
 Eindhoven University of Technology

MASTER

Collision detection and proximity sensors in 3D simulations of mechanical systems

Huijgens, J.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a195ee5a-c0e8-48fa-be40-b322e546fafe

Eindhoven University of Technology

Master Thesis

Collision detection and proximity
sensors in 3D simulations of mechanical

systems

Author:

Jesper Huijgens

Supervisor TU/e:

Dr. Andrei Jalba

Supervisors TNO:

Dr. Carmen Bratosin

&

Dr. Bart Theelen

Department of Mathematics and Computer Science

Visualization

Eindhoven University of Technology

November 2015

http://www.tue.com
http://w3.win.tue.nl/nl/
http://w3.win.tue.nl/nl/onderzoek/onderzoek_informatica/visualization/
http://www.tue.com

Collision detection and proximity sensors in 3D simulations of mechanical

systems

by Jesper Huijgens

Abstract

In this thesis we discuss two challenges in 3D simulations of certain mechanical systems.

Firstly we discuss collision detection, secondly we discuss how to simulate proximity

sensors. The discussed and proposed methods and algorithms are evaluated and imple-

mented in SimulationTool, a tool developed by Philips Healthcare to simulate interven-

tional X-Ray machines.

For collision detection we describe the GJK-algorithm. To increase the performance of

collision detection we split the process in a broad phase and narrow phase. In the broad

phase we check for an intersection between the Bounding Volumes (BVs), volumes that

entirely contain an object. We test for an intersection between the two objects only if

the BVs collide.

To model proximity sensors we propose methods for two types of sensors: a distance

sensor and a capacitive sensor. The distance sensor is comparable to a parking sensor in

a car. The model for the distance sensor computes the shortest distance to any object

in its conic sensing volume.

Capacitive sensors generate an electric field surrounding the sensor. Any presence or

displacement of nearby conductive objects changes the electric field, which results in a

change in the output voltage of the sensor. In this thesis we describe and validate a

model to simulate this sensor. Based on the output voltages, the interventional X-Ray

machines may be restricted in their movement in certain directions. The proposed model

approximates the capacitance of objects close to the sensor. Based on the capacitance

of these objects the model predicts the output of the sensor.

Acknowledgements

This thesis is the result of eight months of hard work. A lot of people have helped me

through these months and a few of them I want to thank explicitly. First of all I would

like to thank dr. Andrei Jalba. Even though he is no expert on the interventional X-Ray

machines developed by Philips Healthcare, he always directed me in the right direction

or came up with a solution for my challenges.

Secondly I want to thank dr. Carmen Bratosin and dr. Bart Theelen. Carmen for

introducing me to the project and pointing me in the right direction. I would like

to thank Bart for everything he has done for me during the project. Beside the weekly

meetings that kept me on track, he always managed to help me with any of my problems.

Bart was the one that usually suggested totally different but great solutions to problems

I was trying to tackle for over a week.

Furthermore, I want to thank Sjoerd Leeuwenberg. Sjoerd helped me out with the the

experiments and gave me tons of advise and information about the bodyguard on the

interventional X-Ray machines.

Lastly, I take this opportunity to thank my family and friends for the patience and

support during the project. The person I like to thank the most is my girlfriend. Without

her endless patience and support, this eight months would have been totally different.

Thanks everybody!

Jesper Huijgens

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

Abbreviations xi

1 Introduction 1

1.1 Problem description . 3

1.2 Summary of results . 4

1.3 Structure of this thesis . 5

2 Collision detection 7

2.1 Related work . 7

2.2 Preliminaries . 8

2.3 Design . 9

2.3.1 Support points . 10

2.3.2 The GJK-algorithm . 11

2.4 Implementation . 12

2.5 Result . 13

3 Bounding volumes 15

3.1 Design . 15

3.1.1 Bounding Spheres . 16

3.1.2 Axis Aligned Bounding Boxes . 16

3.1.3 Oriented Bounding Boxes . 18

3.1.4 Finding an Oriented Bounding Box based on a covariance matrix . 18

3.1.4.1 Covariance matrix based on the distribution of vertices . 19

3.1.4.2 Covariance matrix based on the distribution of triangles . 20

3.1.4.3 Fitting an Oriented Bounding Box 21

3.1.4.4 Exceptional Cases . 21

3.2 Implementation . 22

3.2.1 Axis aligned bounding boxes . 22

3.2.2 Oriented bounding boxes . 23

3.3 Result . 24

4 Distance sensor 27

4.1 Related work . 27

4.2 Design . 28

4.2.1 Method based on equation of a cone 34

4.2.2 Method based on the field of view of the cone 36

v

Contents vi

4.3 Result . 38

5 Capacitive sensor 39

5.1 Related work . 43

5.2 Preliminaries . 44

5.2.1 Barycentric coordinates . 44

5.2.2 Projections . 45

5.2.3 Properties of capacitances . 45

5.3 Design . 46

5.3.1 Capacitance of a triangle in front of a sensor plate 48

5.3.2 Capacitance of a triangle next to a sensor plate 50

5.3.3 Capacitance of a triangle diagonally to a sensor plate 52

5.3.4 Capacitance of an object . 53

5.3.5 From total capacitances to output voltage 54

5.4 Result . 54

6 Experiments and validation of the capacitive sensor 57

6.1 Experiment I: Accuracy of discretizing the integral over the surface of a
triangle . 57

6.2 Experiment II: fine tuning the model for one plate 59

6.3 Experiment III: varying plate sizes . 61

6.4 Experiment IV: varying angle . 63

7 Conclusion and future work 67

A Details of the scene graph in SimulationTool 69

B Derivations for Oriented Bounding Boxes 71

B.1 Distribution of vertices . 71

B.2 Distribution of triangles . 71

B.3 Prove of orthogonality of eigenvectors in a symmetric matrix 76

C Details of the implementation of the GJK-algorithm in SimulationTool 77

C.1 CheckAndUpdateSimplex . 77

Point . 77

Line segment . 77

Triangle . 78

Tetrahedron . 80

D Solving the equations for proximity sensors 83

Bibliography 85

List of Figures

1.1 An interventional X-Ray machine developed by Philips Healthcare 1

1.2 An example of SimulationTool simulating an interventional X-Ray ma-
chine developed by Philips Healthcare . 2

2.1 The Minkowski difference AΘB (Green) of vertex sets A (Red) and B
(Blue) . 9

2.2 Illustrating the support point of A in the direction of v 10

2.3 Illustrating the definition of the support point Supp(AΘB,v), b is the
support point of A, g of B and b− g of AΘB 11

2.4 Left: no collision. Right: a collision of the scanner and the head of the
patient. The red exclamation mark indicates that there is a collision. . . . 14

3.1 An example of a bounding sphere enveloping the Stanford bunny. Source:
www.mathforum.org . 16

3.2 An example of an AABB enveloping the Stanford bunny. Source: www.mathforum.org 17

3.3 An example of an OBB next to an AABB in R2. Source: cse.csusb.edu . . 18

3.4 An example of a exceptional case: A cylinder with v2 and v3 not orthogonal 22

3.5 Left: a figure of SimulationTool using AABBs; Right: a figure of Simula-
tionTool using OBBs . 25

3.6 Left: no collisions occur in this case. Center: only the bounding boxes
collide in this case. Right: a collision of the scanner with the head of
the patient. The orange exclamation mark indicates that two or more
bounding boxes are colliding, but no objects. The red exclamation mark
indicates that there is a collision between two or more objects. 25

4.1 A sensor parameterized by α, d, p and v. 28

4.2 A sensor that senses A, although it is further away then B. The distance
sensor senses only objects inside its sensing volume. 29

4.3 The four distinguishable conic sections. Source: [Weic] 30

4.4 Left: The closest point is Q, from P perpendicular to ABC; Right: R is
the closest point from P to ABC, but Q is the closest visible point from
P. 30

4.5 Case 1: Seen from the sensor, Q is the closest point on the triangle. Q
is from P perpendicular to the cutting plane. Note that triangle ABC is
entirely on the green plane. 31

4.6 Case 2: Seen from the sensor, Q is the closest point on the triangle. Q is
on the border of the conic section, closest to P. Note that triangle ABC
is entirely on the green plane. 32

4.7 Case 3: Seen from the sensor, Q is the closest point on the triangle. Q is
the intersection point of the cone and edge AB. Note that triangle ABC
is entirely on the green plane. 32

4.8 Case 4: Seen from the sensor, Q is the closest point on the triangle. Q is
from P perpendicular to edge AC. Note, from P to Q is not perpendicular
to triangle ABC. Note that triangle ABC is entirely on the green plane. 33

vii

List of Figures viii

4.9 Case 5: Seen from the sensor, Q is the closest point on the triangle. Q
is corner point C of ABC. Note that triangle ABC is entirely on the
green plane. 33

4.10 Point q is an intersection point only if β = α
2 36

4.11 For this study, we chose a case of having a distance sensor at each corner. 38

5.1 The bodyguard. Normally this hood is placed around the X-Ray scanner. 39

5.2 Illustration of the bodyguard of an interventional X-Ray machine 39

5.3 The three sensor plates that construct one capacitive sensor in Simula-
tionTool . 40

5.4 A polyhedron near the capacitive sensor. 40

5.5 A triangle near a capacitive sensor plate. 41

5.6 The three distinguishable regions around a sensor plate. 41

5.7 Projection in R3 seen from above. 45

5.8 Simple circuit of a voltage divider . 46

5.9 Example of a triangle in front of a sensor plane. 47

5.10 Using infinite many small parallel plates, we can approximate the capac-
itance of the two large inclined plates. 48

5.11 Example of a triangle in front of a sensor plane. 49

5.12 Illustrating region II. The shortest distance from a point on a triangle in
region II to the sensor is to straight to the edge of the sensor plate. 50

5.13 Process of splitting a triangle in equally sized similar triangles. 51

5.14 Illustrating region III. The shortest distance from a point on a triangle in
region III to the sensor is to straight to the corner of the sensor plate. . . 52

5.15 Figure of SimulationTool with x capacitive sensors. 54

5.16 Illustrating the potential difference between two sensors. 55

5.17 Currently, the model assumes that objects are very conductive and well
grounded. There is no distinction between different materials. 55

6.1 Setup in SimulationTool. The two gray oriented triangles are in total in
front of the blue sensor plate. 58

6.2 Accuracy of discretizing the integral over the area of a triangle by means
of iteratively splitting the triangle . 58

6.3 The tool used to measure both distance to the sensor and the output of
the sensor simultaneously . 59

6.4 Illustrating experiment II, a plate is moved from xcm to xcm away from
the sensor. 60

6.5 The delta output (not actual output) as a function of increasing distance.
A curve like this is used as a reference curve in following experiments. . . 60

6.6 The fine-tuned model predicts the capacitive sensor accurately 61

6.7 Different plate sizes used during experiment III 62

6.8 Measurements and predictions for a parallel plate of xcm by xcm with
the model fine-tuned for a plate of xcm by xcm 62

6.9 Measurements and predictions for a parallel plate of xcm by xcm with
the model fine-tuned for a plate of xcm by xcm 63

6.10 Illustrating experiment IV, a plate is pivoted around one edge to measure
the influence of the angle between the plate and the sensor 64

6.11 The tool used to vary the angle between the plate and the sensor 64

List of Figures ix

6.12 Example of a result of experiment IV . 65

6.13 Measurements and predictions of a non-parallel plate of xcm by xcm with
the model fine-tuned for a parallel plate 65

6.14 Measurements and predictions of a non-parallel plate of xcm by xcm with
the model fine-tuned for a parallel plate 66

C.1 Line segment AB as simplex. 78

C.2 Triangle ABC as simplex. 79

C.3 Tetrahedron ABCD as simplex. 81

Abbreviations

BV Bounding Volume

OBB Oriented Bounding Box

AABB Axis Aligned Bounding Box

GJK Gilbert Johnson Keerthi

FEM Finite Element Method

FOV Field Of View

xi

1 | Introduction

Interventional X-Ray machines are widely used in radiology. Radiology is an imaging

technique useful to reveal the internal structure of an object, such as bones in a human

body. Although the technique was discovered in the late 1800s, further development of

interventional X-Ray machines is still a core activity for Philips Healthcare. One of the

machines developed by Philips Healthcare is shown in Figure 1.1.

Figure 1.1: An interventional X-Ray machine developed by Philips Healthcare

It is needless to mention that the development costs of these kind of machines are im-

mense. To support the development of said machines, Philips Healthcare is developing

a simulation tool called SimulationTool. SimulationTool is being developed to virtually

simulate interventional X-Ray machines. A user can load a certain interventional X-Ray

machine into SimulationTool, and via a user interface, the user can control the move-

ments of the machine similarly to the physical machine. Figure 1.2 shows an example of

1

Introduction 2

SimulationTool with the machine in Figure 1.1 loaded into the scene. By using Simula-

tionTool, an approximation of a machine’s expected behavior can be observed without

constructing an expensive prototype.

Figure 1.2: An example of SimulationTool simulating an interventional X-Ray ma-
chine developed by Philips Healthcare

The machine in SimulationTool may be seen as a model of an interventional X-Ray

machine consisting of 3D objects, such as the table top or the scanner connected to the

arm. Each of these 3D objects is a polyhedron constructed of triangles. The objects

may have several degrees of freedom to move or rotate. For example, the table top can

be lowered or raised but the table top can also be rotated. All the objects are managed

by a scene graph to preserve spatial relations, i.e. if the table top is lowered, the patient

on top of the table lowers as well. The machines do not simply instantly move or stand

still, the objects may have velocity and acceleration. SimulationTool is implemented

with a physics engine that simulates these accelerations. Additional information about

the scene graph can be found in Appendix A.

