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Chapter 1

Introduction

This thesis will be concerned with illumination optics, i.e. the design of optical systems for lighting.
In the field of illumination optics there are essentially two approaches. The most common one
of the two approaches determines the light output of a given optical system with light source.
Methods of this kind are called forward methods. The most familiar of such methods is ray-
tracing. In ray-tracing the optical system is modeled on a computer and light-rays are emitted
randomly from the simulated light source in correspondence with the given light output of the
light source. These light rays are then traced through the optical system and in this way the light
output of the system is determined. Ray-tracing is a valuable tool for the optical designer, because
it allows to check if the designed optical system has the desired output. In practice, the optical
designer will be adapting his optical system until it gives a light output close to the demanded
output. This way of designing optical system by ray-tracing has some disadvantages. Ray-tracing
is very computational intensive if high precision is needed and therefore quite slow. Moreover, this
way of optical designing relies very much on the creativity and skill of the optical designer.

Another technique contrasting with the forward methods are the so-called inverse methods.
An inverse method determines an optical system which transforms a given intensity output of a
light source to a desired light output distribution. So, when a light source with a specific intensity
output and a desired light output distribution are prescribed, an inverse method will determine
the shape of the refractor or reflector which converts the light output of the source in the desired
output distribution. Inverse methods have the advantage over the forward methods that they
are much less labour-intensive and demanding of the optical designer. Recent developments in
diamond turning techniques have resulted in the fact that arbitrarily shaped lenses and reflectors
can be made with much higher precision than before. This allows for inverse methods to come
up with optical systems that would never have been achieved with forward methods, but can be
physically realized nonetheless. This thesis will be concerned with an inverse method and the
goal of this research is to physically produce a reflector that transforms a uniform parallel bundle
of light into a highly nontrivial light output distribution to demonstrate the capabilities of this
inverse method. To make this more concrete we will now describe the simple optical system that
we will focus on for the rest of this thesis.

1.1 The optical system and the milling machine

In Figure 1.1 the optical system, that will be of interest for the rest of this thesis, is depicted.
The system consists of a light source, a reflector surface and a projection screen. We will assume
that the light source is circular and emits a parallel homogenous bundle of light in the direction
perpendicular to its plane. Directly above this light source a reflecting surface is positioned which
reflects the bundle of light in the direction of a projection screen. We will assume that this
projection screen is situated in the far-field of the reflector surface. This means that we will
assume that the reflected light rays originate from one point. As long as the distance between the
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6 CHAPTER 1. INTRODUCTION

reflector and the projection screen is large enough, the error introduced by it will be small. The
problem that interests us is the following. Suppose that the light source with its output intensity
is given and, moreover, that a desired light intensity distribution on the projection screen is given,
what then should the shape of the reflector surface be?
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Figure 1.1: Schematic representation of the optical system

In Chapter 3 we will see that the reflector surface is described by a complicated partial differ-
ential equation involving the output intensity of the source and the desired intensity distribution
on the projection screen. In [5] a numerical method was introduced to solve this partial differen-
tial equation. This numerical method we will from now on call the least-squares method. In the
least-squares method the light source gets covered with a Cartesian grid and in each of the grid
points the height of the reflector gets determined. The least-squares method is able to determine in
this way the reflector surface corresponding to highly nontrivial light intensity distributions. For
example the light intensity distribution corresponding to a painting was determined with the least-
squares method. The reflector surface subsequently gets tested by using professional ray-tracing
software and this gave the satisfactory result depicted in Fig 1.2.

The goal of this graduation project is to set the necessary steps in order to be able to physically
produce the reflector that transforms the homogeneous parallel bundle of light into an outgoing
intensity distribution that produces Figure 1.2 on the projection screen. To produce this reflector
we will use a milling machine available at Philips Lighting, Eindhoven.

Crudely said, the milling machine constructs a reflector by removing material from the top
surface of a cylindrical workpiece. In order to do this the chisel of the machine moves along
concentric circles around the axis of the milling machine and at each point cuts to a specified
depth. It starts with the circles with smallest radii and moves outward in a more or less smooth
manner. The depth at each point corresponds to the height of the reflector. The machine needs
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Figure 1.2: On the left the desired target distribution on the projection screen is shown. On
the right the result is shown when using professional ray-trace software to determine the output
distribution on the projection screen given by the reflector surface as determined by the least-
squares method.

to be provided with the reflector height on a polar coordinate grid normal to the chisel axis. One
thing that puts a constraint on the set of workable data is the fact that when the axis of the chisel
moves along its path, the acceleration of the chisel in the direction of cutting is finite. To deduce
the implications of this restriction on the reflector surfaces it produces we consider a circular path
γ : [t0, t1] → R

2 in the plane normal to the axis of the milling machine. Let v : M → R be
the function giving the height of the reflector for each position of the chisel in the set of possible
positions, i.e. the set M. Along the path described by γ the height of the reflector is given by
v(γ(t)), t ∈ [t0, t1]. Using polar coordinates we have

d2v(γ(t))

dt2
=

d

dt

(∂v
∂r

dr

dt
+
∂v

∂θ

dθ

dt

)
=

d

dt

(∂v
∂θ

dθ

dt

)
=
∂v

∂θ

d2θ

dt2
+
∂2v

∂θ2

(
dθ

dt

)
=
∂2v

∂θ2

(
dθ

dt

)
.

Here we used that derivative of r with respect to time is zero, because the path is circular, and,
the fact that second derivative of θ with respect to time is zero, because the chisel moves at
constant speed along its path. From this we see that the acceleration of the chisel is proportional
to the second partial derivative of v with respect to θ. Thus the fact that the chisel acceleration
is restricted implies that the second derivative of the height of the reflector surface with respect
to θ is restricted also.

In the least-squares method the light source is covered with a Cartesian grid and in the grid
points the height of the reflector is determined. To provide the milling machine with workable
data we must provide the machine with the reflector height on a polar coordinate grid. In Figure
1.1 it can be seen that the angle between the direction of the incoming light ray and the reflector
surface will be approximately 45◦. In order to reduce the chisel accelerations we need to reduce
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∂2v/∂θ2. We can reduce ∂2v/∂θ2 to a great extent to choose a cylindrical coordinate system such
that the axis of the cylinder is approximately normal to the reflector surface. This coordinate
system is depicted in purple in Figure 1.3.
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Figure 1.3: The Cartesian coordinate system is depicted in red, the rotated Cartesian coordinate
system is depicted in blue and the cylindrical coordinate system is depicted in green. The co-
ordinate system in red is the coordinate system in which the reflector heights are specified by
the least-squares method. The black arrow represents the chisel of the milling machine, which is
parallel to the z̃-axis. The origin of the three coordinate systems coincide on the reflector. This
not immediately clear from the figure, because we plotted the cylindrical coordinate system with
a origin beneath the reflector for clarity of the figure.

The least-squares method determines the reflector height in the Cartesian coordinate system
with the x−y plane parallel to the light source, which is depicted in red in Figure 1.3. To transform
a point (x, y, z) to the corresponding point (x̃, ỹ, z̃) in the rotated Cartesian coordinate system,
which is depicted in blue in Figure 1.3, we rotate over an angle β. We have⎛⎝ x

y
z

⎞⎠ =

⎛⎝ cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)

⎞⎠⎛⎝ x̃
ỹ
z̃

⎞⎠ =

⎛⎝ x̃ cos(β)− z̃ sin(β)
ỹ

x̃ sin(β) + z̃ cos(β)

⎞⎠ .

We can furthermore relate the point (x, y, z) in the original Cartesian coordinate system to a point
in the cylindrical coordinate system of the milling machine, by defining the cylindrical coordinate
system by the relations

x̃ = r cos(θ) and ỹ = r sin(θ).
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With this we find that the relation between the Cartesian coordinates x, y, z and the cylindrical
coordinates r, θ, z̃ is given by⎛⎝ x

y
z

⎞⎠ =

⎛⎝ r cos(θ) cos(β)− z̃ sin(β)
r sin(θ)

r cos(θ) sin(β) + z̃ cos(β)

⎞⎠ . (1.1)

Now, suppose the reflector height is determined by the Least-Squares method in the coordinate
system of the source, i.e. the coordinate system depicted in red in Figure 1.3. Let the reflector
height be given by a function u : DR1 → R. We assume that the light source is a disk with radius
R1 > 0, i.e. the set DR1

, and that the reflector height is given by the function u for every point
on the light source. We want to determine from this function u : DR1

→ R a function v : M → R

that gives the reflector heights in the rotated cylindrical coordinate system. The set M depends
on the function u and the angle of rotation β. The reflector is in the coordinate system of the
light source given by points (x, y, u(x, y)) ∈ R

3. Equation (1.1) tells us how x, y, z are related to
the cylindrical coordinates r, θ, z̃. From this we see that the coordinates r, θ, z̃ are a point on the
reflector surface if and only if they satisfy the relation

u
(
r cos(θ) cos(β)− z̃ sin(β), r sin(θ)

)
= r cos(θ) sin(β) + z̃ cos(β).

Using this we define v : M → R as: For each (r, θ) ∈ M, v(r, θ) := z̃, where z̃ is the root of the
function fr,θ, which is defined by

fr,θ(z̃) := u
(
r cos(θ) cos(β)− z̃ sin(β), r sin(θ)

)− (r cos(θ) sin(β) + z̃ cos(β)
)
. (1.2)

Furthermore, we define the set M in this to be the set of points (r, θ) ∈ R>0 × [0, 2π) for which
fr,θ has a root. We will choose the angle of rotation β in such a way that the maximum value of
|∂2v/∂θ2| is as small as possible.

The function v : DR1 → R is only given on the grid points used in the Least-Squares method.
This means that we need to interpolate the function when searching for the roots of the functions
fr,θ. To provide the milling machine with workable data we cover the setM with a polar coordinate
grid, given by (ri, θj), 1 ≤ i ≤ Nr, 1 ≤ j ≤ Nθ. To find the height of the reflector surface for a
grid point (ri, θj) we determine the root z̃i,j of fri,θj and have

vi,j := v(ri, θj) = z̃i,j .

The set DR1 is by definition a disk, however, the set M is not disk-shaped anymore. As
the reflector makes approximately an angle of 45◦ with the plane of the light source, β will be
close to π/4. The set M will therefore be roughly shaped as an ellipse whose semi-major axis,
by the Pythagorean theorem, has roughly

√
2 times the length of its semi-minor axis. However,

the milling machine only produces disk-shaped reflectors and therefore the reflector needs to be
extrapolated to a disk DR containing the set M.

In Figure 1.4 a possible shape of the set M and a disk DR containing it are sketched. Besides
this, in this figure, also some examples of chisel paths are shown. The function v : M → R

needs to be extrapolated to the whole of DR such that at the boundary between M and DR\M
the second derivative |∂2v/∂θ2| does not get too large. As part of an internship project preced-
ing this graduation project different ways of extrapolating the function v to DR where consid-
ered. In the most fruitful of these attempts we extrapolated the reflector surface by minimizing∫
DR\M(Δv)2 dA, while demanding continuous differentiability of v over the boundary ∂M. We

minimized
∫
DR\M(Δv)2 dA, because it is a functional treatable by the Calculus of Variations

and (Δv)2 is related to (∂2v/∂θ2)2. The application of the Calculus of Variations resulted in a
boundary value problem with two boundary conditions on ∂M and none on ∂DR. We were able
to solve this boundary value problem and in this way extrapolate the reflector surface. However,
there was an important issue that this approach did not take into consideration. Theoretically
no light leaving the the light source as a parallel bundle should end up at the part DR\M of the
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DR

∂M

M

Figure 1.4: The disk DR with four examples of chisel paths.

extrapolated reflector, but in practice, due to small alignment errors, this is unavoidable. This
was not taken into account for when extrapolating the reflector surface in the way just described.
Light that falls on these extrapolated parts of the reflector will therefore be reflected in unwanted
directions and in this way ruin the image on the projection screen created by the M part of the
reflector.

In this thesis we will therefore take a different approach. We will extrapolate the reflector
surface already in the coordinate system of the source. We will extend the function v : DR1

→ R

to a disk DR2
, with R2 > R1 and take R2 large enough such that when we determine the reflector

height function in the rotated cylindrical coordinate system, the support of the function contains
a disk DR that contains M. We will first use the least-squares method to determine the function
v : DR1 → R and subsequently use an adaptation of the least-squares method to extrapolate this
function to the set DR2

. By using an adaptation to the least-squares method we will be able to
prescribe in which direction the extrapolated parts of the reflector should reflect light. Moreover,
this extrapolated function v : DR2

→ R will also be continuously differentiable over the boundary
∂DR1

.
In order to be able adapt the least-squares method such that we can use it to extrapolate

the reflector surface, we first also need to improve it for disk-shaped light sources. As Figure 1.2
shows, the least-squares method works quite satisfactory for rectangular sources. However, when
a disk-shaped light source is used, the results are less ideal. This can be seen in Figure 1.5. The
image has some strange features along its edges. In the middle of all four edges strange bulges
appear and especially the lower corners of the image appear truncated. These abnormalities are
the result of the fact that a Cartesian grid is not very suitable to a disk-shaped source. Although
these abnormalities appear relatively small they will turn out to be detrimental when we need to
extrapolate our reflector to the larger disk DR2

.
In order to deal with arbitrarily shaped light sources we will in this thesis introduce the least-

squares method independent of the choice of coordinate system. Besides this we will implement
a polar coordinate version of the least-squares method for the disk-shaped light source, that will
outperform the least-squares method in Cartesian coordinates in this case.
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Figure 1.5: The image is determined by calculating the reflection of approximately 1.1 million
evenly distributed light rays emitted by the source. The reflector surface was calculated with the
Least-Squares method on a 800× 800 Cartesian grid for a disk-shaped source.

1.2 Outline of this thesis

This thesis will start out with introducing the necessary concepts of the theory of Tensor Calculus
in Chapter 2. We will in this chapter define tensors and show how the components of a tensor
transform under a basis transformation. Besides this we will clarify the difference between so-called
holonomic and anholonomic bases and see how they are related. Furthermore, we will consider
the properties of the the directional derivative in Euclidean space. We will see that the directional
derivative is a special case of the more general concept of covariant derivative. We will end this
chapter with the definition of the covariant derivative, which is a convenient definition to rely on
when deriving the energy conservation equation for our reflector system.

The derivation of this energy conservation equation, which is called the Monge-Ampère equa-
tion, is what will occupy us for most of Chapter 3. We will derive the Monge-Ampère equation
in a coordinate independent manner, i.e. beforehand we will not make any assumption on the
coordinate system in use besides the assumption that it is orthogonal. The derivation of the
Monge-Ampère equation culminates in Theorem 3.3.4 in which we state the Monge-Ampère equa-
tion for the reflector system in coordinate independent form. Subsequently, we will derive in
Section 3.4 some coordinate specific expressions for Monge-Ampère equation. We will derive from
the coordinate independent form of the equation, the coordinate specific ones for polar coordinates
with a holonomic basis, polar coordinates with an anholonomic basis and Cartesian coordinates.
In this last coordinate system we retrieve the form of the Monge-Ampère equation as earlier de-
rived in [5]. We will end Chapter 3 by deriving a boundary value problem for the Monge-Ampère
equation when the output intensity of the light source and the desired light intensity distribution
on the projection screen are prescribed. This will be the subject of Section 3.5 and Section 3.6.

In Chapter 4 we will generalize the Least-Squares method introduced in [5] to general coordinate
systems. Each iteration of the Least-Squares method consists of three steps. These three steps
will be treated in Sections 4.2, 4.3 and 4.4 The method as presented in [5] contains a minor flaw in
the second of these three steps. In this step a constraint was forgotten when minimizing a certain
functional. We will therefore in Section 4.3 consider this step quite extensively and show that
with this extra constraint we can still minimize this functional algebraically. We will increase our
intuition on this minimization problem by using a very indicative way to graphically represent the
minimization problem.
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In Chapter 5 we will discuss the implementation of the Least-Squares method for polar coordi-
nates with an anholonomic basis. We will compare the Least-Squares method in polar coordinates
with the one in Cartesian coordinates, as presented in [5], for a disk-shaped light source. We will
see that for a disk-shaped light source the Least-Squares method in polar coordinates outperforms
the Least-Squares method in Cartesian coordinates. Furthermore, we will see that the unwanted
bulges appearing on the edges of the image on the projection screen, as shown in Figure 1.5,
disappear when using the polar coordinate implementation of the Least-Squares method.

Finally, we will in Chapter 6 consider the extension of the reflector surface from an initial
disk-shaped source DR1

to a second larger disk-shaped source DR2
, with R2 > R1. In order to this

we present a adapted version of the least-squares method and test it for several desired intensity
distributions on the projection screen. Furthermore, we will study the discontinuities over the
boundary between the DR1 and DR2 .

We will end this thesis by summarizing the achievements and making some recommendations
for further research by considering what final things need to be done to produce the reflector and
thereby achieve the goal of this graduation project.



Chapter 2

Tensor Calculus

In the mathematical description of a physical system one often starts out with defining a coordinate
system. This coordinate system is used to quantitatively describe the features of the system and
allows for the application of the powerful tools of Calculus. However, the results obtained by these
tools should not depend on the particular choice of coordinate system, because the coordinate
system is not a feature of the physical system. The choice for a specific coordinate system is
frequently based on the symmetries of the physical system. For example, a physical system which
is rotationally symmetric with respect to a certain axis is easily described in terms of cylindrical
coordinates. It could, however, be that one wants a mathematical description of such a degree of
generality that the symmetries of this system are not known beforehand. In such cases one would
like to postpone the choice of a specific coordinate system.

When one wants to avoid the choice of a specific coordinate system in describing a physical
system, the natural mathematical language to use is that of Tensor Calculus. Tensor Calculus
provides a way of applying the tools of Calculus without specifying a coordinate system and in this
way ensures that the results obtained are indeed independent of coordinate systems as demanded.
From the coordinate-free expressions derived, the coordinate specific ones easily follow.

In this chapter we will introduce all the necessary concepts of Tensor Calculus that will be
used later on. Instead of referring to literature when using concepts of Tensor Calculus we decided
to devote a chapter to it. We have several reasons for this. Firstly, it causes this thesis to be self-
contained to a larger extent what makes for more pleasant and convenient reading. Furthermore,
it might serve as an introduction to the concepts of Tensor Calculus and Differential Geometry
for someone with a specific interest in the application of Tensor Calculus to free form reflector
design. Part of the literature on free form reflector design relies heavily on differential geometry,
see for example [9, 10]. This chapter should serve as a minimal introduction to Tensor Calculus
and Differential Geometry such that these papers are understandable.

This chapter relies heavily on [1]. Besides this, also [2, 4, 3, 7, 8] have been consulted. If one
wants a more detailed understanding of what is to follow, these texts should be studied. We will
indicate throughout this chapter which parts of these sources have been used.

2.1 Euclidean spaces and manifolds

The optical system we would like to describe exists in a 3-dimensional space. The directions of
light rays in this space will be indicated by vectors, hence our space needs a vector space structure.
Besides this we need a concept of inclination between two vectors and in order to establish this
the vector space will be furnished with an inner product. However, we do not want to give a
point in this 3-dimensional space the special status of origin. Such a choice is arbitrary and we
therefore avoid it. The mathematical concept which precisely encapsulates the aforementioned is
the Euclidean space, which is defined as follows for an arbitrary dimension. (See [1, p.45].)

Definition 2.1.1. An n-dimensional Euclidean space E is a metric space, i.e. a set equipped with

13



14 CHAPTER 2. TENSOR CALCULUS

a distance function d : E×E → R>0, furnished with a mapping + : E×V → E, in which V is an
n-dimensional Euclidean vector space∗ with inner product (·|·) : V × V → R, such that

(i) ∀x, y ∈ E ∃!v ∈ V : y = x+ v, d(x, y) =
√

(v|v);
(ii) ∀x, y ∈ E, ∀v ∈ V : d(x+ v, y + v) = d(x, y);

(iii) ∀x ∈ E, ∀u, v ∈ V : (x+ u) + v = x+ (u+ v).

The Euclidean space of dimension 3 is the minimal description of the space in which our
optical system is situated. Nonetheless, it is immediately clear that the reflector surface due to
its curvature does not have the linearity expressed by the vector space V and therefore is not a
Euclidean space. The generalization of the concept of Euclidean space, which lends itself to the
description of curved spaces, is the manifold. (See for example [3, p.7].)

Definition 2.1.2. An n-dimensional topological manifold is a second countable Hausdorff† topo-
logical space, say M , such that every point p ∈ M is contained in some open set Up that is
homeomorphic to an open subset of the n-dimensional Euclidean space.

The trivial example of a manifold is the Euclidean space, because the Euclidean space is second
countable and Hausdorff and obviously homeomorphic to itself. The manifolds of interest in this
thesis besides Euclidean spaces are surfaces in R

3. The surface is an example of a submanifold of
R

3. The following definition is from [4, p.4].

Definition 2.1.3. A subset M ⊂ R
N is said to be an n-dimensional submanifold of RN , with

n ≤ N‡, if locally M can be described by giving N −n of the coordinates continuously in terms of
the n remaining ones. This means that given p ∈M , a neighborhood of p on M can be described
in some coordinate system (x1, . . . , xn, y1, . . . , yN−n) of RN by N − n continuous functions

yα = yα(x1, . . . , xn), α = 1, . . . , N − n.

If the functions yα are k-times (k ≥ 1) continuously differentiable, we will callM an n-dimensional
Ck-submanifold of RN . If the functions yα are k-times differentiable for every k ∈ N, we call
the submanifold smooth. An (N − 1)-dimensional submanifold of R

N we call a surface and a
1-dimensional submanifold we call a curve.

It is clear that submanifolds of RN are examples of topological manifolds, because as subsets
of the Euclidean space R

N they are certainly locally homeomorphic to R
N . Moreover, because

the Euclidean space satisfies the necessary topological conditions, a submanifold of the Euclidean
space does also. The reflector surface which will be of much interest to us is an example of a
surface. We can represent the reflector surface in the following way.

Example 2.1.4. Let f : V ⊂ R
2 → R be a continuously differentiable function. Then the set of

points M = {(x, f(x)) ∈ R
3 | x ∈ V } describes a surface in R

3.

A neighbourhood on a submanifold of RN can be described by a coordinate system. (The
following definition is from [1, p.46].)

Definition 2.1.5. Let M be an n-dimensional submanifold of RN and U ⊂ M an open subset.
The couple (U, v), where v is a system of n functions v : U → v(U) ⊂ R

n, is called a (local)
(curvilinear) coordinate system if it is a differentiable bijection, with non-degenerate Jacobian.
The function v : U → v(U) is referred to as a (coordinate) chart of U and the inverse function
v−1 : v(U) → U is referred to as a parametrization of v(U).

∗One often writes R
n for both E and V .

†A topological space X, with collection of open sets τ , is said to be second countable if it has a countable
base, i.e. there exists a countable collection of open sets {Ui}i∈I such that every U ∈ τ is a union of elements
of this collection. The topological space (X, τ) is said to be Hausdorff if for each distinct pair of points x, y ∈ X
there exists disjoint U, V ∈ τ such that x ∈ U and y ∈ V . However, for all the manifolds used in this text, these
topological notions will be satisfied.

‡From now on, when n and N are used in such a context, one may assume that n ≤ N .
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In second place behind the Cartesian coordinate system, the most used coordinates in 2-
dimensional Euclidean space are probably the polar coordinates.

Example 2.1.6. Let U = R
2\{(λ, 0) | λ ≥ 0}. Following notational standards we set v =

(v1, v2) = (r, θ) and u = (u1, u2) = (x, y). The coordinate chart u 
→ v(u) of the polar coordinate
system is given by

r(x, y) =
√
x2 + y2,

θ(x, y) = tan−1(x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arctan(y/x) (x > 0, y > 0),

arctan(y/x) + 2π (x > 0, y < 0),

arctan(y/x) + π (x < 0),

π/2 (x = 0, y > 0),

3π/2 (x = 0, y < 0).

The parametrization v 
→ u(v) is the inverse of the coordinate chart and is given by

x(r, θ) = r cos(θ),

y(r, θ) = r sin(θ).

An example of a familiar parametrization for surfaces in R
3 is the following.

Example 2.1.7. Consider the surface of Example 2.1.4. Let p = (x, f(x)) and let u : V → R
2 :

x 
→ u(x) define some local coordinate system on V , with local coordinates u1 and u2. We define
a coordinate system on M by the mapping v :M → R

2, given by

p = (x, f(x)) 
→ v(p) = u(x). (2.1)

The inverse of this mapping v−1 : R2 →M , given by

y 
→ (u−1(y), f(u−1(y))), (2.2)

is called the Monge parametrization of the surface M .

In Figure 2.1 two examples of a Monge parametrization are shown. The Monge parametrization
makes use of the fact that there is a one-to-one mapping between the subset V of the plane and
the surface M . This gives a one-to-one mapping between a point on M and the coordinate pair
(u1, u2) on V . Note, however, that such a bijection, and hence such a parametrization, is only
possible if the surface has no “overhangs”. From Figures 2.1 it is intuitively clear that such a
parametrization is not possible for example for all the points of the sphere S2 at once. The
reflector surface with which we will be concerned turns out to have no such overhangs and the
Monge parametrization is therefore suitable to describe it. This is a restriction of the possible
surfaces we can describe, but a justifiable one. The set V will represent our light source and we
will assume it to radiate only in the direction perpendicular to V in the direction of the reflector
surface. A light ray radiating from the point x ∈ V will hit upon the reflector surface at the point
(x, f(x)) ∈M , because the light rays travel in straight lines. Thus, the Monge parametrization is
a very natural way to describe the reflector surface if we take V to be the light source, and it does
not pose a new restriction for our problem.
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Figure 2.1: Two surfaces with a Monge parametrization. The coordinate system on the plane
induces a coordinate system on the curved surface. On the left we have an elliptic coordinate
system and on the right side a parabolic coordinate system. The resulting coordinate systems on
the surfaces are indicated by coordinate lines.

2.2 Tangent space

In this section we will introduce the concept of a tangent space. The tangent space is the vector
space of tangent vectors attached to each point of an n-dimensional submanifold of RN . Before
introducing the tangent space we will first introduce tangent vectors and the difference between a
holonomic basis and an anholonomic basis.

A tangent vector to an n-dimensional submanifold M of RN can be considered as the velocity
vector of some differentiable curve on M . Let us consider a point p ∈ M and suppose we have a
curve passing through this point. We can interpret the velocity vector of this curve in the point p
as a vector in R

N originating from the point p ∈ M ⊂ R
N . Let us formalize this in the following

definition.

Definition 2.2.1. Consider an n-dimensional continuously differentiable submanifold M of RN .
Let p ∈M and assume that a neighbourhood Up of p can be described in some coordinate system
(Vp, (x, y)) of R

N by (x, y) = (x1, . . . , xn, y1, . . . , yN−n), where

yα = yα(x1, . . . , xn), α = 1, . . . , N − n,

and the functions yα are continuously differentiable. Furthermore, Up ⊂ Vp, where Up is n-
dimensional and Vp is N -dimensional. Let us assume without loss of generality that

p =
(
x1 = 0, . . . , xn = 0, y1(0, . . . , 0), . . . , yN−n(0, . . . , 0)

)
.

A vector v ∈ R
N originating at p is a tangent vector toM at p if there exists a curve γ : (−ε, ε) →

R
n, ε > 0, γ(t) = (x1(t), . . . , xn(t)) such that γ(0) = (x1(0) = 0, . . . , xn(0) = 0) and

dγ(γ(t))

dt

∣∣
t=0

= v,

where

γ(γ(t))t) :=

(
x1(t), . . . , xn(t), y1

[
x1(t), . . . , xn(t)

]
, . . . , yN−n[x1(t), . . . , xn(t)]) ∈ R

N .

It is clear that the curve γ giving the tangent vector v at p is not unique. Notice that γ is a
function of the n-variables x1, . . . , xn. Applying the chain rule gives us

dγ(γ(t))

dt

∣∣∣∣
t=0

=

n∑
i=1

dγ

dxi
dxi(t)

dt

∣∣∣∣∣
t=0

. (2.3)
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In this expression the derivatives of γ are the vectors given by

dγ

dxi
=

(
0, . . . , 0, 1, 0, . . . , 0,

∂y1

∂xi
, . . . ,

∂yN−n

∂xi

)
, i = 1, . . . , n, (2.4)

where the 1 on the right hand side is in the i-th position. These vectors do not depend on the
choice of curve γ, but only on M and the choice of local coordinate system. Every tangent vector
is a linear combination of these n vectors in R

N .
Let us now consider a curve γj : (−ε, ε) → R

n, where γj(t) = (0, . . . , 0, xj(t) = t, 0, . . . , 0), for
1 ≤ j ≤ n. In this case we have

dγ(γj(t))

dt

∣∣∣∣
t=0

=

n∑
i=1

dγ

dxi
dxi(t)

dt

∣∣∣∣∣
t=0

=
dγ

dxj
.

From this we see that the vectors (2.4) are the velocity vectors of the curves γj give by

γ(γj(t))(t) :=

(
0, . . . , xj(t) = t, . . . , 0, y1

[
0, . . . , xj(t) = t, . . . , 0

]
, . . . , yN−n[0, . . . , xj(t) = t, . . . , 0

])
.

The curves γ(γj(t)) are called the coordinate lines, because these are the curves obtained by
varying one of the n coordinates, while keeping the others constant. Let us denote the n vectors
in (2.4) by ei, i.e.

ei :=
dγ

dxi
.

Lemma 2.2.2. The tangent vectors to M at a point p ∈M constitute an n-dimensional subspace
of RN . The n vectors in e1, . . . , en span this vector space.

Proof. The vectors ei have a 1 in the i-th position and all of the other first n components are zero.
From this fact it follows that they are linearly independent. Furthermore, (2.3) implies that every
tangent vector can be written as a linear combination of the n vectors e1, . . . , en. The vectors
e1, . . . , en are vectors in R

N which is a vector space, hence it follows that the tangent vectors
constitute an n-dimensional subspace of RN and the vectors e1, . . . , en are a basis for this vector
space.

Definition 2.2.3. The subspace in Lemma 2.2.2 is called the tangent space to M at p.

The vectors e1, . . . , en are a natural choice for a basis for TpM . The basis {ei} for TpM is called
a coordinate basis or holonomic basis, because it consists of the velocity vectors to the coordinate
lines in the point p. The tangent space TpM is a concept independent of the choice of coordinate
system. Suppose we choose another coordinate system (Wp, (z, ỹ)) instead of (Vp, (x, y)), where
ỹ1, . . . , ỹN−n are continuously differentiable functions of z1, . . . , zn. In this new coordinate system
γ is a function of the coordinates z1, . . . , zn. By the chain rule it follows that

∂γ

∂zj
=

n∑
i=1

∂γ

∂xi
∂xi

∂zj
.

Thus, we see that when changing to another coordinate system the new coordinate basis vectors
are linear combinations of the old coordinate basis vectors:

f j :=
∂γ

∂zj
=

n∑
i=1

∂xi

∂zj
ei.

It is also possible to choose a basis for TpM such that there does not exists a coordinate system
for which it is the coordinate basis. Such a basis is called anholonomic.
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We remarked earlier that the n-dimensional Euclidean space is the trivial example of a sub-
manifold of Rn. From the preceding definition of tangent space it follows that the tangent space
to R

n in a point p ∈ R
n is an n-dimensional subspace of Rn. However, there is only one possible

n-dimensional subspace of Rn and that is Rn itself, hence the tangent space TpR
n to the point p

in R
n is Rn. Although, the basis for the space TpR

n does, in general, depend on p. In Cartesian
coordinates the coordinate lines run in straight lines and this results in the fact that in Cartesian
coordinates the coordinate basis vectors of TpR

n have the same orientation and length for every
p ∈ R

n. In general this is not true as we will see in the following example in which we consider
the polar coordinate system.

