
 Eindhoven University of Technology

MASTER

Schema mapping illustration using universal examples

Butnariu, F.N.

Award date:
2015

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/be1bb3bc-29ac-46c7-a481-b6c2f6a39a6f

Eindhoven University of Technology
Department of Mathematics and Computer Science

Web Engineering Research Group

Master’s Thesis

Schema Mapping Illustration
Using Universal Examples

Author: F.N. Butnariu

Supervisors: dr. G.H.L. Fletcher
dr. F. Mandreoli

Assessment Committee: dr. G.H.L. Fletcher
dr. S.P. Luttik
dr. F. Mandreoli
dr. M. Pechenizkiy

August 31, 2015

Abstract

Data exchange is the problem of transforming data from a source database into data that adheres to
the schema of a target database. This transformation is formally captured by a schema mapping, which
consists of a set of rules that precisely establish the relationship between the source and target database
schemas. Here the rules in question are source-to-target tuple generating dependencies (s-t tgds), and
the focus is on classes of s-t tgds such as LAV, strict LAV, n-modular, and self-join-free on the source.

Schema mappings intended for realistic databases can be intricate and therefore difficult to under-
stand, but data examples have emerged as a promising means to facilitate schema mapping understand-
ing. Although the semantic description of schema mappings can be infinite in terms of data examples, a
particular type of data example known as universal example can reveal finite such semantic descriptions.

This work has investigated the problem of constructing universal examples for schema mappings with
a finite semantic description. Although finite, such descriptions can still be large enough in terms of the
number of universal examples they include, and a main concern in this work has been the reduction of
this space of universal examples. The first contribution of this work is a generator of synthetic universal
examples for schema mappings specified by LAV and n-modular s-t tgds. The former class encompasses
strict LAV s-t tgds, whereas the latter class also includes s-t tgds that are self-join-free on the source.
Universal examples are synthetic in the sense that they are not generated using existing data. In addition,
a result in terms of the number of universal examples needed to describe LAV s-t tgds is given. The
second contribution is a generator of real universal examples for schema mappings specified by LAV s-t
tgds. In this case, universal examples are real in the sense that they are generated using existing data
rather than being synthetically constructed.

Contents

1 Introduction 1

2 Background 3
2.1 Preliminaries . 3

2.1.1 Schemas and instances . 3
2.1.2 Source-to-target tuple generating dependencies . 3
2.1.3 Data exchange and data examples . 4
2.1.4 Additional source-to-target tuple generating dependencies 4

2.2 Related work . 5

3 Synthetic universal example generation 7
3.1 LAV schema mappings . 7

3.1.1 The number of universal examples needed to illustrate LAV s-t tgds 8
3.2 Strict LAV schema mappings . 11
3.3 n-modular schema mappings . 11

3.3.1 Reductions on the number of universal examples 15

4 Real universal example generation 17
4.1 LAV schema mappings . 17

4.1.1 Eager approach . 17
4.1.2 Lazy approach . 19

5 Prototype implementation and case studies 21
5.1 Prototype implementation . 21

5.1.1 S-t tgds parser . 23
5.1.2 Naive chase . 24

5.2 Case studies . 26
5.2.1 Eager generation of real universal examples for a LAV schema mapping 26
5.2.2 Reducing the number of universal examples for a 2-modular schema mapping . . . 26
5.2.3 STBenchmark basic mapping scenarios . 27

6 Conclusions 31

A Additional STBenchmark basic mapping scenarios 35

iii

Chapter 1

Introduction

This work is set in the context of restructuring data between heterogeneous relational databases. In
such a scenario data residing in a source database and conforming to a source schema undergoes a
transformation such that it complies with a target schema of a different database. This transformation
is known as data exchange.

Data exchange inherently involves a mapping from the schema of a source database to the schema of
a target database. A schema mapping defines a formal link between the source schema and the target
schema and captures the intended data exchange semantics.

The input and output of performing data exchange according to a schema mapping is an instance
of the source data and a corresponding instance of the target data. This pair of instances is known as
a data example. Naturally, the source and target instances of a data example comply with the source
and target schemas, respectively. Essentially, a data example reveals schema mapping behavior in much
the same manner as test input reveals execution paths in a computer program. For this reason, data
examples can be used to validate, convey, and improve the quality of schema mappings. In other words,
data examples can be employed to verify and understand the data exchange semantics and to convey
this understanding to different stakeholders.

Problem Statement

Schema mappings designed for realistic database schemas can be complex and difficult to understand,
since the formal specifications of such mappings include intricate rules for migrating data between
schemas. This problem, in effect, hinders the understanding of the data exchange semantics. Never-
theless, data examples can facilitate the comprehension of schema mappings, and one particular type of
data example, known as universal example, stands out in illustrating schema mapping behavior. The
semantic description of a schema mapping can be infinite in terms of data examples, that is, the schema
mapping can be semantically identified with an infinite set of data examples. However, at the same
time the semantic description of the schema mapping can be finite in terms of universal examples. In
fact, there are a number of schema mapping classes that can be semantically identified with finite sets
of universal examples.

In this work the construction of universal examples for schema mappings that have a finite semantic
description in terms of universal examples is examined. Such universal examples illustrate and clarify the
schema mappings. The construction of universal examples is cast as two separate, yet similar, problems.
First, given a schema mapping, the construction of synthetic universal examples with artificial data is
investigated. Second, given a schema mapping and a source instance, the construction of real universal
examples with data originating from the source instance is examined. The schema mapping classes
considered are LAV, strict LAV, n-modular, and self-join-free on the source, which are known to have
finite semantic descriptions in terms of universal examples.

1

Contributions

This work introduces two generators of synthetic and real universal examples, respectively, for several
classes of schema mappings. The first generator supports LAV, strict LAV, n-modular, and self-join-free
on the source schema mappings, whereas the second generator supports LAV and strict LAV schema
mappings. Often the space of universal examples that illustrate a schema mapping is large, and a main
concern in development of these generators has been the reduction of this space and selection of only
representative universal examples. Along the way, we have established a result with respect to the
number of universal examples needed to illustrate LAV schema mappings. Furthermore, a prototype
implementation of these generators has been built.

Thesis outline

The second chapter gives background information on the problem investigated here by formally intro-
ducing concepts used in subsequent chapters and by reporting on the related work done with respect to
schema mapping illustration using universal examples.

The third chapter examines the problem of constructing illustrative but synthetic universal examples
for several schema mapping classes such as LAV, strict LAV, n-modular, and self-join-free on the source.
The universal examples are synthetic in the sense that they are constructed using artificial data.

The fourth chapter introduces two approaches to tackle the problem of constructing real universal
examples for LAV and strict LAV schema mappings. First, an eager approach attempts to generate all
universal examples that illustrate a given schema mapping in one go. Second, a lazy approach constructs
one universal example at a time as the need for it arises. In both approaches the universal examples are
generated with data retrieved from a given source database as opposed to the construction of synthetic
universal examples.

The fifth chapter discusses a prototype implementation of the approaches to generate synthetic and
real universal examples. The prototype implementation has been used to investigate a number of case
studies that are also reported in this chapter.

The sixth chapter concludes the thesis by summarizing the contributions and giving directions for
future work.