Introduction 3

1.1 Problem description

The simulation is made as realistically as possible to mimic the behavior of a physical

machine. Yet, not the entire behavior of the physical machines is captured by Simula-

tionTool. The physical machine cannot move through other objects, and in the worst

case, the machine collides with an object in the room, like the table or patient. The

version of SimulationTool that was available for this project lacked the feature to han-

dle collisions of the machine with any other object in the scene. The machines in the

simulation could move through objects without stopping or notifying the user.

Furthermore, a collision between the machine and an object (e.g. a patient or doctor)

should be avoided at all costs. To prevent collisions, Philips Healthcare geared the inter-

ventional X-Ray machines with capacitive proximity sensors. These sensors generate an

electric field surrounding the sensor. Any presence or displacement of nearby conductive

objects alter the electric field, which results in a change in the output voltage of the

sensor. Based on the output voltages, the machine may be restricted in its movement

in certain directions.

The goal of this project is to get SimulationTool two steps closer to the behavior of the

physical machines. The first step is enhancing it with collision detection. Normally, a

simulation would be implemented with collision handling. Collision handling consists

of two parts, collision detection and the response to the detected collision. Note that

detecting a collision does not imply that the movement of the machine during the sim-

ulation is stopped (this is a response), the software is just informed of the collision. In

SimulationTool we are only interested in the detection part.

The second step is simulating proximity sensors. The output of the simulated sensors can

be used in an algorithm (similar to the algorithm used in a physical machine) to restrict

the movements of the machine in certain directions. With the simulation of proximity

sensors a collision prevention algorithm may be tested in SimulationTool instead of a

physical interventional X-Ray machine. The former is likely a less costly alternative to

the latter.

Introduction 4

1.2 Summary of results

During this project two considerable contributions were added to SimulationTool: Simu-

lationTool was extended with collision detection and with models to simulate proximity

sensors.

For collision detection the GJK-algorithm [Ber99] was implemented. To increase the

performance of collision detection, objects are first tested in a fast broad phase. In

the broad phase we test for intersections between the bounding volumes of the objects.

Objects passing the broad phase are further tested for collisions in the narrow phase.

Models for two types of proximity sensors were developed to support collision prevention.

Firstly, a model for a distance sensor that is comparable to an infrared or ultrasonic

proximity sensor was made. The model is used to measure the shortest distance between

the sensor and any object present in a conic volume (the space visible to the sensor).

Secondly a model that captures the behavior of Philips Healthcare’s capacitive sensors

was made. The model is thoroughly tested and validated against the proximity sensors

on a real interventional X-Ray machine. The model in SimulationTool can be fine-tuned

such that a good approximation is made of the output of the sensor in the physical

machine.

The model for distance sensors could be used in several experimental simulations to find

out if a distance sensor would be more suitable for collision prevention than a capacitive

sensor. The advantage of a distance sensor is that it measures the shortest distance

between the sensor and the closest object, whereas a capacitive sensor is influenced by

the distance, size and material of nearby objects. The disadvantage is that a distance

sensor is restricted by its sensing volume: any nearby objects outside of this area are not

observed. In contrast, a capacitive sensor would observe these objects. Furthermore,

anything irrelevant covering the sensor (e.g. a cable, a cover or some fluid) may result

in detrimental outputs. The use of a distance sensor is thus not a realistic option for

Philips Healthcare. For this reason, we focus more on the capacitive sensor in this thesis.

Thirdly, we validated the capacitive sensor model. We conducted several experiments,

using the actual capacitive sensor, and performed the same experiment in SimulationTool

Introduction 5

and compared the results. With the experiments we investigate the influence of the

distance, size and orientation of nearby objects.

1.3 Structure of this thesis

In Section 2 we discuss how collision detection is implemented using the GJK-algorithm.

We describe several Bounding Volumes that can increase the performance of the GJK-

algorithm in Section 3. We explain the distance sensor in Section 4 and the capacitive

sensor in Section 5. We validate the model for the capacitive sensor and the used

methods in Section 6. In Section 7 we summarize the project, discuss some limitations

in the contributions to SimulationTool and list directions for future work.

2 | Collision detection

The first goal of the project was to implement collision detection in SimulationTool.

In this section we describe how the GJK-algorithm is used to test for intersections

between objects in SimulationTool. Note that we did not implement a version of the

GJK-algorithm that computes the shortest distance between two objects.

First we review literature about collision detection, but specially about the GJK-algorithm

in Section 2.1. Preliminaries are mentioned in Section 2.2. In Section 2.3 we describe

how the GJK-algorithm works. Pseudo code of the GJK-algorithm can be found in

Section 2.4. The results of the GJK-algorithm are shown in Section 2.5.

2.1 Related work

Collision detection is a widely discussed topic in the literature of computer science.

Several distance/collision algorithms and optimizations are devised and well discussed.

Since there are various algorithms and approaches, detecting collisions is not the prob-

lem, however, choosing the right algorithm and approach to detect collisions is the

problem. S. Kockara reviewed the most common intersection detection algorithms in

[KHI+07]. Kockara clearly states that pair-wise testing the primitive segments of two

objects is too exhaustive to do every step in a simulation.

The GJK-algorithm (Gilbert-Johnson-Keerthi) [GJK88] [Ber99] is a commonly used

algorithm for collision detection. Given two objects, the GJK algorithm finds the closest

distance between the convex hulls of these objects. Both Kockara in [KHI+07] and G.

Zachmann in [Zac00] describe the GJK-algorithm as an efficient simplex-based algorithm

that computes the shortest distance between two objects. The algorithm is known for

its fast convergence, especially for the simpler task of finding whether two objects collide

or not (instead of finding the shortest distance). However, there are some caveats. The

algorithm may be prone to rounding errors due to floating point arithmetics. A second

downside of the algorithm is that it operates on the convex hulls of the objects and not on

the actual geometry of concave objects [Ber99] [Cou01]. Most objects in SimulationTool

7

Collision detection 8

are convex, making the GJK-algorithm a very convenient algorithm. Only one object is

concave but this concave object is easily split up in a few convex objects, making the

GJK-algorithm applicable to the whole scene in SimulationTool. In other simulations

it may not be so trivial to split a concave object into convex objects. In [MG09] an

algorithm is described that decomposes a concave object in a set of convex objects. An

alternative is creating a set of convex shapes that, combined, approximate the concave

object.

2.2 Preliminaries

The GJK-algorithm operates on a specific combination of the vertices of the two objects,

called the Minkowski difference [KHI+07].

The Minkowski difference of two point sets A and B, denoted as AΘB, is the subtraction

of each point in B from each point in A.

Definition 2.1. Minkowski difference of point sets A and B:

AΘB = {x− y : x ∈ A,y ∈ B}

Figure 2.1 illustrates the Minkowski difference of objects A and B.

Collision detection 9

Figure 2.1: The Minkowski difference AΘB (Green) of vertex sets A (Red) and B
(Blue)

Two properties of the Minkowski difference are the following:

Property I. The shortest Euclidean distance between A and B, is equivalent to the

shortest Euclidean distance from AΘB to the origin. i.e.

min
a∈A,b∈B

d(a, b) = min
c∈AΘB

d(c,O)

Property II. Objects A and B collide if and only if the origin is contained by the

minkowski difference. i.e.

O ∈ AΘB ⇔ A and B collide

2.3 Design

Using the Minkowski difference makes collision detection relatively easy. To determine

the shortest distance between two objects, we can compute the shortest distance of the

Minkowski difference to the origin (Property I).

Collision detection 10

To determine whether two objects are colliding, we can determine if the origin is en-

veloped by the Minkowski difference (Property II). In this thesis we only discuss a

boolean variant of the GJK algorithm that tests if two objects are colliding or not, thus

only Property II is used.

Computing the complete Minkowski difference can be an intensive task, depending on

the number of vertices of the objects. Luckily we do not need to compute the entire

Minkowski difference, we only have to visit several points on the boundary of the convex

hull of the Minkowski difference, called support points.

2.3.1 Support points

Suppose we have point set P , then the support point s ∈ P along direction v is the

furthest point in P along direction v. In Figure 2.2 we can see an illustration of finding

support point of A in direction v. If one would stand inside A, point b is the furthest

point in direction v.

Figure 2.2: Illustrating the support point of A in the direction of v

For notation we denote a support point in point set P along direction v as Supp(P,v).

The support point s of a point set P , the point furthest (seen from any point in the P)

Collision detection 11

in direction v, can be found via the projection of each point in P on v:

s = Supp(P,v) = argmax
p∈P

p · v

Looking at the definition of the Minkowski difference, we can observe that Supp(AΘB,v) =

Supp(A,v)−Supp(B,−v): The furthest point in A along direction v, minus the furthest

point in B along the opposite direction −v. Figure 2.3 illustrates the definition of the

support point Supp(AΘB,v). The furthest point in shape A along direction v is b, the

furthest point in shape B along direction −v is g and indeed, Supp(AΘB,v) is b− g.

Figure 2.3: Illustrating the definition of the support point Supp(AΘB,v), b is the
support point of A, g of B and b− g of AΘB

Note that to find a support point in the Minkowski difference we do not need to compute

the total Minkowski difference.

2.3.2 The GJK-algorithm

When given two objects, the GJK-algorithm constructs a simplex S that is as close as

possible to the origin, by using support points. That is because the shortest distance

from the final simplex to the origin is the shortest distance between the two given objects.

Collision detection 12

Note that in the case of a collision, S will eventually envelop the origin. In R2 a simplex

is a triangle, in R3 it is a tetrahedron.

For clarification, in Figure 2.2, the simplex of support points b− g, a− e and c− e could

be a final simplex. This simplex envelops the origin, indicating that shape A and B are

indeed colliding.

Initially S is a simplex consisting of an arbitrarily chosen support point. With each

iteration of the algorithm, a new support point s is added to S. From S ∪ {s} a new

simplex is computed: a subset of S ∪ {s} that is closest to the origin. In all cases, s

is part of the new simplex, therefore the new simplex is closer to the origin, or at least

just as close.

Depending on the variant of the GJK-algorithm, the algorithm may have a different

termination condition. If the algorithm is tailored to approximate the distance between

two objects, the algorithm updates the simplex until the new support point is not sig-

nificantly closer (and still in the same direction) to the origin than the current simplex.

A variant tailored to test if objects either collide or not may terminate earlier. Both

variants terminate when the simplex envelops the origin, however, the latter may ter-

minate when a separating plane is found [Ber99]. A separating plane is found when

the new support point is not beyond the origin, as seen from the current simplex. The

support point is the furthest point from the simplex towards the origin. If that point

did not pass the origin then there is no point beyond the origin and therefore no simplex

exists that envelops the origin. Such a termination may occur much earlier than with

the former variant of the algorithm. This faster termination condition is implemented

in SimulationTool.

2.4 Implementation

In this section we describe the high level implementation. We give pseudo code of the

structure of the algorithm. The algorithm relies on two procedures. The first is the

procedure to find a support point in direction v. The second procedure is to check if

the simplex contains the origin after a new support point is added, if it does contain

the origin, the algorithm terminates. If not, the procedure updates the simplex to the

Collision detection 13

smallest subset of the current simplex that is closest to the origin and it updates the

search direction v. The last procedure is in more detail explained in Appendix C.

The high level pseudo code, Algorithm 2.1, is rather straightforward. Given point sets A

and B, we begin with an empty simplex S and an arbitrary direction vector v. With each

iteration we compute a new support point. Whenever, seen from the current simplex,

the new support point is not on the other side of the origin, a simplex that envelops the

origin does not exist: a separating plane is found and we may terminate. Otherwise we

check whether the new simplex (including the new support) envelops the origin or not

and update the simplex and the direction vector.

Algorithm 2.1 GJK-algorithm(Pointset A, Pointset B)

S = ∅ {The simplex}
v⇐ ”Arbitrary vector” {The direction vector}
while true do
{Find new support}
s⇐ Supp(AΘB,v)
if s · v ≤ 0 then
{A separating plane is found}
return false

if CheckAndUpdateSimplex(s, S,v) then
return true

2.5 Result

In SimulationTool all objects that should not collide are tested for collisions. In Figure

2.4 we can clearly see that, in the right image, the scanner and the head of the patient

are colliding. We inform the user of an intersection by showing a red exclamation mark.

Collision detection 14

Figure 2.4: Left: no collision. Right: a collision of the scanner and the head of the
patient. The red exclamation mark indicates that there is a collision.

3 | Bounding volumes

Even without using separating planes, the GJK-algorithm as described in the previous

section is fast but applying any of the two variants to a large number of objects with

complex geometries may result in a major performance penalty. An efficient approach

for increasing performance of collision detection is by splitting the process into a broad

phase and a narrow phase [KHI+07]. During the broad phase, obviously disjoint objects

can be identified in an attempt to prune tests in the narrow phase. In the narrow phase,

only objects that passed the broad phase are tested for collisions. Of course, splitting

the process is only useful if the broad phase is much faster than the narrow phase.

An often used technique for the broad phase is testing for collisions between the bounding

volumes of two objects. A Bounding Volume (BV) is a volume that entirely envelops an

object [Got00]. If two BVs are not colliding, then the objects are not colliding either.

