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Abstract—In recent years, face detection has become a popular
application in embedded devices. However, since computational
and energy efficiency are key aspects when targeting embedded
devices, most face detection algorithms sacrifice accuracy for
efficiency. The Deformable Part Models (DPM) algorithm is
known to greatly outperform integral-channel based detectors
in terms of robustness, although at an increased computational
cost, making DPM impractical for use on embedded devices.

This paper proposes a method to speed up a DPM face
detection algorithm when targeting the NVIDIA Tegra K1 SoC.
Several strategies are proposed to offload the most computa-
tionally intensive algorithmic components to the GPU. In order
to test the functional correctness of our implementation, we
trained a three-component DPM face model and tested it on three
challenging video sequences containing multiple persons. When
comparing our results to a single-thread CPU implementation,
we achieve a 1.5x speed-up without any loss in accuracy.

I. INTRODUCTION

Face detection is a mature topic in the domain of computer

vision. It is used in many consumer products such as smart-

phones, digital cameras and personal computers, but it also

forms a basis for more sophisticated computer vision algo-

rithms, such as facial recognition systems. However, building a

robust face detection system still remains a challenge because

of the many visual variations that can occur in a video, such

as illumination changes, pose and scale variations, or object

rotation. Many of the current face detection systems have

difficulties coping with these challenges.

The Deformable Part Models (DPM) algorithm, first pro-

posed by P. Felzenszwalb et al. [1], is known to greatly

outperform existing integral channel-based detectors in terms

of robustness. Although this algorithm excels in accuracy, it is

known to suffer from a high computational load. This makes

DPM impractical for (real-time) use, especially when targeting

low-power embedded platforms, where computational- and

energy efficiency are key aspects.

While several solutions have been proposed to overcome

the computational bottlenecks of DPM [2] [5], relatively few

works have addressed the problem of speed-optimizing the

DPM object detection algorithm when targeting embedded

devices. In this paper, we propose several strategies to address

the problem of computational efficiency when implementing

a DPM face detection system on an embedded GPU-based

platform.

Contribution: This paper proposes a computational effi-

cient GPU-based implementation of the DPM face detector on

the NVIDIA Tegra K1. We provide an accurate analysis of the

computational cost of the different algorithmic components,

as well as strategies to offload the most computationally

intensive components to the GPU of the Tegra K1. A new

face model has been trained to test the functionality of the

implemented algorithm. The speed-up achievable through the

proposed strategies is empirically verified on several video

sequences containing multiple faces.

Organization: Section II discusses related work on the

subject of face detection. In section III, we provide an

overview of the DPM object detection algorithm. Section

IV presents an analysis of the computational costs of the

algorithmic components of the DPM algorithm, while section

V will describe offloading of the computational bottlenecks

to a CUDA-capable GPU. In section VI we validate the

functional correctness of the implemented algorithm and we

provide an empirical analysis of the speed-up achievable with

the proposed strategies with respect to a single thread CPU

implementation. Conclusions and future work are presented

in section VII.

II. RELATED WORK

In recent years, several works have addressed the topic of

face detection. A breakthrough in face detection was presented

by the seminal work proposed by P. Viola and M. Jones [7],

making use of a boosted cascade of weak classifiers in order

to speed-up the detection task, while preserving accuracy.

Although several improvements of the original work have

been proposed [20] [21], the Viola-Jones algorithm still suffers

from poor detection quality in the presence of high intraclass

variability, such as pose variations.

Some of the earlier work used neural networks for detecting

faces [8][18][19]. However competitive at the time, it is not

known how these systems perform on modern benchmarks and

modern hardware.

In [10], Dalal and Triggs proposed using Histograms of

Oriented Gradient-based (HOG) features for object detection.

In [1], Felzenszwalb et al. combined the benefits of HOG

features with deformable part models, capable of handling

high intraclass variations and proved to outperform several

previous methods [3]. Even though in [1], the authors propose

strategies aiming at computational efficiency, the performances

achievable were still far from real-time.

The Cascaded Deformable Part Models algorithm (CDPM),

proposed by [2], addresses the problem of speed of DPM

by implementing a method for early hypothesis pruning. The



paper claims to achieve a speedup of over one order of

magnitude on the PASCAL dataset [14], without a decrease in

accuracy. This is achieved by evaluating each subwindow by

a cascade of increasingly complex tests, attempting to reject

low-scoring subwindows in early stages of the cascade.