Acknowledgements

First and foremost, I would like to express my gratitude to Dr. Fletcher for his invaluable and continuous
guidance throughout the course of this work. I also wish to thank Dr. Mandreoli from University of
Modena and Reggio Emilia for her useful comments on an early draft of this thesis. Last but not least,
I would like to thank Dr. Luttik and Dr. Pechenizkiy for reviewing the thesis.

2

Chapter 2

Background

2.1 Preliminaries

In this section some preliminary notions are given. First, basic concepts of database theory such as
schema and instance are defined. Second, standard constraints used in data exchange known as source-
to-target tuple generating dependencies are defined, and two types of such constraints are described,
namely LAV and strict LAV. Third, the data exchange problem is defined along with its key notions of
schema mapping and solution. Schema mappings consist of the standard constraints mentioned earlier,
and solutions are revealed to have a particular type called universal solution. Furthermore, the concept
of data example is defined along with its specific type known as universal example. Lastly, in addition to
LAV and strict LAV, two other types of constraints are described, namely n-modular and self-join-free
on the source.

The following definitions are given in the context of the relational model. Unless stated otherwise,
these definitions are from [2].

2.1.1 Schemas and instances

Relation A relation is a finite set of n-tuples, each of which represents a relationship between n
values [8].

Schema A schema R is a finite sequence (R1, ..., Rk) of relation symbols, each of a fixed arity.

Instance An instance I over R is a sequence (R1, ..., Rk), where each Ri is a relation, for 1 ≤ i ≤ k.
Ri denotes both the relation symbol and the relation that interprets the symbol. The active domain of
an instance I, denoted by adom(I), is the set of all values occurring in I.

Fact A fact of an instance I over R is an expression P (v1, ..., vn), where P is a relation symbol in R
and v1, ..., vn are values such that tuple (v1, ..., vn) belongs to relation P .

2.1.2 Source-to-target tuple generating dependencies

Atom An atom over R is an expression P (x1, ..., xn), where P is a relation symbol in R and x1, ..., xn
are variables, not necessarily distinct.

S-t tgd A s-t tgd (source-to-target tuple generating dependency) or GLAV (global-and-local-as-view)
constraint is a first-order sentence of the form

∀x(ϕ(x)→ ∃yψ(x,y)),

where x and y are tuples of variables, ϕ(x) is a conjunction of atoms over a source schema S such that
each variable in x occurs in at least one atom in ϕ(x), and ψ(x,y) is a conjunction of atoms over a target
schema T with variables in x and y. For notational simplicity, the universal quantifiers in front of the
s-t tgds will be dropped in the rest of this thesis.

3

LAV s-t tgd A LAV (local-as-view) s-t tgd is a first-order sentence in which the left-hand side is a
single atom, i.e. it is of the form

Q(x)→ ∃yψ(x,y),

where Q(x) is an atom over a source schema S.

Strict LAV s-t tgd A LAV s-t tgd Q(x)→ ∃yψ(x,y) is strict if the atom Q(x) contains no repeated
variables.

2.1.3 Data exchange and data examples

Schema mapping A schema mapping is a triple M = (S,T,Σ) consisting of a source schema S, a
target schema T, and a set Σ of s-t tgds. Such a schema mapping may also be referred to as a GLAV
schema mapping. If Σ is a finite set of LAV s-t tgds, then M may be referred to as a LAV schema
mapping. Similarly, if Σ is a finite set of strict LAV s-t tgds, thenM may be referred to as a strict LAV
schema mapping.

Solution Let M = (S,T,Σ) be a schema mapping. If I is a source instance, then a solution for I
with respect to (w.r.t.) M is a target instance J such that pair (I, J) satisfies every s-t tgd in Σ. This
satisfiability is denoted by (I, J) |= Σ.

Data exchange Given a finite source instance I and a schema mapping M = (S,T,Σ), the data
exchange problem is to find a target instance J such that (I, J) |= Σ. Originally, the data exchange
problem was defined for schema mappings specified by both source-to-target and target dependencies [3].
The former ones can be expressed by tuple generating dependencies (tgds), while the latter ones can be
conveyed by tgds as well as by equality generating dependencies (egds). In the context of this work, the
data exchange problem considers only schema mappings specified by source-to-target tuple generating
dependencies (s-t tgds).

Homomorphism Let J and J ′ be two instances over target schema T. Furthermore, let Const be a
fixed infinite set of constants, and let Var be a fixed infinite set of nulls such that Const ∩ Var = ∅. A
function h from Const ∪ Var to Const ∪ Var is a homomorphism from J to J ′ if for every c ∈ Const,
there is h(c) = c, and for every relation symbol R in T and every tuple (a1, ..., an) ∈ RJ , there is
(h(a1), ..., h(an)) ∈ RJ′

. RJ denotes a relation of instance J , whereas RJ
′

denotes a relation of instance
J ′. A homomorphism from J to J ′ is denoted by J → J ′.

Universal solution Given a schema mapping M = (S,T,Σ) and a source instance I, a universal
solution for I w.r.t. M is a solution J for I w.r.t. M such that for every solution J ′ for I w.r.t. M,
there is a homomorphism from J to J ′.

Chase procedure If M is a schema mapping specified by s-t tgds, then the chase procedure can be
used to produce, given a source instance I, a universal solution J for I [6].

Data example A data example is a pair (I, J) consisting of a source instance I and a target instance
J . A positive example for M = (S,T,Σ) is a data example (I, J) such that (I, J) |= Σ. A negative
example for M = (S,T,Σ) is a data example (I, J) such that (I, J) 6|= Σ.

Universal example Let M = (S,T,Σ) be a schema mapping in which Σ is a finite set of s-t tgds. A
data example (I, J) is a universal example for M if J is a universal solution for I w.r.t. M.

2.1.4 Additional source-to-target tuple generating dependencies

n-modular s-t tgd A s-t tgd σ is n-modular if for every data example (I, J) such that (I, J) 6|= σ, there
is a subinstance I ′ ⊆ I such that |adom(I ′)| ≤ n and (I ′, J) 6|= σ. A schema mapping M = (S,T,Σ) in
which Σ is a finite set of n-modular s-t tgds may be referred to as a n-modular schema mapping, where
n is the maximum number of variables occurring on the left-hand side of the s-t tgds in Σ.

4

S-t tgd that is self-join-free on the source A s-t tgd ϕ(x) → ∃yψ(x,y) is self-join-free on the
source if none of the relation symbols in ϕ(x) is repeated. A schema mapping M = (S,T,Σ) in which
Σ is a finite set of s-t tgds that are self-join-free on the source may be referred to as a self-join-free on
the source schema mapping.

2.2 Related work

Alexe et al. investigated in [2] the problem of explaining and understanding schema mappings through
data examples by examining classes of GLAV schema mappings that can be uniquely characterized by
finite sets of data examples.

A finite set U of universal examples uniquely characterizes schema mapping M = (S,T,Σ) w.r.t. a
class C of s-t tgds if for every finite set Σ′ ⊆ C such that U is a set of universal examples for schema
mapping M′ = (S,T,Σ′), it is the case that Σ is logically equivalent to Σ′, denoted by Σ ≡ Σ′.
Informally, a finite set of data examples uniquely characterizes a schema mapping if there is, up to
logical equivalence, only one schema mapping that is satisfied by the data examples in the finite set.