However, having two colliding BVs does not imply that the corresponding objects are

in contact as well. If the BVs collide, the objects pass the broad phase and are tested

for an actual collision during the narrow phase.

In Section 3.1 we discuss three different BVs and their properties. In Section 3.2 algo-

rithms are provided to compute an Axis Aligned Bounding Box (AABB) or an Oriented

Bounding Box (OBB). The results of the BVs are shown in Section 3.3.

3.1 Design

Any kind of shape could be chosen as a BV, as long as the shape entirely contains

the more complicated object. The commonly used bounding volumes are the Axis-

Aligned Bounding Boxes (AABB) and the sphere [Got00], but other volumes like Ori-

ented Bounding Boxes (OBB), cylinders or the convex hull could also be suitable in

certain situations. The AABB and the OBB are implemented in SimulationTool. In

the following sections we discuss the sphere, the AABB, the OBB and how to compute

an AABB or OBB. Most of the information in this Section is discussed by Gottschalk

15

Bounding volumes 16

in [Got00]. However, for the OBB some improvements/corrections are made in the

equations to calculate the covariance matrix of an object.

3.1.1 Bounding Spheres

One of the most simple bounding volumes is the bounding sphere. A bounding sphere

is (not necessary, but ideally) the smallest sphere enveloping an object. An example of

a bounding sphere is shown in Figure 3.1

Figure 3.1: An example of a bounding sphere enveloping the Stanford bunny. Source:
www.mathforum.org

A bounding sphere could be represented by its center point c and radius r [Got00]. With

these parameters the sphere envelops the following region R:

R = {(x, y, z)T | (x− cx)2 + (y − cy)
2 + (z − cz)

2 < r2}

A disadvantage of the bounding sphere is that it possibly contains a much bigger region

than the object itself. On the other hand, intersection tests with bounding spheres are

particularly simple. Two bounding spheres bs1 and bs2 with center points c1 and c2

respectively and radii r1 and r2 respectively intersect iff

(c2x − c1x)2 + (c2y − c1y)
2 + (c2z − c1z)

2 ≤ (r1 + r2)2

3.1.2 Axis Aligned Bounding Boxes

Another variant of bounding volumes is the Axis Aligned Bounding Box (AABB). An

AABB is the smallest possible axis aligned box enveloping the object, meaning that the

Bounding volumes 17

box is aligned with the axis of the coordinate system. An example of a AABB is given

in Figure 3.2.

Figure 3.2: An example of an AABB enveloping the Stanford bunny. Source:
www.mathforum.org

An AABB could be represented in multiple ways.

One representation could be the lower bound and upper bound for each axis: lx, ly, lz,

ux, uy and uz. The region R is specified as follows:

R = {(x, y, z)T | lx ≤ x ≤ ux ∧ ly ≤ y ≤ uy ∧ lz ≤ z ≤ uz}

An alternative but commonly used representation is a corner point p and the lengths of

each edge dx, dy and dz. Then the region R is specified by the following formula:

R = {(x, y, z)T | px ≤ x ≤ px + dx ∧ py ≤ y ≤ py + dy ∧ pz ≤ z ≤ pz + dz}

A third representation is similar to the previous but slightly different: a center point

c is given and the half widths along each axis wx, wy and wz (half of the width of the

AABB in each direction). With these parameters R is specified as follows:

R = {(x, y, z)T | |cx − x| ≤ wx ∧ |cy − y| ≤ wy ∧ |cz − z| ≤ wz}

The intersection test for AABBs is like the bounding spheres relatively simple. Assume

we have two AABBs, aabb1 and aabb2, represented by their relative center point c1 and

c2 and their relative half widths w1x, w1y, w1z and w2x, w2y, w2z. Then aabb1 and

aabb2 intersect iff

|c2x − c1x| ≤ w1x + w2x ∧ |c2y − c1y| ≤ w1y + w2y ∧ |c2z − c1z| ≤ w1z + w2z

Bounding volumes 18

3.1.3 Oriented Bounding Boxes

An often better fitting bounding box, compared to the AABB, is the Oriented Bounding

Box (OBB). An OBB is not bound to the axis of the Cartesian coordinate system, they

may have an arbitrary orientation. An example of an OBB next to an AABB is shown

in Figure 3.3.

Figure 3.3: An example of an OBB next to an AABB in R2. Source: cse.csusb.edu

Figure 3.3 clearly shows why OBBs are more suitable compared AABBs: the OBB is a

much tighter volume.

To represent an OBB we could use one of the three discussed representations for an

AABB and additionally a representation for the orientation. For this we use three

mutually orthogonal unit vectors v1, v2 and v3. From here and further in this report

we use the third representation of an AABB. We represent an OBB with a center point

c, half widths w1, w2 and w3 and the three direction vectors v1, v2 and v3. The region

R is specified as follows:

R = {c + a w1 v1 + b w2 v2 + c w1 v2 | a, b, c ∈ [−1, 1]}

The intersection tests for OBBs are not as simple as for the previous BVs. For in-

tersection tests one would have to use one of the many collision detection algorithms.

3.1.4 Finding an Oriented Bounding Box based on a covariance matrix

We saw that an OBB can fit an object more compact than an AABB. However, we do

not know a suitable orientation for the bounding box beforehand. We somehow have to

fit the bounding box compactly around the shape of the object.

Bounding volumes 19

In 1985, Joseph O’Rouke [O’R85] proposed an algorithm that computes the minimal

box enveloping an object (an OBB). Although the bounding box is of minimal size,

the algorithm is rather complicated. Firstly, one has to construct a so called Gaussian

sphere for the given object. Then, for all pairs of edges, a box has to be rotated around

the object until the smallest box is found. The algorithm runs in O(n3) time, where n

is the number of vertices (points) of the object.

Luckily, a faster approximation algorithm exists that runs in only O(n) time, where

n is the number of triangles of the object, which was devised by Gottschalk [Got00].

Gottschalk describes three fitting algorithms based on the statistical spread in the ge-

ometry of the object. The algorithms are each based on a different property of the

geometry. The algorithms approximate the directions of the shape of the object, partic-

ularly the direction with the most spread and the direction with the least spread. The

first proposed algorithm approximates the shape of the object based on the spread of

the vertices, another algorithm is based on the spread of the triangles of the object, a

third algorithm uses the convex hull of the object. In this thesis we only discuss the first

two of the three.

The shape of a set of points can be approximated with a covariance matrix C and a

centroid m, just like how a normal Gaussian curve describes the distribution of points

in one dimension. For objects in Rn, matrix C is a symmetric n × n matrix. In general,

the eigenvectors of the matrix are mutually orthogonal and we use these vectors as the

orientation of the OBB.

3.1.4.1 Covariance matrix based on the distribution of vertices

The straight forward approach of calculating the covariance matrix C is by inspecting the

distribution of the vertices of the object. After all, the object is defined by the vertices

and triangles of the object. Suppose that the object consists of n points p1,p2, ...,pn.

Then Cij (element (i, j) of C) is defined as follows:

Cij = Cov(xi,xj) = E[xixj]− E[xi]E[xj]

=
1

n

n∑
k=1

pki p
k
j −

1

n

n∑
k=1

pki
1

n

n∑
k=1

pkj

Bounding volumes 20

where x is a multivariate random variable (random vector) and E[xi] the expectation of

the ith coordinate of x. All the detailed derivations to compute the covariance matrix

based on the distribution of vertices, step by step, can be found in Appendix B.1.

3.1.4.2 Covariance matrix based on the distribution of triangles

A problem with the covariance matrix based on only the vertices is that a skewed (not

uniformly spread) vertex set will influence the result of the covariance matrix. For

example, a small part of an object that contains half of all the vertices will contribute

to half of the covariance matrix. A solution would be to somehow weight the vertices,

such that a cluttered part of an object does not bias C. This weighting may be done

by using the areas of the triangles: smaller triangles contribute less to the covariance

matrix than larger triangles.

The definition for the covariance matrix using weighted triangles is as follows:

Cij =E[xixj]− E[xi]E[xj]

=
1

AM

n∑
k=1

2Ak

24
(9mk

im
k
j + pki p

k
j + qki q

k
j + rki r

k
j)

−
∑n

k=1A
kmk

i

AM

∑n
k=1A

kmk
j

AM

where,

• Superscript k refers to the kth triangle.

• Superscript M refers to all n triangles, also called the model (Model).

• A is the area of either a triangle or model (identified with superscript).

• ai denotes the ith coordinate of a.

• pk, qk and rk are the vertices of the kth triangle.

• mk is the centroid of the kth triangle.

All the detailed derivations to compute the covariance matrix based on the distribution

of triangles, step by step, can be found in Appendix B.2.

Bounding volumes 21

3.1.4.3 Fitting an Oriented Bounding Box

Now we have defined two techniques to calculate a covariance matrix, we find Cs eigen-

vectors v1, v2 and v3. The eigenvector(s) corresponding to the largest eigenvalue corre-

sponds to the direction with the most co-variability, i.e. the direction with most spread.

Since the covariance matrix is symmetric (by its definition), eigenvectors v1, v2 and v3

corresponding to distinct eigenvalues λ1, λ2 and λ3 respectively are orthogonal to each

other. The proof can be found in Appendix B.3. We use the normalized vectors of v1,

v2 and v3 as the orientation of the OBB.

To find the dimensions of the OBB, we project each point pk on each of the vectors and

find the extremes (lower extreme l and upper extreme u) along each direction:

ui = max
1≤k≤n

(vi · pk)

li = min
1≤k≤n

(vi · pk)

where n is the number of points of the object.

The half width wi of the OBB along axis i of the OBB is given by:

wi =
1

2
(ui − li)

The center c is given by:

c =
3∑
i=1

1

2
(li + ui)v

i

We now have fitted an OBB defined by c, v1, v2, v3 and the half widths w.

3.1.4.4 Exceptional Cases

In Section 3.1.4.3 we discussed that the eigenvectors are mutually orthogonal which is

only the case with distinct eigenvalues. However, in some cases not all eigenvalues are

distinct. We then say that the geometric multiplicity of an eigenvalue λ is greater than

one, meaning that more than one eigenvectors correspond to eigenvalue λ. In this case

two eigenvectors corresponding to λ are not necessarily orthogonal. The dimension of

the eigenspace associated to λ is greater than one, i.e. the eigenspace is not defined by

one corresponding eigenvector, but multiple linear independent eigenvectors defining a

Bounding volumes 22

space of higher dimension. These cases occur with objects that have equal spread in

several directions. Such as a circle, a cylinder or a sphere.

Figure 3.4 clearly illustrates such a case: v2 and v3 have the same spread along the

vectors but v2 and v3 are not orthogonal. A solution to this problem is finding the pair

of non orthogonal eigenvectors and rotate one of the two vectors in such a way that it is

orthogonal with the other two eigenvectors. Note that rotating one vector or the other

has no influence on the size of the resulting bounding box, the spread of the vertices

along both vectors is the same.

Figure 3.4: An example of a exceptional case: A cylinder with v2 and v3 not orthog-
onal

3.2 Implementation

In SimulationTool, both the AABB and the OBB are implemented. The explanation

and pseudo code to compute the BVs is given in the following two sections.

3.2.1 Axis aligned bounding boxes

The algorithm to compute the AABBs of the objects in SimulationTool is rather straight

forward. Given the point set of an object, we find the minimum and the maximum

Bounding volumes 23

coordinates: mini and maxi along each axis i. The x coordinate of the center point

of the AABB equals 1
2(maxx + minx). The half width of the AABB along the x-axis

equals 1
2(maxx −minx). The same holds for the y and z axis. The pseudo code of the

algorithm is in Algorithm 3.1.

Algorithm 3.1 computeAABBs()

let O be all the objects in SimulationTool
for each object o ∈ O do

let P be the point set of o
let c be the center point of the AABB of o
let wi be the half width of the AABB of o for the ith axis

{For each point in P calculate the lower and upper bound along each axis}
minx, miny, minz ⇐∞
maxx, maxy, maxz ⇐ −∞
for all p ∈ P do

for each axis i do
{Check if it is new lower bound or upper bound}
if pi < mini then
mini ⇐ pi

if pi > maxi then
maxi ⇐ pi

{Compute c and w based on the lower and upper bounds}
for each axis i do

wi ⇐ 1
2(maxi −mini)

ci ⇐ 1
2(maxi +mini)

3.2.2 Oriented bounding boxes

The algorithm to compute the OBBs of all objects in SimulationTool follows the same

structure, but is a bit more complex. First the orientation is found by computing the

eigenvectors of the covariance matrix of an object. How to compute the covariance

matrix is described in Section 3.1.4. Now we do not find the lower and upper bound

along the Cartesian axes, but along the just computed directions of the orientation.

From the directions and the lower and upper bounds the center point and the half

widths are computed. The pseudo code of the algorithm is in Algorithm 3.2.

Bounding volumes 24

Algorithm 3.2 computeOBBs()

let O be all the objects in SimulationTool
for each object o ∈ O do

let P be the point set of o
let c be the center point of the OBB of o
let v1, v2 and v3 be the orientation of the OBB of o
let wi be the half width of the OBB of o for each direction vi

cov⇐ computeCovarianceMatrix(P)
let v1, v2 and v3 be the eigenvectors of cov
check for and fix exceptional cases (non-orthogonal eigenvectors)

{For each point in P calculate the lower and upper bound along each direction}
min1, min2, min3 ⇐∞
max1, max2, max3 ⇐ −∞
for all p ∈ P do

for each vi do
{Check if it is new lower bound or upper bound}
if vi · p < mini then
mini ⇐ vi · p

if vi · p > maxi then
maxi ⇐ vi · p

{Compute c and w based on the orientation and the lower and upper bounds}
ci ⇐

∑3
i=1(1

2(maxi +mini)v
i)

for each direction i do
wi ⇐ 1

2(maxi −mini)

3.3 Result

As mentioned above, SimulationTool is implemented with AABBs and with OBBs. In

Figure 3.5 we can clearly see the differences between the two BVs. The difference is very

clear in the arc shapes. The OBBs are tighter around the objects.

