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Abstract

In model driven software engineering, software systems may be modeled as discrete-state systems,
whose behavioural properties can be formally veri�ed using model checking. Previous work has
uncovered the need for a method to automatically re�ne a high-level software model to a lower-
level software model which is closer to the structure of a speci�c implementation platform. Each
transformation step should preserve the behaviour of the transformed system. Furthermore, the
behaviour preservation of transformation steps should be veri�able input-independently, that is,
without regard to the particular model which is transformed.

In this thesis we improve an existing pattern-based model transformation method for labelled
transition systems which supports such behaviour preservation veri�cation. We lift the existing
method to the level of process algebra, which allows us to add data parameters to our model
and to perform symbolic analysis. Our model speci�cation format has been chosen with model-
checking tool support in mind. We prove that our version of the method, like the existing method,
supports input-independent proofs of property preservation for re�nement steps. Our proofs and
compositional development constructs bring the process algebra based method up to par with the
latest developments in the existing method.
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Chapter 1

Introduction

1.1 Relevance

Model Driven Software Engineering (MDSE) is the practice of using system models or domain
models in the software engineering process. MDSE is a varied and dynamic �eld: a model may be
close to the user or close to the hardware, and it may model entities and relations or states and
transitions (compare the Uni�ed Modeling Language (UML) to Finite State Machines (FSM) for
an example of two very di�erent modeling languages). Goals of MDSE include easing communi-
cation about a design, standardizing and reusing design patterns, (semi-)automatically generating
software, and extracting and analysing the properties of an existing system.

Many research programs include research on MDSE. The ECSEL public{private partnership
is a European Union program for research in electronic components and systems as a key enabling
technology for all industrial branches and many aspects of life, including smart mobility, energy
and health [3].

A part of ECSEL is the ARTEMIS embedded computing initiative. ARTEMIS sponsors pilot
programmes, including the programme AIPP5 on the topic of computing platforms for embedded
systems [1], which includes the sub-project EMC2: Embedded Multi-Core systems for Mixed
Criticality applications in dynamic and changeable real-time environments. EMC2 aims to �nd
solutions for the problems of adaptability, scalability, and life cycle management in mixed (parallel)
real-time systems [2].

This thesis summarizes an MDSE research project which is part of an EMC2 line of research
in which a model transformation method is developed for time- and cost-e�cient evolution and
adaptation of discrete system models in order to generate high-quality software systems in a
mathematically rigorous way.

1.2 Motivation

The current line of research started with a project which sought to generate software for embed-
ded platforms from models in the state machine modeling language SLCO, in the PhD-thesis of
Engelen [13].

It soon became apparent that the various target platforms had computation primitives and
communication interfaces which di�ered so much that a strategy was required to dependably
adapt a given system for execution on di�erent platforms without risky and time-consuming
manual work. Based on these requirements, and inspired by work on graph transformation, an
input-independent veri�cation method for model-to-model transformations has been developed by
Engelen and Wijs [14].

The developed method operates on the networks of LTS formalism [20].
The speci�c aim of this new model transformation method was to provide a model-based

formalism for re�ning a high-level system model which results from a straightforward reading
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CHAPTER 1. INTRODUCTION

of the system requirements to various di�erent low-level system models which are suitable for
code generation or other applications. The model transformation (/re�nement) method has been
implemented in the toolset REFINER by Wijs [31].

The formal correctness of the LTS-based model transformation method has since been veri�ed,
and the method made more reliable, by de Putter [25]. In recent work, the method has been
expanded to make it more general (for example, by enabling the addition of new parallel compo-
nents) and reduce proof obligations for transformations (for example, by allowing reasoning over
subsystems) by Wijs [29].

Important limitations of the existing method are that it cannot model data as such, it cannot
model any in�nite-size behaviour resulting from the inclusion of data (such as the passing of
arbitrary data values) and it lacks symbolic modeling options generally. We aim to add to the
existing work by lifting the existing method to a symbolic level, so as to make it more general
(both in modeling and transforming) and giving the proof system a link to other existing formal
methods work which can be exploited to make veri�cation more powerful.

1.3 Related work

1.3.1 Classi�cation

Plenty of survey papers classify model transformation (veri�cation) methods, but many of them
treat models only from the perspective of the metamodeling paradigm. Still their categorizations
may be helpful, so we give three examples.

Czarnecki & Helsen [9] [10] present a metamodeling-based classi�cation of model transforma-
tion methods. Based on the de�nitions by Czarnecki & Helsen [9] we classify our transforation
method as follows:

Rule format is pattern-based, syntactically separated Left Hand Side/Right Hand Side system,
and this thesis introduces a term format for patterns (where the existing method uses graphs);

Scoping happens on the level of processes;

Updates are in-place and possibly destructive on the existing model;

Application is on one point and nondeterministic;

Scheduling is iterative; the rule system is assumed to be conuent;

Organization of the rules follows the same network structure as that of source and target systems;
patterns can be moved between rule systems.

Traceability is not currently part of the method;

Bidirectionality is introduced into the method in this thesis.

Amrani et al. [4] present a metamodeling-based survey and classi�cation of model transfor-
mation veri�cation methods based on three dimensions: transformations, property kinds, and
veri�cation techniques. We covered the classi�cation of transformations already. Based on the
de�nitions by Amrani et al. We classify our veri�cation method as follows in the other two
categories:

Property kinds: Our collections of transformation rules are terminating and deterministic, be-
cause they are required to be conuent. Our transformations are 1-to-1 and we verify that
they are semantically preserving (which we use to guarantee preservation of temporal prop-
erties);

Veri�cation techniques: Our veri�cation is transformation-dependent and input-independent,
that is, we verify not a format, but each speci�c transformation, and such a transformation
can then be applied to any input model. We use model-checking to perform the veri�cation.
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1.3. RELATED WORK

Rahim & Whittle present a survey and classi�cation which does take multiple transformation
de�nition paradigms into account. It distinguishes testing, theorem proving, graph theory and
model checking. Our method combines elements of graph theory and model checking, and can be
classi�ed in the schema of Rahim & Whittle as directly veri�ed (we verify the rule, not the output
model) and formal.

Rahim & Whittle [26] distinguish various notions of correctness: type correctness, preservation
of static semantics, preservation of dynamic semantics, correspondence between source and target,
and semantics of model transformations.

The latter category corresponds roughly to Amrani et al.'s concept of transformation-independent
veri�cation. We prove some properties in the category semantics of model transformations in this
work. Our transformation method itself can be classi�ed as preserving the dynamic semantics of
a model.

Below we review some of the surveyed literature in the categories of graph theory and direct
model checking.

1.3.2 Graph theory

The existing re�nement method is inspired by work on graph transformation. Graph transfor-
mation usually consist of patterns and are applied using the double-pushout approach. Source
and target graph, and left and right pattern are mapped to each other through a subset of their
vertices. This is echoed in the concept of glue variables in this thesis.

Graph-based approaches have the disadvantage that graphs which are used as models do not
have a natural semantics. Therefore graph transformation veri�cation is limited to for example
correspondence between source and target (e.g. [11] [27]) or high-abstraction-level reasoning about
the semantics of model transformations (e.g. [19], [18]).

In graph transformation it is customary to apply a transformation to a graph iteratively.
This means that a model transformation may create new application options for itself in the
output model. On the other hand, in general MDSE a more common matching approach is match
once{replace once: a set of transformation matches is found once, and then all transformations
are performed simultaneously (with some form of conict resolution). Newly created application
options are not searched for, so transformation always terminates. The latter is our approach.

1.3.3 Model checking

Finding properties and semantic equivalences in algebraic models is a form of model checking.
Model checking is an approach to software veri�cation and as such it is an alternative to testing.
Where testing involves trying out a limited number of inputs and interactions in order to investi-
gate whether a system adheres to its requirements, model checking uses a formal, mathematical
approach to veri�cation which ensures that we can reason about its properties with mathematical
precision.

Like those on graph transformation, many works on direct model checking only concern them-
selves with correspondence between source and target (e.g. [21]) or with the semantics of model
checking (e.g. [28], [32]), sometimes in combination with preservation of static semantics (e.g. [15]).
One example of model checking-based transformation rule veri�cation which is concerned with
preservation of dynamic semantics is found in work by Boronat et al. [6] where transformation
sets are represented as theories in rewriting logic, and rewriting paths are analysed for preservation
of individual properties. Our work relies on conuence of rule systems but is conceptually simpler
and checks preservation of the complete behaviour of a system at once.

Model checking is an important part of software veri�cation for safety- and security-critical sys-
tems, because it provides an alternative and very precise view of a system's behaviour. But once
software systems, particular ones involving multiple parallel components, become large, model
checking su�ers from the so-called state-space explosion problem: the complexity of the system's
behaviour grows exponentially with the number of variables and components involved, and check-
ing all of its states becomes infeasible.
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CHAPTER 1. INTRODUCTION

1.3.4 Advanced model checking

Symbolic model checking abstracts from the state space of a model, investigating the model at the
level of its description. An example of symbolic model checking which is relevant to this thesis is
work by Chen et al. [7] on the reduction of equivalence test for algebraic speci�cations to systems
of equations called parameterized boolean equation systems which can subsequently be solved by
tool or by hand.

Symbolic model checking mitigates the state-space explosion problem somewhat, but cannot
remove it completely. When developing software, model checking at each iteration, whether sym-
bolic or not, remains a time- and cost-ine�cient task for most applications.

By verifying the correctness of transformation rules we introduce two further reductions in the
e�ort required to check the correctness of a series of iteratively developed models using model
checking:

� The speci�cation of a transformation rule is necessarily smaller (usually much smaller) than
that of the complete model under transformations.

� Once veri�ed, an appropriately de�ned transformation rule can be reused arbitrarily often
in di�erent models without further veri�cation e�ort.

There is another approach to creating, rather than verifying, models using formal techniques
from the model checking paradigm, and it has similar advantages: automatic generation of (part
of) a model. Topics of existing work include the generation of synchronization skeletons [12],
automated functional re�nement guided by counterexamples [8], and updating a model to satisfy
new properties [33].

A clear di�erence with our method is that we are concerned speci�cally with preserving be-
havioural properties of a system while changing structural properties (like distributing functions
over a set of parallel processes in a certain way), while model generation methods are designed to
change behavioural properties while not caring about structural properties. Such approaches could
be complementary to our method in generating a model from which to start transformation-based
development.

1.4 Project goals

Our challenge in this project is to �nd a formalism in which we can model discrete (software)
systems and their behaviour, can check their properties, and can de�ne model transformations.
The formalism should be symbolic, it should be able to model data, and it should support a
re�nement method which has all of the power of the existing LTS-based method. We should be
able to show how de�nitions and transformations in the existing method can be mapped to the
new method.