Several types of data examples were studied in terms of their goodness to illustrate schema mapping
semantics. Among positive, negative, and universal examples, it was established that universal examples
are more suitable for unique characterization of schema mappings. Positive examples were considered
along with negative examples, since a GLAV schema mapping can be semantically identified with an
infinite set of positive examples. It was shown that positive and negative examples can only uniquely
characterize schema mappings whose source and target schemas contain relation symbols with at most
one attribute. In fact, a LAV schema mapping whose source and target schemas contain a relation
symbol with two attributes cannot be uniquely characterized by any finite set of positive and negative
examples. However, such a LAV schema mapping can be uniquely characterized by a finite set of universal
examples. Furthermore, in a universal example the target instance is a universal solution for the source
instance w.r.t. the schema mapping, and the universal solution generalizes the entire space of solutions
for the source instance. In addition, it was established that a uniquely characterizing set of universal
examples for a GLAV schema mapping is an Armstrong basis1, which is a relaxation of the notion of
Armstrong database2. GLAV schema mappings rarely have an Armstrong database. As a matter of fact,
a LAV schema mapping was shown to have an Armstrong basis, but not an Armstrong database. In
other words, the LAV schema mapping can only be uniquely characterized by more than one universal
example. Nevertheless, there is a finite number of them. For all these reasons, universal examples were
asserted to be more appropriate for unique characterization of schema mappings.

Not all GLAV schema mappings can be uniquely characterized by finite sets of universal examples.
For the purpose of this work, the following results from [2] are relevant.

Theorem 5.1 If M = (S,T,Σ) is a schema mapping specified by a finite set of LAV s-t tgds, then
there is a finite set U of universal examples forM such that U uniquely characterizesM w.r.t. the class
of all LAV s-t tgds.

As an example, consider LAV schema mapping M = (S,T,Σ), where S = {P}, T = {Q}, and Σ
consists of the single s-t tgd P (x, y) → Q(x). M is uniquely characterized w.r.t. the class of all LAV
s-t tgds by the finite set of universal examples U = {(I1, J1), (I2, J2)}, where source instances I1 and I2
along with target instances J1 and J2 are as follows:

I1 = {P (a, a)}
I2 = {P (a, b)}

J1 = {Q(a)}
J2 = {Q(a)}

Proposition 5.7 IfM = (S,T,Σ) is a schema mapping specified by a finite set of strict LAV s-t tgds,
then there is a finite set U of universal examples forM such that U uniquely characterizesM w.r.t. the
class of all strict LAV s-t tgds.

1Let Σ and C be two sets of s-t tgds. An Armstrong basis for Σ w.r.t. C is a finite set U = {(I1, J1), ..., (In, Jn)} such
that (Ii, Ji) satisfies all the dependencies in C that are logically implied by Σ, and no other dependencies in C, for 1 ≤ i ≤ n.
An Armstrong basis for M = (S,T,Σ) w.r.t. C is an Armstrong basis for Σ w.r.t. C.

2Let Σ and C be two sets of s-t tgds. An Armstrong database for Σ w.r.t. C is a data example (I, J) such that (I, J)
satisfies all the dependencies in C that are logically implied by Σ, and no other dependencies in C. An Armstrong database
for M = (S,T,Σ) w.r.t. C is an Armstrong database for Σ w.r.t. C.

5

Referring back to the previous example,M is uniquely characterized w.r.t. the class of all strict LAV
s-t tgds by the finite set of universal examples U = {(I, J)}, where I = {P (a, b)} and J = {Q(a)}.

Theorem 5.9 Let n be a positive integer and let M = (S,T,Σ) be a schema mapping, where Σ is a
finite set of s-t tgds. If M is n-modular, then there is a finite set U of universal examples such that U
uniquely characterizes M w.r.t. the class of all m-modular s-t tgds, where m ≥ n.

Corollary 5.11 Let M = (S,T,Σ) be a schema mapping where Σ is a finite set of s-t tgds that
are self-join-free on the source. Then there is a finite set U of universal example such that U uniquely
characterizes M w.r.t. the class of all s-t tgds that are self-join-free on the source.

n-modular

self-join-free
on the source

LAV

strict
LAV

Figure 2.1: Classes of s-t tgds.

Figure 2.1 shows relatedness of the classes of s-t tgds considered here, which are not mutually exclu-
sive.

In addition, the following schema mapping classes were shown to be uniquely characterizable by a
finite set of universal examples w.r.t. a specific class of s-t tgds: (i) GAV schema mappings specified
by the binary copy s-t tgd w.r.t. the class of GAV s-t tgds; (ii) GAV c-acyclic schema mappings w.r.t.
the class of GAV s-t tgds; (iii) GAV schema mappings, where every s-t tgd has the property that all its
variables are exported to its right-hand side, w.r.t. the class of GAV s-t tgds; and (iv) schema mappings
specified by the s-t tgd E(x, y) → QH , where E is the only relation symbol of the source schema and
QH is a Boolean conjunctive query associated with an arbitrary instance over the target schema, w.r.t.
the class of all s-t tgds. Moreover, it was asserted that for a c-acyclic schema mapping the uniquely
characterizing set of universal examples can be effectively computed. The interested reader is referred
to [2].

6

Chapter 3

Synthetic universal example
generation

This chapter examines the problem of constructing synthetic universal examples for schema mappings
belonging to one of the following classes: LAV, strict LAV, and n-modular, where the last-mentioned
class also includes self-join-free on the source schema mappings. Since the expected input for this problem
is only a schema mapping and no source instance, the universal examples are synthetic in the sense that
they are constructed using artificial data as opposed to being created using data retrieved from a real
source instance.

3.1 LAV schema mappings

In the proof of Theorem 5.1 from [2] were outlined some steps on constructing a finite set U of universal
examples that uniquely characterize a LAV schema mapping M = (S,T,Σ) w.r.t. the class of all LAV
s-t tgds. Initially, a set D of distinct elements is defined, where |D| is the maximum k among the
arities r1, ..., rs of all relations R1, ..., Rs in source schema S. For each relation Ri, where 1 ≤ i ≤ s,
and for each possible tuple dj of ri elements from D, where 1 ≤ j ≤ kri , a universal example (I, J) is
constructed, where source instance I consists of the single tuple dj and target instance J consists of the
result of chasing I usingM. Finally, each such universal example1 is included in the set U that uniquely
characterizes the LAV schema mapping M w.r.t. the class of all LAV s-t tgds. By following this crude
approach, the number of resulting universal examples is |U| = kr1 + ...+ krs .

Many of these universal examples are, however, redundant because their source instances are iso-
morphic. Since each source instance holds a single tuple, isomorphism between such source instances
amounts to isomorphism between tuples.

Example 1. Consider the LAV schema mapping M = (S,T,Σ), where S = {R}, T = {P,Q}, and Σ
consists of the s-t tgd R(x1, x2, x3)→ P (x1, x2) ∧Q(x2, x3).