Example 2.2.4. Let us consider the 2-dimensional Euclidean space described by polar coordinates
as in Example 2.1.6. In order to determine the coordinate basis for TpR

2, we first determine the
coordinate lines. The coordinate lines are obtained by varying one of the coordinates while keeping
the others constant. Keeping the radius r constant while varying the angle θ we obtain

γθ(t) = r cos(t+ θ)ex + r sin(t+ θ)ey,

where {ex, ey} is the trivial Cartesian coordinate basis. Varying the radius r while keeping the
angle θ constant we obtain the coordinate lines

γr(t) = (t+ r) cos(θ)ex + (t+ r) sin(θ)ey.

From these coordinate lines we can find how the coordinate basis for the polar coordinate system
relates to the trivial coordinate basis of the Cartesian coordinate system. We find

eθ =
dγθ(t)

dt

∣∣∣∣
t=0

= −r sin(θ)ex + r cos(θ)ey,

er =
dγr(t)

dt

∣∣∣∣
t=0

= cos(θ)ex + sin(θ)ey.

It is clear that the orientation of the coordinate basis for the polar coordinate system depends on
θ and the length of eθ depends on r, therefore, for the polar coordinate system, the coordinate
basis for TpR

2 depends on p ∈ R
2.

2.3 The dual space and tensors

In last section we considered tangent vectors to a submanifold M of Euclidean space. We saw
that at a point p ∈ M they constitute the tangent space TpM . In this section we will construct
the dual space to TpM . This will be necessary to eventually define tensor fields over M . Tensors
will play a crucial role in tensor calculus and differential geometry. The tensors as introduced
in this section can be introduced in this way for any finite dimensional vector space V . We will
present the concepts of this section mainly for an arbitrary finite dimensional vector space V and
not constantly refer to TpM , although the results obviously also apply to TpM . A vector field on
M assigns to each point p ∈M a vector in TpM . In a similar way tensor fields will be introduced.
Tensor fields assign to each point p ∈ M a tensor. Finally, at the end of this section, we will
introduce some specific tensors of use to us.

In this section we will heavily rely on the second chapter of [1]. Furthermore, we will from
now on follow the Einstein summation convention, which states that summation is implied over
indices which occur once as lower index and once as upper index.

Let us assume a vector space V over the real numbers with a basis e1, . . . , en. A vector v ∈ V
can be written as a linear combination of the basisvectors, i.e. v = viei. The real numbers vi are
called the contravariant components of the vector v relative to the basis {ei}. When we change
to another basis for V , say {ēi}, with ēi = Ajiej , then the contravariant components of the vector
v change according to v̄i = Bijv

j , where AikB
k
j = δij with δij the familiar Kronecker symbol. This

is called the vector transformation law.
In order to define the dual vector space, we must first define linear functionals.



2.3. THE DUAL SPACE AND TENSORS 19

Definition 2.3.1. A linear functional on V is a linear mapping from V into the real numbers,
i.e. f̂ : V → R is a linear functional if and only if

∀v,w ∈ V, ∀λ, μ ∈ R : f̂(λv + μw) = λf̂(v) + μf̂(w).

The set of all linear functionals on V , which we will denote by V ∗, turns out to be a vector
space when we define the addition of linear functionals by

∀f̂ , ĝ ∈ V ∗, ∀λ, μ ∈ R, ∀v ∈ V : (λf̂ + μĝ)(v) := λf̂(v) + μĝ(v).

The vector space V ∗ of all linear functionals on V we call the dual space and such a linear functional
is also called a covector or 1-form. We place a hat (ˆ) above covectors to distinguish them from
vectors. The basis {ei} for the vector space V induces a basis {êi} for the dual space V ∗ by
demanding that êi(ej) = δij . To see that the set of covectors {êi} indeed forms a basis for V ∗, we
check that this set spans V ∗ and is linearly independent. For any f̂ ∈ V ∗ and v = viei ∈ V we
have

f̂(v) = f̂(viei) = vif̂(ei) = ê
i(v)f̂(ei) = (f̂(ei)ê

i)(v),

which implies that each covector in V ∗ is a linear combination of elements of the set {êi}. Now
suppose that we have some linear combination λiê

i = 0, then

∀1 ≤ j ≤ n : 0 = (λiê
i)(ej) = λiδ

i
j = λj

and hence we see that the set {êi} is indeed linearly independent. The coefficients vi ∈ R in
v̂ = viê

i are called the covariant components of the covector v̂.
We can of course also consider the dual space to V ∗, i.e. (V ∗)∗. It turns out that for a finite

dimensional vector space V , the vector space (V ∗)∗ is isomorphic to V . The natural isomorphism
between (V ∗)∗ and V is given by the map v → ψ(v), where v ∈ V, ψ ∈ (V ∗)∗ and ψ(v) is defined
by

ψ(v)(f̂) := f̂(v).

We can therefore interpret the vectors as linear functionals on V ∗ and have

v(f̂) = f̂(v).

To further emphasize this fact often the following notation is used:

〈f̂ ,v〉 := f̂(v) = v(f̂).

The covector f̂ can in this way also be written as 〈f̂ , ·〉. Similarly the vector v can also be written
as 〈·,v〉. This is called the bracket formalism. Note that by the definition of the dual basis we
have

〈êi, ej〉 = êi(ej) = δij .

We have the following covector transformation law. (See [1, p.10].)

Theorem 2.3.2. Consider the change of basis f j = Aijei. This induces a change of dual vector

basis given by f̂
j
= Bji ê

i, in which AkjB
i
k = δij. Consequently if v̂ = viê

i = v̄if̂
i
, then vi = Bji v̄j

and v̄i = Ajivj.

The proof of this theorem can be found in [1, p.10] and will be left out for brevity.
We have seen that we can interpret vectors and covectors as linear mappings from V ∗ and

V , respectively, to the real numbers. By allowing for more general multi-linear mappings from
multiple Cartesian products of V and V ∗ to the real numbers we get the concept of a tensor ([1,
p.17]).
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Definition 2.3.3. A tensor is a multi-linear mapping

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

×V × · · · × V︸ ︷︷ ︸
q

→ R,

for some p and q in N ∪ {0}. For a definite p and q we denote the space of all such tensors by
T pq(V ). The ordering of the arguments in this definition matters.

We say that a tensor T ∈ T pq(V ) has contravariant rank p and covariant rank q. It is clear

that we have T 1
0(V ) = V and T 0

1(V ) = V ∗. Moreover we identify T 0
0(V ) with R.

Example 2.3.4. The bracket formalism above already provides an example of a tensor. The
mapping

〈·, ·〉 : V ∗ × V → R : (f̂ ,v) 
→ 〈f̂ ,v〉,
is clearly a multi-linear mapping. This tensor is called the Kronecker tensor.

All tensors can be constructed from the vectors and covectors by an operation called the tensor
product. To show this we first need to define the outer product.

Definition 2.3.5. The outer product f ⊗ g : X × Y → R of two real-valued functions f : X → R

and g : Y → R is defined by

∀x ∈ X, ∀y ∈ Y : (f ⊗ g)(x, y) := f(x)g(y).

The vectors and covectors are linear maps from V ∗ and V to R, respectively, therefore we can
use the outer product to define a tensor of arbitrary type. For example for the (p + q)-tuple of
indices (i1, . . . , ip, j1, . . . , jq) the tensor

ei1 ⊗ · · · ⊗ eip ⊗ êj1 ⊗ · · · ⊗ êjq (2.5)

is an element of the space T pq(V ) and we have(
ei1 ⊗ · · · ⊗ eip ⊗ êj1 ⊗ · · · ⊗ êjq

)
(v̂1, . . . , v̂p,w1, . . . ,wq)

= 〈v̂1, ei1〉 · · · 〈v̂p, eip〉〈êj1 ,w1〉 · · · 〈êjq ,wq〉
for all v̂1, . . . , v̂p ∈ V ∗ and w1, . . . ,wq ∈ V .

In fact the tensors of the form of equation (2.5) constitute a basis for the space T pq(V ). This
fact is expressed by the following theorem. (See [1, p.9] for the theorem and proof.)

Theorem 2.3.6. If T ∈ T pq(V ), then there exists a set of np+q numbers t
i1...ip
j1...jq

∈ R such that

T = t
i1...ip
j1...jq

ei1 ⊗ · · · ⊗ eip ⊗ êj1 ⊗ · · · ⊗ êjq .

The collection of coefficients t
i1...ip
j1...jq

is known as the holor of the tensor T . Note that if we have

two tensors T ∈ T pq(V ) and S ∈ T rs(V ), these are linear mappings to the real numbers and we can
take the outer product of the two. The outer product of two tensors is often referred to as the tensor
product. If the tensor T has holor t

i1...ip
j1...jq

with respect to the basis {ei1 ⊗· · ·⊗eip ⊗ êj1 ⊗· · ·⊗ êjq}
and tensor S has holor si1...irj1...js

with respect to the basis {ei1 ⊗ · · · ⊗ eir ⊗ êj1 ⊗ · · · ⊗ êjs}, then we
have

T ⊗ S = t
i1...ip
j1...jq

s
ip+1...ip+r

jq+1...jq+s
ei1 ⊗ · · · ⊗ eip+r

⊗ êj1 ⊗ · · · ⊗ êjq+s ,

and T ⊗ S ∈ T p+rq+s(V ). From the transformation laws for vectors and covectors a transformation

law for tensors follows. Let us consider a basis transformation given by f i = Ajiej and let
AikB

k
j = δij . Then we have

T = t
i1...ip
j1...jq

ei1 ⊗ · · · ⊗ eip ⊗ êj1 ⊗ · · · ⊗ êjq = t̄
i1...ip
j1...jq

f i1 ⊗ · · · ⊗ f ip ⊗ f̂ j1 ⊗ · · · ⊗ f̂ jq
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if and only if the holor adheres to the tensor transformation law

t̄
i1...ip
j1...jq

= Al1j1 · · ·A
lq
jq
Bi1k1 · · ·B

ip
kp
t
k1...kp
l1...lq

.

We are now in the position to introduce the notion of tensor fields on a submanifold of Euclidean
space. Let us take for the vector space V in the above the tangent space at some point x ∈M for
an n-dimensional submanifold of RN , i.e. TxM . A (p, q)-tensor field on M assigns to each x ∈M
an element from T pq(TxM). So, for example, a vector field on M assigns to each point x ∈ M a
tangent vector in TxM . We will denote the space of all k-times continuously differentiable vector
fields on M by TMCk and the space of k-times continuously differentiable tensor fields of type
(p, q), we denote by T pq(TM)Ck .

Example 2.3.7. Suppose we have a manifold M and a coordinate system (U, v) for U ⊂ M .
The coordinate basis vectors ei of this coordinate system are examples of vector fields, because ei
assigns to each point p ∈ U the vector

ei
∣∣
p
∈ TpM.

Given an inner product, (·|·) : V × V → R, and a basis {ei} for V then the coefficients gij :=
(ei|ej) are the components of a tensor g called the metric tensor. The matrix with components
gij is called the Gram matrix G. The symmetry of the inner product implies that G is symmetric.
The components of the inverse Gram matric G−1 are denoted by gij , i.e. gikgkj = δij . Suppose

we have two vectors v = viei and w = wiei then by the linearity of the inner product we have

(v | w) = (viei | wjej) = viwj(ei | ej) = viwjgij .

With the use of an inner product we can establish an important bijection between V and V ∗.
(From [1, p.13].)

Theorem 2.3.8. There exists a linear bijection G : V → V ∗ such that

(i) ∀v,w ∈ V : (v|w) = 〈G(v),w〉, and,
(ii) ∀v̂ ∈ V ∗, ∀w ∈ V : (G−1(v̂)|w) = 〈v̂,w〉.
The matrix representations of G and G−1 are given by the Gram matrix G and its inverse G−1,
respectively.

The proof of this theorem can be found in [1]. This bijection gives rise to the following useful
operators.

Definition 2.3.9. The conversion operators � : V → V ∗ and � : V ∗ → V are defined by �v = G(v)
and �v̂ = G−1(v̂). These operators are called the sharp and flat operators, respectively. The
conversion operators are also called the musical isomorphisms.

In terms of the components we have for a vector v = viei and covector ŵ = wiê
i, respectively,

that

�v = gijv
iêj and �ŵ = gijwiej .

For Cartesian coordinates in Euclidean space, the Gram matrix is just the identity and we have
vj = gijv

i = vj and wi = gijwj = wi. Thus for Cartesian coordinates in Euclidean space the
vector v and the covector �v have the same components (with respect to different bases) and
therefore the distinction between vectors and covectors is not really apparent in this coordinate
system.

Lastly, we will define some tensors that will be useful later on. We first define the completely
anti-symmetric symbol, then the Levi-Civita tensor and then the generalized Kronecker tensor.
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Definition 2.3.10. The completely anti-symmetric symbol, which we denote by [i1, . . . , in], is
defined by

[i1, . . . , in] :=

⎧⎪⎨⎪⎩
1 if (i1, . . . , in) is an even permutation of (1, . . . , n),

−1 if (i1, . . . , in) is an odd permutation of (1, . . . , n),

0 otherwise.

We can use the completely anti-symmetric symbol to determine the determinant of square
matrices. Let (Aij) be a square matrix then by developing with respect to the first column we
find that

det(Aij) =

n∑
i1,...,in=1

[i1, . . . , in]A1i1 · · ·Anin ,

or equivalently by developing with respect to the first row we find that

det(Aij) =

n∑
i1,...,in=1

[i1, . . . , in]Ai11 · · ·Ainn,

By taking an arbitrary permutation of the rows of the matrix we find that

[j1, . . . , jn] det(Aij) =

n∑
i1,...,in=1

[i1, . . . , in]Ai1j1 · · ·Ainjn . (2.6)

The determinant of the metric tensor we will denote by the letter g, i.e.

g := det(gij).

It is clear that det(gij) = 1/g. With use of (2.6) it follows that

gi1j1 · · · ginjn [j1, . . . , jn] = det(gij)[i1, . . . , in].

Let us now use the anti-symmetric symbol to define the Levi-Civita tensor.

Definition 2.3.11. Consider a n-dimensional vector space with metric g. The Levi-Civita tensor
is the tensor with contravariant rank 0 and covariant rank n and components given by

εi1...in =
√
g[i1, . . . , in].

The contravariant representation of the Levi-Civita tensor is given by

εi1...in =
1√
g
[i1, . . . , in]

The definition of the contravariant and covariant representations of the Levi-Civita tensor are
consistent, i.e. if we raise the components of covariant representation with the metric tensor we
get the contravariant representation:

εi1...in = gi1j1 · · · ginjnεj1...jn
=

√
g gi1j1 · · · ginjn [j1, . . . , jn]

=
√
g det(gij)[i1, . . . , in]

=
1√
g
[i1, . . . , in].

Here we used that gi1j1 · · · ginjn [j1, . . . , jn] = det(gij)[i1, . . . , in].
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The Levi-Civita tensor can be used to determine the cross product in R
3. Suppose we have

two vectors v = viei and w = wiei. The cross product of these two vectors is given by

v ×w = εijkv
iwjgklel,

for any coordinate system on R
3 with metric g and basis {e1, e2, e3}.

Related to the Levita-Civita tensor is the generalized Kronecker tensor. The following definition
is from [1, p.40].

Definition 2.3.12. The generalized Kronecker tensor is the tensor with components given by

δi1...inj1...jn
:=

⎧⎪⎨⎪⎩
+1 if (i1, . . . , in) is an even permutation of (j1, . . . , jn),

−1 if (i1, . . . , in) is an odd permutation of (j1, . . . , jn),

0 otherwise.

The generalized Kronecker tensor can be written as the product of the covariant and con-
travariant Levi-Civita tensor:

δi1...inj1...jn
= εj1...jnε

i1...in .

2.4 The covariant derivative

In this section we will focus on differentiation of scalars, vectors and more generally tensors. When
working in Euclidean space with Cartesian coordinates, differentiation of tensors can be performed
component-wise, because the basis of TpR

n in Cartesian coordinates does not depend on p ∈ R
n.

However, when working in a different coordinate system or in non-Euclidean space we cannot
just differentiate component-wise. In this section we will introduce the covariant derivative which
is a coordinate independent way of differentiating tensors, because a covariant derivative of a
tensor is again a tensor. We will start by considering the directional derivative of scalar fields on
Euclidean spaces and look closer into the differences between holonomic bases and anholonomic
bases. Then, we will consider the directional derivative of vector fields in Euclidean space for an
arbitrary coordinate system and extend this to the directional derivative of tensors of any type.
In the process of doing this, we will introduce Christoffel symbols and commutation symbols.
The commutation symbols will give us more insight in the difference between holonomic bases
and anholonomic bases. We will closely examine the properties of the directional derivative in
Euclidean space. The covariant derivative is then introduced as a directional derivative operator
for general, possibly non-Euclidean, spaces. It then becomes clear that the directional derivative
is the covariant derivative for the special case that the space under consideration is a Euclidean
space. We will not use the covariant derivative in the non-Euclidean context, but the definition of
the covariant derivative is a convenient one to rely on in Chapter 3.

Let us consider the scalar function u : U ⊂ R
n → R on a subspace of n-dimensional Euclidean

space. Suppose that we have a coordinate system x1, . . . , xn on U with coordinate basis {ei}.
This basis depends on the position p ∈ U . To determine how u changes in a certain direction
v = viei ∈ TpR

n we determine the directional derivative:

∇vu :=
d(u ◦ γv)(t)

dt

∣∣∣∣
t=0

,

where γv : (−ε, ε) → U is a curve such that γv(0) = p and

dγv(t)

dt

∣∣∣∣
t=0

= v.

By applying the chain rule we find

∇vu =
d(u ◦ γv)(t)

dt

∣∣∣∣
t=0

=
∂u

∂xj

∣∣∣∣
p

dγjv
dt

∣∣∣∣∣
t=0

=
∂u

∂xj

∣∣∣∣
p

vj . (2.7)
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If we take v = ei we find how u changes along the coordinate line of the i-th coordinate. The
components of ei are given by δji , hence it follows by (2.7) that

∇ei
u =

∂u

∂xi

∣∣∣∣
p

. (2.8)

From (2.7) and (2.8) it follows that we have

∇vu = vi∇eiu.

This implies that the directional derivative ∇v is not only linear in u but also in v, i.e. it holds
that

∇λv+μw(u) = λ∇vu+ μ∇wu.

However, it should be noticed that (2.8) only holds for the coordinate basis vector ei corresponding
to the coordinate line of the coordinate xi. If we work in an anholonomic basis {f i} different from
the coordinate basis {ei} for the coordinates x1, . . . , xn, then

∇vu = ∇vif i
u �= vi

∂u

∂xi

∣∣∣∣
p

.

Suppose that the relation between the general basis and the coordinate basis is given by f i = Ajiej ,
then it holds that

∇vu = ∇vif i
u = ∇viAj

iej
u = viAji

∂u

∂xj

∣∣∣∣
p

.

For coordinate bases {ei}, by definition, there always exists a system of coordinates x1, . . . , xn

such that the ei are the velocity vectors to the coordinate lines and hence

∀u ∈ C1(U) : ∇ei
u =

∂u

∂xi

∣∣∣∣
p

.

From this it follows that

∇ei(∇eju) =
∂2u

∂xi∂xj

∣∣∣∣
p

=
∂2u

∂xj∂xi

∣∣∣∣
p

= ∇ej (∇eiu).

This only holds for coordinate basis vectors and for general vectors this property does not hold.
The fact that directional derivatives do not commute is expressed by the Lie derivative, which we
will now define for the more general setting of a submanifold of Euclidean space.

Definition 2.4.1. Assume M to be a submanifold of a Euclidean space and let v,w ∈ TM . The
Lie derivative of w with respect to v is defined as

Lvw := [∇v,∇w],

in which the Lie bracket is defined by the following commutator

∀u ∈ C1(M) : [∇v,∇w]u = ∇v(∇wu)−∇w(∇vu).

We will denote the partial derivative of u with respect to xi by ∂iu. A quick calculation shows
that the Lie derivative is again a directional derivative:

[∇v,∇w]u = ∇v(∇wu)−∇w(∇vu)

= ∇v(w
i∂iu)−∇w(vi∂iu)

= vj∂j(w
i∂iu)− wj∂j(v

i∂iu)

= vjwi∂j∂iu+ vj∂j(w
i)∂i(u)− wjvi∂j∂iu− wj∂j(v

i)∂i(u)

= vj∂j(w
i)∂i(u)− wj∂j(v

i)∂i(u)

= ∇(vj∂jwi−wj∂jvi)ei
u.
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We remarked on page 24 that a basis {ei} is a coordinate basis if and only if [∇ei ,∇ej ] = 0.
This implies that for an anholonomic basis {f i} we always have [∇f i

,∇fj
] �= 0 for at least one

pair of basis vectors. The Lie derivative is again a directional derivative and therefore there exist
coefficients ckij such that

[∇f i
,∇fj

] = ckij∇fk
.

The coefficients ckij are called the commutation symbols. It is clear that ckij = −ckji. Thus, for an
anholonomic basis there exist always at least two nonzero commutation symbols. If the relation
between a coordinate basis and an anholonomic basis is known then we can derive the commutation
symbols for the anholonomic basis. This we show in the following lemma.

Lemma 2.4.2. Suppose that we have an anholonomic basis {f i} and a coordinate basis {ei}
corresponding to a coordinate system (U, x). Furthermore, assume that the coordinate basis and
the anholonomic basis are related by f j = Aijei and that (Bij) is the inverse of (A

i
j), i.e. A

k
jB

i
k = δij

and BkjA
i
k = δij. Then the commutation symbols are given by

ckij =

[
Ali

(
∂Asj
∂xl

)
−Alj

(
∂Asi
∂xl

)]
Bks .

Proof. Let u ∈ C1(U) be arbitrary. By linearity of the directional derivative and the commuta-
tivity of partial derivatives it follows that

[∇f i
,∇fj

]u = ∇f i
(∇fj

u)−∇fj
(∇f i

u)

= Ali∂l
(
Asj(∂su)

)−Alj∂l
(
Asi (∂su)

)
= Ali∂l(A

s
j)∂s(u) +AliA

s
j∂l∂su−Alj∂l(A

s
i )∂s(u)−AljA

s
i∂l∂su

= Ali∂l(A
s
j)∂s(u) +AliA

s
j∂l∂su−Alj∂l(A

s
i )∂s(u)−AsjA

l
i∂l∂su

=
[
Ali∂l(A

s
j)−Alj∂l(A

s
i )
]
∂su

=
[
Ali∂l(A

s
j)−Alj∂l(A

s
i )
]
Bks∇At

ket
u

=
[
Ali∂l(A

s
j)−Alj∂l(A

s
i )
]
Bks∇fk

u.

We will now consider an example of an anholonomic basis in R
2 that we will use later on in

this thesis.

Example 2.4.3. Consider the coordinate basis {er, eθ} for the polar coordinate system, which
we derived in Example 2.2.4. We noticed that the vector eθ has length r in the point (r, θ) ∈ R

2.
Often it is chosen to work in the orthonormal basis {er := er, eθ = eθ/r}. We number the basis
vectors corresponding to r by 1 and the basis vectors corresponding to θ by 2 in order to be able
to conveniently apply the index notation. The two bases are related by ej = Aijei and ej = Bijei,
where (

Aij
)
=

(
1 0
0 1/r

)
and

(
Bij
)
=

(
1 0
0 r

)
.

We can now apply Lemma 2.4.2 to determine the commutation symbols for the basis {ei}. Doing
this, we find that there are two nonzero commutation symbols:

cθrθ = −cθθr =
[
Alr

(
∂Asθ
∂xl

)
−Alθ

(
∂Asr
∂xl

)]
Bθs

=

[
Arr

(
∂Aθθ
∂r

)
−Aθθ

(
∂Aθr
∂θ

)]
r

= Arr

(
∂Aθθ
∂r

)
r

= −1

r
.
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Thus, we see that the orthonormal basis {er, eθ} is an anholonomic basis.

Let us now turn our attention to the directional derivatives of vector fields. Suppose we have
two vector fields v ∈ TRn, w ∈ TRnC1 and we want to know how the vector field w changes in
the direction of v, then we look at ∇vw. Let us assume that we have a basis {ei}, which is not
necessarily holonomic. By linearity of the directional derivative we find

∇vw = vi∇ei
w.

In order to evaluate the directional derivative ∇ei
w we use the product rule and obtain

∇eiw = ∇ei(w
j)ej + wj∇ei(ej).

We know from the directional derivative in Cartesian coordinates that the directional derivative
of a vector is again a vector and hence ∇ei

ej needs to be an element of TRn again. It follows that
there must exist coefficients Γkij such that

∇ei
ej = Γkjiek. (2.9)

These coefficients are called the Christoffel symbols. If we work in the Cartesian coordinate basis,
then the basis vectors do not depend on position and therefore the directional derivatives of the
basis vectors will be 0. It follows that for the Cartesian coordinate basis the Christoffel symbols
will all be 0. When we take the directional derivative of the vector field w in the direction of v
for all points p ∈ R

n we again end up with a vector field. Furthermore, the directional derivative
field is given by

∇vw = vi∇ei
w = viDi(w

k)ek,

where we have used Di(w
k) to denote the components of the directional derivative of w in the

direction of ei. These components are given by

Di(w
k) = ∇ei

wk + Γkjiw
j . (2.10)

So far, we have seen that the directional derivative in Euclidean space has certain properties.
Given two vector fields v ∈ TRn, w ∈ TRnC1 the directional derivative field ∇vw is again a vector
field, i.e. ∇vw ∈ TRn. Furthermore, we noticed that it is linear in both of its arguments, i.e.
the vector that is differentiated and the direction of differentiation. Moreover, the directional
derivative clearly also satisfies

∀u ∈ C1(Rn) : ∇v(uw) = (∇vu)w + u∇vw. (2.11)

Let us consider the Cartesian coordinate basis {ei} and two vector fields v,w ∈ TRnC1 . In this
basis all derivatives of basis vectors are zero and the metric is the identity, therefore by the product
rule it follows that

∇ei
(v | w) = ∇ei

⎛⎝ n∑
j=1

vjwj

⎞⎠
=

∂

∂xi

⎛⎝ n∑
j=1

vjwj

⎞⎠
=

n∑
j=1

(∂iv
j)wj +

n∑
j=1

vj(∂iw
j)

= (∂iv | w) + (v | ∂iw)

= (∇ei
v | w) + (v | ∇ei

w).
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From the above and the linearity of the inner product and the directional derivative we see that
∇u(v | w) = (∇uv | w) + (v | ∇uw). This expression only involves vectors, which are objects
independent of coordinate systems, and therefore makes no reference to a particular coordinate
system or basis and therefore holds in all. We can rewrite this expression component-wise for a
general, possibly anholonomic, basis {ei} as

Dk(gijv
iwj) = gijDk(v

i)wj + gijv
iDk(w

j), (2.12)

where gij = (ei | ej) is the metric, Dk(v
i) and Dk(w

j) are the components of the directional
derivative, in the direction of ek, of the vectors v and w, respectively. Moreover, we have intro-
duced here for consistency the notation Dk(u) := ∇ek

u, for the directional derivative of a scalar.

It can be shown that ∇ei ê
j = −Γjkiê

k. (See for example [7, ex.8.12].) From this it follows that
the directional derivative of a covector field v̂ ∈ T (Rn)∗ is given by

∇ei v̂ = ∇ei
(vj ê

j) = ∇ei
(vj)ê

j + vj∇ei
(êj) =

(
∇ei

(vk)− Γjkivj

)
êk = Di(vk)ê

k, (2.13)

where we use Di(vk) to denote the components of the directional derivative ∇ei v̂ An example of
a covector is the differential of a scalar function. Suppose we have a function u ∈ C1(Rn), then
the gradient of u is defined as the covector

du := (∇ei
u)êi.

It is also shown in [7, p.214] that the directional derivative has the property

∇ei
(T ⊗ S) = (∇ei

T )⊗ S + T ⊗ (∇ei
S),

for general tensor fields on R
n. Combining this fact with ∇ei ê

j = −Γjkiê
k and ∇ei

ej = Γkjiek it
follows analogously to (2.13) that for a tensor T of covariant rank 1 and contravariant rank 1 it
holds that ∇eiT = Di(T

l
k)ê

k ⊗ el, where the components of the directional derivative are given
by

Di(T
l
k) = ∇ei

T lk + ΓltiT
t
k − ΓtkiT

l
t .

This reasoning can be extended to any type of tensor. For every contravariant index we get an
extra Christoffel symbol and for every covariant index we get an extra Christoffel symbol with a
minus sign in front. Notice that the differentiation index is always in the second lower slot of the
Christoffel symbol. Now that we know how to differentiate tensors of every type we are in the
position to define a tensor that will be of particular interest to us and will eventually play a role in
the energy conservation equation that we will derive in next chapter. This tensor is the Hessian
tensor and it is defined as follows.

Definition 2.4.4. Given a twice continuously differentiable function u, the Hessian tensor is the
tensor with covariant rank 2 and contravariant rank 0 which is given by

H := ∇ej
du⊗ êj = (∇ej

(∇ei
u)− Γkij∇ek

u
)
êi ⊗ êj .

In Cartesian coordinates, the Hessian tensor of a function u is given by H = ∂j∂iu(ê
i ⊗ êj)

and the matrix representation of the Hessian tensor is just the ordinary Hessian matrix⎛⎜⎜⎜⎝
∂2u

∂x2
∂2u

∂x∂y

∂2u

∂x∂y

∂2u

∂y2

⎞⎟⎟⎟⎠ .

However, in other coordinate systems the components are not given by the second order partial
derivatives as we will soon see in the following examples. We see that in the Cartesian coordinates
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with holonomic basis the Hessian tensor is a symmetric tensor. Symmetry of a tensor is a coor-
dinate independent property. To see this assume that Hij are the components of the Hessian in
one coordinate system, Hij are the components in another coordinate system and that the coor-
dinate systems are related by the transformation Aij . Thus, for example, Hij are the components

with respect to the basis {êi ⊗ êj} and Hij are the components with respect to another basis

{f̂ i ⊗ f̂ j} and these different bases are related by f j = Aijei. If Hij = Hji, then it follows that

also Hij = Hji, because

Hij = AkiA
l
jHkl = AkiA

l
jHlk = AliA

k
jHkl = Hji.

The symmetry of the Hessian tensor implies that we have

∀u ∈ C1(Rn) :
(∇ej (∇eiu)− Γkij∇ek

u
)− (∇ei(∇eju)− Γkji∇ek

u
)
= 0. (2.14)

If we futher elaborate (2.14), we find

0 =
(∇ej

(∇ei
u)− Γkij∇ek

u
)− (∇ei

(∇ej
u)− Γkji∇ek

u
)

= [∇ej ,∇ei ]u− Γkij∇ek
u+ Γkji∇ek

u

=
(
ckji − Γkij + Γkji

)∇ek
u.

This implies that the linear combination of commutation symbols and Christoffel symbols

T kij := ckji − Γkij + Γkji (2.15)

needs to be zero for every choice of coordinate system and basis. This implies that the numbers T kij
transform according to the tensor transformation law and hence are the components of a tensor.
This tensor is called the torsion tensor. Let us now define the torsion tensor in a coordinate-free
way for the more general setting of submanifolds of Euclidean space.