Our approach to this challenge is to use process algebra as our formalism for modeling systems.
Process algebra is a mathematical formalism intended for reasoning about parallel processes. We
use replacement of equivalent sub-expressions as our model transformation method (where the
equivalence of the system of a whole must be maintained during replacement of equivalent parts).

Process algebra is a natural choice of approach for our purposes, being in its most basic form
a symbolic way of modeling LTS, which means that �nding equivalents of the de�nitions and
transformations of the existing LTS based method is a natural a�air. Process algebraic tools for
modeling data already exist.

We show that process algebra can indeed be used to de�ne models and transformations in
ways equivalent to those of the existing method. We show that symbolism, data, and some other
extensions can also be de�ned in a natural way. Some of our proofs of core requirements for model
transformation are arguably simpler than those of the existing method. We further show the
applicability of our method using several examples. We make it feasible to transform the resulting
models with more complex and realistic features, broadening the theoretical basis of the model
re�nement method.
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1.4. PROJECT GOALS

Thesis overview In Chapter 2 we review preliminary concepts. In Chapter 3 we show how
process algebra can be used to correctly re�ne single processes. In Chapter 4 we show how
process algebra can be used to correctly re�ne networks of LTS. In Chapter 5 we extend our lifted
method to handle data, irregularity, and more complex re�nement steps. In Chapter 6 we present
our conclusions and suggest directions for future work.
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Chapter 2

Preliminaries

2.1 Labelled Transition Systems (LTS)

Earlier work operates on the Labelled Transition System (LTS) formalism. An LTS is an edge-
labelled directed graph with an initial state. LTSs are commonly used to represent the state space
of a software system.

De�nition 1 (Labelled Transition System). A Labelled Transition System G is a tuple (SG; AG; TG; IG)
with

SG a �nite set of states;

AG a �nite set of actions;

TG � SG �AG � SG a �nite set of transitions;

IG � SG an initial state.

We are interested in constructing systems which exhibit certain properties when interacting
with the rest of the world. Important such properties are for example safety properties (`Bad things
will not happen.') and liveness properties (`Good things will eventually happen.'). A usually
undesirable state of systems is deadlock (`No further action is possible.'), and so a commonly
required liveness property is non-deadlock (`The system will never reach a deadlock state.').

We are interested in both the interaction properties of systems and their structural properties,
for example, the division of various functional parts of the system over di�erent processes. Di�erent
systems with exactly the same interaction properties but possibly di�erent structural properties
are called bisimilar. We check whether two systems are bisimilar by trying to �nd a so-called
bisimulation relation between them.

There are various kinds of bisimulation relations, distinguished by the precision with which
they equate structurally di�erent systems. For example, some systems may contain transitions
which are internal and can not be observed directly by the outside world. We are interested in
bisimulation relations in which such internal actions, commonly referred to by the name � , are only
taken into account when they are observable indirectly because they can inuence the possibility
of future observable actions (and therefore of future interaction).

These kinds of bisimulation relations are called branching bisimulation relations, as de�ned in
De�nition 2. We abbreviate `S is branching bisimilar to R' by the expression S$bR.

De�nition 2 (Branching bisimulation). A binary relation B between two LTSs G1 and G2 is a
branching bisimulation i� for all s 2 SG1

, t 2 SG2
, sBt implies that s can simulate all behaviour

of t, and vice versa:

1. If (s; a; s0) 2 TG1
then

7



CHAPTER 2. PRELIMINARIES

� either a = � and s0Bt;

� or there exists a �nite sequence of states tl 2 SG2
with l 2 [0::n] such that t = t0,

(tl; �; tl+1) 2 TG2
for all l < n, and (tn; a; t

0) 2 TG2
, with sBtn and s0Bt0;

2. and vice versa.

The �-calculus is a formal language for expressing properties of systems, expressive enough to
model safety and liveness properties. Mateescu and Wijs identi�ed a fragment of the �-calculus
which is adequate with branching bisimulation [23]. This fragment can be used to specify properties
of the systems to be re�ned.

We do not de�ne the �-calculus in this thesis, because the exact properties which are to be
preserved by a transformation play a relatively minor role in this project. Property preserva-
tion is determined (after hiding actions irrelevant to the property [23]) by checking bisimulation
preservation, which is not concerned with speci�c properties.

2.2 Process algebra

We need a way to model systems composed of LTSs, but possibly containing data. Process algebra
is a family of languages and calculi which can be used to reason about concurrent systems, and
on the most basic level, the model of process algebra is the LTS. In this project we model LTSs
using (subsets of) the process algebra language mCRL2, which contains constructs for modeling
the data state (in addition to the process state) of a system [16].

One of the bene�ts of using process algebra in modeling is that we have straightforward ways
to establish useful properties like congruence.

De�nition 3 (Congruence). An equivalence relation R between algebraic expressions is a con-
gruence if it compatible with the structure, that is, if for 8e1; e2 with e1 R e2, 8s1; s2 with s1 a
subexpression of e1 and s1 R s2, we have e1[s1 n s2] R e2.

It turns out that in the presence of internal actions branching bisimulation is a congruence on
process algebras like mCRL2 if it satis�es the rootedness condition given in De�nition 4 [5].

De�nition 4 (Rootedness). A branching bisimulation relation B between two LTSs G1 and G2

with initial states s and t, respectively, satis�es the rootedness condition i� for all s0 2 SG1
,

t0 2 SG2
, sBt implies:

1. If (s; a; s0) 2 TG1
, then there exists a t0 2 SG2

such that (t; a; t0) 2 TG2
and s0Bt0;

2. and vice versa.

We refer to a branching bisimulation relation which satis�es the rootedness condition as a
rooted branching bisimulation, abbreviated $rb.

8



Chapter 3

Single process transformations

In this chapter we establish a method of re�ning systems which consist of mCRL2 processes
without data or parallelism. In general re�ning a system means transforming the system to a
more structurally complex form without changing its observable properties.

We interpret maintenance of observable properties formally as preservation of (rooted) branch-
ing bisimulation. We prove that our transformations preserve (rooted) branching bisimulation if
they conform to a certain format and pass a certain correctness check.

A system becomes more structurally complex if it gains components or communications be-
tween components. In this chapter we do not yet have parallelism, so transformations will in fact
not yet increase the complexity of systems in a signi�cant way.

We prove that our transformations can transform any single-process system into any other
process in its rooted branching bisimilarity class.

3.1 BPA process de�nitions

In this chapter we specify processes using the part of process algebra mCRL2 without data or
parallelism, which is called Basic Process Algebra (BPA). The signature of BPA contains a set of
actions and a set of process variables, as described in chapter 2. The two binary operators in the
signature of BPA are given in Table 3.1.

Symbol Meaning

+ choice (alternative composition)
� sequential composition

Table 3.1: The operators of BPA

An algebra also has a set of axioms. A set of axioms only holds in the context of (and in
fact de�nes) a certain equivalence. The axioms of BPA which correspond to (rooted) branching
bisimulation are given in Table 3.2.

In addition to requiring that the expressions which de�ne our processes conform to the signature
of our algebra BPA, we also require that processes are speci�ed in a format which we call the
pCRL format, as de�ned in De�nition 5. This format (a simpli�ed version of the existing pCRL
format [17]) makes communication about processes easier, and the use of pCRL speci�cally is
of great practical importance because it translates readily into the mCRL2 speci�cation format,
which enables us to use the mCRL2 toolset for model checking.

De�nition 5 (pCRL format). A BPA process speci�cation S in pCRL format is a tuple hAS ; VS ; PS ; ISi
with

9



CHAPTER 3. SINGLE PROCESS TRANSFORMATIONS

Label Axiom

A1 x + y = y + x
A2 x + (y + z) = (x + y) + z
A3 x + x = x
A4 (x + y) � z = x � z + y � z
A5 (x � y) � z = x � (y � z)
A6 x + � = x
A7 � � x = �

W x � � = x

BRANCH x � (� � (y + z) + y) = x � (y + z)

Table 3.2: The axioms of BPA

Action set AS. The unobservable, internal action � and the deadlock � are always part of the
action set, and do not need to be speci�ed;

Process variable set VS. VS contains every process variable de�ned in PS;

Process de�nition set PS. A set of de�nitions which can be viewed as a function from elements
of VS to de�nitions in the form of process expressions;

Initialization expression IS. A single process variable: the initial variable.

For an example of a process speci�cation, see the example in Section 3.5. We de�ne some
restrictions on the input format for our transformations.

The pCRL format given in De�nition 5 does not allow only closed process speci�cations, as
de�ned in De�nition 6. In other words, the pCRL format also allows open speci�cations. If
a process speci�cation is not closed, its possibilities to perform actions is not fully de�ned and
it cannot be assigned a (rooted) branching bisimilarity class. We assume that every process
speci�cation which we transform is closed.

De�nition 6 (Closed). A subset V 0

S � VS is closed i� some subset P 0

S � PS is total on V 0

S and
no Vi 2 V 0

S occurs in a de�nition Pj 62 P 0

S. A process speci�cation S is closed if V 0

S = VS is closed
with P 0

S = PS. Otherwise S is open.

In a closed process speci�cation, VS can be inferred from PS . Therefore we omit VS from
examples of process speci�cations.

The LTS which is modeled by a process speci�cation is called its solution. To make sure that
a process speci�cation falls into one (rooted) branching bisimilarity equivalence class we want
to make sure that it has exactly one solution. Process speci�cations without recursion always
have exactly one solution, but the same does not hold for process speci�cations with recursion in
general.

It has been established however that a process speci�cation with recursion does have exactly
one solution if it is closed and regular [5] as de�ned in De�nitions 6 and 8. Lemma 1 says that there
exists a map which associates every closed, regular process speci�cation with its solution. The
other way around, the same map associates every LTS with a closed, regular process speci�cation.

Lemma 1. There exists a bidirectional map between LTSs to equivalent process speci�cations.

Proof. We de�ne a bidirectional mapping Reg. Reg associates each LTS G = hSG; AG; TG; IGi
with an equivalent process speci�cation S with hAS ; VS ; PS ; ISi, where

� ASRegAG;

� VSRegSG;

10



3.2. SINGLE PROCESS TRANSFORMATION RULES

� PS de�nes each S 2 VS with at least one summand: �. Furthermore, PS associates with
each transition (S; a; T ) in TG a summand a �Reg(T ) in the de�nition of S;

� IS = IG.

Now that we have established that every LTS can be transformed to a closed, regular BPA
process speci�cation, we know that the class of closed, regular process speci�cations is expressive
enough for our purposes: it can model any LTS. While working in BPA we assume that every
process speci�cation which we transform is guarded (as de�ned in De�nition 7) and regular. We
call two such process speci�cations (rooted) branching bisimilar if their solutions are (rooted)
branching bisimilar.