Following the steps given above on constructing a finite set U of universal examples, there are 33 pos-
sible tuples of 3 elements from D = {a, b, c}, which result in a number of 33 potential universal examples.
Consider tuples (a, a, a), (b, b, b), and (c, c, c), which lead to construction of universal examples (I, J),
(I ′, J ′) and (I ′′, J ′′), respectively. Only one of these universal examples is enough to illustrate this par-
ticular mapping behavior, while the rest of them are redundant. This redundancy can be observed even
before constructing target instances in that it is exposed by isomorphic source instances and inherently
by isomorphic tuples.

I = {R(a, a, a)}
I ′ = {R(b, b, b)}
I ′′ = {R(c, c, c)}

J = {P (a, a), Q(a, a)}
J ′ = {P (b, b), Q(b, b)}
J ′′ = {P (c, c), Q(c, c)}

1If source instance I of universal example (I, J) consists of a single tuple, then (I, J) is a single-tuple-source example
or sts example [2].

7

In what follows, an algorithm is given, which generates no more than the necessary and sufficient
universal examples to illustrate a LAV schema mapping. Out of finitely many universal examples that
characterize the schema mapping, the algorithm yields a reduced number of them based on results
concerning isomorphism between tuples.

Algorithm 1 basically follows the steps given above on constructing universal examples for a LAV
schema mapping M = (S,T,Σ). The algorithm relies on a function NonIsomorphicTuples that gener-
ates tuples in the size of arity r consisting of possibly repeated elements from set D (lines 16 to 38).
However, instead of generating all possible r-tuples (or so-called permutations with repetitions), the
aforementioned function efficiently generates only nonisomorphic r-tuples that are sufficient to construct
only the necessary universal examples. Initially, a tuple d consisting of only one element from set D
is constructed (line 17). For this tuple, cd indicates the number of distinct tuple elements (line 18).
In subsequent steps, a new tuple d′ is constructed by appending the previous tuple d to one element
dj from set D (line 25). For this new tuple, the number cd′ of distinct tuple elements is based on the
number cd of distinct elements of the appended tuple d. Essentially, if d already contained element dj ,
then cd′ is the same as cd (line 27). Otherwise, cd′ is cd incremented by one (line 29).

It should be noted that function MaxArity returns the maximum among the arities of all relations in
the source schema S (line 2), whereas function Arity returns the arity of relation R (line 6).

Algorithm 1 generates only the necessary universal examples based on several results that are intro-
duced in what follows. These results have been uncovered by studying isomorphism between tuples.

3.1.1 The number of universal examples needed to illustrate LAV s-t tgds

In [2] was revealed that the number of universal examples that uniquely characterize a LAV schema
mapping w.r.t. the class of all LAV s-t tgds is generally exponential in the size of the schema mapping.
The number of variables occurring on the left-hand side of a s-t tgd that specifies a LAV schema mapping
directly impacts the number of universal examples that characterize the schema mapping. In this section
a precise indication of the number of universal examples needed to illustrate a LAV s-t tgd is given.

Consider a LAV schema mapping M = (S,T,Σ) specified by the LAV s-t tgd Q(x) → ∃yψ(x,y),
where x = (x1, x2, ..., xn) and x1, x2, ..., xn are not necessarily distinct.

Taking into account that D = {d1, d2, ..., dn}, relation Q can have nn possible tuples of n ele-
ments from D, although many of them are isomorphic. These tuples can be arranged into groups
such that any two tuples in the same group are isomorphic. Across all tuples in a group, the num-
ber of distinct elements is the same, although elements may differ from one tuple to another inside
the same group. For instance, the group of tuples with one distinct element, denoted by G1, includes
(d1, d1, ..., d1), (d2, d2, ..., d2), ..., (dn, dn, ..., dn), and the group of tuples with n distinct elements, denoted
by Gn, includes a tuple for each permutation of set D. Groups G1 and Gn are the most trivial ones and
represent the extremes enclosing the rest of the groups. The number of tuples in a group Gm is given by

|Gm| = n!

(n−m)!
, (3.1)

where 1 ≤ m ≤ n.
It should be noted that the number of groups G1, ...,Gn is not equal to n. Although only one group G1

can exist, there are more than one group G2. Likewise, although only one group Gn can exist, there are
more than one group Gn−1. Furthermore, any two tuples t1 ∈ Gm1 and t2 ∈ Gm2 are not isomorphic, even
if groups Gm1 and Gm2 share the same number m of distinct elements across their tuples. The number of
groups sharing the same number m of distinct elements across their tuples is given by

S(n,m) =
1

m!

m∑
k=0

(−1)m−k
m!

k!(m− k)!
kn, (3.2)

where 1 ≤ m ≤ n. In combinatorics, S(n,m) is known as a Stirling number of the second kind [9].
Substituting m = 2 in equation (3.2) yields S(n, 2) = 2n−1 − 1, which was used in the proof of

Theorem 5.5 from [2] to show an exponential lower bound on the number of tuples across all instances
in a uniquely characterizing set U of universal examples. Since there are 2n−1 − 1 groups of tuples with
two distinct constants and any two tuples in the same group are isomorphic, it suffices to arbitrarily
choose one tuple from each group and therefore to have 2n−1− 1 nonisomorphic tuples with two distinct

8

Algorithm 1 Synthetic universal example generation for LAV schema mappings.

1: function LavUniversalExamples(M = (S,T,Σ))
2: k ←MaxArity(S)
3: D ← {d1, ..., dk}
4: U ← ∅
5: for all R ∈ S do
6: r ← Arity(R)
7: T ← NonIsomorphicTuples(D, r)
8: for all d ∈ T do
9: I ← {R(d)}

10: J ← Chase(I,M)
11: U ← U ∪ {(I, J)}
12: end for
13: end for
14: return U
15: end function

16: function NonIsomorphicTuples(D = {d1, ..., dk}, r)
17: d← (d1)
18: cd ← 1
19: T ← {d}
20: i← 1
21: while i < r do
22: T ′ ← ∅
23: for all d ∈ T,d = (e1, ..., ei) do
24: for j ← 1, cd + 1 do
25: d′ ← (dj , e1, ..., ei)
26: if j ≤ cd then
27: cd′ ← cd
28: else
29: cd′ ← cd + 1
30: end if
31: T ′ ← T ′ ∪ {d′}
32: end for
33: end for
34: i← i+ 1
35: T ← T ′

36: end while
37: return T
38: end function

9

constants. Doubling this number of nonisomorphic tuples yields 2n− 2, which is exactly the exponential
lower bound and is consistent with the assumption that target instances have at least as many tuples as
source instances.

Since only one tuple is chosen from each group to construct a source instance, the number of groups
is an indication of the number of universal examples needed to illustrate the LAV s-t tgd. The number
of groups and therefore the number of universal examples is given by

|U| =
n∑

m=1

S(n,m), (3.3)

which is a sum of Stirling numbers of the second kind known in combinatorics as a Bell number [9]. Here
|U| denotes the number of universal examples needed to illustrate a single LAV s-t tgd.

