
 Eindhoven University of Technology

MASTER

Point-feature labelling in the 1-Slider model
a fixed-parameter tractable algorithm

de Visser, L.L.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c3a2399d-220b-448a-92fd-44568b846ef2

Graduation Project: Computer Science & Engineering master

Point-Feature Labelling in the 1-Slider Model: A

Fixed-Parameter Tractable Algorithm

Author:
Luuk L. de Visser

Members of Graduation Comittee:
Dr. Herman J. Haverkort

Supervisor:
Dr. Bart M.P. Jansen

Dr. Kevin A.B. Verbeek

August 31, 2015

Abstract

The placing of textual labels is a central task to many visualisation applications. The basic
variant of this problem, known as the point-feature labelling problem, has been studied exten-
sively in literature. However, as the problem is NP-hard for most variations, the vast majority
of known algorithms give an approximate solution. As such, in this paper we present a fixed-
parameter tractable algorithm for the point-feature labelling problem in the 1-slider model,
returning a provably optimal solution. As parameter k, we use the maximum feedback edge
number among all connected components of the graph underlying the problem. Our algorithm
has an asymptotic running time of O(2k ·n2), where n is the size of the point set used as input.
We implemented our algorithm, and present experimental results on real-world examples of
data sets. We also tested two techniques that might cause a speed-up in practice, and analyse
their effects.

Contents

1 Introduction 2
1.1 Our Contribution . 2
1.2 Related Work . 3

1.2.1 Point-Feature Labelling . 3
1.2.2 Fixed-Parameter Tractability . 3

2 Preliminaries 5

3 NP-Completeness of the Standard Point-Feature Labelling Problem in the
1-Slider Model 7

4 The Label Placement Problem and its Graph Representation 12
4.1 Greedy Label Placement . 12
4.2 Graph Representation . 13

5 A Fixed-Parameter Tractable Algorithm for Label Placement in the 1-Slider
Model 16
5.1 The Core Algorithm . 16
5.2 Additional Options . 24

6 Experimental Setup 26
6.1 Implementation . 26
6.2 Datasets and Experiments . 26

7 Results and Discussion 29
7.1 Experiment Results . 29
7.2 Results Discussion . 32

8 Conclusion 34

1

1 Introduction

The placing of textual labels with their corresponding graphical objects is a central task to many
visualisation applications. These include, but are not limited to, engineering drawings, charts
such as scatterplots, and, perhaps most significantly, representations of geographical data. The
last of these goes back far in the history of human kind, in map making, and has since then been
extensively described in the literature. What constitutes the labelling problem is our desire to
place labels in such a way, that it is easy for a user of the graphic to determine which label
corresponds to which object. This has always been done, and still is, by craftsmen who through
years of experience developed an instinctual set of criteria on how to best place the labels.
However, as this process is very time intensive, we could greatly benefit from finding automated
processes to complete this task. Research into automated label placement was kickstarted in the
second half of the last century by papers from Imhof and Yoeli. The former presented a well-
defined set of criteria for what constitutes a good labelling, whereas before rules or guidelines
were never written down, barring some rare exceptions [15]. The latter wrote one of the first
papers on automated label placement, and the basic principles of this problem [25].

1.1 Our Contribution

While the general labelling problem labels any graphical object with another graphical object,
we will focus on the point-feature label problem (PFL problem). In the PFL problem, the
objects we aim to label are points, often represented by small disks, squares or symbols. The
labels (or features) frequently are thought of as rectangles, however this is not exclusively the
case. The basic variant of the PFL problem, where the labels are textual and represented by the
axis-aligned bounding box of the text, is often divided into two types of labelling models: the
fixed-position models and the slider models. In the fixed-position models, we allow for a finite
set of fixed positions for the label to be placed around its point. On the contrary, in the slider
models the number of possible placements is infinite. This generally means that the label can be
placed anywhere, as long as it touches its point with its border according to some non-discrete
criteria. Some of the most common optimisation criteria include finding the largest subset of
labels we can place such that they are pairwise non-overlapping, or what the largest scaling
factor is such that all labels are pairwise non-overlapping. Unfortunately, these optimisation
problems have been shown to be NP-hard for most settings [5].

As we will see in the Section 1.2, previous work on the PFL problem only aims to find
an approximate solution to the optimisation problems, because of the NP-hardness. Our aim
therefore is to construct an algorithm that finds an optimal solution to the PFL problem in the
1-slider model. In the 1-slider model, every label placed must touch its point along its bottom
edge. The aim is then to find the smallest subset of labels to be omitted from the drawing, such
that all other labels can be placed without pairwise overlaps. In order to do so, we will have
to make use of the fixed-parameter tractability framework, as we will show that this problem
is NP-complete.

Fixed-parameter tractability, or FPT, is a somewhat recent development in complexity the-
ory that allows us to more finely categorise NP-hard problems. For a parameterised problem,
every problem instance x is associated with an integer k, called the parameter, that in some
way measures the complexity of the instance. Frequently used parameter choices are the size
of the solution, or a complexity measure of the graph associated with the problem instance.
A parameterised decision problem is then fixed-parameter tractable if there is an algorithm
that, given an input (x, k) of encoding size n, gives the yes/no answer to the problem in time
f(k) · nO(1). Here, f(k) is any function depending exclusively on k. Similarly, a parameterised
optimisation problem is fixed-parameter tractable if there is an algorithm that, given an input

2

instance (x, k) of size n, computes an optimal solution in time f(k) · nO(1). If k is then ’small’
relative to n, the algorithm’s run time is a significant improvement over the O(nk+O(1)) runtime
of a naive algorithm.

We will present a fixed-parameter tractable algorithm that takes a measure of the tree-
likeness of the graph underlying the PFL problem as parameter. We studied a concept for this
algorithm and refined it, after which we formalised the algorithm and proved its correctness.
Furthermore, we implemented our algorithm, and used this to experiment on real-world datasets.
Our aim for these experiments was to discover what the parameter values of real-world datasets
are like, what the relation between the parameter and the runtime of the algorithm is in practice,
and how the parameter behaves during the execution of the algorithm. Lastly, we tested the
effect of two techniques that could potentially speed up the algorithm.

1.2 Related Work

1.2.1 Point-Feature Labelling

As we have mentioned earlier, for the basic PFL problem we generally distinguish between the
fixed-position models and the slider models. In the fixed-position model, Agarwal et al. pre-
sented a 1/2-approximation algorithm for rectangular labels of unit height, and a O(1/ log n)-
approximation for varying label heights, for finding the maximum subset of labels to place
pairwise non-overlapping. That is to say, their algorithms successfully placed at least the
approximation-factor times the number of labels that would be placed in the optimal solution.
Both approximations can be found in O(n log n) time [1]. In a more practical vein, Alvim
and Taillard used the POPMUSIC framework, based on an adapted form of tabu search (first
presented by Glover [11]), as a heuristic for finding the maximum subset, making use of the
combinatorial nature of the problem [2]. Furthermore, a model using eight fixed positions was
used by Martnez-Ovando et al. to label maps of metro systems [20].

Kreveld et al. presented approximation algorithms for finding the maximum subset of labels
for the 1-, 2- and 4-slider models [23]. In these models, the axis-parallel rectangular label must
touch its point with its bottom edge, top or bottom edge, or any of its edges, respectively.
For all three models they give a 1/2-approximation in O(n log n) time, as well as a polyno-
mial time approximation scheme. Again, their algorithms thus successfully placed at least the
approximation-factor times the number of labels placed in the optimal solution. Van Kreveld
and Strijk also present practical extensions in a follow-up paper [21].

Doddi et al. published a paper on ’Map Labeling and its Generalisations’, presenting amongst
other things a polynomial time approximation algorithm for a rectangular labelling model where
the labels can have any orientation, as long as they touch their point with their boundary [8].
A concept highly relevant today in digital mapping, Been et al. explore the problem of dynamic
map labelling, where the map can be zoomed and translated in real-time, and speed is of higher
importance than in the static case [3]. They present a formal model of dynamic map labelling,
and dynamic labels. Lastly, Do Nascimento and Eades claim that none of the algorithms in
literature fulfill all criteria for good labellings, and as such present an interactive framework
where automation and artisan meet. Their ’User Hints’ framework supports the cartographer,
rather than attempting to replace them [7].

1.2.2 Fixed-Parameter Tractability

The framework of parameterised complexity was first presented by Downey and Fellows [9].
Since then, fixed-parameter tractability has been applied to various, often well-known, problems.

3

Often the parameter is the size of the solution, such as in vertex cover, one of the most well-
explored fixed-parameter tractable problems. Currently the fastest FPT-algorithm for this
problem requires O(1.2738k + kn) time, as presented by Chen et al. [4]. Finding an undirected
feedback vertex set of size at most k has also been shown to be FPT, with k being the parameter.
The most recent improvement was given by Kociumaka and Pilipczuk, who gave a O((2 + φ)k ·
nO(1)) time algorithm, where φ is the golden ratio [16]. Almost 2-SAT, where the aim is to find
a subset of at most k clauses such that a 2-CNF is satisfiable when we remove this subset, was
recently shown to allow for a O(2.3146k · nO(1)) time algorithm, see [17] by Lokshtanov et al.

However, it is not always the case that the parameter is the size of the solution, as is also
the case for our algorithm. For example, deciding whether given a graph G and a graph H, H
is a topological subgraph of G, permits an FPT algorithm with the number of vertices of H as
parameter, see Grohe et al. [13]. A frequently used parameter is the treewidth of a graph, as
defined by Robertson and Seymour [19], even though finding the treewidth of a graph is itself
NP-hard. For instance, Gottlob and Tien Lee presented FPT algorithms with treewidth of the
input structure as the only parameter for several versions of the multicut problem [12], making
use of Courcelle’s theorem. This theorem states that, if a graph property of interest can be
expressed in monadic second-order logic, then it can be decided in linear FPT time with the
treewidth of the graph as parameter, whether or not that property holds for a graph [6].

4

2 Preliminaries

Before we go more in-depth on our contribution in this paper, we should first present some
theoretical concepts and the notation we will use throughout this paper. First, it may be useful
to formally state the problem we are aiming to tackle.

Standard Point-Feature Labelling Problem 1-Slider

Input: A set I = (p1, l1), . . . , (pn, ln) of n point-label pairs, and an integer k.
Each point is given by an x- and y-coordinate, and each label given as
an open axis-aligned rectangle.