Bounding volumes 25

Figure 3.5: Left: a figure of SimulationTool using AABBs; Right: a figure of Simula-
tionTool using OBBs

In SimulationTool most of the objects are initially placed axis aligned, so that for most

objects the AABB is already a good BV.

In Figure 3.6 we see how BVs can increase the performance of collision detection.

Figure 3.6: Left: no collisions occur in this case. Center: only the bounding boxes
collide in this case. Right: a collision of the scanner with the head of the patient. The
orange exclamation mark indicates that two or more bounding boxes are colliding, but
no objects. The red exclamation mark indicates that there is a collision between two

or more objects.

In the left figure none of the objects and none of the BVs are colliding, in this case only

the BVs are tested for a collision, the objects do not pass the broad phase. In the middle

figure the BVs are colliding, in this case the objects are tested for collision in the narrow

phase. The orange exclamation mark indicates that only the BVs are colliding. In the

right figure the objects are colliding, the collision is identified in the narrow phase. In

SimulationTool, for the majority of the objects the BVs do not collide, so only a few

objects will be tested for intersection per iteration. This is why BVs can increase the

performance of collision detection.

Bounding volumes 26

If performance is still an issue in a simulation, one could consider hierarchies of BVs.

Instead of only wrapping objects in a BV, pairs of BVs can be wrapped in a BV as

well. One can keep wrapping BVs until only one root BV is left. If two BVs A and

B, containing multiple other BVs, do not collide, then the BVs contained by A do not

collide with BVs contained by B. This approach may increase the performance if a scene

contains a lot of BVs.

4 | Distance sensor

The first proximity sensor that we discuss is the distance sensor. The distance sensor

may be compared to a parking sensor in a car: the sensor measures the distance of the

closest object. However, it measures the objects in a sensing volume. Everything outside

this volume can not be observed. For the distance sensor we use a conic sensing volume.

Note that for the distance inside the cone we do not use the GJK-algorithm, however,

we do use the GJK-algorithm to check if an object is inside the cone or not.

Literature and work related to distance sensors is reviewed in Section 4.1, the design of

the sensor is described in Section 4.2. The distance sensors working in SimulationTool

are shown in Section 4.3.

4.1 Related work

Literature describing how to simulate distance sensors, as a sensor that senses in a

conic volume, is hard to find. However, literature that relates to properties of cones

and intersection tests with cones is easier to find. Wolfram Alpha [Weib] lists a lot of

properties of and equations for cones, very interesting is the conic sections obtained by

cutting a cone with a plane [Weic]. The point on a conic section that is closest to the

sensor, is in general a point of interest in simulating a distance sensor, because this

point is the closest point visible to the sensor. However, a triangle does not necessarily

entirely cut a cone, it may only intersect with a part of the cone.

M. Held [Hel97] describes a method to test for intersection of a triangle and a cone based

on the mathematical equation of a cone, the method used requires an upright cone, with

the sensor point on the origin. Held explains that this can be achieved for every cone

by rotating and translating a whole scene, such that the cone is in the correct position

and orientation.

A method described in [Ebe08] does not require an upright cone with the sensor point on

the origin. A property described in [Ebe08] uses the field of view (FOV) of a cone, the

27

Distance sensor 28

angle of the sensor. Based on the angle between the line from a given point to the sensor

and the direction vector of the sensor, we can determine if the point is within the FOV

or not. Further, [Ebe08] also describes a method to do an intersection test of a triangle

and a cone using the previous property. The methods in both [Hel97] and [Ebe08] are

adopted in SimulationTool to find the closest point in a conic sensing volume.

A distance sensor as in SimulationTool is also implemented in a virtual robot exper-

imentation platform called v-rep developed by Coppelia Robotics [cop]. The distance

sensor is also a sensor that computes the closest point and distance of an object visible

in a sensing volume. A clear example of this sensor is shown in [vRe].

4.2 Design

In SimulationTool the distance sensor is modeled as a cone defined by four arguments.

The cone has an angle α and a range d, the cone may be located at an arbitrary position

p and has a likewise arbitrary orientation v. Figure 4.1 shows such a sensor with the

parameters in R2.

Figure 4.1: A sensor parameterized by α, d, p and v.

The problem to solve is finding the point on a target object that is closest to the sensor

and that lies in the cone (the sensing volume). From now on denoted as the closest point.

Distance sensor 29

The GJK-algorithm algorithm does not solve this problem, however, the GJK-algorithm

can be used to quickly verify if an object intersects the cone at all. Figure 4.2 shows a

clear example where point B is closer to the sensor, whereas only point A is visible to

the sensor. The Figure clarifies that a regular distance algorithm is not applicable for

this task.

Figure 4.2: A sensor that senses A, although it is further away then B. The distance
sensor senses only objects inside its sensing volume.

As said before, all objects in SimulationTool are built of triangles. To find the closest

point on an object, we have to find the closest visible point on each triangle. In the set

of found points we have to search for the one with the shortest distance to the sensor.

A first attempt to find the closest point on a triangle, is finding the closest point on the

plane spanned by a triangle. A plane cutting a cone forms a conic section [Weic]. The

shape of a conic section may be a circle, ellipse, parabola or a hyperbola, depending on

the angle between the plane and v and α. The four distinguishable conic sections are

shown in Figure 4.3.

Distance sensor 30

Figure 4.3: The four distinguishable conic sections. Source: [Weic]

On the left of Figure 4.4, we can see that the closest point, Q, is from the sensor directly

to the plane, along the normal of the plane (from the sensor perpendicular to the plane).

For the circular conic section this is always the case, but for other conic sections this

may or may not be the case.

Figure 4.4: Left: The closest point is Q, from P perpendicular to ABC; Right: R is
the closest point from P to ABC, but Q is the closest visible point from P.

On the right of Figure 4.4 we see a elliptical conic section with the point on the plane

closest to P being R. However, R is outside the sensing volume, the closest visible point

is point Q.

Distance sensor 31

For all cases where the closest point on the cutting plane is outside the sensing volume,

we have to find the closest point on the border of the conic section. We find that point

by shooting a ray in the cutting plane, from the closest point on the plane (R in Figure

4.4), straight towards the center of the cone (S in Figure 4.4). The first intersection

point (Q on the right in Figure 4.4) of the ray and the cone is the closest point on the

conic section.

However, we are not looking for the closest point on a plane or conic section, but we are

looking for the closest point on a triangle. For the closest point on a triangle we can

distinguish five cases:

The closest point on the triangle may be

1. the closest point on the cutting plane, only valid if this point is in the interior of

the triangle and inside the sensing volume. The case is clarified in Figure 4.5.

Figure 4.5: Case 1: Seen from the sensor, Q is the closest point on the triangle. Q is
from P perpendicular to the cutting plane. Note that triangle ABC is entirely on the

green plane.

2. the closest point on the border of the conic section, only valid if this point is in

the interior of the triangle. The case is clarified in Figure 4.6.

Distance sensor 32

Figure 4.6: Case 2: Seen from the sensor, Q is the closest point on the triangle. Q is
on the border of the conic section, closest to P. Note that triangle ABC is entirely on

the green plane.

3. the closest point where an edge of the triangle intersects with the conic section.

The case is clarified in Figure 4.7.

Figure 4.7: Case 3: Seen from the sensor, Q is the closest point on the triangle. Q
is the intersection point of the cone and edge AB. Note that triangle ABC is entirely

on the green plane.

Distance sensor 33

4. from the sensor perpendicular to one of the edges of the triangle. The case is

clarified in Figure 4.8.

Figure 4.8: Case 4: Seen from the sensor, Q is the closest point on the triangle. Q is
from P perpendicular to edge AC. Note, from P to Q is not perpendicular to triangle

ABC. Note that triangle ABC is entirely on the green plane.

5. from the sensor directly to one of the vertices of the triangle. The case is clarified

in Figure 4.9.

Figure 4.9: Case 5: Seen from the sensor, Q is the closest point on the triangle. Q is
corner point C of ABC. Note that triangle ABC is entirely on the green plane.

Distance sensor 34

Case 1, 4 and 5 are relatively easy to solve. Case 1 is the distance from P to the

projection of P onto the triangle. Case 4 is the distance from P to the projection of P

onto the closest edge of the triangle. Case 5 is simply the distance from P to the closest

corner of the triangle.

For case 2 and 3 we need an algorithm that finds the closest intersection point of a line

segment (or line) and a cone. We describe two methods to find this intersection point.

The first is based on the mathematical equation of a cone, the second is based on the

field of view of the sensor.

4.2.1 Method based on equation of a cone

The equation for the points on the border of the cone in Figure 4.1, is as follows [Weib]:

x2 + y2 = tan(
α

2
)2z2 ⇔ (4.1)

x2 + y2 − tan(
α

2
)2z2 = 0 (4.2)

Each intersection point of a line and a cone satisfies this equation.

Further, we have a parametric equation for a line in R3:

p + td (4.3)

where p is an arbitrary point on the line, d the direction vector and t a scalar. By

varying t we can visit each point on the line. An edge e of a triangle, with begin point

a and end point b can be written as a parametric equation as well:

a + tde = a + t(b− a) (4.4)

where 0 <= t <= 1.

If edge e intersects a cone, then a value for t between 0 and 1 exists such that the

parametric equation 4.4 expresses the intersection point. We do not know the exact

value for t yet, but we do know that the point resulting from the parametric equation is

on the boundary of the cone, therefor, equation 4.2 must hold for that point. We have

two equations and one unknown so we can solve this for t.

Distance sensor 35

Let the intersection point, called q(t), be defined as follows:

q(t) = a + tde (4.5)

q(t) is on the boundary of the cone if and only if q(t) satisfies equation 4.2:

q(t)2
x + q(t)2

y − tan(
α

2
)2q(t)2

z = 0 (4.6)

We substitute q(t) with its definition in Equation 4.5:

(a + tde)2
x + (a + tde)2

y − tan(
α

2
)2(a + tde)2

z = 0⇔

(ax + tdex)2 + (ay + tdey)
2 − tan(

α

2
)2(az + tdez)

2 = 0

Which is equivalent to: (
de

2
x + de

2
y − tan(

α

2
)2de

2
z

)
t2+

2

(
axdex + aydey − tan(

α

2
)2azdez

)
t+(

a2
x + a2

y − tan(
α

2
)2a2

z

)
= 0

Which is of the form at2 + bt + c and therefore it can be solved with the abc-formula.

In general, the abc-formula results in a t1 and a t2. The computed values for t1 and t2

have to lie in the interval [0, 1]. If t1 or t2 is not in this interval, then the corresponding

intersection point is not between a and b. To compute the actual intersection points we

simply fill in the values for t1 and t2 in Equation 4.5.

This method solves the problem, but comes with a few caveats: this only works for an

upright cone that starts in the origin. A sensor in SimulationTool can be located and

oriented arbitrarily. Using this method enforces rotation and translation of the scene,

such that the sensor is an upright cone starting in the origin.

Distance sensor 36

4.2.2 Method based on the field of view of the cone

This method has the advantage that it can be used for a sensor with arbitrary position

and orientation, without translating and rotating the whole scene, which can result in

improved performance.

This method is not based on the equation of a cone, but rather on the fact that the

angle between the line from the sensor to a point on the boundary of the cone and the

direction of the sensor, v, must be equal to α
2 . This relation is clearly illustrated in

Figure 4.10.

Figure 4.10: Point q is an intersection point only if β = α
2 .

In the figure we see an edge, with begin point a and end point b, that intersects the

sensor cone. Further we see an arbitrarily chosen point q on edge ab. q would be

intersecting the cone if and only if β = α
2 [Ebe08].

We can compute the angle α between two arbitrary vectors u1 and u2 with the inner

product,

u1 · u2 = ||u1|| ||u2|| cos(α) (4.7)

To evaluate angle β in Figure 4.10, we can use equation 4.7:

v · (q− p) = ||v|| ||q− p|| cos(β) (4.8)

Distance sensor 37

If v is unit length, Equation 4.8 becomes:

v · (q− p) = ||q− p|| cos(β) (4.9)

To avoid calculating the norm (an expensive square root calculation) of q − p we use

the quadratic variant of Equation 4.9:

(v · (q− p))2 = ||q− p||2 cos2(β) (4.10)

Note that solving Equation 4.10 also finds solutions for the mirrored cone, an intersection

point of the cone in direction -v. This can easily be checked by verifying that:

v · (q− p) ≥ 0 (4.11)

In the same manner as solving Equation 4.6 we can solve Equation 4.10 for t. q is again

a point on the edge from a to b as in Equation 4.5, substituting the definition of q in

Equation 4.10 gives:

(v · (q− p))2 = ||q− p||2 cos2(β)⇔ (4.12)

(v · (q(t)− p))2 = ||q(t)− p||2 cos2(β)⇔ (4.13)

(v · ((a + tde)− p))2 = ||(a + tde)− p||2 cos2(β)⇔ (4.14)

(v · ((a + tde)− p))2 − ||(a + tde)− p||2 cos2(β) = 0 (4.15)

Which can be rewritten to ([Ebe08]):

(
(v · de)2 − ||de||2 cos2(β)

)
t2 +

2

(
(v · de)(v · (a− p))− (de · (a− p)) cos2(β)

)
t+(

(v · (a− p))2 − ||a− p||2 cos2(β)

)
= 0

This is again of the form at2 + bt+ c = 0 and thus can be solved with the abc-formula.