Table 3.1 shows S(n,m), for 1 ≤ n ≤ 7 and for 1 ≤ m ≤ n. Each table row corresponds to a LAV
s-t tgd of the form Q(x) → ∃yψ(x,y) with n variables on the left-hand side. For instance, the s-t tgd
with three variables on the left-hand side has one group of tuples with one distinct element (as indicated
by S(3, 1)), three groups of tuples with two distinct elements (as indicated by S(3, 2)), and one group
of tuples with three distinct elements (as indicated by S(3, 3)). Such a s-t tgd is further discussed in
Example 2. It can be seen throughout the table that both S(n, 1) and S(n, n) (on the main diagonal)
are equal to 1 regardless of n. Furthermore, table column S(n, 2) relates to the exponential lower bound
uncovered in [2] on the number of tuples across all instances in a uniquely characterizing set U of universal
examples.

n |U| S(n, 1) S(n, 2) S(n, 3) S(n, 4) S(n, 5) S(n, 6) S(n, 7)
1 1 1
2 2 1 1
3 5 1 3 1
4 15 1 7 6 1
5 52 1 15 25 10 1
6 203 1 31 90 65 15 1
7 877 1 63 301 350 140 21 1

Table 3.1: The triangle of Stirling numbers of the second kind.

The general LAV s-t tgd Q(x) → ∃yψ(x,y) considered so far includes two specific cases. First, the
LAV s-t tgd can have exactly one repeated variable on the left-hand side such that x = (x, x, ..., x). Such
a s-t tgd is further discussed in Example 3. Second, the LAV s-t tgd can have no repeated variables
on the left-hand side and therefore can be strict. Group G1 discussed earlier in this section relates to
the first case, whereas group Gn relates to the second case. Furthermore, in Table 3.1, column S(n, 1)
is representative for the first case, while the main diagonal is representative for the second case. These
two specific cases of LAV s-t tgds do not conform to the lower exponential bound uncovered in [2] on
the number of tuples across all instances in a uniquely characterizing set U of universal examples.

Example 2. Consider the LAV schema mapping M = (S,T,Σ), where S = {R}, T = {P}, and Σ
consists of the single ternary copy s-t tgd R(x1, x2, x3) → P (x1, x2, x3). This example shows how the
space of finitely many universal examples that characterizeM can be reduced by considering isomorphism
between tuples.

Following the steps given in Section 3.1 on constructing a finite set U of universal examples, there are
33 possible tuples of 3 elements from D = {a, b, c}, and each one of them represents a potential universal
example. These tuples are grouped as follows:

G1 G21 G22 G23 G3
(a, a, a) (b, a, a) (a, b, a) (b, b, a) (c, b, a)
(b, b, b) (c, a, a) (a, c, a) (c, c, a) (b, c, a)
(c, c, c) (a, b, b) (b, a, b) (a, a, b) (c, a, b)

(c, b, b) (b, c, b) (c, c, b) (a, c, b)
(a, c, c) (c, a, c) (a, a, c) (b, a, c)
(b, c, c) (c, b, c) (b, b, c) (a, b, c)

10

Group G1 consists of tuples with exactly one element from D, whereas group G3 consists of tuples
with all elements from D. The remaining groups consist of tuples with exactly two distinct elements
from D, one of which is repeated. In group G21 an element is repeated on the last two positions of each
tuple. In group G22 an element is repeated on the first and last positions of each tuple. Finally, in group
G23 an element is repeated on the first two positions of each tuple. Any two tuples in the same group are
in fact isomorphic. The space of tuples to consider for universal example construction can be reduced
to nonisomorphic tuples and therefore only one arbitrary tuple from each group can be considered for
universal example construction.

Taking into account only the first tuple of each group, the following source instances Ii can be
obtained, where 1 ≤ i ≤ 5. Furthermore, chasing each Ii results in a corresponding target instance Ji.

I1 = {R(a, a, a)}
I2 = {R(b, a, a)}
I3 = {R(a, b, a)}
I4 = {R(b, b, a)}
I5 = {R(c, b, a)}

J1 = {P (a, a, a)}
J2 = {P (b, a, a)}
J3 = {P (a, b, a)}
J4 = {P (b, b, a)}
J5 = {P (c, b, a)}

Finally, the finite set of universal examples is U = {(Ii, Ji)|1 ≤ i ≤ 5}.

Example 3. Consider a LAV schema mapping M = (S,T,Σ), where S = {R}, T = {P}, and Σ
consists of the single ternary copy s-t tgd R(x, x, x)→ P (x, x, x) with exactly one repeated variable on
the left-hand side.

Following the steps given in Section 3.1 on constructing a finite set U of universal examples, there
are 33 possible tuples of 3 elements from D = {a, b, c}. However, only 3 tuples consist of exactly one
repeated element, namely (a, a, a), (b, b, b), and (c, c, c). Since these tuples are isomorphic, any one of
them is sufficient to construct a single universal example. Taking into account the first tuple, the set
that uniquely characterizesM w.r.t. the class of all LAV s-t tgds is U = {(I, J)}, where I = {R(a, a, a)}
and J = {P (a, a, a)}.

It should be noted that the algorithm given in Section 3.1 yields four additional universal examples
whose target instance is empty. These universal examples reveal no more than disallowed mapping
behavior.

I2 = {R(b, a, a)}
I3 = {R(a, b, a)}
I4 = {R(b, b, a)}
I5 = {R(c, b, a)}

J2 = ∅
J3 = ∅
J4 = ∅
J5 = ∅

3.2 Strict LAV schema mappings

Algorithm 2 is a stripped-down version of Algorithm 1 tailored to construct universal examples for a
schema mapping M = (S,T,Σ) specified by strict LAV s-t tgds. The algorithm basically constructs a
single universal example (I, J) for every relation symbol R ∈ S such that source instance I holds a single
r-tuple d consisting of distinct elements d1, ..., dr. This approach is consistent with the assertion made
in [2] that the number of universal examples that uniquely characterize M is precisely the number of
relation symbols in S.

3.3 n-modular schema mappings

In the proof of Theorem 5.9 from [2] were outlined some steps on constructing a set U of universal
examples that uniquely characterizes a n-modular schema mapping M = (S,T,Σ) w.r.t. the class of
n-modular s-t tgds, where n is the maximum number of variables occurring on the left-hand side of the
s-t tgds in Σ, as stated in the proof of Proposition 2.7 from [10]. These steps also apply to self-join-free
on the source schema mappings.

Initially, a set D of distinct elements is defined, where |D| = n. Next, a set of all possible source
instances having tuples of elements from D is constructed, where the cardinality of this set is k. For each

11

Algorithm 2 Synthetic universal example generation for strict LAV schema mappings.

1: function StrictLavUniversalExamples(M = (S,T,Σ))
2: U ← ∅
3: for all R ∈ S do
4: r ← Arity(R)
5: d← (d1, ..., dr)
6: I ← {R(d)}
7: J ← Chase(I,M)
8: U ← U ∪ {(I, J)}
9: end for

10: return U
11: end function

source instance I, a universal example (I, J) is constructed by chasing I using M. Finally, each such
universal example is included in the set U that uniquely characterizes the n-modular schema mapping
M w.r.t. the class of n-modular s-t tgds, where |U| = k.

Algorithm 3 follows the steps given above on constructing universal examples for a n-modular schema
mapping M = (S,T,Σ). For each s-t tgd σ of the form ϕ(x) → ∃yψ(x,y), the algorithm constructs
universal examples in two steps. First, for each atom R(x) of ϕ(x), a power set P(T)R(x) without the
empty set is created (lines 7 to 13). Second, based on each power set P(T)R(x), a number of k source
instances are constructed and chased (lines 15 to 26).