Question: Is there a set S ⊆ I of size k such that I − S has a non-overlapping
drawing in the 1-slider model?

A drawing of I − S is non-overlapping if the drawn labels are pairwise non-overlapping.
Throughout the remainder of this paper, we speak of this problem when we mention the PFL
problem. Furthermore, we will denote the x-coordinate and y-coordinate of a point p as p.x
and p.y, respectively. Additionally, width(l) will denote the width of label l, and height(l) the
height of label l.

Next, let us repeat what composes a fixed-parameter tractable problem:

Definition 2.1. For a parameterised problem, every problem instance x is associated with an
integer k, called the parameter, that in some way measures the complexity of the instance. A pa-
rameterised decision problem is then fixed-parameter tractable if there is an algorithm that, given
an input (x, k) of encoding size n, gives the yes/no answer to the problem in time f(k) · nO(1).
Here, f(k) is any function depending exclusively on k. Similarly, a parameterised optimisation
problem is fixed-parameter tractable if there is an algorithm that, given an input instance (x, k)
of size n, computes an optimal solution in time f(k) · nO(1)

As we will later abstract from the geometric PFL problem, and focus on the underlying
graph problem, we will make use of several graph-theoretical concepts and definitions:

• When we speak of a DAG, we mean a Directed Acyclic Graph. A DAG D consists of a
set of vertices V (D), and a set of directed edges, or arcs, A(D).

• It is generally known that a DAG always has at least one source (a vertex without incoming
arcs), and at least one sink (a vertex without outgoing arcs). We will make use of this
property in our branch step.

• When we speak of the feedback edge number of a DAG in this paper, we mean the feedback
edge number of the undirected graph underlying the DAG. The same is true for connected
components of a DAG, and undirected cycles of a DAG.

• The feedback edge number of an undirected graph G, is the size of a minimum feedback
edge set. A minimum feedback edge set is a minimum size set X of edges of G such
that G−X is acyclic. The feedback edge number can be given by the following formula:
|E(G)| − (|V (G)| − |C(G)|), where E(G) is the edge set of G, V (G) is the vertex set of G,
and C(G) is the set of maximally connected components of G.

• If we talk about a leaf l in a DAG D, we mean that l ∈ V (D) and that its in-degree plus
out-degree equals one. The parent p of l is then the only vertex it has an arc to or from.

5

Now that we have declared the definitions, concepts and notations we will make use of, we
will start by proving in the next section that the PFL problem is NP-complete.

6

3 NP-Completeness of the Standard Point-Feature Labelling
Problem in the 1-Slider Model

Before we present our algorithm, we think it is useful to formally prove why it is necessary to
use a fixed-parameter tractable approach to the point label placement problem in the 1-slider
model. As such, in this section we aim to validate the following theorem:

Theorem 3.1. Determining whether there is a set of k labels such that, when we omit these
labels, all other labels can be drawn pairwise non-overlapping in the 1-slider model, is NP-
complete.

In order to show that a problem is NP-complete, we have to show that it is both in NP, and
NP-hard. It is trivial to show that the problem is in NP: Given a solution, we can place all labels
not in the solution in a greedy manner in O(n2) time (see subsection 4.1). We can then pairwise
check for all these labels that their intersections are empty, using a brute force approach, again
in O(n2) time. What thus remains to be shown is that the point label placement problem in
the 1-slider model is NP-hard. In order to prove this, we would like to do a reduction from the
planar vertex cover problem. This problem is known to be NP-complete, even for graphs of
maximum degree 3 (see Garey and Johnson [10]).

As such, consider a planar graph with maximum degree 3 embedded in the grid. That is to
say, each vertex lies on a grid point, and each edge is rectilinear and follows the grid lines. Such
an embedding can be obtained in polynomial time, as described by Valiant [22]. We aim to
translate such an embedding to an instance of the point label placement problem in the 1-slider
model, where a specific ‘chain’ of labels represents an edge, and some gadget of labels represents
a vertex. The label chains representing an edge have to push pressure along the edge, to mimic
the requirement of the planar vertex cover problem that every edge should have at least one
of its vertices in the solution. However, we cannot push pressure vertically, but we can push
pressure in all diagonal directions. As such, we rotate the grid embedding by 45◦. Furthermore,
to make placing the labels easier later on, we also stretch the rotated grid embedding by a factor
2 along the horizontal axis, see Figure 1.

Figure 1: Left: the grid embedding. Right: the grid embedding after rotating and stretching.

From here on, when we mention the embedding, we mean the grid embedding of the planar
graph of maximum degree 3 after rotation and stretching. In order to model the bends in the
edges of the embedding, we will have to introduce new vertices, as shown in Figure 2. Note that
we always place the new vertices on grid points. However this affects the size of the optimal
solution, leading us to the following proposition:

7

Proposition 3.1. Let {v1, v2} be an edge in a graph G. Then let G′ be graph G when we
introduce two new vertices w1, w2 and three new edges {v1, w1}, {w1, w2}, {w2, v2}, and remove
edge {v1, v2}. Then a vertex cover of size at most k exists for G if and only if a vertex cover of
size at most k + 1 exists for G′.

Proof.

⇒ Assume S is a vertex cover of size k for G. Then one of v1, v2 is in S, otherwise edge
{v1, v2} is not covered. Let us assume without loss of generality, by symmetry, that v1 ∈ S.
Then S ∪ {w2} is a vertex cover of size k + 1 for G′, as v1 ∈ S covers edge {v1, w1}, w2

covers edges {w1, w2} and {w2, v2}, and all other edges are the same as in G.

⇐ Assume S′ is a solution of size k + 1 for G′. Then one of v1, w1, one of w1, w2 and one of
w2, v2 are in S′. Let S then be as follows: if S′ contains one of v1, v2, S := S′ \ {w1, w2},
else S := (S′ \ {w1, w2}) ∪ {v1}. We claim that S is a vertex cover for G. Assume, for
contradiction, that this is not the case and that {u1, u2} is an uncovered edge in G. If
{u1, u2} 6= {v1, v2}, then this edge is also in G′, thus S′ would not be a vertex cover to
G′, resulting in a contradiction. Furthermore, if {u1, u2} = {v1, v2}, then by construction
of S this edge is covered by S in G, and we again arrive at a contradiction. Indeed S is a
vertex cover of G. One of w1, w2 must be in S′ if it contains v1 or v2, and both of w1, w2

must be in S′ if it does not contain v1 or v2, otherwise not all edges are covered by S′ in
G′. Per construction of S, we thus know that |S| = k.

v1

v2

v1

v2

w1

w2

Figure 2: Adding two new points eliminates the mid-edge bend.

It has been shown that planar graphs of maximum degree 3 have grid embeddings of max-
imum area O(|V |2) [22]. Since the edges follow the grid lines, this means there is at most a
polynomial number of bends, and thus a polynomial number of new points introduced. This is
important to ensure we have a polynomial time reduction.

Now that we have finalised our embedding, we place it in a coordinate system such that
every grid point has coordinates of the form (40a, 20b). This is to ensure we can precisely specify
where we place points of the label placement problem using integer coordinates. We then want
to model the vertices of the embedding, including the ones introduced by bends in edges. To do
so, we introduce a gadget, such that we create maximum pressure in all four possible directions
if we place all labels in the gadget (see Figure 3a), but generate only slight pressure if we do
not place its middle label (see Figure 3b).

Now we want to model the edges of the embedding using labels. We do this as shown in
Figure 4, so that we can place all labels of the edge gadget if there is only 1 pressure from one
or both sides, and all but one if there is 4 pressure from both sides. On an intuitive level, the
aim here is that the edge is not covered in the planar vertex cover problem if there is 4 pressure
from both sides in the label variant. Figure 4, and its mirror image, together show all possible
edge gadget and pressure combinations.

8

4 4

44

6

4

(a) The gadget generates the full 4 pressure to
all directions when all its labels are placed.

1 1

1 1

4

3

(b) The vertex gadget generates only 1 pressure
when its middle label is not placed.

Figure 3: Two states of the vertex gadget.

As we have now presented our vertex and edge gadgets, what remains is to show where
precisely we place them. As mentioned earlier, we place our grid in a coordinate system such
that every grid point has coordinates of the form (40a, 20b), where a and b are integers. For
every vertex of the embedding with coordinates (x, y), we then place the following points for the
label problem to form the vertex gadget. All labels have width 4 and height 4, unless specified
otherwise.

• (x, y), this point has a label of width 6.

• (x− 3, y + 2), (x− 3, y − 2), (x+ 3, y + 2), (x+ 3, y − 2)

For every edge of the embedding between vertices (x, y) and (x′, y′), where we assume x < x′,
we place these points to form the edge gadget, where again all labels have width and height 4:

for every integer i satisfying 1 ≤ i ≤ 3 + 5(x
′−x
40 − 1):

• if y < y′ : (x+ 3 + 4i, y + 2 + 2i), (x′ − 3− 4i, y′ − 2− 2i), and (x+x′

2 , y+y′

2)

• if y′ > y : (x+ 3 + 4i, y − 2− 2i), (x′ − 3− 4i, y′ + 2 + 2i), and (x+x′

2 , y+y′

2)

Now that we have defined how to transform the embedding to a point label placement
problem, we want to show that we can also transform a solution of the planar vertex cover
problem on graphs with maximum degree 3 to a solution of the label placement problem in the
1-slider model:

Lemma 3.1. Let P be an instance of the planar vertex cover with maximum degree 3, after
embedding, rotation, stretching and resolving bends, as described. Furthermore, let L be the
label placement problem obtained from P by the aforementioned process. Then P has a solution
of size at most k if and only if L has a solution of size at most k.

Proof.

⇒ Assume S is a solution to P of size k. We put the middle label of the vertex gadget in
the solution S′ for L, for every vertex in S. Then, since S is a solution to the vertex
cover problem, every edge gadget of L has full pressure from at most one of its vertex
gadgets. As shown in Figure 4), this means we can place all other labels without overlap,

9

Figure 4: The edge gadget can place all labels with only 1 pressure from at least one side, and
all but one label with 4 pressure from both sides. Points in the dashed regions are part of the
vertex gadgets. Points in the dotted regions are non-central points of the edge gadget; for every
grid point between the two vertices of the edge, each of the point chains in the dotted regions
would be 5 points longer.

using the placements presented in that figure. In this figure, there is a chain of three
points (dotted regions) between the center point of the edge gadget, and each vertex
gadget. If the vertices would have more grid points in between, then as reflected in the
coordinates presented earlier, these two chains would simply be extended by five points
each per such grid point. The placement of their labels would remain similar to that of
Figure 4, however. As such, S′ is a solution of size k to L.

