because, as we
saw in Chapter 2, this method relies on the assumption that both ends of the diffusion couple
remain unaffected during the diffusion process. Clearly we have a problem here: we have lost
our sense of time. The gallium could have migrated towards the copper in a few minutes, a
second or perhaps even milliseconds. As one can image, this has tremendous influences on the
interdiffusion coefficients.

That is why it was decided to turn the problem around as follows. We assume that initially there
is a uniform mixture of copper and gallium on top of which there is a layer of pure indium. And
then perhaps the EDX measurements should be interpreted as showing an interdiffusion process
that starts from this new initial profile. If we assume this to be the case, then at least we are in
a position where the methods discussed in Chapter 2 can be applied. Let us see where this leads
us.
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6 Applying the Tools to Real Data

6.2 Extracting Average Interdiffusion Coefficients

To extract interdiffusion coefficients, we first convert the atomic fraction profiles from Figures 6.3,
6.4 and 6.5 into concentration profiles. Under the assumption of constant partial molar volumes,
the concentrations Ci and atomic fractions Ni are related by

Ci =
Ni

Vmol
=

Ni∑n
i=1NiVi

,

where Vi are the (constant) partial molar volumes (see equation (2.1)). Because we are dealing
with a system of three components, we can only hope to find average interdiffusion coefficients
using the algorithm presented in Subsection 2.3.3. For each of the three concentration profiles,
we divided the domain into three regions over which we computed the average interdiffusion
coefficients. Because we are dealing with a ternary system, there are two independent components
and hence 22 = 4 interdiffusion coefficients to be found in each region. We labeled them
D11,D12,D21and D22 respectively. The results are presented in the next three figures. On the
left the concentration profiles are shown and on the right the extracted average interdiffusion
coefficients. In each case we choose gallium to be the independent component.16
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Figure 6.6: (Left) Concentration profile related to Figure 6.3.
(Right) Average interdiffusion coefficients computed over three regions with gallium chosen as
independent component.

16As remarked in Chapter (2), choosing different dependent components gives rise to different interdiffusion
coefficients. Relationships between the different (average) interdiffusion coefficients can be found in Chapter 9.1
of [43].
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Figure 6.7: (Left) Concentration profile related to Figure 6.4.
(Right) Average interdiffusion coefficients computed over three regions with gallium chosen as
independent component.
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Figure 6.8: (Left) Concentration profile related to Figure 6.5.
(Right) Average interdiffusion coefficients computed over three regions with gallium chosen as
independent component.

We observe that some of the coefficients are similar for the three profiles while others differ by
one or more orders of magnitude. Also, if we look at the computed values for D22, we see that
in Figure 6.6 the values in the left region are higher than in the right region. In Figure 6.8 the
opposite is true. The method used for extracting the average interdiffusion coefficients appears
to be sensitive to the parameters used for deblurring (as expected). On top of that, we have also
discussed in Chapter 2 that for ternary systems one cannot blindly trust the computed average
interdiffusion coefficients to be the correct ones. We suspected that different sets of interdiffusion
coefficients can give rise to a similar concentration profile at the time of measurement t∗ (they
may diverge before or afterwards). Moreover, to find concentration dependent interdiffusion
coefficients to be used in the numerical method described in Chapter 4, it would make sense
to fit concentration-dependent interdiffusion functions to the computed average interdiffusion
coefficients. But it is difficult to say without a priori knowledge if one should do a constant,
linear or quadratic fit or perhaps a piecewise linear fit. And doing the right fit may be important:
as mentioned in Chapter 2.3, the diffusion coefficient matrix should always be positive definite. If
it is not (and this may be the results of not fitting correctly), the diffusion equations may become
unstable and the numerical solutions produced with the scheme from Chapter 4 may blow up.
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6 Applying the Tools to Real Data

We conclude that while both the deblurring methods and the methods for extracting interdiffusion
coefficients have their respective uses, when combined their shortcomings and uncertainties
‘multiply’. This makes it extremely difficult to get reliable results and to test them, especially
in the case of thin films diffusion experiments where it is much more difficult to do accurate
measurements than in bulk diffusion experiments. One may wonder if it would be possible to
repeat the thin film experiments in a bulk setting to get more reliable results. Unfortunately,
bulk diffusion and thin film diffusion may be governed by different types of diffusion mechanisms
(grain boundary diffusion may be more pronounced in the case of thin film diffusion, leading
to much higher diffusion coefficients). Results from one type of experiment cannot be directly
translated to the other [24].
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7 Summary and Suggestions for Future Work

7.1 Summary

• In Chapter 2 we explored solid-state diffusion. Fick’s law, the more general Onsager’s
transport equations and the importance of choosing reference frames for expressing fluxes
were discussed. Moreover we discussed and implemented a direct method for extracting
concentration-dependent interdiffusion coefficients from a single concentration profile of
a diffusion couples: the Boltzmann-Matano method and the more refined Den Broeder
method. For diffusion couples consisting of two (atomic) components we were able to recover
the interdiffusion coefficients to great accuracy in our test cases. We also discussed the
theoretical and practical problems associated with interdiffusion in systems with more than
two components. To obtain the interdiffusion coefficients at a specific composition one needs
to prepare different diffusion couples whose diffusion paths intersect. In practice, especially
when dealing with thin films, this may not always be possible to achieve. To overcome
this issue, we discussed a method proposed in literature to derive average interdiffusion
coefficients from the concentration profile of a single diffusion couple. The test cases showed
us that the results should be treated with great care though. The method may results in
the ‘wrong’ coefficients that can still be used to recover to good accuracy concentration
profiles (at the specific time of measurements) from which they were derived. We believe
the problem in this respect is that different sets of diffusion coefficients may give rise
to (before and afterwards they may diverge). On top of that, even if one obtains the
correct average interdiffusion coefficients, it is difficult to say how one should properly fit
concentration-dependent interdiffusion functions to these average interdiffusion coefficients.

• In Chapter 3 we presented methods to deblur experimentally obtained concentration /
atomic fraction profiles that suffer from blur. We saw how simply inverting the blurring
operator, assuming it is known, causes blow-up and one needs to apply filters to prevent
this blow-up. We formulated the image deblurring problem as a minimization problem and
discussed two types of filters: a generalized Tikhonov filter and a Total Variation filter.
Moreover, presented algorithms to solve the minimization problem. Numerical tests confirm
the theoretical predictions that when deblurring with a Tikhonov filter one can nicely
recover smooth edges but no sharp edges. On the other hand, using the Total Variation
filter one can nicely recover sharp edges while smooth edges are problematic. We tried
to combine both methods but there will always be a trade-off between the two results.
Furthermore, because in real situations one usually does not know what the exact blurring
operator looks like we presented some possibilities of what blurring operators could look
like.

• In Chapter 4 we described the precursor model that is part of a larger model being
developed at TNO/Solliance. We saw that the model is basically a system of coupled,
non-linear diffusion reaction equations with no-flux boundary conditions. A numerical
scheme was presented to solve this system of equations. The scheme consists of a finite-
volume discretization in space together with a semi-implicit time integration method. The
numerical scheme was implemented in the larger TNO/Solliance model and is seen to be a
factor 400 faster than the old numerical scheme used at TNO/Solliance. Moreover, the
new scheme can properly handle concentration-dependent diffusion coefficients and it can
easily be scaled to include new components or intermetallic phases. The scheme was also
used in generating concentration profiles for testing the methods presented in Chapters 3.

• The precursor model described in Chapter 4 was subjected to a rigorous mathematical
analysis in Chapter 5. We first presented a weak formulation of the precursor model. Then,
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assuming the problem to be linear, we were able to prove existence and uniqueness of
(weak) solutions using the so called Method of Rothe. This method employs implicit Euler
time discretization with a time step ∆t to reduce the full space/time-dependent problems
to a sequence of space-dependent (elliptic) problems. Using standard tools from functional
analysis we could show existence and uniqueness of solutions to these space-dependent
problems. Then, in the next step these solutions are patched together to form a solution
approximation on the whole space/time domain. By proving a priori estimates we could
ensure that the resulting solution approximation converges to a limit as ∆t→ 0. We were
able to show that the limit obtained this way is a (weak) solution to the original linear
problem. Next, we went back to the non-linear case but then for a single component only.
We used the Kirchoff Transform to remove the non-linearity from the flux term at the
expense of introducing non-linearities in the time derivative and the source term. The latter
were not too difficult to deal with though. In fact, we were able to follow similar steps as
in the linear case to show existence of a solution. Showing uniqueness turned out to be
problematic though and is left as an open problem. Showing existence and uniqueness for
the full non-linear (system) case is also left as an open problem.

• In the final chapter, Chapter 6, we applied the tools developed in previous chapters to
real data. Precursors were prepared at TNO/Solliance and using cross-section Energy
Dispersive X-Ray Spectroscopy atomic fraction profiles of the different atomic components
in the precursor were prepared. Because the layers of interest are really thin (a few µm),
the limited resolution of the EDX caused the atomic fraction profiles to appear blurred
(and as always in measurements noise is present as well). Using the method developed in
Chapter 3 we deblurred the resulting atomic fraction profiles. A problem in this respect is
that the deblurring method requires several input parameters and different parameters give
rise to different deblurred profiles. And of course we do not know what the ‘true’ profiles
look like (otherwise there would be no need to deblur). In most deblurring applications one
is satisfied if something, say a license plate, that was previously unreadable can be read
after the deblurring. In our case, the profiles are deblurred to prepare them for extracting
interdiffusion coefficients using the methods described in Chapter 2. Unfortunately, for
a process like diffusion, the difference between a sharp edge and a smooth edge can be
quite large and hence different. That is, the diffusion coefficients may be highly sensitive
to the way in which the profiles are deblurred. Our tests indeed reveal that the average
interdiffusion coefficients obtained from the different profiles (that are supposed to represent
the same true) can differ by orders of magnitude. And, even if we would be able to recover
the ‘true’ profiles with the deblurring methods, there is still the problem associated with
the reliability of the method itself. So, there is a lot of uncertainty and results are difficult
to verify. We also had to be ‘creative’ to get the data to qualify as resulting from a diffusion
couple (as defined in Chapter 2) because the diffusion processes at much faster rates than
initially expected. Most of the discussed problems are related to the fact that we are
dealing with thin films which are in general difficult to measure. While the developed tools
may help to get additional insight into the growth process of the CIGS absorber layer in
the two-step process, the results should not be trusted blindly. The developed tools may
also prove to be useful for other projects at TNO and/or Solliance.

