
 Eindhoven University of Technology

MASTER

Path indexing for efficient path query processing in graph databases

Sumrall, J.M.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/140bfda7-9044-4bd9-990d-d4d816e61daf

Path Indexing for Efficient
Path Query Processing in

Graph Databases

Master’s Thesis

Jonathan Maxwell Sumrall

Department of Mathematics and Computer Science
Web Engineering Research Group

Supervisor:
dr. G.H.L. Fletcher

Examination Committee:
dr. G.H.L. Fletcher

dr. D. Fahland
dr. T. Özçelebi

Eindhoven, July 2015

Jonathan Sumrall: Path Indexing for Efficient Path Query Processing in
Graph Databases, © July 2015

Wetenschap is de titanische poging van het menselijk intellect zich uit zijn
kosmische isolement te verlossen door te begrijpen.

— Willem Frederik Hermans
Nooit Meer Slapen

Dedicated to my parents.

A B S T R A C T

The study of path indexing in graph databases has not been studied
before in an empirical way. Graph databases have become a popular
choice among the different NoSQL databases for improved perfor-
mance in certain use cases. However, recent work has shown that
in situations where graph databases are expected to outperform the
SQL solutions, the performance gains do not always materialize. Path
indexing is one solution which offers graph databases improved per-
formance in path query evaluation. This thesis presents a comprehen-
sive look at path indexing for graph databases and the performance
improvements it provides.

The first goal of the thesis is to present a framework for how a path
index can be built. Paths in a graph are represented by the nodes and
edges which constitute the path. A path instance is compactly repre-
sented in a graph as a K-length vector containing the path identifier
followed by the identifiers of the nodes along the path.

A path index is then implemented using a B+tree to store these
keys, sorting the keys lexicographically. This data structure and sort
ordering allows for range scans on keys by searching with any prefix
of a key. Doing so, all the instances of all paths from the graph can be
found by searching for the correct path ID in the index.

The topic of compression is also explored. This thesis presents a
technique using ideas from Neumann in [19] to compress keys in the
index significantly. This compression scheme out performs the LZ4

compressions scheme and is able to compress an index from 15.99GB
to 1.69GB, a compression ratio of 9.5x.

Finally, using two synthetic datasets and one real-world dataset,
this work provides an empirical evaluation of our implementation of
this path index. All the datasets are of different sizes, and provide a
thorough evaluation of our path index. The path index is compared to
the graph database Neo4j. The results from these experiments show
that the path index provides significant improvements to the query
evaluation time in comparison to Neo4j. In a few cases Neo4j is able
to cache its results to provide equally fast results, but otherwise the
path index can provide speedups anywhere from 2x up to 8000x faster
than Neo4j.

The implementation of this path index is provided as open source
for further research and development.

v

A C K N O W L E D G M E N T S

My project has been a collaboration between the Web Engineering
group in the Department of Mathematics and Computer Science at
the Eindhoven University of Technology and with Neo Technology in
Malmö, Sweden. My daily supervisor has been dr. George Fletcher.

I would like to thank dr. George Fletcher for proposing this project
when I first approached him asking for ideas for a thesis. I would also
like to thank him for his continued support over the last 6 months
guiding and advising me. I would also like to thank dr. Dirk Fahland
and dr. Tanir Özçelebi for serving on my committee.

I am grateful to Neo Technology for assisting in this project and
allowing me to visit their engineering HQ in Malmö. In particular I
would like to thank Magnus Vejlstrup and Johan Svensson for their
assistance in this project. I have learned a lot from them and their
feedback and guidance has helped this project immensely.

The Eindhoven University of Technology and by extension the whole
of the Netherlands also deserve my thanks for awarding me the ALSP
scholarship and allowing me to spend these last two years focusing
solely on my studies.

A special thanks goes to my parents, who have been supporting
me throughout my entire education and even after telling them of
my plan to move to the Netherlands to study. In addition, thank
you to friends who have supported me, including Kirsten van der
Meulen for giving feedback and proof reading this thesis, Ellen de
Weerd for an assortment of help during all of my studies, Sander
Kools for moral and caffeinated support, and to all my other friends
who deserve many thanks for making my time at the university a
truly enjoyable experience. You all have my heartfelt gratitude.

Max Sumrall

vi

C O N T E N T S

1 introduction 1

1.1 Introduction 1

1.2 A small example 2

1.3 Problem Statement 3

1.4 Overview 4

2 preliminaries 5

2.1 Graphs 5

2.2 Paths 6

2.3 Path Index 6

2.4 Property Graph Model 6

2.5 Memory Model 8

2.6 Neo4j 8

3 path indexing techniques 11

3.1 Relational 11

3.1.1 Hash Index 11

3.1.2 Join Indexes 11

3.1.3 Jive and Slam Join 12

3.1.4 Bitmap Indexes 12

3.1.5 Main Memory Database Systems 13

3.2 Path Indexing 14

3.2.1 DataGuides 14

3.2.2 T-index 14

3.2.3 A(K) Index 15

3.2.4 D(K) Index 16

3.3 K-paths 16

3.3.1 Paths as Strings 16

3.3.2 GraphGrep 16

3.4 Current State of Path Query Evaluation 17

4 a path index design 19

4.1 Paths 19

4.2 Path Identifiers 19

4.3 Keys 20

4.4 Path Signatures 21

4.5 B+tree Design 23

4.6 Searching 24

4.7 Updates 25

4.7.1 A difference of perspective 26

5 index implementation 29

5.1 Nodes and Relationships 29

5.2 Path Identifier Resolution 30

5.2.1 Mapping Dictionary 31

5.3 Search Cursor 32

vii

viii contents

5.3.1 Edge Case Consideration 32

5.4 B+tree Architecture 33

5.4.1 Page Design 33

5.5 Fast Index Initialization 34

5.5.1 Bulk Index Construction 35

5.6 Compression Techniques 37

6 experiment setup 41

6.1 Objective 41

6.1.1 Datasets 41

6.1.2 Queries 41

6.2 Setup 42

6.2.1 Measurement 43

6.2.2 System Specifications 43

6.3 Datasets 43

6.3.1 Lehigh University Benchmark 44

6.3.2 Social Network Benchmark 45

6.3.3 Advogato 45

6.4 Result Set Sizes 46

7 experimental verification 49

7.1 Benchmark 49

7.2 Index Construction 50

7.3 Full K-Path Indexes 51

7.3.1 LUBM Dataset 53

7.3.2 LDBC-SNB Dataset 53

7.3.3 Advogato Dataset 53

7.4 Workload Driven Indexes 58

7.4.1 LUBM Dataset 59

7.4.2 LDBC-SNB Dataset 61

7.4.3 Advogato Dataset 61

7.5 Discussion 61

8 conclusion 67

8.1 Overview 67

8.2 Future Work 68

bibliography 71

a appendix a 75

a.1 LUBM Cypher Queries 75

a.2 Advogato Cypher Queries 76

a.3 LDBC Cypher Queries 76

b appendix b 79

b.1 Overview 79

b.1.1 Inserting Data 79

b.1.2 Querying 79

b.1.3 Removing Data 79

L I S T O F F I G U R E S

Figure 1 An example graph for a user and their rela-
tionships with other people and things. 3

Figure 2 The graph model of a query to find an item
bought by a user which is sold at a store the
user likes. 3

Figure 3 A simple graph with two nodes. 5

Figure 4 A property graph example. 7

Figure 5 The paths and associated patterns from the graph
in Figure 4. 7

Figure 6 Keys as built using the nodes and edges along
paths in Figure 5. 21

Figure 7 Sorted Merge Join of Set A and Set B where B
is sorted with the modified signature. 24

Figure 8 Small B+tree storing four keys in the leaf nodes. 25

Figure 9 An example path with the first edge with label
"drinks" being backward, and the second edge
with the label "attends" being forward. 31

Figure 10 An example path with the first edge with label
"drinks" being backward, and the second edge
with the label "attends" being forward. 31

Figure 11 B+trees with different keys in the first leaf, demon-
strating the need for an additional page access
in these situations. 33

Figure 12 Layout of the internal and leaf pages of the
B+tree. 33

Figure 13 Structure of an uncompressed key for a path
with two edges. 34

Figure 14 Two paths of length one, where a path of length
two can be constructed by concatenating these
edges together on the common node labeled
"2". 34

Figure 15 Building the K2 index using the K1 index, while
remaining sorted. 36

Figure 16 Algorithm for the iteration order for building
the K2 index from the K1 index and maintain-
ing sorted order. 36

Figure 17 Structure of a compressed key for a path with
two edges. 37

Figure 18 Structure of a compressed key with gap bits
for a path with two edges. 38

Figure 19 Different query patterns. 42

ix

x List of Tables

Figure 20 Rewriting of query 7 from [10] to be a sin-
gle path used in the experiments in this pa-
per. 44

L I S T O F TA B L E S

Table 1 Possible K-paths for alphabet of A, B. 20

Table 2 K-vector transformation of K-paths in Table 1. 20

Table 3 Two different result sets which cannot be merge
joined. 22

Table 4 Result set B sorted on the left with the original,
default, signature compared to the same result
set but with a different sort ordering due to
a modified path signature on the right. This
allows for a merge join with result set A from
Table 3. 22

Table 5 Merge join of result set A and result set B af-
ter using a modified signature for result set
B. 23

Table 6 Sorting time with different values for the fan
in of the external memory merge sorting algo-
rithm. 37

Table 7 Benchmark of compression techniques compar-
ing the compressed data size. 39

Table 8 Benchmark of compression techniques compar-
ing compression speed, with times rounded to
the nearest minute. 40

Table 9 Length of each query for the LUBM dataset,
where length is the number of edges in the
query pattern. 45

Table 10 Length of each query for the LDBC-SNB dataset. 45

Table 11 Length of each query for the Advogato dataset. 46

Table 12 Number of nodes and edges in each dataset
and the size of the result set for each query of
each dataset. 47

Table 13 Benchmark of the performance of the path in-
dex on basic I/O operations. 49

Table 14 Size and build time for K 1, 2 and 3 indexes on
different datasets. 50

Table 15 Query Evaluation time to retrieve the first re-
sult and the last result in Neo4j and in the Path
Index with cold caches. 54

List of Tables xi

Table 16 Query Evaluation time to retrieve the first re-
sult and the last result in Neo4j and in the Path
Index with warm caches. 55

Table 17 Query Evaluation time to retrieve the first re-
sult and the last result in Neo4j and in the Path
Index with cold caches. 56

Table 18 Query Evaluation time to retrieve the first re-
sult and the last result in Neo4j and in the Path
Index with warm caches. 57

Table 19 Query Evaluation time to retrieve the first re-
sult and the last result in Neo4j and in the Path
Index with cold caches. 58

Table 20 Query Evaluation time to retrieve the first re-
sult and the last result in Neo4j and in the Path
Index with warm caches. 59

Table 21 Workload experiment with paths constructed
from the K1 index with joined results inserted
into the index. 60

Table 22 Workload experiment on the LUBM dataset with
paths constructed from the K1 index with joined
results inserted into the index. 60

Table 23 A comparison of the query evaluation time of
Neo4j and the Path Index on the LUBM dataset
using the workload based approach for build-
ing the index. 61

Table 24 Query Plan for the workload experiments for
the LDBC Dataset. 62

Table 25 Workload experiment on the LDBC-SNB dataset
with paths constructed from the K1 index with
joined results inserted into the index. 62

Table 26 A comparison of the query evaluation time of
Neo4j and the Path Index on the LDBC-SNB
dataset using the workload based approach for
building the index. 63

Table 27 Workload experiment with paths constructed
from the K1 index with joined results inserted
into the index. 63

Table 28 Workload experiment on the Advogato dataset
with paths constructed from the K1 index with
joined results inserted into the index. 64

xii List of Tables

Table 29 A comparison of the query evaluation time of
Neo4j and the Path Index on the Advogato
dataset using the workload based approach for
building the index. 64

1
I N T R O D U C T I O N

1.1 introduction

Many new database systems have been developed in the past decade
under the moniker of NoSQL, or "Not only SQL". The features and
benefits of these systems are as varied and numerous as there are
these new database systems. This class of systems was borne out of
the need to cope with the sheer volume of data being produced by
modern users and the latest applications. While these systems are all
classified as NoSQL, this tagline is insufficient to describe the differ-
ences between all of the NoSQL databases. All NoSQL databases can
be better defined under one of the following subcategories [16], each
with their own attributes:

key-value store : The simplest and fastest of the NoSQL databases.
These systems store indexible keys and values. Given a key, the
database can quickly retrieve the value associated with that key.
Features: High Performance, High Flexibility, Simple Design

column store : Stores data in columns of a table rather than as
a row, and uses this feature to achieve high performance and
scalability.
Features: High Performance, Moderate Flexibility, Simple Design

document database : Similar to the Key-Value Store. The values,
called documents, are larger and give more structure to the data
they contain.
Features: High Performance, Moderate Flexibility, Simple Design

graph database : The most different from the others. Graph databases
store data within nodes, with relationships between the data be-
ing represented as edges between nodes . These databases are
much more complex than the other systems, because of the way
that data is modeled, stored, and retrieved. Graph databases are
useful when making sense of vast amounts of loosely connected
data. The number of interconnections between data may not
be known, and therefore defining a schema required by other
databases systems is not possible.
Features: Variable Performance, Highly Flexible, Complex Design

Compared to the other types of database systems, graph databases
provide less performance and have a much more complex design.
This might lead one to conclude that choosing another type of database

1

2 introduction

system is a wiser choice. However the situations where graph databases
are the best choice are those in which the other database systems sim-
ply cannot be used to model, store, and retrieve the data you have encoun-
tered, at least not without significant additional work to shoehorn the
data to fit the model of the other systems.

As the description above shows, the performance of graph databases
is variable. Simple queries like "Find all users named ’John’" can be
easily modeled in both NoSQL and SQL databases, and will be faster
than using a graph database. More difficult queries like "Find all users
who have a friend who like cycling" are not trivial to model in some other
NoSQL or SQL databases, but are trivial in graph databases. This sim-
plicity often translates to higher performance for these queries, as the
graph database evaluates the query by performing graph traversals,
a natural operation on a graph. The other database systems would
require intricate joining of different tables to evaluate the same query.
However, the intricacies of modeling these types of queries in non-
graph databases does not always mean worse performance, and it
can be the case that the graph database does not outperform other
systems.

Improving the performance of graph databases in these situations
is the goal of this thesis project. This is achieved by identifying a
specific class of queries, path queries, and proposing a method for
improving query evaluation time for these types of queries. Our pro-
posal is to construct path indexes, borrowing ideas from decades of
research on index structures to design a path index which provides
significant performance improvements without resorting to complex
solutions. First, we look at an example dataset and see how it can be
modeled in a graph.

1.2 a small example

It is helpful to begin by first describing a situation where data can be
formulated into a graph model. Figure 1 shows a small graph with ex-
ample data that could be found in a social network setting. In the cen-
ter of the graph is a user named John. The different people and things
related to John are surrounding John’s node, with relationships John
has to those things represented as directed edges. Examining John’s
node, it can be seen that he works for Apple, is friends with Mark, and
lives in Eindhoven, among other things. It can then be seen that Ap-
ple, the place John works for, has a person Mark who consults for them,
and this person is someone John is friends with. There are many more
types of connections which could be included for John, for Apple,
and for all the other things in this graph. These connections between
things are already present in social networks or semantic databases.
By viewing this data in the form of the graph, it can be seen how cer-
tain people and things are related. Queries can then be formulated to

1.3 problem statement 3

TweetApple

John

Model STesla

Eindhoven

Coffee

Starbucks

Mark

Geolocated In

RegulatesAuthored

Lives In

Bought

Likes
Sells

Leases

Drives

Works For

Friends

Invested In
Invested In

Retweeted

Manufactures

Consults For

Figure 1: An example graph for a user and their relationships with other
people and things.

ask interesting questions for all users in general, such as:

"Which stores does a user like that sells items bought by the user?"