Definition 2.4.5. Assume M to be a submanifold of a Euclidean space and let v,w ∈ TM . The
torsion tensor is defined by∗

T (v,w) = ∇∇vw −∇∇wv − [∇v,∇w] . (2.16)

At this point the directional derivative for a submanifold of Euclidean space has not yet been
defined but we will come to this soon. For now this M in this definition may assumed to be a
Euclidean space. The directional derivatives of the vector fields v and w are again vector fields,
therefore T (v,w) is again a directional derivative. The numbers (2.15) are indeed the components
of (2.16). This can be seen by evaluating the three terms in (2.16), while letting them act on a
test function u ∈ C1(Rn). For the first term we find that

∇∇vw(u) = vi(∇ei
wj)(∇ej

u) + viwj∇∇ei
(ej)(u) = vi(∇ei

wj)(∇ej
u) + viwjΓkjiek(u).

Similarly, for the second term we find

∇∇wv = wj(∇ejv
i)(∇eiu) + viwjΓkij∇ek

(u).

For the last term we have

[∇v,∇w] = vi∇ei
(wj∇ej

u)− wj∇ej
(vi∇ei

u)

= vi(∇ei
wj)(∇ej

u) + viwj(∇ei
∇ej

u)− wj(∇ej
vi)(∇ei

u)− viwj(∇ej
∇ei

u)

= vi(∇ei
wj)(∇ej

u)− wj(∇ej
vi)(∇ei

u) + viwj [∇ei
,∇ej

]u.

∗The torsion tensor is more commonly defined as T (v,w) := ∇vw −∇wv − [v,w]. However, if this definition
is used then the tangent vectors have been identified with the directional derivative operators in the direction of
that tangent vector. We have not made this identification, because it requires a justification which is beyond the
scope of this text. The interested reader should consult [2, Ch.3] or [3, Ch.2].
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When we add these tree terms as in (2.16) the terms vi(∇eiw
j)(∇ejf) and wj(∇ejv

i)(∇eif)
vanish and we end up with

T (v,w)u = viwjΓkji∇ek
(u)− viwjΓkij∇ek

(u)− viwj [ei, ej ]u

= viwj
(
ckji − Γkij + Γkji

)∇ek
u.

Thus, we find that the components of (2.16) are indeed given by (2.15). So far, we have seen
that the directional derivative on an n-dimensional Euclidean space is a function that takes two
vector fields v ∈ TRn, w ∈ TRnC1 and produces a third vector field ∇vw ∈ TRn that has certain
properties. We have seen that the directional derivative is linear in the direction of differentiation
and also in the argument to be differentiated. Furthermore we have seen that it satisfies a product
rule, concerning the product of a scalar field and a vector field, i.e. (2.11), and concerning the
inner product, i.e. (2.12). Lastly we have seen that the directional derivative is such that the
torsion tensor equals the zero tensor, which also is equivalent to the fact that the Hessian tensor
is symmetric.

It turns out that the directional derivative can be generalized to non-Euclidean spaces, while
still having the aforementioned properties. This generalization is called the Levi-Civita connection
and it is defined as follows. (See [1, Ch.3].)

Definition 2.4.6. LetM be a submanifold of a Euclidean space and let g be the metric induced by
the ordinary Euclidean inner product on the ambient Euclidean space. A Levi-Civita connection
on M is a mapping ∇ : TM × TMC1 → TM that takes two vector fields v ∈ TRn, w ∈ TRnC1

and produces a third vector field ∇vw ∈ TM that has the following properties:

(i) ∀u1, u2 ∈ C1(M), ∀v1,v2 ∈ TM, ∀w ∈ TMC1 : ∇u1v1+u2v2
w = u1∇v1

w + u2∇v2
w,

(ii) ∀λ1, λ2 ∈ R, ∀v ∈ TM, ∀w1,w2 ∈ TMC1 : ∇v(λ1w1 + λ2w2) = λ1∇vw1 + λ2∇vw2,

(iii) ∀u ∈ C1(M), ∀v ∈ TM, ∀w ∈ TMC1 : ∇v(uw) = u∇vw + (∇vu)w,

(iv) ∀v ∈ TM, ∀w, z ∈ TMC1 : ∇z(g(v,w)) = g(∇zv,w) + g(v,∇zw),

(v) ∀v ∈ TM, ∀w ∈ TMC1 : T (v,w) = 0.

We will often use the name Covariant derivative to refer to the Levi-Civita connection.

We see that the Covariant derivative has all the properties that the directional derivative in
Euclidean space has. When we take M in Definition 2.4.6 to be Euclidean space, this definition
is just the definition of the directional derivative. So, the directional derivative is the covariant
derivative for Euclidean space. For a local coordinate system on M with basis {ei} for TM we
again define the Christoffel symbols and commutation symbols by

Γkij := 〈êk,∇ej
ei〉,

ckij := [∇ei ,∇ej ].

Notice that with these definitions the components of ∇vw are still given by (2.10). From this
expression it is clear that the Levi-Civita connection is uniquely determined if the Christoffel
symbols are given. It turns out that the Christoffel symbols for the Levi-Civita connection can
be uniquely determined from the metric tensor g. This implies that there is a unique Levi-Civita
connection for a submanifold of a Euclidean space. This we will prove in the following theorem.

Theorem 2.4.7. The Levi-Civita connection is uniquely given by the Christoffel symbols

Γkij =
1

2
gkl
(∇ei

glj +∇ej
gli −∇el

gij + cilj + cjli − clij
)
, (2.17)

where clij := glkc
k
ij. In the case of a holonomic bases these expressions simplify to

Γkij =
1

2
gkl(∂iglj + ∂jgli − ∂lgij). (2.18)
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Proof. By the first property of Definition 2.4.6 it follows that for arbitrary v,w ∈ TM ,

Dl(gijv
iwj) = gij(Dlv

i)wj + gijv
i(Dlw

j), (2.19)

while by the product rule

Dl(gijv
iwj) = (Dlgij)v

iwj + gij(Dlv
i)wj + gijv

i(Dlw
j). (2.20)

The fact that the product rule applies is shown in [7, ex.8.9]. Equations (2.19) and (2.20) together
imply that Dlgij = 0. The components gij are the components of a tensor and therefore also

Dlgij = ∇el
gij − Γmil gmj − Γmjlgim,

hence we have ∇el
gij = Γmil gmj+Γmjlgim. If we cyclically permute the free indices in this expression

and subtract the resulting two expressions from the given expression we find

∇el
gij −∇ei

gjl −∇ej
gli = (Γmil − Γmli ) gmj +

(
Γmjl − Γmlj

)
gmi −

(
Γmji + Γmij

)
gml.

The connection is torsion free, therefore the components of the torsion tensor T kij = Γkji−Γkij − ckij
equal zero. Using this we find that

∇el
gij −∇eigjl −∇ejgli = cmli gmj + cmlj gmi −

(
2Γmij + cmij

)
gml.

Introducing the short hand notation cjli := cmli gmj , where the first of the three indices on the left
hand side corresponds to the upper index on the right hand side, it follows that

Γkij =
1

2
gkl
(∇ei

glj +∇ej
gli −∇el

gij + cilj + cjli − clij
)
.

In the case of a holonomic basis we have ∇el
= ∂l, all the commutation symbols are zero and we

end up with the simplified expression

Γkij =
1

2
gkl(∂iglj + ∂jgli − ∂lgij).

We will now put the equations derived in Theorem 2.4.7 to use. We will use it to determine
the Christoffel symbols for polar coordinates in R

2. We will first consider polar coordinates with
the corresponding coordinate basis and then we will consider polar coordinates with a different,
anholonomic, basis. Subsequently, we will derive the coordinate and basis dependent expression
for the Hessian tensor for these two cases. The Hessian tensor in polar coordinates will be of
importance in Chapter 3.

Example 2.4.8. We consider R2, with the ordinary inner product. If we use Cartesian coordinates
then the metric is given by

(gij) =

(
1 0
0 1

)
. (2.21)

By Equation 2.18 it follows that all the Christoffel symbols are zero in this case, because the basis
vectors do not depend on position.

Let us now assume a polar coordinate system on R
2 as described in Example 2.1.6. If we write

x1 = r, x2 = θ and x1 = x, x2 = y, then the new holonomic basis vectors are given by

ei =
∂xj

∂xi
ej . (2.22)
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A simple calculation shows that the Jacobian is given by(
∂xj

∂xi

)
=

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)
. (2.23)

Using this we find that

er = e1 = cos(θ)e1 + sin(θ)e2 = cos(θ)ex + sin(θ)ey,

eθ = e2 = −r sin(θ)e1 + r cos(θ)e2 = −r sin(θ)ex + r cos(θ)ey.

The metric transforms according to the tensor transformation laws and thereby we find

gij =
∂xr

∂xi
∂xs

∂xj
grs.

The matrix representation of (grs) is just the identity therefore we find

(gij) =

(
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)T (
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

)(
1 0
0 1

)
=

(
1 0
0 r2

)
.

We can now use equation (2.18) to calculate the Christoffel symbols. Note that the only nonzero
derivative of the metric is ∂rgθθ = ∂1g22 = 2r. From this and equation (2.18) it follows that we
have only three nonzero Christoffel symbols, namely

Γ
1

22 = Γrθθ = −r, Γ
2

12 = Γθrθ =
1

r
, Γ

2

21 = Γθθr =
1

r
.

Now that we know the Christoffel symbols, we are able to determine the Hessian tensor. We
work in a holonomic basis and hence the components of the Hessian tensor are given by

Hij = ∂j(∂iu)− Γkij∂ku.

Substituting the earlier derived Christoffel symbols in this equation we obtain

(Hij) =

(
urr urθ − uθ/r

urθ − uθ/r uθθ + rur

)
, (2.24)

where the subscripts r and θ denote partial derivatives.

The metric in the coordinate basis indicates that this basis is not an orthonormal basis. The
length of the basis vector eθ is equal to r and therefore depends on the location on R

2. Often this
basis vector is rescaled to obtain an orthonormal basis. This we will consider in the next example.

Example 2.4.9. Let us again assume the Euclidean space which was considered in Example 2.4.8.
Let us define the basis vectors er = er and eθ = r−1eθ. From the preceding example it is clear
that these vectors form an orthonormal basis. The metric, we denote by g and is given by

(gij) =

(
1 0
0 1

)
,

which again indicates the orthonormality. This orthonormal basis is an anholonomic basis, thus to
calculate the Christoffel symbols we need to use equation (2.17). The metric is constant over R2,
hence only the commutation symbols contribute to the Christoffel symbols. In Example 2.4.3 we
determined these commutation symbols. We found that there were only two nonzero commutation
symbols: cθrθ = −cθθr = −r−1. Using this to evaluate equation (2.17) we find that in this basis

we have only two nonzero Christoffel symbols, Γ
r

θθ = −r−1 and Γ
θ

rθ = r−1. Note that in this
anholonomic case the Christoffel symbols are not symmetric in the lower indices. This results in
a different Hessian tensor than the one in holonomic polar coordinates. We now have

(Hij) =

(
urr (rurθ − uθ)/r

2

(rurθ − uθ)/r
2 (uθθ + rur)/r

2

)
. (2.25)
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Let us briefly summarize, what we have done in this chapter. We have started out in Section
2.1 by formally defining the space in which are optical system is situated, i.e. a Euclidean space.
Then we went on to argue that, in general, the reflector surface is of our optical system is curved
and can therefore not be described by a Euclidean space. In order to find a satisfactory way
to describe the curved surface of the reflector, we introduced the notion of a submanifold of
Euclidean space. Furthermore we defined coordinate systems on such submanifolds of Euclidean
space and we showed that the reflector surface can be described by the Monge parametrization.
This parametrization is the one we will indeed use in Chapter 3 to describe the reflector surface.

In Section 2.2, we discussed tangent vectors to a point on an n-dimensional submanifold of
R
N . We showed that the tangent vectors form a n-dimensional subspace of RN and that a natural

basis for this subspace is given by the tangent vectors to the coordinate lines. This basis is called
the coordinate basis.

This vector space we took as the basis of our discussion in Section 2.3. In this section, we
showed that we can add a lot of extra structure to such a vector space by considering the dual
space to this vector space. We introduced the tensors, which are multi-linear maps from arbitrary
Cartesian products of the vector space and its dual space to the real numbers. We showed that
vectors and dual vectors are just special cases of tensors and we showed how all of these transform
under a change of basis. Furthermore, we showed that when the vector space has an inner product,
there exists a linear bijection between the vectors and covectors. We saw that when we have a
vector-covector pair under this bijection, the components of the covector are obtained from the
components of the vector by lowering the index with the metric. In a similar way the components
of the vector are obtained from the components of the covector. This relationship between such
a vector-covector pair is expressed by the musical isomorphisms � and �. Lastly, we introduced in
this section some convenient tensor that will be of use later on, like the Levi-Civita tensor and the
generalized Kronecker tensor.

We ended this Chapter with Section 2.4, which was on differentiation of scalars, vectors and
more generally tensors. We discussed the properties of the directional derivative. Moreover, we
further clarified the difference between holonomic bases, i.e. a basis such that the Lie derivative
of pairs of basis vectors vanishes, and more generally anholonomic bases. We also introduced
the Hessian tensor and showed that it is symmetric if and only if the components of the torsion
tensor vanish. We ended the discussion by given a definition of the covariant derivative which
generalises the directional derivative to non-Euclidean spaces. This definition, nicely summarizes
the properties of the directional derivative and will therefore be convenient to rely on in Chapter
3, the chapter to which we will now proceed.



Chapter 3

Monge-Ampère Equation

In this chapter we will derive the energy conservation equation for the optical system described
in Chapter 1, which will equate the energy output of the source with the energy output of the
reflector. This equation will turn out to be of Monge-Ampère type. We will show that the
equation obtained is independent of the choice of coordinate system. Subsequently, we will show
some coordinate specific expressions for the Monge-Ampère equation and show that for Cartesian
coordinates we recover the Monge-Ampère equation as it was given in [5]. Lastly, we will formulate
the boundary value problem corresponding to the Monge-Ampère equation. This is the boundary
value problem that we will try to solve numerically in Chapter 4 and onwards.

3.1 Source and reflector surface

The optical system that we will consider consists of nothing more than a light source and a reflector
surface. Let E be a convex open subset of the two-dimensional Euclidean plane R

2, which is a
plane in the three-dimensional Euclidean space R3. We will equip R

3 with the usual inner product
(·|·) : R3 → R. The convex set E represents the source. Let us describe E with an orthogonal
coordinate system with coordinates x1 and x2. Furthermore, we assume that for each tangent
space TxE at x ∈ E , we have an orthogonal but not necessarily holonomic, basis {e1, e2}. The
source E is a subset of the Euclidean plane and therefore we can make the identification TxE = E .
At each point x ∈ E the emittance [lm/m2] of the source is given by a strictly positive function
E : E → R>0. We will extend the basis {e1, e2} to a basis of R3 by defining∗

ẽ3 :=
e1 × e2
‖e1 × e2‖ ,

where the norm is defined by ‖v‖ :=
√
(v|v). Thus the third basis vector is perpendicular to the

plane of E and has unit length. The set {e1, e2, ẽ3} is an orthogonal basis for R3. We will denote
the components of the metric on E by eij := (ei|ej), for i, j = 1, 2. To clarify the notation, if we
speak about the basis {e1, e2} or the basis {e1, e2, ẽ3} we will from now on use latin indices if we
sum over 1, 2 and use greek indices if we sum over 1, 2, 3. The matrix representations (eμν) and
(eμν) of the metric for R3 and its inverse are thus given by

(eμν) =

⎛⎝ e11 0 0
0 e22 0
0 0 1

⎞⎠ and (eμν) =

⎛⎝ 1/e11 0 0
0 1/e22 0
0 0 1

⎞⎠ . (3.1)

We will now consider a function u : E → R>0. We assume this function to be twice continuously

∗We already useˆto indicate covectors, therefore we will use˜to indicate that a vector is of unit length.

33
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E E

S2

S

ẽ3

e1

e2

ỹ

g1

g2

ñS
G

E

√
g(y1(x1, x2), y2(x1, x2)) dx1dx2

√
e(x1, x2) dx1dx2

differentiable and also strictly convex. The set S := {(x, u(x)) ∈ R
2 × R | x ∈ E}∗ describes a

surface in R
3. We demand u to be a positive function in order to ensure that S lies above E . When

we say that S lies above E we mean that to get from x ∈ E to (x, u(x)) ∈ S one has to travel in
the direction ẽ3. In Example 2.1.7, we saw that a convenient parametrization of this surface is
the Monge parametrization. We now use the basis for the tangent space TxE to define a basis for
the tangent space T(x,u(x))S:

s1 := e1 + (∇e1
u)ẽ3,

s2 := e2 + (∇e2
u)ẽ3.

Taking the cross product of these vectors we get the normal vector to S, i.e. nS := s2 × s1.
Notice that we have defined nS such that (nS | ẽ3) < 0. This means that the vector nS points
downwards from its point on S. This choice is most natural when considering light rays emitted
by E and reflected by S. We can rewrite nS in terms of the basis {e1, e2, ẽ3} as follows,

nS = s2 × s1 = εαβγ(s2)
α(s1)

βeγσeσ =
√
e
[
(∇e1u)e

11e1 + (∇e2u)e
22e2 − ẽ3

]
. (3.2)

The gradient is given by du = (∇eiu)ê
i and the vector associated with it is given by ∇u = �du =

(∇eiu)e
ijej . Note that for an orthogonal basis we have ∇u = (∇eiu)e

ijej = (∇e1u)e
11e1 +

(∇e2
u)e22e2 and hence

nS =
√
e(∇u− ẽ3), (3.3)

∗The 2-tuple is not a vector it only serves to denote the point of S that one arrives at after covering a distance
u(x) in the direction of ẽ3 from the point x on E. The surface S is an object independent of the choice of coordinate
system on E and we wish to define it in such a way. Moreover it allows for a coordinate independent way of denoting
the tangent space to S in the point (x, u(x)) as T(x,u(x))S instead of denoting it as Txiei+u(x1,x2)ẽ3

S.
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where e is the determinant of the metric (eij). The norm of the normal vector is given by

‖nS‖ =

[
e11e22

((
(∇e1u)e

11
)2
(e1|e1) +

(
(∇e2u)e

22
)2
(e2|e2) + (ẽ3|ẽ3)

)] 1
2

=
[
(∇e1

u)2e22 + (∇e2
u)2e11 + e11e22

] 1
2 .

(3.4)

We denote the components of the metric on S by sij := (si|sj) and the determinant of (sij)
by s. We can relate the determinant of the metric of a surface to the norm of the normal vector
to that surface. This is expressed by the following lemma.

Lemma 3.1.1. Assume we have a basis {eα} and corresponding metric eμν for R
3, a surface W

in R
3 with basis {w1,w2} for the tangent space to W and furthermore a corresponding metric

wij on W. Then it holds that ‖nS‖2 = w, where w is the determinant of the metric wij and
n = w1 ×w2, the normal to S. For the cross product the vectors w1 and w2 are interpreted as
vectors in R

3.

Proof. By definition of the cross product

‖nS‖2 = (w1 ×w2|w1 ×w2)

=
(
εαβγ(w1)

α(w2)
βeγμeμ|ερστ (w1)

ρ(w2)
σeτνeν

)
= εαβγερστ (w1)

α(w2)
β(w1)

ρ(w2)
σeγμeτνeμν

= εαβγερστ (w1)
α(w2)

β(w1)
ρ(w2)

σeγμδτμ

= εαβγερσμ(w1)
α(w2)

β(w1)
ρ(w2)

σeγμ

= εαβγε
ντγ(w1)

α(w2)
β(w1)

ρ(w2)
σeρνeστ

= δντγαβγ(w1)
α(w2)

β(w1)
ρ(w2)

σeρνeστ

= δνταβ(w1)
α(w2)

β(w1)
ρ(w2)

σeρνeστ

= (w1)
α(w2)

β(w1)
ρ(w2)

σeραeσβ − (w1)
α(w2)

β(w1)
ρ(w2)

σeσαeρβ .

The inner products of the basis vectors are given by wij = (wi)
α(wj)

βeαβ . This implies that the
determinant of wij is given by

w =
(
(w1)

α(w1)
βeαβ

)(
(w2)

ρ(w2)
σeρσ

)− ((w1)
α(w2)

βeαβ
)(
(w2)

ρ(w1)
σeρσ

)
= (w1)

α(w2)
β(w1)

ρ(w2)
σeραeσβ − (w1)

α(w2)
β(w1)

ρ(w2)
σeσαeρβ .

We see that we indeed have ‖n‖2 = w.

This lemma will be of much use later when we need to calculate the determinant of the metric
for a different surface. We can also use this lemma to obtain a convenient expression for s, the
metric on S, in terms of e, the metric on E and the gradient of the function u.

Lemma 3.1.2. The determinant of the metric sij on S can be expressed in terms of ‖∇u‖2 =
(∇ei

u)(∇ej
u)eij and e, the determinant of the metric on E, as

s = e(‖∇u‖2 + 1).

Proof. By Lemma 3.1.1 it follows that s = ‖nS‖2. We earlier obtained the expression (3.4) for
‖nS‖, hence we have

s = (∇e1
u)2e22 + (∇e2

u)2e11 + e11e22.

From equation (3.1) it is clear that e = e11e22 and furthermore that e22 = e e11 and e11 = e e22.
This implies that

s = e
(
(∇e1u)

2e11 + (∇e2u)
2e22 + 1

)
= e
(
(∇eiu)(∇eju)e

ij + 1
)

= e
(‖∇u‖2 + 1

)
.
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3.2 Law of reflection

Before we proceed we make some additional assumptions on our optical system. First we assume
that the light rays emitted by the source E all leave in the direction ẽ3. Thus the light from E
constitutes a parallel bundle and hits the reflector surface S with incoming direction ẽ3. The very
familiar law of reflection tells us in what direction a light ray proceeds after reflection. The law
of reflection in vector form, which can be found in [12], is given by

ỹ = ẽ3 − 2(ẽ3|ñS)ñS . (3.5)

We assume that the dimensions of the reflector surface are small enough that we can neglect it
when compared to the distance between the reflector and projection screen. We will assume that
the reflected rays all originate from one point. This is called the far field approximation and
greatly reduces the difficulty of the problem, while the error introduced by the approximation is
very small. This will become clear once we test our method for some examples.

By Equation (3.5), every x ∈ E gets mapped to a direction of reflection ỹ(x), hence we have a
mapping x 
→ ỹ(x), from E to the unit sphere S2. We denote the image under this mapping by G,
i.e. G := ỹ(E). The following lemma shows that a point x ∈ E corresponds to a unique direction
of reflection ỹ(x).

Lemma 3.2.1. The map given by x 
→ ỹ(x), where

ỹ(x) = ẽ3 − 2(ẽ3|ñS(x))ñS(x),

is a bijection from E to G.
Proof. By definition of G the map is surjective. Rest us to show that the map is injective. We
will argue by contradiction. We take x1, x2 ∈ E such that ỹ(x1) = ỹ(x2) and x1 �= x2 and show
that this leads to a contradiction. From ỹ(x1) = ỹ(x2) it follows that

(ẽ3|ñS(x1))ñS(x1) = (ẽ3|ñS(x2))ñS(x2),

which implies that ñS(x1) and ñS(x2) are parallel. However, because both have unit length this
implies that ñS(x1) = ±ñS(x2). From the fact that we have

(ẽ3|ñS(x)) =

(
ẽ3

∣∣∣∣∣
√
e(x)

s(x)
(∇u− ẽ3)

)
= −

√
e(x)

s(x)
< 0, (�)

it follows that we cannot have (ẽ3|ñS(x1)) = −(ẽ3|ñS(x2)), hence we must have ñS(x1) = ñS(x2).
Moreover, it follows from (�) that (ẽ3|ñS(x)) < 0 for all x ∈ E . Note that the square root in (�)
is well defined by the expression for s given by Lemma 3.1.2 and the fact that u ∈ C2(E). Thus,
we must have √

e(x1)

s(x1)
=

√
e(x2)

s(x2)
.

This holds for any coordinate system, hence also for Cartesian coordinates for which we have√
e(x1) =

√
e(x2). This implies that in Cartesian coordinates we must have

√
s(x1) =

√
s(x2)

and moreover we have s(x1) = ‖nS(x1)‖2 = ‖nS(x2)‖2 = s(x2). We have established that
nS(x1) = nS(x2) in Cartesian coordinates. If nS(x1) = nS(x2) is true in Cartesian coordinates
then it must be true for every coordinate system because it is an equation of two vectors and
vectors are coordinate independent objects. Thus we find that ∇u(x1) − ẽ3 = ∇u(x2) − ẽ3 and
hence ∇u(x1) = ∇u(x2).

We will now use the strict convexity of u and follow a reasoning from [5, p.93]. Due to the
strict convexity u lies above its tangent planes, i.e. u(x1) > u(x2) + (∇u(x2)|r21), where r21 is
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the vector pointing from x2 to x1. Similarly we have u(x2) > u(x1)+ (∇u(x1)|r12). Adding these
two inequalities and subtracting u(x1) + u(x2) from both sides we obtain

0 > (∇u(x2)−∇u(x1)|r12).

However, from our initial assumption it followed that ∇u(x2) − ∇u(x1) = 0. This shows that
when one assumes ∇u(x2) − ∇u(x1) = 0 with x1 �= x2 one runs into a contradiction, hence the
map is injective.

From (ẽ3|ñS) = −√e/s, we find

ỹ = ẽ3 + 2

√
e

s
nS . (3.6)

The determinant of the metric e is continuously differentiable and the function u ∈ C2(E), therefore
we see from Equation (3.3) that the mapping x 
→ nS(x) is continuously differentiable with non-
degenerate Jacobian determinant. The fact that u ∈ C2(E) also implies that s is continuously
differentiable. This together with the expression above for ỹ implies that the mapping x 
→ ỹ(x)
is also continuously differentiable.

By the bijection x 
→ ỹ(x) the coordinate system x1, x2 on E induces a coordinate system y1, y2

on G. This follows from the fact that the map x → ỹ(x) is a continuously differentiable bijection
as can be seen in Definition 2.1.5. Let γi : (ε, ε) → E , ε > 0, such that γi(t = 0) = x ∈ E , be
the part of the coordinate line of the coordinate xi that passes through x. The map t 
→ ỹ(γi(t))
then gives part of the coordinate line through the point ỹ(x) ∈ G for the coordinate yi. To obtain
the coordinate basis on G corresponding to the coordinates y1 and y2, we need to differentiate
ỹ with respect to x1 and x2, respectively. However, if we want to find the general basis on G
that corresponds to the, possibly anholonomic, basis {e1, e2} then we need to take the directional
derivatives of ỹ in the direction of these basis vectors, therefore we define the basis of G by

g1 := ∇e1 ỹ,

g2 := ∇e2 ỹ.

In this context ∇ : (ei, ỹ) 
→ ∇ei ỹ should be seen as taking two elements ei, ỹ ∈ TỹR
3 ∼= R

3 and
mapping them to a third element ∇ei ỹ ∈ ỹ ∈ TỹR

3. Furthermore, notice that we do have

g1 =
∂ỹ

∂x1
and g2 =

∂ỹ

∂x2
,

if the basis {e1, e2} on E is the coordinate basis.
The vectors g1 and g2 form a basis for the space Ty(x)G, where {e1, e2} is the basis for TxE .

This basis introduces the metric gij = (g1 | g2). The inner product here is the inner product on
Ty(x)G ⊂ R

3 induced by the inner product on R
3. The normal on G is given by nG := g1×g2 and

will be parallel to ỹ but possibly of different length.
In Table 3.1 facts about E , S and G derived sofar are summarized. For the surface G, which is

a subset of the unit-sphere, we have not yet obtained expressions in terms of the coordinates on
E . To derive the Monge-Ampère equation some of these gaps will be filled in the next section.
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E S G
local basis {e1, e2} {s1 = e1 + (∇e1

u)ẽ3, s2 = e1 + (∇e2
u)ẽ3} {g1, g2}

metric eij sij = eij + (∇ei
u)(∇ej

u) gij

determinant of metric e s = e(‖∇u‖2 + 1) g

normal e1 × e2 nS =
√
e(∇u− ẽ3) nG

Table 3.1: Summary of the expressions obtained sofar for the source E , the reflector surface S and
the target G. For G we do not yet have expressions in the local coordinates on E .

3.3 Energy conservation

A surface element of E gets mapped onto a surface element of G by the map x 
→ ỹ(x). A surface
element on E is given by

√
e dx1dx2 and this surface element gets mapped to a surface element

on G given by
√
g dx1dx2.∗ Suppose the luminous intensity [lm/sr] on G is given by the strictly

positive function G : G → R>0. The principle of conservation of energy implies that the energy
flux through

√
e dx1dx2 equals the energy flux through

√
g dx1dx2 and therefore we have

E(x)
√
e = G(y(x))

√
g, (3.7)

where we have used the alternative x 
→ y(x) for the map x 
→ ỹ(x). We will often use this
notation if we want to consider y(x) as a point on G instead of as a vector in R

3.
The rest of this section is devoted to writing Equation (3.7) in the local coordinates x1, x2 on

E and in a form from which it can be seen that it is clearly independent of the coordinate system
used. In order to do this we first focus on

√
g. The following lemma expresses

√
g in terms of e, s

and derivatives of u.

Lemma 3.3.1. The square root of the determinant of the metric gij on G is given by

√
g =

4e
3
2 |(∇e1

(∇u)×∇e2
(∇u)|nS)|

s2
, (3.8)

where | · | denotes the absolute value function.

Proof. From Lemma 3.1.1 we conclude that
√
g = ‖nG‖, hence we have

√
g = ‖g1 × g2‖. Instead

of directly evaluating this cross product it helps to rewrite it in the following way,

√
g =

‖g1 × g2‖
‖ỹ‖ =

|(g1 × g2|ñS)|
|(ỹ|ñS)| . (�)

Here we first divided by a vector with norm 1 and then looked at the ratio of the projection of
both the numerator and denominator on the vector ñS . This second step is justified because the
vectors g1 × g2 and ỹ are parallel.

The motivation for this step will become clear now that we work out the cross product. By
definition of the basis vectors on G it holds that

gi = ∇ei ỹ = ∇ei

(
ẽ3 + 2

√
e

s
nS

)
= 2∇ei

(√
e

s

)
nS + 2

(√
e

s

)
∇ei(nS).

This implies that

g1 × g2 = 4
( e
s2

)
∇e1

(nS)×∇e2
(nS) + 4

(√
e

s

)
∇e1

(√
e

s

)
nS ×∇e2

(nS)

+ 4

(√
e

s

)
∇e2

(√
e

s

)
∇e1

(nS)× nS .

∗The notion of a surface element is introduced here in a not particularly neat way. The surface element is the
special two dimensional variant of a volume form on a manifold. Volume forms are treated for example in Section
2.9 of [1].
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The last two terms are perpendicular to nS and they vanish when taking the inner product with
ñS , hence we obtain

|(g1 × g2|ñS)| = 4e(∇e1
(nS)×∇e2

(nS)|ñS)
s2

.

For the covariant derivatives of nS we find

∇einS = ∇ei(
√
e)(∇u− ẽ3) +

√
e∇ei(∇u).

From this we see that taking the cross product between ∇e1nS and ∇e2nS gives four terms, two of
which are perpendicular to ∇u− ẽ3 and hence perpendicular to ñS and we get one cross product
of parallel vectors which equals zero. We obtain

(∇e1(nS)×∇e2(nS)|ñS) =
e√
s
(∇e1(∇u)×∇e2(∇u)|nS).

Evaluating the denominator in equation (�) gives

|(ỹ|ñS)| = |(ẽ3 + 2

√
e

s
nS |ñS)| =

∣∣∣∣−√e

s
+ 2

√
e

s

∣∣∣∣ =√e

s
.

Combining the results for the numerator and denominator in equation (�) we find (3.8).

It is possible to relate the inner product in (3.8) to the determinant of the Hessian matrix.
However, in order to show this we will need the property ∇ei

(�du) = �∇ei
(du). Thus, we shall first

need to prove that the covariant derivative and the musical isomorphisms � and �, from Definition
2.3.9, commute.