7.2 Suggestions for Future Work

• In Chapter 3 we have been dealing with minimization problems. When trying to solve
such problems it is important to know wether a (global) minimizer even exists and if it
does wether the minimizer is unique. If there is a unique minimizer, we would like to know
whether the iterative scheme used to update solution approximations eventually converges
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to the minimizer. For both the Tikhonov and Total Variation filters separately literature
is available on these issues. It would also be interesting to work on such problems when
combining the Tikhonov and Total Variation filters.

• Instead of trying to approach the deblurring problem as a minimization problem the
following approach can be tried. It is assumed that a sharp interface should be present
between the soda-lime glass and molybdenum in the deblurred images. Then, by comparing
gradients in glass / molybdenum profiles against the gradients for the other components,
one may be able to work out a scheme that determines how sharp or smooth the edges in
the edges of the other profiles should be. Perhaps such a method could be combined with
the minimization schemes developed in this thesis as well.

• The methods used to extract interdiffusion coefficients from concentration profiles are
direct methods. Perhaps it would also be possible to formulate the identification of
such parameters as a minimization problem. I can imagine that - especially for finding
concentration-dependent interdiffusion coefficients - this can be really challenging. The
benefit may be that one is not restricted to working with so called diffusion couples.

• Instead of trying to model the precursor using ‘real’ interdiffusion coefficients and chemical
reaction rates it may beneficial to model the physical processes in terms of in terms of ‘slow’
processes and ’fast’ processes. If the diffusion of one component is seen to be many orders
of magnitude faster than the diffusion of some other components, it may not be necessary
to know the real diffusion coefficients but only that one is much higher than the other
(and similarly for chemical reactions). Such an approac can be paired with mathematical
asymptotic analysis.

• The spatial discretization scheme proposed in Chapter 4, i.e. the finite volume scheme, is
expected to be second order accurate. On the other hand, the time integration scheme
proposed, i.e. the semi-implicit Euler scheme, is only first order accurate. Depending on
the needs of TNO/Solliance it may be worth it to work out higher order time discretization
schemes as well. For example, the time integration schemes discussed Chapter 4 can be
combined to obtain a second order Crank-Nicolson scheme.

• The mathematical analysis has been restricted to the precursor model so far. In the
second step of the so called two-step process, i.e. during the selenization of the precursor,
the geometry of the physical domain changes in time due to the absorption of selenium.
Including the changing geometry into the problem may give rise to some interesting
mathematics.
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A Working Principles of Solar Cells

In this appendix we will explore the working principles of solar cells. In the most
general sense solar cells operate by converting energy emitted by the sun in the form
of light into electrical energy that can power our electrical devices. To understand
what is really going on under the hood, we first have to look more closely at what
light actually is. Then we will look at how light can give off its energy to materials.
As we will see, this requires us to zoom in to the subatomic level where some really
strange things are happening.

This chapter is not intended to give complete and mathematical precise description
of the matters at hand. It only serves as a gentle and intuitive introduction so
that the reader can get a feeling and an appreciation for the working principles of
solar cells. The reader is assumed to have a basic knowledge of classical mechanics,
electromagnetism, probability theory and differential equations. Sections 1.1 and 1.2
cover material that should be familiar to anyone who took physics and chemistry
in high school. Section 1.3 is basically a short introduction to quantum mechanics
and relies more on mathematical formulations than other subsections. Finally, in
subsection 1.4 we dive into the subject of semiconductor physics and work towards a
model of a simple solar cell. The main source used in writing this chapter was the
text book University Physics by Young and Freedman [60]. Other used sources are
Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers
by Ferry [20], Physics of Solar Cells - From Principles to New Concepts by Würfel
[58], Nanoelectric Devices by Park, Park and Hwang [42] and finally Lecture Notes
on Quantum Mechanics by Greensite [23].

A.1 Light

A.1.1 Light as Particles

The classical way to envision light is to think of it as being colored particles which emerge from
a certain source - like the sun. These particles travel through space and when they hit an object,
they either get absorbed, reflected or pass through the object. This interpretation of light can
explain a lot everyday things. For example, when you are looking at a an object - say a cup of
coffee - what actually happens is that light particles - coming from somewhere - reflect off the
cup and enter your eye. The eye transmits this ‘signal’ to your brain and your brain turns it
into an image of a cup of coffee. When an object is perceived as black, it basically means all
light particles hitting the object are absorbed and none reflect into your eye. When an object
is perceived as green, it means the green light particles are being reflected while all others are
being absorbed. White objects reflect all light.

Figure A.1: Colors as reflections of specific light particles. Black objects absorb all incoming
light particles while objects reflect them.

Now if you wear a black t-shirt on a sunny day, you will feel much warmer than if you had chosen
to wear a white shirt instead. This must have something to do with light because - as we just
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learned - the black shirt absorbs light rays while the white shirt does not. In fact, this suggests
that light rays contain energy. The black shirt absorbs light from the sun and the energy in this
light is transferred as heat to your body.

This model of light being particles is simple, elegant and it explains everyday things pretty well.
Naturally, one may start to wonder if there even is anything to say about light that can not be
explained by light being particles. It wasn’t until the beginning of the nineteenth century that
people had to accept that our particle model is not complete. Let us see why.

A.1.2 Light as Waves

Picture yourself in a room with a lamp on a table. Cover this lamp with a light absorbing box
(a black box) and drill two tiny holes in one side of the box close to one another. Now turn off
the light in the room, turn on the lamp and look at the wall of the room facing the two holes.
What do you expect to see? Two dots of light, right? The only light particles that can escape
from the box are the ones passing in a straight line from the source through the holes you drilled.
Because there are two holes, you expect to see two dots on the wall.

In 1803, the British scientist Thomas Young conducted an experiment similar to what was just
described. But when he looked at the wall he saw a pattern like in Figure A.2:

Figure A.2: Light Pattern observed by Young.

What’s going on here? Luckily, Thomas Young had an explanation. He had observed this kind
of behaviour before when experimenting with water. Or more specificaly, with water waves.
Say you throw a stone in a pond. The moment the stone hits the water, it will start to ripple.
That is, water waves emerge from where the stone hits the water and they propagate outwards
in all directions. A water wave can be thought of as a disturbance or displacement from an
equilibrium position. Now image throwing two stones into the pond instead of just one. There
will be two sources of waves. What happens when the waves caused by one source meet with
the waves caused by the other? As it turns out, the waves behave according to the so called
superposition principle: the two waves become one and the new wave’s displacement is given by
the sum of the displacements of the two initial waves. If both waves are at their peaks when
they meet, the new wave will have an even higher peak than the individual waves. This is called
constructive interference. However, if one is at its peak while the other is at its trough, the waves
will (partially) cancel each other out. This is called destructive interference.

Now how is this related to our experiment? Assume some water waves emerging from a source
travel in a particular direction. After a while they hit a wall which only has a small opening in
it. What will remain of the waves passing through this small hole? It turns out - and this can
be explained by something called Huygens Principle - that behind the wall it will look as if the
opening in the wall is a new source of waves. In particular, the waves are able to crawl around
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corners. None of this is specific to water: other kinds of waves show similar behaviour. Think of
sound - that is, pressure waves propagating through air. Because of sound being waves we are
able to ‘hear around corners’.

Figure A.3: Huyghen’s Principle visualised.

If we change the setup of the above experiment so that the wall has two openings, there will
be two ‘sources’ of waves behind the wall and the resulting waves will start interfering. If we
place a wall to the right of the openings, then intensity patterns will develop on this wall that
are strikingly similar to what Thomas Young saw when he looked at his wall. He had found
definite proof that light comes in waves. But what kind of a wave is this thing called light then?
We call something a water wave because it is a disturbance of the water level traveling through
the water. Similarly, a wave created in a rope is is a disturbance travelling through that rope.
So, what is it that light waves are disturbing then? As it turns out, light waves are oscillating
electric and magnetic fields propagating at the speed of light. We also call them electromagnetic
waves and their behaviour can be described by Maxwell’s equations, after the Scottish scientist
James Maxwell.

The weird thing about electromagnetic waves in comparison with other kinds of waves is that
they don’t require a medium to travel through. They can even travel through a vacuum. That is
very good: otherwise light - or as we now know, electromagnetic waves - generated by the sun
would not be able to reach us here on earth.

Now we know that light comes in waves. In general, waves have a frequency f and wavelength λ
that are related to the speed of the wave - in this case the speed of light in a vacuum, denoted
by c - in the following way:

c = λf.

If we know the frequency of a wave, we can figure out the wavelength and vice versa because c is
constant. Not all electromagnetic waves are visible to the human eye. We can only see waves
with wavelength between approximately 400 and 700 nanometers. This is illustrated below.

Figure A.4: Part of the Electromagnetic Spectrum visualised.

The wave model of light can explain everything that the particle model of light can, and then
some more. But this is not the end of the story, as we will see in the next section.
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A.1.3 Light as Photons

At the end of the nineteenth century it was discovered that many metals emit little particles
called electrons (much more on those later) when light shines on them. These electrons are
normally bound to the metallic material by electric forces. By gaining enough energy they are
able to escape from the material. Apparently, the electrons can get this energy from absorbing
light. This also suggests that light must contain energy. The idea that light contains energy is
perfectly compatible with the wave model of light. It may be hard to picture how this works for
light, but if you think of a tidal wave, it is not such a weird idea that it contains energy! It is
also a reasonable assumption that the energy in the wave is proportional to the amplitude of the
wave. A huge tidal wave may destroy buildings, but a small ripple in a pond is not going to do
much. As it turns out, one can derive from Maxwell’s equations that the intensity - that is, the
energy per unit time per unit surface area - of an electromagnetic wave is proportional to the
(square of) the amplitude. In doing so, one also sees that the intensity is not dependent on the
frequency of the light waves. So, if we go back to the photoelectric experiments, it is expected
that increasing the intensity of the light incident on the metal increases the emission rate of
electrons. Why? Electrons need energy to escape from the material. Light contains energy. The
higher the amplitude, the higher the energy transfer rate. Hence more electrons should be able
to absorb enough energy to escape. The frequency of the light waves should not be relevant.
Sounds reasonable, right?

Now here’s the weird thing: the photoelectric experiments showed a completely different behaviour.
If light of a low frequency - say red or infrared light - was used, no electrons would be emitted.
Increasing the intensity made no difference. On the other hand, when using high frequency light
- like ultraviolet - they would observe a high electron emission rate, even at low intensities.

Figure A.5: Photoelectric Effect. High frequency light (purple) incident on a material causes
emission of electrons (blue). No electrons are emitted when lower frequency light (red) is used.