J. Yan et al. [5] describes a method for making the cascade

neighborhood aware; if one subwindow has a low score, the

neighboring subwindows tend to have a low score as well,

resulting in less windows that require evaluation. The paper

also claims to have accelerated the HOG feature pyramid

creation by using lookup tables. H. O. Song et al. [6] describes

a method for accelerating multiple-class detections by reusing

overlapping parts between object models, reducing the total

number of required evaluations.

M. Hirabayashi et al. [9] have proposed a method for

accelerating DPM by means of offloading different compute-

intensive parts to a GPU. The paper reports an overall speedup

of 3-5 with respect to a single-thread implementation, although

these measurements have been taken using high-end consumer

GPUs. C. Yan-Ping et al. [11] claims to have accelerated the

HOG feature pyramid creation by a factor of 10, also using

high-end GPUs. [6] provides results for a GPU implementation

of DPM, comparing it to the single-thread implementation

described in [2].

To the best of our knowledge, this paper is the first work

analyzing and optimizing CDPM for an embedded platform.

While other works propose to offload the computational bot-

tlenecks of DPM to (mostly high-end) GPUs, we differ our

work by offloading parts of CDPM to the GPU of the NVIDIA

Tegra K1 SoC. We evaluate the performance using our own

trained face model, being able to detect faces on three different

viewpoints, tested on three different video sequences.

III. ALGORITHM OVERVIEW

In this section, we provide an overview of the DPM-

and CDPM object detection algorithms. The CDPM is an

algorithmic optimization of the original DPM, and is used as

a basis for our implementation on the NVIDIA Tegra K1.

A. DPM: Deformable Part Models

The DPM as described in [1] consists of two main parts:

the HOG feature pyramid creation and the object matching.

Object hypotheses are formed by applying a star-based model

of linear filters to a multiscale HOG feature map. The filters

are obtained by training a Latent Support Vector Machine

[1] on a specific object class (e.g. persons, bicycles, cars,

aeroplanes).

1) HOG feature pyramid creation: The high-level appear-

ance of an object can be characterized fairly well by the dis-

tribution of local intensity (pixel) gradients, or by using edge

directions. This is implemented by dividing the source image

into so-called cells, and accumulating the local 1-D histograms

of gradient orientations (or edge orientations) over all pixels in

the cell. To increase robustness against illumination variances,

the local responses are contrast-normalized before they are

used. The exact details of the computation of HOG features

Fig. 1: Example of a feature pyramid, used for person detec-

tion. High-scoring root locations define the search space of

the part locations, together forming an object hypothesis. The

part filters are placed at twice the spacial resolution of the root

filter, being able to capture more detailed features.

are described in [10].

The HOG features are computed for different resized input

frames, often referred to as the feature pyramid. This feature

pyramid enables the algorithm to detect objects of variable

sizes, while the size of the filters can be kept constant. An

example of a HOG feature pyramid is depicted in figure 1, for

the case of person detection.

2) Object matching: Finding objects in the feature pyramid

is done by using a star-based model. This star model is defined

by two types of filters; a coarse root filter, approximately

covering an entire object, and multiple higher resolution part

filters, which cover smaller, individual parts of an object. The

part filters are placed inside high-scoring root filter responses

where the root filter serves as an early rejection method for

low-scoring windows.

The detector uses a sliding window for evaluating all

positions in the HOG feature pyramid, determining for each

window if it has a high probability of containing an object.

The filter response scores are computed by the dot product

between each window w with its upper left corner at position

(x, y) of the feature map F at scale s, and the corresponding

filter G (root or part) of size (x′, y′):
∑

x′,y′
G[x′, y′] · Fs[x+ x′, y + y′] (1)

The full object hypothesis is formed by summing the scores

of each part minus a deformation cost. The deformation cost

defines the allowable displacement of each part relative to

its ideal root location. This enables the algorithm to cope

with a certain amount of intraclass variation. In the case of

stronger intraclass variation (e.g. different object viewpoints),

an additional root filter with corresponding part filters can be

added.

The addition of multiple components (i.e., view points) to



the model improves the accuracy of the detection at the cost

of a higher computational complexity.

B. CDPM: Cascaded Deformable Part Models

One of the most promising optimizations over the original

DPM algorithm is represented by the CDPM, proposed in [2].

The CDPM accelerates the original DPM by reducing the total

number of subwindows to be evaluated in an image. This is

done by rejecting a subwindow as soon as possible in a cascade

of increasingly complex evaluation stages.