This type of query can be answered by finding users and seeing if
they have liked any stores. If so, check if that store sells any items
which the user has bought. Such a query can be modeled as a path,
shown in Figure 2.

User Store Item
likes sells

bought

Figure 2: The graph model of a query to find an item bought by a user which
is sold at a store the user likes.

1.3 problem statement

The main goal of this project is to design and construct a path index
and supporting data structures and algorithms for performing path

4 introduction

indexing and path query evaluation on data in a graph database. The
second goal is to explore methods for optimizing this index structure
to reduce the overall size of the index and the cost of building the
index. The third goal is to provide an empirical study of the perfor-
mance of this implementation of a path index in comparison to a
graph database.

To the best of our knowledge, this work is the first to provide a
design and implementation of a path index specifically for graph
databases as well as an empirical study into the performance of path
indexes for graph databases.

1.4 overview

The purpose of this chapter is to introduce the topic of path index-
ing and the efficient evaluation of path queries in graph databases.
Chapter 2 gives an overview of the common theory and subjects this
study relies upon. Chapter 3 gives an overview of different indexing
techniques from the literature and their different merits. Chapter 4

covers the topic of path indexing, design choices and areas of con-
tention when designing a path index. Chapter 5 details the specific
path index implementation from this project. Chapter 6 provides a
description of the environment used to conduct the empirical study
of the performance of the path index implementation in this work.
Chapter 7 presents an empirical study of the performance of the path
index. Chapter 8 concludes the paper with a discussion of the results
from the benchmarking and gives direction for future research.

2
P R E L I M I N A R I E S

This chapter begins by introducing the basic concepts and definitions
which this work is based on. Section 2.1 introduces the concept of the
graph, and the relevant makings of a graph. Section 2.2 introduces
paths in the graph context, and Section 2.3 introduces the idea of the
path index, the central topic of this work. Section refpropertyGraph-
Section introduces a specialized type of graph, the Property Graph.
Section 2.5 introduces the memory model used for implementing the
systems later described.

2.1 graphs

Max TU/e
attends

Figure 3: A simple graph with two nodes.

The work in this paper revolves around finite directed edge labeled
graphs. A graph is a collection of nodes and edges. Nodes in a graph
map closely to nouns in the grammatical sense. Edges are the re-
lationships between nodes. Figure 3 shows a simple graph of two
nodes and a single labeled edge between them expressing that the
node "Max" has an ’attends’ relationship to the node "TU/e". In a di-
rected, edge-labeled graph each edge has a label and a direction. A
directed edge means that an edge has a start node and an end node,
and they cannot be reversed. For example, the edge labeled ’attends’
in Figure 3 from "Max" to "TU/e" implies a relationship from "Max"
to "TU/e", but does not imply that there is an ’attends’ relationship
in the reverse, from "TU/e" to "Max".

A graph is a triple G = 〈N,E,L〉 where N is a set of nodes in
the graph, E ⊂ N×N is a finite set of directed edge relations, and
` : N → L is the set of labels called the graph vocabulary. A graph
vocabulary is a finite non-empty set L of edge labels from some universe
of labels. An edge relation is a finite subset of N×N.

2.1.0.1 A note on notation

In the remainder of this work, nodes and edges will be discussed
often in the text. In such cases, the notation for nodes will be to sur-
round the node with parentheses and for edges to surround them
with square brackets. For example, the node Max and the edge at-

5

6 preliminaries

tends can be represented as (Max) and [attends], respectively. Relat-
ing edges to nodes will be written using dashes (-) and brackets
(> or <), to represent undirected and directed edges. For example,
the node Max having a directed edge labeled attends to the node
TU/e would be represented as (Max)-[attends]->(TU/e). This choice
of notation is not without reason— it is the formal notation used in
the cypher query language, a graphical query language for the graph
database Neo4j. More information about Neo4j is presented in Sec-
tion 2.6.

2.2 paths

The fundamental indexed data in this investigation are paths in a
directed graph G. Therefore an edge relation from node a to node b
is the simplest path with a length of one. Often pairs of nodes, node
a and node b, are referred to as (source-target) paths, where a is the
source of the path and b is its target.

All paths in the graph with identical nodes and identical edges
along the path are said to be identical paths. Otherwise, paths are
said to be unique.

The focus in this work is the study of K-length paths. For a natural
number K, we define a K-length path, pathsK(G) to be the set of all
(source-target) paths such that there is an undirected path of length at
most K in G from the source of the path to the target of the path.

2.3 path index

A path index is a data structure containing the necessary information
to describe all paths in a graph. It is assumed that for all nodes in a
graph, there exists some identifying information to specify a single
node in the graph. The data model representation of a path is de-
scribed as an ordered set of node identifiers and the edges between
the nodes. The goal of a path index is to identify which paths in a
graph match a specified pattern. A pattern S is described as an or-
dered set of edge labels such that:

S = 〈e1 . . . en〉, ei ⊂ L, 1 6 i 6 n

An example of a property graph can be seen in Figure 4 and the
paths and patterns obtainable from this graph are shown in Figure 5.

2.4 property graph model

The property graph is an extension of the directed edge labeled graph.
In a property graph, nodes have an identifier specific to that node
within the graph. Edges have a unique identifier within the graph as

2.4 property graph model 7

1. Max

name: "max"

age: 24

3. TU/e

name: "TU/e"

type: "University"

enrollment: 5,000

2. Tim

name: "tim"

age: 26

4. Consortium

type: consortium

name: EU University

label: attends

startDate: 01/09/2013

label: attends

startDate: 01/09/2012
label: memberOf

since: 01/01/1965

membership: founder

Figure 4: A property graph example.

1 3

2 3

1 3 4

2 3 4

attends

attends

attends. memberOf

attends, memberOf

Path Pattern

attends

attends

attends memberOf

attends memberOf

Figure 5: The paths and associated patterns from the graph in Figure 4.

well as a label, a source node, and a target node. Additionally, nodes
and edges have a collection of key-value pairs. In Figure 4, node 1 has
a collection containing the keys name and age, and node 4 has the keys
type, and name. Edges can also have collections of key-value pairs,
such as the edge from node 1 and node 2, which has the keyslabel
and startDate. In graph databases which model the property graph,
queries on the graph can contain qualifiers for certain key-value pairs,
allowing for more selective queries.

8 preliminaries

2.5 memory model

Data locality, the place where data is stored and the distance it is from
the processing unit, is in this work only considered in two forms: in-
ternal memory and external memory. Data stored in internal mem-
ory is considered to be quickly accessible and random access not
incurring extra delays. External memory is considered to be slow, ac-
cessed only as a last resort, and with random access incurring extra
delays. Internal memory is a limited resource in the computer, and
algorithms only adapted to use this memory are therefore limited in
size as well. External memory, commonly the spinning hard-disk or
a flash-based solid state drive, is essentially unlimited in its storage
space. However, the time for retrieving data from these external stor-
age devices is high. Algorithms adapted to use external storage in
addition to internal memory are called external memory algorithms.

External memory algorithms are adapted to use external storage
space when the internal memory is exhausted. External memory al-
gorithms work by transferring data from external memory into inter-
nal memory to do some computations, until the computation is com-
pleted. The time complexity of such algorithms is then dominated by
the time needed to transfer data from the external storage to internal
memory, since this time is often much greater than the time needed to
actually do the computation. This time needed to transfer data from
the external storage to internal memory is called latency.

Let B be the maximum amount of data able to be transferred from
disk to internal memory. B is determined by the physical aspect of
a system, such as the hard drive, other hardware, or software. The
block size of the system is a contiguous set of data of size B read from
external storage in one operation. A transfer from internal memory to
external memory is called an IO operation. To improve the speed of
external memory algorithms, one technique is to reduce the number
of IO operations by operating on data in sets of size B.

2.6 neo4j

Neo4j is a popular [7] open-source native graph database that imple-
ments the property graph model directly. Neo4j offers many features
found in traditional relational databases such as being fully transac-
tional. Neo4j also has support for cluster arrangements, offering high
availability and scalability. Neo4j also uses its own query language,
Cypher. With Cypher and the way that Neo4j stores data internally,
modeling and querying data is intuitive. This ease in which data can
be modeled and later queries is one of the main benefits of Neo4j. The
architecture of Neo4j internally allows for this intuitive data model-
ing while still providing compelling query evaluation performance.
Nodes are stored in flat files with the node ID being doubly used as

2.6 neo4j 9

its location in the file. Edges in Neo4j are stored internally as doubly-
linked lists. Properties on nodes and edges are stored separately.

In this work, queries on Neo4j are implemented in the Cypher
query language, and executed through the Java API made available
with the distribution of the database.

3
PAT H I N D E X I N G T E C H N I Q U E S

Indexing data in database systems is a research field nearly as old as
computer science itself. Many ideas have been proposed and imple-
mented in commercial systems for more than three decades now. The
most well known and earliest is the Join Index by Patrick Valduriez
[23]. However such a data structure is not directly designed to deal
with paths and path indexing.

The ability of an index structure to be used for paths is straight-
forward, however the multitude of indexing structures necessitates
taking an overview of the different possible data structures to deter-
mine which most suits this problem.

Different fields of database research have produced solutions which
fit those needs. It is therefore important to consider the different so-
lutions proposed in the literature for data from relational data stores
to solutions proposed for XML1 data or graph data.

3.1 relational

This section presents findings from the literature on indexing solu-
tions proposed for relational databases. Certain examples, such as
Section 3.1.2, are foundational works on indexing.

3.1.1 Hash Index

The hash index is an efficient implementation of an index structure
using a hash function. Hash based indexes are shown to be especially
efficient in large main memory systems as shown in [6]. Keys from
relation R are hashed to find the relevant tuple of relation S in a
constant lookup time. While hash based indexes are efficient in the
case of checking for equality of keys in relations R and S, it is not
possible to perform greater than or less than operations, as with B-
trees, for example.

3.1.2 Join Indexes

The Join Index (JI) is a simple data structure with an efficient im-
plementation proposed by [23]. The join index as proposed here is a
prejoined relation stored separately from the operand relation. This
small size and separate storage achieves improved performance for

1 http://www.w3.org/XML/

11

12 path indexing techniques

complex operations and allows for efficient updates. For two rela-
tions R and S, and attributes A and B, where A is an attribute of R
and B an attribute of S, each tuple in the relations are uniquely iden-
tified by a system generated identifier denoted ri and sj respectively.
Therefore, the Join Index is defined formally as

JI = {(ri, sj) | f(tuple ri.A, tuple sj.B is true)},

With f a Boolean function defining the join predicate.
To allow for quickly looking up on r and s values each, the JI can

be clustered on r and s respectively. Achieving this is done with two
copies of the JI, one for clustering on r and the other clustered on s.
If only r or s is going to be used, only one JI may be used instead. In
this work, the join index is implemented using a B+ tree.

For path queries, it suffices to maintain multiple joins. Depending
on the query, every join may be done using the set of join indexes. If
so, all of the join indexes are joined. If it is not possible to perform
all of the joins with join indexes, then slower join algorithms need to
be used and combined with the possible join indexes. However, this
can be inefficient, since for every access path a new join index must
be built.

3.1.3 Jive and Slam Join

The join index as proposed by [23] is more efficient than other ad-hoc
methods such as hash joins and their variations. It is also described as
being simple, and therefore implementing it is easy. And it performs
well for selective joins. However, this algorithm performs inefficient
IO operations, reading in blocks only for a few tuples in some cases,
or blocks being read in multiple times during one integration of the
algorithm. The Jive and Slam join algorithms by [17] build on simple
join indexes by improving the efficiency of the IO operations. Cru-
cially, they only make one pass over the input relation. Join results
are stored in a transposed file, a vertically aligned data structure. The
algorithms are non-pipelined, as in they materialize views involving
joins. By using the join index from [23], the original input relations,
and temporary files, the Jive and Slam join algorithms provide a sig-
nificant improvement due to performing only a single scan of the
input relations. The authors of [17] also expand on the method of ex-
tending the Jive and Slam join to handle multiple relations. Creating
a multidimensional set of partitions, the algorithm can still execute
with only one pass over each input relation.

3.1.4 Bitmap Indexes

Bitmap indexes, as presented by [20], are efficient implementations of
join indexes. In a traditional index table, each index value is associ-

3.1 relational 13

ated with a list of row identifiers which have that value of the index.
These list of rows can be represented as a bitmap, where for key value,
the bit identifying a particular row is 1 if that row is a match for that
index. This is a particularly efficient when the number of key values
is small. When the number of attributes is large, the bitmap is likely
to be sparse and may not be efficient in space since it requires a large
number of zero bit values. In such a case, it is possible to use encod-
ing to reduce the size of the bitmap. Using bitmaps results in large
performance improvements, since large tables can be represented in
a condensed form. Further, bitmap indexes have enormous computa-
tion advantages by using AND and OR to combine predicates, given
that most hardware has specialized hardware to compute these oper-
ations quickly.

3.1.5 Main Memory Database Systems

In Main Memory Database Systems (MMDBS), the most useful sub-
set of the whole database can be kept in main memory. To achieve
this, designing a MMDBS focuses on efficient space utilization and
efficient processing of database operations. In [21] the DBGraph Stor-
age Model is presented which attempts to do this. Here, the database
is represented as a bipartite graph composed of a set of tuple-vertices,
a set of value-vertices, and a set of edges connecting these two sets.
Then it is only needed to store attribute values once, therefore saving
space. Relational tuples can be represented as a set of pointers to data
values. The use of pointers is space efficient when large values appear
multiple times in the database, since the actual value needs to only
be stored once. DBGraph implements primitive operations like which
can return for relation R the subset of tuples, ∆R, associated with re-
lation for a given value. This implementation allows for a different
approach to indexing. The simple join of R and S in DBGraph is a
full scan over the values in the Domainj and for each value in this
domain, using primitive operations to retrieve the subsets of R and
S which are containing tuples in R and S respectively where those
tuples are connected by an edge value of the join attribute. Then tak-
ing the Cartesian product of ∆R and ∆S gives the join result. This is
called the Join1 algorithm.

Since domains are shared across relations, the cardinality of the
whole domain can be large compared to the cardinality of R or S.
Therefore a faster join, Join2, works by first scanning the smallest
operand relation. The join attribute value of each tuple of this relation
is retrieved through the primitive operations. Then, with the set of
vertices the subset of tuples of the other operand relation with the
same value of join can be accessed.

In performance comparisons, the DBGraph Join2 algorithm always
performs better than the join algorithm using Inverted Indexes, but

14 path indexing techniques

not for the join algorithm using join indexes, as in [23]. However Join2

does perform better in the case where a relation is temporary.

3.2 path indexing

One way to index graph databases is to index based on features of
the graph. Graph features can be many things such as node or edge
labels, paths, trees, or subgraphs. Given a path query to execute on
a graph database, the path can be examined as a substructure in the
graph to find. The aim of feature based indexing is to perform sub-
structure search queries. Substructures which match the given query
are candidate results to return. [12]

3.2.1 DataGuides

DataGuides[8] are a framework for giving structure for semistruc-
tured data. The DataGuide is built by taking a graph of data and re-
turning a smaller graph with all of the nodes and edges of the same
type or class only used once, while maintaining the same hierarchy of
nodes and edges. Once this DataGuide is built, queries can be carried
out on the DataGuide to match the node in the query. DataGuides
are also annotated with a B-tree of the values of the nodes, allow-
ing fast lookup of specific nodes by comparing those returned here
with the nodes returned from examining the DataGuide. DataGuides
can be exponential in the size of the initial graph, requiring a pow-
erset of the nodes of the raw data. Fortunately, [18] shows that for
Strong DataGuides on trees will reduce to a 1-index, introduced be-
low, which does not exceed the size of the initial graph.