Since we are looking for intersection points, we simply substitute β with α
2 . Just as the

method in Section 4.2.1, the computed values for t1 and t2 have to lie in the interval

[0, 1]. If t1 or t2 is not in this interval, then the corresponding intersection point is not

Distance sensor 38

between a and b. To compute the actual intersection points we simply fill in the values

for t1 and t2 in Equation 4.5.

4.3 Result

In Figure 4.11 we see the visualization of the distance sensors.

Figure 4.11: For this study, we chose a case of having a distance sensor at each corner.

For this study, we chose a case of having a distance sensor at each corner. The black

lines point from the sensors to the closest visible point respectively. The two left sensors

found the closest points on the head of the patient. The closest points for the two right

sensors are on the arms of the patient.

In multiple situations, the distance sensor would be a very interesting sensor for Philips

Healthcare. However, in a lot of the situations, there is a high risk that the sensor gets

obscured, which results in unusable output voltages. For example, a protection cover

can be placed around the machine for hygienic reasons. This cover may obscure the

sensors. Further, any cable or fluid, or other obstacle in front of the sensor may hinder

the reliability of the sensor as well. For these reasons the interventional X-Ray machines

are equipped with capacitive sensors.

5 | Capacitive sensor

As explained, the interventional X-Ray machines developed by Philips Healthcare are

equipped with capacitive sensors. REMOVED DUE TO CONFIDENTIALITY. The

bodyguard is a hood placed around the X-Ray scanner. Figure 5.1 shows a real body-

guard.

Figure 5.1: The bodyguard. Normally this hood is placed around the X-Ray scanner.

The sensors in the bodyguard sense the proximity of nearby conductive objects. Such

a sensor generates an electric field surrounding the sensor and any disturbance in this

field, due to the presence of conductive objects, changes the output voltage of the sensor.

A schematic overview of where one of the x sensors is located is shown in Figure 5.2.

Figure 5.2: Illustration of the bodyguard of an interventional X-Ray machine

39

Capacitive sensor 40

In SimulationTool a capacitive sensor consists of x sensor plates, the x plates are shown

in Figure 5.3. Note that in the real bodyguard a capacitive sensor is one connected

piece.

Figure 5.3: The three sensor plates that construct one capacitive sensor in Simula-
tionTool

When detecting an object in its proximity, the task of the model for the capacitive sensor

is to predict output of the real capacitive sensor in a similar situation. In SimulationTool,

each object is a polyhedron consisting of triangles.

Thus, the task is to predict the output of the real sensor when given a polyhedron near

the sensor like in Figure 5.4.

Figure 5.4: A polyhedron near the capacitive sensor.

To explain how the output can be approximated for a polyhedron, we first discuss how

to approximate the output with only one triangle in front of only one sensor plate, like

the situation shown in Figure 5.5.

Capacitive sensor 41

Figure 5.5: A triangle near a capacitive sensor plate.

In Figure 5.6 we see the front view of a sensor.

Figure 5.6: The three distinguishable regions around a sensor plate.

We can observe that a triangle can be in three regions. The regions are distinguished

because the distance from a point to the sensor is different in each region:

Region I the shortest distance from a point to the sensor is directly to the plate.

Region II the shortest distance from a point to the sensor is to the nearest edge of the

plate.

Capacitive sensor 42

Region III the shortest distance from a point to the sensor is to the nearest corner of

to the plate.

These distances are used to approximate the capacitance of a triangle. In each region

another approximation method is used.

The structure of this chapter is as follows: First we discuss related work and some

preliminaries in Sections 5.1 and 5.2. In Sections 5.3.1, 5.3.2 and 5.3.3 we explain how

to approximate the capacitance of a triangle in region I, II or III respectively. In Section

5.3.4 an approach is given to approximate the capacitance of an object. Based on the

capacitances of all the objects a method to compute the output voltages is given in

Section 5.3.5. Lastly, the results and limitations are discussed in Section 5.4.

Capacitive sensor 43

5.1 Related work

A less discussed topic is capacitive proximity sensors for the protection of people near

machines. An even less discussed topic is capacitive sensors in simulations. N. Karlsson

[KJ93] describes a capacitive sensor that detects presence of a human near a machine,

by placing a sending antenna on the floor and a receiving antenna on the ceiling. When

a person is too close to the machine, the electric field between the antennae is disrupted,

which is detected by the system. The capacitive sensors in the interventional X-Ray

machines consist of only a sending antenna and not a receiving antenna. Despite this

difference, the principle of a capacitive sensor is clearly described by N. Karlsson. The

electric circuit described by N. Karlsson is similar to the circuit used for the interven-

tional X-Ray machines. A similar set up is described by C. Jiang in [JLSC91]. [JLSC91]

is an overview of machine guarding techniques protecting people nearby machines. Jiang

describes the capacitive sensor as a sensor with high visibility, but with the disadvantage

that the system requires regular calibration and maintenance.

The previously-mentioned two papers describe the capacitive sensor as a sensor to detect

the presence of a person, i.e. the sensor is not used to measure the distance to a person.

R.N. Aguilar [ARM] describes a capacitive human detection system that estimates the

distance between a person and a sensor. More interesting and related to Philips Health-

care’s interventional X-Ray machines is that they estimate the location of a person and

not just the distance. A main difference between the setup and the sensors developed

by Philips Healthcare is that the latter are close to the body and operate on shorter

distances. The setup in [ARM] always operates on the entire human body, not only on

a part of the body.

Furthermore, Y. Xiang [Xia06] proposed a model to precisely calculate the capacitance

of two non-parallel plates. Since it is a mathematical model, it is applicable in a sim-

ulation. J.M. Bueno [BBCPCI11] shows that the Finite Element Method (FEM) is

applicable to calculate the capacitance of two non-parallel plates. To verify that FEM is

indeed applicable, the results are compared to the model devised by Xiang [Xia06]. The

approach of applying FEM in [BBCPCI11] is further clarified in [Hos15]. They describe

two inclined plates as a capacitor. One plate is split up in very small beams, each beam

is considered as a parallel plate to the other plate. The method results in a integral

Capacitive sensor 44

that approximately solves for the capacitance of the capacitor formed by the two plates.

This approach is similar to the method implemented in SimulationTool. The objects

in SimulationTool are all built out of triangles. In SimulationTool a similar method is

applied to the triangles that are close to a sensor. For the triangles in SimulationTool

we can devise a similar integral. In one case, the integral can be solved analytically, in

other cases we discretize the integral.

5.2 Preliminaries

5.2.1 Barycentric coordinates

To describe a point on a triangle in SimulationTool we use a rearrangement of the

barycentric coordinates [Weia] to describe an arbitrary point b on the surface.

Assume we have a triangle defined by its three corner points p0, p1 and p2. Let the

edge from p0 to p1 be u = p1 − p0 and the edge from p0 to p2 be v = p2 − p0. With

the barycentric coordinates λ0 and λ1 we can describe each point b on the triangle as

follows:

b(λ0, λ1) = p0 + λ0 (p1 − p0) + λ1 (p2 − p0)

= p0 + λ0 u + λ1 v

where λ0, λ1 ∈ [0, 1] ∧ λ0 + λ1 ≤ 1.

Integrating a function f over the surface of a triangle T using barycentric coordinates

is particularly easy [Got00]:

∫
T
f(b) dA = S

∫ 1

0

∫ 1−λ1

0
f(b(λ0, λ1)) dλ0dλ1

= ||u× v||
∫ 1

0

∫ 1−λ1

0
f(p0 + λ0 u + λ1 v) dλ0dλ1

where S is the surface element, which equals two times the area of the triangle and b is

the barycentric parametrization of point on the surface.

Capacitive sensor 45

5.2.2 Projections

To compute the shortest distance from a point b on a triangle to a sensor plate we

project the point on the plate, lets call the projection point b′. The shortest distance is

the distance from the b to b′. Figure 5.7 illustrates a projection in R3 seen from above.

Figure 5.7: Projection in R3 seen from above.

q0 and q1 are two corner points of the sensor plate.n is the normal vector of the plate:

the unit vector perpendicular to the line. d is the distance between b and b′, the number

we are looking for. We can compute d as follows [Weie]:

d = (q0 − b) · −n = (b− q0) · n

where · is the dot / inner product.

With Barycentric coordinates we get:

d = (b− q0) · n

= (b(λ0, λ1)− q0) · n

= (p0 + λ0u + λ1v − q0) · n

= p0 · n + λ1 u · n + λ0 v · n− q0 · n

5.2.3 Properties of capacitances

Law of capacitance

For two parallel plates we have the following formula to calculate the capacitance

Capacitive sensor 46

C between the plates:

C =
ε ·A
d

where ε is the dielectric constant, A is the area of the plates and d is the distance

between the plates.

Law of parallel capacitances

Multiple capacitances connected in parallel may be added to calculate the total

capacitance:

C = C1 + C2 + ...+ Cn−1 + Cn

Voltage divider

Two electrical components connected in series, as in Figure 5.8, can act as a voltage

(potential) divider.

Figure 5.8: Simple circuit of a voltage divider

Two capacitors, C1 and C2, connected in series act as a voltage divider with the

following behavior:

Vout =
C1

C1 + C2
Vin, where Vin is the input voltage and Vout the voltage across

capacitor C2.

5.3 Design

As mentioned above, J.M. Bueno [BBCPCI11] shows that the Finite Element Method

(FEM) is applicable to calculate the capacitance of two non-parallel plates. Figure 5.9

shows an example of two non-parallel plates.

Capacitive sensor 47

Figure 5.9: Example of a triangle in front of a sensor plane.

J.M. Bueno describes an integral over the area of the plates that accurately approximates

the capacitance of the two plates. Figure 5.10 illustrates what the integral means. The

left plate is split up in two plates. By treating the two smaller plates as parallel to the

larger plane, we can approximate the capacitance. If we keep splitting the plates up, we

end up with infinitely small parallel plates. By using the law of parallel capacitances,

we can add up the capacitances of all small plates to approximate the total capacitance

between the two plates in Figure 5.9.

Capacitive sensor 48

Figure 5.10: Using infinite many small parallel plates, we can approximate the ca-
pacitance of the two large inclined plates.

For SimulationTool we follow a similar approach, however, we do not integrate over

plates but over triangles.

5.3.1 Capacitance of a triangle in front of a sensor plate

Assume a sensor plate that is defined by the four points q0, q1, q2 and q3. Vector n is

the unit vector perpendicular to the rectangle called the normal vector of the sensor.

Now, assume an arbitrary triangle in front of the sensor plate that is defined by the

three points p0, p1 and p2. Edge u = p1 − p0 which is the vector from p0 to p1, edge

v = p2 − p0 which is the vector from p0 to p2.

Figure 5.11 illustrates such triangle in front of the sensor plate.

Capacitive sensor 49

Figure 5.11: Example of a triangle in front of a sensor plane.

Combining the law of capacitance and the law of parallel capacitances allows us to

approximate the capacitance of triangle T by integrating over T s surface:

C =

∫
dC =

∫
T

ε

δd
dA = ε

∫
T

1

δd
dA

where δd is the distance function, i.e. the shortest distance from a point on the triangle

to the sensor plate. Note that the distance to the sensor plate differs per point on the

triangle.

Integration using Barycentric coordinates leads to

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

δd
dλ0dλ1

As explained in Section 5.2, to compute the shortest distance we have to compute the

distance from the point to its projection on the plate.

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

p0 · n + λ1 u · n + λ0 v · n− q0 · n
dλ0dλ1

Capacitive sensor 50

Substituting a = u · n, b = v · n and c = p0 · n− q0 · n gives:

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

aλ1 + bλ0 + c
dλ0dλ1

=
ε ||u× v||

b

(b(a+ c)

a(a− b)
ln(a+ c) − b+ c

a− b
ln(b+ c) +

c

a
ln(c)

)
How this integral is solved is explained step by step in Appendix D.

5.3.2 Capacitance of a triangle next to a sensor plate

Here we discuss how to compute the capacitance of a triangle next to a sensor plate.

This situation differs from the situation in Section 5.3.1 because the triangle is located

in another region. In this situation the triangle is located in region II, the marked region

in Figure 5.12.

Figure 5.12: Illustrating region II. The shortest distance from a point on a triangle
in region II to the sensor is to straight to the edge of the sensor plate.

Now the integral differs from the integral in Section 5.3.1 because the shortest distance

from a point b on the triangle to the sensor plate is not calculated by projecting b on

the plate. I.e., we have to use a different distance function. We have to compute the

shortest distance from b to the edge of the sensor plate. The equation to compute the

shortest distance from a point b to the edge of the sensor plate with end points q0 and

Capacitive sensor 51

q1 is as follows [Weid]:

d =
||(b− q0)× (b− q1)||

||q1 − q0||

where × is the cross product.

Analytically solving

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

δd
dλ0dλ1

with the new distance function does not seem to be possible. However, we can solve

the integral numerically. To do so we have to discretize the integral. We can discretize

the integral by splitting the triangle in 4 smaller but equal sized triangles. We keep

repeating the process until we see no significant improvement in the approximation for

the capacitance. How to split the triangle is illustrated in Figure 5.13.