⇐ Assume S′ is a solution to L of size k. Since S′ is a solution to L, we know that for every
edge gadget and its two vertex gadgets, at least one of those labels is in S′. For if this
were not the case, then all the labels of the vertex gadgets must be placed, which can
only be done in one way (see Figure 3a. Assume we have an edge {v, u}, and assume
without loss of generality that v.x > u.x (after rotating there are no strictly vertical
edges). The edge gadget of that edge then contains 2 labels for every integer i satisfying
1 ≤ i ≤ 3+5((v.x−u.x)/40−1), per definition of the point coordinates. Additionally, the
edge gadget contains a single middle point, for a total of 2 · (3 + 5((v.x− u.x)/40− 1) + 1
labels of width 4. As such, we need 28+10((v.x−u.x)/40−1) horizontal space to place all
the labels of the edge gadget, since each label of the edge gadget can potentially overlap
with its ’neighbouring’ labels. Yet, there is 34 + 40((v.x − u.x)/40 − 1) horizontal space
between the corners of the vertex gadgets along the edge. In this case, those are the
points with coordinates (v.x− 3, v.y± 2) and (u.x+ 3, u.y∓ 2) for v.y > u.y, respectively
u.y > v.y. Thus if we take into account the 4 pressure from each vertex gadget (placed

10

as in Figure 3a), we are left with 26 + 40((v.x− u.x)/40− 1) space, while we would need
28 + 40((v.x− u.x)/40− 1) to place all labels. This contradicts with our assumption that
S′ is a solution to L. Thus S′ contains at least one label per edge gadget and its two
vertex gadgets. Then for each label l ∈ S′, if l is a label of the vertex gadget for vertex v,
we put v in S. Otherwise, if l is a label of an edge gadget for edge {v, u}, add an arbitrary
endpoint of that edge to S. As such, we know S contains one endpoint of every edge in
P , and is thus a vertex cover of P . Note that |S| ≤ |S′|, and we conclude P has a solution
of size at most k.

Combining the ingredients presented in this section into one algorithm, we can take a planar
graph G of maximum degree 3 and an integer k as input, and build an instance of the label
placement problem L, such that L has a solution of size at most k + s if and only if G has a
vertex cover of size at most k. Here s is the number of times we have to subdivide an edge to
eliminate a bend. As we mentioned earlier, we can obtain an embedding with area O(|V (G)|2) in
polynomial time, as shown by Valiant [22]. The area of this embedding also implies the number
of bends we have to resolve is polynomial, thus s is of polynomial size. Lastly, the instance of the
label placement problem can be constructed efficiently from the embedded, rotated, stretched
graph after resolving edge-bends. These results combined give rise to the following corollary:

Corollary 3.1. The point label placement in the 1-slider model is NP-hard.

This, combined with our earlier observation that the point label placement in the 1-slider
model is in NP, validates Theorem 3.1, and we conclude that this problem is NP-complete.

11

4 The Label Placement Problem and its Graph Representation

As we have mentioned previously, in the label placement problem we want to find a minimum
subset of labels such that we can place all other labels without overlap. The algorithm we will
present later will find such a subset using a graph representation of the original problem. Yet
once we have such a subset, how precisely do we place the rest of the labels? To this end, we
first present a greedy label placing algorithm. We will then, using the approach of this greedy
algorithm, determine when a set of labels can be drawn without overlap. Lastly, we will use
this information to form a graph representation of the point and label set, which shall later be
used as the input to our algorithm.

4.1 Greedy Label Placement

Recall that we view the labels of points as open rectangles with a fixed height and some given
width, and that two labels overlap if their intersection is non-empty. A non-overlapping drawing
is then a drawing where every label of the input is drawn without any two different labels
overlapping, while adhering to the 1-slider model.

Given an input (a set of points, the coordinates of those points, and their corresponding
label), the greedy algorithm creates a drawing as follows: Iterating over the points from smallest
to greatest x-coordinate, draw the label as far left as possible in the 1-slider model, preventing
new overlaps if possible. If two points have the same x-coordinate, the point with the greater
y-coordinate is iterated over first.

More specifically, let ln be the label we want to draw, and pn its corresponding point. If
we can draw ln with its left edge at x = pn.x − width(ln) without overlapping any previously
drawn labels, then we do so. Otherwise let lr be the right-most label we would overlap with,
and we say that lr influences the placement of ln. Let xr be the x-coordinate of the right
edge of lr, then we draw ln with its left edge at min(xr, pn.x). We will refer to drawing the la-
bel of a point in this manner as the greedy choice, and the entire drawing as the greedy drawing.

Now that we have described our greedy label drawing method, evidently we want to prove
the validity of this method. To this end, we present and prove the following lemma:

Lemma 4.1. Let I be an input to be drawn. Then the greedy drawing of I contains no over-
lapping labels if and only if there exists a drawing of I containing no overlapping labels.

Proof. Clearly if the greedy drawing of I contains no overlapping labels, there exists a non-
overlapping drawing of I. We prove the other direction by contradiction: Consider any input
I∗ that allows at least one drawing containing no overlapping labels, but for which the greedy
drawing has at least one overlap. Then consider a non-overlapping drawing of I∗ that draws
as many labels as possible according to the greedy choice. Let ld then be the label with the
smallest x-coordinate that was not drawn by greedy choice. Then ld is not drawn as far to
the left as possible in the 1-slider model, without overlapping other labels, for that would have
been the greedy choice. Note however that instead drawing it using the greedy choice does not
give rise to new overlaps. Thus we can safely draw it using the greedy choice, and we obtain a
drawing that draws strictly more labels according to the greedy choice. This is a contradiction
to our assumption that we started with a non-overlapping drawing that draws as many labels
as possible according to the greedy choice.

Thus, our greedy label drawing method has been verified, and will always succesfully find
a non-overlapping drawing if one exists. In order to formulate a graph representation of a

12

point and label input however, we would like to know precisely when the input has a non-
overlapping drawing. As such, consider a sequence P of points 〈p1, . . . , pe〉, with accompanying
labels l1, . . . , le, such that for each pair pi, pi+1 we have:

• (pi.x < pi+1.x) ∨ (pi.x = pi+1.x ∧ pi.y < pi+1.y).

• if we draw the labels of only the points of P in order using the greedy algorithm, then li
influences the placement of li+1.

Then we claim the following:

Lemma 4.2. P has a non-overlapping greedy drawing if and only if
e−1∑
i=2

width(li) ≤ pe.x−p1.x.

Proof.

⇒ Assume P has a non-overlapping greedy drawing. In the worst case, the non-overlapping
drawing of P places l1 with its right edge at p1.x, and le with its left edge at pe.x, leaving
the horizontal space in between to place all other labels. Since every label li influences
the placement of label li+1, li can never share a non-empty interval on the x-axis with
li+1, thus placing all labels l2, . . . , le−1 takes

∑e−1
i=2 width(li) horizontal space. Therefore

if we assume
∑e−1

i=2 width(li) ≤ pe.x−p1.x does not hold, the labels we place require more
horizontal space than is available. This results in an overlap, giving us a contradiction.

⇐ Assume
∑e−1

i=2 width(li) ≤ pe.x − p1.x holds for a sequence P . We draw l1 with its
right edge at p1.x and its bottom edge at p1.y. Every subsequent label li we draw with
its left edge touching the right edge of label li−1, and its bottom edge at pi.y. This
can be done without overlap, as per our assumption that

∑e−1
i=2 width(li) ≤ pe.x − p1.x

holds. Then for some label li (with i > 1) we know that its left edge lies at p1.x +∑i−1
j=2width(li), and that its right edge lies at p1.x +

∑i
j=2width(li). We also know

that for the label of point pi−1 to influence the label of point pi, it must be the case
that pi.x < width(li) + x-coordinate of the right edge of li−1. This, combined with the
fact that pi−1.x ≤ pi.x, gives us that for every point pi (with i > 1) we have that
p1.x +

∑i−1
j=2width(lj) ≤ pi.x < p1.x +

∑i
j=2width(lj). As such, we know that in our

drawing, every label has its corresponding point along its bottom edge. Furthermore, our
drawing is in fact the greedy drawing. We can conclude that the greedy drawing of P is
non-overlapping.

4.2 Graph Representation

Since we have now established that Lemma 4.2 holds, we can use this information to formulate
a graph representation of the input. Let our input be a set of points and their accompanying
labels (p, l), that is I = {(p1, l1), . . . , (pn, ln)}. Recall that a point p has an x-coordinate p.x,
and a y-coordinate p.y. Then we define our graph representation D as follows:

• For every (pi, li) ∈ I, add vi to V (D), the set of vertices of D.

• Let (pi, li), (pj , lj) ∈ I, such that pi.x < pj .x ∨ (pi.x = pj .x ∧ pi.y < pj .y). If placing
li with its left edge at pi.x and placing lj with its right edge at pj would cause them to
overlap, add arc (vi, vj) to A(D), the arc set of D.

13

• We create a weight function WD. In this weight function we store two things: for each
vertex vi ∈ V (D), we store wD(vi) := width of label li; for each arc (vi, vj) ∈ A(D), we
store arcwD(vi, vj) := pj .x− pi.x.

• Lastly, we have a set of potentials ΠD. For every vertex vi ∈ V (D), ΠD stores the
start-potential π−D(vi) and end-potential π+D(vi). Initially, all potentials are set to be 0.

The idea is to move away from the geometry of the original problem, while capturing the
way the greedy approach would place labels. As such, a path in D represents a sequence of
points whose labels could potentially influence eachother, and in WD we store the information
we need as shown in Lemma 4.2. Note that because of how we defined the arcs, D is in fact
a directed acyclic graph, or DAG, which will be of significance later. The potentials which we
store in Π are of no significance in the initial instance of (D,WD,ΠD), however when we present
our algorithm we will see how and when their value will change.