3.2.2 T-index

The T-index, or Template index, is a general index structure over
semistructured data[18]. T-indexes are associated with paths in the
graph as specified using path templates. T-indexes are computed by
finding a bisimilar relation of the graph, which can be done efficiently.
Objects in the database are grouped into equivalence classes, which
allows for the T-index template path to quickly query for relevant sub-
structures. Templates can be written in more general terms, to help
speed up more queries and to save space. Or, space can be traded
for more query speed by making more T-indexes on less general tem-
plates. Through query rewrites, a query can be evaluated under as
many or as relevant T-indexes as possible.

The 1-Index and 2-index, also presented by [18], are both special-
izations and generalizations of the T-index.

3.2 path indexing 15

The 1-index is designed to answer queries of the form P x, where
P stands for path expression. We must also introduce the concept of
a refinement, where an equivalence relation ≈ is a refinement if:

v ≈ u −→ v ≡ u

The 1-index is a rooted, labeled graph where each node represents
those nodes in the raw graph of their equivalence class, and has edges
representing edges between the nodes of the equivalence classes. For
each node in the 1-index, there is an associated list to all nodes in
the raw graph that are of the nodes equivalence graph. Therefore,
each node in the 1-index is only stored once and the 1-index does
not grow larger than the initial graph. A query evaluated over the 1-
index is done by first finding a path in the 1-index graph that satisfies
the query, and performing a union on all nodes that exist in the raw
graph of the same equivalence class of each node in the 1-index of
the query path.

3.2.3 A(K) Index

The A(K) index is a reduction from the 1-index[14]. Like the 1-index,
the A(K)-index partitions the nodes in the data into equivalence classes
using their K-bisimilarity. Two nodes are K-bisimilar if they have the
same incoming K-paths.

The 1-index and the DataGuide both precisely encode an entire
graphs structure, which includes long and complex paths. This re-
sults in large index structures. Also, without considering the com-
plexity of the graphs structure, the 1-index may compute separate
paths in the graph when, on a local level, two nodes might be more
similar than the 1-index accounts for. If the queries to be computed
on the graph are also going to be long and complex, then the 1-index
is a good choice. However, the authors of [14] build the A(K) index
under the assumption that real world queries will not be as complex
as the graph structure is, and instead take advantage of local similar-
ity. The A(K) index classifies nodes in the graph based on paths of
length K entering that node. This is achieved using K-bisimilarity as
defined in [14].

An index node from the K-bisimulation is constructed and inserted
into the index graph, and edges are created in the same manner as
for the 1-index.

The performance benefits of using the A(K) index manifest in real
world tests. In [14] queries were evaluated against data from a large
graph of movies, and with K = 3, the A(K) index reduced query
processing time approximately 47% compared to the 1-index, while
also being 63% smaller than the 1-index.

16 path indexing techniques

3.2.4 D(K) Index

The D(K)-index[3] is another level of generalization on the A(K) index,
by changing the value of K for different nodes based on the incom-
ing queries. Objects which usually appear in long path queries have a
higher K value than those which appear in short path queries. In this
way, the D(K) index is an adaptive structural summary of the gen-
eral class of graph structured documents. Further, the adaptability is
able to be changed on the fly. By this definition, the 1-index and the
A(K)-index are special cases of the D(K)-index. The construction of
the D(K)-index proceeds similar as for the A(K)-index, with a prepro-
cessing step to first compute the local similarity of the nodes in the
graph.

3.3 K-paths

The topic of K-paths is the specific topic addressed in this thesis. K-
paths are specifically defined in Section 2.2. The following subjects
most closely study the topic of K-path indexes as defined in this the-
sis.

3.3.1 Paths as Strings

Index Fabric [5] represents every path in the tree as a string and stores
it in a Patricia tree. This work utilizes ideas from [13] about indexing
on unbounded length string data.

In comparison with Index Fabric with a commercial DBMS using a
B-Tree index, the Index Fabric is faster by an order of magnitude or
more.

Index Fabric also builds refined paths, an optimization for highly
used paths for single lookup operations on those paths. Since paths
usually change slowly, many refined paths can be made.

3.3.2 GraphGrep

GraphGrep[22] is a hash based method for finding all occurrences
of a query in subgraphs. It allows for variable length paths. The ini-
tial construction happens only once, and is done by visiting every
node in every subgraph and enumerating all of the paths from that
node up to a fixed (small, usually 4) length and storing the path in a
hash table with a column for every subgraph where the value is the
number of paths in that subgraph. Doing this allows fast pruning of
subgraphs which do not contain the query path. Once the subgraphs
are identified, they are each scanned to find the matching path.

3.4 current state of path query evaluation 17

3.4 current state of path query evaluation

There are a number of papers which benchmark different database
systems, such as [10] and [24]. Here we present some of their find-
ings.

The work by [24] performs a comparison of the Neo4j graph database
against the relational Oracle Database and the system using the Green-
Marl Domain Specific Language. The experiment performed was the
Dijkstra’s shortest path algorithm. In their relational database, they
built an index based on a simple relation table with columns for
source node, destination node, and weight. For Neo4j, the example
implementation solution provided with the database is used. The re-
sults show that for this computation, the relational database with an
optimized SQL query always performs equally or better than the na-
tive graph database Neo4j. Yet the authors concede that in certain
query types, Neo4j outperforms the relational solution. Those solu-
tions tend to be ones with a large number of joins caused by a long
query path. In these cases, the number of joins needed to be com-
puted cripples the relational database.

In [10], a more comprehensive comparison of query evaluations
of different databases, and therefore different indexing structures, is
presented. The experiments are also conducted on a synthetic dataset
with typical queries found in the real-world. The dataset is the Lehigh
University Benchmark, a well known RDF benchmark containing uni-
versities, departments, groups, professors, and students in a social
graph. The graph databases tested in the paper are Neo4j as well as
Sparksee. Neo4j queries are written using the Cypher query language.
The authors note that the Neo4j query engine does not perform cost-
based query optimization, and performs queries as written. This is
an area that can be investigated more closely for finding speed im-
provements. The results show that even for typical pattern matching
operations such as triangle patterns, even unoptimized evaluations in
the relational databases perform better than an equivalent evaluation
with either of the graph databases in terms of query evaluation time.

4
A PAT H I N D E X D E S I G N

This chapter describes the structures and mechanics of how a path
index can be constructed, without going into details about a specific
implementation which is done in Chapter 5. Section 4.1 describes
the construction of paths from edge labels. Section 4.2 introduces the
concept of a path identifier, and how these can be constructed in a
deterministic fashion. Section 4.3 then describes how to form index
keys based on paths and path identifiers, with index keys being the
storage component in an index structure. Section 4.4 then explains
how the key for certain paths can be constructed in an alternate order,
based on query workloads in order to perform merge joins. Section
4.5 gives a description of how a path index can be built using a B+tree.
Section 4.6 then explains how searching with this index can be done
using search keys. Finally, Section 4.7 explains how such an index
structure can be maintained during transformations to the original
graph.

4.1 paths

First, paths are defined with respect to the index structure in this
work. Paths are vectors consisting of a set of edge labels. For exam-
ple, consider an alphabet with edge labels L1, ...Ln. An ordering is
assigned to these labels, e.g. alphabetically. Then with the labels in
sorted order, values can be assigned to them, values from 1, ...n. We
also consider the inverse of a label. For any label i, the inverse of the
label can be defined to be n+ i. With all labels and their inverse de-
fined, a K-path can be uniquely identified by a K-path vector (v1, ...vK)
where each vi is in the range [1...2n].

4.2 path identifiers

Based on a labeled path’s K-vector representation, a unique integer is
assigned to the labeled path to identify it.

To illustrate, suppose there is an alphabet consisting of two edge
labels: A and B. Let A be lexicographically first. Then, there are the
following path representations:

• A = 1

• B = 2

• A−1 = 3

19

20 a path index design

• B−1 = 4.

Now, let K=2. There are then the following possible K-paths:

A B A−1 B−1

AA AB AA−1 AB−1

BA BB BA−1 BB−1

A−1A A−1B A−1A−1 A−1B−1

B−1A B−1B B−1A−1 B−1B−1

Table 1: Possible K-paths for alphabet of A, B.

Each of these K-paths can be denoted by their respective K-vectors
as shown in Table 2.

〈1〉 〈2〉 〈3〉 〈4〉
〈1, 1〉 〈1, 2〉 〈1, 3〉 〈1, 4〉
〈2, 1〉 〈2, 2〉 〈2, 3〉 〈2, 4〉
〈3, 1〉 〈3, 2〉 〈3, 3〉 〈3, 4〉
〈4, 1〉 〈4, 2〉 〈4, 3〉 〈4, 4〉

Table 2: K-vector transformation of K-paths in Table 1.

And finally, these K-vectors can be mapped and referenced by the
value representing their ordering, namely: 〈1〉 = 1, 〈2〉 = 2, 〈3〉 = 3, 〈4〉
= 4, 〈1, 1〉 = 5, 〈1, 2〉 = 6, and so on.

4.3 keys

The index only stores keys, which are represented as atomic values.
The objective of the path index data structure is to maintain a col-
lection of instances of different paths from the graph. These unique
instances of specific paths need to be constructed in a standard fash-
ion following a set scheme such that specific elements of the path
can be identified, that different paths can be compared to each other,
and that these paths can be serialized. Such a formalized version of a
path is called a key, to be used in the same sense as in other database
models with key-value pairs.

A key must contain a minimum set of data to accurately describe a
specific path in the graph. It must contain either:

1. the unique identifiers of the nodes along the path, and the labels
of the edges between the nodes

2. the unique identifiers of the edges between the nodes in the
path.

4.4 path signatures 21

For example, Figure 5 shows the paths and patterns from the small
graph from Figure 4. Using these paths, we can construct keys using
the first method, with unique identifiers for the nodes along the path
and the labels of the edges along the path as shown below in Figure
6.

1 3

1 3

2 3

2 3

3 4

3 4

1 3 4

4 3 1

2 3 4

4 3 2

2 3 1

1 3 4

〈attends, 1,3〉

〈attends−1, 1,3〉

〈attends, 2,3〉

〈attends−1, 2,3〉

〈memberOf, 3,4〉

〈memberOf−1, 3,4〉

〈attends, memberOf, 1,3,4〉

〈memberOf−1, attends−1, 4,3,1〉

〈attends, memberOf, 2,3,4〉

〈memberOf−1, attends−1, 4,3,2〉

〈attends, attends−1, 2,3,1〉

〈attends, attends−1, 1,3,4〉

Path Key

attends

attends−1

attends

attends−1

memberOf

memberOf−1

attends memberOf

memberOf−1 attends−1

attends memberOf

memberOf−1 attends−1

attends attends−1

attends attends−1

Figure 6: Keys as built using the nodes and edges along paths in Figure 5.

Indeed, as the size of the graph increases, the number of possi-
ble paths increases greatly. Further, many of the paths are simply
different permutations of the same path. For a simple path, (Max)-
[attends]-(TU/e), there is the inverse of it, (TU/e)-[attends−1]-(Max).

4.4 path signatures

Up to now, paths, patterns, and keys make the assumption of defining
their internal order based on the logical order of the edge labels along
the path. From this, you can enumerate many different orderings of a
path and its inverse to perform a particular query on the index. How-
ever, if this path index is part of a a larger query evaluation solution,

22 a path index design

Result Set A

〈 person, job 〉

Alex, Electrician

Bob, Developer

Charlie, Carpenter

David, Builder

Eugene, Accountant

Result Set B

〈 location, person, company 〉

Alabama, David, ATT

Colorado, Eugene, KPN

Connecticut, Charlie, NYT

Delaware, Alex, ASML

Georgia, Bob, NBC

Table 3: Two different result sets which cannot be merge joined.

Default Signature

〈 location, person, company 〉

Alabama, David, ATT

Colorado, Eugene, KPN

Connecticut, Charlie, NYT

Delaware, Alex, ASML

Georgia, Bob, NBC

Modified Signature

〈 person, location, company 〉

Alex, Delaware, ASML

Bob, Georgia, NBC

Charlie, Connecticut, NYT

David, Alabama, ATT

Eugene, Colorado, KPN

Table 4: Result set B sorted on the left with the original, default, signature
compared to the same result set but with a different sort ordering
due to a modified path signature on the right. This allows for a
merge join with result set A from Table 3.

the results from a query on the path index could require a different
ordering of the results from a path index to be able to achieve a merge
join between different result sets. In these cases, it would be benefi-
cial to specify for a particular pattern and path identifier a special
ordering to use for the values in the key.

For example, consider a query A searching for the pattern 〈 per-
son, job 〉 and a query B searching for the pattern 〈 location, person,
company 〉, with the results of these two queries shown in Table 3.
However, if these queries were required to be joined such that they
could return the people which appear in both result sets, a merge
join would not be possible since the results from the second query
are first returned sorted by the location, and only then by the person.
To do a merge join between these two queries, a special signature can
be specified for the second query such that that pattern is stored with
the person node at the first item, and therefore the sort order will
match that of the first query. The sort order effects of using such a
path signature can be seen in Table 4, and the merged result set for
these two queries can be seen in Table 5.

4.5 b
+

tree design 23

〈 person, job 〉 〈 person, location, company 〉

Alex, electrician Alex, Delaware, ASML

Bob, developer Bob, Georgia, NBC

Charlie, carpenter Connecticut, Charlie, NYT

David, builder David, Alabama, ATT

Eugene, accountant Eugene, Colorado, KPN

Table 5: Merge join of result set A and result set B after using a modified
signature for result set B.

Now result set B from Table 3 can be merged with result set A by
using the modified signature specified in Table 4, and the results of
which can be seen in Table 3.

4.5 b
+

tree design

As a storage mechanism, the B+tree is ideal for a path index [4]. The
requirements are the ability to store and retrieve keys in as efficient
of a way as possible for large sets of keys which may exceed the
amount of internal memory in the system. In this regard, the charac-
teristics of a B+tree are ideal. B+trees are suited to situations where
the set of data to be searched is much larger than internal memory.
This is because the B+tree has a large fanout and traversing to the
leaf nodes of the tree can be done in only a few traversals. Specifi-
cally, locating a key stored in a b-order B+tree with n records can be
done in O(logbn) operations. Further, B+tree support range queries
naturally, given that the leaf nodes in the tree form a linked list. This
is necessary since the keys stored in the tree will be full enumera-
tions of paths, while searches will be done only for the path. Then,
searches can be done for the first record in the tree matching our pat-
tern, and by traversing along the linked list of leaf nodes we find all
the matching keys. Searching is explored in more detail in Section
4.6.

This design of a B+tree differs from the classical description. In the
context of path indexing, we only have the notion of fully specified
keys rather than key/value pairs where the value can be some data
or a pointer to a records file. With this in mind, only keys are stored
in the B+tree, and the "value" is being able to find all of the keys
matching a particular path id value in sorted order. The significance
of the sorted order is being able to specify not only which paths to
search for, but also specifying additional prefixes of full keys and
directly finding a smaller subset of keys to return. The notion of prefix
searching is explained in more detail in Section 4.6 below.

24 a path index design

〈Person, Job〉

Alex, Electrician

Bob, Developer

Charlie, Carpenter

David, Builder

Eugene, Accountant

〈Person, Location, Company〉

Alex, Deleware, ASML

Bob, Georgia, NBC

Charlie, Connecticut, NYT

David, Alabama, ATT

Eugene, Colorado, KPN

〈Person, Job, Location Company〉

Alex, Deleware, Deleware, ASML

Bob, Developer, Georgia, NBC

Charlie, Carpenter, Connecticut, NYT

David, Builder, Alabama, ATT

Eugene, Accountant, Colorado, KPN

Set A Set B

Set A ./ Set B

Figure 7: Sorted Merge Join of Set A and Set B where B is sorted with the
modified signature.