De�nition 7 (Guarded). An occurrence of a process variable P in a process expression is guarded
if P is sequentially composed after an action. A process speci�cation S is guarded if all occurrences
of process variables in de�ning process expressions in S are guarded.

De�nition 8 (Regular). A process expression is regular if it is an alternative composition in
which the summands (alternatives) are guarded process variables, as de�ned in De�nition 7. In
other words, every expression in a regular speci�cation is of the form `a0 � P0 + a1 � P1 + . . .+
an � Pn', with ai in AS and Pi in PS for all i � n. A speci�cation S is regular if every de�nition
in PS is regular.

3.2 Single process transformation rules

We transform process speci�cations by applying a transformation rule, as de�ned in De�nition 9.
A transformation rule consists of a left pattern and a right pattern, which are required to be
(rooted) branching bisimilar. We replace the left pattern by the right pattern in the original
process speci�cation, which is thereby transformed into a (rooted) branching bisimilar resulting
process speci�cation. Transformation will be de�ned more precisely in this section.

De�nition 9 (Transformation rule). A transformation rule T is of the form hL;Ri, with LT its
left pattern and RT its right pattern. Patterns L and R are regular process speci�cations which
have the same action set.

Variables in the intersection between VLT and VRT are called the glue variables of T .

For an example of a transformation rule, see the example in Section 3.5. To apply a trans-
formation rule to a process speci�cation, we �rst need to �nd a match of the left pattern on the
original system, as de�ned in De�nition 10. Informally, a match can be understood as a subprocess
isomorphism.

De�nition 10 (Match). A match m between pattern L of some transformation rule T = hL;Ri
and some process speci�cation S is an injective map from pattern variables to a closed subset of
process variables of S which has the following property:

� For all pattern variables V 2 V (L) with de�nition PL(V ) and match m(V ) = V 0, replacing
all pattern variables Vi 2 PL(V ) by their match m(Vi) yields a new de�nition PS(V

0) equal
to PL(V ) modulo associativity and commutativity of operators.

We formally de�ne the e�ect of an application of a transformation rule to a process speci�-
cation in De�nition 11. For an example of a transformation rule application, see the example in
Section 3.5.

11
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De�nition 11 (Application). In an application of transformation rule T to a process speci�cation
S, the left pattern LT must have a match m on S. The resulting process speci�cation is called
T (S;m), on which the right pattern RT has a match m0.

For each glue variable V of T we require that m(V ) = m0(V ), so all matches of glue variables
remain in the process after the application. To avoid variable collisions we assume that process
variable set VS does not overlap with pattern variable sets VLT and VRT .

The resulting process speci�cation T (S;m) of a transformation is as follows:

AT (S;m) = AS [ART ;

VT (S;m) = VS nm(VLT ) [m0(VRT ).

PT (S;m) is total on VT (S;m) and maps each V 2 VT (S;m) to:

� PRT (m
0�1(V )) if V is a target of m0;

� PS(V ) otherwise;

IT (S;m) = IS.

3.3 Connections between match and context

The patterns of a transformation rule match only part of a process. The original and resulting
processes of a transformation may enter or leave the matches of a transformation's patterns at the
transformation's glue variables. To check whether a transformation preserves (rooted) branching
bisimilarity, we need to represent the expressions at the edges of the transformation's matches,
which make a match open (not closed). To that end we introduce the concept of entry and exit
variables, as given in De�nition 12. A process variable may be both an entry variable and an exit
variable.

De�nition 12 (Entry/Exit variables). The entry variables and exit variables are subsets of
the glue variable set of a rule. Entry and exit variables are exceptions to the property that
match m of pattern T on process speci�cation S is a closed subset of VS, in the following
way:

� For process variables Vi; Vj 2 VS with Vi 2 m(T ) and Vj 62 m(T ), if and only if Vi is an
entry variable may Vi occur in a summand sumi of PS(Vj). The initial variable of a process
de�nition must be matched by an entry variable, if it is matched at all.

� For process variables Vi; Vj 2 VS with Vi 2 m(T ) and Vj 62 m(T ), if and only if Vj is an exit
variable may Vi still occur in a summand sumi of PS(Vj). Summands not occurring in the
pattern are preserved by transformation rule application.

To show which variables are entry and exit variables, we introduce the special process variable
V�. We extend pattern speci�cations with V� and with �-actions. Entering or leaving a match is
modeled by �-actions. � is a reserved action, and is added to the process speci�cation in the way
de�ned in De�nition 13.

De�nition 13 (V� variable and �-extension). A �-extended pattern P� contains process variable
V�. V� replaces the original initial variable of the pattern as the initial variable of the extended
pattern, and its de�nition is regular. A �-extended pattern also contains �-actions, each labeled
with a unique integer i. �-actions may occur in the following ways:

� For each entry variable Vi, including the original initial variable, there exists a summand of
PP (V�) which is equal to �i � Vi.;

� Each exit variable Vo has a summand �i � Synch in PP (Vo).

12
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Besides ensuring that it is clear which variables can connect to the unmatched part of the
system, the uniqueness of � actions ensures that di�erent entry and exit variables are identi�able
individually, even though these may not have distinguishing de�nitions in the pattern speci�cation.

�-extension resolves another issue. Recall that the rootedness condition of De�nition 4 was
introduced to deal with cases in which part of an LTS transition is replaced by a branching bisimilar
series of transitions starting with at least one � -transition (which is allowed by congruence), while
other actions remain unchanged. The resulting LTS would not be bisimilar to the original LTS,
because taking the new � -transitions would disable the unchanged behaviour. Lemma 2 says that
we do not need to check the rootedness condition in certain cases.

Lemma 2. In any application of a �-extended transformation rule where the extended patterns
are branching bisimilar, the rootedness condition is also preserved.

Proof. The rootedness condition was introduced because part of the transitions of a state may be
replaced by � -transitions, creating an invisible step which may make other transitions unreachable.
In regular process speci�cations the transitions of an LTS state are represented by the summand
set of a process variable.

Exit variables are the only process variables where part of the summand set may be changed
while another part remains the same. We show that in exit variables no � -pre�xed summands can
be introduced which make other summands unreachable.

All exit variables have �-pre�xed summands which must be preserved, which means that a
bisimulation relation on the patterns will have to preserve the possibility of taking these �-actions.

If replacing a summand sum by a � -pre�xed summand sum� introduces an invisible choice
which makes certain other summands unreachable, then sum� causes this unreachableness for all
summands with an action di�erent from that of sum.

In the patterns as de�ned in this thesis no �-actions are replaced, so no replaced sum will
contain any �-action, so introducing a � -pre�xed summand will always disable any �-pre�xed
summands, so no � -pre�xed summands can be introduced in exit variables.

Since non-exit variables will not have part of their summands replaced while other summands
remain the same, unrootedness is never an issue.

3.4 Preservation of branching bisimulation

Our goal in this chapter was to show that we can de�ne transformation rules of which we can
verify that they preserve rooted branching bisimilarity during any application on a valid match.
We can now give this proof.

To check that the application of a transformation rule preserves rooted branching bisimilarity,
we need to check that the left pattern is rooted branching bisimilarity to the right pattern. We
prove Proposition 1 which makes this statement more precise.

Proposition 1. For transformation rule T with LT
�$rbRT

�, an application of T on process
speci�cation S at match m of LT results in a process speci�cation T (S;m), where S$rbT (S;m)
and RT matches T (S;m) at m0.

Proof. Process speci�cations S and T (S;m) are regular, so every transition of state s to state t
in their solutions is represented by a summand in the process speci�cations. We use the term be-
haviour to refer to the ability to perform an action a, as per the conditions of branching bisimilarity
in De�nition 2. To show that S$rbT (S;m) we must show that IS$rbIT (S;m) and all behaviour
of transitions of solutions of S and T (S;m) is preserved modulo branching.

We build a relation C which will be our proposed branching bisimulation relation. First we
de�ne a relation A between all unmatched variables and themselves. Next, recall that we have
established a branching bisimulation relation between LT

� and RT
�, which we call the pattern

relation B̂. We de�ne a relation B between m(V ) and m(V 0) for all V; V 0 in B̂. Now we de�ne
C as A [ B. In the remainder of this proof we establish that C is indeed a rooted branching
bisimulation relation.

13
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We show that IS$rbIT (S;m): IT (S;m) = IS holds by De�nition 11 of application, so if IS is
not matched then IS 2 A, and if IS is matched then it is a glue variable, and IS 2 B. Lemma 2
ensures that rootedness is not an issue.

Next we show that all behaviour of transitions of S's and T (S;m)'s solutions is preserved. To
start we establish some properties of the matches. For every variable V 2 VS in the target of
match m there exists a source variable m�1(V ) 2 m(LT ), and for every variable V 0 2 mT (S;m) in
the target of match m0 there exists a source variable m0�1(V 0) 2 m(RT ).

Consider �rst an arbitrary target variable V of match m.

� If V has summand sum = a � W which exits the target of match m, then match source
m�1(V ) is an exit variable and therefore a glue variable. So there exists a variable V 0 in
the target of match m0 with source m0�1(V 0) = m�1(V ). The summand sum (which is
represented by a �-action pre�xed summand) is preserved exactly by the application of the
transformation rule. So V 0 has summand sum0 = a �W . So the behaviour of summands
sum which exits the pattern is preserved by C.

� If V has summand sum = a �W which does not exit the target of match m, then sum must
be present in match source m�1(V ). Source m�1(V )B̂m0�1(V 0) for some V 0. We distinguish
two cases:

{ a = � : Then we have m�1(W ) B̂ m0�1(V 0), so W C V 0 and the behaviour of sum is
trivially preserved by the existence of V ;

{ V 0 starts a series of � summands V0 : : : Vn in the pattern in which for all i < n, Vi has
summand � � Vi+1 and for variable Vn it holds that m�1(Vn) B̂ m0�1(V ), and Vn has
summand a �W 0 with m�1(W 0) B̂ m0�1(W ). So the behaviour of sum is preserved by
the series of summands ending in a �W 0.

In either case the behaviour of summand sum which does not exit the pattern is preserved
by C.

We have established that behaviour of any arbitrary target V of match m is preserved by C.
Now consider an arbitrary variable V 2 VS , V not a target of match m.

� If V has summands sum = a �W which enters the match target of m, then V is preserved by
the transformation. As for W : match source m�1(W ) is an entry variable and therefore a
glue variable. So variable W is also in the target of right match m0 with source m0�1(W ) =
m�1(W ) (as guaranteed by a �-action pre�xed summand). So V has summand sum0 = a�W .
So the behaviour of summand sum which enters the pattern is preserved by C.

� If V has summand sum which does not enter the target of match m, then sum is una�ected
by the application of the transformation rule. So the behaviour of summand sum which
does not enter the pattern is preserved by C.