What’s going on here? Could it be the case that our wave model of light is also wrong, or at
least incomplete? It was Albert Einstein who suggested a new model for light, the photon model,
in 1905. He proposed that light comes in little packages of energy called photons and that the
energy E contained in a photon is frequency-dependent:

E = hf,

where h is an incredibly small number (with units of J · s) called Planck’s constant. If this is
indeed the case, the photoelectric effect can be properly explained as follows. Electrons need a
minimum amount of energy to ‘jump’ out of the material. If they absorb a photon with enough
energy, i.e. a photon with high enough frequency, they will be able to make the jump. If a low
frequency photon is absorbed, the electron will not be able to make the jump and fall back to its
original position (or energy level). It can certainly try to jump again by absorbing a new photon,
but it will only escape if a photon with high enough frequency is absorbed.

According to the wave model, a high frequency and a low frequency wave should carry the
same energy as long as the waves have equal amplitude. On the other hand, the photon model
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is saying that high frequency photons should carry more energy than low frequency ones. To
bring these two ideas together, we must assume that the high frequency wave contains less (but
more energetic) photons than the low frequency one. But if we talk about there being ‘more’
or ‘less’ photons in light, it feels like we are dealing with a ray or particle model again, even
though the photons are assumed to have a frequency (and hence a wavelength). In fact, photons
do turn out to be particles. There are even devices - so called photonmultipliers - which can
detect single photons. But the problem with seeing light as particles is that it is not possible to
explain behaviour like interference. That is why we needed the wave model in the first place.
But with the wave model, we run into problems with the photoelectric effect, which requires
a more particle-like model. How do we get out of this circle? The answer to this question is
remarkable: we accept both models at the same time. This is referred to as wave-particle duality.
Sometimes we need one model, sometimes the other. One is not more true or better than the
other. It just happens to be - if we understand correctly - that light has a dual nature. 17 And
as we will see later, the story does not end here!

Now that we are more familiar with the concept(s) of light, let us start looking at how we can
transform the energy contained in light into electricity. Devices which can do this are called
photovoltaics. To understand photovoltaics, we need to get a better understanding of atoms first,
the building blocks of everything around us.

17In a certain way, this proposed duality solution is unsatisfactory. How do you know up front whether to consider
light as particles or as waves? And how does nature itself know how to distinguish between the two cases. In
fact there is an model of light which solves this duality problem. This is the so called ‘path integral formulation’
as developed by the American scientist Richard Phillips Feynman. It is based on quantum physical theories
which I don’t want to discuss at this point. A gentle introduction to this model can be found in Feynman [21]
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A.2 Atoms

A.2.1 Smallest Particles

Suppose you cut a piece of some material in half again and again until you are holding a ‘smallest
particle’ which cannot be cut in half anymore. Ancient Greek philosophers referred to this idea
of smallest particles as atoms. But it wasn’t until the 19th century that people started finding
scientific results and arguments which could back up this idea of atoms. Along the way, numerous
different kinds of atoms with different kinds of properties were discovered and categorized in the
so called periodic table. As of today, the periodic table contains 118 different atoms.

Figure A.6: Periodic Table
{https://upload.wikimedia.org/wikipedia/commons/3/3d/Discovery of chemical elements.svg - By

Sandbh (Wikimedia Commons.) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)],

via Wikimedia Commons}

The smallest and lightest atom known is the hydrogen atom (the H in the upper left corner of
the periodic table). Since atoms are supposed to be the building blocks of all other matter, we
should be able to conclude that nothing can be smaller and lighter than hydrogen atoms. But
then in 1897 the British scientist Joseph Thomson made an interesting discovery with so called
cathode rays. What he did was the following. Two plates of conducting material were placed
inside of a vacuum glass tube. One of the plates had an opening. The plate with the opening
is given a positive charge and is referred to as the anode. The other plate is given a negative
charge and is called the cathode. Under a high enough voltage between the cathode and the
anode, a stream of particles started to flow from the cathode to the anode. These particles were
not visible to the naked eye, but they made the glass behind the opening in the anode glow.18

Joseph Thomson was able to measure the charge-to-mass ratio. This ratio was huge, meaning
that either the charge of the particles was huge, or the mass of the electrons was really small.
Thomson went for the latter and figured out that the mass of the electrons more than a thousand
times smaller than the mass of hydrogen atoms.19 Furthermore, he found out that the particles
emitted by the negatively charged electrode were the same for different kinds of cathodes. That
is, cathodes made out of different atoms emitted the same kind of particles. All of this lead
Joseph Thomson to conclude that atoms themselves must be built out of even smaller particles:
subatomic particles. The subatomic particles emitted by the cathodes are what we now call
electrons. Because electrons have a negative electric charge - that is why flow from the cathode

18Couple this setup with magnets to bend the trajectories of the particles and you have a television screen!

19Later experiments in which the charge of these particles had been measured confirm that Thomson was on the
right track here.
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to the anode - and because atoms themselves are electrically neutral, there must be something to
balance the negative charge of the electrons. Thomson’s idea was that atoms are like muffins:
little raisins representing the negatively charged electrons surrounded by positively charged cake.

Figure A.7: Plum Pudding Model. The electrons (blue) are like negatively charged raisins
in a positively charged cake (red).

A.2.2 Rutherford Model

The British scientist Ernest Rutherford and two of his students, Hans Geiger and Ernest Marsden,
decided to test Thomson’s model of the atom in 1910. To do so, they fired a beam of so called
alpha particles in a straight line towards a thin metal foil. They knew that the alpha particles
were positively charged and had a mass approximately 7300 times the mass of a single electron.
When the alpha particle beam passes through the foil, the alpha particles interact with the
electrons and the positively charged ‘cake’ of the atoms making up the metal foil. This interaction
could influence the paths followed by the alpha particles. However, because the alpha particles
are much heavier than the electrons, it was not expected that the electrons in the metal foil
would have a serious impact on the pathways of the alpha particles. Also, the positive and
negative charge inside the atom is more or less evenly distributed in Thomson’s model. Hence the
electrical fields inside the atoms should be small and no serious impact was expected from this
interaction either. The results from the experiment were completely different though. Sometimes,
as expected, the paths of the alpha particles would continue in a straight line, maybe deflected
by a few degrees, after passing through the thin foil. However, in a few cases, the alpha particles
would come straight backward! To quote Rutherford himself:

“It was quite the most incredible event that has ever happened to me in my life. It
was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and
it came back and hit you.” (Source: http://en.wikiquote.org/wiki/Ernest Rutherford)

Apparently, the Thomson model of the atom must be flawed. The results of the experiment made
Rutherford believe that, instead of the positive charge being distributed throughout the whole
atom, the positive charge is concentrated in a tiny volume called the nucleus. Then, when an
alpha particles is directed at this nucleus, it would feel a strong repulsive force when coming
close to the nucleus because both are positively charged. This could explain the large angle of
deflections sometimes observed. Because the nucleus is so tiny, in most cases the alpha particles
would simply fly past the nucleus without much interaction. Note that because the mass of
electrons is negligible compared to the mass of atoms, most of the mass of atoms should be
contained inside of this nucleus.

Figure A.8: Deflection of alpha particles (green). The alpha particle that is aimed at the
small nucleus almost reverses direction. The paths of the other alpha particles are hardly
influenced.
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While the idea of an atom consisting of electrons and a nucleus may be able to explain the
Rutherford experiment, it does raise new questions. Most importantly, since the nucleus is
postively charged and the electrons are negatively charged, they are attracted to one another by
electrostatic forces. One would expect to electrons to collapse into the much heavier nucleus. But
then atoms would be of the size of their nuclei while experiments (like the Rutherford experiment)
show that atoms are roughly 100.000 times larger than their nuclei! So, what prevents the
electrons from collapsing into the nucleus then? Rutherford argued that electrons are actually
orbiting the nucleus, just like planets orbit the sun (where the attractive force is then due to
gravity). This model - the planetary model of atoms - is illustrated below.

Figure A.9: Rutherford’s planetary model of the atom.

There is a serious problem with this planetary model though. Why? We know that electrons
are charged particles. Furthermore, orbiting particles are always accelerating: even though their
speed may stay the same, their direction continuously changes. Maxwell’s Equations tell us that
accelerating charges radiate electromagnetic waves. Hence an electron in orbit must be constantly
emitting electromagnetic waves. These waves contain energy and this energy must come from the
electron. In other words, the electron is losing energy. But then the orbit of the electron must
decrease over time (larger orbits correspond to larger energies). That is, the electron should be
spiralling towards the nucleus. But the idea of a planetary model was to given an explanation
for the fact that electrons do not collapse into the nucleus.

A related problem is the following. As the orbit of the electron becomes smaller and smaller,
its angular velocity increases and hence it must be accelerating at faster rate. As a result, the
frequency of the emitted electromagnetic waves will increase as the orbit becomes smaller. Because
the electron loses energy in a continuous fashion, we would expect to see a continuous spectrum of
electromagnetic waves being emitted. However, experiments show something completely different.
As a simple example, think of neon lighting, which is characterized by light of a single color.
Neon lighting is generated by atoms inside of a glass tube. For the particular case of neon
atoms, an orange glow can be generated. Other atoms result in other colors. More generally,
scientists discovered that atoms can only be made to emit electromagnetic waves at certain
discrete frequencies. The frequencies are different for different kinds of atoms. But continuous
spectra of emitted frequencies are never observed.

A.2.3 Bohr Model

It seems like we must reject Rutherford’s planetary model of the atom. But then we are left with
nothing since the Thomson model lead to problems as well. Fortunately, the Danish scientist
Niels Bohr came with a possible solution. He proposed that electrons do orbit the nucleus in a
certain sense, but that they can only have certain discrete amounts of energy, corresponding to
different orbits. An electron can then jump from one orbit - or better, energy level - to a higher
energy level by absorbing just the right amount of energy. Here the right amount of energy is of
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course the energy difference between the two energy levels. Similarly, an electron can jump to a
lower energy level by losing just the right amount of energy.

Now is the right time to go back to our discussion of photons. According to Einstein, light
can be interpreted as coming in little energy packages called photons. When discussing the
photoelectric effect, we mentioned how electrons can absorb photons. Electrons can also emit
photons. The latter should not be surprising: electrons are charged particles, Maxwell’s equations
tell us that accelerating charged particles emit electromagnetic waves, and electromagnetic waves
and photons are kind of the same thing. Note that even though we have said nothing about
solar cells so far, it certainly feels as if we are getting a bit closer by discussing the interaction
between photons and electrons. We will later see that this interaction is indeed crucial to the
working of solar cells.