4.6 searching

The primary goal of a path index is to retrieve fully specified keys
from the index which represent paths in the graph. The canonical
search on the path index would be in the form of "Retrieve all keys
matching the path (x)-[edgeA]-(y)-[edgeB]-(z)". In this search, the path
[edgeA, edgeB] would be transformed into a path identifier as speci-
fied in Section 4.2, and a search operation would be initiated on the
index to search for all keys with the matching path identifier. For ex-
ample, consider searching for all keys with the path identifier "B" in
the tree in Figure 8. Starting from the root, the left most leaf node

4.7 updates 25

〈 B, 3, 4, 5 〉

〈 A, 1, 2, 3 〉 〈 B, 2, 3, 4 〉 〈 B, 3, 4, 5 〉 〈 B, 3, 7, 8 〉

Internal Node

Leaf Nodes

Figure 8: Small B+tree storing four keys in the leaf nodes.

is traversed to since the key in the root node had the same value in
the first position. Then, from the first node, we find the second key
matching our path identifier, and continue searching into the second
leaf node and finding the remaining two matching keys.

Another view to take on searching is that instead of merely defin-
ing searching as specifying a path identifier to find, we can define
a search in the tree to match the classical definition for a B+tree in
which you search using a fully specified key. However searching for a
specific key is not the desired search operation. Finding a specific key
would require to know the full key upfront. Searching for a specific
path identifier is a search for all keys where the first element of the
keys are identical to the path identifier, and the remaining elements of
the key are allowed to be any values. With this view, and by denoting
wild card values with an asterisk (*), a search for the path identifier
"B" in the graph in Figure 8 would be to search for the key:

〈B, ∗, ∗, ∗〉

A subsequent feature of this search key definition is that it becomes
possible to search not only for keys based on the path identifier, but
also on any prefix of the desired keys. In our example B+tree, a search
for keys with the path identifier "B" and the first node in the path hav-
ing the identifier of 3 would be more efficient by specifying additional
criteria in the search key. Without doing so, and only specifying the
path identifier "B", the search would traverse to the left leaf node and
inspect all keys until finding those which have the correct first node
identifier. By giving the more details search key prefix, 〈B, 3, ∗, ∗〉, a
search traversal would end in the right leaf node, and the desired
keys would be found sooner.

4.7 updates

An index structure must first be able to improve the performance of
query evaluations for the database they are assisting. In addition to
that, updates to the database also requires the index to update itself
to reflect the current state of the database. If any index is unable to do
this, then it is less helpful in situations where changes to the database
happen often. In situations where the database does not change often,
and queries are mostly read operations, then such an index may still

26 a path index design

be helpful. The subject of updates to the index and the graph at large
are explored in the section below.

4.7.1 A difference of perspective

Performing updates to a B+tree are relatively inexpensive. Locating
a key or leaf node requires O(logbn) operations, and inserting a key
and removing a key also require O(logbn) operations.

While the deletion of a specific key from the index is straight for-
ward, it is not straight forward on how to translate changes in the
graph to changes in the index. This translations requires the identifi-
cation of which keys to add or remove from the index. Graph changes
are assumed to be either node insertions or deletions, or edge inser-
tions or deletions. In both cases, the added or deleted entity will need
to be examined and all paths which intersect with that entity need to
be enumerated. For node or edge insertions, this can only be done by
performing a localized search in the graph. Such a search would be a
typical breath or depth first search of depth k, and inserting each path
found by this search into the index. Enumerating the different paths
that a newly inserted node or edge creates cannot be done without
doing such a search in the graph.

In the reverse case where a node or edge is removed from the graph,
the same operation can be performed as in the insertion case, making
sure to do the local search before the graph actually completes the
removal of the entity from the graph. Such a search would enumerate
all the paths the entity intersects with, and each of those paths can be
submitted to the index for deletion.

Considering the nature of what it means to remove a node or edge
from the graph and subsequently the index, some alternative solu-
tions exist which can handle node or edge deletion without needing
to reference the graph. When a node or edge is deleted, the informa-
tion which is needed to update the index is all of the paths which
that deleted entity belonged to. For example, in the example index in
Figure 8, if node with identifier 4 is deleted, the keys 〈 B, 2, 3, 4 〉 and
〈 B, 3, 4, 5 〉 must be deleted. Since the sort order of the keys in the in-
dex is optimized for searching first by path identifier, and subsequent
node identifiers in the order they appear in the path (unless there is a
special path signature specified), then it is not possible to find paths
in the index only by the identifier of the deleted node, 4. However, if
k + 2 duplicates of the index were stored, each with a different sort
ordering, it would be possible to search in each index with the first el-
ement of the search key set to the identifier of the deleted node. After
performing all k + 2 searches, all of the keys which contain that node
identifier will be found, and the index (including all the duplicated
indexes of different sort orderings) can be updated to remove those
found keys. This allows for removing keys from the index without

4.7 updates 27

referencing the graph. The cost of this solution is a k + 2 multiple
of both the space and time requirements of having one index and
performing a single delete on that one index.

5
I N D E X I M P L E M E N TAT I O N

With the rise of many NoSQL class databases, graph databases have
become more popular alternative database architectures due to their
data modeling properties. Further, certain query workloads cause re-
lational databases to perform an excessive number of joins when dis-
parate data tables are necessary to evaluate the query. In these cases,
graph databases can use their alternative data model to their advan-
tage and evaluate queries many times faster. A number of graph
databases have emerged, including Neo4j, Orient DB, Titan ArangoDB,
Giraph, and Sparksee. Of these, this work focuses on the Neo4j database.
Neo4j is the best choice as it implements the graph model through
to the storage layer. Other graph database systems rely on other
database implementations, making a path index implementation dif-
ficult. Further, Neo4j is currently the most popular graph database
publicly available [7].

In this chapter we describe the path index developed for the Neo4j
graph database. This path index provides improved path query eval-
uation compared to evaluating identical queries in standalone Neo4j,
shown by the results in Chapter 7.

In Section 5.1 the representation of nodes and edges in Neo4j and
their path index duals are described. Section 5.2 describes how paths
are mapped concisely to path identifiers. Section 5.3 details how searches
are executed in the path index and describes the search cursor which
searches resolve to. Section 5.4 gives an explanation of how the in-
dex structure is built, and the differences in this implementation
from the standard B+tree. Using the index can only be done with
a large enough dataset, which necessarily leads to Section 5.5 which
describes how an index can be efficiently initialized. Finally, in Sec-
tion 5.6 the compression schemes our index uses are discussed.

This path index implementation is open source work, being made
available for further research and development. 1

5.1 nodes and relationships

Neo4j implements the property graph model all the way to the stor-
age layer. Nodes and Relationships exist as unique data entities on the
disk. Nodes, node properties, relationships, and relationship proper-
ties are each stored in separate files. Nodes and relationships are as-
signed a unique identifier when they are created. Given a node identi-
fier, Neo4j can calculate an offset to use for directly finding the entry

1 https://github.com/jsumrall/Path-Index

29

30 index implementation

for that node in the node file, which resolves to pointers on where
to find the relationships and properties for that particular node. This
architecture is also used for relationships, and pointers to nodes con-
nected to relationships can be found by reading the relationships file
at the offset calculated by the relationship identifier. By knowing the
identifier of a node or relationship, you can reference all the infor-
mation in Neo4j about that node or relationship. For building a path
index, referencing only the node or relationship identifier is sufficient
for evaluating path queries. Neo4j assigns unique identifier values to
nodes and relationships, therefore reusing these values in the index
is the straightforward solution.

5.2 path identifier resolution

Given two paths with identical edge labels, the path index must pro-
duce an identical path identifier. For all paths in the graph where the
edge labels are not identical, our path index must produce a unique
path identifier. The implementation of building path identifiers is con-
ceptually similar to the procedure described in Section 4.2. The goals
of this implementation are to be fast in determining a path identifier,
being simple to construct the path identifier in the case of new edge
labels.

When parsing a path, the edges are examined in the order they ap-
pear in the path. Therefore, two paths with identical edge labels but
in different orders will produce a different path identifier. By examin-
ing the edges in the order they appear in the path, the direction of the
edges can be understood. All paths have a start node, and by exam-
ining edges beginning from the start node, the direction of the edge
can be determined with respect to the subsequent nodes in the path.
An edge is said to be forward if the ending node on the edge appears
later in the path than the starting node on the edge. Otherwise, the
edge is said to be backwards. Figure 9 shows a path where the first
edge in the path is backwards, and the remaining edge is forward.

When building a path identifier where certain edges in the path are
backwards with respect to the path, such a path identifier should be
unique from a path with identical edges where those edges are is in
the opposite direction. For example, in Figure 9, if the edge "drinks"
was reversed, the path identifier should not be the same as if it was
still backward. To fulfill this requirement, the edge labels of edges
determined to be backward are reversed before being concatenated
with the labels of the remaining edge labels. Doing so results in a
different hash value for paths where edge directions are reversed.
Figure 10 shows two paths, and the concatenated strings from each.

5.2 path identifier resolution 31

Water John TU/e
drinks attends

Figure 9: An example path with the first edge with label "drinks" being back-
ward, and the second edge with the label "attends" being forward.

Mark John TU/e

PathIdentifier((likes, forward), (attends, forward)) = hash(likes attends)→ 123

likes attends

Mark John TU/e

PathIdentifier((likes, backwards), (attends, forward)) = hash(sekil attends)→ 456

likes attends

Figure 10: An example path with the first edge with label "drinks" being
backward, and the second edge with the label "attends" being for-
ward.

5.2.1 Mapping Dictionary

While paths are the underlying item stored in the index, only the
identity of the path is necessary for the workloads defined in this
paper. The primary concern of the index is to answer queries for a
specific path without doing any deconstruction of the indexed path.
The consequence of this is the lack of need of storing the edges which
make up the path in an addressable way, rather, only the full path
needs to be addressable or identifiable. Edges along a path are iden-
tified by labels represented as string literals. As these string literals
can be varying length, combined with the K number of string literals
for each edge along the path, it is inefficient to store the full set of
edge labels which make up each path within the path index. Instead,
the concatenation of the string literals of the edge labels of the path
are replaced by ids using a mapping dictionary. This has the effect of
reducing the size of paths in the index, by only storing the ids of the
paths. Further, this simplifies query processing, as operating on the
index can be done more quickly when comparisons are done between
path ids rather than string literals.

The cost of this is the need for the mapping dictionary. When
querying the index, the concatenation of the edge labels must be con-
structed and used to determine the path id to use with the index. This

32 index implementation

can be implemented using numerous methods, and in this work the
mapping dictionary is constructed using a hash map. In the data sets
tested in 7, the number of paths is small and the implementation of
the mapping dictionary is not a concern.

5.3 search cursor

This implementation of a path index provides support for searching
using any prefix of a key stored in the index. In the general case,
this is a search only using the path identifier. However, the search
infrastructure does not differentiate between a search using a path
identifier and a search with a path identifier and additional node
identifiers. To achieve this, the comparison utility for evaluating the
difference between two keys is modified to handle the case of a key
with unspecific suffixes. In the insertion operation in the index, key or-
der is maintained by comparing two keys and determining and order
between them. In a traditional search operation in a canonical B+tree
with a fully specified search key, the tree is traversed by comparing
the search key to the keys in the internal nodes. This implementation
of the B+tree lets the search key contain unspecified elements. When
comparing the search key containing unspecified elements to a key in
the tree, the unspecified elements are considered to be lexicographi-
cally before the specified element they are compared to. Doing so, a
search key with only the path identifier specified will result in a tree
traversal which leads to the first element containing that path identi-
fier. However, since the first element of the search key is specified, the
traversal will lead to the leaf node containing the first element with
that same path identifier and not any other location.

5.3.1 Edge Case Consideration

In certain traversals, there is an edge case where an extra page access
is required to ensure the actual first key of a particular path identifier
is found. Figure 11 demonstrates a certain situation where this addi-
tional page access is necessary. Consider the situation where there is
a search for the path identifier "B" in the tree in Figure 11. From the
internal node, in both trees, we would traverse from to the left most
leaf node since our search key has unspecified elements when com-
pared to the full specified key 〈 B, 3, 4, 5 〉. In the top most tree in the
figure, this is the correct traversal to make. However in the lower tree,
this traversal does not find any keys in the left most leaf node with
the path identifier "B", and has to traverse to the following leaf node
to find the first result.

5.4 b
+

tree architecture 33

〈 B, 3, 4, 5 〉

〈 A, 1, 2, 3 〉 〈 B, 2, 3, 4 〉 〈 B, 3, 4, 5 〉 〈 B, 3, 7, 8 〉

Internal Node

Leaf Nodes

〈 B, 3, 4, 5 〉

〈 A, 1, 2, 3 〉 〈 A, 1, 2, 5 〉 〈 B, 3, 4, 5 〉 〈 B, 3, 7, 8 〉

Internal Node

Leaf Nodes

Figure 11: B+trees with different keys in the first leaf, demonstrating the
need for an additional page access in these situations.

5.4 b
+

tree architecture

5.4.1 Page Design

In the design of the tree, nodes are either internal nodes with refer-
ences to other nodes lower in the tree and keys which direct traversals
to those lower nodes based on a search key, or nodes are leaves which
only contain keys. However all nodes contain a header with the es-
sential information needed to interact with the node. The headers
contain the references needed to find both the proceeding and follow-
ing sibling of the node. This is necessary for the linked-list structure
with the leaf nodes form, and allows for searching along the leave
nodes for a range of values. The header also includes information
about the number of keys in the node, and whether the node is a
leaf or internal node. By including this information we can more ef-
ficiently pack more information into the nodes by following a strict
schema for both internal and leaf nodes and not requiring delimiter
values between items within the nodes.

Header

25 B

Child Child Child

8 B 8 B 8 B

Key Key

(K+ 2) ∗ 8 B (K+ 2) ∗ 8 B
(a) Internal Node

Header

25 B

Key Key Key Key

(K+ 2) ∗ 8 B (K+ 2) ∗ 8 B (K+ 2) ∗ 8 B (K+ 2) ∗ 8 B
(b) Leaf Node

Figure 12: Layout of the internal and leaf pages of the B+tree.

34 index implementation

Figure 12 details the structure of both the internal and leaf nodes.
The internal nodes contains the 25 byte header, followed by the ref-
erences to the children nodes, followed by the keys which sort the
children nodes. The leaf node contains the 25 byte header, followed
by the keys. Since the header contains information about the number
of keys in the nodes, it is possible in the internal node and the leaf
node to directly navigate to specific keys in the node by calculating
an offset value based on the size of the keys and the ordered position
of the desired key.

Path ID

8 Bytes

Node ID

8 Bytes

Node ID

8 Bytes

Node ID

8 Bytes

Figure 13: Structure of an uncompressed key for a path with two edges.

5.5 fast index initialization

1 2 2 3
a b

(a) Two separate paths of length one.

1 2 3
a b

(b) Path of length two constructed from the
paths above.

Figure 14: Two paths of length one, where a path of length two can be con-
structed by concatenating these edges together on the common
node labeled "2".

For the path index to be used it must first be constructed by identi-
fying and storing all of the paths which are desired to be indexed. In
this work, the full index is constructed containing all possible paths
up to length K. The method used to enumerate all the paths of length
K is scalable to handle any size of K. However, in this implementation,
the largest supported K for value for this operation is 3.

In modestly small graphs, with only a few million nodes and edges,
the number of paths up to length 3 can still be quite large. The cho-
sen method for enumerating all possible paths can have a large effect
on the time required to complete this initialization operation. One
method for enumerating all possible paths is to perform a query on
the database for a path of the desired length with no bindings on
nodes and edges along the path. This method has a number of prob-
lems. The first is that the database is not optimized for this type of
query, and enumerating through the entire result set is a slow oper-

5.5 fast index initialization 35

ation. However this disadvantage is small compared to the problem
or the sort order of the paths. When querying the database for all
K-length paths, the results will not be in the correct sort order for
storing in the index. This necessitates sorting the keys such that bulk-
loading of the B+tree can be done.

An alternative, and the implementation used in this work, is to it-
eratively build up the index in a bootstrapping fashion. This is done
by building larger K paths using smaller paths which have already
been indexed. The process begins with the smallest paths of length
one. These paths cannot be built by the index and must be retrieved
by the database. Fortunately this database offers a fast operation for
enumerating all edges in the graph, which is exactly what the paths
of length one are (the set of all edges). We enumerate all of the paths
of length one, and perform an external memory merge sort on these
paths, bulk loading them into the B+tree index. The external sorting
implementation and bulk index construction is discussed in more de-
tail in Section 5.5.1. We also store the inverse of these paths of length
one by reversing the edge and storing that value in the K1 index.