Lemma 3.3.2. The covariant derivative and the musical isomorphisms commute, i.e. for a sub-
manifold of Euclidean space M with metric g, u,v,w ∈ TM and v̂ ∈ T ∗M we have

∇u(�v)(w) = �∇u(v)(w) and ∇u(�v̂)(w) = �∇u(v̂)(w).

Proof. By definition of the Levi-Civita connection it holds that ∇u(v) = ui∇ei
(v), hence it will

be sufficient to show that the musical isomorphisms commute with ∇ei
. By definition of the �-

operator, the fact that the covariant derivative and the Kronecker tensor commute∗ and the fourth
property in Definition 2.4.6 of the Levi-Civita connection we have

∇ei
(�v)(w) = 〈∇ei

(�v),w〉
= ∇ei

(〈�v,w〉)− 〈�v,∇ei
(w)〉

= ∇ei
(�v(w))− (�v)(∇ei

(w))

= ∇ei
(g(v,w))− (�v)(∇ei

(w))

= g(∇ei
v,w) + g(v,∇ei

(w))− (�v)(∇ei
(w))

= �(∇ei
v)(w) + (�v)(∇ei

(w))− (�v)(∇ei
(w))

= �(∇ei
v)(w).

Thus we see that ∇ei
(�v) = �(∇ei

v). From this the same property for the �-operator follows
quickly by noticing that each covector v̂ can be written as �v for some vector v, because the
�-operator is an isomorphism. Using the fact that the �-operator and the covariant derivative
commute we find

∇ek
(�v̂) = ∇ek

(�(�v)) = ∇ek
(v) = �(�(∇ek

(v))) = �(∇ek
(�v)) = �(∇ek

(v̂)).

∗The components of the covariant derivative of the Kronecker tensor are given by Dk(δ
i
j) = ∇ekδ

i
j + Γi

lkδ
l
j −

Γl
jkδ

i
l = Γi

jk − Γi
jk = 0, therefore we have ∇ei 〈v̂,w〉 = 〈∇ei (v̂),w〉+ 〈v̂,∇ei (w)〉.
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Now that it is clear that we can interchange the order of applying a musical isomorphism with
covariant differentiation we turn our attention to the metric on G again. In the next lemma we show
that the cross product in the inner product in equation (3.8) can be related to the determinant of
the Hessian tensor.

Lemma 3.3.3. The cross product ∇e1
(∇u)×∇e2

(∇u) in (3.8) is parallel to ẽ3 and has length
det(Hij)/

√
e, i.e.

∇e1
(∇u)×∇e2

(∇u) = det(Hij)√
e

ẽ3,

where Hij are the components of the Hessian tensor H(u) which is given by∗

H =
(∇ej

(∇ei
u)− Γkij∇ek

(u)
)
êi ⊗ êj .

Proof. By Lemma 3.3.2 it follows that

∇ek
(∇u) = ∇ek

(�du)

= �(∇ek
(du))

= �([∇ek
(∇ei

u)−∇el
(u)Γlik]ê

i)

= eij(∇ek
(∇eiu)−∇el

(u)Γlik)ej .

From this and the fact that the metric has the form as shown in equation (3.1) it follows that

∇e1(∇u)×∇e2(∇u)
= εαβγe

ατeβσ
[
(∇e1(∇eτu)−∇eλ

(u)Γλτ1)
] [
(∇e2(∇eσu)−∇eρ(u)Γ

ρ
σ2)
]
eγκeκ

= εαβ3e
ατeβσ

[
(∇e1

(∇eτ
u)−∇eλ

(u)Γλτ1)
] [
(∇e2

(∇eσ
u)−∇eρ

(u)Γρσ2)
]
ẽ3

=
√
e e11e22

[ [
(∇e1

(∇e1
u)−∇eλ

(u)Γλ11)
] [
(∇e2

(∇e2
u)−∇eρ

(u)Γρ22)
]

− [(∇e1
(∇e2

u)−∇eλ
(u)Γλ21)

] [
(∇e2

(∇e1
u)−∇eρ

(u)Γρ12)
] ]
ẽ3

=
det(Hij)√

e
ẽ3,

The last lemma enables us to express the determinant of the metric g solely in terms of the
local coordinates on the source E . This allows us to also rewrite the energy conservation equation
(3.7) in terms of the local coordinates on E .
Theorem 3.3.4. The conservation of energy under the mapping x 
→ ỹ(x) is expressed by the
equation

E(x)

G(y(x))
=

4| det(Hij)|
e(‖∇u‖2 + 1)2

, (3.9)

where we write y(x) for the element ỹ(x) of G.
Proof. From Lemma 3.3.3 it follows that

|(∇e1(∇u)×∇e2(∇u)|nS)| = | det(Hij)|√
e

|(ẽ3|nS)|

=
| det(Hij)|√

e
|(ẽ3|

√
e(∇u− ẽ3)|

= | det(Hij)|.
∗We use Latin indices, because we mean the Hessian tensor with respect to the basis {e1, e2}, not the basis

{e1, e2, ẽ3}.
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Substituting this in (3.8) we obtain

√
g =

4e
3
2 | det(Hij)|

s2
.

In this expression we again substitute the expression for s in Lemma 3.1.2 and finally find

√
g =

4| det(Hij)|√
e(‖∇u‖2 + 1)2

.

Substituting
√
g in equation (3.7) we obtain (3.9).

Equation (3.9) is called the Monge-Ampère equation. For this equation to be really coordinate
independent, | det(Hij)|/e needs to be an invariant. To establish this, let us consider a change

of coordinate system which results in a change of basis given by a matrix A, i.e. f i = Ajiej .
We use the overline to indicate that tensors are given in the new coordinate system. By the
tensor transformation law it follows that for the components of the Hessian tensor hold that
Hij = AkiA

l
jHkl and similarly for the components of the metric that eij = AkiA

l
jekl. This implies

det(Hij) = (det(A))2 det(Hij)

and similarly for the metric that

e = (det(A))2e.

This shows that

| det(Hij)|
e

=
|(det(A))2 det(Hij)|

(det(A))2e
=

| det(Hij)|
e

and hence the quotient | det(Hij)|/e is indeed an invariant. Thus we have shown that the Monge-
Ampère equation (3.9) is independent of the choice of orthogonal coordinate system.

3.4 Coordinate specific expressions for the Monge-Ampère
equation

We will consider three specific coordinate systems: Cartesian coordinates, polar coordinates with
the coordinate basis and polar coordinates with an orthonormal anholonomic basis. In Cartesian
coordinates we hope to find the Monge-Ampèren equation as it was given in [5]. Furthermore, we
will see that in polar coordinates for both the holonomic and anholonomic basis, we find the same
equation, while the road leading to it is different. Nonetheless, it is not surprising that we find the
same equation as the Monge-Ampère equation is a scalar equation and hence only dependent on
the coordinates used and not on the basis chosen. Let us start out with the Cartesian coordinates.

Example 3.4.1. The Cartesian coordinate system is really the simplest case. In Cartesian coor-
dinates with orthonormal basis the matrix representation of the metric is just the identity and all
the Christoffel symbols vanish. For the gradient we find

∇ei(u)e
ijej =

∂u

∂xi
eijei =

∂u

∂x
e1 +

∂u

∂y
e2.

Writing ux for the partial derivative of u with respect to x and similarly for y we find that
‖∇u‖2 = u2x + u2y. The Hessian tensor is given by

H(u) =
(
∂j(∂iu)− Γkij∂ku

)
êi ⊗ êj = (∂j(∂iu))êi ⊗ êj .
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This implies that the determinant of the matrix representation of the Hessian tensor equals
det(Hij) = uxxuyy − u2xy. Collecting the results we find that the Monge-Ampère equation in
Cartesian coordinates is given by

E(x)

G(y(x))
=

4|uxxuyy − u2xy|
(u2x + u2y + 1)2

.

This is the same equation as given in [5], where the Monge-Ampère equation was derived in
Cartesian coordinates.

Let us now proceed with polar coordinates. First we consider polar coordinates with a holo-
nomic basis.

Example 3.4.2. In Example 2.4.8 we considered polar coordinates with the coordinate basis for
the Euclidean plane. There we found that the metric is given by

(eij) =

(
1 0
0 r2

)
and hence e = r2. The nonzero Christoffel symbols are Γrθθ = −r, Γθrθ = 1/r and Γθθr = 1/r.
Moreover, the matrix representation of the Hessian tensor is given in (2.24). This results in the
determinant

det(Hij) = urruθθ + rururr − u2rθ −
(uθ
r

)2
+

2uθurθ
r

.

For the gradient of u we find

∇u = ∂i(u)e
ijej = urer +

uθ
r2
eθ,

hence the norm of the gradient is given by ‖∇u‖ = u2r + (uθ/r
2)2. Combining the different results

we find that in polar coordinates the Monge-Ampère equation is given by

E(x)

G(y(x))
=

4|urruθθ + rururr − u2rθ − (uθ/r)
2 + (2uθurθ)/r|

(r + ru2r + u2θ/r)
2

. (3.10)

Now we end with the last example, that is that for polar coordinates with an anholonomic
basis.

Example 3.4.3. Recall from Example 2.4.9 that when we rescale the eθ basis vector to unit
length we obtain er = er and eθ = r−1eθ. This implies that e = 1 The directional derivatives for
the basis vectors no longer commute and we have nonzero commutation symbols, moreover the
symmetry in the lower indices of the Christoffel symbols is lost. From the example just referred

to we know that there are two nonzero Christoffel symbols, namely Γ
r

θθ = −r−1 and Γ
θ

rθ = r−1.
The matrix representation of the Hessian tensor is given by (2.25). The gradient is now given by

∇u = ∇ei(u)e
ijej = urer +

uθ
r
eθ. (3.11)

These facts imply that we again end up with Equation (3.10).

3.5 Boundary value problem

In Section 3.3 we derived the Monge-Ampère equation (3.9). This equation tells us how the source
emittance E is related to the luminous intensity G when light from the source gets reflected by a
reflecting surface. We are concerned with the following problem. Given a source E ⊂ R

2 with an
emittance function E and a set of output directions G ⊂ S2 with an output intensity function G,
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what is the reflector shape given by a function u : E → R such that u satisfies the Monge-Ampère
equation (3.9) and moreover y(E) = G, where y : E → S2 : x 
→ ỹ(x) is the map given in Lemma
3.2.1. The fact that u has to satisfy the Monge-Ampère equation corresponds to local conservation
of energy. Moreover, y(E) = G ensures that we have global conservation of energy, i.e. all the
energy emitted by the source eventually gets reflected in the directions specified by G.

It is not clear that for every combination of E , G, E and G a function u exists that solves this
problem. The energy emitted by the source and the energy output specified by G do at least need
to match up. We need to have∫

E
E(x1, x2)

√
e(x1, x2)dx1dx2 =

∫
G
G(y1, y2)

√
g(y1, y2)dy1dy2, (3.12)

where x1, x2 are local coordinates on E with corresponding determinant of the metric on
√
e(x1, x2)

and similarly y1, y2 are local coordinates on G with corresponding determinant of the metric√
g(y1, y2).
Let us now clearly formulate the problem with this additional constraint on the functions E

and G.

Problem 3.5.1. Let E ⊂ R
2 be convex, closed and bounded, and let G ⊂ S2 be closed. Further-

more, let E : E → R>0 and G : G → R>0 be such that they satisfy (3.12). Find u ∈ C2(E) such
that u satisfies the Monge-Ampère equation (3.9) and moreover y(E) = G holds, where y is the
map from E to S2 given by

x 
→ ẽ3 +
2(∇u− ẽ3)
‖∇u− ẽ3‖2 .

We demand that E is convex, closed and bounded, and that G is closed because then we can
reformulate this problem to another problem that is simpler and more convenient. To do this we
will show that the mapping y can be seen as the composition of two maps, namely a composition
of the map ∇u : E → R

2, given by

x 
→ ∇u(x),
and a second map that we will denote by ψ, which is given by

v 
→ ẽ3 +
2(v − ẽ3)
‖v − ẽ3‖2 .

Formally speaking, the vector ∇u(x) is a vector in the space TxE , however, we saw that for two-
dimensional Euclidean space we can identify this space R

2. We will interpret ∇u as such, i.e. as
a vector in R

2 × {0} ⊂ R
3. The map ψ is the familiar stereographic projection, which is shown

in Figure 3.2. This map is a continuously differentiable bijection between the plane and the unit
sphere without the north-pole. This we will show in the following lemma.

Lemma 3.5.2. The map ψ defined by

ψ(v) := ẽ3 +
2(v − ẽ3)
‖v − ẽ3‖2 , (3.13)

where v ∈ R
2 = {(x, y, 0) ∈ R

3 | x, y ∈ R} and the vector ẽ3 = (0, 0, 1) is a unit vector perpendic-
ular to the plane of v, is a bijection from R

2 to S2\(0, 0, 1), i.e. from R
2 to S2 without the north

pole.

Proof. We will first proof the injectivity of the mapping. Suppose we have two distinct v1,v2 ∈ R
2

such that ψ(v1) = ψ(v2). This implies that

2(v1 − ẽ3)
‖v1 − ẽ3‖2 =

2(v2 − ẽ3)
‖v2 − ẽ3‖2 .
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Now, because v1 and v2 are by definition both orthogonal to ẽ3, this implies that we have⎧⎪⎨⎪⎩
2v1

‖v1 − ẽ3‖2 =
2v2

‖v2 − ẽ3‖2 ,
2ẽ3

‖v1 − ẽ3‖2 =
2ẽ3

‖v2 − ẽ3‖2 .

The second of these equations implies that ‖v1 − ẽ3‖2 = ‖v2 − ẽ3‖2 and this fact together with
the first equation implies that v1 = v2. Thus, ψ is injective.

Let us now proof the surjectivity. Suppose we have s̃ ∈ S\(0, 0, 1). Let us denote s̃ component-
wise as s̃ = (sx, sy, sz), where (sx)2 + (sy)2 + (sz)2 = 1 and s̃ �= (0, 0, 1). We will now show that
there exists a vector v ∈ R

2 such that ψ(v) = s̃. Let us denote v component-wise as v = (vx, vy, 0).
A straightforward calculation shows that

ψ(v) =

(
2vx

(vx)2 + (vy)2 + 1
,

2vy

(vx)2 + (vy)2 + 1
,
(vx)2 + (vy)2 − 1

(vx)2 + (vy)2 + 1

)
.

If we switch to polar coordinates, i.e. define vr =
√

(vx)2 + (vy)2 and vθ = tan−1(vy/vx) with
tan−1 as defined in Example 2.1.6, we see that

ψ(v) =

(
2vr cos(vθ)

(vr)2 + 1
,
2vr sin(vθ)

(vr)2 + 1
,
(vr)2 − 1

(vr)2 + 1

)
.

Equation this vector with s̃ and dividing the second components by the first components of
both vectors we obtain tan(vθ) = sy/sx which implies that vθ = tan−1(sy/sx). From equation
the third component of ψ(v) and s̃ we find that (vr)2 − 1 = ((vr)2 + 1)sz and this implies
that vr =

√
(1 + sz)/(1− sz). Thus, we see that if v is given by vr =

√
(1 + sz)/(1− sz) and

vθ = tan−1(sy/sx), then ψ(v) = s̃ and hence ψ is surjective.

We will use the bijection ψ to transfer the subset G ⊂ S2 and function G : G → R>0 to a subset
F ⊂ R

2 and a function F : F → R>0, respectively. We do this by defining F as the pre-image of
G under ψ, i.e.

F := ψ−1(G). (3.14)

In order to be able to define the function F on F corresponding to the function G on G we need
to relate the flux through a surface element of G to the flux through a surface element of F . To
do this, we determine in next lemma how the surface elements on G and F are related by the
stereographic projection.

Lemma 3.5.3. Let ψ : R2 × {0} → S2\(0, 0, 1) be the stereographic projection as defined earlier.
Let us denote the surface element on the unit sphere by dAS2 and the surface element on the plane
by dAR2 . The two surface elements are related by

dAS2 =
4dAR2

(1 + ‖v‖2)2 , (3.15)

where v is the vector in the plane that points from the origin to the point under consideration.
If x1, x2 are local coordinates on R

2 ×{0} and y1, y2 are local coordinates on S2\(0, 0, 1), then
we can express this equivalently as

√
g(y1, y2) dy1dy2 =

4
√
f(x1, x2) dx1dx2

(1 + ‖(x1, x2)‖2)2 ,

where g is the determinant of the metric on the unit sphere, f is the determinant of the metric on
the plane and ‖(x1, x2)‖ is the distance from the point specified by x1 and x2 to the origin.
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Figure 3.1: In this figure a world chart resulting from the stereographic projection is depicted. The
map ψ−1 is a map from S2\(0, 0, 1) to the plane R

2 × {0} and can therefore be used to construct
a 2D world chart. It can be seen that the lower hemisphere gets mapped to the unit disk. The
equator is depicted in red. The northern hemisphere is projected around the unit disk and is
severely distorted. The south pole is projected onto the origin. At approximately 30 degrees we
find Africa, at approximately 135 degrees we find Australia and at approximately 300 degrees we
find South America.
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Proof. Suppose we have a spherical coordinate system on S2\(0, 0, 1) and a Cartesian coordinate
system on R

2 × {0}. Suppose we have defined the Cartesian coordinate system on R
2 × {0} with

basis vectors ex and ey. We define the spherical coordinates (θ, φ) with respect to these basis
vectors on R

2 × {0}. Let θ be the azimuth angle with respect to ex and let φ be the angle with
respect to ẽ3. The relation between these two coordinate systems is given by

θ(x, y) = tan−1

(
x

y

)
, (3.16)

φ(x, y) = arccos

(
(x)2 + (y)2 − 1

(x)2 + (y)2 + 1

)
. (3.17)

In the spherical coordinate system the surface element on the unit sphere is given by

dAS2 = sin(φ) dθdφ.

The surface element on the plane is in Cartesian coordinates given by

dAR2 = dxdy.

From the change of variables formula we know that

dθdφ =

∣∣∣∣det(∂(θ, φ)∂(x, y)

)∣∣∣∣ dxdy,
where

∂(θ, φ)

∂(x, y)
=

⎛⎜⎝
∂θ

∂x

∂θ

∂y
∂φ

∂x

∂φ

∂y

⎞⎟⎠ .

The derivative of arccos(x) with respect to x is given by −(1− x2)−1/2. Using this fact we find

∂φ

∂x
= −

(
1−

(
x2 + y2 − 1

x2 + y2 + 1

)2
)−1/2

2x(x2 + y2 + 1)− 2x(x2 + y2 − 1)

(x2 + y2 + 1)
−2

= −
(
1−

(
x2 + y2 − 1

x2 + y2 + 1

)2
)−1/2

4x

(x2 + y2 + 1)
2 .

By the symmetry of the expression for φ when interchanging x and y we find that

∂φ

∂y
= −

(
1−

(
x2 + y2 − 1

x2 + y2 + 1

)2
)−1/2

4y

(x2 + y2 + 1)
2 .

Furthermore, we have

∂θ

∂x
=

−y
x2 + y2

and
∂θ

∂y
=

x

x2 + y2
.

From this we find that∣∣∣∣det(∂(θ, φ)∂(x, y)

)∣∣∣∣ = ∣∣∣∣∂θ∂x ∂φ∂y − ∂θ

∂y

∂φ

∂x

∣∣∣∣ = 4

(
1−

(
x2 + y2 − 1

x2 + y2 + 1

)2
)−1/2 (

x2 + y2 + 1
)−2

.

Thus we have

dθdφ = 4

(
1−

(
x2 + y2 − 1

x2 + y2 + 1

)2
)−1/2 (

x2 + y2 + 1
)−2

dxdy. (�)
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Furthermore, we have

sin(φ) = sin

(
arccos

(
(x)2 + (y)2 − 1

(x)2 + (y)2 + 1

))

=

√
1−

(
(x)2 + (y)2 − 1

(x)2 + (y)2 + 1

)2

,

where we used the fact that sin(arccos(z)) =
√
1− z2, which can easily be verified by drawing a

right triangle with a hypothenuse of length one and arccos(z) equal to one of the nonzero angles.
Now by equation (�) it follows that

dAS2 = sin(φ)dθdφ

= 4

(
1−

(
x2 + y2 − 1

x2 + y2 + 1

)2
)1/2(

1−
(
x2 + y2 − 1

x2 + y2 + 1

)2
)−1/2 (

x2 + y2 + 1
)−2

dxdy

=
4dxdy

(x2 + y2 + 1)

=
4dAR2

(x2 + y2 + 1)
.

For general coordinate systems y1, y2 and x1, x2 on the unit sphere and the plane, respectively,
the surface elements are given by

dAS2 =
√
g(y1, y2)dy1dy2 and dAR2 =

√
f(x1, x2)dx1dx2,

where g is the determinant of the metric on the unit sphere and f is the determinant of the metric
on the plane. Therefore we find for these general coordinate systems

√
g(y1, y2) dy1dy2 =

4
√
f(x1, x2) dx1dx2

(1 + ‖(x1, x2)‖2)2 ,

where ‖(x1, x2)‖ is the distance from the point specified by x1 and x2 to the origin.

The results of Lemma 3.5.3 are visualized in Figure 3.2. We can use the result of the previous
lemma to define the function F on F . Suppose U is a subset of F . By definition ψ(U) is a subset
of G. By Lemma 3.5.3 we have∫

ψ(U)

G(y1, y2)
√
g(y1, y2) dy1dy2 =

∫
U

4G(y1(x1, x2), y2(x1, x2))

(1 + ‖(x1, x2)‖2)2
√
f(x1, x2) dx1dx2.

This implies that we should define the function F on F as

F (x1, x2) :=
4G(y1(x1, x2), y2(x1, x2))

(1 + ‖(x1, x2)‖2)2 . (3.18)

With this definition we have∫
G
G(y1, y2)

√
g(y1, y2) dy1dy2 =

∫
F
F (x1, x2)

√
f(x1, x2) dx1dx2. (3.19)

Combining (3.19) with (3.12) we obtain∫
E
E(x1, x2)

√
e(x1, x2)dx1dx2 =

∫
F
F (x1, x2)

√
f(y1, y2)dy1dy2, (3.20)

where now x1, x2 is a local coordinate system on E and y1, y2 is a local coordinate system on
F . Equation (3.20) is the new constraint on the functions E : E → R>0 and F : F → R>0. In
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dAS2

dAR2

x

y
z

Figure 3.2: The stereographic projection is depicted. A line through the north pole of the sphere
and a point v on the plane intersects the unit sphere in the point ψ(v). In the picture it can also
be seen how the two surface elements are related. For v near the unit circle on the plane, the two
surface elements have the same size. If v = 0, then the surface element dAS2 is four times the
size of dAR2 . As ‖v‖ → ∞ the ratio dAS2/dAR2

Figure 3.3 the relation between the Monge-Ampère equation, the maps ∇u, ψ, y and integration
by substitution is represented in a diagram. We can now reformulate Problem 3.5.1 in terms of
F , F and a new Monge-Ampère equation

E(x)

F (∇u(x)) =
| det(Hij)|

e
.

An important theorem by Brenier [11, p.66] states that to this reformulated problem exists a
unique convex solution u. We know that for a convex function the Hessian matrix (Hij) is positive
semi-definite. For a 2× 2 matrix (Hij) this implies that its determinant must be positive, because
it equals the product of its eigenvalues. We will try to find Brenier’s convex solution u and because
the fraction eE(x)/F (∇u(x) is positive by definition we will omit the absolute value bars around
det(Hij). To be more precise, we will reformulate Problem 3.5.1 as the following problem.

Problem 3.5.4. Let E ⊂ R
2 be convex, closed and bounded, and let F ⊂ R

2 be closed. Further-
more, let E : E → R>0 and F : F → R>0 be such that they satisfy (3.20). Find u ∈ C2(E) such
that u satisfies the Monge-Ampère equation

E(x)

F (∇u(x)) =
det(Hij)

e
(3.21)

and, moreover, ∇u(E) = F .

To this problem, the theorem by Brenier asserts, exists a unique convex solution. The functions
E and F are strict positive functions and therefore det(Hij) > 0 on E . Suppose for a moment
that we work in Cartesian coordinates, then, if u is a convex function, the matrix (Hij) is positive
semi-definite. A 2 × 2 matrix is positive semi-definite if and only if the trace of (Hij) is greater
than or equal to zero, i.e. Tr(Hij) ≥ 0, and det(Hij) ≥ 0. Similarly, a 2 × 2 matrix is positive
definite if and only if Tr(Hij) > 0 and det(Hij) > 0. Now, if (Hij) is positive semi-definite and
det(Hij) > 0, then also Tr(Hij) > 0. This follows immediate when we diagonalise (Hij). Let u be
the convex solution to Problem 3.5.4. The solution u is a convex function on a convex domain and
such a function it holds that (Hij) is positive semi-definite. Now, because, det(Hij) > 0 it follows
that (Hij) is even positive definite and therefore u is strictly convex. Thus the convex solution u
to (3.5.4) is also strictly convex.
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Before we proceed to the next chapter, where we will present a numerical method to find
the convex solution u, we will first argue that we can replace the implicit boundary condition
∇u(E) = F by the explicit boundary condition ∇u(∂E) = ∂F . In Lemma 3.2.1 we showed that
the map y = ψ ◦ ∇u is a bijection and in Lemma 3.5.2 we showed that the map ψ is a bijection.
From this if follows that the map ∇u : E → F is also a bijection. We will now show that for the
strictly convex solution u to Problem 3.5.4, the map ∇u is a homeomorphism from E to F . A
homeomorphism is a continuous bijection with continuous inverse. A map that maps open sets to
open sets is called open. If an open continuous map is a bijection then it is a homeomorphism.
This implies that of ∇u is open it is also a homeomorphism.

Lemma 3.5.5. Suppose that u ∈ C2(E) is the strictly convex solution to Problem 3.5.4. Then the
map ∇u is also open, i.e. for each open subset V of E the image ∇u(V ) is an open subset of F .

Proof. As we just argued, for the strictly convex solution u ∈ C2(E), the map ∇u is a bijection.
Moreover, because u is twice continuously differentiable, the mapping ∇u is a continuously differ-
entiable mapping. In Cartesian coordinates, the matrix (Hij) is also the Jacobian matrix of ∇u.
The fact that det(Hij) > 0 therefore implies that the Jacobian of ∇u is always strictly positive.
Thus, the conditions for the inverse function theorem [15] are satisfied. The inverse function the-
orem states (among other things) that for every open set E of E and x0 ∈ E, there exists an open
set U in E containing x0, and an open set V in F containing ∇u(x0) such that ∇u is a bijection
from U to V and the inverse (∇u)−1 is continuously differentiable on V .

From this it follows that ∇u is open. To see this suppose E is some open set in E . By the
inverse function theorem there exists for every x ∈ E open sets Ux and Vx such that x ∈ Ux,
∇u(x) ∈ Vx and Ux ⊂ E. ∇u(Ux) = Vx is open for every x ∈ E. Notice that ∪x∈EUx = E and
that ∇u(E) = ∪x∈E∇u(Ux) = ∪x∈EVx. Thus, we see that ∇u(E) is a union of open sets and
hence open. We have established that for every open subset E of E the image ∇u(E) is an open
subset of F , i.e. ∇u is an open map.

Thus, we see that ∇u is a homeomorphism from E to F . We will use this convenient property
of ∇u in the following lemma.

Lemma 3.5.6. Let u be the strictly convex solution to Problem 3.5.4, then ∇u(∂E) = ∂F .

Proof. The map ∇u is a homeomorphism and therefore it links every open map in E with an
open map in F . Let us by U◦ denote the interior of a set U . Suppose A ⊂ E . It is obvious that
∇u(A◦) ⊂ ∇u(A). However, because ∇u is an open map ∇u(A◦) is also open. The largest open
subset of ∇u(A) is the interior ∇u(A)◦, therefore we have ∇u(A◦) ⊂ ∇u(A)◦. If ∇u : E → F is a
homeomorphism, then (∇u)−1 : F → E is a homeomorphism also. This implies that we also have
(∇u)−1(B◦) = (∇u)−1(B)◦ for all B ⊂ F .

From this it follows that we have both∇u(E◦) ⊂ ∇u(E)◦ = F◦ and (∇u)−1(F◦) ⊂ (∇u)−1(F)◦ =
E◦. Using this we see that

F◦ = ∇u ((∇u)−1(F◦)
) ⊂ ∇u (E◦) ⊂ F◦.

Thus, we see that ∇u (E◦) = F◦. Now, because ∇u is a bijection this implies that we must have
∇u(∂E) = ∂F .

Thus the strictly convex solution of Problem 3.5.4 is also a solution to the same problem but
with the implicit boundary condition ∇u(E) = F replaced by the explicit boundary condition
∇u(∂E) = ∂F , i.e. the following problem.

Problem 3.5.7. Let E ⊂ R
2 be convex, closed and bounded, and let F ⊂ R

2 be closed. Further-
more, let E : E → R>0 and F : F → R>0 be such that they satisfy (3.20). Find u ∈ C2(E) such
that u satisfies the Monge-Ampère equation

E(x)

F (∇u(x)) =
det(Hij)

e

and, moreover, ∇u(∂E) = ∂F .
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Thus, a strictly convex solution of Problem 3.5.4 is also a solution to Problem 3.5.7. Now the
following lemma states the converse.

Lemma 3.5.8. Let u be a strictly convex solution to Problem 3.5.7. Then ∇u(E) = F .

Proof. The map ∇u is a homeomorphism from E to ∇u(E) ⊂ R
2. The set E is convex and

hence simply connected. The set ∂E is a simple and closed curve, i.e. a Jordan curve. The
map ∇u is continuous and injective and hence ∇u(∂E) = ∂F is a Jordan curve also. Now
the Jordan curve theorem states that the complement R

2\∂F has two connected components
one of which is bounded and one of which is not, namely the interior and the exterior of the
curve, and the boundary of both these sets is ∂F . The set E is simply connected and simply
connectedness is a topological property, therefore ∇u(E) is simply connected also. The interior
and exterior to the curve ∇u(E) = ∂F are the only two subsets of R2 with ∂F as boundary.
The map ∇u is a homeomorphism and therefore we have ∇u(∂E) = ∂(∇u(E)). This follows from
the fact that ∇u(E◦) = (∇u(E))◦ what we showed in the proof of Lemma 3.5.6. The fact that
∂F = ∇u(∂E) = ∂(∇u(E)) implies that ∇u(E)◦ is one of two sets of the Jordan curve theorem.
The exterior set is clearly not simply connected, while ∇u(E) is, therefore ∇u(E)◦ is the interior
set in the Jordan curve theorem. Equation (3.20), the fact that E is bounded and the functions
E and F are strictly positive imply that the set F is bounded also. This implies that F◦ needs to
be the interior set also and hence we find that ∇u(E) = F .

We have established that u is a strictly convex solution of Problem 3.5.4 if and only if u is
a strictly convex solution of Problem 3.5.7. Thus to find the unique strictly convex solution to
Problem 3.5.4 we can just as well try to find the strictly convex solution of Problem 3.5.7 and this
is what we will do in next Chapter.