If we put together our discussion on energy levels and photons together, we conclude that
electrons can jump to higher energy levels by absorbing photons and they release photons when
dropping to lower energy levels. For example, if an atom has energy levels E1 and E2 (with
E1 < E2) then an electron with energy level E1 can jump to E2 by absorbing a photon having
energy E2 −E1. As we saw before, the energy of a photon can be expressed as hf, with f the
frequency, so the electron needs to absorb a photon with frequency

f =
E2 − E1

h

to make the jump. Similarly, when dropping from E2 to E1, the electron emits a photon of this
same frequency f . If it is indeed the case that electrons in an atom can only have certain discrete
energy levels, it follows directly that the electrons can only absorb / emit photons of certain
discrete frequencies. Furthermore, since nature has a tendency to minimize energy, there must
be some lowest energy state, a ground state, to prevent the electrons from falling into the nucleus
by emitting photons. Electrons in energy states higher than the ground state are said to be in
excited states. As we just saw, electrons can be excited by photons.

Figure A.10: Bohr Model and the interaction between photons and electrons. On the left a
photon is absorbed. On the right a photon is emitted.

So that explains the discrete emission spectra and stability of the atoms. But why would nature
only allow electrons to have discrete energy levels? Also, the model is not compatible with
classical mechanics since, from a classical mechanics point of view, charges in orbit (like the
orbiting electrons) should lose energy. So, maybe it is the case that our ideas about nature, and
in particular classical mechanics, are flawed at the (sub)atomic level.

A.3 Quantum Mechanics

A.3.1 Particles as Waves

Remember the wave-particle duality of light? We said that sometimes, light behaves as waves,
sometimes it behaves as particles. It was the French scientist Louis de Broglie who suggested in
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1924 that maybe all matter, and in particular electrons, posses this kind of duality. This sounds
counter-intuitive, but, as we will soon see, accepting matter to posses wave-like properties solves
the problems encountered with previous atomic models. Furthermore, if matter can indeed behave
like waves, we might be able to observe things like constructive and destructive interference for
matter as well. And in fact we can. Already in 1927 were scientists able to conduct experiments
which could only be explained by interference of electron waves.

If we accept the idea that matter - and when we talk about matter it will usual be electrons - has
wave-like properties, then we should be able to say something about frequencies and wavelengths.
Before we do so, remember that the frequency f of a photon is related to its energy E by

f =
E

h
,

and that the relation between frequency and wavelength λ is given by

c = λf.

Photons turn out to have momentum as well. This might feel counterintuitive since light is
massless. But - and this is a consequence of the theory of special relativity as developed by
Albert Eintein - mass, momentum and energy are all related to one another by the equation

E2 = (mc2)2 + (pc)2.

Here p denotes the momentum of a particle. For photons, m = 0 and it follows that

p =
E

c
=
hf

c
=
h

λ
.

This shows that photons have momentum indeed. Furthermore, we see that the wavelength and
energy of a photon can be expressed as

λ =
h

p
and E = hf =

ch

λ

respectively. Louis de Broglie proposed that the above two relations should hold for any particle,
not just photons. It is important to note here that wave-like properties of matter only manifest
themselves at length scales of the wavelength of matter. Since h, and therefore λ, is incredibly
small in everday units, we usually don’t notice the wave-like properties of matter. We certainly
don’t see ourself dissapearing because of destructive interference all of a sudden!

A.3.2 Schrödinger Wave Equation

Another thing about waves is that they are described by so called wave functions, that is,
functions which satisfy some appropriate set of wave equations. For electromagnetic waves, the
appropriate equations are in fact the Maxwell equations. For water waves, the structure of the
wave equation is a bit different. As it turns out, the appropriate wave equation for matter waves
is the so called Schrödinger wave equation.20 For a single particle moving in a one-dimensional
space, it is given by:

i~
∂Ψ

∂t
(x, t) = − ~2

2m

∂2Ψ

∂x2
(x, t) + U(x)Ψ(x, t).

Here Ψ is the wave function, m is the mass of the particle under consideration, ~ = h/2π and U is
some potential energy function. Now say that we have been able to solve this partial differential
equation for Ψ. Because of the complex number i in the equation, the solution Ψ itself can

20See Chapter 3.1 of [23] for an ‘intuitive’ derivation.
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(and in fact must) take on complex values. This raises the question as to what this Ψ actually
represents. To answer this question, remember that for electromagnetic waves we said that the
intensity of the wave is proportional to the square of the amplitude. The analogue for complex
‘square of the amplitude’ is to take the square of the norm, i.e. |Ψ|2 = Ψ∗Ψ. Then, if Ψ is the
wave function for some particle, we say that the intensity of the particle is described by |Ψ|2. But
what is that, the ‘intensity of a particle’? The most intuitive interpretation is a probabilistic one:´ b
a |Ψ(x, t)|2dx should be interpreted as the probability that the particle can be found between a

and b at time t. In other words, the intensity |Ψ|2 could be seen as a probability density. This
interpretation does require the wave function to be normalized. That is, we should require that
our wave functions satisfy ˆ

R
|Ψ(x, t)|2dx = 1

at all times t.

Note that this description of matter is fundamentally different from what we are used to from
classical mechanics. Indeed, in classical mechanics we describe particles by saying where they are
and where they are going. In quantum mechanics, we describe particles in terms of wave functions
and these wave functions can at most give us probabilities of the particle being somewhere. Now
one can imagine the wave function for a particle to become localized in the sense that the particle
can only be found with positive probability in a very tiny region. Then we can say ‘for sure’
that the particle is in that tiny area. And if we could visualize the wave function, we could
say where the particle is going by looking in which way the wave if propagating. While that is
true, nature places a fundamental limit on how far we can go in this respect. I’m talking about
the so called Heisenberg uncertainty principle here. This principle says that is impossible to
find simultaneously the position and the momentum of a particle to arbitrary precision. More
precisely, if ∆x denotes the uncertainty in the position of a particle and ∆p the uncertainty in
the momentum, then, no matter what,

∆x∆p ≥ h

4π
.

As a consequence, the more we localize the position in space where a particle might be found,
the more difficult it becomes to say where it might be going next and vice versa. We are going
to need this uncertainty principle in a moment.

To get a better physical understanding for the complicated looking Schrödinger wave equation
itself it is convenient to first set the potential energy function U equal to zero. In other words,
we are going to look at a freely moving particle first. I claim that the function

Ψ(x, t) = eipx/~e−iEt/~,

satisfies the Schrödinger wave equation with U ≡ 0. Indeed, by working out the partial derivatives
we see that

i~
∂Ψ

∂t
(x, t) = i~

∂

∂t

[
eipx/~e−iEt/~

]
= Eeipx/~e−iEt/~ = EΨ(x, t)

and

− ~2

2m

∂2Ψ

∂x2
(x, t) = − ~2

2m

∂2

∂x2

[
eipx/~e−iEt/~

]
=

p2

2m
eipx/~e−iEt/~ =

p2

2m
Ψ(x, t).

The term p2/2m corresponds to the kinetic energy of the particle. Since U ≡ 0, the particle
cannot have any potential energy. Hence its total energy is precisely its kinetic energy. That is,

E = p2/2m
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and we see that the Schrodinger wave equation is satisfied.21

If we do not assume the potential energy U to be zero, we can still try to see what happens when
we plug in this solution. What happens is that the Schrödinger wave equation reduces to the
following form:

EΨ = (K + U)Ψ.

This suggests that the Schrödinger wave equation is the quantum mechanical way of saying that
total energy E of a particle is given by the sum of its kinetic energy K and its potential energy U.

In general, the function Ψ(x, t) = eipx/~e−iEt/~ will not satisfy the Schrödinger wave equation for
non-zero U. However, it is still useful to look for solutions of the form

Ψ(x, t) = ψ(x)e−iEt/~.

The reason is that the Schrödinger wave equation then transforms into the time-independent
form

Eψ(x) = − ~2

2m

∂2ψ

∂x2
(x) + U(x)ψ(x). (A.1)

Note that (A.1) is in fact an eigenvalue problem for the operator − ~2

2m
∂2

∂x2 + U . We have to solve
(A.1) simultaneously for eigenvalues E and corresponding eigenfunctions ψ(x). If ψ(x) is an
eigenfunction with corresponding eigenvalue E, then Ψ(x, t) = ψ(x)e−iEt/~ is a solution to the
full time-independent Schrödinger wave equation. Now observe that

ˆ
|Ψ(x, t)|2dx =

ˆ
|ψ(x)e−iEt/~|2dx =

ˆ
|ψ(x)|2dx.

This tells us that the probability of finding the particle in a specific region in space is constant in
time. The wave function Ψ(x, t) = ψ(x)e−iEt/~ is then said to be a stationary state.

A.3.3 Particle in a Box Model for Hydrogen Atoms

Remember that we were trying to find a model to describe how atoms work. Let us see if all this
quantum mechanical stuff got us any closer. To this end, consider a hydrogen atom. A hydrogen
atom is the simplest of all atoms. It consists of a nucleus and just one electron. The electron
is bound to the nucleus by electrostatic forces. We model this by saying the that nucleus sets
up a potential well for the electron. The potential well is described by a potential U which we
suppose to be zero inside the domain (0, L) (for some L > 0) and infinite outside of this domain.
In other words, the electron is trapped inside the box (0, L). We could imagine the nucleus to be
positioned at x = L/2. Note that this model is an extreme oversimplification of reality, but it
makes calculations easy and as we will see it will already lead to interesting results. If we assume
the electron to have mass m and to be in a quantum state of energy E, then we can then write
the system to be solved as:

Eψ(x) = − ~2

2m

∂2ψ

∂x2
(x) for x ∈ (0, L),

ψ(0) = 0,

ψ(L) = 0,ˆ
R
|ψ(x)|2dx = 1 for all t ≥ 0.

21The equation E = p2/2m also tells us that p is constant. Then ∆p = 0 and the Heisenberg uncertainty principle
tells us that ∆x must be infinite. Indeed, from the fact that |Ψ(x, t)|2 = 1, we see that the particle can be found
anywhere in space with equal probability. Also note that the wave function cannot be normalized in this case!
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If ψ is a solution to this system, then Ψ(x, t) = ψ(x)e−iEt/~ solves the time-dependent problem.

To actually solve the system, note that we are dealing with a linear ordinary differential equation.
Its characteristic equation is given by

~2

2m
λ2 + E = 0.