Function MaxLeftVariableCount returns the maximum among the number of variables occurring on
the left-hand side of the s-t tgds in Σ (line 2).

Function Permute generates so-called permutations with repetitions, which are essentially all possible
tuples in the size of arity r consisting of possibly repeated elements from set D (line 9). This function
returns set T of tuples whose cardinality is given by |T | = |D|r. Given set T , a power set P(T)R(x)

corresponding to atom R(x) of ϕ(x) is created (line 10). This power set lacks the empty set, and the
power set cardinality is given by |P(T)R(x)| = 2|T | − 1.

As an example, consider set D = {a, b} and atom E(x, y), which can have a set of tuples

T = {(a, a), (b, b), (a, b), (b, a)}

and a corresponding power set

P(T)E(x,y) =
{
{(a, a)}, (3.4)

{(b, b)},
{(a, b)},
{(b, a)},
{(a, a), (b, b)},
{(a, a), (a, b)},
{(a, a), (b, a)},
{(b, b), (a, b)},
{(b, b), (b, a)},
{(a, b), (b, a)},
{(a, a), (b, b), (a, b)},
{(a, a), (b, b), (b, a)},
{(a, a), (a, b), (b, a)},
{(b, b), (a, b), (b, a)},
{(a, a), (b, b), (a, b), (b, a)}

}
.

For reasons that will become clear later, for each atom R(x) of ϕ(x), a zero-based index iR(x) used
for accessing a subset of power set P(T)R(x) is initialized (line 11). Moreover, a product k between the
cardinalities corresponding to each power set P(T)R(x) is computed (line 12).

12

Product k is used to control a while loop that constructs a universal example (I, J) at each iteration
(lines 15 to 26). In other words, k is the number of universal examples corresponding to s-t tgd σ. Source
instance I of universal example (I, J) is a union of subsets from each power set P(T)R(x). For this union,
one subset of each power set P(T)R(x) is considered.

As an example, consider the 2-modular s-t tgd E(x, y)∧G(y, x)→ F (x, y), which is also self-join-free
on the source. Since relation symbols E and G have the same arity, atoms E(x, y) and G(y, x) can share
the power set given by equation (3.4) and therefore P(T)E(x,y) = P(T)G(y,x). In this example, a source
instance I is a union of a subset from P(T)E(x,y) and a subset from P(T)G(y,x). Moreover, multiple
source instances can be constructed in this way. Figure 3.1 shows construction of source instances as
a complete bipartite graph, where the two disjoint sets of vertices correspond to power sets P(T)E(x,y)

and P(T)G(y,x), and each edge between a subset of one power set and a subset of the other power set
represents a source instance consisting of the union of the two subsets.

{(a, a)}

{(b, b)}

...

{(b, b), (a, b), (b, a)}

{(a, a), (b, b), (a, b), (b, a)}

{(a, a)}

{(b, b)}

...

{(b, b), (a, b), (b, a)}

{(a, a), (b, b), (a, b), (b, a)}

P(T)E(x,y) P(T)G(y,x)

Figure 3.1: Construction of source instances for s-t tgd E(x, y) ∧G(y, x)→ F (x, y).

The number of possible source instances and therefore the number of possible universal examples is
the product k between the cardinality of P(T)E(x,y) and the cardinality of P(T)G(y,x).

k = |P(T)E(x,y)| · |P(T)G(y,x)|

Although product k controls the number of source instances to be constructed, an additional way is
required to control which subset of each power set is considered for construction of a source instance I.
This is where index iR(x) comes into play. At each while iteration, index iR(x) of each atom R(x) of ϕ(x)
points to a subset of power set P(T)R(x) (line 18).

Each index iR(x) can be seen as a digit of a number representation in a mixed-radix system2, where
0 ≤ iR(x) < |P(T)R(x)|. In other words, the mixed-radix number has as many digits as the number of
atoms in ϕ(x). Furthermore, each digit of the mixed-radix number has a corresponding base equal to
|P(T)R(x)|.

The mixed-radix number shadows variable i used by the while loop. Both the mixed-radix number
and variable i are initialized before the while loop and subsequently are repeatedly incremented inside the
while loop. In fact, each digit of the mixed-radix number is initialized in the for loop preceding the while
loop (line 11) and subsequently is incremented by procedure Increment (lines 30 to 39). Whenever a
digit of the mixed-radix number reaches its upper bound, a carry operation is performed by reinitializing
the digit and incrementing the next more significant digit3.

2Using positional notation, a four-digit positive integer can be represented as (a3a2a1a0)b = a3b3 + a2b2 + a1b1 + a0,
where ai is a digit, 0 ≤ i ≤ 3, and b is a base or radix. Using a mixed-radix system, a four-digit positive integer can be

represented as

[
a3, a2, a1, a0
b3, b2, b1, b0

]
= a3b2b1b0 + a2b1b0 + a1b0 + a0, where ai is a digit, bi is a base, and 0 ≤ i ≤ 3. While in

positional notation each digit has the same base, in a mixed-radix system each digit has its own base [5].
3Considering a four-digit positive integer a3a2a1a0, the most significant digit is a3, whereas the least significant digit

is a0 [5].

13

Algorithm 3 Synthetic universal example generation for n-modular schema mappings.

1: function nModularUniversalExamples(M = (S,T,Σ))
2: n←MaxLeftVariableCount(Σ)
3: D ← {d1, ..., dn}
4: U ← ∅
5: for all σ ∈ Σ do
6: k ← 1
7: for all R(x) ∈ ϕ(x) do
8: r ← Arity(R)
9: T ← Permute(D, r)

10: P(T)R(x) ← PowerSet(T)
11: iR(x) ← 0
12: k ← k ∗ |P(T)R(x)|
13: end for
14: i← 0
15: while i < k do
16: I ← ∅
17: for all R(x) ∈ ϕ(x) do
18: for all d ∈ Subset(P(T)R(x), iR(x)) do
19: I ← I ∪ {R(d)}
20: end for
21: end for
22: J ← Chase(I,M)
23: U ← U ∪ {(I, J)}
24: Increment(ϕ(x))
25: i← i+ 1
26: end while
27: end for
28: return U
29: end function

30: procedure Increment(ϕ(x))
31: for all R(x) ∈ ϕ(x) do
32: if iR(x) < |P(T)R(x)| − 1 then
33: iR(x) ← iR(x) + 1
34: break
35: else
36: iR(x) ← 0
37: end if
38: end for
39: end procedure

14

3.3.1 Reductions on the number of universal examples

Algorithm 3 exhaustively constructs and chases all possible source instances in order to yield universal
examples. In fact, the number of universal examples that illustrate a single n-modular s-t tgd is given
by

|U| =
∏

R(x)∈ϕ(x)

|P(T)R(x)|.

In what follows, some reductions of the space of source instances are explored. Consider the previous
example consisting of the 2-modular s-t tgd E(x, y) ∧ G(y, x) → F (x, y), which is also self-join-free on
the source. Recall that in Figure 3.1 construction of source instances is shown as a complete bipartite
graph, where each edge between subsets of distinct power sets indicates a possible source instance. These
subsets vary in the number of tuples they contain, but for the purpose of this discussion, the focus will
be on subsets consisting of a single tuple. Figure 3.2 shows the portion of the complete bipartite graph
which covers subsets with one tuple.