Figure 5.13: Process of splitting a triangle in equally sized similar triangles.

We chose this method of splitting the triangles, because it results in a balanced spread

and equally-sized similar triangles. In the end we have a set S of 4n of these triangles,

where n is the number of times we split the triangles.

For each triangle Si with centroid mi we can approximate the distance:

di ≈
||(mi − q0)× (mi − q1)||

||q1 − q0||

Now we can approximate C using:

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

δd
dλ0dλ1

≈ ε ||u× v||
2 · 4n

4n∑
i=1

1

di

≈ ε ||u× v||
2 · 4n

4n∑
i=1

||q1 − q0||
||(mi − q0)× (mi − q1)||

Capacitive sensor 52

5.3.3 Capacitance of a triangle diagonally to a sensor plate

Lastly, we discuss how to compute the capacitance of a triangle diagonally to a sensor

plate. This situation differs from both the situation in Section 5.3.1 and the situation in

Section 5.3.2 because the triangle is located in region III, the region marked in Figure

5.14.

Figure 5.14: Illustrating region III. The shortest distance from a point on a triangle
in region III to the sensor is to straight to the corner of the sensor plate.

Now the integral differs again because the shortest distance from a point b on the

triangle to sensor plate is straight to the corner of the sensor plate. The distance from

b to corner point q0 (in R3) is as follows:

d = ||q0 − b|| =

√√√√ 3∑
i=1

(q0i − bi)2

Again, analytically solving

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

δd
dλ0dλ1

with the new distance function does not seem to be possible.

Capacitive sensor 53

We numerically integrate in a similar fashion as in Section 5.3.2. We split up triangle

T in a set S of 4n small, equally sized similar triangles, where n is again the number of

times we split the triangles. For each triangle Si with centroid mi we can approximate

the distance:

di ≈ ||q0 −mi|| =

√√√√ 3∑
j=1

(q0j −mij)2

Now we can approximate C using:

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

δd
dλ0dλ1

≈ ε ||u× v||
2 · 4n

4n∑
i=1

1

di

≈ ε ||u× v||
2 · 4n

4n∑
i=1

1

||q0 −mi||

5.3.4 Capacitance of an object

Now we know how to approximate the capacitance of a triangle, we can approximate

the capacitance of an object. If an object is charged, the charges repel each other and

distribute over the surface of the object. Therefore, to approximate the capacitance of

an object, we can approximate the capacitance of the surface of the object. The objects

in SimulationTool are polyhedra constructed by triangles, these triangles describe the

surface of the object. By the law of parallel capacitances, we can approximate the

capacitance of the object by adding the capacitances of these triangles.

Let the triangles be the set T = {T1, T2, ..., Tn − 1, Tn}. The total capacity can be

computed as follows:

CTotal =
n∑
i=1

CTi

For each capacitive sensor, we can compute the total capacitance of all objects. From

this total capacitance per sensor we can compute the output voltages.

Capacitive sensor 54

5.3.5 From total capacitances to output voltage

In an interventional X-Ray machine of Philips Healthcare, a circuit like the simplified

voltage divider in Figure 5.8 is used, where Vout is the measured output , C1 is a couple

capacitor and C2 is the capacitance of the capacitive sensor.

In SimulationTool we implemented a model for the voltage divider as well. The voltage

divider uses 2.5 Volt as input voltage. In the model for the capacitive sensor, the couple

capacitor and the dielectric constant are adjustable to fine tune the model.

Given the total capacitance of a sensor, we can predict the output voltage using the

following formula:

Vout =
Ccouple

Ccouple + CTotal
Vin

5.4 Result

The capacitive sensor cannot be visualized as clearly as the distance sensor. But, in

Figure 5.15 we see x of the x capacitive sensors on the bottom of the bodyguard. In the

top right we see the output of the sensors.

Figure 5.15: Figure of SimulationTool with x capacitive sensors.

A low output voltage is the result of a high capacitance. One of the sensors is right

above the head of the patient. The output of this sensor is shown by the fourth bar

in the corner of the screen. A close object results in a high capacitance. When the

sensor is close to the human body, the presence of the body increases the capacitance

Capacitive sensor 55

and thus lowers the output voltage. Another sensor is further away from the body, the

capacitance is not as high as with the first sensor. The behavior of the model for the

capacitive sensor is further tested and validated in Section 6.

Limitations

In the real bodyguard, the different capacitive sensors influence each other. A conductive

object near one of the sensors results in a potential difference with the other sensors.

The effect is illustrated in Figure 5.16.

Figure 5.16: Illustrating the potential difference between two sensors.

In the current model of SimulationTool the capacitive sensors are handled separately,

i.e. there is no interaction between two capacitive sensors.

Furthermore, the model in SimulationTool assumes objects to be very conductive and

well grounded. However, not all objects near the real sensor are very conductive or well

grounded.

Figure 5.17: Currently, the model assumes that objects are very conductive and well
grounded. There is no distinction between different materials.

For example the apple in Figure 5.17 may have a totally different conductivity than

a human body. Even different human bodies can have a different conductivity. The

conductivity will eventually have some influence on the output of the sensor.

Capacitive sensor 56

For both the potential difference between two sensors and the different materials, future

work is needed.

6 | Experiments and validation of the capacitive

sensor

To validate the methods and the model for Philips Healthcare’s capacitive sensor we

conducted several experiments, each to evaluate a specific property of the model. In

Section 6.1 we discuss the accuracy of numerically solving the integral over the surface

of a triangle to compute its capacitance. In Section 6.2 we see the accuracy of a fine-

tuned model. The influence of the size of an object is discussed in Section 6.3. Lastly,

in Section 6.4 we validate the accuracy of the model applied to non-parallel plates.

Note that in the graphs in this section we do not plot the actual output of the sensor, we

plot how much the output differs from the output of the sensor if no objects are nearby.

I.e., if the output of the sensor, with no objects nearby, is 2500V , and with an object

nearby 2000V , we plot 500V . This difference is denoted as delta output in the graphs.

6.1 Experiment I: Accuracy of discretizing the integral

over the surface of a triangle

To validate the accuracy of the discretization of the integrals in Sections 5.3.2 and

5.3.3, we conducted an experiment for which the capacitance can be approximated both

analytically and numerically. This is only possible if a triangle is in front of the sensor (in

Region I in Figure 5.6). Therefore, in SimulationTool, we placed a plate in an arbitrary

orientation in front of a sensor plate. The setup is shown in Figure 6.1.

57

Experiments and validation of the capactivie sensor 58

Figure 6.1: Setup in SimulationTool. The two gray oriented triangles are in total in
front of the blue sensor plate.

Analytically we computed the real capacitance of the sensor. Thereafter, we iteratively

split up the triangles forming the plate. At each iteration we approximated the capaci-

tance of the sensor numerically. The results are in Figure 6.2.

Figure 6.2: Accuracy of discretizing the integral over the area of a triangle by means
of iteratively splitting the triangle

We see that in the first few iterations the approximation is quite below the real ca-

pacitance. But after splitting up the triangle only four or more times, the difference

is negligible. For a precise and accurate simulation we recommend to split triangles at

Experiments and validation of the capactivie sensor 59

least four times. For better computational performance we recommend a lower number

of splits.

6.2 Experiment II: fine tuning the model for one plate

In this experiment we examine how accurately we can fine-tune the model given a

reference curve. This reference curve is the curve of an actual measurement on the

physical bodyguard. To create the curve we use the measurement tool shown in Figure

6.3.

Figure 6.3: The tool used to measure both distance to the sensor and the output of
the sensor simultaneously

With this tool we can simultaneously measure the output of the sensor and the distance

between the plate and the sensor. Firstly we place the plate (attached to the tool)

tightly against the sensor, then, while measuring, we slowly move the measuring tool

backward. The process is illustrated in Figure 6.4. We started with the plate at distance

d = xcm and moved it backward until the plate is hardly observable by the sensor around

d = xcm.

Experiments and validation of the capactivie sensor 60

Figure 6.4: Illustrating experiment II, a plate is moved from xcm to xcm away from
the sensor.

This procedure results in curves like the curve in Figure 6.5.

Figure 6.5: The delta output (not actual output) as a function of increasing distance.
A curve like this is used as a reference curve in following experiments.

For this experiment, we examine if we can fine-tune the model such that the result of

the same procedure performed in SimulationTool closely fits the reference curve.

The result of Experiment II with a plate of size xcm by xcm is shown in Figure 6.6.

Experiments and validation of the capactivie sensor 61

Figure 6.6: The fine-tuned model predicts the capacitive sensor accurately

The blue line, the reference curve, represents the actual measured data from the physical

sensor. The outputs from SimulationTool, the orange striped line, precisely follows the

reference curve. These accurate predictions were also observable with the other two

plates. For this reason we only included the result of the plate of size xcm by xcm.

For configurations with a parallel plate in front of the sensor we can say that if the

model is properly fine-tuned, the model can predict the output of the physical sensor

very accurately.

6.3 Experiment III: varying plate sizes

During the conduction of the previously-described experiment the goal was to fine-tune

the model given a reference curve. The goal of this experiment is to examine the influence

of the size of the plate. Therefore we calibrate the model using the reference curve of a

plate of xcm by xcm and see how the model performs if we make changes in the setup.

In SimulationTool we perform the procedure described in the previous experiment with

different plate sizes and compare the results with the corresponding reference curves.

For the experiment we have 3 available plate sizes, xcm by xcm, xcm by xcm and xcm

by xcm, the plates are shown in Figure 6.7.

Experiments and validation of the capactivie sensor 62

Figure 6.7: Different plate sizes used during experiment III

An example of this experiment is: calibrate the model for a plate of xcm by xcm, perform

the previously described procedure in SimulationTool with a plate of xcm by xcm and

compare the result with the reference curve of a plate of xcm by xcm.

Figure 6.8 shows the result of a plate size of xcm by xcm. The blue line is the actual

measurement of a plate of xcm by xcm: the reference curve obtained with the previously

explained procedure. The orange line is the prediction of SimulationTool. Simulation-

Tool is slightly below the actual measurement. The greatest difference is at xcm, the

difference is less than 24%, after xcm it is less than 5%.

Figure 6.8: Measurements and predictions for a parallel plate of xcm by xcm with
the model fine-tuned for a plate of xcm by xcm

Figure 6.9 shows the result of a plate of size xcm by xcm. Again, the blue line is the

reference curve and the orange line the prediction of SimulationTool. The prediction is

Experiments and validation of the capactivie sensor 63

slightly above the reference curve. With 10%, the greatest difference is at xcm, after

xcm the difference is less than 6%.

Figure 6.9: Measurements and predictions for a parallel plate of xcm by xcm with
the model fine-tuned for a plate of xcm by xcm

The predictions are again accurate, but not as accurate as in Section 6.2. It is notable

that the prediction with a bigger plate is too high and the prediction with a smaller

plate is too low. The capacitance seems to be non-linearly dependent on the plate size.

In perfect circumstances, the capacitance should grow linearly with the size of a plate,

which is how the model in SimulationTool is implemented. The differences may be due

to side effects like the fringe effect [Xia06]; another cause could be a relation between

the total size of the objects and the total size of the sensor. Future work is needed to

identify the cause and/or relation of this dependency.

6.4 Experiment IV: varying angle

For the last experiment we do not vary the distance or the size of the plates, we pivot

a plate around on of its sides at a fixed distance d from the sensor. The experiment is

illustrated in Figure 6.10.

Experiments and validation of the capactivie sensor 64

Figure 6.10: Illustrating experiment IV, a plate is pivoted around one edge to measure
the influence of the angle between the plate and the sensor

The goal of the experiment is to validate that the effect of an inclined object in Simula-

tionTool is almost equal to the effect of an inclined object in front of the physical sensor.

To conduct the experiment we extended the measurement tool in Figure 6.3 with a tool

created with LEGO (which has a high dielectric constant) shown in Figure 6.11.

Figure 6.11: The tool used to vary the angle between the plate and the sensor

With the measurement tool we can fix the distance, with the second tool we can pivot

a plate around its side. The result is comparable to the reference curves, but with the

angle on the x − axis instead of the distance. An example of such a curve is shown in

Figure 6.12.

Experiments and validation of the capactivie sensor 65

Figure 6.12: Example of a result of experiment IV

For the experiment we calibrate the model for the correct plate size and perform the

exact same pivoting procedure in SimulationTool, we can compare the results with actual

measurements like the measurements in Figure 6.12. We conducted the experiment for

a plate of size xcm by xcm and xcm by xcm at distances of xcm, xcm, xcm and xcm

from the sensor.

In Figure 6.13 we see the result of the plate of size xcm by xcm.

Figure 6.13: Measurements and predictions of a non-parallel plate of xcm by xcm
with the model fine-tuned for a parallel plate

Experiments and validation of the capactivie sensor 66

We see that the accuracy is rather good. Note that the measurements are made per x

degrees, so we have to interpolate between these points. The highest variation is at 0cm,

where the sensor is very sensitive.

In Figure 6.14 we see result of the plate of size xcm by xcm.

Figure 6.14: Measurements and predictions of a non-parallel plate of xcm by xcm
with the model fine-tuned for a parallel plate

The results for a plate of x cm by x are almost identical to the results of a plate of xcm

by xcm. Again the largest deviation is at a distance of xcm.

Based on these results we can say that the model captures the behavior of inclined

objects in front of the sensor quite well. The largest deviations are due to the different

objects sizes, and probably not their orientations.