For an object model consisting of n + 1 components, a

hierarchy of 2(n+1) stages is created making use of Principle

Component Analysis (PCA). The first n+ 1 stages are PCA-

reduced versions of the original model (the models from [1]),

which are faster to evaluate than their original, full model.

If the score falls below a pre-trained intermediate threshold,

the window will likely not contain an object and is rejected,

without the need for the full model to be evaluated. If the

score is high enough, the simplified models are sequentially

replaced by their full ones, being the second n+ 1 models in

the cascade.

Another strategy proposed to reduce the total number of

subwindows is based on deformation pruning. This method

applies for the part filter processing; part scores are computed

by a deformation weights matrix, defining the displacement

of the part location with respect to its ideal location. By

constraining the search space of the seperate parts, fewer

windows need to be evaluated. For example, when using a

frontal-view face model, the right eye is most likely located

near the left eye.

In [2], the authors have claimed to have achieved a speed-

up of more than one order of magnitude over the original

DPM, with a minimal loss in accuracy. However, the CDPM

algorithm requires retraining of the object model in order to

compute the aforementioned intermediate thresholds.

IV. PROGRAM ANALYSIS

Before porting any subparts of the algorithm to the GPU, a

careful analysis of the program is needed. This paper assumes

the CDPM as a baseline, analyzing and offloading specific

parts to the GPU. Compute-intensive, data-parallel code blocks

scale best to a GPU, while inherently sequential parts will

achieve a higher performance on a CPU. The CDPM algorithm

is roughly composed by the following steps:

1) Load input image

2) Load object model

3) Create HOG feature pyramid

4) Perform PCA root convolution

5) Perform (PCA+full) parts convolution

6) Collect scores

7) Draw bounding boxes

Note that the first two steps are part of the initialization and

only have to be executed once, at the start-up of the program.

Figure 2 reports the time cost analysis of these algorithm

steps. The reported data have been obtained by profiling a

single-thread implementation on a single ARM Cortex-A15,

Fig. 2: Single threaded program breakdown, measured on the

NVIDIA Tegra K1 using the three-viewpoint face model and

a 720x576 pixel image (processed in 49 scales), taken from

the Motinas video [12]. Note that the loading of the input

video and object model are not included, since they are only

executed once at the start of the program.

present on the NVIDIA Tegra K1. From this analysis we

can see that the cascaded part filter convolution is the most

computationally-intensive, followed by the creation of the

HOG feature pyramid, and finding of the root location.

The first step in the algorithm is the construction of the

HOG feature pyramid, which is used for finding the root-

and part locations. The computation of intensity gradients

is a pixel-wise process; each gradient is determined from

its direct neighboring pixels. While this may seem like an

ideal candidate for offloading to the GPU, writing the results

back to memory will likely have a significant impact on the

efficiency, caused by the accumulation of 1-D histograms

and the contrast-normalization of all gradient cells. However,

the HOG feature pyramid creation will be accelerated for

execution on the CPU by making use of look-up tables (LUT)

in stead of repeatedly computing gradient directions, as has

been proposed by [5].

Before the cascade of part filters is started, the algorithm

attempts to find high-scoring root locations using a simplified

PCA-reduced root filter. All possible object locations in the

PCA-projected feature pyramid are evaluated by the use of

a sliding window. Subwindows resulting in low-scoring root

filter responses will be rejected, and will not be passed through

the part filter cascade. Since all subwindows of the PCA-

projected feature pyramid are evaluated independently of other

subwindows, the placement of the PCA-reduced rootfilters is

a good candidate for GPU-offloading.

As described in the previous section, the convolution of

parts is done in a cascaded fashion. This enables the algo-

rithm to reject low-scoring windows in an early stage, using

simplified, low-cost models. Figure 3 depicts the computation

time in each stage, measured using a single frame of the

Motinas [12] video. The analysis shows that roughly 75%

of the total computation time of the cascade is spent in the

first two stages, using the simpler PCA-reduced models. This
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Fig. 3: Amount of work done in each stage of the cascade,

measured using the three-viewpoint face model on the first

frame of the Motinas video (2 detections). This model consists

of a total of three root filters, accompanied by eight part

filters per root filter. Note that the convolution using the PCA-

reduced root filter is not depicted.

computation time is caused by the high number of subwindows

that need evaluation, and decreases after each stage. The (high-

scoring) subwindows that pass all the PCA stages are then

evaluated using the full resolution filters, although very few

subwindows reach this part of the cascade. This suggests that

only the first two or three stages may benefit from the GPU

architecture, assuming most subwindows are rejected in this

part of the cascade.