3.5. BOUNDARY VALUE PROBLEM 51

E

F

G

Monge-Ampère equation

E(x) = E(x)

E(x) = F (∇u(x))det(Hij)

e

E(x) =
4G(y(x))

(‖∇u‖2 + 1)2
det(Hij)

e

Integration by substitution∫
E
E(x1, x2)

√
edx1dx2

∫
E

4G(y(x1, x2))

(‖∇u‖2 + 1)2
det(Hij)

e

√
edx1dx2

∫
F=∇u(E)

4G(ψ(y1, y2))

(‖∇u‖2 + 1)2

√
fdy1dy2

∫
G=ψ(F)

G(z1, z2)
√
gdz1dz2

∇u

ψ

y = ψ ◦ ∇u

Figure 3.3: This is a graphical representation of the formation of the Monge-Ampère equation by
successive integration by substitution. One starts out with the integral of G over G and applies
integration by substitution to end up with an integral over F . The integrand contains the original
functions times a Jacobian for the map ψ. Subsequently, one applies integration by substitution
again and one ends up with an integral over E , while the integrand is multiplied by the second
Jacobian for the map ∇u. This integral over E has to equal the emittance of E by conservation of
energy.
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3.6 The output intensity

In practice the output intensity of the reflector system will most often be given in spherical
coordinates, i.e. set G ⊂ S2 and the intensity function G will be given in spherical coordinates.
However it could also be that some desired intensity pattern on a projection screen at a distance
d from the reflector is specified. We will denote the intensity function on the plane describing this
pattern by H and the subset of this plane for which H > 0 by H. In this section we will discuss
how to determine the pair (F , F ) in Problem 3.5.7 from the pair (G, G) or the pair (H, H).

3.6.1 Output intensity specified in spherical coordinates

Suppose we have a output intensity on S2 specified by (G, G) given in a spherical coordinate system.
In order to define the spherical coordinate system we need two perpendicular directions. We use
the direction ẽ3 as the zenith direction from which we measure the polar angle. Furthermore we
need one direction in the plane from which we measure the azimuth angle. This direction we
denote by ã. Once a coordinate system is chosen on F we will relate ã to a basis vector in this
coordinate system. So, for example, when a Cartesian coordinate system is used on F with basis
vectors ex and ey, one often takes ã = ex.

Given a certain vector v ∈ S2 the corresponding spherical coordinates are then given by

θ = tan−1

(√
1− (v | ẽ3)2 − (v | ã)2

(v | ã)

)
and φ = arccos((v | ẽ3)), (3.22)

where tan−1 is the function defined in Example 2.1.6. Substituting ỹ = ψ(v) given by (3.13) in
(3.22) we obtain φ and θ as a function of the vector v ∈ F :

θ(v) = tan−1

(√
4‖v‖2 − [(‖v‖2 + 1)(ỹ | ã)]2

(‖v‖2 + 1)(ỹ | ã)

)
. (3.23)

φ(v) = arccos((ỹ | ẽ3)) = arccos

(‖v‖2 − 1

‖v‖2 + 1

)
, (3.24)

If we use a Cartesian coordinate system on F and align ã with ex we find for v = vxex + vyey,
(3.16) and (3.17). Thus, when we use the Cartesian coordinate system on F , equation (3.18)
implies that F is given by

F (vx, vy) =
4G(θ(vx, vy), φ(vx, vy))

((vx)2 + (vy)2 + 1)2
, (3.25)

with θ(vx, vy) and φ(vx, vy) as given in equations (3.16) and (3.17), respectively. However to be
able to determine ∂F from ∂G we also need to invert relations (3.16) and (3.17). This is done in
[5, p.77]. We will just state that result here:

vx(θ, φ) =
sin(φ) cos(θ)

1− cos(φ)
and vy(θ, φ) =

sin(φ) sin(θ)

1− cos(φ)
.

If we use polar coordinates on F defined by their usual relations with the Cartesian coordinate
system we find

θ(vr, vθ) = vθ, (3.26)

φ(vr, vθ) = arccos

(
(vr)2 − 1

(vr)2 + 1

)
. (3.27)

From this we see that the function F is given by

F (vr, vθ) =
4G(θ(vr, vθ), φ(vr, vθ))

((vr)2 + 1)2
, (3.28)
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with θ(vr, vθ) and φ(vr, vθ) as given in equations (3.26) and (3.27), respectively. The relations
(3.26) and (3.27) are easily inverted. Doing this we find that

vr(θ, φ) =

√
1 + cos(φ)

1− cos(φ)
and vθ(θ, φ) = θ.

These relations allow us to determine F once G ⊂ S2 is given.

3.6.2 Target illuminance specified on a target plane

Suppose now that we want a certain illuminance [lm/m2] on a plane at a distant d of the reflector
in the direction of ã. This plane is also perpendicular to the direction of ã. Let us denote the
illuminance by the function H : H → R>0, where H is some subset of the plane. For simplicity we
will assume that we have a Cartesian coordinate system on H. Let the basis vectors be given by
the vectors h1 and h2 which correspond to coordinates h1 and h2. Let the vector h2 = ẽ3 and let
h1 = −ẽ3 × ã. We will now calculate the coordinates (h1, h2) on the plane at which a light ray
in the direction specified by (θ, φ) intersects the plane. This gives us a map from the directions of
S2 to the points on H. We find that this map is given by

h1(θ, φ) = −d tan(θ) and h2(θ, φ) =
cos(θ) tan(π/2− φ)

d
. (3.29)

The Jacobian matrix of this map is given by

J(h1(θ, φ), h2(θ, φ)) =

⎛⎜⎜⎝
∂h1

∂θ

∂h1

∂φ
∂h2

∂θ

∂h2

∂φ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−d

cos2(θ)
0

d tan(π/2− φ) tan(θ)

cos(θ)

−d
sin2(φ) cos(θ)

⎞⎟⎟⎠ .

We see that as long as θ ∈ (−π, π) and φ ∈ (0, π) the Jacobian is invertible and its determinant is
given by

det(J(h1(θ, φ), h2(θ, φ))) =
d2

cos3(θ) sin2(φ)
. (3.30)

Furthermore the map (θ, φ) 
→ (h1(θ, φ), h2(θ, φ) is continuously differentiable for θ ∈ (−π, π) and
φ ∈ (0, π), therefore the inverse function theorem applies. The inverse function theorem states
that the inverse map (h1, h2) 
→ (θ(h1, h2), φ(h1, h2)) is also continuously differentiable and its
jacobian matrix is given by

J(θ(h1, h2), φ(h1, h2)) = [J(h1(θ, φ), h2(θ, φ))]−1.

By the change of variables formula it follows therefore that

H(h1, h2)
√
h(h1, h2) dh1dh2 = H(h1(θ, φ), h2(θ, φ)) | det(J(θ(h1, h2), φ(h1, h2)))|

√
g(θ, φ) dθdφ.

The square root of the Cartesian metric is one and the square root of the metric of the spherical
coordinate basis is equal to sin(φ), therefore, using (3.30), we find

H(h1, h2) dh1dh2 = H(h1(θ, φ), h2(θ, φ))

(
cos3(θ) sin2(φ)

d2

)
sin(φ) dθdφ,

because the determinant of the inverse of a matrix is equal to the inverse of the determinant of
the matrix. Now we define the function G : G → R>0 by

G(θ, φ) := H(h1(θ, φ), h2(θ, φ))

(
cos3(θ) sin2(φ)

d2

)
,
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where G := {(θ(h1, h2), φ(h1, h2)) ∈ S2 | (h1, h2) ∈ H}.
In order to calculate the set G fromH we need to have a formula for (h1, h2) 
→ (θ(h1, h2), φ(h1, h2)).

Note that cos(θ) = d2/
√
(h1)2 + d2. From this and equation (3.29) it follows that

θ(h1, h2) = tan−1

(−h1
d

)
and φ(h1, h2) =

π

2
− tan−1

(
h2
√
(h1)2 + d2

)
.

Now that we have determined (G, G) from (H, H) we can also determine (F , F ) from (H, H) if we
use the results from last subsection to get from (G, G) to (F , F ).



Chapter 4

Least-Squares Method for
Arbitrary Coordinate Systems

In this chapter we will introduce a numerical method to solve the boundary value problem derived
in last chapter. This method is called the least-squares method and was proposed in [5]. We will
present the least-squares method here for an arbitrary coordinate system on the source E . We
will first give an outline of the numerical method before presenting the three main steps of the
method in more detail in three subsequent sections. One of the three main steps of the method
as represented in [5] contains a minor flaw. We will indicate this and present an improved version
of this step.

4.1 Outline of the least-squares method

We will present the numerical method for an arbitrary coordinate system on E , with coordinates
x1, x2, local basis vectors e1, e2 and a metric eij = (ei|ej). We will not try to solve Problem
(3.5.7) directly for u. Instead we will look for a mapping m = ∇u : E → F that

(i) solves the following boundary value problem

det(∇m̂(x))

e
=

E(x)

F (m(x))
x ∈ E ,

m(∂E) = ∂F ,

where m̂ = mie
i = eijm

iej ,

(ii) m should be such that there exists a strictly convex u ∈ C2(E) such that m = ∇u.
From this mapping we will eventually find u.

We need to make (ii) more precise. In order to say more about this, we will first show that
the Hessian tensor is always symmetric for the Levi-Civita connection.

Lemma 4.1.1. Let M be a twice continuously differentiable submanifold of Euclidean space,
endowed with a Levi-Civita connection and let u ∈ C2(M). Then the Hessian tensor H(u) is
symmetric, i.e.

Hij = Hji.

Proof. On page 28 we have shown that(∇ej (∇eiu)− Γkij∇ek

)− (∇ei(∇eju)− Γkji∇ek

)
= T kij∇ek

u,

55
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where T kij are the components of the torsion tensor. By Definition 2.4.6, the Levi-Civita connection

is torsion-free, i.e. all the components T kij = 0. Thus, we can conclude that the Hessian tensor
is indeed symmetric. Note that being symmetric for a tensor is a property independent of the
coordinate system. This we have shown on page 28 also.

We see that in order for m to satisfy (ii), the tensor

∇m̂ = ∇ej
(m̂)⊗ êj = (∇ej

mi − Γkijmk)ê
i ⊗ êj

needs to be symmetric. This condition is actually enough to ensure that m equals the gradient
of some function. The symmetry of ∇m̂ implies that the curl of m is zero. Let us interpret
m = miei = mie

ijej , where summation runs over i, j = 1, 2 (Latin indices), as a vector in R
3 and

calculate its curl. In an arbitrary coordinate system the curl of a vector field v is given by

∇× v := εαβγe
βδDδ(v

α)eγσeσ,

where Dδ(v
β) are the components of the covariant derivative of v.

For the basis {e1, e2, ẽ3}, the third basis vector ẽ3 does not depend on position as it is by
definition always normal to the plane spanned by e1 and e2 and of unit length. Furthermore m
is a vector in the plane of e1 and e2 and therefore m3 = 0, hence we find

∇×m = εαβγe
βδeασDδ(mσ)e

γρeρ

= ε123e
11e22e33(∇e2

m1 − Γi12mi) + ε213e
11e22e33(∇e1

m2 − Γi21mi)

=
(∇e2

m1 − Γi12mi)− (∇e1
m2 − Γi21mi)√

e
.

From this we see that ∇×m vanishes if and only if ∇m̂ is symmetric. A vector field with zero
curl is called a conservative field. Conservative fields on a simply connected domain always equal
the gradient of some function, see for example [13, p.551]. Thus we can conclude that m ∈ TEC1

equals the gradient of some function u ∈ C2(E) if and only if ∇m̂ is symmetric. (Recall from page
21 that TEC1 is the space of continuously differentiable vector fields on E .)

However, this condition alone will not suffice for our goals, because we also need u to be strictly
convex. The function u ∈ C2(E) is convex if and only if E is convex and the Hessian tensor H(u)
is positive semi-definite, see for example [14, p.71]. The Hessian tensor is positive semi-definite if
and only if for every x = xiei we have H(u)(x,x) ≥ 0, where

H(u)(x,x) =
(∇ej (∇eiu)− Γkij∇ek

u
)〈êi,x〉〈êj ,x〉

= Hijx
ixj

= xke
kiHijx

j

= xT (ekiHij)x.

From this we see that H(u) is positive semi-definite if and only if the matrix (ekiHij) is positive
semi-definite. For our orthogonal basis the metric is diagonal and therefore

(ekiHij) =

(
e11H11 e11H12

e22H21 e22H22

)
. (4.1)

Unfortunately, we can not demand positive definiteness, because, although every u ∈ C2(E) with
positive definite Hessian tensor is strictly convex, not every strictly convex u ∈ C2(E) has a
positive definite Hessian tensor.∗ Thus we cannot ask more than for ∇m̂ to be positive semi-
definite, because this would be too restrictive. The numerical method that we will soon start
introducing will solve the following boundary value problem.

∗Consider for example the strictly convex function f(x) = x4 on the real line. Although f is strictly convex,
the Hessian tensor, i.e. f ′′, is zero for x = 0 and hence not positive definite.
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Problem 4.1.2. Find m ∈ TEC1 that satisfies

det(∇m̂(x))

e
=

E(x)

F (m(x))
, x ∈ E , (4.2a)

m(∂E) = ∂F , (4.2b)

and for which ∇m̂ is a symmetric positive semi-definite tensor. In this problem the functions E
and F are strictly positive functions such that∫

E
E(x1, x2)

√
e dx1dx2 =

∫
F
F (y1, y2)

√
f dy1dy2,

where x1, x2 are local coordinates on E with corresponding metric eij and y
1, y2 are local coordi-

nates on F with corresponding metric fij .

It is clear that if u is a solution to Problem 3.5.7, then m = ∇u will be a solution to Problem
4.1.2. The reverse statement is not true because a solution m of Problem 4.1.2 may be such that
the u in ∇u =m is convex but not strictly convex. Problem 4.1.2 allows also for convex solutions.
For convex but not strictly convex u ∈ C2(E) the map x 
→ ỹ(x) in Lemma 3.2.1 is no longer a
bijection. However, in practice, due to numerical inaccuracies, solutions u that are convex but not
strictly convex do not occur and hence this is not a serious problem.

We will numerically solve Problem 4.1.2 by starting with an initial guess m0 and improving
this initial guess in an iterative manner. We will try to find a solutionm satisfying equation (4.2a)
by minimizing the functional

JI(m,P ) :=
1

2

∫∫
E
‖∇m̂− P ‖2√edx1dx2 (4.3)

over the set

P(m) :=
{
P ∈ T 2

0(TE)C1 | [det(Pij(x)) = eE(x)/F (m(x)), P (x) is spsd]
}
,

where “spsd” stands for symmetric positive semi-definite. It seems as if we demand more smooth-
ness than necessary because for Problem 4.1.2 we only need P to be continuous for continuous
E and F . However, in one of the minimization procedures we need ∇m̂ to be continuously
differentiable and therefore we also need P to be continuously differentiable.

The norm in equation (4.3) is defined in the following way. Let A,B ∈ T 2
0(TxE), i.e., the

tangent space of T 2
0 -tensors in the point x ∈ E , then A : B := eikejlAijBkl = AijB

ij defines an
inner product on T 2

0(TxE). This inner product is the inner product on T 2
0(TxE) induced by the

metric. The fact that this is indeed an inner product follows by the symmmetry, linearity and
positivity of the metric e. Let ‖ · ‖ be the norm associated with this inner product.∗ It is clear
that if JI = 0, m will satisfy equation (4.2a) and ∇m̂ will be symmetric positive semi-definite.

To satisfy the boundary condition (4.2b) we will minimize another functional simultaneously.
This functional is given by

JB(m, b) :=
1

2

∮
∂E

‖m− b‖2ds. (4.4)

We will minimize this functional over the space

B := {b ∈ TEC | b(x) ∈ ∂F} . (4.5)

Analogously to the functional JI we notice that if JB = 0, m satisfies equation (4.2b).

∗We use the same notation as for the vector norm, but this is not very likely to cause confusion because it will
be clear from the argument which norm we mean.
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Our goal is to minimize JI and JB simultaneously. In order to do that we define a third
functional:

J(m,P , b) := αJI(m,P ) + (1− α)JB(m, b) (4.6)

with α ∈ (0, 1). This functional we will minimize for m over

V := TEC2 . (4.7)

One iteration of the numerical method consists of three steps. Assume thatmn is given. In order
to determine mn+1 we subsequently perform three steps:

bn+1 = argmin
b∈B

JB(m
n, b), (4.8a)

P n+1 = argmin
P∈P(mn)

JI(m
n,P ), (4.8b)

mn+1 = argmin
m∈V

J(m,P n+1, bn+1). (4.8c)

We will in the next three sections focus on each of these minimization steps. We will treat (4.8b)
quite extensively, because this minimization procedure contains an improvement with respect to
the method as presented in [5]. In [5] the tensor P was not required to be positive semi-definite,
while this is necessary to ensure the convexity of the reflector surface. This imperfection in the
numerical method as presented there gives rise to some convergence issues. We will show that,
just as in [5], it is still possible to solve the minimization problem (4.8b) algebraically, despite the
extra condition on P . We will also cover minimization problem (4.8c) in a lot of detail, because
this minimization problem becomes somewhat more involved for arbitrary coordinate systems. We
will now start with minimization problem (4.8a).

4.2 Minimization of JB

In the first step we minimize JB for fixed m over the space B of possible continuous vector fields
b on ∂E that map to ∂F . In order to solve this minimization problem we will make a linear
approximation of the boundary ∂F by Nb straight line segments. We use Nb grid points yi ∈ ∂F
and connect these by straight lines. We number the yi in increasing anti-clockwise direction such
that yNb+1 = y1. We will then for each boundary grid point x ∈ ∂E minimize

‖m(x)− b(x)‖2.
Let us denote the line segment between yi and yi+1 by (yi,yi+1). We consider an arbitrary grid
point on ∂E and determine the nearest point tom(x) on the line segment (yi,yi+1) by calculating
the projection mP (x) of m(x) on the line through yi and yi+1. This projection is given by

mP (x) = yi + ti(yi+1 − yi),
where the parameter ti is given by

ti =
(m(x)− yi|yi+1 − yi)

‖yi+1 − yi‖2
. (4.9)

If the parameter ti ∈ [0, 1], then mP (x) lies on the line segment (yi,yi+1). If, however, ti > 1,
then we take yi+1 to be point on (yi,yi+1) closest tom(x) and similarly if ti < 0 then we take yi
to be the point on (yi,yi+1) closest to m(x). Thus the closest point to m(x) on the line segment
(yi,yi+1) is given by

bi(x) = yi +min(1,max(0, ti))(yi+1 − yi),



4.3. MINIMIZATION OF JI 59

with ti given by Equation (4.9). The distance from m(x) to line segment (yi,yi+1) is given by
‖m(x)− bi(x)‖. Let now k ∈ [1, Nb] be the index for which this distance is minimal, i.e.

k = argmin
1≤i≤Nb

‖m(x)− bi(x)‖.

It follows that the point b(x) closest to m(x) on the approximation of ∂F is given by b = bk and
lies on the line segment (yk,yk+1).

In this way we can for each grid point x ∈ ∂E calculate b(x), the nearest point on the approx-
imation of ∂F , analytically. This give us b that minimizes JB in a discretized sense. We will now
turn our attention to the minimization problem (4.8b).

4.3 Minimization of JI

We will now show how to minimize JI(m,P ) for P ∈ P(m) for fixed m. The integrand of JI
does not contain derivatives of P , therefore we can carry out the minimization for each grid point
x ∈ E individually. For each grid point x ∈ E we want to minimize ‖∇m̂(x) − P (x)‖2/2. Let
us denote by δeimj the central difference approximation of ∇eimj . The tensor ∇m̂ will then be

approximated by dij ê
i⊗ êj , where dij := (δejmi−Γkijmk). Assuming this approximation of ∇m̂,

we will minimize

1

2
‖(dij)− (Pij)‖2 =

1

2

(
dij − Pij

)(
dkl − Pkl

)
eikejl

=
1

2e

[
e11e22(d11 − P11)

2 + (d12 − P12)
2 + (d21 − P21)

2 + e22e11(d22 − P22)
2
]
,

where we used the fact that the basis {e1, e2} is orthogonal and hence (eij) is diagonal. The tensor
P (x) is positive semi-definite if and only if the matrix (eijPjk) is positive semi-definite. Recall
that symmetric 2× 2 matrices are positive semi-definite if and only if their trace and determinant
are both positive. However, the matrix is not symmetric, because

(eijPjk) =

(
e11P11 e11P12

e22P12 e22P22

)
, (4.10)

where we used that P21 = P12. It is a familiar result that a matrix is positive semi-definite if
and only if its eigenvalues are nonnegative. A quick calculation shows that the eigenvalues of the
matrix (eijPjk) are given by

λ± =
1

2

(
−(e11P11 + e22P22)±

√
(e11P11 − e22P22)2 + 4e11e22P 2

12

)
. (4.11)

A similar calculation shows that the eigenvalues of the matrix(
e11P11 P12/

√
e

P12/
√
e e22P22

)
(4.12)

are also given by (4.11). This implies that (eijPjk) is positive semi-definite if and only if the matrix
in (4.12) is positive semi-definite. The matrix in (4.12) is symmetric, hence we can conclude that
P (x) is positive semi-definite if and only if the trace and determinant of the matrix in (4.12) are
nonnegative, i.e. if and only if

e11P11 + e22P22 ≥ 0 and (P11P22 − P 2
12)/e ≥ 0.

The metric eij is derived from an ordinary Pythagorean inner product hence we have e > 0 and
we can simplify the last requirement to det(Pij) ≥ 0.

The determinant of (Pij) needs to equal eE/F . This quotient is positive by definition and
hence det(Pij) > 0 is always satisfied. We can formulate the minimization problem as follows.
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Problem 4.3.1. Given (dij), find P11, P12, P22 ∈ R that minimize the function

H(P11, P12, P22) :=
1

2e

[
e11e22(d11 − P11)

2 + (d12 − P12)
2 + (d21 − P12)

2 + e22e11(d22 − P22)
2
]
.

(4.13)

under the constraints P11P22 − P 2
12 = eE/F > 0 and e11P11 + e22P22 ≥ 0.

We can rewrite Problem 4.3.1 in a more convenient form by introducing the new variables

P 11 = e11P11,

P 12 = P12/
√
e, (4.14)

P 22 = e22P22.

With these new variables we can rewrite the minimization function of Problem 4.3.1 as

H(P11, P12, P22) =
1

2e

[
e11e22(d11 − e11P 11)

2 + (d12 −
√
e P 12)

2

+(d21 −
√
e P 12)

2 + e22e11(d22 − e22P 22)
2
]

=
1

2

[
(e11d11 − P 11)

2 + (d12/
√
e− P 12)

2 + (d21/
√
e− P 12)

2 + (e22d22 − P 22)
2
]
.

This implies that we can equally well solve the following problem.

Problem 4.3.2. Given (dij), find P 11, P 12, P 22 ∈ R that minimize the function H under the

constraints P 11P 22 − P
2

12 = E/F and P 11 + P 22 ≥ 0, where H is given by

H(P 11, P 12, P 22) =
1

2

[
(d11 − P 11)

2 + (d12 − P 12)
2 + (d21 − P 12)

2 + (d22 − P 22)
2
]
,

where d11 = e11d11, d12 = d12/
√
e, d21 = d21/

√
e and d22 = e22d22.

The minimizers (P11, P12, P22) of Problem 4.3.1 are related to the minimizers (P 11, P 12, P 22)
of Problem 4.3.2 by equations (4.14).

We will algebraically solve Problem 4.3.2 by using the method of Lagrange multipliers. Besides
this we will give a pictorial geometric representation of this problem. This serves to get more
intuition for the problem and also provides a convenient way to verify the algebraically found
solutions.

4.3.1 Lagrange minimizers and their geometric representation

We will find the minimizers of Problem 4.3.2 with the help of the Lagrange function

Λ(P 11, P 12, P 22, λ) = H(P 11, P 12, P 22)− λ

(
P 11P 22 − P

2

12 −
E

F

)
. (4.15)

In a local minimum of this function all the partial derivatives have to equal zero, hence we find
the following set of equations,

P 11 + λP 22 = d11, (4.16a)

(1− λ)P 12 = d̃12 :=
1

2
(d12 + d21), (4.16b)

λP 11 + P 22 = d22, (4.16c)

P 11P 22 − P
2

12 =
E

F
. (4.16d)
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In the Lagrange function (4.15) the condition P 11 + P 22 ≥ 0 has not been taken into account,
hence a solution of (4.16a)-(4.16d) might have P 11 + P 22 < 0. In what follows, we will show that
there always exists a solution to (4.16a)-(4.16d) such that P 11 + P 22 ≥ 0.

We will now give a geometric interpretation to the Lagrange minimizers. We will show that
they correspond to a joint tangent plane of a hyperboloid and an ellipsoid. Note that we can
rewrite the function H as

H(P 11, P 12, P 22) =
1

2

[
(d11 − P 11)

2 + 2(d̃12 − P 12)
2 + (d22 − P 22)

2
]
+

1

4
(d12 − d21)

2, (4.17)

where d̃12 is as defined in equation (4.16b). Let us introduce C := H(P 11, P 12, P 22)− 1
4 (d12−d21)2.

From (4.17) we see that H(P 11, P 12, P 22) ≥ 1
4 (d12 − d21)

2 and hence is C ≥ 0 for every value of
H. Every value of C corresponds to an iso-surface of the function H. Using C we can rewrite
(4.17) as

(
P 11 − d11√

2C

)2

+

(
P 12 − d̃12√

C

)2

+

(
P 22 − d22√

2C

)2

= 1. (4.18)

Equation (4.18) describes an ellipsoid in R
3 with center (d11, d̃12, d22) and semi-axes

√
2C,

√
C

and
√
2C. Thus the iso-surfaces of H can be interpreted as ellipsoids in R

3.
Let us now focus on the constraint

P 11P 22 − P
2

12 = E/F. (4.19)

This constraint describes an hyperboloid in R
3 with symmetry axis given by P 11 = P 22 and P 12 =

0. To see this we will in a slightly different coordinate system. This coordinate transformation is
given by

x = P 11 − P 22,

y = P 12, (4.20)

z = P 11 + P 22.

Using these coordinates, equation (4.19) turns into(
x

2
√
E/F

)2

+

(
y√
E/F

)2

−
(

z

2
√
E/F

)2

= −1. (4.21)

This equation describes a hyperboloid of two separate sheets. One sheet is located in the half-
space z > 0 and the other one is located in the half-space z < 0. The distance from the origin to
the extremum of the upper sheet and the extremum of the lower sheet is 2

√
E/F , respectively,

−2
√
E/F .

If we substitute the new coordinates (4.20) into equation (4.18) we obtain

(
x− (d11 − d22)

2
√
C

)2

+

(
y − d̃12√

C

)2

+

(
z − (d11 + d22)

2
√
C

)2

= 1.

We see (Figure 4.1) that the principal axes of both the ellipsoids and the hyperboloids are such
that the x- and z-principal axis are equally long and twice the length of the y-principal axis. This
fact will play a role in the minimization problem.

The local minimizers of the Lagrange function (4.15) are exactly the points where an iso-surface
of H is tangent to the hyperboloid. This can be seen from the equations (4.16) in the following
way. Equation (4.16d) implies that a local minimizer of the Lagrange function is a point of the
hyperboloid. Furthermore, a minimizer of the Lagrange function Λ is a local minimum of H when
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Figure 4.1: In this figure an example of an ellipsoidal iso-surface of H and a hyperboloid are shown
from above the plane z = P 11 + P 22 = 0. The viewing direction is in the negative z-direction.
The blue lines are the isolines of the hyperboloid. We see that the principal x- and y-axis have
the same proportion for the hyperboloid and the ellipsoid.

confined to the hyperboloid. To see this suppose that a point p on the hyperboloid is a minimizer
to λ. Now if p is not a local minimum of H restricted to the hyperboloid, then there would be
a direction to go, while staying on the hyperboloid, in which the function H increases while the
second term in (4.15) stays constant. This would then contradict the fact that the point p is a
minimizer to Λ. Thus we can conclude that the minimizers of Λ are the points local minimima
of H restricted to the hyperboloid. Now, a local minimum of H restricted to the surface of the
hyperboloid is exactly a point where an iso-surface of H is tangent to the hyperboloid. The
plane z = P 11 + P 22 = 0 lies precisely between the two sheets of the hyperboloid. Thus, only
the points where an iso-surface of H is tangent to the upper sheet of the hyperboloid are actual
minimizers of Problem 4.3.2. In Figure 4.2 an example of a hyperboloid with ellipsoid is shown.
The global minimizer corresponds to the smallest ellipsoid that is tangent to the upper sheet of
the hyperboloid. An example of this is shown in Figure 4.3.

In the remaining part of this section we will algebraically solve the system of equations (4.16).
We will verify the algebraic solutions that we find by these geometric pictures. This allows us to
get more intuition for the problem and visualizes symmetries that are not directly apparent from
the equations (4.16a) - (4.16d).
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Figure 4.2: In this figure an example of an ellipsoidal iso-surface of H and a hyperboloid are shown
together with the plane z = P 11 + P 22 = 0 in green. It can be seen that one of the two sheets of
the hyperboloid lies above the green plane and one lies below the green plane. Only minimizers
above the green plane satisfy P 11 + P 22 > 0.

Figure 4.3: A little bit of red of the ellipsoid can be seen appearing through the upper sheet of the
hyperboloid. This is the smallest ellipsoid around this point that is tangent to the upper sheet of
the hyperboloid and therefore corresponds to a global minimizer.
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4.3.2 Determining the minimizers

We will show that for each given dij ê
i ⊗ êj we can find P 11, P 12, P 22 ∈ R that are the solution to

Problem 4.3.2. If λ �= ±1, we can invert equations (4.16a) - (4.16c). Doing this we obtain

P 11 =
λd22 − d11
λ2 − 1

, (4.22a)

P 12 =
d̃12
1− λ

, (4.22b)

P 22 =
λd11 − d22
λ2 − 1

. (4.22c)

However, these equations only hold if λ �= ±1. From equations (4.16a) - (4.16c) we have the
following immediate logical implications:

λ = 1 =⇒ [d11 = d22] ∧ [d̃12 = 0], (4.23a)

λ = −1 =⇒ [d11 = −d22]. (4.23b)

From these implications we see there are only two situations that have to be dealt with separately,
namely the cases [d11 = d22] ∧ [d̃12 = 0] and [d11 = −d22]. When we are not in one of these
two cases we can faultlessly write down equations (4.22a) - (4.22c). We will now treat the three
different cases in turn, starting out with the general case.

Lemma 4.3.3. When ¬[[d11 = d22]∧ [d̃12 = 0]]∧¬[d11 = −d22], the global minimizer to Problem
4.3.2 is given by equations (4.22a) - (4.22c). In these expressions λ is given by one of the following
four expressions:

λ1 = −
√
y

2
+

√
−y
2
− a2

2a4
+

a1
2a4

√
2y
, λ2 = −

√
y

2
−
√
−y
2
− a2

2a4
+

a1
2a4

√
2y
,

λ3 =

√
y

2
+

√
−y
2
− a2

2a4
+

a1
2a4

√
2y
, λ4 =

√
y

2
−
√

−y
2
− a2

2a4
+

a1
2a4

√
2y
.

(4.24)

In (4.24) y is given by the following two sets of equations:

y = A+
Q

A
− b2

3
, A = − sgn(R)

(|A|+√R2 −Q3
)1/3

,

R =
2b32 − 9b1b2 + 27b0

54
, Q =

b32 − 3b1
9

,

(4.25)

and

b0 = −1

8

(
a1
a4

)2

, b1 =
1

4

(
a2
a4

)2

− a0
a4
,

b2 =
a2
a4
,

a0 =
E

F
− det(D̃), a1 = d

2

11 + d
2

22 + 2d̃212,

a2 = −2E/F − det(D̃), a4 = E/F,

(4.26)

where

D̃ =

(
d11 d̃12
d̃12 d22

)
.

At least one of the four choices for λ is such that the requirement P 11 + P 22 > 0 is satisfied by
(4.22a) - (4.22c).
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Proof. Substituting the expressions (4.22a) - (4.22c) in (4.16d) we obtain the following quartic
polynomial for λ:

Π(λ) := a4λ
4 + a2λ

2 + a1λ+ a0 = 0,

where the coefficients are as given (4.26). In [5, p.135] it is shown that this polynomial admits the
four solutions (4.24). The leading term of Π is a4 = E/F which is by definition greater than zero,
hence

lim
λ→±∞

Π(λ) = ∞.