Solving for λ gives

λ = ±
√
−2mE

~2
= ±i

√
2mE

~2
.

From theory on linear ODE’s we know that the general solution takes the form

ψ(x) = C1 exp

(
i

√
2mE

~2
x

)
+ C2 exp

(
−i
√

2mE

~2
x

)
,

where C1 and C2 are two (complex) constants. By plugging in the boundary condition ψ(0) = 0
we find that C2 = −C1. Hence

ψ(x) = C1 exp

(
i

√
2mE

~2
x

)
− C1 exp

(
−i
√

2mE

~2
x

)

= C1

[
cos

(√
2mE

~2
x

)
+ i sin

(√
2mE

~2
x

)]
− C1

[
cos

(√
2mE

~2
x

)
− i sin

(√
2mE

~2
x

)]

= 2C1i sin

(√
2mE

~2
x

)
.

To satisfy the boundary condition ψ(L) = 0, we must have that√
2mE

~2
L = nπ for some n ∈ Z.

We will come back on this very important issue in a moment. For now, assume the condition is
satisfied for some n ∈ Z and let ψn denote the associated wave function. The value of C1 can be
found by using the requirement that ψn be normalized. One finds that |C1| =

√
1/2L and we

might as well choose C1 =
√

1/2L (choosing C1 to be a different complex number with the same
norm only introduces a phase shift in the solution). Our time-independent solution can now be
written as

ψn(x) =

√
2

L
i sin

(nπ
L
x
)
.

We sketch a few solution in Figure A.11

ψ1(x)

ψ2(x)

ψ3(x)

Figure A.11: Wave functions for a particle in a box.
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We see that ψn is basically a sine wave with n − 1 nodes. Let Ψn denote the time-dependent
solution associated with ψn. Sketching Ψn is a bit more difficult since it can have both real
and imaginary parts at the same time (whereas ψn only has an imaginary part). Both the real
and the imaginary parts form standing waves. 22 This is completely different from the classical
mechnical way of viewing a particle in a box: a particle bouncing around with some definite
momentum.

Anyway, the real reason I wanted to work out the solution to the particle-in-a-box system is
that it shows where the discrete energy levels in atoms come from. Remember that one of the
conditions that had to be fulfilled was that√

2mE

~2
L = nπ for some n ∈ Z.

In other words, the system can only be solved for an electron having one of the energies

En =
n2π2~2

2mL2
, n ≥ 0.

The energy levels {En}n≥0 form a discrete set, as is needed to explain the discrete emission of
atoms. In the Bohr model of the atom, this had stated explicitly but we had no clue where
it came from. But if we work within a quantum mechanical framework, where all matter is
described in term of wave functions, the discrete energy levels present themselves automatically.

But wait. So far we have only fully solved the time-independent equation. What about the
full time-dependent equation? Maybe we were a bit too quick too conclude that only discrete
energies are allowed. Luckily, as it turns out, the stationary states Ψn form a basis for the space
of solutions to the Schrodinger wave equation.23 That is, any solution Ψ can be written as a
linear combination of the stationary states:

Ψ(x, t) =
∑
n≥0

αnΨn(x, t) =
∑
n≥0

αnψn(x)e−iEnt/~ (αn ∈ C, x ∈ (0, L), t ≥ 0).

But what about the energy levels of such general solutions? In order to say something about
this, we will show that the ψn are mutually orthogonal functions first. Indeed, from the double
angle formulas one can derive that sin(a) sin(b) = 1

2 (cos(a− b) + cos(a+ b)) . Using this relation
we then see that for n 6= m

ˆ
R
ψn(x)ψm(x)dx = − 2

L

ˆ L

0
sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx

= − 1

L

ˆ L

0

(
cos

(
(n−m)π

L
x

)
− cos

(
(n+m)π

L
x

))
dx

= − 1

L

[
L

(n−m)π
sin

(
(n−m)π

L
x

)]L
0

− 1

L

[
L

(n+m)π
sin

(
(n+m)π

L
x

)]L
0

= 0.

Using the mutual orthogonality condition together with the fact that each ψn is normalized, we

22The standing waves are in visualised inB,C andD of http://en.wikipedia.org/wiki/Particle in a box#mediaviewer/File:InfiniteSquareWellAnimation.gif.
(see B,C and D).

23Interestingly enough, for my Bachelor’s thesis [53] I proved a spectral theorem for unbounded self-adjoint
operators. At the time I had had no clue why anyone would care. Now an application has presented itself.
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see that

ˆ
R

Ψ∗(x, t)Ψ(x, t)dx =

ˆ
R

∑
n≥0

α∗nψ
∗
n(x)eiEnt/~

∑
n≥0

αnψn(x)e−iEnt/~

 dx
=

ˆ
R

∑
n≥0

|αn|2|ψn(x)|2
 dx

=
∑
n≥0

[
|αn|2

ˆ
|ψn(x)|2dx

]
=

∑
n≥0

|αn|2.

Because our wavefunctions should be normalized, it follows that
∑

n≥0 |αn|2 should be equal to 1.

A fundamental postulate of quantum mechanics says that anything that is observable is represented
by a (Hermitian) operator acting on the (Hilbert) space of states. Examples of such observables
are position, momentum and energy. When discussing the Heisenberg uncertainty principle, we
saw that on a quantum scale particles don’t have an exact position or momentum. The only
thing we can hope to find by measurement is the expectation value of such an observable. In
general, if F is an observable with corresponding operator F̂ acting on some state Ψ, then its
expectation value (or, the observed value) is given by 24

〈
F̂
〉

=

ˆ
R

Ψ∗(x, t)F̂Ψ(x, t)dx.

In our case, the energy operator Ê is given by Ê = i~ ∂
∂t = − ~2

2m
∂2

∂x2 + U . The expectation value

24How does this relate to the expectation value known from probability theory? Remember that if ρ is the probability
density for some continuous random variable X then the expected value 〈X〉 is given by 〈X〉 =

´
R xρ(x)dx. If we

interpret X as an operator which multiplies by x, then this could be written as

〈X〉 =

ˆ
R
(Xρ1/2)(x) =

ˆ
R

(
ρ1/2

)∗
(x)(Xρ)(x)dx

(note that ρ is real and positive so taking square roots is fine and ρ = ρ∗). We see that the given definition of
the expectation value of an observable is a generalization of the expectation value for random variables known
from probability theory.
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〈E〉 is then found to be

〈E〉 =

ˆ
R

Ψ∗(x, t)

[
− ~2

2m

∂2

∂x2
+ U

]
Ψ(x, t)dx

=

ˆ L

0
Ψ∗(x, t)

[
− ~2

2m

∂2Ψ

∂x2
(x, t)

]
dx (U ≡ 0 inside the box)

=

ˆ L

0

∑
n≥0

α∗nψ
∗
n(x)eiEnt/~

∑
n≥0

−αn
~2

2m

∂2ψn
∂x2

(x)e−iEnt/~

 dx
=

ˆ L

0

∑
n≥0

α∗nψ
∗
n(x)eiEnt/~

∑
n≥0

αnEnψn(x)e−iEnt/~

 dx
=

ˆ L

0

∑
n≥0

|αn|2En|ψn(x)|2
 dx (orthogonality condition)

=
∑
n≥0

[
|αn|2En

ˆ L

0
|ψn(x)|2dx

]
=

∑
n≥0

|αn|2En. (ψn is normalized).

Recall that the expectation value of a discrete random variable X is given by∑
x

P (X = x)x.

Here P (X = x) is the probability that X takes on the value x and
∑

x P (X = x) = 1. Comparing
this with the expression

∑
n≥0 |αn|2En for the expected energy reveals that, for each n ≥ 0,

we can interpret |αn|2 as being the probability of observing the energy En. Then it follows
that energies other than the {En} are never observed. So, even though electrons can be in
superpositions of states with energies, when doing measurements - and the experiments which
showed discrete spectra for atoms count as measurements in this respect - we only observe them
to have energies from the set {En}. Finally we can say that our quantum mechanical model has
correctly predicted that only discrete energies are allowed for hydrogen atoms.

So far we have not excluded the case n = 0. Note that for n = 0 the energy En of the electron
is zero. But is it actually possible for the electron to have zero energy? The answer is no.
Remember that inside the box, the potential is zero so all of the energy of the electron is kinetic
energy. That is, E = p/2m. If E = 0, then p = 0 as well and we have no uncertainty with respect
to the momentum of the electron. But then the Heisenberg uncertainty principle tells us that
the uncertainty with respect to the position of the electron should be infinite. But that cannot
be the case, since our electron is confined to a finitely sized box. Hence the electron always has
some non-zero energy. In the lowest energy state, the ground state, the electron has an energy of
E1. If we go back to the Bohr model again, we had to assume the existence of such a ground
state. It could not be further justified. But, again, within quantum mechanics, this result comes
automatically.

Note that our model of the hydrogen atom was extremely simplified. A better model would
have to be three-dimensional to begin with. Also, the potential energy funtion should not be
some infinite square well but it should describe the electric field set up by the positively charged
nucleus. And we would also have to take into account the wave-like behaviour of the nucleus and
other possible interactions between the nucleus and the electron. But these things only make the
mathematics more complicated. In the end, just like for our simple model, one will find that the
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electron can only have discrete energies within the atom. Unlike the above case, there is only a
finite amount of energy levels the electron can have within the atom (outside of the atom the
electron can have any energy, just like a free electron). And as it turns out, the energy levels
predicted by quantum mechanics match to high accuracy with energy levels found in experiments
with emission spectra and such. In the end, the crazy assumption that all matter acts as waves
may not be so crazy after all.

A.3.4 Quantum Numbers and Pauli Exclusion Principle

In the above discussion we have only considered the hydrogen atom. The hydrogen has only a
single electron. As the amount of electrons in an atom increases, the complexity of setting up
and (numerically) solving the appropriate Schrödinger wave equations increases as well. But
again, discrete energy levels are found. In the case of a hydrogen atom, we could describe the
allowed states with just one number n, the so called principal quantum number. In general, the
allowed states are described by four quantum numbers: the principal quantum number n, the
angular quantum number l, the magnetic quantum number m and the spin quantum number
s. The principal quantum number n determines the energy of the electrons and it also tells us
something about the size of the volume where an electron may be found (with high probability).
This volume is referred to as the orbital of an electron.25 The angular quantum number l says
something about the shape of the orbital and the magnetic quantum m says something about
the orientation of the orbital.