7 | Conclusion and future work

In this thesis we covered two topics: collision detection and simulating proximity sensors

in 3D simulations of mechanical systems. The discussed and proposed methods and

algorithms are implemented in SimulationTool, a tool implemented by Philips Healthcare

to simulate interventional X-Ray machines.

For collision detection we described the GJK-algorithm. The GJK-algorithm is an effi-

cient algorithm to test for intersections between objects. To increase the performance

of collision detection we split the process in a broad phase and narrow phase. In the

broad phase we check for an intersection between the Bounding Volumes (BVs), the

volumes that entirely contain the object. We only test for an intersection between the

two objects if the BVs collide.

To simulate proximity sensors in 3D simulations we proposed methods to simulate two

types of proximity sensors: a distance sensor and a capacitive sensor. The distance

sensor is comparable to a parking sensor in a car. For multiple reasons, the distance

sensor is not a realistic option for Philips Healthcare to equip on their interventional

X-Ray machines. Instead they use capacitive sensors. These sensors generate an electric

field surrounding the sensor. Any presence or displacement of nearby conductive objects

changes the electric field, which results in a change in the output voltage of the sensor.

Based on the output voltages, the interventional X-Ray machines may be restricted in

their movement in certain directions. In this thesis we described and validated a model

to simulate these sensors. The model approximates the capacitances of objects close to

the sensor. Based on the capacitances of these objects the model predicts the output of

the sensor.

The model is accurate, but there is still room for improvement. The model seems to

miss a connection between the size of the objects and the size of the sensor. In future

work this connection should be investigated.

67

Conclusion and future work 68

As a next step, the effect of different materials and levels of conductivity should be re-

searched. The current model is tested and validated for highly conductive and grounded

objects.

Lastly, the effect of the potential difference between two capacitive sensors should be

studied. An object that is close to a capacitive sensor changes the charge on that sensor.

This change in charge results in a potential difference between that and adjacent sensors.

The output voltages of these sensors drop due to the potential difference.

A | Details of the scene graph in SimulationTool

In SimulationTool objects are built up by primitives, called shapes. The shapes are

attached to at most one link in a linkage. A shape has its own position and rotation

relative to its parent link. The following primitives are available in SimulationTool:

Cube, Cuboid, Arc, Plane, Cone and a Cylinder.

Shapes composing an object are all attached to a link. To translate or rotate such an

object, we now do not need to translate or rotate each shape of the object: only the link

has to be translated or rotated.

Links reside in a tree of links. Each link tree has one root, and each link may have

several child links. A tree is used to construct a representation of connected objects,

such as the X-Ray scanner, which is a combination of multiple moving and/or rotating

arms and the scanner itself. Thus, a single link tree represents a part of the scene, not

the complete scene.

A linkage is a set of link trees. This set of link trees represents the whole scene that is

being simulated. The linkage represents all the connected components in the scene. In

general, this is a tree for the scanner connected to the arms and a tree for the patient

and the table. But more trees could be present in a linkage, such as a tree for a doctor

or equipment in the operation room.

69

B | Derivations for Oriented Bounding Boxes

B.1 Distribution of vertices

The derivation for the covariance matrix regarding the distribution of the vertices of an

object is as follows.

Suppose that the object consists of n points p1,p2, ...,pn in space. Then Cij (element

(i, j) of C) is defined as follows:

Cij = Cov(xi,xj) = E[(xi − E[xi])(xj − E[xj])]

= E[xixj − xiE[xj]− E[xi]xj + E[xi]E[xj]]

= E[xixj]− E[xi]E[xj]− E[xi]E[xj] + E[xi]E[xj]

= E[xixj]− E[xi]E[xj]

= E[xixj] − mimj

=
1

n

n∑
k=1

pki p
k
j −

1

n

n∑
k=1

pki
1

n

n∑
k=1

pkj

where x is a multivariate random variable (random vector), E[xi] the expectation of the

ith coordinate of x and m the mean of all points.

B.2 Distribution of triangles

A problem with the covariance matrix based on only the vertices is that a skew vertex

set will influence the result of the covariance matrix. A region wise small part of an

object that consists of half of the vertices contribute to half of the covariance matrix.

A solution would be to somehow weight the vertices, such that a cluttered part of an

object does not bias C. This weighting may be done with the areas of the triangles:

smaller triangles contribute less to the covariance matrix.

Before buckling down into the formula to evaluate the covariance matrix, a clear defini-

tion for notation is needed:

71

Appendix B. Deriviations for Oriented Bounding Boxes 72

• Superscript k refers to the kth triangle.

• ai denotes the ith coordinate of a.

• Superscript M refers to all n triangles, also called the model (Model).

• P k refers to the domain of integration of triangle k.

• mk is the mean point of the kth triangle.

• The three vertices of triangle k are denoted as pk, qk and rk.

The kth triangle is parameterized by:

xk(s, t) = pk + suk + tvk, with s ∈ [0, 1] and t ∈ [0, 1− s]

where uk = qk − pk and vk = rk − pk.

• The surface integral of a function f(s, t) over the surface of a triangle k is defined

as ∫
Pk

fdA = ||u× v||
∫ 1

0

∫ 1−s

0
f(s, t)dtds

The definition for the covariance matrix is the same as before:

Cij = E[xixj]− E[xi]E[xj]

where

E[xi] =

∫
M xidA∫
M dA

E[xj] =

∫
M xjdA∫
M dA

E[xixj] =

∫
M xixjdA∫
M dA

Appendix B. Deriviations for Oriented Bounding Boxes 73

The integral over the domain M can be considered as the sum of integrals over the

surfaces of the n triangles, which simplifies the equation above:

∫
M

dA =
n∑
k=1

∫
Pk

dA

=
n∑
k=1

∫ 1

0

∫ 1−s

0
||uk × vk||dtds

=
n∑
k=1

||uk × vk||
∫ 1

0

∫ 1−s

0
dtds

=
n∑
k=1

||uk × vk||
∫ 1

0
(1− s)ds

=
n∑
k=1

||uk × vk||1
2

=

n∑
k=1

Ak

= AM

Substituting the integral in the previous equations gives:

E[xi] =
1

AM

∫
M

xidA

E[xj] =
1

AM

∫
M

xjdA

E[xixj] =
1

AM

∫
M

xixjdA

Appendix B. Deriviations for Oriented Bounding Boxes 74

We can solve the first equation as follows:

E[xi] =
1

AM

∫
M

xidA

=
1

AM

n∑
k=1

∫
Pk

xki dA

=
1

AM

n∑
k=1

||uk × vk||
∫ 1

0

∫ 1−s

0
xki dtds

=
1

AM

n∑
k=1

||uk × vk||
∫ 1

0

∫ 1−s

0
pki + suki + tvki dtds

=
1

AM

n∑
k=1

||uk × vk||
∫ 1

0
(1− s)pki + (1− s)suki +

1

2
(1− s)2vki ds

=
1

AM

n∑
k=1

||uk × vk||
(

1

2
pki +

1

6
uki +

1

6
vki

)

=
1

AM

n∑
k=1

||uk × vk||
(

1

2
pki +

1

6
(qki − pki) +

1

6
(rki − pki)

)

=
1

AM

n∑
k=1

||uk × vk||1
6

(
pki + qki + rki

)
=

1

AM

n∑
k=1

1

2
||uk × vk||1

3

(
pki + qki + rki

)
=

1

AM

n∑
k=1

Akmk
i

E[xj] can be solved analogously to solving E[xi]. Solving E[xixj] is a bit more complex.

E[xixj] =
1

AM

∫
M

xixjdA

=
1

AM

n∑
k=1

∫
Pk

xki x
k
jdA

=
1

AM

n∑
k=1

||uk × vk||
∫ 1

0

∫ 1−s

0
xki x

k
jdtds

=
1

AM

n∑
k=1

||uk × vk||
∫ 1

0

∫ 1−s

0
f(s, t)dtds

Appendix B. Deriviations for Oriented Bounding Boxes 75

where

f = xki x
k
j

= (pki + suki + tvki)(pkj + sukj + tvkj)

= pki p
k
j + spki u

k
j + tpki v

k
j + suki p

k
j + s2uki u

k
j + stuki v

k
j + tvki p

k
j + stvki u

k
j + t2vki v

k
j

= pki p
k
j + s(pki u

k
j + uki p

k
j) + t(pki v

k
j + vki p

k
j) + st(uki v

k
j + vki u

k
j) + s2uki u

k
j + t2vki v

k
j

Solving the inner integral with respect to t gives

∫ 1−s

0
f(s, t)dt =(1− s)pki pkj + (1− s)s(pki ukj + uki p

k
j) +

1

2
(1− s)2(pki v

k
j + vki p

k
j)+

s

2
(1− s)2(uki v

k
j + vki u

k
j) + s2(1− s)uki ukj +

1

3
(1− s)3vki v

k
j

With this result solving the outer integral with respect to s gives

∫ 1

0

∫ 1−s

0
f(s, t)dtds =

1

24

(
12pki p

k
j + 4(pki u

k
j + uki p

k
j) + 4(pki v

k
j + vki p

k
j)+

1(uki v
k
j + vki u

k
j) + 2uki u

k
j + 2vki v

k
j

)
In this equation we can substitute uk = qk − pk and vk = rk − pk:

∫ 1

0

∫ 1−s

0
f(s, t)dtds =

1

24

(
2pki p

k
j + pki q

k
j + pki r

k
j+

2qki q
k
j + qki p

k
j + qki r

k
j+

2rki r
k
j + rki p

k
j + rki q

k
j

)
=

1

24

(
(pki + qki + rki)(p

k
j + qkj + rkj)+

pki p
k
j + qki q

k
j + rki r

k
j

)
=

1

24

(
9mk

im
k
j + pki p

k
j + qki q

k
j + rki r

k
j

)

Appendix B. Deriviations for Oriented Bounding Boxes 76

With this equation we can solve E[xixj]:

E[xixj] =
1

AM

n∑
k=1

∫
Pk

xki x
k
jdA

=
1

AM

n∑
k=1

||uk × vk||
∫ 1

0

∫ 1−s

0
f(s, t)dtds

=
1

AM

n∑
k=1

2Ak
∫ 1

0

∫ 1−s

0
f(s, t)dtds

=
1

AM

n∑
k=1

2Ak

24

(
9mk

im
k
j + pki p

k
j + qki q

k
j + rki r

k
j

)

Combining the three equation results in the value of the element in C:

Cij = E[xixj]− E[xi]E[xj] =
1

AM

n∑
k=1

2Ak

24

(
9mk

im
k
j + pki p

k
j + qki q

k
j + rki r

k
j

)
− 1

AM

n∑
k=1

Akmk
i

1

AM

n∑
k=1

Akmk
j

B.3 Prove of orthogonality of eigenvectors in a symmetric

matrix

Since the covariance matrix is symmetric (by its definition), eigenvectors v1 and v2

corresponding to distinct eigenvalues λ1 and λ2 respectively are orthogonal to each

other. This is proven as follows:

λ1(v1 · v2) = (λ1v
1) · v2 = (Cv1) · v2

= (Cv1)Tv2 = (v1TCT)v2

= v1T (CTv2) = v1 · (CTv2)

= v1 · (Cv2) = v1 · (λ2v
2)

= λ2(v1 · v2)

λ1(v1 · v2) = λ2(v1 · v2) ∧ λ1 6= λ2 ⇒ v1 · v2 = 0

v1 · v2 = 0 is the definition of orthogonality of v1 and v2.

C | Details of the implementation of the GJK-

algorithm in SimulationTool

C.1 CheckAndUpdateSimplex

The structure of the GJK-algorithm uses only a few lines of code. However, the algorithm

relies on the function CheckAndUpdateSimplex. This procedure that checks and updates

the simplex and the direction vector is a bit more complicated, we discuss the different

cases (simplex of 1, 2, 3 or 4 points) one by one. The naming in the figures differs a bit

from the pseudo code. In each of the figures, A is the new support point, O the origin.

B, C and D represent the points that already were in the simplex, where B was added

most recently, and D is the longest in the simplex.

Point Updating a simplex consisting of 1 point is trivial. The new point (A) stays in

the simplex, it’s the very first point. The new support direction is from A towards the

origin.

Update:

B⇐ A

v⇐ −A

We have not yet found a simplex that contains the origin, therefore we return false.

Line segment A simplex of two points is a line segment. Figure C.1 shows an example

of such a line segment.

77

Appendix C. Details of the implementation of the GJK-algorithm in SimulationTool 78

Figure C.1: Line segment AB as simplex.

If we have line segment AB as simplex, we know two things for sure: The origin cannot

lie in region 1. Point A was added as a result of looking for the furthest point towards

the direction of the origin from point B. So the origin cannot lie to the left of AB.

The origin cannot lie in region 3 either. From B, A was the furthest point in the

direction of the origin. If the origin would be located in region 3 a separating axis would

have been found (the axis through A) and the algorithm would terminate.

Only region 2 is left. Both A and B are part of region 2, so both of the points stay in

the simplex. The new search direction has to be perpendicular to line segment AB and

towards the origin, which can be calculated via a double cross product: AB×AO×AB.

Update:

C⇐ B

B⇐ A

v⇐ AB×AO×AB

We have not yet found a simplex that contains the origin, therefore we return false.

Triangle A simplex of three points is a triangle. Figure C.2 shows an example of such

a triangle.

Appendix C. Details of the implementation of the GJK-algorithm in SimulationTool 79

Figure C.2: Triangle ABC as simplex.