We have now also established that behaviour of any arbitrary variable outside the target of
match m is preserved by by C. So all behaviour of the original process speci�cation S is preserved
by C. Since the de�nition of a match is symmetric, we can apply the same reasoning to the
existence of all behaviour of resulting process speci�cation T (S;m) in S. So C is indeed a rooted
branching bisimulation relation.

Remark 1 (Contributions). The speci�cation format used in this chapter is taken from the litera-
ture. We avoided including the exact semantics of the speci�cation formats in this thesis, in order
not to make this thesis unnecessarily long.

The concepts introduced for the correctness check include the variable V�. Using a process
variable for context-connections of single processes is new relative to the existing method and
streamlines some later exposition.
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3.5. EXAMPLE

We lifted the correctness check from the LTS level to the process algebra level. We show that
rooted branching bisimilarity is preserved by application of transformation rules whose patterns
are simply branching bisimilar. Rooted branching bisimilarity has not been treated before in work
on the existing method.

The method de�ned in this chapter is expressive enough to transform any process speci�-
cation S into any other process speci�cation T (S;m) which is bisimilar to S. Simply de�ne a
transformation rule hS; T (S;m)i.

3.5 Example

Example 1. We de�ne a transformation T1 = hL1; R1i as follows:

L1 : A ::= fag

P ::=

V� = �1 � V1
V1 = a � V2;

V2 = �2 � V�

I ::= V�

R1 : A ::= fag

P ::=

V� = �1 � V1
V1 = � � V3;

V3 = a � V2;

V2 = �2 � V�

I ::= V�

Note that in transformation rule T1, process variable V� is the initial variable, and process variable
V2 is the only exit variable. The initial variable and exit variable are shared by BPA speci�cations
L1 and R1, and are marked by � actions.

Given these speci�cations of the patterns of transformation rule T1 we can check whether the
patterns are bisimilar. After �nding out that the patterns are indeed bisimilar, we can apply
transformation rule T1 to arbitrary system speci�cations. For example, consider the following
system speci�cation:

S1 : A ::= fag

P ::=

P1 = a � P2;

P2 = b � P1 + c

I ::= R1

We apply transformation rule T1 to system S1 with match f(V1; P1); (V2; P2)g to get the
following transformed system S10 = R1(S1):

S10 : A ::= fag

P ::=

P1 = � � V3;

V3 = a � P2;

P2 = b � P1 + c

I ::= R1

The bisimilarity of the patterns of transformation rule T1 ensures that the original system S1
and the resulting system S2 are also bisimilar.
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Chapter 4

Process network transformations

In this chapter we establish a method of re�ning systems which consist of multiple parallel pro-
cesses. The method has the same structure as the one de�ned in Chapter 3: we de�ne transfor-
mation rule systems and verify bisimulation between the patterns of these rules.

The rule systems with which we transform process networks can introduce internal commu-
nication options in the form of synchronization laws. This means that we can actually speak of
re�nement in the case of network transformation.

With the de�nitions give in this chapter we can perform network transformations which perform
the same operations as those in the original LTS-based method, but this time on the level of process
algebra.

4.1 The algebra ACP

In this chapter we specify processes using the part of process algebra mCRL2 which contains
expressions with parallelism, which is called the Algebra of Communicating Processes (ACP).The
signature of ACP contains BPA, as described in chapter 3. New binary operators in the signature
of ACP are given in Table 4.1.

Symbol Meaning

k merge (parallel composition)
T left merge
j synchronization

Table 4.1: The operators of ACP

All operators are binary.

Merge operator k represents the parallel execution of two processes. For example, PkQ models
the parallel execution of processes P and Q.

Left merge operator T represents the parallel execution of two processes, where �rst the left
side takes a single step, and then both processes proceed in parallel. The left merging operator is
generally not used in speci�cations, but exists in order to enable us to more easily distribute the
merge operator over its subexpressions.

ACP models not just interleaving concurrency, where multiple systems can take action in
turn, but also true concurrency, where multiple processes take actions at the exact same time.
When multiple of the individual processes can take actions at the same time, then the parallel
composition of these processes can perform the combination of these actions.

This phenomenon of combined actions is called a multi-action, and is noted using the synchro-
nization operator j. For example, ajbjc is a multi-action in which actions a, b and c are performed
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at the same time. The synchronization operator is generally only used in the process expressions,
but results from the distribution of the merge operator over its subexpressions.

The additional axioms of ACP which describe the behaviour of the new operators are given in
Table 4.2, for � and � arbitrary multi-actions. In addition to requiring that the expressions which

Label Axiom

M xky = xTy + yTx+ xjy

LM1 �Tx = � � x
LM2 �Tx = �

LM3 �xTy = � � (xTy)
LM4 (x+ y)Tz = xTz = yTz

S1 xjy = yjx
S2 (xjy)jz = xj(yjz)
S3 xj� = x

S4 �j� = �

S5 (� � x)j� = �j�x
S6 (� � x)j(� � y) = �j�(x � y)
S7 (x+ y)jz = xjz + yjz

TC1 (xTy)Tz = xT(ykz)
TC2 xT� = x � �
TC3 (xjy)Tz = xj(yTz)

Table 4.2: The additional axioms of ACP

de�ne sets of parallel processes conform to the signature of our algebra ACP, we also require that
sets of parallel processes are speci�ed in the parallel pCRL format, which is an extension of the
pCRL format, as de�ned in De�nition 5.

De�nition 14 (Parallel pCRL format). An ACP speci�cation S in parallel pCRL format is a
tuple hAS ; VS ; PS ; ISi with

Action set AS. The unobservable, internal action � and the deadlock � are always part of the
action set, and do not need to be speci�ed;

Process variable set VS. VS contains every process variable de�ned in PS;

Process de�nition set PS. A set of de�nitions which can be viewed as a function from elements
of VS to de�nitions in the form of process expressions. Only BPA operators occur in the
de�nitions;

Initialization expression IS, which consists of a process expression.

Note that like the pCRL format, the parallel pCRL format allows irregular processes. When
working with ACP we still assume that transformed speci�cations and transformation rule pattern
are regular. We also still assume that speci�cations are closed.

4.2 Alphabet operators

ACP also contains the alphabet operators. A number of alphabet operators are given in Table 4.3.
All alphabet operators are unary, but they do each have a parameter. De�nition 15 briey

explains each alphabet operator. The behaviour of the alphabet operators is formally de�ned by
the axioms in table 4.4.

De�nition 15 (Alphabet operators). The alphabet operators behave as follows:
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Symbol Meaning

�C communication
rV allow
�R rename
�I hide

Table 4.3: The operators of ACP

� The communication operator � has parameter C, a map from multi-actions to actions. The
communication operator replaces all multi-actions m in C by C(m).

� The allow operator r has parameter V , a set of actions. The allow operator lets only actions
a which are not in V execute. The only exception is a = � , which can execute regardless of
V .

� The rename operator � has parameter R, a map from actions to actions. The rename
operator replaces all actions a in R by R(a).

� The hide operator � has parameter I, a set of actions. The hide operator replaces all actions
a in I by the unobservable, internal action � .

No � action, nor any multi-action containing � , ever occurs in C, V , R or I.

We de�ne a unary operator SLS (`synchronization law set') with parameter Par. Par is a
map from multi-actions |all of the same size n |to actions. The multi-actions in Par may map
to � , in contrast to parameter C of communication operator �, which is otherwise similar. We
assume that SLS is applied to a set of n parallel processes.

Multi-actions in Par may contain, in some action places, the special symbol �. When SLSPar
is applied to a process expression, a � symbol in place i denotes that the process in place i performs
no action. SLSPar is equivalent to �(�(r(�(P )))), and it has behaviour de�ned more precisely in
terms of the alphabet operators in De�nition 16.

De�nition 16 (Synchronization law set (SLS) operator). The behaviour of SLSPar applied to par-
allel process expression S is equal to �I(�R(rV (�C(S)))), with the following values for parameters
C, V , R, and I:

� C maps

{ each multi-action m with m ! a, a 6= � in Par to a hash action h(a) which is unique
for that multi-set not de�ned in PS;

{ each multi-action m with m! � in Par to the reserved action int;

� V contains all hash actions from C and int;

� R maps each hash action h(a) in V to a;

� I = int.

Table 4.5 gives the resulting axioms for SLSPar.
A process speci�cation in pCRL format is called a process network if the new operators in-

troduced for ACP only occur in the initialization expression. We assume a certain format for the
initialization expression of such a process network, without loss of generality: we assume that IS
is a single vector of merged process variables IS1kIS2k : : : kISn called the initial variables, with a
single SLS operator at the top level.

We also assume that the process variables in the initialization expression have disjoint process
variable sets and action sets, that is, the transitive closure of the process de�nitions of initial
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Label Axiom

Communication

C1 �C(�) = C(�)
C2 �C(�) = �

C3 �C(x+ y) = �C(x) + �C(y)
C4 �C(x � y) = �C(x) � �C(y)

Allow

V1 rV (�) = � if � 2 V [ f�g
V2 rV (�) = � if � 62 V [ f�g
V3 rV (�) = �

V4 rV (x+ y) = rV (x) +r(y)
V5 rV (x � y)P = rV (x) � rV (y)
TV1 rV (rW (x)) = rV \W (x)

Rename

R1 �R(�) = �

R2 �R(a) = � if �! � 2 R for some �
R3 �R(a) = � if �! � 62 R for all �
R4 �R(�j�) = �R(�)j�R(�)
R5 �R(�) = �

R6 �R(x+ y) = �R(x) + �R(y)
R7 �R(x � y) = �R(x) � �R(y)

Hide

H1 �I(�) = �

H2 �I(�) = � if � 2 I

H3 �I(�) = � if � 62 I

H4 �I(�j�) = �I(�)j�I(�)
H5 �I(�) = �

H6 �I(x+ y) = �I(x) + �I(y)
H7 �I(x � y) = �I(x) � �I(y)
H10 �I(�

0

I(x)) = �I[I0(x)

Table 4.4: The alphabet axioms

Label Axiom

SLS1 SLSPar(�) = �

SLS2 SLSPar(�) = � if �! � 2 Par

SLS3 SLSPar(�) = � if �! � 2 Par for some � 6= �

SLS4 SLSPar(�) = � if �! � 62 Par for all �
SLS5 SLSPar(�) = �

SLS6 SLSPar(x+ y) = SLSPar(x) + SLSPar(y)
SLS7 SLSPar(x � y) = SLSPar(x) � SLSPar(y)

Table 4.5: The SLS axioms
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variables ISi and ISj with i 6= j do not contain the same process variables or actions (except �
and �).

In the remainder of this thesis process networks are presented in a format which is formally
de�ned in De�nition 17.