The number of subwindows to be evaluated has a high

impact on the computational cost of the algorithm. Paralleliz-

ing the computation for different subwindows on a GPU is a

suitable strategy for achieving a speed-up with respect to the

native CPU implementation. The number of subwindows to be

evaluated directly depends on the image resolution.

To illustrate the impact of the image resolution on the total

running time, the algorithm has been profiled when processing

identical images of different resolutions. Figure 4 depict the

running times for each resolution, averaged over a total of four

input images. Analysis of these measurements indicate that the

HOG feature pyramid creation and the root filter processing

scale linearly with the image resolution.

V. GPU IMPLEMENTATION

This section will give a small introduction on the CUDA

programming model and the NVIDIA GPU architecture. We

will also describe our strategy of offloading the feature pyra-

mid PCA projection and the PCA root filter convolution to the

GPU.
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Fig. 4: Impact of the image resolution on the total processing

time. Measurements have been taken on both an ARM Cortex-

A15 and an Intel Core i7, averaging the computation times of

four different pictures. The left bar indicates the computation

time on the ARM A15, where the right bar indicates the

computation time for the Core i7.

A. NVIDIA CUDA

The Compute Unified Device Architecture (CUDA) is a

C/C++ API maintained by NVIDIA and allows developers to

utilize GPUs for general purpose applications. The architecture

of a GPU is fundamentally different from that of a CPU; a

CPU relies on a sophisticated memory hierarchy to achieve

high performance in sequential computing, whereas the GPU

relies on massive multithreading to achieve high performance

in parallel computing. Given that GPUs may outperform

multicore CPUs by one order of magnitude in raw computing

power [16], it is worth exploring the potential of this platform.

Every CUDA-capable device is based upon the Single

Instruction, Multiple Threads architecture (SIMT). The CUDA

programming model presents its structure in the form of

threads, blocks and grids. Threads are scheduled in three-

dimensional blocks, where these blocks are scheduled in three-

dimensional grids. A warp defines a group of 32 threads

parallel threads, where each thread in the warp start at the

same program address.

The GPU consists of one or multiple Streaming Multipro-

cessors (SM), depending on the used hardware. Each SM

contains blocks of multiple CUDA cores onto which multiple

threads can be executed in parallel.

Each block of CUDA cores contains fast shared memory,

which is accessible by all CUDA cores in that block. Each

CUDA core has its own set of registers, and can, in the case

of register spilling, allocate a block of ”local” memory (which

is mapped in the global memory). All CUDA cores have access

to the global memory, constant memory and texture memory.

The global memory is the main memory pool for the GPU

(typically DRAM), but suffers from a high access latency. The



Fig. 5: CUDA memory architecture. The host (CPU) can only

write to the global-, constant- and texture-memory. The host

first has to copy the data required by the GPU to one of these

memory spaces before launching the kernel, and, if necessary,

copy the results back from global memory to the RAM.

constant memory is a cached, read-only memory space, which

can speed up execution with respect to using global memory if

all threads in a warp access the same element. Texture memory

is also a cached, read-only memory space, but optimized for

exploiting spatial locality in certain memory access patterns.

An overview of the CUDA memory architecture is depicted

in figure 5.

Our implementation uses the CUDA framework for offload-

ing several parts of the algorithm to the Kepler-based GPU of

the NVIDIA Tegra K1. Additional information regarding the

CUDA framework can be found in [15].

B. Platform

The CDPM code has been implemented and optimized for

the NVIDIA Tegra K1. This platform combines a 32-bit 2.3

GHz quad-core ARM Cortex-A15 (plus one underclocked

A15) CPU with a GPU consisting of 192 NVIDIA CUDA

cores. Typical power consumption reported in the platform

specifications is between one and five Watts. We have used

the NVIDIA Jetson Tegra K1 for implementing and testing

our code, being the development platform for the Tegra K1.