Furthermore, we can rewrite Π(λ) as

Π(λ) = a4(λ
2 − 1)2 − det(D̃)(λ2 + 1) + (d

2

11 + d
2

22 + 2d̃12)λ.

From this we see that

Π(λ = −1) = −2 det(D̃)− (d
2

11 + d
2

22 + 2d̃12)

= −2d11d22 + 2d̃212 − d
2

11 − d
2

22 − 2d̃12

= −(d11 + d22)
2.

By assumption d11 �= d22, hence Π(λ = −1) < 0. This combined with the fact that Π(λ) → +∞
for λ→ ±∞ implies that Π must have at least two real roots.

From (4.22a) and (4.22c) it follows that

P 11 + P 22 =
d11 + d22
1 + λ

.

This shows that for one of the two real roots it holds that P 11 + P 22 > 0, while for the other real
root it holds that P 11 + P 22 < 0.

We now have established the fact that one of the four λ in (4.24) is such that (4.22a) - (4.22c)
is a minimum of the Lagrange function such that it adheres to P 11 + P 22 > 0, thereby it follows
that a global minimizer exists. Moreover, the minimizer is given by (4.22a) - (4.22c), with λ given
by one of the real roots of (4.24).

Now that we have dealt with the general case we will turn our attention to the cases
[d11 = d22] ∧ [d̃12 = 0] and [d11 = −d22]. We first handle [d11 = −d22].
Lemma 4.3.4. When d11 = −d22, the global minimizer to Problem 4.3.2 is given by

P 11 =
d11 +

√
d
2

11 + 4E/F + d̃212
2

, (4.27a)

P 12 =
d̃12
2
, (4.27b)

P 22 =
−d11 +

√
d
2

11 + 4E/F + d̃212
2

. (4.27c)

Proof. When d11 = −d22, the Lagrange conditions (4.16a) and (4.16c) imply that (λ + 1)(P 11 +
P 22) = 0. From this it follows that we have either λ = −1 or P 11 = −P 22. When P 11 = −P 22, it
holds by (4.16d) that

−P 2

11 − P
2

12 =
E

F
.

However, this situation cannot occur because E/F > 0. We find that λ = −1 must hold.
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The Lagrange conditions (4.16a) - (4.16d) now simplify to

P 11 − P 22 = d11,

2P 12 = d̃12,

P 22 − P 11 = d22,

P 11P 22 =
E

F
+
d̃212
4
.

Combining equations first and fourth of these equations gives us

P
2

11 − P 11d11 =
E

F
+
d̃212
4
,

which we can rewrite to

P
2

11 − P 11d11 − E

F
− d̃212

4
= 0.

This polynomial has for any combination of d11, d̃12 and d22 always two real solutions, which are
given by

P 11 =
d11 ±

√
d
2

11 + 4E/F + d̃212
2

.

However, if the minus sign holds we see that

P 11 + P 22 = −
√
d
2

11 + 4E/F + d̃212 ≤ 0.

Thus, when d11 = −d22, the global minimizer to Problem 4.3.2 is given by (4.27a) - (4.27c). In
Figure 4.4 these findings are illustrated.

Now we only have to deal yet with the case [d11 = d22] ∧ [d̃12 = 0].

Lemma 4.3.5. Suppose d11 = d22 and d̃12 = 0. The solution to Problem 4.3.2 is the global
minimum given by

P 11 =

√
E

F
, (4.28a)

P 12 = 0, (4.28b)

P 22 =

√
E

F
, (4.28c)

if d11 < 2
√
E/F , and a continuum of global minimizers given by

P 11 ∈
⎡⎣d11 −

√
d
2

11 − 4E/F

2
,
d11 +

√
d
2

11 − 4E/F

2

⎤⎦ , (4.29a)

P 12 = ±
√
d11P 11 − P

2

11 − E/F , (4.29b)

P 22 = d11 − P 11, (4.29c)

if d11 ≥ 2
√
E/F .
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Figure 4.4: This plot corresponds to Lemma 4.3.4. The ellipsoid is centered around
(x = d11 − d22 = 2d11, y = d̃12, z = d11 + d22 = 0). This results in two local minima with the same
function value for H. One of the minima is on the upper sheet and the other is on the lower sheet
of the hyperboloid. These are the two minima that have been found in the proof of Lemma 4.3.4,
the minimum on the lower sheet was discarded as it did not satisfy P 11 + P 22 > 0.
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Proof. In the case that d11 = d22 and d̃12 = 0, Lagrange conditions (4.16a) and (4.16c) imply that

(1− λ)(P 11 − P 22) = 0.

From this it follows that we must either have λ = 1 or λ �= 1 and then P 11 = P 22. Let us first
deal with the case λ �= 1.

When λ �= 1, the Lagrange conditions (4.16b) and (4.16d) read

(1− λ)P 12 = d̃12 = 0,

P
2

11 − P
2

12 =
E

F
.

As λ �= 1, the first of these equations implies that P 12 = 0. This fact combined with the second
equation implies that

P 11 = P 22 = ±
√
E

F
.

The condition P 11+P 22 > 0 is only satisfied when the plus sign holds, hence we find one minimizer.
This is the minimizer given by equations (4.28a) - (4.28c).

Now suppose that λ = 1. From Lagrange condition (4.16b) we find that

P 22 = d11 − P 11 (�)

and from Lagrange condition (4.16d) we obtain

P 12 = ±
√
P 11P 22 − E/F . (†)

Substituting (�) in (†) gives us

P 12 = ±
√
d11P 11 − P

2

11 − E/F ,

which is only real if

P
2

11 − d11P 11 +
E

F
≤ 0,

that is, when

P 11 ∈
⎡⎣d11 −

√
d
2

11 − 4E/F

2
,
d11 +

√
d
2

11 − 4E/F

2

⎤⎦ . (‡)

This gives us the continuum of minimizers (4.29a) - (4.29c). However, the interval in (‡) only
contains real values when d11 /∈ (−2

√
E/F , 2

√
E/F ). Moreover, because P 11 + P 22 = d11, we

see that P 11 + P 22 > 0 is only satisfied when d11 > 0. From this we see that the continuum
of minimizers can only be a solution to Problem 4.3.2 when d11 ≥ 2

√
E/F . Thus, when d11 <

2
√
E/F , the global minimizer is given by (4.28a) - (4.28c). To decide for d11 ≥ 2

√
E/(eF ) if the

global minimizer is given by (4.28a) - (4.28c) or by an element of the continuum (4.29a) - (4.29c),
we must compare the value of the function being minimized, i.e. F , for the local minimizers.

First, we remark that H(P 11, P 12, P 22) has the same value for every element of the continuum
of minimizers, because otherwise not all the elements of continuum would have been local minima.
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We denote the value of H(P 11, P 12, P 22) in the continuum by Hcont. For Hcont we obtain

Hcont = H

⎛⎝d11
2
,

√
d
2

11

4
− E

F
,
d11
2

⎞⎠
=

1

2

(
d
2

11

4
+ 2

(
d
2

11

4
− E

F

)
+
d
2

11

4

)

=
d
2

11

2
− E

F
.

We denote the local minimizer given by (4.28a) - (4.28c) by Hext and have

Hext = H

(√
E

F
, 0,

√
E

F

)

=
E

F
+ d

2

11 − 2d11

√
E

F
.

In these calculations we used the fact that d̃12 = 0 implies that d12 = −d21. Subtracting Hcont

from Hext gives us

Hext −Hcont =
d
2

11

2
− 2

√
E

F
d11 +

2E

F
. (4.30)

The polynomial (4.30) considered as a function of d11 attains a minimum for d11 =
√
E/F in which

it equals 0 and in all other points it is positive. Thus, we find that Hcont ≤ Hext. This implies that
if d11 ≥ 2

√
E/F , the solution to Problem 4.3.2 is given by the continuum of minimizers (4.29a) -

(4.29c).

In Figure 4.5 and Figure 4.6 examples of the results from Lemma 4.3.5 are geometrically shown.
Recall that the extrema of the two sheets of the hyperboloid are located at

(P 11 − P 22, P 12, P 11 + P 22) = ±(0, 0, 2
√
E/F ).

Thus Lemma 4.3.5 implies that the global minimizer is (0, 0, 2
√
E/F ) if d11 < 2

√
E/F , d11 = d22

and d̃12 = 0, i.e. when the center of the ellipsoid is located in (0, 0, P 11+P 22), where P 11+P 22 =
2d11 < 4

√
E/F . Or to put it in words, in the case that d11 = d22 and d̃12 = 0, if the distance

from the center of the ellipsoid to the origin is less that two times the distance to the minimum
of the upper sheet of the hyperboloid, or if the center of the ellipsoid is situated beneath the
plane P 11 + P 22 = 0, then the global minimizer is given by the extremum of the upper sheet
of the hyperboloid. If d11 = d22, d̃12 = 0, the center of the ellipsoid is located above the plane
P 11 + P 22 = 0 and its distance to the origin is more than twice the distance from the extremum
to the origin, then we have the continuum of global minimizers. This case is depicted in Figure
4.5. In Figure 4.6, the center of the ellipsoid is farther away from the origin than the extremum
of the upper sheet of the hyperboloid, but it is less far away than two times the distance between
this extremum and the origin. This results in the extremum as single global minimizer, as can be
seen in this figure.

Let us summarize this section by the following theorem.

Theorem 4.3.6. The minimization problem, Problem 4.3.2, can be solved algebraically. In the
general case, when ¬[[d11 = d22]∧ [d̃12 = 0]]∧¬[d11 = −d22], the solution to Problem 4.3.2 is given
by (4.16a) - (4.16c), with λ given by one of the four possibilities in (4.24). At least two of the λ’s
in (4.24) are real and one of these corresponds to the global minimizer. Explicit calculation of the
function value H(P 11, P 12, P 22) shows which of the two real λ’s gives the global minimizer.
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Figure 4.5: This plot corresponds to the continuum of minimizers found in Lemma 4.3.5. We see
the upper sheet of the hyperboloid from below. The ellipsoid is centered around a point
(x = d11 − d22 = 0, y = d̃12 = 0, z = d11 + d22 = 2d11), where d11 ≥ 2

√
E/F . The continuum

found referred to in the lemma turns out to be an ellipse in which the ellipsoidal iso-surface
of H is tangent to the upper sheet of the hyperboloid.

In the case that [d11 = −d22], there is a unique solution to Problem 4.3.2. This global minimizer
is given by (4.27a) - (4.27c).

Finally, in the case that [[d11 = d22] ∧ [d̃12 = 0]], there is unique solution to Problem 4.3.2 if
d11 < 2

√
E/F and it is given by (4.28a) - (4.28c). If d11 ≥ 2

√
E/F , there is a whole continuum

of solutions to Problem 4.3.2, which is given by (4.29a) - (4.29c).

Proof. This theorem is just a summary of Lemma 4.3.3, Lemma 4.3.4 and Lemma 4.3.5 and hence
directly follows from these.
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Figure 4.6: This plot corresponds to the isolated minimizer found in Lemma 4.3.5. We see the
upper sheet of the hyperboloid from below. The ellipsoid is centered around a point
(x = d11 − d22 = 0, y = d̃12 = 0, z = d11 + d22 = 2d11), where −2

√
E/F < d11 < 2

√
E/F . Thus

the center of the ellipsoid is located between the two sheets of the hyperboloid. The ellipsoidal
iso-surface of H is tangent to the upper sheet of the hyperboloid in the minimum of the upper
sheet of the hyperboloid.
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4.4 Minimization of J

In this section we will focus on the last step of the least-squares method, i.e. (4.8c). We will
minimize the functional J , defined in equation (4.6). We will minimize J for m ∈ V, with V as
defined in (4.7), while keeping P and b constant. Again we will do this for arbitrary coordinates x1

and x2 on E , with metric eij . This will occupy the coming subsection and we will derive a boundary
value problem for the mappingm. In the subsequent subsection we will give coordinate dependent
formulations of this boundary value problem for Cartesian and polar coordinate systems. We will
see that in the Cartesian case we end up with the same boundary value problem for m as derived
in [5, p.142-p.144].

4.4.1 Derivation of a boundary value problem for the mapping

We will use Calculus of Variations to determine the minimizer m for J . For a minimum to be
attained the Fréchet derivative of the functional J must be zero, i.e.

lim
ε→0

J(m+ εη,P , b)− J(m,P , b)

ε
= 0. (4.31)

This must hold for every η in V, because if η ∈ V then also m+ εη ∈ V. The Fréchet derivative
of J can be rewritten as a linear combination of the Fréchet derivatives of JI and JB :

lim
ε→0

J(m+ εη,P , b)− J(m,P , b)

ε
= α lim

ε→0

JI(m+ εη,P )− JI(m,P )

ε

+ (1− α) lim
ε→0

JB(m+ εη, b)− JB(m, b)

ε
.

Let us first determine the Fréchet derivative of JI . By the linearity of the covariant derivative it
follows that

lim
ε→0

JI(m+ εη,P )− JI(m,P )

ε
= lim
ε→0

1

2ε

[∫∫
E
‖∇(m̂+ εη̂)− P ‖2 − ‖∇m̂− P ‖2 dA

]
= lim
ε→0

1

2ε

[∫∫
E
‖ε∇η̂ +∇m̂− P ‖2 − ‖∇m̂− P ‖2 dA

]
.

We will now need the following convenient property of inner product on T 2
0(TxE) as defined on

page 57. Let A,B ∈ T 2
0(TxE), we have

‖A+B‖2 = (Aij +Bij)(A
ij +Bij)

= AijA
ij +BijA

ij +AijB
ij +BijB

ij

= ‖A‖2 + 2A : B + ‖B‖2.

Using this property on ‖ε∇η̂ +∇m̂− P ‖2, with A = ε∇η̂ and B = ∇m̂− P gives us

lim
ε→0

JI(m+ εη,P )− JI(m,P )

ε
= lim
ε→0

1

2ε

[∫∫
E
ε2‖∇η̂‖2 + 2ε∇η̂ : (∇m̂− P ) dA

]
=

∫∫
E
∇η̂ : (∇m̂− P ) dA.

Now we will determine the Fréchet derivative of JB . Using the fact that

‖m+ εη − b‖2 = ε2‖η‖2 + 2ε(η |m− b) + ‖m− b‖2, (4.32)
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we find

JB(m+ εη, b)− JB(m, b)

ε
= lim
ε→0

1

2ε

[∮
∂E

‖m+ εη − b‖2 − ‖m− b‖2 ds

]
= lim
ε→0

1

2ε

[∮
∂E

2ε(η | (m− b)) + ε2‖η‖2 ds

]
=

∮
∂E

(η | (m− b)) ds.

Combining the results for JI and JB we find that

∀η ∈ V : α

∫∫
E
∇η̂ : (∇m̂− P ) dA+ (1− α)

∮
∂E

(η | (m− b)) ds = 0. (4.33)

In order to proceed we will rewrite the integrals in terms of the coordinate system on E . For the
first integral in (4.33) we have

α

∫∫
E
∇η̂ : (∇m̂− P ) dA = α

∫∫
E
Djηi(D

jmi − P ij)
√
e dx1dx2,

where Djηi are the components of the covariant derivative of η̂. Note that Dj = eijDi. By the
product rule it follows that

Djηi(D
jmi − P ij) = Dj(ηi(D

jmi − P ij))− ηiDj(D
jmi − P ij),

hence we obtain

α

∫∫
E
∇η̂ : (∇m̂− P ) dA = α

∫∫
E

[
Dj(ηi(D

jmi − P ij))− ηiDj(D
jmi − P ij)

]√
e dx1dx2.

On the first term in this integral we can apply Stokes’ theorem, [16, p.124]. This gives us∫∫
E
Dj(ηi(D

jmi − P ij))
√
e dx1dx2 =

∮
∂E

(Djmi − P ij)ηinj ds,

where nj are the covariant components of the outward unit normal vector on the boundary ∂E .
From this we see that

α

∫∫
E
∇η̂ : (∇m̂− P ) dA = α

∮
∂E

(Djmi − P ij)ηinj ds− α

∫∫
E
[Dj(D

jmi − P ij)]ηi
√
e dx1dx2.

Combining this result with equation (4.33) we obtain

0 = −α
∫∫

E

[
Dj(D

jmi − P ij)
]
ηi
√
e dx1dx2

+

∮
∂E

[
α(Djmi − P ij)nj + (1− α)(mi − bi)

]
ηi ds,

for all η ∈ V. Invoking the Fundamental Lemma of Calculus of Variations we find from this the
boundary value problem

DjD
jmi = DjP

ij in E , (4.34a)

α(Djmi)nj + (1− α)mi = αP ijnj + (1− α)bi on ∂E . (4.34b)

The solution of boundary value problem (4.34) will minimize J for constant P and b. Note that
this is a vector equation. Equations (4.34a) and (4.34b) are really four equations, two for i = 1
and two for i = 2. The term DjD

jmi is the so-called vector Laplacian. In Cartesian coordinates

DjD
jmi = ∂j∂

jmi = Δmi.
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Thus, in Cartesian coordinates the Laplacian of a vector amounts to just taking the Laplacian
component-wise. However, in different coordinate systems this is not true, because nonzero
Christoffel symbols imply that [DjD

jmi]i=1 depends on both m1 and m2, and similarly for
[DjD

jmi]i=2. This results for an arbitrary coordinate system in two coupled sets of equations,
while for Cartesian coordinate systems these two sets decouple. This will become more clear when
we derive from (4.34) the coordinate specific boundary value problem for Cartesian coordinates
and polar coordinates in next subsection.

4.4.2 The boundary value problem in specific coordinate systems

In Cartesian coordinates the partial differential equations in (4.34) decouple. Let us define

px =

(
P xx

P xy

)
=

(
P 11

P 12

)
and py =

(
P yx

P yy

)
=

(
P 21

P 22

)
.

With the use of this definition we can rewrite [DjP
ij ]i=x as div px and [DjP

ij ]i=y as div py. From
this we see that in Cartesian coordinates (4.34) reduces to the decoupled set of equations

Δmx = div px in E ,
α(∇mx | n) + (1− α)mx = α(px | n) + (1− α)bx on ∂E , (4.35a)

Δmy = div py in E ,
α(∇my | n) + (1− α)my = α(py | n) + (1− α)by on ∂E . (4.35b)

The boundary value problems (4.35a) and (4.35b) are exactly the boundary value problems form
derived in [5, p.143].

In polar coordinates the equations do not decouple as we shall see soon. Notice that the
coordinate specific boundary value problem that we deduce from (4.34) does depend on the choice
of basis for polar coordinates, because (4.34) is a vector equation. Thus, we shall find for polar
coordinates with an anholonomic basis a boundary value problem different from the one that we
shall find when using polar coordinates with its coordinate basis.

In order to derive the boundary value in polar coordinates, let us first write out the components
of the covariant derivatives appearing in (4.34) in terms of Christoffel symbols and derivatives.
We start out with the vector Laplacian. By the definition of Dj on pages 26 and 27 it follows that

DjD
jmi = ejkDjDkm

i

= ejk
(∇ej

(Dkm
i)− ΓlkjDlm

i + ΓiljDkm
l
)

= ejk
(∇ej (∇ek

mi + Γilkm
l)− Γlkj(∇el

mi + Γislm
s) + Γilj(∇ek

ml + Γlskm
s)
)

= ejk
(∇ej

∇ek
mi +∇ej

(Γilk)m
l + Γilk∇ej

ml − Γlkj∇el
mi

− ΓlkjΓ
i
slm

s + Γilj∇ek
ml + ΓiljΓ

l
skm

s
)
.

(4.36)

Doing the same thing for the divergence of P we obtain∗

DjP
ij = δkjDkP

ij = δkj
(∇ek

P ij + ΓilkP
lj + ΓjlkP

il
)
= ∇ejP

ij + ΓiljP
lj + ΓjljP

il. (4.37)

Similarly we find for the normal derivative of m in equation (4.34b) that

(Djmi)nj = ejk
(∇ek

mi + Γilkm
l
)
nj . (4.38)

We use (4.36) - (4.38) to determine the boundary value problem (4.34) in polar coordinates. We
first consider polar coordinates with its coordinate basis. In Example 2.4.8 we obtained that for

∗Note, that due to the symmetry of P it is clear what mean when we speak of the divergence of P . It does not
matter if we contract Dk with the first or second index of P ij , the result is the same.
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polar coordinates with the coordinate basis the only nonzero Christoffel symbols are Γrθθ = −r
and Γθrθ = Γθθr = r−1. If we evaluate each term in final expression in (4.36) for i = r we obtain

ejk∇ej
∇ek

mr = err
∂2mr

∂r2
+ eθθ

∂2mr

∂θ2
=
∂2mr

∂r2
+

1

r2
∂2mr

∂θ2
,

ejk∇ej
(Γrlk)m

l = 0,

ejkΓrlk∇ej
ml = eθθΓrθθ

∂mθ

∂θ
= −1

r

∂mθ

∂θ
,

−ejkΓlkj∇el
mr = −eθθΓrθθ

∂mr

∂r
=

1

r

∂mr

∂r
,

−ejkΓlkjΓrslms = 0,

ejkΓrlj∇ek
ml = eθθΓrθθ

∂mθ

∂θ
= −1

r

∂mθ

∂θ
,

ejkΓrljΓ
l
skm

s = eθθΓrθθΓ
θ
rθm

r = −m
r

r2
.

Adding these terms up we find

[DjD
jmi]i=r =

∂2mr

∂r2
+

1

r2
∂2mr

∂θ2
+

1

r

∂mr

∂r
− 2

r

∂mθ

∂θ
− mr

r2
. (4.39)

Doing the similar calculations for the i = θ component we find

[DjD
jmi]i=θ =

∂2mθ

∂r2
+

1

r2
∂2mθ

∂θ2
+

3

r

∂mθ

∂r
+

2

r3
∂mr

∂θ
. (4.40)

In the same way we calculate the expressions for the divergence of P . For the i = r component
we have

[DjP
ij ]i=r = ∇ej

P rj + ΓrljP
lj + ΓjljP

rl

= ∂jP
rj + ΓrljP

lj + ΓjljP
rl

=
∂P rr

∂r
+
∂P rθ

∂θ
− rP θθ +

P rr

r
,

and, similarly, we find for the i = θ component that

[DjP
ij ]i=θ =

∂P θr

∂r
+
∂P θθ

∂θ
+
P rθ + 2P θr

r
.

Lastly we determine the expression for the boundary derivative of m from (4.38). We find

[(Djmi)nj ]i=r = ejk
(∇ek

mr + Γrlkm
l
)
nj = (∂km

r)nk − rmθnθ

and similarly

[(Djmi)nj ]i=θ =
mrnθ +mθnr

r
.

Collecting all these results we find the following set of partial differential equations:

∂2mr

∂r2
+

1

r2
∂2mr

∂θ2
+

1

r

∂mr

∂r
− 2

r

∂mθ

∂θ
− mr

r2
=
∂P rr

∂r
+
∂P rθ

∂θ
− rP θθ +

P rr

r
in E , (4.41a)

α(∂km
r)nk − αrmθnθ + (1− α)mr = αP rjnj + (1− α)br on ∂E , (4.41b)

and

∂2mθ

∂r2
+

1

r2
∂2mθ

∂θ2
+

3

r

∂mθ

∂r
+

2

r3
∂mr

∂θ
=
∂P θr

∂r
+
∂P θθ

∂θ
+
P rθ + 2P θr

r
in E , (4.42a)

α(∂km
θ)nk + α

(
mrnθ +mθnr

r

)
+ (1− α)mθ = αP θjnj + (1− α)bθ on ∂E . (4.42b)
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The equations (4.41) and (4.42) are coupled, because in the mθ appears in both (4.41a) and
(4.41b), and mr appears in both (4.42a) and (4.42b).

We will now derive the boundary value problem corresponding to polar coordinates with the
orthonormal anholonomic basis of Example 2.4.9. We will again denote these basis vectors by er
and eθ. For this basis there are only two nonzero Christoffel symbols. The two nonzero Christoffel

symbols are given by Γ
r

θθ = −r−1 and Γ
θ

rθ = r−1. We substitute these Christoffel symbols in the
expressions for DjD

jmi, DjP
ij and (Djmi)nj given in equations (4.36), (4.37) and (4.38). The

calculations are similar to the ones for polar coordinates with the coordinate basis, therefore we
will just state the results. For the i = r component we find

[
DjD

jmi
]
i=r

=
∂2mr

∂r2
+

1

r2
∂2mr

∂θ2
+

1

r

∂mr

∂r
− 2

r2
∂mθ

∂θ
− mr

r2
,[

DjP
ij
]
i=r

=
∂P rr

∂r
+

1

r

∂P rθ

∂θ
+
P rr − P θθ

r
,[

(Djmi)nj
]
i=r

= nr
(
∂mr

∂r

)
+
nθ

r

∂mr

∂θ
− mθnθ

r
,

and for the i = θ component we find

[
DjD

jmi
]
i=θ

=
∂2mθ

∂r2
+

1

r2
∂2mθ

∂θ2
+

1

r

∂mθ

∂r
+

2

r2
∂mr

∂θ
− mθ

r2
,[

DjP
ij
]
i=θ

=
∂P θr

∂r
+

1

r

∂P θθ

∂θ
+
P rθ + P θr

r
,[

(Djmi)nj
]
i=θ

= nr
(
∂mθ

∂r

)
+
nθ

r

∂mθ

∂θ
+
mrnθ

r
.

Substituting these results in equation (4.34) we obtain the set of coupled partial differential equa-
tions in the case of polar coordinates with the orthonormal anholonomic basis. These partial
differential equations we find are

∂2mr

∂r2
+

1

r2
∂2mr

∂θ2
+

1

r

∂mr

∂r
− 2

r2
∂mθ

∂θ
− mr

r2
=
∂P rr

∂r
+

1

r

∂P rθ

∂θ
+
P rr − P θθ

r
in E , (4.43a)

α

(
nr
∂mr

∂r
+
nθ

r

∂mr

∂θ
− mθnθ

r

)
+ (1− α)mr = αP rjnj + (1− α)br on ∂E , (4.43b)

and

∂2mθ

∂r2
+

1

r2
∂2mθ

∂θ2
+

1

r

∂mθ

∂r
+

2

r2
∂mr

∂θ
− mθ

r2
=
∂P θr

∂r
+

1

r

∂P θθ

∂θ
+
P rθ + P θr

r
in E , (4.44a)

α

(
nr
∂mθ

∂r
+
nθ

r

∂mθ

∂θ
+
mrnθ

r

)
+ (1− α)mθ = αP θjnj + (1− α)bθ on ∂E . (4.44b)

This is the set of equations that we will actually implement in Chapter 5. However, before
proceeding to the next chapter, we first have to clear up how to determine function u : E → R>0

once we have found a mapping m ∈ TEC2 that is a solution to Problem 4.1.2. This will be the
topic of next section.

4.5 Determining the reflector surface

Suppose that we have found a mapping m ∈ TEC2 that is an approximate numerical solution
to Problem 4.1.2. The reflector surface is now determined by obtaining u from m. We will
in this section briefly describe how to determine u from m. This section is based on section
8.6 of [5]. We will again generalize the procedure set forth in [5] for Cartesian coordinates to
arbitrary coordinates x1, x2 on E , with basis {e1, e2} and metric eij . We will derive a boundary
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value problem for u and we will give an explicit expressions for this boundary value problem in
Cartesian coordinates and polar coordinates.

If m was an exact solution of Problem 4.1.2, then ∇m̂ would be symmetric and there would
exist a function u such that m = ∇u. However, in practice m is a numerical approximation and
hence ∇m̂ will not be precisely symmetric. To overcome this problem, we will look for a function
u ∈ C2(E) that minimizes the integral

I(u) =
1

2

∫∫
E
‖∇u−m‖2 dA. (4.45)

We can derive from this minimization problem a boundary value problem by applying Calculus
of Variations again. We will consider arbitrary variations u + εv ∈ C2(E) on u and will set the
Fréchet derivative of I equal to zero. The Fréchet derivative of I is given by

lim
ε→0

I(u+ εv)− I(u)

ε
= lim
ε→0

1

ε

[
1

2

∫∫
E
‖∇(u+ εv)−m‖2 dA− 1

2

∫∫
E
‖∇u−m‖2 dA

]
= lim
ε→0

1

2

∫∫
E
ε‖∇v‖2 + 2(∇u−m | ∇v) dA

=

∫∫
E
(∇u−m | ∇v) dA,

where we used an identity similar to (4.32). We can express the inner product in terms of the
components of the vector and the metric as

(∇u−m | ∇v) = (eik∇ek
u−mi)(ejl∇el

v)eij

= (eik∇ek
u−mi)(∇el

v)δli

= (eikDk(u)−mi)Di(v)

= (Di(u)−mi)Di(v),

where we use Di(v) to denote the components of the covariant derivative of v, i.e. the components
of the gradient dv = ∇ei

(v)êi.
Setting the Fréchet derivative equal to zero, while writing the integral in the local coordinates

on E , we obtain

∀v ∈ C2(E) :
∫∫

E
(Di(u)−mi)Di(v)

√
e dx1dx2 = 0.

With use of the product rule we can rewrite the integrand as

(Di(u)−mi)Di(v) = Di

[
(Di(u)−mi)v

]−Di

[
Di(u)−mi

]
v. (4.46)

We substitute this in the integral and apply Stokes’ theorem ( [16, p.124]) on the first term of the
integral: ∫∫

E
Di

[
(Di(u)−mi)v

]−Di

[
Di(u)−mi

]
Di(v)

√
e dx1dx2

=

∮
∂E

(Di(u)−mi)niv ds−
∫∫

E
Di

[
Di(u)−mi

]
v
√
e dx1dx2,

where ni are the covariant components of the outward unit normal to ∂E . From this we see that
we end up with

∀v ∈ C2(E) :
∮
∂E

(Di(u)−mi)niv ds−
∫∫

E
Di

[
Di(u)−mi

]
v
√
e dx1dx2.
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We invoke the Fundamental Lemma of Calculus of Variations and find

Di(D
i(u)) = Di(m

i) in E , (4.47a)

Di(u)ni = mini on ∂E . (4.47b)

Note that Di(D
i(u)) and Di(m

i) are the Laplacian of u and the divergence of m, respectively, in
general coordinate systems. Equations (4.47b) states that on ∂E the boundary derivative of u is
equal to the inner product (m | n). The boundary value problem (4.47) is the same boundary
value problem as was derived in [5] in Cartesian coordinates. In Cartesian coordinates, we have
the familiar expressions for the Laplacian and the divergence, hence we find that in Cartesian
coordinates (4.47) is given by

∂2u

∂x2
+
∂2u

∂y2
=
∂mx

∂x
+
∂my

∂y
in E ,

∂u

∂x
nx +

∂u

∂y
ny = mxnx +myny on ∂E .

Lastly, let us determine the explicit form of (4.47) in polar coordinates. We start by calculating
the Laplacian and the divergence in the polar coordinate system. For the Laplacian of u we find

Di(D
i(u)) = eikDi(Dk(u))

= eik
(∇ei(Dk(u))− ΓjkiDj(u)

)
= eik∇ei

(∇ek
(u))− eikΓjki∇ej

(u)

= eik∂i(∂k(u))− 1

r2
Γrθθ∂r(u)

=
∂2u

∂r2
+

1

r2
∂2u

∂θ2
+

1

r

∂u

∂r

=
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
.

The divergence of m in the coordinate basis is given by

Di(m
i) = eikDi(mk)

= eik∂i(mk)− eikΓjkimj

= eik∂i(eklm
l) + eθθΓrθθmr

= eik∂i(ekl)m
l + δil∂i(m

l) +
mr

r

= ∂i(m
i) +

mr

r

=
1

r

∂(rmr)

∂r
+
∂mθ

∂θ
.