We have now defined how we represent our input as a DAG, but we have not yet discussed
what a solution to the label placement problem looks like in the graph representation. The
following inequality, applicable to any path 〈v1, . . . , ve〉 in (D,WD,ΠD), will be at the core of
many things to come:

(
e∑

i=1

wD(vi)

)
+ π−D(v1) + π+D(ve) ≤

(
e−1∑
i=1

arcwD(vi, vi+1)

)
+ wD(v1) + wD(ve) (I)

Note that in the initial DAG, where all potentials are still 0, this inequality says the sum of
vertex weights of internal vertices of a path 〈v1, . . . , ve〉 in (D,WD,ΠD) must be smaller than or
equal to the horizontal distance covered by the path. This is of course very similar to what we
showed in Lemma 4.2, where the sequences discussed in the lemma form a subset of all paths in
(D,WD,ΠD). We define a critical path to be a path for which inequality I does not hold, and
say S is a solution if (D − S,WD,ΠD) contains no critical paths:

Graph Problem

Input: (D,WD,ΠD), respectively a DAG, its weight function, and its potentials
function. An integer k.

Question: Is there a set S ⊆ V (D) of size k such that (D − S,WD,ΠD) contains
no critical paths?

We will prove that a solution to the graph problem is indeed equivalent to a solution of the
original label placement problem:

Lemma 4.3. Let I = {(p1, l1), . . . , (pn, ln)} be an instance of the point-feature labelling problem
in the 1-slider model, and let (D,WD,ΠD) be the corresponding instance of the graph problem.
Additionally, let S ⊆ {1, . . . , n}. Then {(pi, li) | i ∈ S} is a solution to the PFL problem if and
only if {vi | i ∈ S} is a solution to the graph problem.

Proof.

⇒ Assume S ⊆ {(p1, l1), . . . , (pn, ln)} is a solution of I. Observe that the set of minimal
critical paths of the corresponding graph problem is a subset of all sequences P of the
PFL-problem, as defined in Lemma 4.2. This is the case because a path is a minimal
critical path only if, when we place the labels of only points along this path using the
greedy approach, each label influences the next label and only the last label can not be

14

placed without overlap. Since S is a solution to I, S contains at least one point from
such sequences P for which the inequality from Lemma 4.2 does not hold. As such, define
S′ := {vi|pi ∈ S}. Then (D − S′,WD,ΠD) contains no minimal critical paths. Therefore
it does not contain any critical paths, and we conclude that S′ is a solution to the graph
problem.

⇐ Assume S′ ⊆ {v1, . . . , vn} is a solution of (D,WD,ΠD). Then there are no paths in
(D−S′,WD,ΠD) for which inequality I does not hold. Define S := {pi|vi ∈ S′}. Observe
that the path equivalents of all sequences P of I−S as defined in Lemma 4.2 form a subset
of all paths of (D − S′,WD,ΠD). This is the case because the label of each point of P
influences the label of the next point of P , and we add an arc to the graph representation
if the label of one point could potentially influence the label of the next point. As such,
there are no such sequences P in I − S for which the inequality of Lemma 4.2 does not
hold. Therefore we conclude that S is a solution to the PFL problem I.

Indeed finding a solution to the graph representation is equivalent to finding a solution of
the same size to the original problem. Now that we have established this, we can disregard the
original label placement problem from here on, and instead focus on the graph representation
for our algorithm.

15

5 A Fixed-Parameter Tractable Algorithm for Label Placement
in the 1-Slider Model

5.1 The Core Algorithm

Having established that finding a set of vertices in the graph representation that hits all crit-
ical paths is sufficient to solve the labelling problem in the 1-slider model, we aim to find an
algorithm that finds the smallest such set. As we have shown earlier, the point label placement
problem in the 1-slider model is NP-complete, and thus has superpolynomial running time. For-
tunately however, it is fixed-parameter tractable, using the feedback edge number as parameter.
Specifically, we use the maximum feedback edge number among all connected components of
the graph. We choose this parameter to measure the tree-likeness of the graph representation,
as we believe it is ’easy’ to solve the graph problem when the graph is a tree, requiring only
the reduction rules we present later. As such, we will present a FPT-algorithm to prove the
following theorem:

Theorem 5.1. Given a problem instance (D,WD,ΠD), there exists a O(2k · |V (D)|2) time
algorithm that returns a minimum vertex set S such that D − S contains no critical paths.
Here, k denotes the maximum feedback edge number among all connected components of D.

In order to prove this theorem, we will present an algorithm that satisfies its criteria. We
formulate and prove the correctness of several reduction rules, of which the branch operation
forms the backbone of the algorithm. We briefly discuss how these reduction rules form the
algorithm, after which we analyse the running time. Recall that a path 〈v1, . . . , ve〉 is critical
in (D,WD,ΠD) if the following inequality does not hold:(

e∑
i=1

wD(vi)

)
+ π−D(v1) + π+D(ve) ≤

(
e−1∑
i=1

arcwD(vi, vi+1)

)
+ wD(v1) + wD(ve) (I)

Our algorithm consists of three reduction rules, and takes as input some graph representation
(D,WD,ΠD). The first reduction rule resolves any vertices that are critical, that is to say paths
of a single vertex for which inequality I does not hold. We apply the first reduction rule
exhaustively before considering the next reduction rule. The second rule ’collapses’ a leaf into
its parent, and stores information about the leaf in the potential of the parent. Every time we
apply this second rule, we then apply the first rule exhaustively again. Once both the first and
second reduction rules are no longer applicable, we use a branch step, after which the entire
process is repeated.

• Reduction rule 1: Let v be a vertex of D, forming a path by itself for which inequality (I)
does not hold. If such a vertex v exists, remove v from D, and add it to the solution.

• Reduction rule 2: Let l be a leaf vertex of D, and p be the parent of l in D. If (l, p) ∈
A(D), set π−D(p) := max

(
π−D(p);π−D(l) + wD(p)− arcwD(l, p)

)
. Else if (p, l) ∈ A(D), set

π+D(p) := max
(
π+D(p);π+D(l) + wD(p)− arcwD(p, l)

)
. Then remove l from D.

• Branch: Let s be a source or sink in D. We recurse on two different branch paths. In the
first branch, we remove s from D and add it to the solution. In the second branch path,
if s is a source, then for every arc (s, v) ∈ A(D) we set

π−D(v) := max
(
π−D(v);π−D(s) + wD(v)− arcwD(s, v)

)
If s is a sink, then instead for every arc (v, s) ∈ A(D) we set

π+D(v) := max
(
π+D(v);π+D(s) + wD(v)− arcwD(v, s)

)
16

Afterwards, we remove s from D. We then pick the branch that returns the solution with
the smallest size, or of the first branch if the solution sizes are equal.

Clearly Reduction Rule 1 is correct: if a vertex by itself forms a critical path, then to hit
that critical path we must include this vertex. Before we prove the correctness of Reduction
rule 2 and the branch step, we first prove two closely related lemmata which we will need for
our correctness proofs.

Lemma 5.1. Assume (D,WD,ΠD) is transformed into (D′,WD′ ,ΠD′) by applying Reduction
Rule 2 on arc (l, p), where l is the leaf and p is its parent, such that π−D(p) 6= π−D′(p). Let P ′

be a path in D′ that starts in p, and let P be the path in D that starts with arc (l, p) and then
follows P ′. Then inequality I holds for P ′ in (D′,WD′ ,ΠD′) if and only if it holds for P in
(D,WD,ΠD).

Proof. In order to prove this lemma, we will show that inequality I for path P ′ in (D′,WD′ ,ΠD′)
can be rewritten to inequality I for path P in (D,WD,ΠD).

(e∑
i=1

wD′(vi)
)
+ π−D′(v1) + π+

D′(ve) ≤
(e−1∑

i=1

arcwD′(vi, vi + 1)
)
+ wD′(v1) + wD′(ve)

Inequality I for path P ′ in (D′,WD′ ,ΠD′), where v1 = p is the starting vertex of P ′, and ve is
the ending vertex of P .

(e∑
i=1

wD(vi)
)
+
(
π−D(l) + wD(v1)− arcwD(l, p)

)
+ π+

D′(ve) ≤
(e−1∑

i=1

arcwD(vi, vi + 1)
)
+ wD(v1) + wD(ve)

We insert the start potential of v1 = p into the inequality. As arc weights and label widths are
never changed, wD′(v) = wD(v) and arcwD′(v, w) = arcwD(v, w) for all vertices v, w.

(e∑
i=1

wD(vi)
)
+ π−D(l) + π+

D′(ve) ≤
(e−1∑

i=1

arcwD(vi, vi + 1)
)
+ arcwD(l, p) + wD(ve)

Term wD(v1) on both sides cancels out, and we move arcwD(l, p) to the right hand side.

(e∑
i=1

w(vi)
)
+ w(l) + π−(l) + π+(ve) ≤

(e−1∑
i=1

arcw(vi, vi + 1)
)
+ arcw(l, p) + w(l) + w(ve)

Finally we insert wD(l) on both sides of the inequality. Since it was unchanged, π+D′(ve) =
π+D(ve). As such, our rewriting results in inequality I for path P in (D,WD,ΠD). Of course, we
can also rewrite the other way, and as such we have proven that Lemma 5.1 holds.

The second lemma is similar to the lemma we have just proved, except that the arc between
the leaf and parent is reversed in direction, and is now the last arc of the path:

Lemma 5.2. Assume (D,WD,ΠD) is transformed into (D′,WD′ ,ΠD′) by applying Reduction
Rule 2 on arc (p, l), where l is the leaf and p is its parent, such that π+D(p) 6= π+D′(p). Let P ′

be a path in D′ that ends in p, and let P be the path in D that follows P ′ completely and then
ends with arc (p, l). Then inequality I holds for P ′ in (D′,WD′ ,ΠD′) if and only if it holds for
P in (D,WD,ΠD).

Proof. Again we show that inequality I for path P ′ in (D′,WD′ ,ΠD′) can be rewritten to
inequality I for path P in (D,WD,ΠD):

(

e∑
i=1

wD′(vi)) + π−D′(v1) + π+
D′(ve) ≤ (

e−1∑
i=1

arcwD′(vi, vi + 1)) + wD′(v1) + wD′(ve)

17

Inequality I for path P ′ in (D′,WD′ ,ΠD′), where v1 is the starting vertex of P ′, and ve = p is
the ending vertex of P .

(

e∑
i=1

wD(vi)) + π−D′(v1) + (π+
D(l) + wD(ve)− arcwD(p, l)) ≤ (

e−1∑
i=1

arcwD(vi, vi + 1)) + wD(v1) + wD(ve)

We insert the end potential of v1 = p into the inequality. As arc weights and label widths are
never changed, wD′(v) = wD(v) and arcwD′(v, w) = arcwD(v, w) for all vertices v, w.