With the K1 index constructed, the K2 index can be constructed by
doing a concatenation of all paths of length one where the paths have
a common node between them at the appropriate ends of the path.
An small example of this is illustrated in Figure 14, where there are
two paths of length one with a common node between them at the
correct ends. The top edge has its ending node with ID 2, and the
bottom edge has its starting node with ID 2. These two edges can
then be merged in the K2 index to form the path with edge labels
a,b and nodes 1, 2, and 3. Since the inverse of the K1 edges are also
stored in the index, the paths of length two with an inverse edge in
the first, second, or in both positions will also be enumerated. The
inverse edges are not shown in Figure 14.

Building the index in this way is not only faster than using the
database to enumerate all the paths, but since we store the informa-
tion about all nodes along the path, the concatenated paths are also
constructed in sorted order. Beginning with the K1 index and build-
ing the K2 Index, the edges from the K1 index are examined in sorted
order, and merging attempts are made with other paths also by enu-
merating through all of the paths, in sorted order.

It is important to iterate over the smaller indexes in the correct
order to preserve the sort ordering with the larger index being con-
structed. The iteration order is shown in Figure 16.

5.5.1 Bulk Index Construction

Many of todays datasets already exceed the amount of main memory
in an individual computer. As datasets and memory sizes increase,
datasets will likely continue to outpace the growth of available main

36 index implementation

1 2

2 3

2 4

3 4

a

a

b

b

(a) K1 Index

1 2 3

1 2 4

2 3 4

a a

a b

a b

(b) K2 Index

Figure 15: Building the K2 index using the K1 index, while remaining sorted.

for Each PathA in the K1 Index do
for Each PathB in the K1 Index do

for Each keyA of PathA do
for Each keyB of PathB where starting node of keyB
matches ending node of keyA do

Insert merged path in K2 Index;
end

end
end

end

Figure 16: Algorithm for the iteration order for building the K2 index from
the K1 index and maintaining sorted order.

memory. While this work focuses on the performance of a path index,
it is crucial that constructing the index be possible in a reasonable
amount of time. This is both for the usability of the index in general
but also and for the feasibility of constructing the indexes on the
datasets in Chapter 6.

Inserting a full dataset into a B+tree one-by-one is a known subopti-
mal solution [9]. This causes the B+tree to sort the input, and the time
spent doing a tree traversal on each insert and splitting when neces-
sary can be very slow compared to the alternative of bulk-loading
the index. To bulk load the index, the input must first be sorted. To
achieve this, an external merge sort algorithm is implemented to han-
dle the sorting of the paths in the cases where the number of paths is
large enough to not fit within main memory. The algorithm is a stan-
dard implementation of the external memory merge sort [15], where
the comparison of the sorted values uses our lexicographical order-

5.6 compression techniques 37

ing of the different values within the keys. The merging algorithm
has a tunable parameter, known as the fan in. This value determines
how many sorted sets are merged together in each pass. The fan in
of the merging process is chosen by experimenting with different val-
ues and choosing the value resulting in the fastest time in our bench-
marks. These benchmarks are shown in Table 6, and the best value
in the tests with one million and ten million keys is a fan in value of
four.

Compression of the keys is not applied during this phase of build-
ing the index, as the compression scheme is only able to produce
any significant compression when the data is in sorted order. More
information about the compression scheme is provided in Section 5.6.
Without compression, the set of keys can require a significant amount
of space. However, by iterating over the index of the smaller path
lengths and building the larger indexes in sorted order, this sorting
only needs to be done when initially building the K1 index.

After sorting the keys, the output of the sorting operation are the
keys sorted and stored in the blocks of memory which are used as
the leaves of the B+tree. The upper leaves of the B+tree above the leaf
level are then built. This is done iteratively, building levels of internal
nodes of the B+tree until a level is reached where only one internal
node is needed. This node then represents the root of the tree.

Sort Time

Fan In 1,000,000 Keys 10,000,000 Keys

2 3.0 seconds 3.1 seconds

4 3.0 seconds 3.0 seconds

8 3.4 seconds 3.3 seconds

16 3.4 seconds 3.5 seconds

32 3.7 seconds 3.8 seconds

64 3.8 seconds 3.9 seconds

Table 6: Sorting time with different values for the fan in of the external mem-
ory merge sorting algorithm.

5.6 compression techniques

Payload

1 Byte

Header

Delta

1-8 Bytes

Path ID

Delta

1-8 Bytes

Node ID

Delta

1-8 Bytes

Node ID

Delta

1-8 Bytes

Node ID

Figure 17: Structure of a compressed key for a path with two edges.

38 index implementation

The constituent elements of the keys are all standard 8 byte long
values, where the first value is always the path id and the following
K + 1 elements are node ids. These elements can be termed value1,
value2, value3, value4, Within the index, keys are sorted lexico-
graphically by (value1, value2, value3, value4). This ordering causes
neighboring keys to be similar. Most keys have the same values in
value1 and value2 in particular, since many neighboring keys have the
same path ids and the same starting node id along the path. This
is similar to the situation in [19] on efficiently storing RDF triples,
and allows for a similar compression scheme. This technique bor-
rows ideas from inverted lists in text retrieval systems. The compres-
sion method involves not storing the full key. Instead, the changes
between keys is what is stored. This results in a high compression, as
the changes between keys is much smaller than the full key itself.

For each value in the key, the delta to obtain this key from the pre-
vious value is calculated. Once each delta is obtained, the minimum
number of bytes necessary to store the largest delta for this key is
found. Each delta is then truncated to only that minimum number of
bytes. A header byte contains the value representing the number of
bytes for each delta. Each delta requires between 1 byte and 8 bytes,
depending on the size of the delta. This index does not store dupli-
cate keys, so there is never the case where all delta values can require
zero bytes.

Often, the prefix between keys can be identical to the previous key,
while the final value in the key can require a large delta. In the com-
pression scheme above, we would allocate the number of bytes to
store the large delta, but the delta for the first few values would be
zero. The maximum number of bytes needed to store deltas is 8 (when
the delta requires the full 8 bytes), and the minimum number of bytes
is 1. These seven different values can be stored in 3 bits, leaving 5 ad-
ditional bits unused. To compress even more, the first 5 bits in the
header can be used to signal when the corresponding value has a
delta of zero, essentially forming a gap in the series of deltas stored
for this key. By signaling this in the header, we can avoid writing the
delta for that value altogether, and only write the values which has
a non-zero delta. In this implementation, we only consider the first
two deltas for header bit encoding. We call these bits gap bits, as they
indicate a small gap in key where the delta is zero and not written.

Gap Gap Payload

1 Bit 1 Bit 6 Bits

Header

Delta

1-8 Bytes

Path ID

Delta

1-8 Bytes

Node ID

Delta

1-8 Bytes

Node ID

Delta

1-8 Bytes

Node ID

Figure 18: Structure of a compressed key with gap bits for a path with two
edges.

5.6 compression techniques 39

In [19], the comparison between bit-level versus byte-level compres-
sion has been made. The conclusion the authors draw is the excessive
CPU cost of doing bit-level compression is not worth the size savings
compared to doing only byte-level compression. In many situations,
the byte-level compression even results in better compression sizes
due to the nature of the values stored in the keys— namely, the typi-
cally small and increasing difference between values.

Compression is only applied to individual leaf pages, never across
pages. Compressing larger portions would produce a smaller over-
all index, but at a cost of usability. By only compressing individual
pages, the design of the index does not change from a normal B+tree.
We can still traverse to any leaf node and immediately begin read-
ing keys. If larger portions of the index were compressed together,
then those additional portions would need to be fetched and decom-
pressed before beginning to read keys.

Compression is also not applied to pages representing internal
nodes in the B+tree. Internal nodes in the tree account for a much
smaller share of the total number of pages in the tree, as most pages
are leaves. Further, there is the assumption that internal pages will
be accessed often during traversals, and the additional decompres-
sion time on these pages does not justify the possible space savings
compressing the pages would yield.

LUBM Dataset - Comparison of Compression Size

Index Uncompressed LZ4 Path Index

K1 0.16 GB 0.053 GB 0.02 GB

K2 15.99 GB 3.67 GB 1.69 GB

Table 7: Benchmark of compression techniques comparing the compressed
data size.

Using this compression technique results in significantly reduced
index sizes. This compression method works better than using gener-
alized compression algorithms in terms of speed and implementation
clarity. The LZ4

2 compression library is used to compare the compres-
sion scheme described above. LZ4 is a lossless compression algorithm
related to the LZ77 type compression schemes. LZ4 is fast, but it does
not compress as well as other compression algorithms such as gzip
or bzip2. A comparison of the size of resulting indexes from each
compression technique is shown in Table 7, and a comparison of the
speed of the compression techniques is shown in Table 8. The compar-
ison is done by inserting sequentially increasing keys into the index
and measuring throughput time and final index size.

2 https://github.com/jpountz/lz4-java

40 index implementation

LUBM Dataset - Comparison of Compression Time

Index Uncompressed LZ4 Path Index

K1 < 1 Minute 4 Minutes < 1 Minute

K2 28 Minutes 266 Minutes 27 Minutes

Table 8: Benchmark of compression techniques comparing compression
speed, with times rounded to the nearest minute.

The comparison shows that the implementation done in this work
beats the LZ4 algorithm is terms of speed and compression size. For
the K2 index, the LZ4 compression algorithms runs in 226 minutes
and compresses the index to 3.67 gigabytes, compared to the path
index which runs in 27 minutes and compresses the index to 1.69

gigabytes. The implementation of the pages in the B+tree do not al-
low both the LZ4 algorithm and the compression scheme used in
this work to perform at their fastest speeds, but this comparison does
show that relative to each other, our compressions scheme is better in
both aspects.

6
E X P E R I M E N T S E T U P

To evaluate our path indexing implementation we have conducted
a number of experiments. In this chapter the goals of the experi-
ments are discussed, the setup of the experiments is described, and
the datasets used in the experiments are presented. A discussion of
the obtained results follows in Chapter 7.

6.1 objective

The purpose of conducting these experiments is to answer the follow-
ing questions:

1. How effective are path indexes for paths up to k-length at an-
swering path queries of the same length?

2. How effective are path indexes for paths not up to k-length at
answering path queries of a greater length by performing merge
joins on sub paths?

3. How well can path indexes be built for different datasets of
different graph density?

4. How expensive is the full path index initialization up to length
k?

5. How expensive is path index initialization based on query work-
loads?

6.1.1 Datasets

Experiments are run on three different datasets. Each dataset comes
from a different source and are of different sizes. Two datasets, the
Lehigh University Benchmark (LUBM) dataset [11] and the Linked
Data Benchmark Council (LDBC) dataset [2] are synthetic datasets,
while the Advogato dataset [1] is a real-world dataset. It may be the
case that certain properties of these datasets and their different sizes
expose differences in effectiveness of path indexing.

6.1.2 Queries

The queries used here are taken directly or are derived from the
queries supplied with the dataset. For the LDBC dataset, Cypher

41

42 experiment setup

(a) K1 Pattern (b) K2 Pattern (c) K3 Pattern (d) Triangle
Pattern

Figure 19: Different query patterns.

queries are supplied by Neo4j. However, these queries originally in-
clude filtering on certain node properties. In this work, these filters
are excluded and the queries report all matching paths. For the LUBM
dataset queries, the original queries supplied with the data generator
are used as Cypher equivalents as used in [10]. For the Advogato
dataset, we provide our own queries. The number of possible paths
in the Advogato dataset is small since the number of edge labels is
small. Therefore the consequence of choosing queries is assumed to
be small.

Figure 19 depicts the different shapes the path queries take. In this
work we focus on queries which can be represented as a path. In
some cases, the end points of the path are the same node, leading to
the triangle query pattern. We can also perform queries with a prop-
erty filter on one or more nodes or edges along the path. Since these
properties are not stored in the path index, it is necessary to check
the property values of nodes or edges which are being filtered on by
making requests to the Neo4j database. The aim of these experiments
is to evaluate the performance solely of the path index, and therefore
queries with node property filters are not focused on in these experi-
ments. There is however one query in the LUBM experiments dataset
with a node property filter, and it is included only for the sake of
having the complete set of queries tested. In the LDBC queries how-
ever, these filters are removed since they are originally part of all of
the queries. The discrepancy of including the filter in one query in
the LUBM dataset and not including it in all the LDBC queries is not
expected to influence the results of the experiments since the com-
parison will be done on a query-by-query basis with Neo4j. By not
considering these filters, the experiments better highlight the perfor-
mance of the path index in comparison to Neo4j. Considering these
filters is a suggestion for future work, in Section 8.2.

6.2 setup

In this section details of the experiments are presented including
what is measured, how that is measured, and in what environment
the experiments are conducted.

6.3 datasets 43

6.2.1 Measurement

The measured data in these experiments is time. When comparing the
path index to the database, the comparison is made by the difference
in time to retrieve the same result sets. Shorter times indicate a faster
and more efficient result set retrieval. Only the time needed to re-
trieve the results is compared. The time needed to open and close the
database or index is ignored. For the database, we do not record the
time needed to open and close a transaction event. For the index, we
do not record the time needed to determine the path ID of the path to
be searched. The total number of path IDs is small, and therefore in
the experiments the path IDs are hardcoded into the query. Elapsed
time is measured internally using Java’s System.nanoTime() function,
which according to the Java documentation provides the value of the
most precise available system timer.

In the experiments on the full indexes, each query was executed 5

times per run, with 6 runs conducted. Between each run, the systems
cache was flushed using the command sync && purge. In OSX this
is the equivalent to doing sync && drop_caches on a unix system. On
each run, the first execution is considered a "cold" run, with empty
caches, and the following runs are considered "warm" runs, where
the system cache is likely to provide better evaluation times. These
results are kept separate. Once all the results are collected, we exclude
20% of the data points from the top and bottom tails of the data set.
This removes the outliers from the dataset. We then report the mean
computed from the remaining values.

6.2.2 System Specifications

All experiments are tested on a Apple Macbook Pro (MC721LL/A)
with an Intel 2.0 GHz Core i7 (I7-2635QM), 8 GB of main memory,
and a Samsung 850 EVO solid state disk drive capable of random
read performance of 98,000 IOPS and random write performance of
90,000 IOPS. The operating system is OSX Yosemite, version 10.10.3
build 14D136.

All experiments were conducted using the latest version of Neo4j
available at the time. The tested version is Neo4j 2.3.0-M01.

6.3 datasets

The experiments are conducted on three different datasets of different
sizes and from different domains. These datasets are described in the
following sections.

44 experiment setup

Original Query 7:

MATCH (x)-[:memberOf]->(z),

(x)-[:undergraduateDegreeFrom]->(y)<-[:subOrganizationOf]-(z)

RETURN ID(x), ID(y), ID(z)

Rewritten Query 7:

MATCH (x)-[:undergraduateDegreeFrom]->(y)<-[:subOrganizationOf]-(z)<-[:memberOf]-(x)

RETURN ID(x), ID(y), ID(z)

Figure 20: Rewriting of query 7 from [10] to be a single path used in the
experiments in this paper.