Since nature tends to minimize (free) energy, one would expect all the electrons to be in the
lowest energy state. This turns out not to be possible. Nature places a limit on how many
electrons can share an orbital. We refer to this as the Pauli exclusion principle. And really, it is
not such a weird principle. It is like filling a bag with marbles. The marbles try to minimize
their gravitional potential energy by going to the bottom of the bag. But they can’t go all to the
bottom. The marbles will start to pile up in higher and higher energy levels. For electrons in an
atom, it turns out that each orbital can only be occupied by at most two electrons. We use the
quantum spin number s to distinguish between two electrons in the same orbital. This means
the number s can in fact only take on two different values. The quantum state of an electron
can now be uniquely specified by the four numbers (n, l,m, s). Electrons in a quantum state for
which n is maximal are said to be valence electrons. Generally speaking these electrons are most
likely to be found at a greater distance from the nucleus than the other electrons and they have
the highest energies. It is the valence electrons that participate in the bonding of atoms. We will
see how that works in the next section.

First, let us summarize what we have seen so far. Experiments have shown that electrons can
jump between discrete energy levels by absorbing and emitting photons. One can guess that
this interaction between electrons and photons is crucial to the understanding of solar cells. But
classical mechanics failed in giving us a proper understanding of the underlying physics. Following
the wave-particle duality of light, it was proposed that matter might posses a wave-particle
duality as well, leading us into the realm of quantum mechanics. The wave-like properties of
small particles like electrons are governed by the Schrödinger wave equation. By solving this
wave equation for a simplified model of a hydrogen atom we were able to predict the discrete
energy levels as observed in experiments.

25For the particle in a box, it can be seen from the sketches of the wave functions that the electron in the ground
state n = 1 is most likely to be found in the middle of the box where the nucleus is also supposed to be. That
is, the orbital is small. For higher energy states, the probability to be close to the nucleus decreases while the
probability to be further away from the nucleus increases. In other words, the orbital becomes larger.

126



A Working Principles of Solar Cells

A.4 Band Theory and Semiconductor Devices

A.4.1 Splitting of Energy Levels

So far we have only discussed isolated atoms. But atoms tend to bond with other atoms to form
new and larger structures, eventually forming everything around us. Since the allowed energy
levels of electrons in atoms are fundamental for understanding the interaction between electrons
and photons - which is in turn fundamental for understanding solar cells - we want to know what
happens to the electrons as atoms bond into solid materials.

As an illustrative example of what can happen we start with two hydrogen atoms initially
separated. Each of them has a single electron in the ground state described by a wave function
Ψi, i = 1, 2. Both electrons are at the same energy level. This situation is depicted in the left side
of Figure A.12. When the atoms get closer together, they start interacting with each other. This
interaction needs to be taken into account when setting up the Schrödinger wave equation. The
reader is referred to Chapter 2.7 of Ferry [20] for details on how this can be done. In the end,
when solving the Schrödinger wave equation one finds that the original ground states have split
into two new states: one with an energy lower than the original ground states and one with an
energy lower than the original ground states. To get a better understanding of why this happens,
consider the two wave functions Ψ1 and Ψ2 as illustrated in Figure A.12 again. As the atoms
are brouht closer together, the wave functions of the two electrons start to overlap. The wave
function describing the two electrons will be a mixture of the two original wavefunctions. There
are basically two ways in which the mixing can occur. Either the two wave functions are added
together, or one is subtracted from the other (and in both cases we have to do this with certain
scaling constants to make sure that the final wave function is normalized). Let the final wave
functions be denoted by Ψ+ and Ψ− respectively. They are sketched in the right of Figure A.12.

Ψ1 Ψ2

Ψ+

Ψ−

Figure A.12: Splitting of energy levels as two hydrogen atoms move closer together.

In the situation described by Ψ+ the electrons prefer to be in the same area in between the two
nuclei. In fact the electrons make the atoms stick together and we say that the electrons are in
the bonding state. The energy level associated with the bonding state is lower than the energy
level of the original ground state.

The situation described by Ψ− is different. The two electrons are most likely to be found on the
outside, one on the left and one on the right. It is as if the electrons are trying to pull the atoms
apart. We will say that the electrons are in the anti-bonding state. The energy level associated
with the anti-bonding state is higher than the energy level of the original ground state.

While originally the two electrons could only be in a single state (the ground state of their
respective hydrogen atom) with a single energy level, we see that after bringing the hydrogen
atoms together there are now two possible states for the electrons: the bonding and the anti-
bonding state, each having their own energy level. The Pauli exclusion principle tells us that
each of these states can hold at most two electrons.26

26Since each hydrogen atom has only one electron - and nature tends to minimize energy - the two bonding states
will be filled when bringing two hydrogen atoms together. That is, it is energetically favorable for the hydrogen
atoms to bond and form a H2 molecule. For helium atoms that have two electrons, both the bonding and the
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Let us generalise the above. Suppose we start with 2N hydrogen atoms. Initially, the atoms are
separated and each electron is in the ground state of its own atom. All electrons have the same
energy. In other words, the system has only one state. This state is filled with 2N electrons
(note that this does not violate the Pauli exclusion principle since we are dealing with 2N atoms
here, the state of the system can be filled with 2N electrons and not just two). Now we bring
the atoms together. Like in the above example, the single state of the system will split into 2N
different states. Half of them, N , will be bonding states and the energy associated with these
states is lower than the energy of the original state. The other half will be anti-bonding states,
where the energies are higher than before. Usually N is very large and the energy levels will be
spaced so closely together that the splitting results in two continuous energy bands. The energy
difference between the lowest anti-bonding state and the highest bonding state is called the band
gap. Note that in our system, no states are allowed which have an energy in this band gap.

Figure A.13: Splitting of energy levels into energy bands.

For atoms other than hydrogen atoms the situation is more complex because then each atom has
more than one electron and all these electrons will interact with one another. But as mentioned
earlier, the outermost electrons, the valence electrons, are the ones that play the most important
roles in bonding of atoms. Because valence electrons are characterized by having the same,
maximal value for principal quantum number n they also have (more or less) the same energies.
Just like with hydrogen atoms the energy levels associated with valence electrons will split into
continuous energy bands as the atoms are brought closer together and there will be a band gap
in between. In other words, when we only focus on valence electrons, what happens for general
atoms is similar to what happens for hydrogen atoms.

So far we have said nothing yet about which of the states, the bonding or the anti-bonding states,
will be occupied by the electrons. We have mentioned before that nature tends to minimize
energy, and taking into account the Pauli exclusion principle, it is expected that the electrons will
try to fill the bonding states first before filling up anti-bonding states. Generally speaking, this is
indeed what happens but there are a few different flavors here. A useful concept in discussing this
issue is the so called Fermi-Dirac distribution. It tells us for each energy level E - assuming this
energy is allowed within the material - what fraction of the states with this energy is occupied at
a given temperature T. More specifically, the Fermi-Direc distribution is given by

f(E) =
1

e(E−EF )/kT + 1
.

Here k is the so called Boltzmann constant. The energy EF is the Fermi energy or the Fermi
level. It represents the - possibly hypothetical - energy level that is half-occupied (f(Ef ) = 1/2).

anti-bonding states are filled when bringing the two atoms closer together. From an energy point of view there is
no reason for helium atoms to bond. And in fact they don’t: helium is considered a noble gas.
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Figure A.14: Fermi-Dirac Function for three different temperatures. The blue line corre-
sponds to the lowest temperature, the red line to the highest temperature.

Solid materials are classified into three different groups when it comes to energy band structures.
They will be explored below. On a side note, it will be easier from now on to think of electrons as
being small particles again. We needed their wave-like behaviour to get a better understanding
of the origin of discrete energy levels and band gaps. Now that we do, we can more or less forget
about the underlying framework and just take the energy levels and bands for granted. With
this in mind, let’s classify the different groups of solid materials.

A.4.2 Insulators, Conductors and Semiconductors

• Materials for which the band gap is relatively large are called insulators. At absolute
zero temperature, all of the electrons will be in bonding states. No electrons will be in
anti-bonding states. More specifically, the highest occupied energy band is completely
filled. An energy band that is (almost) completely occupied with electrons is referred to
as valence band. The next higher energy band is referred to as conduction band. If we
increase the temperature of the insulator to non-zero temperatures, the electrons will gain
thermal energy and some of them will be able to break free from their bonds and jump
from the valence band into the conduction band.27 Because the band gap is ‘large’, only
a tiny fraction of the electrons will be able to do so. The Fermi level for an insulator is
(more or less) halfway between the valence band and the conduction band. The reason is
that each time an electron jumps into the conduction band, the valence band loses one.
We want the Fermi-Dirac distribution to reflect this antisymmetric behaviour and that is
achieved by placing the Fermi level in the band gap. Note that the Fermi level does not
present a state that can actually be occupied by electrons!

• Semiconductors share the property with insulators that at absolute zero temperature they
have a completely filled valence band and a completely empty conduction band. However,
for semiconductors the band gap is much smaller compared to the band gap of insulators.
It is much easier for the electrons to make the jump into the conduction band. In fact, the
band gap is small enough that electrons can jump into the conduction band by absorbing
photons coming from the sun. That is why semiconducting materials are key ingredients

27Even though nature tends to minimize energy, some electrons will still be in the conduction band. The reason is
that nature in facts tends to minimize free energy. In situations of constant pressure this is the Gibbs free energy
G given by G = E − TS. Here S is entropy of the system and T is the temperature. For T = 0, the energy G is
minimized by minimizing E. As T increases, the entropy contribution becomes more and more important. The
entropy associated with a semiconductor having some electrons in the conduction band is much higher than the
entropy associated with a semiconductor having an empty conduction band because the former can occur in
many different ways while the latter can occur in only one way. Therefore, even at room temperature, G will be
minimized by having some electrons in the conduction band.
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for solar cells. Just like for insulators, the Fermi level for a semiconductor is approximately
halfway between the valence band and the conduction band.

• Lastly, conductors are materials for which the energy bands resulting from bonding and
anti-bonding states overlap. So, strictly speaking there is no band gap. At absolute zero
temperature the highest occupied energy band will be partly filled and this energy band is
in fact a conduction band. The Fermi level lies within this conduction band.28

Figure A.15: Band gaps and Fermi levels of insulators, conductors and semiconductors at
room temperature. The more ‘blue’ in a band, the more electrons there are present. A full
band (traffic jam) is not good for conduction, nor is an empty band (empty road).