De�nition 17 (Process network). A process network M is presented as h�M ; VM i with �M a
vector of n BPA process expressions in pCRL format and VM a synchronization law set containing
multi-actions of size n.

After complete distribution of the synchronization operator over and through the processes in
the process vector �M we arrive at a single pCRL process expression: M 's system process. Each
state in M 's system process corresponds to a system state of the process vector �M . Each action
in the system process corresponds to a multi-action in the process vector �M .

4.3 Rule systems and application conditions

We can use an individual transformation rule to transform a system of parallel processes, as we did
for single processes in chapter 3. To apply an individual transformation rule, we look for matches
in all processes and replace each match by the corresponding right pattern.

However, we may also want to transform behaviour which transcends the level of single pro-
cesses, like transforming the communication between two processes from synchronous to asyn-
chronous. This requires the application of a system of multiple transformation rules at once,
potentially changing the synchronization laws as well. The veri�cation of such rule systems is
more involved: any individual transformation rule may not preserve branching bisimilarity on a
process, but together the involved transformation rules may still preserve branching bisimilarity.

A rule system is de�ned in De�nition 18.

De�nition 18 (Rule system). A rule system � = hR; V̂ ; V̂ 0i, with R a transformation rule set
and V̂ and V̂ 0 synchronization law sets.

In a rule system, synchronization law set V̂ represents laws which must already be present in
the process network and synchronization law set V̂ 0 represents laws which are introduced by the
transformation.

An application of a rule system to a process network can only take place if V̂ � V . The result
of an application of a rule system is given in De�nition 19.

De�nition 19 (Network application). The application of rule system � = hR; V̂ ; V̂ 0i to process
network M = h�;Mi consists of two steps regarding the �:

1. First for every combination of a process in � and a transformation rule in R the largest
possible set of matches is found.

2. Second each transformation rule is applied at all of its matches as per De�nition 11 of
transformation rule application.

The synchronization laws in V̂ 0nV̂ are added to the synchronization laws V of the process network.

To make reasoning about transformation of synchronizing behaviour easier, De�nition 20 in-
troduces a few restrictions on the application of rule systems. If and only if the combination of
rule system � and process network M satis�es these conditions, then � may be applied to M .

De�nition 20 (Synchronization uniformity). A rule system � is called synchronization uniform
with respect to a process network M if the following conditions hold:
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Universal applicability (L): For all actions a in the de�nition PM (V ) of some variable V

in M which also occur in the multi-action of some transformation rule in R�, if some
synchronization law V̂� contains a and at least one other action, then all variables V 0 in
processes in vector �M whose de�nition DM (V 0) contains action a must be matched by
some transformation rule in R�;

Universal applicability (R): symmetrically for �(M) and V̂� [ V̂ 0
�.

Completeness (L): For all actions a in the de�nition PM (V ) of some variable V inM which also
occur in the multi-action of some transformation rule in R�, if some synchronization law V̂�
contains both a and some action b, then there must be a multi-action of some transformation
rule in R� which contains some variable V with a de�nition DR�

(V ) which contains action
b;

Completeness (R): symmetrically for �(M) and V̂� [ V̂ 0
�.

Synchronization: For all actions a in the multi-action of some synchronization law L 2 V̂ 0
�nV̂�,

a 62 AM .

4.4 Pattern networks

When a rule system is applied to a process network, there may be many matches. It may happen
that one rule matches multiple processes, or that multiple rules match the same process, or that a
rule matches multiple times on the same process. The existence of so many matches complicates
our proof. In the rest of this thesis we limit our reasoning to the vector case de�ned in De�nition 21.

De�nition 21 (Vector case). A process network M = h�; V i is transformed by a rule system
� = hR; V̂ ; V̂ 0i, and for all i, i � j�j, the left pattern of transformation rule R[i] matches exactly
once, namely on process �[i].

In any rule system we require that the transformation rule set is conuent: any order of
application of the rules should lead to the same result. Recent work discusses how to check
conuence of rule systems e�ciently for the LTS-based case [30]. Conuence of rule systems
ensures that our results for the vector case which we examine here can be generalized to arbitrary
matching.

The vector case gets its name from the fact that the transformation rule set of � can be inter-
preted as a vector. This is convenient for veri�cation because we can now analyse the behaviour
of the patterns of a rule system as if they were process networks by analysing its pattern networks,
as de�ned in De�nition 22.

De�nition 22 (Pattern networks). For rule system � = hR; V̂ ; V̂ 0i with jRj = n:

� The left pattern network L� is a process network h�L; VLi with:

{ For all i � n, process �Li = LRi ;

{ Synchronization law set VL = V̂ .

� The right pattern network R� is a process network h�R; VRi with:

{ For all i � n, process �Ri = RRi ;

{ Synchronization law set VR = V̂ 0.
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Like a regular process network, a pattern network is a parallel composition of processes under
an SLS operator. As explained in Section 4.1, if multiple processes in a parallel composition
can take actions, then the parallel composition can take a multi-action. And as we have seen in
Section 4.2, the synchronization law set operator SLS maps multi-actions to single actions of the
process network as a whole.

In the following sections it is sometimes convenient to view a process network as the single
network process which results from the application of its synchronization law set to its process
vector, factoring out the parallel composition operator. The process variables of the network
process have no direct de�nition in the process network speci�cation, but correspond to variable
vectors whose multi-actions are composed by the synchronization law set into single actions of the
network process.

Recall that a match is a map from pattern variables to process variables. For variable vectors
we de�ne the similar concept of vector match in De�nition 23. In our proof of bisimulation
preservation we reason about such vector matches.

De�nition 23 (Vector match). Suppose that variable vector V of length n is part of a pattern
network N , and variable vector S of length n is part of a process network M . If for all i, i � n

pattern i of N matches process network M , then V has a vector match m on S such that for each
index i we have m(V [i]) = S[i].

It may happen that some rule has a match, and it needs another rule to form a multi-action,
but that other rule does not have a match. In that case a certain communication is impossible. We
need to be able to reason about such unsuccessful communication in addition to successful com-
munication. To reason about unsuccessful and successful communication we introduce introduces
dependency relations D and D� on rules in De�nition 24.

De�nition 24 (Dependency relations). In a rule system �, transformation rules T1 and T2 are
related by direct dependency relation D if action a occurring in T1 and action b occurring in T2
occur together in a multi-action of a synchronization law in V̂� [ V̂ 0

�.
The dependency relation D� is the transitive closure of D. The dependency relation can be

used to partition the indices of a rule system's transformation rule vector into a dependency set
partition D�.

To prove the bisimulation preservation of a rule system � regardless of the process network to
which it is applied, we investigate each subset I of each dependency set in D�. We �lter the rule
system by the dependency set, as de�ned in De�nition 25.

De�nition 25 (Filtering). Filtering the rule system � = hR;V;V 0i by index set I turns it into
�ltered rule system �I = hRI ;VI ;V

0

Ii where each element RI j with j 62 I is equal to hd; di where d
is the dummy process:

Ad : ::= fg

Pd : ::=

V� = �

Id : = V�.

and VI and V
0

I are equal to V and V 0, respectively, except that all laws whose multi-actions require
an action from the process at index j are removed from both.

An optional second step is shortening a �ltered rule system, as de�ned in De�nition 26. We
can shorten a process network without a change to the network process.

De�nition 26 (Shortening). A process network (for example a �ltered rule system) is shortened
by removing every dummy process. For each such process at an index j, each synchronization law
has a � as the jth element in its multi-action. These jth entries are removed as well.
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We take the left and right pattern networks LI and RI for the �ltered process network of I,
and check bisimulation between LI and RI . But when doing so we need to take into account the
actions which enter and exit the pattern.

As explained in De�nition 13, when we check bisimulation preservation on individual transfor-
mation rules, we extend these rules with a variable V� and �-summands.

In the same way, when we check bisimulation between pattern networks, the individual pattern
processes in the network are �-extended. But when analyzing the pattern network we can not stop
at checking the individual actions which can enter or exit a pattern: we need to take into account
all multi-actions which may enter or exit the pattern. Therefore we introduce synchronization
laws for multi-actions consisting of �-actions in De�nition 27.

De�nition 27 (�-synchronization). In a �-extended pattern network N� each individual trans-
formation rule is �-extended as per De�nition 13.

Additionally the synchronization law set V̂ of N� is extended with a set of synchronization
laws V �

I for each subset I 2 DN of the processes of N�.
For such a subset I the set V �

I contains all multi-actions which consist of, for each process in
�N , either one �-action occurring in �N or the special symbol �, except the multi-action consisting
of only � symbols. V �

I maps each such multi-action to a new unique �-action.

When we know for every subset I of every dependency set in D� whether it holds for its left
and right pattern networks LI and RI that LI

�$rbRI
�, we can prove that � is bisimulation

preserving.

4.5 Preservation of branching bisimulation

We proceed to prove Proposition 2 which states that branching bisimulation is preserved by the
application of rule systems with certain properties.

Proposition 2. Suppose that we have a rule system � with R� of size n and for all subsets I of
elements of D�, LI

�$rbRI
�.

A synchronization uniform application of � on process network M at vector match m of left
pattern network process L� results in a process speci�cation �(M;m), where M$rb�(M;m) and
right pattern network process R� has match m0 on T (S;m).

Proof. We give a proof sketch.
Similarly to the situation in the proof of Proposition 1 we seek to preserve that IM$rbI�(M;m)

(the initial variable vectors of the network processes are related) and all behaviour of transitions
of M 's and �(M;m)'s solutions is preserved.

To see that IM$rbI�(M;m), note that the initial state of a network process is the vector of all
initial variables of its sub-processes. All of these initial states are matched on by glue variables,
and so they are preserved by the transformation, so IM = I�(M;m).

We now show that all behaviour of transitions of M 's and �(M;m)'s solutions is preserved.
We build a relation C between M and �(M;m) which will be our proposed branching bisimula-
tion relation. First we de�ne relations Ai between all unmatched variables in all processes and
themselves. Next, recall that we have established a branching bisimulation relation B̂i between
each pair of pattern variables V1 = L�i

� and V2 = R�i
�. We de�ne a relation Bi between each

pair of process variables m(V1) and m(V2). Each variable of each process in M is in either some
Ai or some Bi.