(

e∑
i=1

wD(vi)) + π−D′(v1) + π+
D(l) ≤ (

e−1∑
i=1

arcwD(vi, vi + 1)) + arcwD(p, l) + wD(v1)

Term wD(ve) on both sides cancels out, and we move arcwD(p, l) to the right hand side.

(

e∑
i=1

wD(vi)) + wD(l) + π−D(v1) + π+
D(l) ≤ (

e−1∑
i=1

arcwD(vi, vi + 1)) + arcwD(p, l) + wD(v1) + wD(l)

Finally we insert wD(l) on both sides of the inequality. Since it was unchanged, π+D′(ve) =
π+D(ve). As such, our rewriting results in inequality I for path P in (D,WD,ΠD). Again, we
can also rewrite the other way, and as such we have proven that Lemma 5.2 also holds.

Now that we have proved these two lemmata, we can apply them in our correctness proofs.
First we will prove the correctness of Reduction Rule 2, after which we will show that our
branch operation is valid. For the following two lemmata, we will assume reduction rule 1 has
been applied exhaustively:

Lemma 5.3. Let (D,WD,ΠD) be the graph instance before applying Reduction Rule 2, and
(D′,WD′ ,ΠD′) be the graph instance after applying Reduction Rule 2 on leaf l with parent p.
Then if (D,WD,ΠD) has a solution of size k, (D′,WD′ ,ΠD′) also has a solution of size k.

Proof. Suppose S is a solution of size k to (D,WD,ΠD), and define S′ as follows:

• if l ∈ S, then S′ := (S \ {l}) ∪ {p}

• if l 6∈ S, then S′ := S

Note that in both cases, |S′| = |S| = k. We claim S′ is a solution to (D′,WD′ ,ΠD′), that is
D′−S′ contains no critical paths. Assume, for contradiction, that P ′ = 〈v1, . . . , ve〉 is a critical
path in D′ − S′. We use a case distinction on P ′:

• P ′ does not start or end with p:
Then all vertices of P ′ are also in D − S, per definition of S′. Furthermore, except for p
if p ∈ P ′, the potentials of all vertices in P ′ are also the same in ΠD′ and ΠD. Thus the
only thing that could have changed in P ′ between D − S and D′ − S′ is the potential of
p. However, as p is not the end or start of P ′, inequality I is the same for P ′ in D − S
and D′ − S′. Hence P ′ is also a critical path in D − S, yielding a contradiction.

• P ′ starts with p:
Since P ′ is a path in D′−S′ and contains p, per definition of S′, we have that l, p 6∈ S′ = S.
Clearly then, all vertices of P ′ are also in D − S. Furthermore note that Reduction Rule
2 must have set π−D′(p) = π−D(l) + wD(p)− arcwD(l, p), for if it did not, the potentials of
all vertices in P ′ would be the same in D′−S′ and D−S, thus P ′ would also be a critical
path in D − S. Observe that this also implies (l, p) ∈ A(D), otherwise Reduction Rule 2
could not have set π−D′(p). Since P ′ is a critical path in D′ − S′, that means inequality I
does not hold. However, by Lemma 5.1 this inequality can be rewritten to inequality I for
P = 〈l, v1 = p, . . . , ve〉 in D−S. Therefore inequality I also does not hold for P in D−S,
implying it is a critical path in D − S, and we have a contradiction.

18

• P ′ ends with p:
Since P ′ is a path in D′−S′ and contains p, per definition of S′, we have that l, p 6∈ S′ = S.
Clearly then, all vertices of P ′ are also in D − S. Furthermore note that Reduction Rule
2 must have set π+D′(p) = π+D(l) + wD(p)− arcwD(p, l), for if it did not, the potentials of
all vertices in P ′ would be the same in D′−S′ and D−S, thus P ′ would also be a critical
path in D − S. Observe that this also implies (p, l) ∈ A(D), otherwise Reduction Rule 2
could not have set π+D′(p). Since P ′ is a critical path in D′ − S′, that means inequality I
does not hold. However, by Lemma 5.2 this inequality can be rewritten to inequality I for
P = 〈v1, . . . , ve = p, l〉 in D− S (see below). Therefore inequality I also does not hold for
P in D − S, implying it is a critical path in D − S, and we have a contradiction.

Lemma 5.4. Let (D,WD,ΠD) be the graph instance before applying Reduction Rule 2, and
(D′,WD′ ,ΠD′) be the graph instance after applying Reduction Rule 2 on leaf l with parent p.
Then if S′ is a solution to (D′,WD′ ,ΠD′), S

′ is also a solution to (D,WD,ΠD).

Proof. Let S′ be a solution to D′. Assume, for contradiction, that P = 〈v1, . . . , ve〉 is a critical
path in D − S′. We use a case distinction on P :

• if P does not start or end with l or p:
Then all vertices of P are also in D′ − S′. Note that since l is a leaf and P does not start
or end with l, l 6∈ P . Thus, except for p if p ∈ P , the potentials of all vertices of P are
the same in D − S′ and D′ − S′. Therefore, the only thing that could have changed in P
between D− S′ and D′ − S′ is the potential of p. However, since P does not start or end
with p, inequality I is the same for P in D − S′ and D′ − S′. Hence, P is also a critical
path in D′ − S′, yielding a contradiction.

• if P starts or ends with p, and does not end or start with l:
Then again l 6∈ P , and all vertices of P are also in D′−S′. Note that, per the definition of
Reduction Rule 2, the potentials of p can never decrease when we apply this reduction rule.
Furthermore, all other potentials remain the same. Thus if P does not satisfy inequality I
in D − S′, its potentials did not decrease, and P also does not satisfy the inequality in
D′ − S′. As a result, P is also a critical path in D′ − S′ and we have a contradiction.

• if P starts with l: Note that l cannot be the only vertex of P , otherwise it would have been
resolved before applying the reduction rule. Let P ′ = 〈v2 = p, . . . , ve〉. If the reduction
rule did not set π−D′(p) to π−D(l) + wD(p) − arcwD(l, p), then π−D′(p) = π−D(p) ≥ π−(l) +
w(p)−arcw(l, p). Otherwise the reduction rule set π−D′(p) to π−D(l)+wD(p)+arcwD(l, p).
In both cases, per Lemma 5.1 we can rewrite inequality I for P ′ in D′−S′ using π−D′(p) =
π−D(l) + wD(p) + arcwD(l, p) to inequality I of P in D − S′. Thus inequality I does not
hold for P ′ in D − S′, making it a critical path, and we have a contradiction.

• if P ends with l: Similarly to the previous case, l cannot be the only vertex of P , otherwise
it would have been resolved before applying the reduction rule. Let P ′ = 〈v1, . . . , ve−1 =
p〉. If the reduction rule did not set π+D′(p) to π+D(l) +wD(p)− arcwD(p, l), then π+D′(p) =
π+D(p) ≥ π+D(l) +wD(p)− arcwD(p, l). Otherwise the reduction rule set π+D′(p) to π+D(l) +
wD(p) + arcwD(p, l). In both cases, per Lemma 5.2 we can rewrite inequality I for P ′

in D′ − S′ using π+D′(p) = π+D(l) + wD(p) + arcwD(p, l) to inequality I of P in D − S′.
Thus inequality I does not hold for P ′ in D − S′, making it a critical path, and we have
a contradiction.

19

Lemma 5.3 and Lemma 5.4 together prove the correctness of Reduction Rule 2. Since we
chose our parameter because it is a measure of the tree-likeness of the graph, it might be
interesting to show that it is indeed easy to solve the graph problem if the parameter is 0:

Lemma 5.5. If the feedback edge number is 0, and the graph therefore a forest, we can solve
the graph problem using only exhaustive application of the reduction rules.

Proof. Apply Reduction Rule 1 exhaustively. If the graph is then disconnected, we can solve
each connected component separately and combine the results. So assume the graph is a tree
and Reduction Rule 1 has been applied exhaustively. Then there must be a leaf l with parent
p, to which we apply Reduction Rule 2. If l was the last leaf attached to p, then p is now a
leaf; otherwise we keep applying Reduction Rule 2 to the leaves of p until we remove the last.
If at any point p becomes a critical path by itself due to application of Reduction Rule 2, it
is removed by Reduction Rule 1, and all of its leaves will become isolated vertices. For each
of these isolated vertices then, either Reduction Rule 1 is applicable to that vertex, or there
is no critical path in that connected component of one vertex. In the former case, the vertex
is the solution to that connected component consisting only of that vertex; in the latter case
the solution of that component is empty. We can iteratively repeat this procedure to solve the
entire graph.

With that out of the way, we can validate the branch step. We do this by again proving two
lemmata.

Lemma 5.6. Let (D,WD,ΠD) be the graph problem instance after exhaustively applying the
reduction rules. Then both branch solutions are a solution to (D,WD,ΠD).

Proof. Let vb be the source/sink on which we branch. We handle both branches seperately:

• Branch where vb is put into the solution: This case is trivial, clearly if S is a solution
to (D − {vb},WD,ΠD) (the recursive call for this branch), then S ∪ {vb} is a solution to
(D,WD,ΠD).

• Branch where vb is not in the solution: Recall that vb is a source or a sink. Assume S
is a solution to (D′,WD′ ,ΠD′), the instance generated by this branch. For contradiction,
assume S is not a solution to (D,WD,ΠD), and let P be a critical path in D−S. Then P
must start or end in vb, for if it did not, P would also be a critical path in D′−S; after all,
the potentials of the vertices of P are never lower in ΠD′ than they are in ΠD. Similarly
to the proof of Lemma 5.4, we can then consider the path P ′ obtained by removing the
arc incident on vb from P . Let u be the other vertex to which this removed arc was
incident. The potential of u in ΠD′ is then equal or greater to the contribution of vb to
inequality I. Again similar to the proof of Lemma 5.4, we can rewrite inequality I for P
in (D − S,WD,ΠD) (which does not hold) to that inequality for (D′ − S,WD′ ,ΠD′) such
that it also does not hold (per Lemma 5.1 and Lemma 5.2). As such, D′ − S would also
contain a critical path, giving us a contradiction.

Lemma 5.7. Let (D,WD,ΠD) be the graph problem instance after exhaustively applying the
reduction rules. Furthermore, let vb be the vertex on which we branch, let (D − vb,WD,ΠD)
be the branch instance where vb is in the solution, and let (D,WD,Π

′
D) the branch instance

where vb is not in the solution. If (D,WD,ΠD) has a solution of size at most k, then either
(D − vb,WD,ΠD) has a solution of size k − 1, or (D,WD,Π

′
D) has a solution of size k.