A first reduction arises from the fact that among the source instances constructed from these subsets
there are some instances which yield empty target instances when being chased because of unsatisfied
join conditions (e.g. I = {E(a, a), G(a, b)}). Such source instances do not contribute to construction of
informative universal examples and therefore can be discarded. Such universal examples would reveal at
most behavior disallowed by the schema mapping.

A second reduction is based on the observation that some source instances are isomorphic to other
source instances and consequently are redundant (e.g. I ′ = {E(a, b), G(b, a)} is isomorphic to I ′′ =
{E(b, a), G(a, b)}). Such source instances lead to construction of unnecessary universal examples and
consequently can be discarded.

These two reductions are applicable to the entire complete bipartite graph and not only to a portion
of it. Some results concerning these reductions are discussed in Section 5.2.2.

{(a, a)}

{(b, b)}

{(a, b)}

{(b, a)}

...

{(a, a)}

{(b, b)}

{(a, b)}

{(b, a)}

...

P(T)E(x,y) P(T)G(y,x)

Figure 3.2: Portion of the complete bipartite graph from Figure 3.1.

15

Chapter 4

Real universal example generation

In this chapter the problem of constructing real universal examples for LAV and strict LAV schema
mappings is examined. In addition to a schema mapping, the expected input for this problem also
includes a source instance. Universal examples are created using data retrieved from this source instance
as opposed to the approach of synthetically constructing universal examples.

The intuition behind the construction of real universal examples is to create universal examples that
mimic their synthetic counterparts using real data. The construction of synthetic universal examples is
conducted under the assumption that relation attributes share the same domain of values. However, the
construction of real universal examples should be performed under the assumption that each relation
attribute can have its own distinct domain. A relation is in fact a subset of a Cartesian product of a
set of domains corresponding to each relation attribute, where a domain is a set of all possible attribute
values [8].

4.1 LAV schema mappings

Two approaches to construct real universal examples for LAV schema mappings have been considered.
On the one hand, an eager approach attempts to generate all universal examples in one go. On the other
hand, a lazy approach generates one universal example at a time as the need for it arises.

4.1.1 Eager approach

Given a LAV schema mapping M = (S,T,Σ) and a source instance I, the steps to construct real
universal examples in an eager fashion are as follows:

First, groups of isomorphic synthetic tuples are generated for each relation R in S. As seen before in
Section 3.1, a set D = {d1, ..., dk} of distinct elements is defined, where |D| is the maximum arity k of
all relations in S. For each R in S, where R has arity r, all possible r-tuples with elements from D are
generated. These r-tuples for R are grouped such that any two tuples in the same group are isomorphic.
Based on whether attribute domains of R are disjoint, some groups of tuples may be discarded.

Second, conjunctive queries to be executed on source instance I are generated based on the remaining
groups of tuples, for every R in S. Selecting one tuple from each remaining group results is a sequence of
nonisomorphic tuples. Moreover, depending on the number of remaining groups and the number of tuples
in each group, multiple sequences of nonisomorphic tuples can be possible. Nevertheless, this space of
sequences may be reduced by considering yet again the constraints imposed by the attribute domains of
R and the isomorphism between sequences. At the previous step some groups of tuples may have been
discarded based on attribute domains of R. In that step the unit considered for establishing whether
domain constraints are satisfied was a tuple, whereas the unit considered in this step is a sequence of
tuples. Likewise, at the previous step it was reasoned about isomorphism in terms of tuples, whereas in
this step isomorphism is considered in terms of sequences of tuples. After applying the aforementioned
reductions, each remaining sequence of every R is translated into a conjunctive query that is executed on
source instance I with the purpose of retrieving a sequence of tuples with real values, which mimics the
initial synthetic sequence. Since each R can have multiple remaining synthetic sequences, this operation

17

stops as soon as one conjunctive query for every R is successful in retrieving a sequence of tuples with
real values.

Third, universal examples (I1, J1), ..., (In, Jn) are constructed using the retrieved sequence of tuples
with real values, for every R in S. Each source instance Ii holds a single tuple from the retrieved
sequence, and each target instance Ji is the result of chasing Ii using M, where 1 ≤ i ≤ n.

Example 4. Consider the LAV schema mapping M = (S,T,Σ), where

S = {location(area : varchar(32), latitude : float, longitude : float)},
T = {coordinates(latitude : float, longitude : float)},

and Σ consists of the single s-t tgd location(a, lat, long)→ coordinates(lat, long). Furthermore, consider
source instance

I = {location(Europe, 38.13, 15.82),

location(Africa, 15.82, 15.82),

location(Africa, 15.82, 38.13)}.

Below are all possible 3-tuples with elements from D = {a, b, c} for relation location. These synthetic
tuples are grouped such that any two tuples in the same group are isomorphic.

(1) (2) (3) (4) (5)
(a, a, a) (b, a, a) (a, b, a) (b, b, a) (c, b, a)
(b, b, b) (c, a, a) (a, c, a) (c, c, a) (b, c, a)
(c, c, c) (a, b, b) (b, a, b) (a, a, b) (c, a, b)

(c, b, b) (b, c, b) (c, c, b) (a, c, b)
(a, c, c) (c, a, c) (a, a, c) (b, a, c)
(b, c, c) (c, b, c) (b, b, c) (a, b, c)

Taking into account that attribute area of relation location is associated with domain varchar(32)
and both attributes latitude and longitude are associated with domain float, it can be inferred that
tuples of groups (1), (3), and (4) do not comply with these domains.

It should be noted that in a different scenario where all attributes of relation location would be
associated with disjoint domains, only group (5) would be retained. Such a scenario would be a best
case, since the search space is reduced to only one group. Furthermore, in a scenario where all attributes
of relation location would share the same domain, all groups would be retained. Such a scenario would
be a worst case, since the search space would not undergo any reduction. Section 5.2.1 examines the
worst case for a simple LAV schema mapping.

The remaining groups (2) and (5) represent a space of multiple possibilities in terms of selecting one
tuple from each remaining group. There are 36 such possible sequences of tuples, but some of them
do not comply with the aforementioned domains (e.g. sequence (b, a, a)(c, b, a), where b cannot be both
varchar(32) and float), while others are isomorphic (e.g. (b, a, a)(b, c, a) is isomorphic to (a, b, b)(a, c, b)).
After discarding sequences that violate domain constraints, there are 12 remaining sequences. After
discarding isomorphic sequences, only 2 sequences are left, namely (b, a, a)(b, c, a) and (b, a, a)(b, a, c).
The former sequence is translated into a conjunctive query given in Listing 4.1, which yields no result
when executed on source instance I. The latter sequence is translated into a conjunctive query given
in Listing 4.2, which in turn retrieves sequence (Africa, 15.82, 15.82)(Africa, 15.82, 38.13) from I as one
composite tuple.