We de�ne relation C 0 as [i2I(Ai[Bi). We then de�ne C as the relation between vectors which
maps every vector V = [V0; V1 : : : Vn] to C(V ) = [C 0(V0); C

0(V1) : : : C
0(Vn)]. In the remainder of

this proof we establish that C is indeed a rooted branching bisimulation relation.
We show that for every i � n, IMi

$rbIT (Mi;m): IT (Mi;m) = IMi
holds by De�nition 11, so if

IMi
is not matched then IMi

2 A, and if IMi
is matched then it is a glue variable, and IMi

2 B̂i.
Lemma 2 ensures that rootedness is not an issue. Since for every i � n, IMi

$rbIT (Mi;m), we also
have IM$rbIT (M;m): the initial variable vectors of the network processes are related.
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Next we show that all behaviour of transitions of M 's and T (M;m)'s solutions is preserved.
Consider �rst an arbitrary variable vector V in M . For each multi-action a of V with a synchro-
nization law V̂i = (a! b), we distinguish two cases:

� If there exists a matched V 2 V with a summand a �W with action a 2 a, then by synchro-
nization uniformity (De�nition 20) for all summands a0 �Wi with action ai 2 a the behaviour
of a0 must be preserved. So V is matched completely and each element is in some Bi. From
B we can �nd a related variable vector V 0 which shows that V is related to some bisimilar
element by C.

� If there exists no matched V 2 V with a summand a0 �Wi with action a0 2 a, then we can
distinguish three cases for element Vi of V :

{ Vi is related to itself by relation Ai. Wi is also in Ai and related to itself. The summand
is not involved in the transformation, so its behaviour is preserved.

{ Vi is related to itself by relation Ai. m(Wi) is in B̂i and it is a glue variable, so W is
related to itself. The summand is not involved in the transformation, so its behaviour
is preserved.

{ Vi is in some Bi and is related to some V
0

i , but it has no matched summands a
0 �Wi with

a0 2 a. Either Vi has no summands or it is an exit variable. If Vi has no summands
there is no behaviour to be preserved. If m(Vi) is an exit variable then V is related to
itself by Bi and variable W is in Ai and related to itself. The summand is not involved
in the transformation, so its behaviour is preserved.

We have now also established that all behaviour of the process network M is preserved by C.
Since the de�nition of a match is symmetric, we can apply the same reasoning to the existence of
all behaviour of resulting process speci�cation T (M;m) in M . So C is indeed a rooted branching
bisimulation relation.

Remark 2 (Contributions). The speci�cation format used in this chapter is taken from the litera-
ture, except the SLS operator, which is new. We lifted the correctness check from the LTS level
to the process algebra level.

Previously de Putter discovered the problem of non-cascading rule systems [25]. Unpublished
work by de Putter and Wijs establishes an approach to eliminating this problem, which involves
V� and �-synchronization. This is the �rst work in which that approach is used. The author
contributed to discussions leading to improvements in the approach.

Previous work explicitly includes the concept of admissibility of rule systems, which ensures
certain properties relating to � -actions. We require the same properties, but our use of the hiding
alphabet operator naturally ensures that rule systems are admissible.

To describe the expressiveness of the method so far, De�nition 28 introduces the concept of
pairwise bisimilarity.

De�nition 28 (Pairwise branching bisimilar). A pair of process networks is pairwise (rooted)
branching bisimilar if every corresponding element pair is (rooted) branching bisimilar under the
network's synchronization laws and the network processes are also (rooted) branching bisimilar.

For each pairwise rooted branching bisimilar pair of process networks A and B there exists a
rule system R such that T (A) = B. This is not very expressive yet. We will gain much more
expressiveness in the next chapter.

4.6 Example

Example 2. We de�ne a transformation rule T21 = hL21; R21i as follows:

L21 : A ::= fa; s1g
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P ::=

V� = �1 � V1;

V1 = a � V2;

V2 = �2 � V�

I ::= VSynch

R21 : A ::= fa; s1g

P ::=

V� = �1 � V1;

V1 = a � V2;

V2 = s1 � V2 + �2 � V�

I ::= VSynch

And we de�ne a transformation rule T22 = hL22; R22i as follows:

L22 : A ::= fb; s2g

P ::=

V� = �1 � V1;

V1 = b � V2;

V2 = �2 � V�

I ::= VSynch

R22 : A ::= fb; s2g

P ::=

V� = �1 � V1;

V1 = b � V2;

V2 = s2 � V2 + �2 � V�

I ::= RSynch

Both transformation rules simply add a � -loop to variable V2. We also de�ne two sets of
synchronization laws. The �rst synchronization law set V = fg: the empty set. The second
synchronization law set V 0 = f(hs1js2i; �)g.

We can now create a rule system. Rule system �1 = ([R21; R22];V;V
0). Informally, rule

system �1 can be applied to a process network M1 which consists of two parallel processes and a
synchronization law set which includes the laws in V . It applies transformation rule R21 to the
�rst process M11 and transformation rule R22 to the second process M12 and it adds V 0 to the
synchronization law set of M1.

We check for each individual transformation rule of �1 (R21 and R22, in this case) whether
the left and right patterns of the transformation rule are bisimilar.

We then combine the parallel composition of the left patterns of all transformation rules with
V̂�1 , which is V, into a process network C1. we similarly combine the parallel composition of the
right patterns of all transformation rules with V̂ 0

�1 , which is V [ V 0, into a process network C2.
The network processes of C1 and C2 look as follows:

C1 : A ::= fa; b; s1; s2g

P ::=

V�1 = �21 � V11;

V11 = a � V21;

V21 = �21 � V�1
V�2 = �12 � V12;
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V12 = b � V22;

V22 = �22 � V�2

I ::= V�1jjV�2

C2 : A ::= fa; b; s1; s2g

P ::=

V�1 = �1 � V11;

V11 = a � V21;

V21 = s1 � V21 + �2 � V�1
V�2 = �12 � V12;

V12 = b � V22;

V22 = s2 � V22 + �2 � V�2

I ::= SLS(fhs1js2i ! �g; V�1jjV�2)

We check whether C1 is bisimilar to C2, which is possible because both are in parallel pCRL
format. All checks are positive. After �nding out that the rule systems do indeed preserve bisimi-
larity, we can apply rule system �1 to process networks for which the application is synchronization
uniform. For example, consider the process network M2:

M2 : A ::= fag

P ::=

M21 = a � P1;

P1 = c

M21 = b � P2;

P2 = c

I ::= SLS(fg;M21kM22)

All synchronization uniformity conditions hold for this combination of rule system and process
network, so we can apply rule system �1 to process network M2 to get the following transformed
process network M20:

M20 : A ::= fag

P ::=

M21 = a � P1;

P1 = s1 � P1 + c � P3

M21 = b � P2;

P2 = s2 � P2 + c � P3

I ::= SLS(fhs1js2i ! �g;M21kM22)

The bisimilarity check on rule system �1 ensures that the original process network M2 and
the resulting process network M20 are bisimilar.
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Chapter 5

Extending the transformation

method

In the past chapters we have established that the existing re�nement method can be adapted for
use in a process algebra setting.

In this chapter we extend the existing re�nement method. We add signature elements with
data and extend the speci�cation format again. We de�ne how the re�nement method can be
applied to systems with data and to irregular speci�cations. We also propose extensions to the
re�nement method with transformations which change the number of processes in a network.

5.1 Systems with data

In this chapter we work with a yet greater part of the mCRL2 syntax, which we will refer to as
`systems with data'. We add signature elements and operators for transforming systems with data:
parameters, generalized choice (sum), and conditions. This means that we use almost all of the
mCRL2 language, notably excluding signature elements for modeling time. Timed processes can
be modeled using the data elements which we introduce here, but without specialized signature
elements these cannot be analyzed e�ciently by the toolset.

To transform systems with data, we need data types. mCRL2 includes a number of data types
by default: boolean, positive, natural, integer, real, structured data types, function data types,
lists, sets and bags. We assume the existence of these data types for our systems with data as
well. These data types have their usual (for example mathematical) operators, which we do not
list. More data types can be de�ned by the user, but that is beyond the scope of this project.

Symbol Meaning

� sum (generalized choice)
! (�) condition

Table 5.1: The operators of systems with data

5.1.1 Data parameters

In systems with data, process variables and actions may have parameters. Every occurrence of the
same action or process variable has the same number of data parameters of the same type. The
number and types of data parameters of an action or process variable of process speci�cation S are
speci�ed in action set AS and process variable set VS , respectively. We represent data variables
by lowercase letters and their types by uppercase letters.
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When a process variable is de�ned as having data parameters, that process variable binds data
variables of the corresponding types in its process de�nition, which means that occurrences of
actions and process variables in process de�nitions may have data parameters which consist not of
the typed data parameter speci�cations used in AS and VS but of data expressions. Data expres-
sions which occur as parameters of actions and process variables in process de�nitions can only
contain bound data variables and must be computable. Evaluating data expression parameters
must result in a data value of the correct type for the containing action or process.

Data parameters can be used to more easily model systems in which data variables play a
central role. Whereas previously each value for the data variables would have to be represented
as a process variable, data can now be represented in a compact way. Without data parameters
the size of regular speci�cations would rise exponentially with the number of �nite-domain data
variables in the model, the size of a speci�cation now rises only linearly. Data variables also allow
the description of systems with in�nite-domain data variables in �nite speci�cations.

In systems with data, all alphabet operators preserve data parameters. The communication
operator � takes account of data: two actions may only communicate if their data variable has
the same value. Synchronization laws do not contain data parameters, but a vector of actions can
only form a multi-action if all actions in the vector have the same data values.

In De�nition 2 we de�ned branching bisimilarity through simulation. In systems with data,
an action only simulates another if these actions have the same number and type of parameters,
with the same values.

5.1.2 Generalized choice operator

Data parameters allow the use of data in a system. But data also has to enter the system.
Examples of data entering a system include situations where a process receives data from another
process inside or outside its network, or when a process makes an unpredictable observation or
nondeterministic choice. To model data entering a system we use the generalized choice operator
�.

Systems with data may contain the unary generalized choice operator �d:Dp with d a data
variable, D a data type, and p a process expression. �d:Dp allows a choice of any e 2 D for data
variable d in sub-expression p. As its name implies, the generalized choice operator can be viewed
as a generalization of choice operator +.

Just like a process variable, the � operator binds occurrences of its data parameter d in its
subexpressions. Occurrences of data variables in expressions may have only one binding element,
either a process variable or a �-operator. Operator � distributes over all alphabet operators, as
is evident from the axioms in Table 5.2.

Label Axiom

SUM1 �d:Dx = x

SUM3 �d:DX(d) = X(e) + �d:DX(d) for some e 2 D

SUM4 �d:D(X(d) + Y (d)) = �d:DX(d) + �d:DY (d)
SUM5 (�d:DX(d)) � y = �d:DX(d) � y
LM5 (�d:DX(d))Ty = �d:DX(d)Ty
S8 (�d:DX(d))jy = �d:DX(d)jy

C5 �C(�d:DX(d)) = �d:D�C(X(d))
V6 rV (�d:DX(d)) = �d:DrV (X(d))
R8 �R(�d:DX(d)) = �d:D�R(X(d))
H8 �I(�d:DX(d)) = �d:D�I(X(d))
SLS8 SLSPar(�d:DX(d)) = �d:DSLSPar(X(d))

Table 5.2: The � axioms
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5.1.3 Conditional operator

So far we have introduced signature elements and operators which allow systems to contain data,
to change data values and to accept new data values. But we also need a way to let the data of a
system inuence its control ow. To that end we introduce the conditional operator.