20

Proof. Assume S is a solution of size k to (D,WD,ΠD). If vb ∈ S, then clearly S \ {vb} is a
solution of size k− 1 to (D− vb,WD,ΠD). Thus consider the case where vb 6∈ S. We claim that
S is then also a solution to (D − vb,WD,Π

′
D). Assume, for contradiction, that P ′ is a critical

path in ((D − vb) − S,WD,Π
′
D). If P ′ does not start or end in a neighbour of vb, then P ′ is

also a critical path in (D,WD,ΠD), for the potentials of all its vertices are the same in ΠD and
Π′D. So assume P ′ starts or ends in a neighbour u of vb. Then let P be the path starting with
arc (vb, u) or ending with arc (u, vb) in D. As the potential of u in Π′D is equal or greater to
the contribution of vb in P for inequality I, we can follow an argument similar to what we used
in the proof of Lemma 5.3: Since inequality I does not hold for P ′ in (D,WD,Π

′
D), when we

rewrite this to the inequality for P in (D,WD,ΠD) (using Lemma 5.1 and Lemma 5.2), it also
does not hold. As such, P is a critical path in (D,WD,ΠD), and we obtain a contradiction.

Thus, with Lemma 5.6 and Lemma 5.7 combined we have shown the correctness of our
branch operation. Now we combine the correctness proofs of our operations to show that our
algorithm as a whole is correct:

Lemma 5.8. Given an instance of the graph problem (D,WD,ΠD), our algorithm finds a
solution of minimum size.

Proof. We prove this by induction. In the base case, the graph is a single vertex. Then the
algorithm is correct (that is, returns a solution of minimum size): if the vertex is a critical path
by itself, it will be put in the solution by Reduction Rule 1, and otherwise the empty set is
returned as solution. We assume the algorithm is correct for graphs of up to n− 1 vertices, and
make the inductive step for the case where the graph D has n vertices. We will consider the
three possible actions we can take: appying Reduction Rule 1, Reduction Rule 2, or branch.

• Per correctness of Reduction Rule 1, we know that if we apply this reduction rule to a
vertex v of D, then v together with an optimal solution to D − v is an optimal solution
to D. By induction, our algorithm finds an optimal solution to D − v.

• If we apply Reduction Rule 2, then per Lemma 5.3 we know that the minimum size of a
solution to the graph before and after applying the reduction rule is the same. Further-
more, by Lemma 5.4 we know that a solution to the graph after applying Reduction Rule
2 is also a solution to the graph before applying the reduction rule. Again by induction,
our algorithm finds a minimum size solution to the graph after applying the reduction
rule (since a vertex is removed), and thus also to the graph before applying the reduction
rule.

• The last option is to branch. Per Lemma 5.7 we know that one of the branch instances has
a solution of minimum size (possibly including the branch vertex itself). From Lemma 5.6
we know that this branch solution is then also a solution to the graph before branching. By
induction, our algorithm gives the minimum size solutions to both branch instances, and
as such our algorithm also gives the minimum size solution to the graph before branching.

Since the inductive step is correct for all three possible actions, we can conclude that our
algorithm will indeed always find a solution of minimum size.

What remains is to analyse the running time of our algorithm. To make this slightly easier,
we first give pseudocode of our algorithm:

CoreAlg (D,WD,ΠD)

1. Exhaustively apply Reduction Rule 1

21

2. if(undirected graph underlying D contains multiple connected components C1, . . . , Ci)

3. Return CoreAlg(C1,WD,ΠD) ∪ . . .∪ CoreAlg(Ci,WD,ΠD)

4. while(graph contains a leaf)

5. Apply Reduction Rule 2 to a leaf

6. Exhaustively apply Reduction Rule 1

7. if(feedback edge number 6= 0)

8. S1 := recursive call for branch 1, S2 := recursive call for branch 2

9. if(|S1| ≤ |S2|) add set S1 and vb to S, where vb is the branch vertex

10. else add set S2 to S

11. Return S

In order to analyse the running time of the algorithm, we first need to verify that it termi-
nates. That is to say, we need to show that the branch operation is guaranteed to decrease the
parameter when applied. As such, we want to prove the following lemma:

Lemma 5.9. Let f(H) denote the maximum feedback edge number among all connected com-
ponents of some graph H. Let G be a connected, undirected graph without vertices of degree 1,
such that G contains at least one cycle. Furthermore, let v be an arbitrary vertex of G. Then
f(G− v) < f(v).

Proof. First observe that a set of edges X is a feedback edge set of G if and only if G − X
is acyclic. If G −X is disconnected, then X is not a feedback edge set of minimum size. For
consider two different connected components of G−X. Then there must be an edge in G and
included in X, that connects these two components, since G is connected. As such, if X is a
feedback edge set of minimum size, then G−X is a tree. The other way around, if G−X is a
tree, then X must be a feedback edge set of minumum size. For consider removing any edge in
X: if it is on a cycle in G, then X is no longer a feedback edge st of G. If it is not on a cycle,
then X was not of minimum size. Thus X is a feedback edge set of minimum size if and only
if G−X is a (connected) tree, or equivalently if and only if E(G)−X is a spanning tree of G.
With this in mind, we apply a case distinction on vertex v:

• v lies on a cycle in G: Let u be a neighbour of v such that {u, v} lies on a cycle in G. Then
the graph G′ with V (G′) = V (G) and E(G′) = E(G) − {u, v} is connected. Let T be a
spanning tree of G′. Then E(G′)− T is a minimum feedback edge set of G′. Since {u, v}
lies on a cycle in G, T is also a spanning tree of G, and E(G)− T is a minimum feedback
edge set of G. Since |E(G)− T | = |E(G′)− T |+ 1 (the former contains {u, v} while the
latter does not), it follows that the feedback edge number of G′ is smaller than that of G.
As G − v is a subgraph of G′, its feedback edge number cannot exceed that of G′, and
is therefore smaller than that of G. Furthermore note that the maximum feedback edge
number among connected components of G−v is at most equal to that of G−v itself, and
thus smaller than that of G. Since G was connected, this means that f(G− v) < f(G).

• v does not lie on a cycle in G: We claim that G − v is then disconnected, and v has
exactly one neighbour in every connected component of G− v. First we show that G− v
is disconnected, by contradiction. Assume G − v is connected, and let u and w be two
different neighbours of v. Then there is a path from u to v, since we assumed G − v
is connected. If we add the arcs {u, v} and {w, v} to this path, we obtain a cycle in

22

G, which contradicts our assumption that v does not lie on a cycle in G. So, G − v is
indeed disconnected. Next we show that v has exactly one neighbour in every connected
component of G − v, again by contradiction. Assume there is a connected component of
G − v containing two distinct neighbours u,w of v. Then there is a path between u and
w in that component. Similarly to before, this implies that there was a cycle through v, u
and w in G, giving us a contradiction. Indeed G − v is disconnected, and v has exactly
one neighbour in every connected component of G− v.

Now we make another claim: each connected component of G−v contains a cycle. Assume,
for contradiction, that C is a connected component of G−v that does not contain a cycle.
Then C must contain at least two vertices, for if it would contain only a single vertex,
then that vertex would have only had v as neighbour in G and would therefore be a leaf;
this contradicts our initial assumption on G. So assume C has at least two vertices and
contains no cycles. Observe that C must then have at least two leaves: any maximal
length path in C must start and end with a leaf, since C contains no cycles. Since these
two leaves were not leaves in G, by our initial assumption on G, both of these leaves must
be neighbours of v in G. As such, v would have two neighbours in connected component
C, contradicting our previous claim that v has exactly one neighbour in each connected
component of G− v.

Combining the two claims we have proven, we know that G − v consists of at least two
connected components, and each of these components contains a cycle. Let X then be a
minimum feedback edge set of G. Then for each connected component C of G − v, we
have that X ∩ E(C) is a feedback edge set for C, else X would not be a feedback edge
set for G. Since every connected component of G− v contains at least one cycle, X must
contain at least one edge of each of those components. As such, |X ∩ E(C)| < X| for
each connected component C of G−v, and therefore the maximum feedback edge number
among all connected components of G − v is strictly smaller than that of G. Since G is
connected, we can then conclude that f(G− v) < f(G).

Indeed, applying the branch operation decreases the parameter by at least 1. Now we aim
to prove the following lemma:

Lemma 5.10. Given an instance (D,WD,ΠD) of the graph problem, and k being the maximum
feedback edge number among all connected components of D, our algorithm returns a minimum
size solution in time O(2k · |V (D)|2).

Proof. Since we handle each connected component separately, we will first analyse the running
time for one such component C. In the theoretical worst case, the parameter is only decreased
by the branch operation, and only decreased by one every time we apply this operation. As
such, we may have up to 2k recursive calls, since by Lemma 5.5 we can solve the problem
in polynomial time once the parameter is 0. Using a naive approach, each of these recursive
calls would take up to O(|V (C)|2) time: applying Reduction Rule 1 or 2 once can take up to
|V (C)| time, and since we remove a vertex with both rules, together they can be applied a
maximum of |V (D)| times. Furthermore, the branch operation itself takes time proportional to
the degree of the branch vertex, thus |A(C)| ≤ |V (C)|2. As such, we can bound the running
time of our algorithm for connected component C as O(2k · |V (C)|2). The overall running time
then is the sum of the running times for each connected component, and since the sum of the
number of vertices in each component equals the total number of vertices, this can never be
more than O(2k · |V (D)|2). From Lemma 5.8 we know that our algorithm returns the minimum
size solution, so we can conclude that Lemma 5.10 holds.

23

Lemma 5.10 allows us to conclude that Theorem 5.1 indeed holds. As such, using Lemma 4.3
we can say that the graph problem, and thus its PFL problem, are fixed-parameter tractable
with the maximum feedback edge number among all connected components of the graph as
parameter, and can be solved in time O(2k · n2), where n is the number of vertices or points.

5.2 Additional Options

So far in this section, we have presented our core FPT-algorithm. We were however interested
in techniques that could potentially yield a significant speed up of our algorithm in practice.
As such, we present a more specific method of finding a source or sink for the branch step, as
well as a dynamic programming approach to remove vertices that will never be critical.