This platform combines the Tegra K1 with 2 GB of DDR3L

933MHz memory with a reported bandwith of 17 GB/s, and

16 GB of flash storage.

The GPU of the Tegra K1 is based upon the NVIDIA Kepler

architecture (GK20A), and consists of a single SM of 192

NVIDIA CUDA cores, running at 852 MHz. The size of each

Memory type Size

Global 1.848 GiB

Constant 64 KiB

Shared (per block) 48 KiB

Register (per block) 32 KiB

Table I: Size of the different memory types of the GPU

(GK20A), present on the Tegra K1.

1: for all scales s in feature pyramid f do
2: for all elements e in scale s do
3: for all eigenvectors w do

4: frw,e =
32∑
o=0

fo,se ∗ wo

5: end for
6: end for
7: end for

Fig. 6: The program structure of the PCA projection of the

feature pyramid. The PCA-reduced feature pyramid fr enables

the early rejection of subwindows by using PCA-reduced

filters.

memory type is summarized in table I.

Most CUDA-enabled GPUs communicate with the host

(CPU) by the PCIe bus. Before a kernel is started, the required

data needs to be copied from host memory to the GPU

memory, which can have a significant impact in performance.

The memory in the Tegra K1 is physically shared between

CPU and the GPU, removing the need for explicit memory

copies.

C. Offloading Strategy

This section describes the GPU-offloading strategy applied

to several parts of the algorithm. The two most computa-

tionally intensive parts containing sufficient parallelism are

offloaded to the GPU: the feature pyramid PCA projection

(1) and the root filter convolution (2).

1) PCA Projection: The goal of the PCA projection is

to reduce the dimensionality of the original feature pyramid

f , obtaining the simplified feature pyramid fr. This reduced

feature pyramid is used for convolution with the simplified

(PCA-reduced) root- and part-filter models. The advantage

of using this PCA-reduced pyramid is that it enables the

early rejection of subwindows, requiring a minimal amount of

processing time. Only high-scoring windows will be evaluated

using the full model, since these windows have a higher

probability of containing an object of interest.

The PCA reduced feature pyramid is computed by multiply-

ing each orientation o with the PCA eigenvectors w, defined by

the object model. This operation is performed for all elements

e in the feature pyramid f , and reduces f from having 32

orientations to having only 6 orientations in fr.

Figure 6 lists the single-thread version of this PCA projec-

tion, multiplying the original feature pyramid with the PCA

weights matrix in a sequential manner. In the final GPU-



Fig. 7: PCA root filter convolution, illustrated using a 3x3 pixel

root filter computing a single subwindow score. All positions

in the PCA-reduced feature pyramid fr are evaluated using a

sliding window, resulting in a matrix of subwindow scores.

mapped version, each allocated thread computes a single

element in the PCA-reduced feature pyramid, divided into

threadblocks containing 128 threads each, maximizing GPU

occupancy.

2) PCA root filter convolution: The last step before starting

the detection cascade is the convolution of the PCA-reduced

root filters with the simplified feature pyramid fr, resulting

in regions-of-interest, fit for further processing.

The root filter response is evaluated for each scale s in fr
seperately. By scanning s using a sliding window, all possible

locations in s are evaluated (no form of early rejection is

applied). This evaluation is done by computing the convolution

between the PCA-reduced root filter(s) and the corresponding

subwindow, as depicted in figure 7.

Since there are no dependencies between subwindows, all

subwindows can be evaluated in parallel. In the final GPU

implementation, each thread computes a single root filter

response, divided in threadblocks of 128 threads, resulting in

maximum GPU occupancy. Each scale of the feature pyramid

is stored sequentially in the global memory (DRAM), where

each scale is processed by launching a corresponding CUDA

kernel. Since the data used between kernels is independent,

synchronization overhead can be kept at a minimum by

executing kernels in their own stream.

VI. EXPERIMENTAL VALIDATION

In this section we provide an experimental validation of the

functional correctness of the implemented algorithm, and we

show the achieved speed-up of our GPU-optimized implemen-

tation with respect to a single-threaded CPU implementation.

(a) (b) (c)

Fig. 8: Final three-viewpoint face model, trained on a subset

of the AFLW database [4]. (a) and (b) depict the root- and

part filters, respectively. (c) illustrates the deformation costs

for each part, defining the costs of displacement relative to its

ideal location.

Measurements have been taken using both the single- and

three-viewpoint face models.

In order to validate the functionality of the implemented

algorithm, we trained our own face model and applied it on

three video sequences containing multiple faces. The selected

video sequences present several challenges, such as occlusions,

illumination changes, scale and pose variations, which have

been evaluated using a precision/recall curve.