6.3.1 Lehigh University Benchmark

The Lehigh University Benchmark (LUBM) is a data generation tool
developed to perform evaluations on semantic web repositories in a
systematic and controlled way [11]. The dataset is well-known and
widely used for testing RDF systems. The data generated the LUBM
tool models the university scenario. The dataset contains universities,
departments, students, teachers, research groups, and publications.
In these experiments, the data is generated with a scale factor of 50,
meaning the dataset contains 50 universities from which to generate
data from. The generated dataset contains approximately 6.8 million
unique triples. This work follows the same data preparation steps
taken by [10] to use this dataset with Neo4j, except the dataset is
not enriched with inferred facts derived from the ontology rules. For
example, nodes of type Associate Professor do not also get the more
general label Professor, which is inferred in the dataset. LUBM is pro-
vided with 14 different queries, and in this paper only the 9 queries
used by [10] are considered. Certain queries in the LUBM dataset are
of variable length, meaning certain edges can be repeated a certain
number of times and the path can be a range of lengths. In this pa-
per, these variable queries are considered to be queries of different
paths, and not studied. Instead these queries are rewritten to specify
the exact path to match. In all cases, these variable number of edges
are specified to only have one occurrence of the edge. The queries are
also rewritten such that they can be represented as a single path, and
unspecified edge directions are given a direction. For example, Query
7 as written in [10] is shown in Figure 20, and its rewriting in this pa-
per is shown below it. The memberOf edge from node x to node z is
appended to the second line, removing the need for two paths and
instead forming a single path. The queries used are shown in Section
A.1.

The number of nodes and edges in Lehigh University Benchmark
is show in Table 12.

6.3 datasets 45

length Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

K1 X X X

K2 X X X

K3 X X X X

Table 9: Length of each query for the LUBM dataset, where length is the
number of edges in the query pattern.

6.3.2 Social Network Benchmark

The Social Network Benchmark is the first workload released by the
Linked Data Benchmark Council, an independent authority respon-
sible for specifying benchmarks [2]. The Social Network Benchmark
models a social network similar to that of Facebook. The datasets con-
tains persons and a friendship network that connects people together.
The majority of the data is represented as messages posted by users.
The queries for this dataset are also provided by the LDBC. Specifi-
cally in this paper we use the SNB-Interactive workload. This work-
load contains complex read only queries which have many filters and
specifications on node and edge properties. In these situations, the re-
quirements on properties are removed, and only the underlying path
query is used for these experiments. After identifying the underlying
path query, similar queries are removed from the test set. The final
set of queries used is shown in Section A.3.

The number of nodes and edges in LDBC - Social Network Bench-
mark is shown in Table 12.

length Q1 Q2 Q4 Q5 Q7 Q8 Q10 Q11

K1

K2 X X X X

K3 X X X X

Table 10: Length of each query for the LDBC-SNB dataset.

6.3.3 Advogato

The Advogato dataset is a trust network from the Advogato online
community discussion board for developers of free software [1]. Ad-
vogato uses a trust metric to determine a single global trust value
for each user. This value is computed by the ratings users give to
each other. These ratings can be three possible values: apprentice, jour-
neyer, and master. Advogato uses this trust to allow users to access
certain administrative controls for the message board. The graph con-

46 experiment setup

structed from this dataset contains nodes which represent the users,
and edges between nodes are the ratings users give to each other. Us-
ing a real dataset compared to the synthetic datasets is important in
determining if our path index is applicable in these different situa-
tions. The Advogato dataset does not have specified queries. There-
fore the queries were formulated to test the path index on paths of
the greatest length indexed, where the path forms a complete loop.
The queries used can be seen in Section A.2.

The number of nodes and edges in Advogato dataset is show in
Table 12.

length Q1 Q2 Q3 Q4 Q5

K1

K2

K3 X X X X X

Table 11: Length of each query for the Advogato dataset.

6.4 result set sizes

Each dataset contains different sizes of result sets for each query. The
Advogato dataset is the smallest, followed by the LDBC-SNB dataset.
The table below shows the number of nodes and edges contained in
each dataset, followed by the number of results found for each query
of the datasets.

6.4 result set sizes 47

set lubm ldbc-snb advogato

Total Nodes 1,083,848 212,317 6,539

Total Edges 6,659,576 2,194,716 98,262

Q1 519,842 31,754 19,555

Q2 1 844,159 42,852

Q3 35,973 - 14,767

Q4 1,433,737 760,383 1,844

Q5 7,726,641 5,506,078 1,044

Q6 519,842 - -

Q7 130 34,485 -

Q8 13,639 45,865 -

Q9 14,861 - -

Q10 999 845,075 -

Q11 - 69,729 -

Table 12: Number of nodes and edges in each dataset and the size of the
result set for each query of each dataset.

7
E X P E R I M E N TA L V E R I F I C AT I O N

In this chapter the results of the conducted experiments are discussed.
Additional details about the setup of the experiments can be found in
Chapter 6. Section 7.1 shows the baseline speed of the index on per-
forming insertion, deletion, and read operations. Section 7.2 shows
the sizes of the constructed indexes. Section 7.3 gives the results of
the experiments conducted using the full K-path index. Section 7.4
presents the result of the workload based experiments, with indexes
constructed based on the query workload. Section 7.5 concludes with
a discussion about the results found.

There are two types of experiments conducted. The first experi-
ments use the full set of K1, K2, and K3 paths from the datasets. Us-
ing these full indexes, the queries for each dataset are evaluated us-
ing the indexes as well as with Neo4j. The second set of experiments
are termed "Workload driven" where the indexes only contain the K1
paths from the datasets, and additional paths of length K2 and K3

are built at query evaluation time using the K1 index and performing
joins to build up the larger paths. These workload driven experiments
are designed to highlight the additional cost of selectively building
the path index while providing improved query performance on sub-
sequent queries of the same path.

7.1 benchmark

number of keys

Performance 1,000,000 10,000,000 100,000,000

Insertion (Micros/op) 8.5 6.8 6.8

Read (Micros/op) 8.6 5.1 5.2

Delete (Micros/op) 14.1 17.0 17.2

Table 13: Benchmark of the performance of the path index on basic I/O op-
erations.

The first tests on the path index are the speed in which basic index
operations can be completed. This index implements searching, inser-
tion, and deletion of paths. These three operations are run on succes-
sively larger sizes of data to find the average time each requires. In
this experiment, the data is generated randomly. Paths inserted into

49

50 experimental verification

the index are of length 3, therefore requiring four values to be stored
in the keys being inserted. The results are shown in Table 13. The data
shows that at 100 million keys, the index provides an insertion time
of 6.8 microseconds per operation, a search time of 5.2 microseconds
per operation, and 17.2 microseconds per operation.

7.2 index construction

For the first experiments with the full index of K1, K2, and K3 paths,
the index building time is not reflected in the query evaluation time.
The construction of these indexes is done in a separate operation. The
time needed to build the indexes and the size of the indexes for all of
the datasets are shown in Table 14.

lubm

size(gb) time(min)

k1 0.02 0.20

k2 1.69 27.28

k3 41.58 178.26

workload 0.1 4.3

ldbc

size(gb) time(min)

k1 0.0003 0.006

k2 3.94 21

k3 220.1 501

workload 0.038 2.2

advogato

size(gb) time(min)

k1 0.0003 0.002

k2 0.29 0.11

k3 4 3.6 5.1

workload 0.0083 0.3

Table 14: Size and build time for K 1, 2 and 3 indexes on different datasets.

The K1 indexes for all datasets are small— the largest being 20

megabytes for the LUBM dataset. These indexes are also fast to build,
the largest also being from the LUBM dataset and requiring 12 sec-

7.3 full K-path indexes 51

onds. However, the size and building time rapidly grows as longer
paths are indexed. For the full K2 index, the LDBC-SNB dataset takes
3.94 gigabytes and 21 minutes to build. However, the K2 index for the
LUBM index is smaller at 1.69 gigabytes. This rapid growth becomes
even more problematic for the full K3 index, requiring 220.1 gigabytes
for the LDBC-SNB dataset. This is again larger than the correspond-
ing K3 index for the LUBM dataset, which requires 41.58 gigabytes.
The Advogato dataset is smaller for all index sizes, with the K3 index
requiring 3.6 gigabytes.

In addition to the indexes for the full K1, K2, and K3 paths, Table
14 also provides the size and building time of the indexes produced
by the workload based experiments from section 7.4. These indexes
contain the full K1 index as well as the paths and subpaths needed to
evaluate the queries specified for each dataset. To build the K3 paths,
three different paths from the K1 index must be joined together. When
joining two paths, the sorted property of the paths allows for a fast
merge join operation to be used. However, with three paths, there will
be one join out of the three that cannot be done directly via a merge
join. This is because the results from performing a join on two of the
paths will not be in sorted order and able to be merge joined with the
third path. There are two ways to perform a join on these results:

hash join : After joining two of the paths, a hash index must be
built on the smaller of either the merged paths or the remaining
third path using the ID of the node to be used to join the paths.
After merging the results, insert the new paths into the index.

sort merge join : After joining two of the paths, sort the interme-
diate results, and then perform a join with the third path. After
joining the results, insert the new paths into the index.

In this implementation, a modification of the second option is used.
The intermediate results are sorted by inserting them into the index.
Then, a new join operation is performed on these sorted paths which
are now in the index, and they are joined with the third path. The
new paths are also inserted into the index. Inserting the intermediate
results into the index is a more expensive operation when considered
in isolation, however it is cheaper for subsequent queries which can
use intermediate merge operations when joining with another third
path. Otherwise, this intermediate result would have to be recalcu-
lated. The time needed to do these operations is included in the time
reported for each workload index in Table 14. We see that the largest
workload index is on the LUBM dataset with a size of 10 megabytes.

7.3 full K-path indexes

The first experiments are on the full K-path indexes. The query eval-
uation time is affected by the caching done by the operating system

52 experimental verification

as well as by the Neo4j software. To accurately study and compare
the query times of the path index, the experiments on the full K-path
indexes are done with results with cold caches kept separate from
results with warm caches. The term "cold cache" here means that,
to the best of our efforts, the caches of the system do not contain
any prefetched material or results which would speed up the perfor-
mance of the query evaluation. The term "warm caches" then means
that the queries have already been executed once, and these are the
results from subsequent evaluations of the queries. As can be seen in
the tables below, warm caches have a large impact on the query time
for Neo4j.

The results show the time to the first result and the time to the last
result. For both Neo4j and the path index, the time to the first result
is measured as the time from immediately before Neo4j’s or the path
index’s find operation is executed, and the time immediately after the
first result is found. The time to the last results is measured as the
time immediately before Neo4j’s or the path index’s find operation
is executed, until the time immediately after the last result is found.
Therefore the time spent iterating over the whole result set can be
found by subtracting the time for the last results and the time for the
first result.

For example, in Table 15, for Query 7 and Neo4j, the time to the
first result is 2198 milliseconds after executing Query 7 in Neo4j. The
time until the last result for Neo4j is 7610 milliseconds. Therefore it
took 5412 milliseconds to find and return all of the results. This is in
comparison to the K3 path index (the third column), where we see
that the time to the first result is 23 milliseconds and the time to the
last result is 91 milliseconds, requiring 68 milliseconds to find all of
the results.

In addition to querying for a K path in the index, queries are also
conducted by using only K− 1 paths in the index. Again looking at
Query 7 in Table 15, we see under the column labeled "Index K2(ms)"
the time needed to evaluate Query 7 using the K2 and K1 subpaths
of the query and joining the results. This tells us how long the query
evaluation time would be if the index only had the smaller subpaths
and not the full K3 path. The column "Index K1(ms)" for Query 7 is
blank, as there is no data point here. These experiments only show
the times needed to perform a single join to evaluate a given query.
Evaluating Query 7 using only the K1 paths is possible, but would
require joining two paths first, and doing a sort merge join with the
third path or performing a hash join with the third path. In this im-
plementation of the path index, hash joins are not implemented, and
the sort merge join is explored further in the workload based query
experiments.

7.3 full K-path indexes 53

7.3.1 LUBM Dataset

For the LUBM Dataset queries in the Cold Start setting in Table 15,
we see that when using the best available index for each query the The Best Available

index being that
which contains the
exact path, without
requiring joins.

path index is able to provide a significantly better query evaluation
time. For finding the first result, the path index provides at least a
77x speedup compared to the Neo4j. For finding the last result, the
path index is able to provide at least a 5x speedup. In the best case,
the path index provides a 1114x speedup to arrive at the first result
in Query 3.

When the cache is warm, we see a large improvement in query
evaluation time for both Neo4j and the path index. For all queries, the
path index is able to return the first result in at least 3 milliseconds.
Neo4j is also able to return the first result in single digit times for
Queries 7, 8, 9, and 10. These queries have the smallest result set size,
which likely accounts for this large improvement. For these queries,
the path index does not provide a large speedup for finding the first
result. However the path index still provides a 2x speedup for finding
the last result in the worst case. In the best case, the path index is able
to find the first result within 0.05 milliseconds, an 8260x speedup.

7.3.2 LDBC-SNB Dataset

The LDBC-SNB dataset experiments provide similar results from the
LUBM experiments. The path index is able to provide a significant
speedup to all queries, especially in the cold start. The best result is
for Query 1, where the path index is able to return the first result in
6 milliseconds, a 507x speedup. In Query 7, the path index returns
the first result in 17 milliseconds for the lowest speedup of 15x. With
respect to the time needed to return the last result, the path index
achieves its best result with a 175x speedup in Query 7, and its worst
result in Query 10 with a speedup of 8x.

Similar again to the results in the LUBM Warm experiments, the
results for the LDBC Warm experiments still achieve a significant
speedup compared to Neo4j. The smallest speedup in finding the first
result occurs in Query 7, with a speedup of 35x. The largest speedup
in finding the first result occurs in Query 5, with a speedup of 224x.
For finding the last result, the smallest speedup occurs in Query 4

with a speedup of 9x, and the largest speedup occurs in Query 7

with a speedup of 92x.

7.3.3 Advogato Dataset

The Advogato dataset is the smallest of the three used in this paper.
The results from these experiments show that this smaller dataset
still achieves improvements in the cold start situation, although the

54 experimental verification

LUBM - Cold Cache

Neo4j (ms) Index K3(ms) Index K2(ms) Index K1(ms) Speedup

Query 1

First Result 5333 - - 6 888x

Last Result 7305 - - 91 80x

Query 2

First Result 4667 - - 6 777x

Last Result 4668 - - 9 518x

Query 3

First Result 5574 - - 5 1114x

Last Result 6724 - - 20 336x

Query 4

First Result 5976 - 25 213 239x

Last Result 9414 - 375 10833 25x

Query 5

First Result 5644 - 23 107 245x

Last Result 19739 - 1521 4796 12x

Query 6

First Result 5665 - 25 108 226x

Last Result 7780 - 172 2963 45x

Query 7

First Result 2198 23 26 - 95x

Last Result 7610 91 261 - 83x

Query 8

First Result 1866 24 24 - 77x

Last Result 11275 2130 573 - 5x

Query 9

First Result 1813 22 25 - 82x

Last Result 6637 40 252 - 165x

Query 10

First Result 1805 22 22 - 82x

Last Result 6635 26 59 - 255x

Average
First Result 4054 22 24 5 382x

Last Result 8778 571 689 40 152x

Table 15: Query Evaluation time to retrieve the first result and the last result in Neo4j and in the
Path Index with cold caches.

7.3 full K-path indexes 55

LUBM - Warm Cache

Neo4j (ms) Index K3(ms) Index K2(ms) Index K1(ms) Speedup

Query 1

First Result 480 - - 0.19 2526x

Last Result 2080 - - 37 56x

Query 2

First Result 2014 - - 1 2014 x

Last Result 2014 - - 1 2014x

Query 3

First Result 413 - - 0.05 8260x

Last Result 1352 - - 4 338x

Query 4

First Result 774 - 0.8 173 967x

Last Result 3741 - 112 10932 33x

Query 5

First Result 457 - 2 45 228x

Last Result 13303 - 1439 4645 9x

Query 6

First Result 437 - 2 47 218x

Last Result 2225 - 107 2831 20x

Query 7

First Result 8 2 2.4 - 4x

Last Result 2221 32 179 - 69x

Query 8

First Result 1 1 2 - 1x

Last Result 5319 1992 493 - 2x

Query 9

First Result 1 2 2 - 0.5x

Last Result 1378 8 179 - 172x

Query 10

First Result 1 3 2 - 0.3x

Last Result 1392 4 16 - 348x

Average
First Result 458 2 1 <1 1444x

Last Result 3502 509 552 14 306x

Table 16: Query Evaluation time to retrieve the first result and the last result in Neo4j
and in the Path Index with warm caches.