As the names suggest, insulators are not good at conducting electrical current while conductors
are. But how exactly is this related to the energy bands? Remember that electric current is
the flow of electric charge. In our case, the charge will be carried by the electrons. To get the
electrons moving, we apply an electric field. This electric field is supposed to force the electrons
to move within the material. But, for the atoms to move that would mean they have to go into
different quantum states. For insulators, the valence band is almost completely filled. There is
hardly any room for electrons to move into different quantum states within the valence band.
It is as if the electrons are in a traffic jam. However, if an electron is able to jump into the
desolated conduction band, it will be able to move around freely through the material because
there are many states with similar energy levels available. But, like we said, it is really difficult
for electrons in an insulator to make this jump. Hence there will be little to no current flowing.
For conductors, because of the overlapping energy bands, there are always plenty of quantum
states with comparable energies for an electron to jump in to. Hence even a small electric field
can generate a large flow of current.

The conductivity of semiconductors is somewhere in between. What makes them special though
is that their conductivity is highly sensitive to so called impurities. Let’s have a look at that.

A.4.3 Doping of Semiconductors

An important semiconductor material is silicon. Each silicon atom has four valence electrons.
Each of these electrons can participate in the bonding with one other atom. Given the right

28Remember how we said that the photoelectric effect was observed for most metals? With our current understanding
of energy bands we can see why this is no coincidence. Electrons in the conduction band of a material are still
bound to the material. To get them out of the material, the electrons need to get into an energy level that is
above the conduction band. For insulators the energy from photons is not even enough to get the electrons
into the conduction band, let alone get them out of the material. For conductors - and most metals are good
conductors - electrons will be in the conduction band even without external energy sources. By absorbing energy
from photons one could imagine the electrons in the conduction band to gain enough energy to break free from
the material. And that is precisely the photoelectric effect.
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conditions, the silicon atoms will organize themselves in such a way that each silicon atom forms
bonds with four other silicon atoms. This can be depicted as follows.

Figure A.16: Atomic arrangement in a perfect crystalline silicon semiconductor

We see that the atoms have arranged themselves in a highly order periodic structure that extends
into all directions. We will refer to such structures as crystalline structures.

In Figure A.16, all of the electrons are in the bonding state. But we said that in semiconductors,
even at room temperature, some of the electrons will be able to jump break free from the bonds
and jump into the conduction band. When an electron has made such a jump, it leaves behind a
hole in the valence band. A neighbouring electron in the valence band can easily jump in this
hole (the energy levels are pretty much the same). In doing so, it leaves behind a hole itself and
we could say that there is a hole travelling through the material. We could interpret such holes as
positive charge carriers. Electrons are referred to as negative charge carriers. Both the electrons
in the conduction band and the holes in the valence band contribute to the conductivity of a
semiconductor. Note that the amount of electrons in the conduction band is equal to the amount
of holes in the valence band. We refer to such a semiconductor as an intrinsic semiconductor.

Figure A.17: A typical intrinsic semiconductor at room temperature. A small amount of
electrons have made the jump into the conduction band, leaving behind holes in the valence
band.

Suppose that instead of creating a material out of pure silicon, we add some impurities to the
material through a process called doping. There are two different flavours here.

• First, we add a small amount phosphorus atoms to the mix. Phosphorus atoms have five
electrons in their valence shell, one more than silicon atoms. At absolute zero temperature,
only four of the five valence electrons can participate in the bonding of the material. What
about the energy level of the remaining donor electrons? Such electrons do not participate
in bonding so their energy is higher than the energy of electrons in the valence band. But,
they are still bound to their respective nuclei. Electrons in the conduction band are only
bound to the material itself, not to any particular atom within the material. Therefore,
the energy level of the donor electrons will be below - but close to - the conduction band.
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We call this energy level the donor level and the phosphorus atoms are called donor atoms.
Note that the donor level lies within the previously forbidden band gap. Because electrons
in the donor level are still bound to their respective nucleui, they hardly contribute to
current flow when an electric field is applied. However, because the jump from the donor
level to the conduction band is much smaller than the jump from the valence band to the
conduction band, even at room temperature more or less all of these donor electrons will
be able to make the jump in the conduction band. The introduction of donor atoms breaks
the symmetry between the number of electrons in the conduction band and the number of
holes in the valence band. As a result, the Fermi level is shifted towards the conduction
band. It will be somewhere between the donor level and the bottom of the conduction
band.

When donor electrons make the jump into the conduction band, they don’t leave be-
hind a hole in the valence band because the electrons were not participating in any bonding
between atoms. They do ionize their donor atoms though. That is, the donor atoms were
electrically neutral at first because the negative charges of the electrons and the positive
charge of the nucleus cancelled out. But after losing an electron to the conduction band, the
donor atoms are left with a positive charge. They are ionized. Overall the semiconductor
is still electrically neutral though.

A semiconductor that has been doped with donor atoms is referred to as an n-type
semiconductor. It has a lot of electrons in the conduction band that can contribute to
current flow under the influence of an electric field. Note that, as mentioned before, even at
room temperature some of the electrons in the valence band will be able to jump into the
conduction band. In doing so, they leave behind holes. The holes can contribute to current
flow as well. However, the amount of holes in the valence band is neglible compared to the
amount of electrons in the conduction band for n-type semiconductors. We will say that
the electrons are the majority charge carriers whereas the holes are the minority charge
carriers.

Figure A.18: (Left) Atomic configuration of an n-type semiconductor. One of the atoms has
five valence electrons. (Right) Electron/hole configuration in an n-type semiconductor at room
temperature. All of the electrons originally in the donor level have jumped into the conduction
band (majority charge carriers). Only a few electrons have jumped from the valence band into
the conduction band, leaving behind only a few holes (minority charge carriers).

• In a similar fashion, we can dope a silicon semiconductor with atoms that have only three
valence electrons, like boron atoms. Then, even at absolute zero temperature, there will
be holes in the valence band without there being electrons in the conduction band. We
interpret the holes as positive charge carriers and we can associate an energy level with
them. Like with donor atoms, the energy level of the holes lies within the band gap. This
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time, it lies closer to the valence band and we refer to it is the acceptor level. The boron
atoms itself will be referred to as acceptor atoms. The introduction of acceptor atoms breaks
the symmetry between the number of electrons in the conduction band and the number
of holes in the valence band. Only this time the Fermi level is shifted towards the va-
lence band. It will be somewhere between the acceptor level and the top of the valence band.

When a hole is filled with an electron (like a valence electron), the respective accep-
tor atom is ionized: it has acquired a net negative charge. At room temperature, more
or less all of the acceptor atoms will be ionized (but overall the semiconductor is still
electrically neutral). We could interpret this as holes jumping down from their original
energy level into the valence band, just like electrons from donor atoms in an n-type
semiconductor jump into the conduction band.

A semiconductors that has been doped with acceptor atoms is referred to as a p-type
semiconductor. It will have much more holes in the valence band than electrons in the
conduction band. Therefore, the holes are the majority charge carriers in this case. The
electrons, a few of which have been able to jump into the conduction band, are the minority
charge carriers this time.

Figure A.19: (Left) Atomic configuration of a p-type semiconductor. One of the atoms has
only three valence electrons. (Right) Electron/hole configuration in an p-type semiconductor
at room temperature. All of the holes originally in the accepted level have falled into the
valence band (majority charge carriers). Only a few electrons have jumped from the valence
band into the conduction band (minority charge carriers).

Figure A.20: The energy bands of intrinsic and doped semiconductors relative to the same
Fermi level. The solid black lines represent the donor level (for the n-type semiconductor) and
acceptor level (for the p-type semiconductor).

Through this process called doping the conductivity of semiconductors can be tuned to high
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precision. And that is what makes them special. Insulators for example can be doped as well,
but their band gap is too large to make them good conductors.

Now, remember that we said how electrons in the valence band of a semiconductor can jump
into the conduction band by absorbing photons of high energy? In this process, energy contained
in photons is transferred to energy contained in electrons, i.e. charged particles. That is getting
close to something we could call a solar cell. But what happens if we connect an electric machine
to a single semiconductor material that is illuminated? Will the machine work? No! In order to
power the machine, we need the electrons and holes to flow as current through the machine under
a voltage difference so that they can give off their energy. But to make the electrons and holes
flow, driving forces needs to be present within semiconductor. Examples of such driving forces
are gradients of gravitational potential that can act on the mass of electrons, chemical potential
gradients that can act on the quantity of electrons and electrical potential gradients that can act
on the charge of electrons. Since the mass of electrons is small, the gravitational force is neglible.
We will also assume our device to be in thermal equilibrium. The only relevant driving forces will
be gradients in chemical potential (think of concentration gradients) and gradients in electrical
potential. But none of the semiconductors we have discussed so far, the intrinsic and the doped
ones, have such net driving forces within them upon being illuminated. The only thing that will
happen is that the excited electrons fall back into holes in the valence band after a bit (possibly
by emitting a photons). That is, the electrons and holes recombine. Luckily, as we will now see,
by combining doped semiconductors we can create a device in which driving forces will be present
upon illumination that can send the excited electrons and their holes in different directions.

A.4.4 p-n Junctions

Suppose we join an n-type and p-type semiconductor together. The interface between the two
semiconductors in such a device is referred to as a p-n junction. The electron rich side will be
called the n-region while the side that is rich of holes will be called the p-region. Overall both
the n-region and the p-region are - at least initially - electrically neutral. Now a few things will
happen:

1. First of all, because there is a chemical potential gradient (think: concentration gradient)
of electrons accross the p-n junction, electrons will diffuse from the n-region into the
p-region. In a similar fashion, holes will diffuse from the p-region into the n-region. We
see currents of majority charge carriers arising within the device. We will refer to these
currents as diffusion currents. Once the majority charge carriers have crossed the junction,
they suddenly become minority charge carriers and quickly recombine. After recombining,
the charge carriers have become immobile - only thermal generation can make them mobile
again but we assume the thermal generation rate to be small. As a result of the diffusion
process and the recombination process, a region which has been depleted of mobile charge
carriers is created around the p-n junction. This region is referred to as the depletion
region.

2. The p-region that was electrically neutral initially has acquired a negative charge near
the p-n junction by gaining electrons in the diffusion process. Similarly, the n-region has
acquired a positive charge near the p-n junction by losing electrons in the diffusion process.
As a result, there will be an electric field present in the depletion region. The electric field
creates a potential energy barrier for the diffusing majority charge carriers. In other words,
it will be more difficult for the majority charge carriers to diffuse across the depletion
region.
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Figure A.21: Diffusion and subsequent recombination of charge carriers across the junction
gives rise to a depletion region across which there is an electric field present.