A. Training

The face model has been trained using the publicly available

Matlab code obtained from [13]. In this section we provide a

short description of the training algorithm. More details can

be found in [1].

Training the model is done by training a Latent Support

Vector Machine (LSVM), using a dataset of positive examples,

preferably in varying lighting conditions, poses and back-

grounds. All objects of interest from the positive training

subset need to be manually annotated by means of a bounding

box. Although manually annotated part locations may result

in better training, it is not guaranteed that these locations are

optimally placed. Therefore, the training algorithm treats part

locations as latent (hidden) variables, attempting to determine

the ideal placement of parts during training. Although this in-

creases training time, it saves the effort of manually annotating

the part locations.

Single components can only handle a limited amount of

intraclass variation (e.g. displacement of parts, color variance).

In order to be able to cope with more extreme intraclass

variation (e.g. different object viewpoints), a mixture model

with m components is used. The training algorithm described

in [1] splits the dataset into m components based on their

aspect ratio, as a simple indication of changing viewpoints.
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Multi-face video [12], the ChokePoint video [17] and our own

recorded Entrance video, by varying the score threshold. Best

viewed in color.

Since the aspect ratio is not a good indicator of pose-variation

of a face model, the training algorithm is adapted to determine

these components from a manually sorted dataset, split into

three viewpoints.

The final three-viewpoint model was trained using a subset

of the AFLW face database [4], using 2,000 images for each

viewpoint. The first 4,000 images of the PASCAL 2007 image

dataset [14] have been used as negative examples. Figure 8

depicts the final model, consisting of three root filters and eight

part filters per root filter. The single-viewpoint model has been

trained using 16,000 images of the AFLW face database.

B. Precision/Recall

In order to test the performance of the DPM face detector

using our own trained model, we report a precision/recall
curve, obtained by running the algorithm on three different

video sequences containing multiple faces. Recall is defined

as the number of true positives (correct detections) over the

number of ground truth objects. Precision is defined as the

number of true positives over the number of objects returned

by the detector.

The performance is evaluated with the bounding-box inter-

section over union overlap criterion (eq. 2):

ao =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
(2)

A detection is considered correct if the area of overlap (ao)

between the annotated bounding box (Bgt) and the detection

bounding box (Bd) is greater than or equal to 50%. The

detection is classified as a false positive if the overlap is below

50%.

Video seq. Native LUT Speed-up

HOG feature Motinas 1.05 s 0.70 s 1.5x

pyramid ChokePoint 1.15 s 0.75 s 1.5x

creation Entrance 2.35 s 1.50 s 1.56x

Table II: Speed-up of the HOG feature pyramid creation

achieved by implementing look-up tables instead of native

computation of gradient orientations. The timings are averages

over all frames of the corresponding video. Note that the HOG

feature computation time is independent from the employed

face model.

Both the single- and three-viewpoint face models have

been tested on the Motinas [12], ChokePoint [17] and our

own recorded Entrance video sequences. The Motinas video

contains four persons in different views, orientations and

distances from the camera, but lacks a variation in illumination

conditions. The ChokePoint video has more focus on vary-

ing distance and lighting conditions, containing 24 different

persons, although never in a single frame. Our own recorded

Entrance video contains seven persons and is characterized by

varying distance, viewpoint and lighting conditions.

Figure 9 depicts the precision/recall curves obtained by

running our face models on the three videos. In all videos,

most false negatives (i.e., missed faces) are determined by

low resolution faces. This is because the adopted face models

have been trained using higher resolution images, where the

facial features where more easily visible. Figures 10, 11 and 12

depict the output of the detector for the ChokePoint, Motinas

and Entrance video, respectively. Note that the ChokePoint

video contains many faces on a relatively large distance from

the camera.

Since side views are present in both videos, using the three-

component model results in a higher recall with respect to

the single-component model. The single-component model

performs slightly better on frontal views compared to the

three-viewpoint model. This is caused by a larger dataset on

which the single-viewpoint model has been trained.

C. Performance

The performance of the final, optimized algorithm will

be evaluated for each algorithmic component, as described

by section IV. We will evaluate the main single-core CPU

optimization, as well as the speed-up gained by offloading the

PCA projection and root filter convolution to the GPU.