56 experimental verification

LDBC-SNB - Cold Cache

Neo4j (ms) Index K3(ms) Index K2(ms) Index K1(ms) Speedup

Query 1

First Result 3044 - 6 25 507x

Last Result 3374 - 24 274 140x

Query 2

First Result 2975 - 5 24 595x

Last Result 4721 - 137 380 34x

Query 4

First Result 2893 26 25 - 111x

Last Result 5004 556 441 - 9x

Query 5

First Result 2934 - 6 26 489x

Last Result 12343 - 705 766 17x

Query 7

First Result 261 - 17 37 15x

Last Result 3153 - 18 715 175x

Query 8

First Result 2746 105 45 - 26x

Last Result 3551 141 936 - 25x

Query 10

First Result 2960 183 26 - 16x

Last Result 5326 600 483 - 8x

Query 11

First Result 2838 21 22 - 135x

Last Result 3297 65 419 - 50x

Average
First Result 2581 83 8 - 236x

Last Result 5095 340 221 - 57x

Table 17: Query Evaluation time to retrieve the first result and the last result in Neo4j and in the
Path Index with cold caches.

7.3 full K-path indexes 57

LDBC-SNB - Warm Cache

Neo4j (ms) Index K3(ms) Index K2(ms) Index K1(ms) Speedup

Query 1

First Result 208 - <1 3 208x

Last Result 292 - 5 181 58x

Query 2

First Result 217 - <1 3 217x

Last Result 1573 - 69 288 22x

Query 4

First Result 238 2 3 - 119x

Last Result 1892 202 363 - 9x

Query 5

First Result 224 - <1 3 224x

Last Result 8855 - 455 649 19x

Query 7

First Result 106 - 3 7 35x

Last Result 371 - 4 627 92x

Query 8

First Result 99 2 8 - 49x

Last Result 470 17 836 - 27x

Query 10

First Result 235 2 3 - 117x

Last Result 2210 219 385 - 10x

Query 11

First Result 211 2 3 - 105x

Last Result 391 23 344 - 17x

Average
First Result 192 2 1 - 134x

Last Result 2006 115 133 - 31x

Table 18: Query Evaluation time to retrieve the first result and the last result
in Neo4j and in the Path Index with warm caches.

58 experimental verification

Advogato - Cold Cache

Neo4j (ms) Index K3(ms) Index K2(ms) Index K1(ms) Speedup

Query 1

First Result 2097 17 6 - 123x

Last Result 3359 359 504 - 9x

Query 2

First Result 2295 23 7 - 99x

Last Result 7058 2093 1360 - 3x

Query 3

First Result 2636 22 6 - 119x

Last Result 5376 931 730 - 5x

Query 4

First Result 2559 31 7 - 82x

Last Result 4791 564 511 - 8x

Query 5

First Result 2315 23 6 - 100x

Last Result 3578 441 668 - 8x

Average
First Result 2380 23 - - 104x

Last Result 4832 877 - - 6.6x

Table 19: Query Evaluation time to retrieve the first result and the last result in Neo4j and in the
Path Index with cold caches.

speedup in the warm start times are modest. This is not unusual, con-
sidering that Neo4j is able to achieve very good results by extensive
use of caching.

For the cold stat situation, the path index is able to achieve its
largest and smallest speed up for finding the first result on queries
1 and 4 with speedups of 123x and 82x, respectively. For finding the
last result, the path index achieves its largest and smallest speedups
on queries 1 and 2 with speedups of 9x and 3x.

7.4 workload driven indexes

As Table 14 shows, the full K3 index is much too large to be used
in production, and requires a significant amount of time to build. It
would be desirable to have small indexes which can be built quickly,
but are still able to provide the same significant improvements to
query evaluation time. To that end, these experiments are conducted
to determine how well indexes can be built which only contain the
requisite data to evaluate the queries specified for each experiment.
The workload indexes are built at runtime, where the necessary K1
paths are joined to form the paths in the queries, or joined a third time
to form the paths of length 3. For each dataset, there are two tables
showing information about the experiment in relation to that dataset.
The first table details the building of the index. The times for finding
and merging the results are reported separately from the time needed

7.4 workload driven indexes 59

Advogato - Warm Cache

Neo4j (ms) Index K3(ms) Index K2(ms) Index K1(ms) Speedup

Query 1

First Result 3 3 < 1 - 1x

Last Result 501 165 224 - 3x

Query 2

First Result 2 2 < 1 - 1x

Last Result 3178 1880 1054 - 1.7x

Query 3

First Result 2 3 <1 - 0.6x

Last Result 1341 790 456 - 1.7x

Query 4

First Result 2 3 < 1 - 0.6x

Last Result 812 332 211 - 2x

Query 5

First Result 7 2 < 1 - 3x

Last Result 442 127 206 - 3x

Average
First Result 3 2 - - 1x

Last Result 1254 658 - - 2x

Table 20: Query Evaluation time to retrieve the first result and the last result in Neo4j
and in the Path Index with warm caches.

to insert those results into the index, with the total time also shown in
a different column of the tables. Finally the query evaluation time is
shown for each query after inserting those paths into the index. The
second table compared the query time to find the final result in the
result set in Neo4j and in the path index after having inserted that
path in the path index. This second table also shows the time total
to build those paths for the index, and the speedup the path index
provides compared to Neo4j after the paths have been inserted into
the path index.

7.4.1 LUBM Dataset

The LUBM dataset shows that building the paths for certain queries
can take a significant amount of time. For example, Query 5 from
Table 22 takes the longest time at 129499 milliseconds, or 2.1 minutes.
This is because this query has the largest result set size out of all of
queries of all datasets. However, in Table 23 the speedup of Query 5

in the path index is 17x in comparison to Neo4j. Query 7A provides
even more promising results, where building the index requires only
769 milliseconds, and subsequent queries in the path index can be
evaluated in less than 1 millisecond. Query 7A can be built so quickly
because it uses the same intermediary results from Query 6, as well
as having the smallest result set size in this dataset.

60 experimental verification

LUBM

Query Plan

Query 4 takesCourse ./ teacherOf−1

Query 5 memberOf ./ subOrganizationOf−1

Query 6 memberOf ./ subOrganizationOf

Query 7A undergraduateDegreeFrom ./ Query 6
−1

Query 7B
P7B = subOrganizationOf−1 ./ memberOf−1

undergraduateDegreeFrom ./ P7B

Query 8A hasAdvisor ./ Query4
−1

Query 8B
P8B = teacherOf ./ takesCourse−1

hasAdvisor ./ P8B

Query 9

P9 = worksFor ./ subOrganizationOf−1

headOf−1 ./ P9

Query 10

P10 = worksFor ./ subOrganizationOf

headOf−1 ./ P10

Table 21: Workload experiment with paths constructed from the K1 index
with joined results inserted into the index.

LUBM

Result Set Size Search Time (ms) Insertion Time (ms) Total (ms) Subsequent Search (ms)

Query 4 1433737 10317 19972 30289 119

Query 5 7726641 5001 124497 129499 775

Query 6 519842 2685 8427 11113 39

Query 7A 130 768 1 769 <1

Query 7B
519842 253 7888 8141 38

130 7689 2 7691 <1

Query 8A 13639 736 100 836 2

Query 8B
1433737 787 126 913 2

13639 109 1680 1790 2

Query 9

534980 235 8427 8662 37

14861 13 132 145 2

Query 10

35973 67 739 806 2

999 8 8 16 <1

Table 22: Workload experiment on the LUBM dataset with paths constructed from the K1 index with
joined results inserted into the index.

7.5 discussion 61

LUBM - Time to Last Result

Neo4j Query Warm (ms) Path Index - Building (ms) Path Index - Query (ms) Speedup

Query 4 3741 30289 119 31x

Query 5 13303 129499 775 17x

Query 6 2225 11113 39 57x

Query 7A 2221 769 <1 2221x

Query 7B 2221 15832 <1 2221 x

Query 8A 5319 836 2 2659x

Query 8B 5319 2703 2 2659x

Query 9 1378 8807 2 689x

Query 10 1392 822 <1 1392x

Average 4124 22296 104 1327x

Table 23: A comparison of the query evaluation time of Neo4j and the Path
Index on the LUBM dataset using the workload based approach
for building the index.

7.4.2 LDBC-SNB Dataset

The results from the workload experiments on the LDBC-SNB dataset
show that building the index of the paths of the queries can be done
quickly and provide significant speedups in subsequent queries. In
the worst case, it can be seen in Table 26 that Query 5 requires 82252

milliseconds to build and insert the paths into the index, with sub-
sequent queries being completed in 436 milliseconds. This cost of
building the index is large compared to the 8855 milliseconds Neo4j
requires to evaluate the query, however the 20x speedup achieve in
subsequent queries quickly makes this cost worthwhile.

7.4.3 Advogato Dataset

The Advogato dataset, being the smallest dataset tested, provides the
best results in the workload experiments. The time needed to build
the index for a query is 6242 milliseconds in the worst case on Query
2, and subsequent queries in the path index provide a 454x speedup
compared to Neo4j.

7.5 discussion

We have seen from the results of our experiments how the full K3 path
index greatly reduces the query evaluation time for all path queries
compared to the time needed to evaluate the queries in Neo4j. In all
experiments and all queries, the time to the first result in the result

62 experimental verification

LDBC-SNB

Query Plan

Query 1 KNOWS ./ PERSON_IS_LOCATED_IN

Query 2 KNOWS ./ POST_HAS_CREATOR−1

Query 4 Query 2 ./ POST_HAS_TAG

Query 5 KNOWS ./ HAS_MEMBER−1

Query 7 POST_HAS_CREATOR−1 ./ LIKES_POST−1

Query 8

P8 = REPLY_OF_POST−1 ./ COMMENT_HAS_CREATOR

POST_HAS_CREATOR−1 ./ P8

Query 10 KNOWS ./ Query 1

Query 11

P11 = WORKS_AT ./ ORGANIZATON_LOCATED_IN

KNOWS ./ P11

Table 24: Query Plan for the workload experiments for the LDBC Dataset.

LDBC-SNB

Result Set Size Search Time (ms) Insertion Time (ms) Total (ms) Subsequent Search (ms)

Query 1 31754 250 422 672 5

Query 2 844159 317 10447 10764 74

Query 4 760382 4958 5856 10815 76

Query 5 5506078 948 81303 82252 436

Query 7 34485 545 515 1060 2

Query 8

45865 264 681 945 3

45865 503 334 837 4

Query 10 845075 215 6095 6311 394

Query 11

6125 37 89 126 <1

69729 245 501 746 6

Table 25: Workload experiment on the LDBC-SNB dataset with paths constructed from the K1 index with
joined results inserted into the index.

7.5 discussion 63

LDBC-SNB - Time to Last Result

Neo4j Query Warm (ms) Path Index - Building (ms) Path Index - Query (ms) Speedup

Query 1 292 672 5 58x

Query 2 1573 10764 74 21x

Query 4 1892 10815 76 24x

Query 5 8855 82252 436 20x

Query 7 371 1060 2 185x

Query 8 470 1782 4 117x

Query 10 2210 6311 394 5x

Query 11 391 872 6 65x

Average 2006 14361 124 61x

Table 26: A comparison of the query evaluation time of Neo4j and the Path Index on
the LDBC-SNB dataset using the workload based approach for building the
index.

Advogato

Query Plan

Query 1

P1 = apprentice ./ apprentice

apprentice ./ P1

Query 2

P2 = journeyer ./ journeyer

journeyer ./ P2

Query 3

P3 = master ./ master

master ./ P3

Query 4

P4 = journeyer ./ master

apprentice ./ P4

Query 5

P5 = apprentice ./ master

apprentice ./ P5

Table 27: Workload experiment with paths constructed from the K1 index
with joined results inserted into the index.

64 experimental verification

Advogato

Result Set Size Search Time (ms) Insertion Time (ms) Total (ms) Subsequent Search (ms)

Query 1

76290 100 890 990 12

19555 105 157 263 3

Query 2

412935 214 4975 5190 41

42852 699 352 1052 7

Query 3

218621 151 2632 2784 19

14767 319 119 439 1

Query 4

218272 193 2739 2932 17

1844 137 14 152 <1

Query 5

61128 95 790 885 7

1044 118 10 129 <1

Table 28: Workload experiment on the Advogato dataset with paths con-
structed from the K1 index with joined results inserted into the
index.

Advogato - Time to Last Result

Neo4j Query Warm (ms) Path Index - Building (ms) Path Index - Query (ms) Speedup

Query 1 501 1253 3 167x

Query 2 3178 6242 7 454x

Query 3 1341 3223 1 1341x

Query 4 812 3084 <1 812x

Query 5 442 1014 <1 442x

Average 1254 2963 2 643x

Table 29: A comparison of the query evaluation time of Neo4j and the Path
Index on the Advogato dataset using the workload based approach
for building the index.

7.5 discussion 65

set is faster using the index. Iterating through the results also shows
that in the path index all the results in the result set can be found
faster compared to iterating through the results in Neo4j. Even as the
size of the index grows to sizes many times larger than the original
graph, the time needed to search in the index to find the results can
be done faster than Neo4j.

When comparing the evaluation times with cold caches, the index
greatly outperforms Neo4j. For example in the LUBM dataset, the
index is able to reach the first results in all queries in less than 30

milliseconds, compared to the minimum of 1800 milliseconds needed
for the time to the first result in Neo4j. With warm caches, Neo4j is
able to return results with much better times, reducing the time to the
first result in the LUBM dataset to 1 millisecond in best case, however,
the index is able to achieve sub-millisecond execution time in those
cases. Further, even in the cases where Neo4j is able to find the first
result is approximately the same time as the index, the index is much
faster at iterating through the result set.

The results also show that performing a search on the index for
path of length K by merging the results from the K-1 and K-2 paths,
the time to the first result still outperforms Neo4j, and in cases where
the result set size is small, outperforms the actual K index. The cases
where joining on the smaller results having better execution times
than directly using the K index is unexpected, but can be attributed
to the smaller indexes being able to better fit in memory compared
to the larger index. Further, the differences in execution time in real
terms is small.

The size of the path indexes was expected to be large, however our
results show that building these indexes by including all paths up to
K3, the size of the index becomes a limiting factor to the usability of
the index. While the index sizes may be large, the evaluation time for
paths using the index remains small, highlighting the performance of
the index. The size of the indexes is a measure of the number of K
length paths. This is effected by the number of nodes and edges in the
graph, and the density of the graph. Tightly connected graphs have
more paths than less dense graphs, and this explains the increase
in the index size between the LUBM dataset and the LDBC dataset.
While the LDBC dataset is smaller in terms of nodes and edges com-
pared to the LUBM dataset, the density is much higher.

Although the full indexes are large, the workload experiments show
more promise by being much smaller than the original index. The ini-
tial loading of the index on the first evaluation of the query requires
building the path from the K1 index or from previously seen smaller
paths. In most cases, this requires more time than Neo4j to evaluate
the query. However, subsequent queries on these paths are able to be
evaluated orders of magnitude faster than Neo4j.

8
C O N C L U S I O N

The goal of this thesis has been to develop the necessary systems to
improve path query performance in the graph database Neo4j. The
design of the system produced can be applied to graph databases in
general, and is not limited to one specific system. The first step to-
wards this goal has been the design of a path index. This design has
chosen simplicity where possible, drawing on decades of research
from the literature on indexing in relational databases. The main the-
oretical contributions are found in Chapter 4, where the design of the
path index is presented. Chapter 5 presents the implementation of
this path index design. An empirical evaluation of this implementa-
tion is first outlined in Chapter 6 with the results presented in Chap-
ter 7. This thesis ends with a conclusion in Section 8.1, and an outline
for future work in Section 8.2.