Systems with data may contain the conditional operator c(d1 : : : dn)! p � q with c a boolean
expression over bound variables d1 : : : dn and p; q process expressions. If c is equivalent to true
then expression c! p � q is equivalent to p, else the expression is equivalent to q. We give axioms
to this e�ect for the conditional operators in Table 5.3. For easy rewriting without an explicit
treatment of data we give an axiom ELSE which allows one to remove the � (`else') symbol.

Label Axiom

Cond1 true! x � y = x

Cond2 false! x � y = y

THEN c! x = c! x � �
ELSE c! x � y = (c! x) + ((:c)! y)

Table 5.3: The conditional axioms

5.1.4 Speci�cation format

In addition to requiring that the expressions which de�ne sets of parallel processes with data
conform to the signature of our systems with data, we also require that sets of parallel processes
are speci�ed in the parallel pCRL format with data, which is an extension of the parallel pCRL
format, as de�ned in De�nition 14. Note that where the parallel pCRL format as described in the
literature allows for the de�nition of one's own data types, we do not go into that in this thesis.

De�nition 29 (Parallel pCRL format with data). A system with data speci�cation S in parallel
pCRL format with data is a tuple hAS ; VS ; PS ; ISi with

Action set AS. Each element a of A has a set number n of data parameters. For each data
parameter i, i � n the de�nition of action a contains name vi and type ti, speci�ed in the
form a(v1 : tn : : : vn : tn). The unobservable, internal action � and the deadlock � are always
part of the action set, have no parameters, and do not need to be speci�ed;

Process variable set VS. Each element V of VS has a set number n of data parameters. For
each data parameter i, i � n the de�nition of V contains name vi and type ti, speci�ed in
the form V (v1 : tn : : : vn : tn). VS contains every process variable de�ned in PS;

Process de�nition set PS. A set of de�nitions which can be viewed as a function from elements
of VS to de�nitions in the form of process expressions. Only BPA operators and data oper-
ators, but no other ACP operators including no alphabet operators occur in the de�nitions;

Initialization expression IS, which consists of a process expression.

Note that like the more basic parallel pCRL format from Chapter 4, the parallel pCRL with
data allows irregular processes. When working in the parallel pCRL with data format, we allow
processes and transformation rule patterns to have an irregular form.

It has been established in previous work that any process network speci�cation which contains
only computable data expressions and a �nite set of actions can be de�ned using a certain kind of
regular form called a Linear Process Speci�cation (LPS) with data which contains only computable
functions over the natural numbers [24].

Such LPS with data contain only process variable de�nitions with, for process variable V (d : D)
summands of the form �e:Ec(d; e)� > a(f(d; e)) �V 0(g(d; e)) with f; g arbitrary functions, and c a
boolean function, over data parameters d; e.
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Since we require our process network speci�cations to be computable, we can assume regularity
in our bisimulation preservation proofs even though we allow the speci�cation of irregular systems
and transformation rule patterns.

5.2 Transformation rules with data

When assessing bisimilarity in systems with data, we take into account the fact that the names
which we use for data parameters are not visible in the behaviour of a process network: only data
variables are visible. We can use the invisibility of data parameter names to make rule systems
more broadly applicable: we de�ne a form of �-conversion on data variables.

�-conversion involves replacing variable names in a speci�cation by free variable names, that
is, variable names not already used elsewhere in the speci�cation. We de�ne �-conversion more
precisely in De�nition 30.

De�nition 30 (�-conversion). The �-conversion of a process network M is the result of applying
some map A to M , replacing all variable names d by A(d). The range A can not contain any
variables already present in M before the �-conversion.

The �-conversion of a process network M by map A is bisimilar to M itself. If we convert
all patterns of a bisimulation preserving rule system by the same map A, the result is another
bisimulation preserving rule system. Therefore we identify expressions and action or process
variables which are equal modulo �-conversion.

When we take equivalence of the new operators modulo �-conversion into account, the following
de�nitions can be used with systems with data in exactly the same way as they appear in Chapter 4
about ACP:

� De�nition 18: Rule system

� De�nition 19: Network application

� De�nition 20: Synchronization uniformity

� De�nition 21 Vector case

� De�nition 22: Pattern networks

� De�nition 23: Vector match

� De�nition 24: Dependency relation

� De�nition 25: Filtering

� De�nition 26 Shortening

� De�nition 27: �-synchronization

The only addition of note is that �-actions carry the parameters of the variable in whose de�nition
they appear.

5.3 Preservation of branching bisimulation

In Chapter 4 we proved the correctness of a bisimulation preservation check for rule systems
in ACP. In the literature there is some discussion on the correct way to model the behaviour
of quanti�cation and binding by sums, see for example the thorough treatment of this topic by
Luttik [22].

We view network de�nitions with data as an abbreviation of a set of network speci�cations,
one for each legal assignment of values to the data parameters in the initial expression. Note that
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the size of the set of speci�cations which is abbreviated by some network speci�cation with data
may in fact be in�nite.

De�nition 31 describes a mapping which expands network speci�cations with data to the sets of
network speci�cations which they abbreviate. We only discuss the case where all process variable
de�nitions are regular, which we can do without loss of generality given our observation in the
previous section that irregular network speci�cations can be reduced to regular ones. We only give
the case where each action or process variable has a single data parameter. The generalization is
obvious.

De�nition 31 (Data expansion). A regular network speci�cation in systems with data can be
mapped to a (possibly in�nite) expanded network speci�cation (without data) by the following
expansion mapping exp:

� Each action a(d : D) maps to an action ad.

� Each process variable V (d : D) maps to a process variable Vd.

� Each de�ning expression PM (V ) of process variable V (d : D) consists of a number of sum-
mands of the form �e:Ec(d; e)� > a(f(d; e)) � V 0(g(d; e)) with f; g arbitrary functions over
data parameters d; e.

In the expanded de�nition exp(V (d : D)) each such summand s is replaced by at most
jDj � jEj summands PM (V )d:D;e:E, one for each combination of d and e for which c(d; e)
holds, where PM (V )d:D;e:E = af(d;e) � V

0

g(d;e).

� Each process variable V (d) in the initial expression maps to a process variable Vd.

Our interpretation as abbreviations with an expansion de�ned through the expansion mapping
leads automatically to the de�nition of rooted branching bisimulation for systems with data which
we give in De�nition 32.

De�nition 32 (Bisimulation with data). For two network speci�cations M1 and M2 with data it
holds that M1$rbM2 if and only if there exists a rooted branching bisimulation relation between
the process variables in their expanded network speci�cations such that exp(M1)$rbexp(M2).

Now that we have an abbreviation mapping and a de�nition of rooted branching bisimulation
with data we can prove Proposition 3.

Proposition 3. Suppose that we have a rule system � with data, with R� of size n and for all
subsets I of elements of D�, LI

�$rbRI
�.

An application of � on process network M with data at vector match m of left pattern network
process L� results in a process speci�cation �(M;m), where M$rb�(M;m) and right pattern
network process R� has match m0 on T (S;m).

Proof. We only need to modify the proof of Proposition 2 somewhat to update the relations from
which our rooted branching bisimulation is composed. Recall that process variable vector relation
C was built from process variable relation C 0, which was equal to Ai [Bi. We show that we can
still build relations A0 and B0 such that the proof works.

� Relation Ai related those process variables which do not change. To show that we can
construct such a relationship Ai between unmatched process variables with data, we need to
show that two equal process variables with data have rooted branching bisimilar expansions.

If two process de�nitions with data PMi and PMj are exactly equal then trivially exp(PMi) =
exp(PMj). So relation Ai can be constructed for systems with data.
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� Relation Bi related those process variables m(Vi) and m(Vj) for which Vi(̂Bi)Vj where Bi

was the bisimulation assumed in the proposition. To show that we can construct such a
relationship Bi between matched process variables with data, we need to show that two
process variables m(Vi);m(Vj) with data, matched by bisimilar pattern variables with data

Vi; Vj with Vi(̂Bi)Vj , it holds that m(Vi)$rbm(Vj)

If Vi(̂Bi)Vj then by De�nition 32 of data bisimulation with data we have exp(Vi)$rbexp(Vj).

If in matchm left pattern variable V matches process variablem(V ), then by De�nition 10 of
a match, if the transformation rule is applied on every matched variable, then PMi

(m(V )) =
PLRi (V ) modulo associativity and commutativity of operators. Since no associativity or
commutativity plays a role inside a summand, such variables V and V 0 have the same
summands sets, so by De�nition 31 of data expansion we have exp(V ) = exp(m(V )).

Since we have exp(Vi)$rbexp(Vj), we have exp(m(Vi))$rbexp(m(Vj)). By De�nition 32 of
data bisimulation also have Vi$rbVj . So relation Bi can be constructed for systems with
data, too.

We can construct suitable relations A and B, so we can construct a suitable relation C 0 and
therefore C as well. With these relations we can adapt the proof of Proposition 2 to prove
Proposition 3.

5.4 Compositional re�nement

Compositional re�nement is the transformation of a network in a modular way: adding and
removing synchronization laws, adding and removing processes and transforming part of a system
in isolation. We briey describe a few ways of re�ning systems compositionally.

5.4.1 Bidirectionality

So far we have viewed transformation rules as one-way a�airs, but because the proofs of correctness
of transformation rules are based on equivalence we can also apply any transformation rule the
other way. We call this reverse application.

Using a reverse application, we can remove synchronization laws. The synchronization con-
dition of synchronization uniformity is reversed in such a case: the multi-actions of removed
synchronization laws cannot contain actions which are still present in the resulting system after
application of the transformation rule.

5.4.2 Network expansion

We have de�ned the operation of shortening a �ltered rule system in De�nition 26. We can also
apply shortening on normal process networks outside the context of �ltering. That way we can
remove processes without functionality (which are equivalent to the dummy process).

Additionally, if we apply shortening in reverse, we get an expansion operation in De�nition 33.
In expansion a new dummy process is added to the process vector, and the multi-actions in the
synchronization law set are expanded by � symbols accordingly. No bisimilarity checks are required
to expand a process network. The new dummy process can later be transformed into a nontrivial
process. This way we can add any number of new processes to a network.