In our core algorithm, once we have exhaustively applied our reduction rules, we pick an
arbitrary source or sink vertex to branch on. It could, however, very well be that branching
on one source or sink will lead to a greater drop in the feedback edge number than another
source or sink. We propose to find a source or sink vertex that is a cut point, and also lies on
an undirected cycle. A cut point is a vertex that, when removed from the graph, increases the
number of weakly connected components. If no such vertex exists, we settle for any cutpoint, or
lacking that as well an arbitrary source or sink. What we aim to make use of here is that, when
a graph is split into multiple weakly connected components, then the parameter must drop (see
Lemma 5.9). Since we attempt to find a vertex that both lies on a cycle and splits the graph
into multiple components, we hope this will speed up the algorithm in practice. To find such
an alternative source or sink, we compute the set of cut points using the algorithm by Hopcroft
and Tarjan [14], and then iterate over this set checking for the desired properties. This takes
O(|V |+ |E|) time.

Another option we would like to investigate, is whether or not removing arcs and vertices
that can never be part of a critical path gives us a worthwile speed up. In order to find such
arcs and vertices, we use a dynamic programming approach to calculate the maximum start-
and end-potential that each vertex could possibly ever have. For every arc and every vertex,
we then check whether inequality I holds. If it does, we can be sure the arc or vertex can never
be part of a critical path, and is therefore irrelevant and can be removed safely.

For our dynamic programming approach, we construct two tables. In one table, we will
compute the maximum start potential each vertex can ever have, and in the other table the
maximum end potential each vertex can ever have. In order to compute the table for maximum
start potentials, we first find a topological ordering of the vertices, such that if (v, u) ∈ A(D),
v < u in the ordering. Then, in the order of this topological ordering, we compute the entry of
each vertex:

DPT1[u] := max
(
π−D(u); DPT1[u] + wD(u)− arcwD(v, u)

)
for(v, u) ∈ A(D)

For the second table, we simply invert the entire graph D, and then construct it the same
way as the first table, except we use π+D(u) instead of π−D(u). Then for every arc (v, u), if
DPT1[v] + DPT2[u] ≤ arcwD(v, u) does not hold, we know that (v, u) can never be part of a
critical path, and we remove it. Furthermore, for each vertex v, if DPT1[v] + DPT2[v] ≤ wD(v)
holds, then we also know that v can never be part of a critical path, and again we remove it.

Finding the topological ordering takes O(|V (D)| + |A(D)|) time. In the construction of
each table, we compute a single entry per vertex. For each entry we compute, we have to look
at all the incoming edges of the vertex, thus overall the construction of each table also takes
O(|V (D)| + |A(D)|) time. Lastly, checking whether or not we should remove each vertex and

24

edge again takes the same time, resulting in an overall running time of O(|V (D)|+ |A(D)|) for
the entire dynamic programming procedure.

25

6 Experimental Setup

Up to this point, we have discussed only the theoretical side of our FPT-algorithm. However, our
aim has always been to discover how it performs in practice. To this end, we have implemented
our algorithm, as well as the additional options mentioned in the previous section. We then
obtained information on the performance of our algorithm on various data sets. First, we
will discuss the details of our implementation, after which we will present our datasets and
experiment method, and analyse the parameter values of the data sets.

6.1 Implementation

We implemented our FPT-algorithm in Java, version 1.8.0 25, using the NetBeans 8.0.1 IDE.
In our implementation, we used graph data structures as well as graph algorithms from the
JGraphT 0.9.1 library [18]. Graphs are presented as a graph data structure from JGraphT
(SimpleWeightedDirectedGraph, specifically), and we keep an array of potentials. This array
of potentials is copied for every recursive call, such that changing a potential in one recursive
call does not affect the potential of another call. Every edge of the graph has a weight, and
the vertices are presented as objects containing a label width and a pointer to an entry in the
potentials array.

As mentioned in the description of the algorithm, we handle each connected component
separately. This way we reduce both the size of the graph and the parameter of any instance
of the algorithm. Furthermore, to prevent having to iterate over the entire set of vertices every
time we apply Reduction Rule 2, we maintain an arraylist of leaves. For similar reasons, we call
Reduction Rule 1 only on vertices that were recently affected by Reduction Rule 2 or the branch
operation (that is to say, whose potentials were changed). This makes it such that applying
either reduction rule takes only constant time, since we can simply take the first leaf of the leaf
list for Reduction Rule 2. Since the degree of a leaf is 1, we only apply Reduction Rule 1 to
at most 1 vertex for each time we use Reduction Rule 2. As such, exhaustively applying the
reduction rules takes time linear in the number of vertices, compared to the O(n2) of the naive
approach.

6.2 Datasets and Experiments

For our experiments, we used four datasets. All four data sets consisted of triples containing
an x-coordinate, y-coordinate, and text label, and were taken from the General Map Labelling
webpage of Alexander Wolff [24].

• German Stations: A dataset of 366 train stations across the entire country of Germany.
Every label is the name of a train station.

• Berlin Shops: This dataset consists of 336 antique and arts shops in the city of Berlin.
All labels of this dataset are shop names.

• U.S. Cities: A large dataset of 1158 cities in the United States, including Alaska and
Hawaii. Each label is a city name followed by the state in which it lies.

• U.S. Cities Abrv.: Similar to the U.S. Cities data set, consisting of 1041 cities in the
United States, excluding Alaska and Hawaii. Each label is a three character city code.

As the dominating factor in our theoretical run time is the parameter, we analysed the
parameter values of the datasets. As such, we looked at the maximum feedback edge number

26

Figure 5: Maximum feedback edge number among connected components of the graph problem
for the German Stations dataset. Font size on horizontal axis.

Figure 6: Maximum feedback edge number among connected components of the graph problem
for the Berlin Shops dataset. Font size on horizontal axis.

Figure 7: Maximum feedback edge number among connected components of the graph problem
for the US Cities dataset. Font size on horizontal axis.

Figure 8: Maximum feedback edge number among connected components of the graph problem
for the US Cities abrv dataset. Font size on horizontal axis.

27

among connected components of the graph problem for each dataset. This information can be
seen in Figures 5, 6, 7, and 8.

For every dataset, we run experiments for two picture formats: A4 format at 300dpi (3508
x 2480 pixels), and A3 format at 300dpi (4962 x 3508 pixels). We choose the orientation of the
picture that best fits the dataset. For each format, we run a set of experiments for each font size
from 5 to the max font size for which we could conduct the experiment within reasonable time.
These max font sizes were determined by a combination of trial and error, and educated guessing
based on some initial testing. The latter revealed we could handle the font size for which the
parameter value was up to roughly 110. Each set of experiments consists of four experiments:
The core algorithm, the core algorithm with removal of noncriticals, the core algorithm with
alternative source/sink method, and the core algorithm with both alternative options.

For each individual experiment, we collect data on the following: the parameter drops
throughout the entire algorithm, the parameter drops of the branch path that resulted in the
solution, and the time it took to run that experiment. The last is measured from the moment
we start reading the data file, until the moment we have computed the solution. Due to time
constraints, we only ran each experiment once. All experiments were performed on an Intelr

CoreTM i7-2670QM, 2.2GHz CPU, operating under the Windows 7 Enterprise 64-bit OS. We
will present and analyse the results in the next section.

28

7 Results and Discussion

7.1 Experiment Results

The tables we present next contain the results of our experiments. Each table is titled with the
name of a dataset and the picture format. From left to right, the table columns contain the
following information:

• fsize: the font size used for the labels.

• ssize: the size of the solution given by our algorithm.

• pdrop: the average drop in parameter caused by the branch step, using the standard
source/sink finding method, over the entire algorithm. That is to say, the difference
between the feedback edge number of the current connected graph, and the maximum
feedback edge number amongst all connected components after the branch step.

• pdrop2: the average drop in parameter caused by the branch step, using the alternative
source/sink finding method, over the entire algorithm. Again this is the difference between
the feedback edge number of the current connected graph, and the maximum feedback
edge number amongst all connected components after the branch step.

• spdrop: the average drop in parameter caused by the branch step, using the standard
source/sink finding method, for only the branch path yielding the solution.

• spdrop2: the average drop in parameter caused by the branch step, using the alternative
source/sink finding method, for only the branch path yielding the solution.

• branch: the total number of branch steps, over the entire standard algorithm.

• t: the execution time of the standard algorithm.

• t2: the execution time of the algorithm, with removal of vertices and arcs that can never
be part of a critical path.

• t3: the execution time of the algorithm, with removal of noncriticals and using alternative
source/sink method.

If a table entry is given as ’–’, this means that we were unable to run the experiment with
the settings for that particular entry, but were able to run experiments with different settings
for the same font and picture format. Generally this occured due to Java running out of heap
space, and/or the experiments taking extraordinarily long.

29

Germany Stations A4

fsize ssize pdrop pdrop2 spdrop spdrop2 branch t t2 t3

5 4 1.00 1.00 1.00 1.00 12 16 16 15
15 19 1.92 1.92 1.97 1.97 226 31 31 47
20 34 1.95 1.89 1.94 1.94 584 62 94 109
25 54 2.02 2.02 2.08 2.08 3976 171 172 249
30 79 1.53 1.89 2.22 2.24 143318 3900 1622 3267
33 89 2.02 2.71 2.58 2.63 6323978 199712 19469 11762
35 99 2.18 2.19 2.48 2.45 5369166 178792 36426 87610

Germany Stations A3

fsize ssize pdrop pdrop2 spdrop spdrop2 branch t t2 t3

5 0 1.00 1.00 1.00 1.00 4 <1 <1 <1
20 18 1.52 1.52 1.74 1.74 196 62 46 47
30 37 1.84 1.80 1.99 1.98 1540 125 140 140
35 52 1.72 1.54 2.02 2.02 5694 203 188 171
37 85 1.71 1.78 2.69 2.66 286488 8393 2059 3573
38 88 1.79 1.90 2.69 2.72 290472 8642 2153 3744
39 93 – 2.31 – 2.66 – – 37627 27784
40 95 – 1.42 – 2.65 – – 143640 289100

Table 1: Results for the Germany Stations dataset.