8.1 overview

Evaluating queries efficiently is the driving force behind the construc-
tion and adoption of many of the new NoSQL databases. With ever
increasing amounts of data being generated, these new systems pro-
vide a way to store, query, and analyze data quickly. Graph databases
in particular offer new features for storing and querying data in a
way that was not possible without significant work in traditional re-
lational databases. The flexibility that graph databases provide occa-
sionally results in poor query evaluation performance. The goal of
this work has been to improve the performance of path queries by
using a simple indexing solution commonly found in other database
systems.

This thesis has focused on one fundamental type of query, the path
query, and its performance in the graph database Neo4j. As discussed
in Section 3.4 and identified the work by [10], path query evaluation
can perform poorly in Neo4j. This thesis presents a new and simple
solution to improve path query performance. The solution developed
here uses a simple B+tree index to store paths from the graph in such
a way that they can be quickly found again at query evaluation time.
This implementation is accompanied with tools to load the index with
the paths from the graph in an efficient way. The complete codebase
with the path index implementation is available as open source 1 for
further research and development

1 https://github.com/jsumrall/Path-Index

67

68 conclusion

An empirical study using three different datasets has been con-
ducted on this path index implementation to identify what perfor-
mance improvements path indexing provides a graph database. These
experiments show that in every query for each dataset, path indexing
provides a significant improvement in path query evaluation time.
In a limited number of cases, the graph database alone performs as
well as this path index. However in an overwhelming majority of
the queries, the path index is able to provide at least a 2x speedup in
query time. In the best cases, the path index is able to provide a 8000x
speedup to the graph database.

Experiments have also been conducted where the index is initially
built only with the K1 paths, and as queries are encountered the re-
sults for the query are constructed by performing joins on the K1 sub-
paths until the full path is available. Those subpaths are also stored in
the index, able to be used for future queries with identical subpaths.
The results from these experiments show that the additional time to
build the query results is relatively large, but the subsequent query
times on the index again provide significant speedups compared to
the graph database. Further, these workload based indexes are multi-
ple orders of magnitude smaller than the full K1, K2, and K3 indexes.

We also identify situations where data in the path index can be
compressed. By compression only at the page level, the path index
is still able to have a significant size reduction. By only compress-
ing at the page level, traversals in the index can be done without
decompressing more than the pages necessary to perform any oper-
ation. The compression applied in this index works by only storing
the deltas between values, which are usually small due to the keys in
the graph being sorted. For the K2 index on the LUBM dataset, this
compression scheme reduces the index size from 15.99GB to 1.69GB,
a 9.5x reduction.

8.2 future work

This work performed experiments on three varied datasets, which
establishes the performance benefits path indexing provide. Future
work can include more datasets, using queries or various path lengths
beyond K3.

The query workload based experiments show the most promise in
terms of index size, index construction time, and query performance.
Building these types of path indexes is the natural progression of this
work. Additional experiments should be conducted to identify how
to best build the index based on encountered queries. Ideas for this in-
clude examining query logs and building indexes based on frequent
queries. The index can also be built automatically by developing a
system to deconstruct query paths and identifying the subpaths in
the query, and inserting those subpaths into the index.

8.2 future work 69

The queries tested in this work were simple path queries. Addi-
tional work can be done with more complex path queries, with con-
ditional filtering on certain properties of the nodes along the path.
The original queries for the LDBC-SNB dataset include these types of
conditions. Including those qualifiers to the over the path index is an
important topic for further study.

B I B L I O G R A P H Y

[1] Advogato network dataset – {KONECT}, October 2014.

[2] Renzo Angles, Ioan Toma, Peter Boncz, Josep Larriba-Pey, Irini
Fundulaki, Thomas Neumann, Orri Erling, Peter Neubauer, Nor-
bert Martinez-Bazan, and Venelin Kotsev. The linked data bench-
mark council. ACM SIGMOD Record, 43(1):27–31, May 2014.

[3] Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-index. In
Proceedings of the 2003 ACM SIGMOD international conference on
on Management of data - SIGMOD ’03, page 134, San Diego, Cali-
fornia, USA, June 2003. ACM Press.

[4] Douglas Comer. Ubiquitous B-Tree. ACM Computing Surveys,
11(2):121–137, June 1979.

[5] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjal-
tason, and Moshe Shadmon. A Fast Index for Semistructured
Data. In Proceedings of the 27th International Conference on Very
Large Data Bases - VLDB ’01, pages 341–350, Roma, Italy, Septem-
ber 2001. Morgan Kaufmann Publishers Inc.

[6] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro,
Michael R Stonebraker, and David Wood. Implementation tech-
niques for main memory database systems. In Proceedings of the
1984 ACM SIGMOD international conference on Management of data
- SIGMOD ’84, volume 14, page 1, Boston, Massachusetts, USA,
June 1984. ACM Press.

[7] DB Engines. DB-Engines Ranking, Graph Databases, 2015.

[8] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases. In
VLDB ’97 Proceedings of the 23rd International Conference on Very
Large Data Bases - VLDB ’97, pages 436–445, Athens, Greece, Au-
gust 1997. Morgan Kaufmann Publishers Inc.

[9] Sven Groppe. Data Management and Query Processing in Se-
mantic Web Databases. Chapter 3. Springer, Berlin, Heidelberg,
January 2011.

[10] Andrey Gubichev and Manuel Then. Graph Pattern Matching.
In Proceedings of Workshop on GRAph Data management Experiences
and Systems - GRADES’14, pages 1–7, Snowbird, Utah, USA, June
2014. ACM Press.

71

72 bibliography

[11] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A bench-
mark for OWL knowledge base systems. Web Semantics: Science,
Services and Agents on the World Wide Web, 3(2-3):158–182, October
2005.

[12] Xifeng Yan Han and Jiawei. Managing and Mining Graph Data:
Chapter 5, Graph Indexing, volume 40 of Advances in Database Sys-
tems. Springer US, Boston, MA, 2010.

[13] H. V. Jagadish, Nick Koudas, and Divesh Srivastava. On effective
multi-dimensional indexing for strings. ACM SIGMOD Record,
29(2):403–414, June 2000.

[14] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting lo-
cal similarity for indexing paths in graph-structured data. In Pro-
ceedings 18th International Conference on Data Engineering, pages
129–140, San Jose, California, USA, 2002. IEEE Comput. Soc.

[15] Donald E. Knuth. The Art of Computer Programming, Volume 3:
Sorting and Searching, Chapter 5. Addison Wesley Longman Pub-
lishing Co., Inc., January 1998.

[16] Neal Leavitt. Will NoSQL Databases Live Up to Their Promise?
Computer, 43(2):12–14, February 2010.

[17] Zhe Li and Kenneth A. Ross. Fast joins using join indices. The
VLDB Journal The International Journal on Very Large Data Bases,
8(1):1–24, April 1999.

[18] Tova Milo and Dan Suciu. Index Structures for Path Expressions.
In Proceedings of the 7th International Conference on Database Theory,
pages 277–295, Jerusalem, Israel, January 1999. Springer-Verlag.

[19] Thomas Neumann and Gerhard Weikum. The RDF-3X en-
gine for scalable management of RDF data. The VLDB Journal,
19(1):91–113, September 2009.

[20] Patrick O’Neil and Goetz Graefe. Multi-table joins through
bitmapped join indices. ACM SIGMOD Record, 24(3):8–11,
September 1995.

[21] Philippe Pucheral, Jean-Marc Thévenin, and Patrick Valduriez.
Efficient Main Memory Data Management Using the DBGraph
Storage Model. 16th International Conference on Very Large Data
Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceed-
ings, pages 683–695, August 1990.

[22] Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorith-
mics and applications of tree and graph searching. In Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems - PODS ’02, page 39, Madison, Wis-
consin, June 2002. ACM Press.

bibliography 73

[23] Patrick Valduriez. Join indices. ACM Transactions on Database
Systems, 12(2):218–246, June 1987.

[24] Adam Welc, Raghavan Raman, Zhe Wu, Sungpack Hong, Has-
san Chafi, and Jay Banerjee. Graph analysis. In First Interna-
tional Workshop on Graph Data Management Experiences and Sys-
tems - GRADES ’13, pages 1–6, New York, New York, USA, June
2013. ACM Press.

A
A P P E N D I X A

a.1 lubm cypher queries

Query 1:

MATCH (x)-[:memberOf]->(y)

RETURN ID(x), ID(y)

Query 2:

MATCH (x)-[:memberOf]->(y)

WHERE x.URI = "http://www.Department0.University0.edu/UndergraduateStudent207"

RETURN ID(x), ID(y)

Query 3:

MATCH (x)-[:worksFor]->(y)

RETURN ID(x), ID(y)

Query 4:

MATCH (x)-[:takesCourse]->(y)<-[:teacherOf]-(z)

RETURN ID(x), ID(y), ID(z)

Query 5:

MATCH (x)-[:memberOf]->(y)<-[:subOrganizationOf]-(z)

RETURN ID(x), ID(y), ID(z)

Query 6:

MATCH (x)-[:memberOf]->(y)-[:subOgranizationOf]->(z)

RETURN ID(x), ID(y), ID(z)

Query 7:

MATCH (x)-[:undergraduateDegreeFrom]->(y)<-[:subOrganizationOf]-(z)<-[:memberOf]-(x)

RETURN ID(x), ID(y), ID(z)

Query 8:

MATCH (x)-[:hasAdvisor]->(y)-[:teacherOf]->(z)<-[:takesCourse]-(x)

RETURN ID(x), ID(y), ID(z)

Query 9:

MATCH (x)-[:hasAdvisor]->(y)-[:teacherOf]->(z)<-[:takesCourse]-(x)

RETURN ID(x), ID(y), ID(z)

Query 10:

75

76 bibliography

MATCH (x)-[:hasAdvisor]->(y)-[:teacherOf]->(z)<-[:takesCourse]-(x)

RETURN ID(x), ID(y), ID(z)

a.2 advogato cypher queries

Query 1:

MATCH (x)-[:apprentice]->(y)-[:apprentice]->(z)-[:apprentice]->(x)

RETURN ID(x), ID(y), ID(z)

Query 2:

MATCH (x)-[:journeyer]->(y)-[:journeyer]->(z)-[:journeyer]->(x)

RETURN ID(x), ID(y), ID(z)

Query 3:

MATCH (x)-[:master]->(y)-[:master]->(z)-[:master]->(x)

RETURN ID(x), ID(y), ID(z)

Query 4:

MATCH (x)-[:apprentice]->(y)-[:journeyer]->(z)-[:master]->(x)

RETURN ID(x), ID(y), ID(z)

Query 5:

MATCH (x)-[:apprentice]->(y)-[:apprentice]->(z)-[:master]->(x)

RETURN ID(x), ID(y), ID(z)

a.3 ldbc cypher queries

Query 1:

MATCH (x)-[:KNOWS]->(y)-[:PERSON_IS_LOCATED_IN]->(z)

RETURN ID(x), ID(y), ID(z)

Query 2:

MATCH (x)-[:KNOWS]->(y)<-[:POST_HAS_CREATOR]-(z)

RETURN ID(x), ID(y), ID(z)

Query 4:

MATCH (x)-[:KNOWS]->(y)<-[:POST_HAS_CREATOR]-(z)-[:POST_HAS_TAG]->(w)

RETURN ID(x), ID(y), ID(z), ID(w)

Query 5:

MATCH (x)-[:KNOWS]->(y)<-[:HAS_MEMBER]-(z)

RETURN ID(x), ID(y), ID(z)

Query 7:

MATCH (x)<-[:POST_HAS_CREATOR]-(y)<-[:LIKES_POST]-(z)

RETURN ID(x), ID(y), ID(z)

bibliography 77

Query 8:

MATCH (x)<-[:POST_HAS_CREATOR]-(y)<-[:REPLY_OF_POST]-(z)-[:COMMENT_HAS_CREATOR]->(w)

RETURN ID(x), ID(y), ID(z), ID(w)

Query 10:

MATCH (x)-[:KNOWS]->(y)-[:KNOWS]->(z)-[:PERSON_IS_LOCATED_IN]->(w)

RETURN ID(x), ID(y), ID(z), ID(w)

Query 11:

MATCH (x)-[:KNOWS]->(y)-[:WORKS_AT]->(z)-[:ORGANIZATION_LOCATED_IN]->(w)

RETURN ID(x), ID(y), ID(z), ID(w)

B
A P P E N D I X B

Provided here is a brief overview of the Path Index implemented in
this thesis.

b.1 overview

All of the code is contained within a single Java package available on
GitHub at: https://github.com/jsumrall/Path-Index

b.1.1 Inserting Data

DiskCache disk = DiskCache.temporaryDiskCache("pathIndex.db", false);

IndexTree index = new IndexTree(4, disk);

long[] key = new long[]{123,456,678,999};

index.insert(key);

b.1.2 Querying

DiskCache disk = DiskCache.temporaryDiskCache("pathIndex.db", false);

IndexTree index = new IndexTree(4, disk);

long[] key = new long[]{123,456,678,999};

index.insert(key);

long[] search_key = new long[]{123};

long[] search_result;

SearchCursor cursor = tree.find(key);

try(PageProxyCursor cursor = tree.disk.getCursor(result.pageID,

PagedFile.PF_SHARED_LOCK)) {

while(result.hashNext(lock))

search_result = cursor.next(lock));

}

b.1.3 Removing Data

DiskCache disk = DiskCache.temporaryDiskCache("pathIndex.db", false);

IndexTree index = new IndexTree(4, disk);

long[] key = new long[]{123,456,678,999};

index.insert(key);

index.remove(key);

79

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 A small example
	1.3 Problem Statement
	1.4 Overview

	2 Preliminaries
	2.1 Graphs
	2.2 Paths
	2.3 Path Index
	2.4 Property Graph Model
	2.5 Memory Model
	2.6 Neo4j

	3 Path Indexing Techniques
	3.1 Relational
	3.1.1 Hash Index
	3.1.2 Join Indexes
	3.1.3 Jive and Slam Join
	3.1.4 Bitmap Indexes
	3.1.5 Main Memory Database Systems

	3.2 Path Indexing
	3.2.1 DataGuides
	3.2.2 T-index
	3.2.3 A(K) Index
	3.2.4 D(K) Index

	3.3 K-paths
	3.3.1 Paths as Strings
	3.3.2 GraphGrep

	3.4 Current State of Path Query Evaluation

	4 A Path Index Design
	4.1 Paths
	4.2 Path Identifiers
	4.3 Keys
	4.4 Path Signatures
	4.5 B+tree Design
	4.6 Searching
	4.7 Updates
	4.7.1 A difference of perspective

	5 Index Implementation
	5.1 Nodes and Relationships
	5.2 Path Identifier Resolution
	5.2.1 Mapping Dictionary

	5.3 Search Cursor
	5.3.1 Edge Case Consideration

	5.4 B+tree Architecture
	5.4.1 Page Design

	5.5 Fast Index Initialization
	5.5.1 Bulk Index Construction

	5.6 Compression Techniques

	6 Experiment Setup
	6.1 Objective
	6.1.1 Datasets
	6.1.2 Queries

	6.2 Setup
	6.2.1 Measurement
	6.2.2 System Specifications

	6.3 Datasets
	6.3.1 Lehigh University Benchmark
	6.3.2 Social Network Benchmark
	6.3.3 Advogato

	6.4 Result Set Sizes

	7 Experimental Verification
	7.1 Benchmark
	7.2 Index Construction
	7.3 Full K-Path Indexes
	7.3.1 LUBM Dataset
	7.3.2 LDBC-SNB Dataset
	7.3.3 Advogato Dataset

	7.4 Workload Driven Indexes
	7.4.1 LUBM Dataset
	7.4.2 LDBC-SNB Dataset
	7.4.3 Advogato Dataset

	7.5 Discussion

	8 Conclusion
	8.1 Overview
	8.2 Future Work

	Bibliography
	A Appendix A
	A.1 LUBM Cypher Queries
	A.2 Advogato Cypher Queries
	A.3 LDBC Cypher Queries

	B Appendix B
	B.1 Overview
	B.1.1 Inserting Data
	B.1.2 Querying
	B.1.3 Removing Data