In the orthonormal anholomic basis the divergence of m is given by

Di(m
i) = eikDi(mk)

= eki
(∇ei

(mk)− Γjkimj

)
=
∂mr

∂r
+

1

r

∂mθ

∂θ
− eθθΓrθθmr

=
∂mr

∂r
+

1

r

∂mθ

∂θ
+
mr

r

=
1

r

∂(rmr)

∂r
+

1

r

∂mθ

∂θ
.
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From these calculations we see that in polar coordinates with the coordinate basis boundary value
problem (4.47) is given by

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
=

1

r

∂(rmr)

∂r
+
∂mθ

∂θ
in E ,

∂u

∂r
nr +

∂u

∂θ
nθ = mrnr + r2(mθnθ) on ∂E ,

(4.48)

while in the orthonormal anholonomic basis (4.47) is given by

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
=

1

r

∂(rmr)

∂r
+

1

r

∂mθ

∂θ
in E ,

∂u

∂r
nr +

∂u

∂θ

nθ

r
= mrnr +mθnθ on ∂E .

(4.49)

In equations (4.48) the components of m are given with respect to the coordinate basis {er, eθ},
i.e. m = mrer+m

θeθ, and similarly for n. In equations (4.49) the components ofm are given with
respect to the orthonormal basis {er = er, eθ = eθ/r}, i.e. m = mrer+m

θeθ = mrer+(mθ/r)eθ,
and again similarly for n. From this we see that the two boundary value problem (4.48) and (4.49)
are the same.

Let us now briefly summarize what we have done in this chapter. We have presented the Least-
squares method in detail. The Least-squares method will find a mapping m ∈ TEC1 that solves
Problem 4.1.2. The mapping m will be such that there exists a convex function u : E → R>0

for which holds that m = ∇u, moreover this u will satisfy Problem 3.5.7. The Least-squares
method numerically determines such a mappingm by an iterative process in which the functional
J(m,Pb) in (4.6) gets minimized. Each iteration consists of three steps in which J(m,Pb) gets
minimized for one of its three arguments. In the first step the function J gets minimized for b
while keeping P and m fixed. This minimization step can be performed point-wise for each grid
point on the boundary. This is described in Section 4.2. In the second step J gets minimized for
P while keeping m and b fixed. In Section 4.3 we showed how this minimization step can also
be performed point-wise and algebraically. In the final third step J gets minimized for m, while
keeping b and P fixed. In Section 4.4 we showed that this is done by solving two boundary value
problems. Moreover, we showed that in a general coordinate system these two boundary value
problems are coupled, while they decouple in Cartesian coordinates. Now that we in this section
have shown how to determine the reflector surface from m, the solution to Problem 4.1.2, we are
ready to proceed to the next chapter. In the next chapter we will focus on the implementation of
the Least-squares method in polar coordinates. Furthermore, we will show that the Least-squares
method actually works by presenting numerical results.
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Chapter 5

Implementation and Numerical
Results

This chapter will consist of two parts. In the first part we will discuss the numerical implementation
of the least-squares method and in the second part we will focus on numerical results. In Chapter
1 we saw that the light source of interest to us has a disk-like, shape, i.e.,

E = DR := {x ∈ R
2 | ‖x− x0‖ < R}, (5.1)

where R > 0 is the radius of the disk and x0 ∈ R
2 is the center of the disk. From now on,

when working in Cartesian or polar coordinates we will take x0 to be the center of the coordinate
system. In [5] the least-squares method was presented and implemented in Cartesian coordinates
only. We will discuss in the first section, Section 5.1, how arbitrary shaped sources are treated
in the Cartesian coordinate least-squares algorithm of [5]. We will in Section 5.1 discuss the
consequences resulting from using a grid that does not nicely fit the geometry of the source E .
We will also discuss what the consequences of this are when we want to extrapolate the reflector
surface by extending the least-squares method to an extension of E . This extension of the least-
squares method will be the subject of Chapter 6. The discussion in Section 5.1 will motivate the
use of a polar coordinate grid that does fit the geometry of E .

The implementation of the least-squares method in polar coordinates will be the topic of Section
5.2. We will in that section mostly focus on the implementation of the minimization problem of
Section 4.4, because this is the part of the least-squares method that changes the most when
switching to polar coordinates.

Lastly, we will in Section 5.3 compare the implementation in Cartesian coordinates with the
implementation in polar coordinates. We will analyze the convergence of both implementations
for the source E as specified in (5.1) and three target distributions F of increasing complexity.
The first target we will consider will be a simple square, the second target will be non-convex and
the third case will be a target intensity corresponding to a famous painting.

5.1 Implementation for Cartesian coordinates

General shapes of E are handled by taking the smallest bounding box B = [xmin, xmax]×[ymin, ymax]
such that E ⊂ B. (See [5, p.131].) The source emittance function E : E → R>0 is then extend to
B by setting E(x) = 0 for x ∈ B\E . This bounding box B is then covered with a Cartesian grid.
The Least-squares method will then be performed with B as source. The only difference with the
method as represented in Chapter 4, is that the source emittance E is allowed to equal zero on
part of the source B.

The fact that the method works with B as source instead of E has as a consequence that it
will try to satisfy the boundary conditionm(∂B) = ∂F instead of the desired boundary condition
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m(E) = ∂F . Thus instead of Problem 4.1.2, the Least-squares method will try to solve the
following problem.

Problem 5.1.1. Find m ∈ TBC1 that satisfies

det(∇m̂(x))

e
=

E(x)

F (m(x))
, in E , (5.2a)

det(∇m̂(x)) = 0, in B\E , (5.2b)

m(∂B) = ∂F , (5.2c)

and for which ∇m̂ is a symmetric positive semi-definite tensor. The functions E : E → R>0 and
F : F → R>0 are such that∫

E
E(x1, x2)

√
e dx1dx2 =

∫
F
F (y1, y2)

√
f dy1dy2,

where x1, x2 are local coordinates on E with corresponding metric eij and y
1, y2 are local coordi-

nates on F with corresponding metric fij .

Let us, to simplify the discussion, consider Problem 5.2 in Cartesian coordinates. Equation
(5.2b) then becomes

det

⎛⎜⎝
∂mx

∂x

∂mx

∂y
∂my

∂x

∂my

∂y

⎞⎟⎠ = 0,

hence we see that on B\E the Jacobian determinant of the mapping m equals zero. A useful
theorem in this context is Sard’s theorem, [16, p.72]:

Theorem 5.1.2. Let g : U → R
n be continuously differentiable, where U ⊂ R

n is open, and let
A = {x ∈ U | det(J(g)) = 0}, where J(g) is the Jacobian matrix of g. Then g(A) has measure
zero.

The proof of this theorem is given on page 72 of [16]. Supposem is a solution to Problem 5.2.
In Cartesian coordinates m is a continuously differentiable map from B to F . Now if we restrict
m to the interior of B, i.e. int(B), then the map m : int(B) → R

2 satisfies the conditions of
Theorem 5.1.2. Equation (5.2b) states that the Jacobian ofm equals zero on the set int(B)\E and
hence Theorem 5.1.2 implies that the set m(int(B)\E) ⊂ F has measure zero. The boundary of
B, ∂B, has also measure zero. The map m : B → F is continuously differentiable and because B
is clearly bounded, the derivatives ofm are also bounded. Now, take arbitrary x,y ∈ B. Working
in Cartesian coordinates we have

mi(x)−mi(y) =

∫ 1

0

(
∂mi

∂xj
(x+ t(y − x))(yj − xj)

)
dt

=

∫ 1

0

(
∂mi

∂xj
(x+ t(y − x))dt

)
(yj − xj).

This implies that we have

m(x)−m(y) =

(∫ 1

0

J(m)(x+ t(y − x))dt
)
(y − x),

where J(m)(x+ t(y − x)) is the Jacobian matrix of m at x+ t(y − x). As the derivatives of m
are bounded, also the Jacobian is bounded, i.e. there exists a K ∈ R>0 such that ‖J(m)(x)‖ ≤ K
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for all x ∈ B. From this we find that

‖m(y)−m(x)‖ = ‖
(∫ 1

0

J(m)(x+ t(y − x))dt
)
(y − x)‖

= ‖
∫ 1

0

(J(m)(x+ t(y − x))(y − x)) dt‖

≤
∫ 1

0

‖J(m)(x+ t(y − x))(y − x)‖dt

≤
∫ 1

0

K‖(y − x)‖dt
= K‖(y − x)‖,

where we have applied the Cauchy-Schwarz inequality. Thus we have shown that there exists a
K > 0 such that ‖m(y)−m(x)‖ ≤ K‖y−x‖ for all x,y ∈ B, i.e. we have shown thatm : B → F
is Lipschitz continuous. Let μ[U ] denote the (Lebesgue) measure of a set U . Now, the set ∂B has
measure zero and therefore there exist for all ε > 0 a collection of balls Ui with radius ri that
together cover ∂B and are such that μ[∪iUi] < ε. It is clear that we have μ[m(∂B)] ≤ μ[m(∪iUi)].
From the fact that m is Lipschitz continuous it follows that μ[m(∪iUi)] ≤ Kμ[∪iUi]. This
implies that μ[m(∂B)] < Kε. However, ε > 0 can be taken arbitrarily small and hence we find
μ[m(∂B)] = 0. Thus at last we find that the set m(B\E) has measure zero.

Thus we expect that the grid points in B\E get mapped very close together. Moreover, the fact
that not the boundary conditionm(∂E) = ∂F is imposed, but instead the conditionm(∂E) = ∂F
could lead to convergence problems on the boundary of E and F . This is indeed what we see in
Figure 5.1. Strange bulges appear on the sides of ∂F and these do not shrink one the number of
iterations gets increased. In Chapter 6 it will be seen that these bulges cause serious problems when
one wants to extrapolate the reflector surface to a larger source that contains E . An enlargement
of parts of the plot in Figure 5.1 can be seen in Figure 5.2.

The convergence issues on the boundary do not only appear for the particular choice for F
shown in Figure 5.1. In Figure 5.3 the mapping can be seen for F and F corresponding to the
famous painting by Vermeer depicted in Figure 5.4. In the subsequent sections we will consider
the Least-squares method in polar coordinates and we will see that these defects disappear when
we use the polar coordinate grid that precisely fits E .
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Figure 5.1: The mapping m after 300 iterations on a 100× 100 grid with α in (4.6) equal to 0.2,
for E = D1 and F = [−1, 1]2. Unwanted “bulges” can be seen on the four edges. The size of these
bulges do not decrease for an increased number of iterations.

Figure 5.2: Two segments of Figure 5.1 have been enlarged. On the right one sees the upper right
corner of Figure 5.1 and on the left one sees the bulge on the left edge of Figure 5.1. In the right
plot it can be seen that the grid points in E\B indeed get squeezed together.
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Figure 5.3: This is a plot of the mapping m after 300 iterations on a 100× 100 grid with α = 0.2.
For this plot F and F correspond to the intensity output that gives the painting in Figure 5.4
when projected on a screen. Again the bulges on the side edges appear.

Figure 5.4: “The Girl with the Pearl Earring” by Johannes Vermeer.
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5.2 Implementation for polar coordinates

This section we will focus on the implementation of the Least-squares method. We will cover the
source E = DR with a polar coordinate grid. Let Nr and Nθ be the number of grid points along
the r- and θ-coordinate lines, respectively. We number the grid points in the following way:

ri = ihr hr :=
R

Nr
,

θj = (j − 1)hθ hθ :=
2π

Nθ
.

This grid nicely fits the geometry of E . The grid points (rNr
, θj), 1 ≤ j ≤ Nθ all lie on ∂E .

For the first two steps of the Least-squares method, i.e. the minimization of the boundary
functional (4.4) and (4.3), are not very different in polar coordinates. The minimization of the
boundary integral JB can be done point-wise and amounts to determining some inner products
and taking a minimum over a finite set. These operations translate trivially to the polar coordinate
case.

The minimization JI as described in Section 4.3 is a little bit more involved. The components
(dij) in Problem 4.3.2 are the components of the finite difference approximation of the tensor ∇m̂.
The components dij are given by

dij := δejmi − Γkijmk, (5.3)

where δej
mi is the finite difference approximation of ∇ej

mi. Before we determine the coefficients,
we must first determine which basis we use, in order to know what the Christoffel symbols in (5.3)
are. We have chosen to use polar coordinates with the orthonormal anholonomic basis. We prefer
the orthonormal basis over the coordinate basis, because in the orthonormal basis the matrix
representation of the metric eij is just the identity matrix. This implies that we have vi = vi

for the components of a vector v and its corresponding covector v̂. Thus, in this basis we do
not have to worry about the difference between contravariant and covariant components, because
there is none. We recall from Example 2.4.9 that the only two nonzero Christoffel symbols for
polar coordinate system with the orthonormal basis are Γrθθ = −r−1 and Γθrθ = r−1. Furthermore,
we will use the central difference approximation for ∇ej

mi and we will write Dk,l for the matrix
representation of (dij) in the grid point (rk, θl). Substituting the Christoffel symbols and finite
difference approximation in (5.3) we obtain

Dk,l =

⎛⎜⎜⎝
mr
k+1,l −mr

k−1,l

2hr

mr
k,l+1 −mr

k,l−1

2hθrk
− mθ

k,l

rk,l
mθ
k+1,l −mθ

k−1,l

2hr

mθ
k,l+1 −mθ

k,l−1

2hθrk
+
mr
k,l

rk,l

⎞⎟⎟⎠ , (5.4)

for 1 < k < Nr and 1 ≤ l ≤ Nθ. Note that we have in (5.4) immediately exploited the fact
that mr = mr and mθ = mθ. We will from now on use upper indices to indicate vector or
covector components in order to reserve the lower indices for grid numbering. For the grid points
corresponding to the boundary we use one-sided differences with second order accuracy. The rest
of the minimization of JI remains the same as in the Cartesian coordinate case. For each grid
point (rk, θl) the coefficients (dij) of Problem 4.3.2 are given by the matrix Dk,l and for these
coefficients Problem 4.3.2 gets solved algebraically as explained in Section 4.3.

So far, we have seen that for the first two steps (4.8a) and (4.8b) of the Least-squares method
there are no qualitative difference between the implementation in Cartesian coordinates and in
polar coordinates. For the third step (4.8c) of the Least-squares method the situation in polar
coordinates is qualitatively different from the one in Cartesian coordinates. In Section 4.4 we
found that, while in Cartesian coordinates the minimizer m for J in (4.8c) was the solution of
the decoupled system of partial differential equations (4.35a) and (4.35b), in the polar coordinate
system we end up with the coupled system of partial differential equations (4.43) and (4.44). The
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fact that the source E is circular implies that the unit outward normal on ∂E is given by n = er.
Using this equations (4.43) and (4.44) simplify to

∂2mr

∂r2
+

1

r2
∂2mr

∂θ2
+

1

r

∂mr

∂r
− 2

r2
∂mθ

∂θ
− mr

r2
=
∂P rr

∂r
+

1

r

∂P rθ

∂θ
+
P rr − P θθ

r
in E , (5.5a)

α
∂mr

∂r
+ (1− α)mr = αP rr + (1− α)br on ∂E , (5.5b)

and

∂2mθ

∂r2
+

1

r2
∂2mθ

∂θ2
+

1

r

∂mθ

∂r
+

2

r2
∂mr

∂θ
− mθ

r2
=
∂P θr

∂r
+

1

r

∂P θθ

∂θ
+
P rθ + P θr

r
in E , (5.6a)

α
∂mθ

∂r
+ (1− α)mθ = αP θr + (1− α)bθ on ∂E . (5.6b)

To solve this coupled system of equations we will need to iterate between equations (5.5) and
(5.6). We start with a solutionmn of the preceding iteration or an initial guessm0. We will then
determine mn+1 in the following way. We start with solving equation (5.5) for mr while keeping
mθ, the θ-component of mn fixed. The solution of (5.5) obtained in this way we will call u1. We
then turn our attention to (5.6). We will solve (5.6) for mθ while keeping mr fixed and equal
to u1. The solution of (5.6) that we obtain in this way we call v1 Then we solve again (5.5) for
mr with mθ = v1 fixed. This gives us u2 and so we proceed, iterating between (5.5) and (5.6)
until a desired convergence is achieved. In practice one does not want to keep iterating until uk

and vk have converged to machine precision, because this slows down the Least-squares method
significantly as this iterative subprocess has to be performed each iteration of the Least-squares
method. An optimal number of iterations K has to be sought such that the Least-squares method
converges most fast. After halting the iterative process for uk and vk after K iterations the new
mapping mn+1 is given by the r-component mr = uK and the θ-component vK . In practice
it turns out that for most problems, uk and vk converge quite fast and that K lies somewhere
between 5 and 15. It might also be beneficial to let K depend on n, the overal iteration number
of the Least-squares method. However, this has not yet been investigated.

We will now discretize equations (5.5) and (5.6). We start by discretizing for the grid points
(rk, θl) with 2 ≤ k ≤ Nr. We will treat the grid points directly adjacent to the origin afterwards.
We start with equation (5.5a). Using second order central differences (5.5a) can be approximated
by

1

rkh2r

[
rk+ 1

2
(mr

k+1,l −mr
k,l)− rk− 1

2
(mr

k,l −mr
k−1,l)

]
+

1

r2kh
2
θ

[
mr
k,l+1 − 2mr

k,l +mr
k,l−1

]
− 1

r2khθ

[
mθ
k,l+1 −mθ

k,l−1

]− mr
k,l

r2j

=
1

2hr

[
P rrk+1,l − P rrk−1,l

]
+

1

2rkhθ

[
P rθk,l+1 − P rθk,l−1

]
+

1

rk

[
P rrk,l − P θθk,l

]
,

(5.7)

where make the identifications (rk, θNθ+1) = (rk, θ1) and (rk, θ0) = (rk, θNθ
) for all 1 ≤ k ≤ Nr.

Equation (5.7) holds for all grid points (rk, θl), with 2 ≤ k ≤ Nr − 1 and 1 ≤ l ≤ Nθ. We also
discretize the boundary equation (5.5b) with second order accuracy and find

α

2hr

[
mr
Nr+1,l −mr

Nr−1,l

]
+ (1− α)mr

Nr,l = αP rrNr,l + (1− α)brNr,l, (5.8)

which holds for 1 ≤ l ≤ Nθ. Solving this equation for the grid point outside our grid we find

mr
Nr+1,l = 2hrP

rr
Nr,l + 2hr(1/α− 1)(brNr,l −mr

Nr,l) +mr
Nr−1,l. (5.9)
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For the grid points on the boundary we can also write down (5.7):

1

rNr
h2r

[
rNr+

1
2
(mr

Nr+1,l −mr
Nr,l)− rNr− 1

2
(mr

Nr,l −mr
Nr−1,l)

]
+

1

r2Nr
h2θ

[
mr
Nr,l+1 − 2mr

Nr,l +mr
Nr,l−1

]− 1

r2Nr
hθ

[
mθ
Nr,l+1 −mθ

Nr,l−1

]− mr
Nr,l

r2j

=
1

2hr

[
P rrNr+1,l − P rrNr−1,l

]
+

1

2rNrhθ

[
P rθNr,l+1 − P rθNr,l−1

]
+

1

rNr

[
P rrNr,l − P θθNr,l

]
,

for 1 ≤ l ≤ Nθ. We will now eliminate mr
Nr+1,l from this equation by replacing it with (5.9).

Moreover we will replace the central difference approximation for ∂rP
rr by a one-sided difference

approximation of the same order of accuracy. This gives us

2

h2r

[
mr
Nr−1,l −mr

Nr,l

]−(2rNr+
1
2
(1/α− 1)

hrrNr

)
mr
Nr,l

+
1

r2Nr
h2θ

[
mr
Nr,l+1 − 2mr

Nr,l +mr
Nr,l−1

]− 1

r2Nr
hθ

[
mθ
Nr,l+1 −mθ

Nr,l−1

]− mr
Nr,l

r2Nr

=
1

2hr

[
3P rrNr,l − 4P rrNr−1,l + P rrNr−2,l

]− (2rNr+
1
2

rNr
hr

)[
P rrNr,l + (1/α− 1)brNr,l

]
+

1

2rNrhθ

[
P rθNr,l+1 − P rθNr,l−1

]
+

1

rNr

[
P rrNr,l − P θθNr,l

]
.

(5.10)

In a similar way we discretize equations (5.6a) and (5.6b). This gives us

1

rkh2r

[
rk+ 1

2
(mθ

k+1,l −mθ
k,l)− rk− 1

2
(mθ

k,l −mθ
k−1,l)

]
+

1

r2kh
2
θ

[
mθ
k,l+1 − 2mθ

k,l +mθ
k,l−1

]
+

1

r2khθ

[
mr
k,l+1 −mr

k,l−1

]− mθ
k,l

r2k

=
1

2hr

[
P θrk+1,l − P θrk−1,l

]
+

1

2rkhθ

[
P θθk,l+1 − P θθk,l−1

]
+

1

rk

[
P rθk,l + P θrk,l

]
,

(5.11)

for 2 ≤ k ≤ Nr − 1 and 1 ≤ l ≤ Nθ, and

2

h2r

[
mθ
Nr−1,l −mθ

Nr,l

]−(2rNr+
1
2
(1/α− 1)

hrrNr

)
mθ
Nr,l

+
1

r2Nr
h2θ

[
mθ
Nr,l+1 − 2mθ

Nr,l +mθ
Nr,l−1

]
+

1

r2Nr
hθ

[
mr
Nr,l+1 −mr

Nr,l−1

]− mθ
Nr,l

r2Nr

=
1

2hr

[
3P θrNr,l − 4P θrNr−1,l + P θrNr−2,l

]− (2rNr+
1
2

rNr
hr

)[
P θrNr,l + (1/α− 1)bθNr,l

]
+

1

2rNr
hθ

[
P θθNr,l+1 − P θθNr,l−1

]
+

1

rNr

[
P rθNr,l + P θrNr,l

]
,

(5.12)

for 1 ≤ l ≤ Nθ.

Let us now focus on the grid points adjacent to the origin, i.e. the grid points (r1, θl), where
1 ≤ l ≤ Nθ. We must take care of the fact that the polar coordinate system has a singularity in
the origin. For these grid points equations (5.7) and (5.11) will also contain the grid point at the
origin. We will denote the value of mr and mθ at the origin by mr

0 and mθ
0, respectively. Due to

the singularity at the origin, mr
0 and mθ

0 are not well-defined. We will therefore eliminate them
from the equations. We will do this by considering a control area around the origin and use this
to derive an expression for mr

0 and mθ
0 in terms of values defined at neighbouring grid points.
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We first consider equation (5.5a). We multiply this equation by r2 and integrate it over a
control area around the origin. As the control area we take Dhr

, i.e. the disk with radius hr. We
get ∫

Dhr

(
Δmr − 2

r2
∂mθ

∂θ
− mr

r2

)
r2 dA =

∫
Dhr

(
∇ · P r +

P rr − P θθ

r

)
r2 dA, (5.13)

where P r = P rrer +P θθeθ and ∇ ·P r is the divergence of P r. Notice that we used the fact that
the first three terms on the left hand side of (5.5a) are really the Laplacian of mr and the first
two terms on the right hand side of (5.5a) are the divergence of the vector P r as just defined. We
will now rewrite most of the terms in equation (5.13) with use of the divergence theorem. For the
first term in (5.13) we find by applying the divergence theorem two times that∫

Dhr

r2Δmr dA =

∮
∂Dhr

r2(∇mr | er) ds−
∫
Dhr

(∇(r2) | ∇mr) dA

=

∮
∂Dhr

r2
∂mr

∂r
ds−

∮
∂Dhr

2rmr ds+

∫
Dhr

2mr dA.

By the periodicity of m along the θ-coordinate lines we find for the second term in (5.13)∫
Dhr

2
∂mθ

∂θ
dA =

∫ hr/2

0

2r

∫ 2π

0

∂mθ

∂θ
dθdr =

∫ hr/2

0

2r
(
mθ(r, 2π)−mθ(r, 0)

)
dr = 0.

From this it follows that∫
Dhr

(
Δmr − 2

r2
∂mθ

∂θ
− mr

r2

)
r2 dA =

∫
Dhr

mr dA−
∮
∂Dhr

2rmr ds

+

∮
∂Dhr

r2
∂mr

∂r
ds.

(5.14)

Applying the divergence theorem on the first term on the right hand side of equation (5.13) gives
us ∫

Dhr

r2∇ · P r dA =

∮
∂Dhr

r2(P r | er) ds−
∫
Dhr

(∇(r2) | P r) dA

=

∮
∂Dhr

r2P rr ds−
∫
Dhr

2rP rr dA.

This shows that∫
Dhr

(
∇ · P r +

P rr − P θθ

r

)
r2 dA =

∮
∂Dhr

r2P rr ds−
∫
Dhr

r
(
P rr + P θθ

)
dA. (5.15)

Combining equations (5.13), (5.14) and (5.15), we obtain∫
Dhr

mr dA−
∮
∂Dhr

2rmr ds+

∮
∂Dhr

r2
∂mr

∂r
ds

=

∮
∂Dhr

r2P rr ds−
∫
Dhr

r
(
P rr + P θθ

)
dA.

(5.16)

Now we turn our attention to (5.6a). We also multiply this equation by r2, integrate and
obtaining ∫

Dhr

(
Δmθ +

2

r2
∂mr

∂θ
− mθ

r2

)
r2 dA =

∫
Dhr

(
∇ · P θ +

2P θr

r

)
r2 dA, (5.17)
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where P θ = P θrer + P θθeθ and we used the symmetry of P , i.e. P rθ = P θr. Doing calculations
similar to the ones above we find the identities∫

Dhr

r2Δmθ dA =

∮
∂Dhr

r2
∂mθ

∂r
ds−

∮
∂Dhr

2rmθ ds+

∫
Dhr

2mθ dA∫
Dhr

2
∂mr

∂θ
dA = 0∫

Dhr

r2∇ · P θ dA =

∮
∂Dhr

r2P θr ds−
∫
Dhr

2rP θr dA.

From this we find that (5.17) implies∫
Dhr

mθ dA−
∮
∂Dhr

2rmθ ds+

∮
∂Dhr

r2
∂mθ

∂r
ds =

∮
∂Dhr

r2P θr ds. (5.18)

None of the integrals in (5.16) and (5.18) contains derivatives with respect to θ or terms that
otherwise have a singularity in the origin, therefore these integrals are all convergent. We will
numerically approximate these integrals to obtain a finite difference equations for the grid points
around the origin. The integrals on the left hand side of (5.16) can be approximated in the
following way to second order accuracy:∫

Dhr

mr dA ≈
Nθ∑
l=1

(
mr

1,l +mr
1,l+1 +mr

0

3

πh2r
Nθ

)
=

(
h2rhθ
6

) Nθ∑
l=1

(2mr
1,l +mr

0)

−
∮
∂Dhr

2rmr ds ≈ −2hr

Nθ∑
l=1

(
mr

1,l +mr
1,l+1

2

)
hθhr = − (2h2rhθ) Nθ∑

l=1

mr
1,l

∮
∂Dhr

r2
∂mr

∂r
ds ≈ h3r

Nθ∑
l=1

hθ
2

[
mr

2,l −mr
0

2hr
+
mr

2,l+1 −mr
0

2hr

]

=

(
h2rhθ
2

)[ Nθ∑
l=1

(mr
2,l −mr

0)

]

Similarly we approximate the integrals on the right hand side of (5.16):∮
∂Dhr

r2P rr ds ≈ h2r

Nθ∑
l=1

P rr1,l + P rr1,l+1

2
hrhθ =

(
h3rhθ

) Nθ∑
l=1

P rr1,l

−
∫
Dhr

r
(
P rr + P θθ

)
dA ≈ −

Nθ∑
l=1

P rr1,l + P θθ1,l + P rr1,l+1 + P θθ1,l+1

3

(
πh3r
Nθ

)

= −
Nθ∑
l=1

(
P rr1,l + P θθ1,l

)(h3rhθ
3

)
= −

(
h3rhθ
3

) Nθ∑
l=1

(
P rr1,l + P θθ1,l

)
.

From this we find that equation (5.16) can be approximated by the finite difference equation(
h2rhθ
6

) Nθ∑
l=1

(−10mr
1,l +mr

0) +

(
h2rhθ
2

)[ Nθ∑
l=1

(mr
2,l −mr

0)

]
=

(
h3rhθ
6

)[ Nθ∑
l=1

4P rr1,l − 2P θθ1,l

]
,

which can be rewritten as

mr
0 =

1

2Nθ

[
Nθ∑
l=1

(3mr
2,l − 10mr

1,l − hr(4P
rr
1,l − 2P θθ1,l))

]
. (5.19)
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Similarly to the approximation of the integrals in (5.16), the integrals in (5.18) can be approxi-
mated in the following way: ∫

Dhr

mθ dA ≈
(
h2rhθ
6

) Nθ∑
l=1

(2mθ
1,l +mθ

0)

−
∫
∂Dhr

2rmθ ds ≈ − (2h2rhθ) Nθ∑
l=1

mθ
1,l

∫
∂Dhr

r2
∂mθ

∂r
ds ≈

(
h2rhθ
2

)[ Nθ∑
l=1

(mθ
2,l −mθ

0)

]
∫
∂Dhr

r2P θr ds ≈ (h3rhθ) Nθ∑
l=1

P θr1,l .

From this we see that (5.18) can be approximated by the finite difference equation(
h2rhθ
6

) Nθ∑
l=1

(−10mθ
1,l +mθ

0) +

(
h2rhθ
2

)[ Nθ∑
l=1

(mθ
2,l −mθ

0)

]
=
(
h3rhθ

) Nθ∑
l=1

P θr1,l ,

which we rewrite to

mθ
0 =

1

2Nθ

[
Nθ∑
l=1

(3mθ
2,l − 10mθ

1,l − 6hrP
θr
1,l)

]
. (5.20)

For the grid points (r1, θl), with 1 ≤ l ≤ Nθ we can also write down equation (5.7) and (5.11), i.e.

1

r1h2r

[
r 3

2
(mr

2,l −mr
1,l)− r 1

2
(mr

1,l −mr
0)
]
+

1

r21h
2
θ

[
mr

1,l+1 − 2mr
1,l +mr

1,l−1

]
− 1

r21hθ

[
mθ

1,l+1 −mθ
1,l−1

]− mr
1,l

r2j

=
1

2hr

[−P rr3,l − 4P rr2,l + P rr1,l
]
+

1

2r1hθ

[
P rθ1,l+1 − P rθ1,l−1

]
+

1

r1

[
P rr1,l − P θθ1,l

]
,

(5.21)

and
1

r1h2r

[
r 3

2
(mθ

2,l −mθ
1,l)− r 1

2
(mθ

1,l −mθ
0)
]
+

1

r21h
2
θ

[
mθ

1,l+1 − 2mθ
1,l +mθ

1,l−1

]
+

1

r21hθ

[
mr

1,l+1 −mr
1,l−1

]− mθ
1,l

r21

=
1

2hr

[−P θr3,l − 4P θr2,l + P θr1,l
]
+

1

2r1hθ

[
P θθ1,l+1 − P θθ1,l−1

]
+

1

r1

[
P rθ1,l + P θr1,l

]
,

(5.22)

where we only replaced the central difference approximations of the radial derivatives of P rr and
P θr by one-sided difference of the same accuracy to avoid P rr0 and P θr0 .