3. The electrical potential barrier increases until an equilibrium situation is reached in which
there are no diffusion currents. But what kind of equilibrium are we talking about? Since
an electric field - that is, an electrical potential gradient - is present within the device,
it is not in electrical equilibrium. Similarly because there is a concentration gradient -
that is, a chemical potential gradient - present across the depletion region we can not say
that the device is in chemical equilibrium either. The thing is, the electrical and chemical
potentials are coupled (because in the end they both depend on the number of electrons or
holes present) into a single potential called electrochemical potential and our device is in
electrochemical equilibrium. Furthermore, as it turns out, this electrochemical potential
coincides with the Fermi level that we are already familiar with.29 Hence our device being
in electrochemical equilibrium means that the Fermi level is constant throughout the device.

The equilibrium situation is sketched in Figure A.22 in an energy band diagram. Since charge
carrier concentrations outside of the depletion region remain unaffected, the Fermi levels in the
n-region and the p-region should be at the same relative levels as before (see Figure A.20). But
then, in order for the Fermi level to be constant throughout the device, we need the energy levels
in the n-region and the p-region to shift relative to one another. This is illustrated by the brown
curves: the bottom one represents the highest energy level in the valence band while the top
curve represents the lowest energy level in the conduction band. The difference in energy levels
in the different regions is due to the electric field present within the device. Indeed, electrons in
the n-region need additional energy before they can climb the potential barrier induced by the
electric field and enter the p-region (think of an electron on the brown curve that needs to be
rolled uphill). In a similar fashion holes in the p-region need additional energy before they can
climb into the n-region.

Figure A.22: Energy band diagram for a p-n junction in electrochemical equilibrium.

Even though there are electrical potential gradients (electric field) and chemical potential gradients

29See Chapter 3.4 of Physics of Solar Cells by Würfel [58] for more details.
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(n-region is electron rich, p-region is hole rich) present within the material, there is no net driving
force for the electrons and holes. The Fermi level is constant throughout the device. Connecting
the two ends of the device with some conducting wire will not lead to a current flow of either
electrons or holes.

Now we are finally going to have a look at what happens when we illumate our device.

A.4.5 Illuminated Semiconductors

In an n-type semiconductor the electrons are the majority charge carriers while the holes are the
minority charge carriers. Now suppose that sunlight is incident on such an n-type semiconductor.
The photons with an energy higher than the band gap will be able to excite electrons from the
valence band into the conduction band, leaving behind holes in the valence band. We refer to
this process as photo-generation of electron-hole pairs. Note that both the amount of majority
and minority charge carriers increase under photo-generation. And in an absolute sense they
do so by exactly the same amounts. But relatively speaking, the concentration of minority
charge carriers will increase much more than the concentration of majority charge carriers. In
fact, the concentration of minority charge carriers can increase by several orders of magnitude
while the concentration of the majority charge carriers is hardly influenced. A similar thing
happens for p-type semiconductors in which the holes are the majority charge carriers and the
electrons are the minority charge carriers. Generally speaking, when sunlight is incident on a
doped semiconductor, the concentration of minority charge carriers increases with several orders
of magnitude while the concentration of majority charge carriers is hardly influenced. It is as if
the sunlight is doping the material with minority charge carriers in each region.30

Previously we used a single Fermi level for both electrons and holes. When our device is
illuminated this is no longer possible. Why not? Let us focus on the n-region first. As we just
said, the concentration of electrons in the conduction band is hardly influenced so the Fermi level
should be at (more or less) the same level as before. On the other hand, the concentration of
holes in the valence band is increased by several orders of magnitude. That suggests the Fermi
level should be shifted downwards. But we cannot shift it down and keep it at the same level at
the same time! We solve this issue by introducing separate Fermi levels for the electrons and
the holes.31 Denote them by EFe and EFh respectively. With this notation, EFe should stay
the same while EFh decreases upon illuminating the n-region. In a completely similar fashion it
follows that EFh stays the same while EFe increases upon illuminating the p-region. We could
say that there have always been separate Fermi levels for the electrons and holes respectively,
but that in our discussion up to now, these two Fermi levels always overlapped.

We look at the energy band diagram for illuminated pn-junctions now.

A.4.6 Short-Circuit Current

First we assume that the ends of the device are connected by highly conductive wire. That is,
we are looking at our device under short circuit conditions. Then, if there are driving forces
present, current will be free to flow within the device.

30It should be noted here that the photo-generation of electron-hole pairs tends to disturb the equilibrium that was
previously present within the device. We also know that electron-hole pairs can recombine. The recombination of
photo-generated electron holes pairs can undo the effects of the photo-generated electron-hole pairs and bring back
the device to its old equilibrium. If the recombination rate would be higher than the photo-generation rate, we
would hardly notice any disturbance from equilibrium at all. However, as it turns out, the recombination process
cannot keep up with the photo-generation process so they system will be pushed out of its old equibilibrium. See
Chapter 3.5 and Chapter 3.6 of Physics of Solar Cells by Würfel [58] for more details.

31More precisely, we should introduce quasi-Fermi levels because the Fermi level is only well-defined in a situation
of thermal equilibrium.
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Now we illuminate the device. The discussion in the previous subsection tells us that EFe in
the p-region increases while EFe in the n-region stays the same. Similarly, EFh increases in the
n-region while EFh stays the same in the p-region. The energy band diagram must then look as
in Figure A.23. In particular, we see that there is an electrochemical potential gradient present
within the device. This will cause electrons to flow from (in this case) the right to the left while
holes flow in the other direction. Assuming the device keeps on being illuminated, a steady
current - the so called short-circuit current - will develop.

Figure A.23:
(Left) Energy band diagram for a p-n junction in the dark.
(Right) Energy band diagram for an illuminated p-n junction under open-circuit conditions.

While working with Fermi levels allows for clean and short arguments, it may be helpful to get
a more physical picture of what is going on as well. In this respect, it should be noted that as
the device is illuminated, the chemical potential gradients across the depletion region decrease.
Because the chemical potential gradient previously balanced the electrical potential gradient
across the depletion region, there will be a net driving force across the depletion region. Now
imagine a photon being absorbed by an electron in the depletion region (or in the p-region
but close enough to the depletion region that it can diffuse into the depletion region before
recombining). The net driving force will sweep the electron across the depletion region into
the n-region. Using the conducting wire, the electron can easily flow into the p-region. In the
p-region the electron will quickly recombine with a hole and the process can repeat, resulting
in an electron current. In a similar way a current of holes can arise in the opposite direction.
Together these two currents make up the short-circuit current.

A.4.7 Open-Circuit Voltage

Next, we assume that the device is not connected to any electrical circuit. That is, we are looking
at our device under open circuit conditions. Except for some transient behaviour no current can
flow through the device in this setting.

As the sunlight starts illuminating the device, the discussion in Subsection A.4.5 again tells us
that EFe in the p-region increases relative to EFe in the n-region and EFc in the n-region increases
relative to EFc in the p-region. Initially, the energy band diagram will be the same as the one in
Figure A.23 for short circuit conditions. But, because after the initial transient state no current
can flow, the Fermi levels EFe and EFc must be constant throughout the device. It follows that
the energy band diagram must look like the one in Figure A.24. In particular we see that the
electrical potential barrier across the depletion region has decreased (the height-difference of the
brown lines across the depletion region have decreased). The amount by which the electrical
potential barrier has decreased compared with the non-illuminated equilibrium is referred to as
the open-circuit voltage. It is the maximum voltage under which our device can operate.
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Figure A.24:
(Left) Energy band diagram for a p-n junction in the dark.
(Right) Energy band diagram for an illuminated p-n junction under open-circuit conditions.

A more physical explanation of what is going on is the following. As the the device is illuminated,
the concentration gradients across the depletion region decrease. There will be a net driving force
(the electrical potential gradient is now larger than the opposing chemical potential gradient) and
electrons will flow from the p-region into the n-region. This time, because the ends of the device
are not connected, the electrons cannot flow into the p-region to recombine and they accumulate
in the n-region. For similar reasons holes accumulate in the p-region. The resulting built up of
charge in each region reduces the electrical potential difference across the depletion region until
a new electrochemical equilibrium is reached.

A.4.8 Solar Cells

Short-circuiting the device corresponds to connecting a load with zero resistance to the device.
On the other hand, the open-circuit conditions correspond to connecting a load with infinite
resistance to the device. Whenever a ‘real’ load having some finite resistance, for example a
lightbulb, is connected to the circuit, there will be a trade-off between the open circuit voltage
and the short circuit current. According to Ohm’s law, the power delivered to the load is given
by the product of the current and the voltage (P = IV ). We see that we have created a solar
cell: a device that can convert sunlight into electrical energy! Solar cells based on p-n junctions
are the most simple types of solar cells. But most other types are based on the same underlying
principles that have been discussed in this chapter.

An important parameter in optimizing the power output of solar cells is the band gap. A
lower band gap means that more photons can excite electrons into the conduction band and
hence a larger current can be generated. But, because electrons that have been excited into the
conduction band will quickly fall down to the bottom of the conduction (by giving off energy as
heat to the device for example), a lower band gap will result in a lower voltage output. There is
a trade-off here but in most cases a higher band gap is beneficial because of high resistance losses
otherwise. High efficiency solar cells have structures with multiple band gaps within a single cell
so that a large spectrum of photons can be utilized at their full potential.

A.4.9 Overview

We do a quick recap of what has been dicsussed in this chapter. We started by trying to describe
light and discovered that it has a wave-particle like duality. Most importantly for the discussion
in the rest of this chapter was the idea that light consists of photons. Then we started looking
at atomic models. We saw that atoms themselves are built out of a positively charged nucleus
and negatively charged electrons. The electrons are only allowed to have discrete energy levels
within an atom. We needed to dive into the realm of quantum physics to explain this bevahiour.
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The discrete energy levels give rise to energy bands when bringing atoms together to form
larger materials. The energy gap between the highest filled energy band (valence band) and the
next higher energy band (conduction band) is called the band gap. Materials with a relatively
small band gap are called semiconductors. Their conductivity can be tuned by doping them.
Furthermore, electrons can jump from the conduction band into valence band by absorbing
photons with energies higher than the band gap. In doing so, they leave holes behind that can
be considered as positively charged particles. A single semiconductor will not function as a solar
cell upon being illumated though. The electrons and holes will just recombine because there
are no internal driving forces that separate them. However, by joining together two oppositely
doped semiconductors a device is created that can deliver a current and a voltage upon being
illuminated. Of course we have ignored a lot of details that are important to producing real solar
cells, however, the general working principles of solar cells are now covered.
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