1) Single CPU: The main optimization regarding the

single-core CPU implementation is the usage of look-up

tables in the HOG feature pyramid creation, as described by

[5]. Since the number of possible outcomes of the gradient

orientations is restricted, using a look-up table can avoid costly

recomputations. An average speed-up of 1.5x was achieved by

using a fairly simple array indexing method, as can be seen

by the measurements summarized in table II.



Video seq. CPU GPU Speed-up

PCA Motinas 0.37 s 0.12 s 3.1x

projection ChokePoint 0.4 s 0.13 s 3.1x

Entrance 0.7 s 0.24 s 2.9x

Root Motinas 0.4 s 0.14 s 2.8x

convolution ChokePoint 0.45 s 0.15 s 3.0x

Entrance 0.8 s 0.25 s 3.2x

Table III: Speed-up achieved by offloading computationally

intensive parts to the GPU. The speed-up is measured with

respect to the native CDPM implementation, using the three-

viewpoint face model.

2) Single CPU + GPU: Two components of the original

CDPM algorithm have been offloaded to the GPU: the PCA

projection and the PCA root filter convolution, using the

strategy described in section V. The speed-up gained by

offloading both parts is summarized in table III, measured on

each of the three video sequences.

The offloading of the aforementioned parts to the GPU

provide a significant speed-up compared to the native CPU

implementation. However, profiling the GPU kernels using the

NVIDIA Visual Profiler [22] suggests that the performance of

the kernel is most likely being limited by the memory system.

In order to relieve the memory system from the high number

of data request, the eigenvectors (from the PCA projection)

and the root filters (from the root filter convolution) have

been written to the constant memory of the GPU. Since these

data elements are read-only and threads in a single warp are

highly likely of accessing the same element, the usage of

constant memory reduced the computation time for both GPU-

offloaded parts by roughly 40%. This improvement in speed

by indicates that the memory system is the bottleneck, and that

the performance of the root filter convolution may be improved

even further by effectively utilizing shared memory. Utilizing

shared memory in the PCA-projection will likely not improve

performance, since each element is accessed once.

The overall speed-up of the accelerated CDPM algorithm

has been computed using the average computation time per

frame of each video sequence. Table IV summarizes these

measurements, obtained by using the three-component face

model on the NVIDIA Tegra K1, using identical algorithm

parameters. The accelerated algorithm achieves an average

speed-up of 1.5x compared to the native CPU implementation,

without any loss in accuracy.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a method for offloading

several computational bottlenecks of the CDPM algorithm

to the GPU of the NVIDIA Tegra K1, with an application

to face detection. We have based our implementation on

the identification and analysis of the algorithmic bottlenecks.

Overall, our final implementation was able to speed up the

CDPM by a factor of 1.5x with respect to the native CPU

implementation without any loss in accuracy, measured on the

Video seq. CPU (native) GPU-optimized Speed-up

Motinas 3.2 s 2.2 s 1.45x

ChokePoint 3.5 s 2.4 s 1.46x

Entrance 5.6 s 3.7 s 1.51x

Table IV: Total speed-up of the final GPU implementa-

tion, with respect to the single-thread CPU implementation,

measured on each tested video sequence using the three-

component face model.

NVIDIA Tegra K1.

We have verified the correctness of the algorithm by

training our own three-viewpoint face model and evaluating

the accuracy through a precision/recall curve, measured on

three different videos. We showed the importance of training

different view models in order to cope with extreme intraclass

variations by comparing a single-view model with a three-view

model.

In future work, we expect to speed up the algorithm even

further by offloading the HOG feature pyramid creation to

the GPU, possibly following the implementation proposed

by [11]. We also intend to investigate the possibility of

accelerating the part filter cascade by means of a multicore

CPU architecture, since the number of cascade stages may

vary between subwindows.

With respect to the accuracy of the detector, we would like

to investigate the impact of using lower resolution filters for

scanning the feature pyramid. We expect this to lead to a

higher recall, possibly at the cost of a lower precision.
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(a)

(b)

(c)

Fig. 10: Detector output for three frames of our own recorded

Entrance video. The missed detection of figure 10c is probably

caused by an insufficient amount of pixels describing the

persons face.



(a)

(b)

(c)

Fig. 11: Detector output for three frames of the ChokePoint

video [17]. Note that the persons in the background are not

detected, due to the insufficient amount of pixels per face.

(a)

(b)

(c)

Fig. 12: Detector output for three frames of the Motinas video

[12]. The missed detection of figure 12c is probably caused by

an insufficient amount of pixels describing the persons face.