De�nition 33 (Expanding). A process network is expanded by adding a number of dummy pro-
cesses. For each such new process at an index j, a � action is inserted into each remaining
synchronization law as the jth element in its multi-action.
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5.4.3 Splitting rules and nested process networks

We observed earlier in Section 4.2 that the process vectors in initialization expressions of process
networks could be nested, and we chose to require that no nesting occurred. We have since
observed that each process network is equivalent to a network process. Using the latter observation,
De�nition 34 de�nes a splitting rule which has a process P as its left side and a process networkM
of which P is the system process as its right side. Splitting rules can be used to split an individual
process of a process network M into a new process network M 0 nested inside M .

De�nition 34 (Splitting rule). A splitting rule is of the form hP;Mi with P$rbPM , where PM
is the network process of M .

A splitting rule matches a process if P matches the whole process. An application of a splitting
rule replaces P by M . The reverse application of a splitting rule merges a process network into a
single process.

5.4.4 Lifting rules and subvector transformation

Given the existence of nested process networks an obvious further question is how to move processes
between di�erent nesting levels inside a tree of nested networks. To move processes between
nesting levels, De�nition 35 de�nes a lowering rule. De�nitions 36 and 37 de�ne what matching
and application mean for lowering rules.

De�nition 35 (lowering rule). A lowering rule is of the form N = hP; V i, with N a process
network with:

� P a process vector of size n;

� V a synchronization law set of size n in which all multi-actions and resulting actions are
unique.

De�nition 36 (lowering match). A lowering rule has a lowering match on a process network
M = h�; V i at index i if:

� each process �i+j matches Pj for all j < n;

� for each synchronization law k 2 V , subvector mk = Vki:::i+n�1 is present as a multi-action
in V 0, unless mk consists of only � symbols.

De�nition 37 (lowering application). An application of a lowering rule consists of:

� replacing the subvector �i+j of � by a subvector with one element: the system process of N ;

� for each synchronization law k 2 V , replacing subvector mk = Vki:::i+n�1 by:

{ if mk does not consist of only � symbols: a subvector with one element, namely the
resulting action of V 0(mk);

{ if mk consists of only � symbols: a � symbol.

The reverse application of a lowering rule lifts a subvector of a process network's process vector
to a higher nesting level. This is only possible if the lower rule has a splitting match and the result
is a splitting application, as de�ned in De�nitions 38 and 39, respectively.

De�nition 38 (lifting match). A lowering rule has a lifting match on a process network M =
h�; V i at index i if:

� process �i matches P ;
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� for each synchronization law k 2 V , element mk = Vki is present as a resulting action in
V 0, unless mk is a � symbol.

De�nition 39 (lifting application). A reverse application of a lowering rule (lifting application)
consists of:

� replacing the subvector of � consisting of the single process �i by a subvector equal to P ;

� for each synchronization law k 2 V , replacing one-element subvector mk = Vki by:

{ if mk is not a � symbol: a subvector equal to the multi-action V 0�1(mk);

{ if mk is a � symbol: a vector of length n of � symbols.

By �rst splitting a process and then lifting the resulting process network, we split the behaviour
of a process over multiple parallel processes inside the same process network. This was not
generally possible earlier.

If we want to transform only a subvector of the process network in isolation, we can �rst lower
the subvector, then transform it, and then lift it again. This saves us from taking unchanged
processes into account when transforming only part of a process network.

5.5 Contributions

The speci�cation format with data used in this chapter is taken from the literature. We extended
the transformation method with data, irregularity and compositional re�nement. The bisimulation
preservation check correctness proof (sketch) for the extended method is new.

Reverse application is also new in this thesis.
Previous work by Wijs discusses maximal hiding, which is a way to greatly reduce the veri�ca-

tion e�ort for a rule system in practice by identifying a set of actions which are irrelevant to the
properties which need to be maintained, and then hiding that hiding set [23]. Work by Wijs on
compositional development [29] de�nes concepts for compositional development which allow one to
apply maximal hiding to subsystems under transformation. The compositional development rules
in our extended re�nement method do not accomodate maximal hiding on lowered subnetworks,
which means that it is less powerful in that regard.

Finally we prove proposition 4 about the expressiveness of the extended method.

Proposition 4. For each bisimilar pair of nested process networks P and Q there exists a series
of transformation rules S such that S(P ) = Q.

Proof. We apply the following transformation rules.

� Let R1P be a series of lifting rules which transforms P into a single, unnested process network
P1;

� let R1Q be a series of lifting rules which transforms Q into a single, unnested process network
Q1;

� let R2P be the splitting rule which transforms P2 into its system process P1;

� let R2Q be the splitting rule which transforms Q2 into its system process Q1.

Note that P$rbP1$rbP2 and Q$rbQ1$rbQ2. Since P$rbQ by assumption, we have P2$rbQ2

and since P2 and Q2 are single processes, there exists a rule R3 which transforms P2 into Q2.
We can apply transformation rules in reverse. Let Rev(R2Q) be R2Q applied in reverse. Let

Rev(R1Q) be R1Q applied in reverse. Then we can pick for S the series of transformation rules
R1P + [R2P ] +R3 + [Rev(R2Q)] +Rev(R1Q).
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5.6 Example

We give a producer-consumer example adapted from an example which was previously presented
in LTS form in work by Wijs [29].

Example 3. We de�ne a synchronization law set V3 as follows:
V3 = f(hs1jr1i; �); (hr2js2i; �)g
And we de�ne a process network M3 as follows:

M3 : A ::= fproduce; s1; consume; s2 : Int; r1; r2g

P ::=

C0 = �n:Int � produce(n) � C1(n);

C1(n) = s1(n) � r2 � C0

S0 = �n:Int � r1(n) � (ni0)! s2 � S2(n);

S2(n) = consume(n) � S0

I ::= SLS(V 3; C0kS0)

Process C0 produces an integer n and sends it to process S0, which checks whether n is larger
than 0, and if so consumes n. Note the use of data and the irregular form of some of the process
expressions in C0 and S0.

Suppose that we want to insert channels between the two existing components of M3, through
which their communications are routed. To that end, we de�ne four transformation rules T31 : : : T34
as follows:

L31 : A ::= fs1; s11 : Int; r2; r22g

P ::=

V�(n) = �0(n) � V0(n)

V0(n) = s1(n) � r2 � V1;

V1 = �1 � V�

I ::= V�(n)

R31 : A ::= fs1; s11 : Int; r2; r22g

P ::=

V�(n) = �0(n) � V0(n)

V0(n) = s11(n) � r22 � V1;

V1 = �1 � V�

I ::= V�(n)

L32 : A ::= fs1; s11 : Int; r2; r22g

P ::=

V�(n) = �0(n) � V0(n)

V0(n) = s1(n) � r2 � V1;

V1 = �1 � V�

I ::= V�(n)

R32 : A ::= fs1; s11 : Int; r2; r22g

P ::=

V�(n) = �0(n) � V0(n)

V0(n) = s11(n) � r22 � V1;

V1 = �1 � V1
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I ::= V�(n)

L33 : A ::= fs12; r11 : Intg

P ::=

V� = �0 � V0

V0 = �1 � V�

I ::= V�

R33 : A ::= fs12; r11 : Intg

P ::=

V� = �0 � V0

V0 = �n:Int � r11(n) � s12(n) � V0 + �1 � V�

I ::= V�

L34 : A ::= fs22; r21g

P ::=

V� = �0 � V0

V0 = �1 � V�

I ::= V�

R34 : A ::= fs22; r21g

P ::=

V� = � � V0

V0 = r21 � s22 � V0 + �1 � V�

I ::= V�

Note that the parameters of the various V� in the patterns are unspeci�ed and that some
variable de�nitions are irregular. We can linearize the irregular transformation rules for veri�cation
purposes.These are global variables. We de�ne a synchronization law set VR3 as follows:

VR3 = f(hs11; r11i; �); (hs12; r12i; �); (hs21; r21i; �); (hs22; r22i; �)g
We now have all of the elements of a rule system R3 de�ned as follows:
R3 = h[R31 : : : R34]; V3; VR3gi
R3 introduces channels between the producer and the consumer, as intended. Note that the

latter two transformation rules of R3 require the expansion of the process network by two new
dummy processes, and that the synchronization law part of R3 replaces the complete synchroniza-
tion law set.
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Chapter 6

Conclusion

6.1 Summary

We showed that process algebra can indeed be used to de�ne both systems containing multiple
communicating components, and transformations crossing those components, in ways equivalent
to those of the existing LTS-based model transformation method.

We showed that transformation rules involving data parameters and transformation rules which
involve changing component con�gurations can also be de�ned in a natural way in a process algebra
setting, such that symbolic model checking can be used to verify transformations involving forms
of in�nite behaviour.

Using our lifted and extended model transformation method it is now feasible to model systems
and to transform the resulting models with more complex and realistic features. A theoretical basis
has been provided onto which successors in this line of research can build a more versatile MDSE
based model re�nement toolset.

6.2 Future work

A defense of the usefulness of the de�nitions presented in this thesis would be well served by the
implementation of a matching algorithm and by the application of the re�nement method to a
number of examples. We did not reach that point due to time constraints.

The re�nement method presented in this thesis has been designed with the mCRL2 toolset
in mind. The mCRL2 tool mCRL22LPS can turn process networks with data into LPS with
data, and the mCRL2 tool LPSBisim2PBES can check the bisimilarity of two LPS with data.
Unfortunately, LPSBisim2PBES is not fully general with respect to LPS which communicate data
variables with in�nite domains. Increasing the power of the tool would increase the practical use
of our method.

The existing method and our extended lifted method have been proven correct for (rooted)
branching bisimulation, but not divergence-preserving branching bisimulation (DPBB). The lat-
ter is required for proofs regarding certain kinds of safety and liveness properties. We consciously
limit our method to branching bisimulation because the tool LPSBisim2PBES, which is critical in
verifying our model transformations, is also limited to branching bisimilarity. As far as we under-
stand this limitation of LPSBisim2PBES is not based on an inherent limitation of the underlying
theory, and the tool can be extended to include DPBB. In that case it would be useful to extend
our method further to include the latter equivalence as well.

We extended the re�nement method to be able to model data, but our extended method still
cannot model time or stochastics in an e�cient way. An obvious direction for future work would be
to explore the consequences of including these two phenomena in our models and transformations
in a natural way.
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A limitation of the existing method which we have so far adopted is that the property set
which we maintain during the re�nement process can not itself be subject to transformation. This
may be a serious limitation when using the re�nement method during the development phase
of a software engineering project, because requirements may only become apparent while the
development process is already underway, and may even reference concerns which did not exist
in earlier, higher-level versions of the model. A way to re�ne properties, perhaps by including
exit variables from the model in the properties as placeholders, would be a useful addition to the
re�nement method.

A last suggestion for future work is not an extension of the method but a form of support for
its users. The application of the re�nement method would be very well served by the existence of
a library of generally useful transformations which are related to common design patterns. Such
a library does not currently exist.
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