Berlin Shops A4

fsize ssize pdrop pdrop2 spdrop spdrop2 branch t t2 t3

5 27 1.85 1.87 2.08 2.05 630 92 104 47
6 33 1.88 1.76 2.10 2.08 1200 94 109 63
7 41 2.14 1.61 2.11 2.13 14216 562 187 94
8 43 1.95 1.70 2.25 2.31 38846 1263 468 187
9 59 2.23 2.23 2.64 2.64 2467252 86564 59078 115893
10 65 2.15 2.42 2.84 2.84 14522974 518576 376756 771343

Berlin Shops A3

fsize ssize pdrop pdrop2 spdrop spdrop2 branch t t2 t3

5 17 1.67 1.67 1.75 1.75 150 16 31 31
7 23 1.89 1.95 1.95 1.80 528 15 16 31
9 35 1.53 1.87 2.10 2.05 5446 219 109 109
11 43 2.05 1.62 2.35 2.39 40226 1279 483 188
13 50 1.41 1.37 2.38 2.38 550200 20139 13572 12761
15 64 1.41 1.41 2.72 2.95 3395462 112086 62119 146375

Table 2: Results for the Berlin Shops dataset.

30

US Cities A3

fsize ssize pdrop pdrop2 spdrop spdrop2 branch t t2 t3

5 76 2.47 2.54 1.91 2.00 160380 9033 9298 14477
6 96 2.15 2.05 2.21 2.18 246534 15214 15771 28503

Table 3: Results for the US Cities dataset.

US Cities abrv A4

fsize ssize pdrop pdrop2 spdrop spdrop2 branch t t2 t3

5 8 1.25 1.25 1.09 1.09 204 141 171 156
7 20 1.54 1.54 1.48 1.48 34444 1576 484 671
9 46 1.93 1.93 1.90 1.90 39780 2028 2028 3073
11 56 2.19 2.20 2.07 2.07 117856 6131 6833 11372
13 69 2.19 2.22 2.16 2.20 213064 11685 11622 18689

US Cities abrv A3

fsize ssize pdrop pdrop2 spdrop spdrop2 branch t t2 t3

5 1 1.00 1.00 1.00 1.00 14 15 31 78
8 8 1.02 1.02 1.15 1.15 964 156 140 171
11 24 1.43 1.43 1.60 1.60 51642 2543 1498 2340
14 47 1.93 1.93 1.97 1.97 96524 4524 2168 3385
16 59 1.84 1.23 1.98 2.00 135444 6583 6178 8782
18 75 1.93 1.93 2.26 2.26 560816 26689 27987 53649

Table 4: Results for the US Cities abrv dataset.

In Figure 9, we show an example of what the label drawing created by our algorithm looks
like. This particular picture is A3 format, font size 38, for the German Stations dataset.

31

Figure 9: Resulting label drawing for A3 format, font size 38, of the German Stations dataset.

7.2 Results Discussion

From the tables with experimental results given just before this, several things can be noticed.
First of all, we can see that the execution time of the algorithm with removal of noncriticals is
never significantly worse than the execution time of the standard algorithm, but it often out-
performs the standard algorithm. As we suspected, using this dyamic programming technique
can save significant time in practice, at least for real-world examples. We suspect that, in those
cases where the removal of noncriticals yields a similar time to the standard algorithm, there
are simply very few vertices and arcs who do not lie on any critical paths.

Secondly, we notice that the alternative source/sink finding method gives mixed results. In
some cases, it increases the parameter drop significantly, and also further decreases the execution
time combined with the removal of noncriticals (see for example font size 30 and 33, A4 size,

32

of the German Stations dataset in Table 2). However, on other occasions the opposite is true:
the average parameter drop only decreases when we apply the alternative source/sink method,
and the execution time is only increased (for example font size 16, A3 size, of the US Cities
abrv dataset in Table 4). In the latter case, we think this may be caused by the cut vertex
source/sink splitting the graph in one connected component of very small size and one connected
component of very large size. If there would then have been a source/sink that is not a cut
vertex but which lies on many different undirected cycles, then that source/sink would likely
be a better choice. From our results we gather that this happens fairly frequently in practice,
negatively influencing the usefulness of our alternative source/sink approach. When we took
a closer look at an example where the alternative method caused an improvement (font size
30, A4 size, German Stations), we found that the total number of branches for the alternative
approach is only 57142, compared to the 143318 of the standard method. For an example where
the alternative method only made things worse (font size 16, A3 size, US Cities abrv), we found
that the total number of branches for the alternative method is 88406, compared to the greater
135444 of the standard method. Yet for the former example, the run time improved, and for
the latter example it deteriorated. It seems that there is a definite trade-off between time saved
from getting fewer branches, and the extra time it costs to choose the alternative source or sink.

Furthermore, we observe that generally speaking, the execution time increases faster and
faster as the parameter increases, similarly to what one might expect from an algorithm with
theoretical run-time exponential in the parameter. A notable exception is the step from font
size 33 to font size 35, in the A4 version of the German Stations experiments (Table 2). Even
though the parameter increased, the execution time for font size 33 is larger than the time for
font size 35, for the standard algorithm. Notably, the execution times of the algorithm with the
removal of noncriticals deviates from this, and does seem to follow the general trend. We are
as of yet unsure what may be the cause of this, but since each experiment was only performed
once, there is a possibility that there was some interference from a background process. Also,
as one might expect, there seems to be a strong relation between the total number of branches
and the execution time of the standard algorithm, for larger parameter values. For example, for
the A3 size of the US Cities abrv dataset in Table 4, especially for the larger font sizes it seems
that the number of branches increases with roughly the same factor as the standard execution
time.

Summarising, it appears that applying the additional technique where we remove vertices
and arcs that are not part of any critical path can never hurt, and often results in a significant
speed-up. However, we do not recommend using the alternative source/sink finding method,
as it could have a negative impact, and its influence seems unpredictable. Overall, real-world
examples generally (in our case 3 out of 4) seem to have acceptable parameter values, and since
a map is usually made to last for a long period of time, the relatively long running times do not
seem a major issue. However, for certain datasets the parameter value is simply too high, in
which case one of the many approximation algorithms would be the better option. Fortunately
this can be discovered in advance, as finding the parameter value of a dataset takes relatively
little time and effort.

33

8 Conclusion

We have given motivation, through examples of practical applications and a look at the existing
literature, for the relevancy of parameterising the point-feature labelling problem. We proved
that it is NP-complete in the 1-slider model, and as such aimed to find a fixed-parameter
tractable algorithm for it. This we have achieved, as we presented a O(2k · |V (D)|) algorithm for
the parameterisation of the underlying graph problem. Furthermore, we proved the correctness
of this algorithm, and the way we present the PFL problem as a graph problem.

We implemented our algorithm, and presented two techniques that we thought could speed
up the algorithm in practice. From our experiments on datasets of four real-world examples,
we concluded that removing vertices and arcs that are not part of any critical path is well
worth the effort, but the alternative source/sink finding method is not. Overall, for data sets
where the parameter is not exceedingly high, our algorithm can be worth the extra running time.

There are several questions we have left unasnwered. For example, is the PFL problem also
parameterisable for the 2-slider and 4-slider model, and if so can we use a similar approach as
the one we used here? We are also interested in practical extensions to the algorithm we have
presented. These extensions could include having some additional weight function measuring
the importance of the labels, in which case the goal would be to minimise the weight of the
labels we have to omit. Another extension could be handling obstacles. Perhaps we would
prefer not to place labels over rivers, in a geographical map, for example.

It may also be of interest to see if the problem we have presented in this paper can be pa-
rameterised using a parameter other than the feedback edge number, for example the treewidth,
or perhaps the size of the solution. Lastly, there may be more efficient techniques than what
we have presented to speed up the algorithm in practice.

34

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label placement by maximum independent
set in rectangles. Comput. Geom. Theory Appl., 11(3-4):209–218, Dec. 1998.

[2] A. C. Alvim and ric D. Taillard. POPMUSIC for the point feature label placement problem.
European Journal of Operational Research, 192(2):396 – 413, 2009.

[3] K. Been, E. Daiches, and C. Yap. Dynamic map labeling. Visualization and Computer
Graphics, IEEE Transactions on, 12(5):773–780, Sept 2006.

[4] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theor. Comput.
Sci., 411(40-42):3736–3756, Sept. 2010.

[5] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-feature
label placement. ACM Transactions on Graphics (TOG), 14(3):203–232, 1995.

[6] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

[7] H. A. Do Nascimento and P. Eades. User hints for map labeling. Journal of Visual
Languages & Computing, 19(1):39–74, 2008.

[8] S. Doddi, M. V. Marathe, A. Mirzaian, B. M. Moret, and B. Zhou. Map labeling and its
generalizations. In Proc. 8th Ann. ACM/SIAM Symp. Discrete Algs.(SODA97), number
LCBB-CONF-1997-001, pages 148–157. SIAM Press, 1997.

[9] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer Science & Business
Media, 2012.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[11] F. Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters & operations research, 13(5):533–549, 1986.

[12] G. Gottlob and S. T. Lee. A logical approach to multicut problems. Information Processing
Letters, 103(4):136–141, 2007.

[13] M. Grohe, K.-i. Kawarabayashi, D. Marx, and P. Wollan. Finding topological subgraphs
is fixed-parameter tractable. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 479–488. ACM, 2011.

[14] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, June 1973.

[15] E. Imhof. Positioning names on maps. The American Cartographer, 2(2):128–144, 1975.

[16] T. Kociumaka and M. Pilipczuk. Faster deterministic feedback vertex set. Information
Processing Letters, 114(10):556 – 560, 2014.

[17] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh. Faster
parameterized algorithms using linear programming. ACM Trans. Algorithms, 11(2):15:1–
15:31, Oct. 2014.

[18] B. Naveh. Jgrapht. http://www.jgrapht.org. Last accessed: 08-08-2015.

35

[19] N. Robertson and P. Seymour. Graph minors. III. planar tree-width. Journal of Combi-
natorial Theory, Series B, 36(1):49 – 64, 1984.

[20] J. Stott, P. Rodgers, J. Martinez-Ovando, and S. Walker. Automatic metro map layout
using multicriteria optimization. Visualization and Computer Graphics, IEEE Transactions
on, 17(1):101–114, Jan 2011.

[21] T. Strijk and M. van Kreveld. Practical extensions of point labeling in the slider model.
GeoInformatica, 6(2):181–197, 2002.

[22] L. G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Com-
puters, 30(2):135–140, 1981.

[23] M. van Kreveld, T. Strijk, and A. Wolff. Point labeling with sliding labels. Computational
Geometry, 13:21 – 47, 1999.

[24] A. Wolff. General map labelling. http://i11www.iti.uni-karlsruhe.de/~awolff/

map-labeling/general/. Last accessed: 08-08-2015.

[25] P. Yoeli. The logic of automated map lettering. The Cartographic Journal, 9(2):99–108,
1972.

36