The triangle case is comparable to the line segment. We first distinguish a number of

regions where to origin could be located, then for each region we discuss how to update

the simplex and the direction vector. Just as with the line segment, we do not have to

look at region 1 and 2, for the same reasons.

To distinguish region 3, 4, 5 and 6 we need the normal n of triangle ABC, the normal

of a triangle is the cross product of 2 edges counterclockwise. So in this case normal

n = AB×AC.

Region 3

If the origin is located in region 3, then the origin is to the left of line segment AB.

The origin is to the left of AB if and only if (AB × n) ·AO > 0. If this is the case,

we update the simplex comparable to a line segment, A and B make space for the new

support and the direction vector is perpendicular to the edge and towards the origin.

Update:

C⇐ B

B⇐ A

v⇐ AB×AO×AB

We have not yet found a simplex that contains the origin, therefore we return false.

Appendix C. Details of the implementation of the GJK-algorithm in SimulationTool 80

Region 4

If the origin is located in region 4, then the origin is to the left of line segment AC.

The origin is to the left of AC if and only if (n×AC) ·AO > 0. If this is the case, we

update the simplex comparable to a line segment, A makes space for the new support

(C stays the same) and the direction vector is perpendicular to the edge and towards

the origin.

Update:

B⇐ A

v⇐ AC×AO×AC

We have not yet found a simplex that contains the origin, therefore we return false.

Region 5+6

If the origin is not located in region 3 or 4, it must be above or below triangle ABC.

Whether the origin is above or below ABC can be tested via the normal. The origin is

above the triangle if and only if n ·AO > 0. If not, then the origin is below the triangle.

If the origin is above ABC we just shift A, B and C. The new search direction is the

normal of ABC. Otherwise we shift the points, but also have to flip the order of the

points. The new search direction is the normal again, but in the oposite direction.

Update:

if n ·AO > 0 then

D⇐ C

C⇐ B

B⇐ A

v⇐ n

else

D⇐ B

B⇐ A

v⇐ −n

We have not yet found a simplex that contains the origin, therefore we return false.

Tetrahedron The first time that we have a simplex with 4 points, a tetrahedron, is

the time that we might have found an intersection. Recall that an intersection is found

Appendix C. Details of the implementation of the GJK-algorithm in SimulationTool 81

when the origin is enveloped by a simplex, the tetrahedron is the only simplex (in R3)

that can envelope the origin. Figure C.3 shows an example of a tetrahedron simplex.

Figure C.3: Tetrahedron ABCD as simplex.

Just like the line segment and the triangle, the origin is not in region 2, we searched for

the origin on the other side of the bottom red plane. The origin could be in region 1,

but then the algorithm would have terminated because of the visible separating plane

(separating axis in R3).

In Figure C.3 no further distinguishable regions are shown to avoid clutter. However,

initially we define 4 more regions: One region if the origin is in front of a triangle, for

each of the three triangles ACD, ADB and ABC and a last region if the origin is inside

the tetrahedron, respectively identified as region 2, 3, 4 and 5.

Regions 2, 3 and 4 are handled analogously to each other, therefor we briefly discuss

region 4 and 5.

Region 4

The origin is in front of triangle ABC if and only if (AB ×AC) ·AO < 0. Then the

origin can be in 3 regions, comparable to the triangle case. The origin can be to the left

of AB, to the right of AC or right in front of ABC. These cases are already captured

in Section C.1.

Region 5

For region 5 there is not much to discuss, we found the origin to be inside the tetrahedron.

Appendix C. Details of the implementation of the GJK-algorithm in SimulationTool 82

I.e., in this case we found an intersection of the two objects and return true.

The origin is inside the tetrahedron if and only if

(AC×AD) ·AO ≤ 0 ∧ (AD×AB) ·AO ≤ 0 ∧ (AB×AC) ·AO ≤ 0

D | Solving the equations for proximity sensors

In Section 5 we encountered an integral that approximates the capacitance of a triangle

right in front of a sensor plate. The integral is quite complicated to solve. The details on

how to solve this integral is listed here step by step. Halfway the integral is transformed

using Barycentric coordinates, for more information of this process see Section 5.2.

C =

∫
dC

=

∫
T

ε

δd
dA

= ε

∫
T

1

δd
dA

= ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

δd
dλ0dλ1

= ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

(p0 + λ1u + λ0v − q0) · n
dλ0dλ1

= ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

p0 · n + λ1 u · n + λ0 v · n− q0 · n
dλ0dλ1

Substituting a = u · n, b = v · n and c = p0 · n− q0 · n gives:

C = ε ||u× v||
∫ 1

0

∫ 1−λ1

0

1

aλ1 + bλ0 + c
dλ0dλ1

= ε ||u× v||
∫ 1

0

[1

b
ln(aλ1 + bλ0 + c)

]1−λ1

0
dλ1

=
ε ||u× v||

b

∫ 1

0
ln(aλ1 + b(1− λ1) + c)− ln(aλ1 + c) dλ1

=
ε ||u× v||

b

∫ 1

0
ln((a− b)λ1 + b+ c)− ln(aλ1 + c) dλ1

=
ε ||u× v||

b

[a ((a− b)λ1 + b+ c) ln((a− b)λ1 + b+ c) − (a− b) (aλ1 + c) ln(aλ1 + c)

a (a− b)

]1

0

=
ε ||u× v||

b

((a (a+ c) ln(a+ c) − (a− b) (a+ c) ln(a+ c)

a (a− b)

)
−

(a (b+ c) ln(b+ c) − (a− b) (c) ln(c)

a (a− b)

))

=
ε ||u× v||

b

(b(a+ c)

a(a− b)
ln(a+ c) − b+ c

a− b
ln(b+ c) +

c

a
ln(c)

)

83

Appendix D. Solving the equations for capacitive sensors 84

Undoing the substitution for a, b and c gives:

C =
ε ||u× v||

v · n

(
v · n (u · n + (p0 · n− q0 · n))

u · n (u · n− v · n)
ln(u · n + (p0 · n− q0 · n)) −

v · n + (p0 · n− q0 · n)

u · n− v · n
ln(v · n + (p0 · n− q0 · n)) +

(p0 · n− q0 · n)

u · n
ln((p0 · n− q0 · n))

)

Bibliography

[ARM] RN Aguilar, M Roelofsz, and GCM Meijer. Capacitive human-detection

systems with auto-calibration.

[BBCPCI11] JM Bueno-Barrachina, CS Canas-Penuelas, and S Catalan-Izquierdo. Ca-

pacitance evaluation on non-parallel thick-plate capacitors by means of fi-

nite element analysis. Journal of Energy and Power Engineering, 5(4):373–

378, 2011.

[Ber99] Gino van den Bergen. A fast and robust gjk implementation for collision

detection of convex objects. Journal of Graphics Tools, 4(2):7–25, 1999.

[cop] Coppelia robotics gmbh. http://www.coppeliarobotics.com/contact.

html. Last visited on 13/05/2015.

[Cou01] Murilo G Coutinho. Dynamic simulations of multibody systems. Springer,

2001.

[Ebe08] David Eberly. Intersection of a triangle and a cone, 2008.

[GJK88] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast

procedure for computing the distance between complex objects in three-

dimensional space. Robotics and Automation, IEEE Journal of, 4(2):193–

203, 1988.

[Got00] Stefan Gottschalk. Collision queries using oriented bounding boxes. PhD

thesis, The University of North Carolina at Chapel Hill, 2000.

[Hel97] Martin Held. Erita collection of efficient and reliable intersection tests.

Journal of Graphics Tools, 2(4):25–44, 1997.

[Hos15] Ranav Hosangadi. Capacitance of two non parallel plates.

http://physics.stackexchange.com/questions/148283/

capacitance-of-two-non-parallel-plates, 2015. Last visited on

13/05/2015.

85

http://www.coppeliarobotics.com/contact.html
http://www.coppeliarobotics.com/contact.html
http://physics.stackexchange.com/questions/148283/capacitance-of-two-non-parallel-plates
http://physics.stackexchange.com/questions/148283/capacitance-of-two-non-parallel-plates

Bibliography 86

[JLSC91] Bernard C Jiang, Andrew YH Lio, N Suresh, and Otto SH Cheng. An

evaluation of machine guarding techniques for robot guarding. Robotics

and autonomous systems, 7(4):299–308, 1991.

[KHI+07] Sinan Kockara, Tansel Halic, K Iqbal, Coskun Bayrak, and Richard Rowe.

Collision detection: A survey. In Systems, Man and Cybernetics, 2007.

ISIC. IEEE International Conference on, pages 4046–4051. IEEE, 2007.

[KJ93] Nils Karlsson and J-O Jarrhed. A capacitive sensor for the detection of

humans in a robot cell. In Instrumentation and Measurement Technology

Conference, 1993. IMTC/93. Conference Record., IEEE, pages 164–166.

IEEE, 1993.

[MG09] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for

3d mesh approximate convex decomposition. In Image Processing (ICIP),

2009 16th IEEE International Conference on, pages 3501–3504. IEEE,

2009.

[O’R85] Joseph O’Rourke. Finding minimal enclosing boxes. International journal

of computer & information sciences, 14(3):183–199, 1985.

[vRe] V-rep proximity sensor. https://www.youtube.com/watch?v=

3w3zzVIr3kI. Last visited on 13/05/2015.

[Weia] Eric W. Weisstein. Barycentric coordinates. From MathWorld—

A Wolfram Web Resource. http://mathworld.wolfram.com/

BarycentricCoordinates.html. Last visited on 09/2/2015.

[Weib] Eric W. Weisstein. Cone. From MathWorld—A Wolfram Web Resource.

http://mathworld.wolfram.com/Cone.html. Last visited on 09/2/2015.

[Weic] Eric W. Weisstein. Conic section. From MathWorld—A Wolfram Web

Resource. http://mathworld.wolfram.com/ConicSection.html. Last

visited on 09/2/2015.

[Weid] Eric W. Weisstein. Point-line distance–3-dimensional. From MathWorld—

A Wolfram Web Resource. http://mathworld.wolfram.com/

Point-LineDistance3-Dimensional.html. Last visited on 09/2/2015.

https://www.youtube.com/watch?v=3w3zzVIr3kI
https://www.youtube.com/watch?v=3w3zzVIr3kI
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/Cone.html
http://mathworld.wolfram.com/ConicSection.html
http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

Bibliography 87

[Weie] Eric W. Weisstein. Point-plane distance. From MathWorld—

A Wolfram Web Resource. http://mathworld.wolfram.com/

Point-PlaneDistance.html. Last visited on 09/2/2015.

[Xia06] Yumin Xiang. The electrostatic capacitance of an inclined plate capacitor.

Journal of electrostatics, 64(1):29–34, 2006.

[Zac00] Gabriel Zachmann. Virtual reality in assembly simulation-collision de-

tection, simulation algorithms, and interaction techniques. PhD thesis,

Zachmann, Gabriel, 2000.

http://mathworld.wolfram.com/Point-PlaneDistance.html
http://mathworld.wolfram.com/Point-PlaneDistance.html

	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Problem description
	1.2 Summary of results
	1.3 Structure of this thesis

	2 Collision detection
	2.1 Related work
	2.2 Preliminaries
	2.3 Design
	2.3.1 Support points
	2.3.2 The GJK-algorithm

	2.4 Implementation
	2.5 Result

	3 Bounding volumes
	3.1 Design
	3.1.1 Bounding Spheres
	3.1.2 Axis Aligned Bounding Boxes
	3.1.3 Oriented Bounding Boxes
	3.1.4 Finding an Oriented Bounding Box based on a covariance matrix
	3.1.4.1 Covariance matrix based on the distribution of vertices
	3.1.4.2 Covariance matrix based on the distribution of triangles
	3.1.4.3 Fitting an Oriented Bounding Box
	3.1.4.4 Exceptional Cases

	3.2 Implementation
	3.2.1 Axis aligned bounding boxes
	3.2.2 Oriented bounding boxes

	3.3 Result

	4 Distance sensor
	4.1 Related work
	4.2 Design
	4.2.1 Method based on equation of a cone
	4.2.2 Method based on the field of view of the cone

	4.3 Result

	5 Capacitive sensor
	5.1 Related work
	5.2 Preliminaries
	5.2.1 Barycentric coordinates
	5.2.2 Projections
	5.2.3 Properties of capacitances

	5.3 Design
	5.3.1 Capacitance of a triangle in front of a sensor plate
	5.3.2 Capacitance of a triangle next to a sensor plate
	5.3.3 Capacitance of a triangle diagonally to a sensor plate
	5.3.4 Capacitance of an object
	5.3.5 From total capacitances to output voltage

	5.4 Result

	6 Experiments and validation of the capacitive sensor
	6.1 Experiment I: Accuracy of discretizing the integral over the surface of a triangle
	6.2 Experiment II: fine tuning the model for one plate
	6.3 Experiment III: varying plate sizes
	6.4 Experiment IV: varying angle

	7 Conclusion and future work
	A Details of the scene graph in SimulationTool
	B Derivations for Oriented Bounding Boxes
	B.1 Distribution of vertices
	B.2 Distribution of triangles
	B.3 Prove of orthogonality of eigenvectors in a symmetric matrix

	C Details of the implementation of the GJK-algorithm in SimulationTool
	C.1 CheckAndUpdateSimplex
	Point
	Line segment
	Triangle
	Tetrahedron

	D Solving the equations for proximity sensors
	Bibliography