If we substitute (5.19) into (5.21) and multiply by hr we find the equations

1

2hr

[
3mr

2,l − 4mr
1,l

]
+

1

hrh2θ

[
mr

1,l+1 − 2mr
1,l +mr

1,l−1

]− 1

hrhθ

[
mθ

1,l+1 −mθ
1,l−1

]
− mr

1,l

hr
+

Nθ∑
l=1

3mr
2,l − 10mr

1,l

4Nθhr

=
1

2

[−P rr3,l − 4P rr2,l + P rr1,l
]
+

1

2hθ

[
P rθ1,l+1 − P rθ1,l−1

]
+
[
P rr1,l − P θθ1,l

]
+

Nθ∑
l=1

2P rr1,l − P θθ1,l
2Nθ

(5.23)
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for the grid points (r1, θl) with 1 ≤ l ≤ Nθ. Similarly, substituting (5.20) into (5.22) and multi-
plying by hr, we find obtain

1

2hr

[
3mθ

2,l − 4mθ
1.l

]
+

1

hrh2θ

[
mθ

1,l+1 − 2mθ
1,l +mθ

1,l−1

]− 1

hrhθ

[
mr

1,l+1 −mr
1,l−1

]
− mθ

1,l

hr
+

Nθ∑
l=1

3mθ
2,l − 10mθ

1,l

4Nθhr

=
1

2

[−P θr3,l − 4P θr2,l + P θr1,l
]
+

1

2hθ

[
P rθ1,l+1 − P rθ1,l−1

]
+
[
P rr1,l − P θθ1,l

]
+

Nθ∑
l=1

3P θr1,l
2Nθ

(5.24)

for the grid points (r1, θl) with 1 ≤ l ≤ Nθ.
Now we have a finite difference equation for all the grid points in our grid. For the points on

the boundary ∂E we have equations (5.10) and (5.12), for the grid points directly adjacent to the
origin we have equations (5.23) and (5.24), and for the remaining grid points we have the equations
(5.7) and (5.11). This completes the description of the Least-squares method in polar coordinates.
We will in the next section compare the Least-square method in Cartesian coordinates with the
Least-square method in polar coordinates.

5.3 Comparison between the Cartesian- and
polar-implementation

We will compare the Least-squares method in Cartesian coordinates with the Least-squares method
in polar coordinates for two different test cases. In all two test cases we will take as the light source
E = D1. We will take a light source with a uniform intensity, hence E : E → R>0 will be defined
by E(x) = 1/π for all x ∈ E . We have normalized this function such that∫

E
E(x1, x2)

√
edx1dx2 = 1.

The first target will be a uniform square. We set F1 = [−1, 1]2 ⊂ R
2 and define F1 : F1 → R>0

by F (y) = 1/4 for all y ∈ F . The function F is also normalized, therefore we have∫
E
E(x1, x2)

√
edx1dx2 =

∫
F1

F1(y
1, y2)

√
fdy1dy2.

The second target will be the pair (F2, F2) corresponding to the intensity pattern on a plane in
the far-field of the reflector corresponding to Figure 5.4, described by a pair (H2 ⊂ R

2, H2). In
Section 3.6, we discussed how to find the pair (F2, F2) from (H2, H2), we will take the distance d
from reflector to plane equal to 1. The function F2 will again be normalized.

Before we can start to compare we first have to fix the value of α ∈ (0, 1) in (4.6). This actually
a weak point of the Least-squares method, because it is unclear what value for α to choose. The
Least-squares method will try to bring J in (4.6) to zero. Thus, if α is very small the boundary
error JB will be much smaller than JI , similarly if α is very close to 1 then JI will be much smaller
than JB . In general a choice for α should be based on the application in mind. On the one hand,
if it is really important that mapping adheres strongly to the boundary ∂F then a relative low
value of α should be chosen. On the other hand, if it is more important that the solution very
closely satisfies the Monge-Ampère equation on the interior of E then a relative high value of α
should be chosen.

In Figure 5.5 and Figure 5.6 the convergence for the test case (F1, F1) is shown for the the
Least-squares method in Cartesian coordinates and in polar coordinates, respectively.

We will analyse test case (F1, F1) for α = 0.2, because for this value of α the convergence is
most fast for the Cartesian case as can be seen in Figure 5.5b. In Figure 5.7 the convergence of the
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Figure 5.5: Convergence for different values of α for test case (F1, F1) in Cartesian coordinates.
We used a grid with Nx = 200, Ny = 200. We used 1000 points the approximate ∂F , hence this
will form no restriction.
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Figure 5.6: Convergence for different values of α for test case (F1, F1) in polar coordinates. We
used a grid with Nr = 200, Nθ = 200. We again used 1000 points to approximate ∂F .
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Figure 5.7: The converge of the Least-squares method in Cartesian coordinates and in polar
coordinates for different grid sizes. The number of points to approximate ∂F is again taken equal
to 1000.

Least-squares method is shown for different grid sizes in Cartesian and polar coordinates. It can
be seen that convergence for the Least-squares method is significantly better in polar coordinates
than in Cartesian coordinates. The convergence in polar coordinates does tend to take more
iterations. In Figure 5.8 the functionals JI and JB are plotted as a function of the number of
iterations for a 300× 300 grid. In Figure 5.9 the mappingm is shown. In the figure it can be seen
how the grid on E gets mapped to F . Note that the grid points on E are not evenly distributed
in the polar coordinate case. Closer to the origin the number of grid points increases, while far
from the origin the density of grid points is lower than in the Cartesian case. In Figure 5.9a it can
be seen that the mapping does not satisfy the boundary condition m(∂E) = ∂F very well. On all
four edges of the square small bulges appear. These bulges will be catastrophic when we extend
the mapping to a larger domain in the next chapter. These bulges are not there in the polar case
as can be seen in Figure 5.9b.

The results for test case (F2, F2) are comparable to those of the first test case. In Figure 5.10
we see that in the Cartesian case the same bulges appear as for the first test case. In the polar
case these bulges are again not there. In Figure 5.11 the convergence of Least-squares method is
shown for different grid sizes for the second test case. The convergence is again significantly better
for the implementation in polar coordinates.

So, we see an overall better performance of the Least-squares method in polar coordinates
when compared to the Least-squares method in Cartesian coordinates for a disk-shaped light
source E = D1. This is of importance in the construction of a physical reflector as we will see in
the next chapter.
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Figure 5.8: The converge of the Least-squares method in Cartesian coordinates for Nx = 300
and Ny = 300, and in polar coordinates for Nr = 300 and Nθ = 300. The number of points to
approximate ∂F is again taken equal to 1000 and α = 0.2.
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(a) The mapping for the Least-squares method in
Cartesian coordinates.
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(b) The mapping for the Least-squares method in
polar coordinates.

Figure 5.9: The mapping m is shown after 300 iterations on a 200 × 200 grid. The number of
points to approximate ∂F is again taken equal to 1000 and α = 0.2.
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(a) The mapping for the Least-squares method in
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(b) The mapping for the Least-squares method in
polar coordinates.

Figure 5.10: The mapping m is shown after 300 iterations on a 200 × 200 grid. The number of
points to approximate ∂F is again taken equal to 1000 and α = 0.2.
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Figure 5.11: The converge of the least-squares method in Cartesian coordinates and in polar
coordinates for different grid sizes. The number of points to approximate ∂F is again taken equal
to 1000.



Chapter 6

Extension of the Reflector Surface

In Chapter 1 we discussed the steps still to take to produce a physical reflector. We considered the
milling machine that we want to use to produce the reflector and found that this machine needs to
be provided with the heights of the reflector on a polar coordinate grid. Moreover, we remarked
that the deceleration or acceleration of the chisel is bounded and that this implies that |∂2v/∂θ2|
cannot be too large. In order to significantly reduce |∂2v/∂θ2| we chose not to use the coordinate
system aligned with the light source but a rotated cylindrical coordinate system in which the chisel
of the milling machine is approximately normal to the reflector surface. This coordinate system
is depicted in Figure 1.3.

Furthermore, the milling machine only produces disk-shaped reflectors and therefore needs to
be provided with data for a disk-shaped reflector. However, while the function describing the
reflector surface in the coordinate system aligned with the light source, i.e. the red coordinate
system in Figure 1.3, had a disk-shaped support, the support of the function describing the
reflector surface in the rotated coordinate system has approximately the shape of an ellipse. We
therefore need to extrapolate the reflector surface to a disk containing this ellipse in order to be
able to provide the milling machine with workable data. Attempts to extrapolate the reflector in
the rotated cylindrical coordinate system failed and therefore we try to extrapolate the reflector
surface already in the coordinates of the light source. We will extrapolate by using an adapted
form of the least-squares method in order to be able to specify in which direction the extrapolated
parts of the reflector reflect incident light.

6.1 Boundary value problem for reflector extension

We will determine the extrapolated reflector in two steps. First we will use the least-squares
method to determine the original reflector, and second we will use a slightly adapted version
of the least-squares method to determine the extrapolated part of the reflector. The two-part
boundary value problem that we will solve is the following.

Problem 6.1.1. Find mI ∈ T (EI)C1 that satisfies

det(∇m̂Int(x))

e
=

EInt(x)

FInt(m′(x))
, in EInt, (6.1a)

mInt(∂EInt) = ∂FInt, (6.1b)

and find m ∈ TEC that satisfies

det(∇m̂(x))

e
=

EExt(x)

FExt(m(x))
, in EExt, (6.2a)

m =mInt, in E Int, (6.2b)

m(∂EExt) = ∂FExt, (6.2c)

97
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and for which ∇m̂ and hence ∇m̂Int are positive semi-definite tensors. In this problem the
functions EInt, EExt, FInt and FExt are strictly positive functions such that∫

EInt

EInt(x
1, x2)

√
e dx1dx2 =

∫
FInt

FInt(y
1, y2)

√
f dy1dy2, (6.3a)∫

EExt

EExt(x
1, x2)

√
e dx1dx2 =

∫
FExt

FExt(y
1, y2)

√
f dy1dy2, (6.3b)

where x1, x2 are coordinates on E := EInt ∪ EExt with corresponding metric eij and y1, y2 are
coordinates on F := FInt ∪FExt with corresponding metric fij . Furthermore, the sets EInt, EExt ⊂
R

2 are such that EInt and E are convex, closed and bounded. We assume the sets FInt,FExt ⊂ R
2

also to be such that FInt and FExt are closed and convex.

In Figure 6.1 a graphical representation is given of the domains and mappings involved in
Problem 6.1.1. Let us define E : E → R>0 by

E
∣∣
EInt

:= EInt and E
∣∣
EExt

:= EExt,

and let us define F : F → R>0 analogously. The mapping m is a map from E to F and satisfies
m(∂E) = ∂F , however, note that in general m is not a solution to the boundary value problem⎧⎨⎩

det(∇m̂(x))

e
=

E(x)

F (m(x))
, in E ,

m(∂E) = ∂F .

This results from the fact that in generalm does not have to satisfym(EInt) = FInt andm(∂EInt) =
∂FInt. Furthermore, it must be remarked that the mapping m /∈ TEC1 , but m ∈ TEC . We have
imposed that m = mInt on EInt and hence on ∂EInt however we have placed no demands on the
derivatives of m on ∂EInt, therefore we can only expect m to be continuous on ∂EInt and not
necessary differentiable. This is indeed what we will see in the numerical tests.

EExt FExt

m

mInt =m

∂EInt∂E
FIntEInt

∂FInt ∂F

Figure 6.1: Schematic representation of the two mappings and the domains involved. In the test
cases that we will consider, the sets and EInt and EExt will have the circular shape presented here,
but the sets FInt and FExt will have different noncircular shapes. However, they will have the
relation to each other as represented here in a topological sense.

To solve the boundary value problem (6.2) we need to make some minor adaptations to the
least-squares method. The first two steps of each iteration of the method, i.e. the minimization
of JB and JI as described in Sections 4.2 and 4.3, will stay unaltered as they are performed
pointwise. The third step of an iteration, i.e. the minimization of J as described in Section 4.4
does need some changes. This time we have to take the boundary condition (6.2b) into account.
We therefore have to minimize J over the space

VmInt
:= {v ∈ TEC2 | v(x) =mInt(x) x ∈ EInt} , (6.4)
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instead of over the space in equation (4.7). We can follow the same derivation as in Section 4.4,
which gives us the equations (4.34) again, i.e.

DjD
jmi = DjP

ij in E ,
α(Djmi)nj + (1− α)mi = αP ijnj + (1− α)bi on ∂E .

However, here m ∈ VmInt
and mInt, being a solution to boundary value problem (6.1), already

satisfies the first of these two equations. This implies that the minimizer is given by m ∈ VmInt

that satisfies

DjD
jmi = DjP

ij in EExt,

mi = (m′)i in EInt,
α(Djmi)nj + (1− α)mi = αP ijnj + (1− α)bi on ∂E .

We demand the mapping m to be at least continuous therefore the condition mi = (m1)
i on EInt

effectively works as a boundary condition on ∂EInt. Thus the minimizer of J over VmInt
is on EInt

given by mInt and on EExt by the solution to the boundary value problem

DjD
jmi = DjP

ij in EExt, (6.5a)

mi = (m′)i on ∂EInt, (6.5b)

α(Djmi)nj + (1− α)mi = αP ijnj + (1− α)bi on ∂E . (6.5c)

Thus, in order to solve Problem 6.1.1, we use the least-squares method with the only adaptation
that we, instead of boundary value problem (4.34), now solve boundary value problem (6.5a) to
determine the minimizer for J in the third substep of each iteration. We will from now on call
this version of the least-squares method the adapted least-squares method.

Problem 6.1.1 is Problem 4.1.2 with the extra constraint that m must equal mInt on EInt.
We discussed earlier that for problem 4.1.2 there possibly consists a unique solution under cer-
tain smoothness criteria of the boundary and the functions E and F . We can therefore expect
the functional J to converge to zero when we apply the least-squares method to Problem 4.1.2.
However, when we apply the adapted least-squares method as just described to Problem 6.1.1, the
functional J can only converge to zero if the minimizer of Problem 4.1.2 is also the minimizer of
Problem 6.1.1. So, suppose if m is the solution of Problem 4.1.2, for which J = 0, then we need
to have

m
∣∣
EInt

=mInt,

in order for J to be able to diminish to zero when we apply the adapted least-squares method
to Problem 6.1.1. Thus in general we can not expect the functional J to diminish to zero when
we apply the Adapted least-squares method to the Problem 6.1.1. This is a serious weak point of
the method. Although mInt still will be a fairly accurate solution of the Monge-Ampère equation
mapping from EInt to FInt, we cannot expect for m restricted to EExt to be an accurate solution
of the Monge-Ampère equation, mapping from EExt to FExt. However, just as in the case of
least-squares method we can test the adapted least-squares method by calculating the reflector
corresponding to the mapping and submitting this reflector to a virtual light bundle leaving our
source and determining resulting light intensity distribution on the projection screen. This we will
do in the next section.

6.2 Numerical results of the adjusted least-squares method

We will apply the Adjusted least-squares method to two test cases. For each test case we will again
take EInt = DRInt=1 and EExt = DRExt=1.5. The first test case will be the simplest. We take F1

Int
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to be the figure which has the boundary ∂F1
Int described in polar coordinates ρ ∈ R>0, φ ∈ [0, 2π)

by

ρInt(φ) = 1 + 0.1 cos(3φ).

(This test case is taken from [5].) We will take F 1
Int : F1

Int → R>0 constant such that the integral
of F 1

Int over F1
Int equals 1. We define the extension F1

Ext again by its boundary. Let the boundary
∂F1

Ext be given by the curve

ρExt(φ) =
RExt

RInt
+ 0.1 cos(3φ).

We take F 1
Ext to assume the same constant value on the whole of F1

Ext as F
1
Int assumes on F1

Int. It
is easily verified that F1

Int, F
1
Int and F1

Ext, F
1
Ext such defined satisfy equations (6.3). The sets F1

Int

and F1
Ext and their boundaries are shown in Figure 6.2.

F1
Int

F1
Ext

∂F1
Int ∂F1

Figure 6.2: The target space for test case 1.

As the second test case we again take the set F2
Int to be the set corresponding to the projection

of the painting by Vermeer, shown in Figure 5.4, on a projection plane at about 2 meters away from
the reflector. We assume that the radii RInt and RExt of EInt and EExt are 1 and 1.5 centimeters
respectively. We take the set F2

Int such that the picture on the projection screen is roughly 20
centimeters wide and 40 centimeters high. We take the extension ∂F2 to be equidistant to ∂F2

Int

and we let F 2
Ext decrease linearly in the normal direction from the value of F 2

Int on ∂F2
Int to 20%

of the maximum value of F 2
Int. We do this in order to ensure that F 2

Ext > 0 and we do not divide
by 0 in equation (6.2a).

We will use the adapted least-squares method to find a minimizer for the functional J . Let us
denote such a minimizer of J by m. This minimizer is by definition of the adapted least-squares
method an element of the set defined in equation (6.4), hence m equals mInt on EInt. Let us
now suppose that we have an ideal situation where mInt is the exact solution to boundary value
problem (6.1). The functionals JI and JB are then given by

JI(m,P ) =
1

2

∫∫
EInt

‖∇m̂− P ‖2√e dx1dx2,

JB(m, b) =
1

2

∮
∂E

‖m− b‖2 ds,

because the integrand of the integral JI is 0 on EInt when mInt is the exact solution to (6.1).
We argued earlier that in general there will not exist a solution to Problem 6.1.1, therefore J =
αJI + (1 − α)JB > 0. Moreover, m is only continuous and not differentiable for r = RInt. The
partial derivatives

∂mr

∂r
and

∂mθ

∂r
(6.6)
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will therefore have a jump at r = RInt and these will cause jumps in the second derivatives of
the reflector surface. Large values and jumps in second derivatives of the reflector surface we
want to avoid, because these cause trouble for our milling machine. In order to measure the
non-differentiability of m with respect to r at r = RInt, let us define the functions

frn-d(θ) :=

∣∣∣∣ limρ↓RInt

[
∂mr

∂r
(ρ, θ)

]
− lim
ρ↑RInt

[
∂mr

∂r
(ρ, θ)

]∣∣∣∣ , (6.7a)

fθn-d(θ) :=

∣∣∣∣ limρ↓RInt

[
∂mr

∂θ
(ρ, θ)

]
− lim
ρ↑RInt

[
∂mθ

∂r
(ρ, θ)

]∣∣∣∣ , (6.7b)

where limρ↓RInt and limρ↑RInt denote the one-sided limits with r > RInt and r < RInt, respectively.
The functions frn-d and fθn-d give the size of the jumps in the derivatives as a function of θ. We
can use these functions to give a measure to the non-differentiability at r = RInt. Let us define
the following errors:

εr2 :=

√∫ 2π

0

(
frn-d(θ)

)2
RInt dθ, εθ2 :=

√∫ 2π

0

(
fθn-d(θ)

)2
RInt dθ, (6.8a)

εr∞ := sup
[0,2π]

∣∣frn-d(θ))2 RInt

∣∣, εθ∞ := sup
[0,2π]

∣∣fθn-d(θ))2 RInt

∣∣. (6.8b)

The Monge-Ampère equation (6.2a) is better satisfied when JI is smaller and the boundary con-
dition (6.2c) is better satisfied when JB is smaller. If JI would be 0, then m would satisfy the
Monge-Ampère equation on the whole of E and m would also be differentiable for r = RInt, at
least when E and F are smooth enough. Thus, we suspect that errors (6.8) are smaller when JI is
smaller. The value of α ∈ (0, 1) determines the relative importance between JI and JB . A value
for α close to 0 implies that a small value for J is mainly achieved by minimizing JB and a value
for α close to 1 implies that a small value for J is mainly achieved by minimizing JI . We can
therefore expect that if we take a larger value for α the differentiability errors for the minimizer
m of J will tend to be smaller .

We will use forward and backward finite differences to approximate the one-sided limits in
(6.7). This gives us

frn-d(θl) =

∣∣∣∣∣3(m
r
NRInt

,l +mr
NRInt

,l)− 4(mr
NRInt

+1,l +mr
NRInt

−1,l) + (mr
NRInt

+2,l +mr
NRInt

−2,l)

2hr

∣∣∣∣∣+O(h2r),

fθn-d(θl) =

∣∣∣∣∣3(m
θ
NRInt

,l +mθ
NRInt

,l)− 4(mθ
NRInt

+1,l +mθ
NRInt

−1,l) + (mθ
NRInt

+2,l +mθ
NRInt

−2,l)

2hr

∣∣∣∣∣+O(h2r).

Furthermore, we will use the trapezoidal/midpoint rule to determine the integrals for εr2 and εθ2.
Note that there is no difference between the midpoint rule and the trapezoidal rule when begin
point and end point of the integration interval coincide.

In Table 6.1, the differentiability errors are given for different values of α. It can be seen that
the numerical results are in agreement with our expectations. We denote the value of α used in
the least-squares method to solve equations (6.1) by αInt and we denote the value of α used in the
adapted least-squares method to solve equations (6.2) by αExt. We see that the errors decrease if
we either increase αInt or αExt. In Figure 6.3 it can be seen that in the case that αInt and αExt are
close to 1, and the errors are relatively small, the mapping will not satisfy the boundary condition
m(∂E) = ∂F particularly well. However, when αInt and αExt are close to 0, and the errors are
relatively large, the boundary condition m(∂E) = ∂F is satisfied very well.

For the second test case the same relationship is found between the αInt, αExt and the differentia-
bility errors. This is shown in Table 6.2. In Figure 6.6 the functions frn-d and fθn-d are shown for
the two cases of Table 6.2 with the largest and the smallest differentiability errors. It can be seen
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αInt αExt εr2 (·10−2) εθ2 (·10−2) εr∞ (·10−2) εθ∞ (·10−2)

0.2 0.02 3.097 2.329 0.3194 0.2449
0.2 0.2 2.377 1.175 0.2815 0.2132
0.2 0.8 0.2441 0.1686 0.09679 0.07446
0.2 0.98 0.03453 0.03535 0.04556 0.04357
0.8 0.02 3.065 2.263 0.2991 0.2409
0.8 0.2 2.329 1.660 0.2559 0.2060
0.8 0.8 0.2353 0.1531 0.08003 0.06722
0.8 0.98 0.01832 0.01774 0.02963 0.02851

Table 6.1: The differentiability errors for test case 1 for different values of αInt and αExt. αInt is
the value α used when solving the boundary value problem for mInt in Problem 6.1.1 and αExt is
the value for α used when solving the boundary value problem for m in Problem 6.1.1. We use a
100× 100 grid on EInt and a 150× 150 grid on E .
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(a) The mapping corresponding to αInt = 0.2 and
αExt = 0.02.
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(b) The mapping corresponding to αInt = 0.8 and
αExt = 0.98.

Figure 6.3: The mapping for the two extreme cases of Table 6.1. On the left side the one with the
largest errors on the right side the one with the smallest errors. Only half of the grid lines have
been plotted.
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Figure 6.4: The functionals J , JI and JB for the two extreme cases of Table 6.1. On the top the
one with the largest errors on the bottom the one with the smallest errors. We used 300 iterations
for the least-squares method and 200 iterations for the adapted least-squares method. In this plot
α′ = αInt and α

′′ = αExt.
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αInt αExt εr2 (·10−2) εθ2 (·10−2) εr∞ (·10−2) εθ∞ (·10−2)

0.2 0.02 0.8666 0.2346 0.3074 0.1035
0.2 0.2 0.7854 0.1964 0.3000 0.09733
0.2 0.8 0.5226 0.1140 0.2616 0.07821
0.2 0.98 0.3577 0.07721 0.2154 0.06676
0.8 0.02 0.5872 0.1870 0.2085 0.08479
0.8 0.2 0.5258 0.1554 0.2012 0.07786
0.8 0.8 0.3198 0.07911 0.1638 0.05816
0.8 0.98 0.1988 0.04844 0.1311 0.05411

Table 6.2: The differentiability errors for test case 2 for different values of αInt and αExt. αInt is
the value α used when solving the boundary value problem for mInt in Problem 6.1.1 and αExt is
the value for α used when solving the boundary value problem for m in Problem 6.1.1. We use a
100× 100 grid on EInt and a 150× 150 grid on E .

that frn-d has four peaks located at the corners of ∂F2
Int and fθn-d has peaks just before and after

each corner. Moreover, frn-d also peaks at the bottom of F2
Int. This peak is more apparent for the

case with αInt = 0.8 and αExt = 0.98 than for the one with αInt = 0.2 and αExt = 0.02, because in
the former the peaks at the corners are less severe. This fifth peak results from the fact that the
function F 2

Int attains a relatively high value at the bottom of F2
Int, because more light is demanded

there for the torso of “The Girl with the Pearl Earring”. In Figure 6.5 the mapping is shown for
the two extreme cases of Table 6.2. The results are again similar to the ones obtained for test
case 1. For large values of αInt and αExt the boundary condition on ∂E is not very well satisfied.
The extension of the grid clusters around the corners in order to better satisfy the Monge-Ampère
equations at these locations. For αInt = 0.2 and αExt = 0.02 the boundary condition on ∂E is
satisfied very well. This can also be seen in the convergence plots for the two cases, which are
depicted in Figure 6.8. In Figure 6.7 one of the corners of the mapping is shown for the two cases
with largest and smallest differentiability errors. In the plot for αInt = 0.2 and αExt = 0.02 the
differentiability errors are relatively large and it can be seen that there are kinks in the grid lines
corresponding to constant θ, near the corner where the original grid of EInt is attached to the grid
extension for EExt. These kinks are almost absent for αInt = 0.8 and αExt = 0.98. An overal higher
grid density can be seen for αInt = 0.2, αExt = 0.02 near the corner in F2

Int. This implies that
the resulting light intensity distribution will be higher at the corresponding part of the projection
screen for αInt = 0.2, αExt = 0.02 than for αInt = 0.8, αExt = 0.98. This is indeed what we see
in Figure 6.9. In this Figure the ray-trace results are shown for the extended reflector, both for a
reflector determined with αInt = 0.2 and αExt = 0.02 as for a reflector determined with αInt = 0.8
and αExt = 0.98. In this figure it can also be seen that the boundary conditions on the boundary
∂E are satisfied less well for the case with αInt = 0.8 and αExt = 0.98. For the case with αInt = 0.2
and αExt = 0.02 a black gap has appeared on the bottom of the picture corresponding to the
fifth peak in Figure 6.6. For the case with αInt = 0.8 and αExt = 0.98 this black gap does not
appear and also the amount of unwanted extra light around the corners of the picture is less than
for the case with αInt = 0.2 and αExt = 0.02. Thus the the case with values of α close to 1 give
significantly better results than the case with values of α closer to 0.
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Figure 6.5: The mapping for the two extreme cases of Table 6.2. On the left side the one with the
largest errors on the right side the one with the smallest errors. Only half of the grid lines have
been plotted.
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Figure 6.6: The functions frn-d and fθn-d for the two extreme cases of Table 6.2.
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Figure 6.7: The right upper corner of the mapping for the two extreme cases of Table 6.2.
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Figure 6.8: The functionals J , JI and JB for the two extreme cases of Table 6.2. On the left side
the one with the largest errors on the right side the one with the smallest errors. We used 250
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(a) For αInt = 0.2 and αExt = 0.02. (b) For αInt = 0.8 and αExt = 0.98.

Figure 6.9: Ray-trace results for the extended reflector on a 1200× 1200 polar coordinate grid.



Chapter 7

Conclusions and Final Remarks

In this chapter we will summarize this thesis and make some suggestions for further research.
The goal of this graduation project was to take the necessary steps in order to be enable the
manufacturing of a reflector which transforms a parallel homogeneous light bundle into an output
that projects Figure 1.2 on a projection screen. We will discuss to which extent these steps have
been taken and which hurdles still lie ahead.

7.1 Summary

We started out with a chapter on Tensor Calculus in which we introduced the necessary concepts
in order to be able to derive the Monge-Ampère equation for the reflector system in a coordinate
independent manner. This we did in Chapter 3. The derivation of the Monge-Ampère equation
concluded with Theorem 3.3.4 in which finally the coordinate independent Monge-Ampère equation
was found, describing the conservation of energy in the reflector system. From this we derived a
coordinate specific expression for the Monge-Ampère equation for different coordinate systems on
the light source E . We did this in Section 3.4 for polar coordinates with a holonomic basis, polar
coordinates with an anholonomic basis and Cartesian coordinates. For Cartesian coordinates we
found the form of the Monge-Ampère equation earlier found in [5], showing that our coordinate
independent Monge-Ampère equation is consistent with the results obtained earlier. In the rest of
Chapter 3 we focussed on formulating an inverse problem for the function u describing the reflector
surface. We showed that instead of the implicit condition ∇u(E) = F , expressing conservation
of global energy, we could equally well use the more explicit boundary condition ∇u(∂E) = ∂F .
Furthermore, we discussed in this chapter the relationship between the source E , the gradient space
F , the subset of the unit-sphere G and the projection screen H. We learned that y = ψ ◦ ∇u is a
continuously differentiable bijection between E and G and that the Monge-Ampère equation can
be viewed from the viewpoint of integration by substitution using the continuously differentiable
bijection y : E → G.

In Chapter 4 we introduced the least-squares method, previously introduced in Cartesian
coordinates in [5], for arbitrary coordinate systems. Furthermore, we showed in Section 4.3 that
the minimization problem for JI can still be solved algebraically when we also take into account
the trace condition on P , which was accidently left out in [5]. In Section 4.4 we used the Calculus
of Variations to derive a boundary value problem form the solution of which minimizes J . While
in Cartesian coordinates the boundary value problem consisted of two decoupled scalar equations,
which involved the Laplacian of mx and my, we found using an arbitrary coordinate system that
this was really a vector equation involving the vector Laplacian. This vector equation mixes the
components m and is therefore in general coupled. We found that for polar coordinates this
boundary value problem indeed results in two coupled equations.

In Chapter 5 we implemented the least-squares method in polar coordinates with an orthonor-
mal basis. We compared the Cartesian least-squares method with its counter-part in polar co-
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ordinates for a disk-shaped source E = DR. We found an overall better performance by the
least-squares method in polar coordinates. The convergence in polar coordinates was better up to
4 orders of 10. The unwanted bulges often appearing on the edges of F disappear when using the
least-squares method in polar coordinates. Also, the strange behaviour of the grid lines near the
corners, which was found in Cartesian coordinates, is no longer present in polar coordinates.

7.2 Recommendations for further research

In order to provide the milling machine that will produce the reflector with workable data still some
final steps have to be taken. The determined extrapolated reflector should be determined in the
rotated coordinate system of the milling machine, which was depicted in Figure 1.3. It should be
analysed in further detail what the resulting chisel accelerations are for the extrapolated reflector
in this coordinate system. Subsequently, it should be verified if these chisel accelerations are
attainable by the milling machine. Before actually manufacturing the reflector, it would be wise
to verify the extrapolated reflector with professional ray-tracing software. If the results of this
test are also satisfactory, then the reflector can be produced.

When the boundary of the target ∂F is not smooth, there seems to be a trade-off between the
value of the functional corresponding to the interior JI and the functional corresponding to the
boundary JB . It seems that for non-smooth ∂F it is impossible to get both JI and JB to equal
zero simultaneously. However, if the boundaries ∂E and ∂F are smooth enough, and the intensity
functions E and F are smooth enough, we suspect this trade-off to disappear. What exactly these
smoothness conditions on ∂E , ∂F , E and F should be is something open to further research.
The available literature on the Monge-Ampère equation should be consulted on this point. If the
required smoothness conditions have been clarified, numerical tests should be performed on a test
case satisfying the smoothness conditions to check if the apparent trade-off between JI and JB
does indeed disappear.

Finally, it is of great interest to generalize the methods presented in this graduation thesis to
more general light sources. In practice one often encounters point light sources and extended light
sources that do not emit a parallel bundle of light but radiate in certain set of directions with a
corresponding intensity. Starting out with the point light source case, for which the corresponding
Monge-Ampère-type equation has been determined in [9]. Some first steps have been set in devising
numerical methods to solve the inverse reflector problem for the point light source, see for example
[17].
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