18

SELECT * FROM

location AS location1,

location AS location2

WHERE

location1.area = location2.area AND

location1.longitude = location2.longitude AND

location1.latitude = location1.longitude AND

location1.ctid <> location2.ctid

LIMIT 1;

Listing 4.1: Conjunctive query for (b, a, a)(b, c, a).

SELECT * FROM

location AS location1,

location AS location2

WHERE

location1.area = location2.area AND

location1.latitude = location2.latitude AND

location1.latitude = location1.longitute AND

location1.ctid <> location2.ctid

LIMIT 1;

Listing 4.2: Conjunctive query for (b, a, a)(b, a, c).

Both queries enforce conditions on attributes of relation location, but one particular attribute is not
listed in source schema S, namely ctid. This is a system attribute specific to PostgreSQL, and it is used
here to uniquely identify a tuple within relation location for the purpose of disallowing repeated tuples
in a retrieved sequence.

Finally, each tuple in the retrieved sequence from I contributes to construction of the following source
and target instances, which form real universal examples.

I1 = {location(Africa, 15.82, 15.82)}
I2 = {location(Africa, 15.82, 38.13)}

J1 = {coordinates(15.82, 15.82)}
J2 = {coordinates(15.82, 38.13)}

In general, in case all conjunctive queries are unsuccessful in retrieving a sequence from I, a re-
placement sequence with real values from I can be constructed as an alternative. The replacement
sequence would consist of tuples that are not actually present in I, but nevertheless it would contribute
to construction of indicative universal examples.

4.1.2 Lazy approach

Given a LAV schema mapping M = (S,T,Σ) and a source instance I, the steps to construct real
universal examples in a lazy fashion are as follows:

First, groups of isomorphic synthetic tuples are generated for each relation R in S in the same way
as in the eager approach. Out of all these groups for R, only a number of them are retained based on
attribute domains of R. The remaining groups should reflect whether attribute domains of R are disjoint
or not.

Second, based on a single sequence of synthetic tuples chosen from the remaining groups for R,
distinct queries to be executed on source instance I are generated. Each query is meant to retrieve a
single tuple from I, which mimics a synthetic tuple of the sequence. In case a query cannot retrieve a
tuple simply because I does not contain such a tuple, values from I are used to construct a replacement
tuple that resembles its synthetic counterpart. It should be noted that while in the eager approach a
sequences of synthetic tuples is translated into a single conjunctive query meant to retrieve data in one
go, in this approach a sequence is translated into a number of distinct queries meant to retrieve data in
more than one go.

19

Third, universal examples (I1, J1), ..., (In, Jn) are constructed using the tuples of real values from the
previous step, where each source instance Ii holds a single tuple, and each target instance Ji is the result
of chasing Ii using M, for 1 ≤ i ≤ n.

Example 5. Consider the LAV schema mapping M = (S,T,Σ) from Example 4, where

S = {location(area : varchar(32), latitude : float, longitude : float)},
T = {coordinates(latitude : float, longitude : float)},

and Σ consists of the single s-t tgd location(a, lat, long)→ coordinates(lat, long). Furthermore, consider
source instance

I = {location(Europe, 38.13, 15.82),

location(Africa, 15.82, 38.13)}.

which is different from Example 4.
Out of all groups of possible synthetic tuples for relation location, only the following ones are retained

based on domain constraints of the aforementioned relation, as seen before in Example 4.

(2) (5)
(b, a, a) (c, b, a)
(c, a, a) (b, c, a)
(a, b, b) (c, a, b)
(c, b, b) (a, c, b)
(a, c, c) (b, a, c)
(b, c, c) (a, b, c)

From each of the remaining groups, only one tuple is deemed sufficient to be selected, since any two
tuples in the same group are isomorphic. However, an arbitrary tuple choice can still lead to a violation
of the domain constraints. For instance, tuples (b, a, a) and (c, b, a) from groups (2) and (5), respectively,
do not comply with attribute domains of relation location. As a result, the remaining groups are explored
until a compliant sequence of synthetic tuples is identified such as (b, a, a) and (b, c, a).

Next, the selected synthetic tuples are translated into distinct queries to be executed on source
instance I. Tuple (b, a, a) becomes query

SELECT * FROM location WHERE latitude = longitude LIMIT 1;

while tuple (b, c, a) is translated into query

SELECT * FROM location LIMIT 1;

The former query returns no tuple of real values, whereas the latter query retrieves tuple (Europe, 38.13,
15.82) from I.

In general, in the lazy approach, tuples that are successfully retrieved from I will form a pool of
real values that will be used to construct a replacement tuple, in case a query returns no tuple. In this
example, tuple (Europe, 15.82, 15.82) is created as a substitute for the missing tuple. Although such
a replacement tuple does not convey a genuine fact from I, it does reveal behavior allowed by source
schema S.

In spite of the fact that the synthetic tuples exhibit a “relatedness” in the sense that they share some
elements, the queries translated from these tuples are distinct and therefore can potentially retrieve
unrelated tuples of real values from I. Nevertheless, this “relatedness” is employed in construction of
replacement tuples when the need for such tuples arises. The choice of issuing distinct queries is motivated
by the aim of constructing real universal examples on demand, that is, creating one real universal example
at a time as the need for it arises. Moreover, it is preferable to expose the arrangement of possibly
repeated elements inside a tuple of real values rather than the tuple relatedness to other tuples.

Finally, in this example, the source and target instances of the real universal examples are as follows:

I1 = {location(Europe, 38.13, 15.82)}
I2 = {location(Europe, 15.82, 15.82)}

J1 = {coordinates(38.13, 15.82)}
J2 = {coordinates(15.82, 15.82)}

20

Chapter 5

Prototype implementation and case
studies

This chapter discusses a prototype implementation of the approaches to generate synthetic and real
universal examples. This prototype implementation has been used to investigate a number of case
studies that are also reported here.

5.1 Prototype implementation

A prototype implementation that generates synthetic and real universal examples has been developed in
Java. The synthetic generator supports LAV, strict LAV, and n-modular schema mappings (including
self-join-free on the source). The real generator supports LAV schema mappings (including strict LAV).

synthetic

universal

example

generator

parsers-t tgds

universal examples

schema

mapping

generator

naive

chase

(a) Synthetic universal example generation.

parsers-t tgds

schema

mapping

generator

real

universal

example

generator

naive

chase

query

generator
source

instance

metadata

universal examples

(b) Real universal example generation.

Figure 5.1: Synthetic and real universal example generation workflows.

Figure 5.1a shows the typical workflow of generating synthetic universal examples. Initially, a user
is expected to provide s-t tgds that specify a schema mapping. The given s-t tgds are parsed, and a

21

schema mapping is generated by inferring the source and target schemas from these s-t tgds. Next,
universal examples are generated by relying on one of the algorithms introduced in Chapter 3. The user
is expected to indicate the algorithm of choice by stating in the beginning the class of s-t tgds w.r.t.
which the universal example construction should be performed. In other words, the schema mapping

Universal Example Generator

S-t tgds

P(x,y) -> Q(x)

Class of s-t tgds LAV

Get Universal Examples

p
attribute1 attribute2
d1 d1

q
attribute1
d1

p
attribute1 attribute2
d2 d1

q
attribute1
d2

Synthetic

Real

Universal Example Generator http://localhost:8080/ueg/

1 of 1 03/07/15 16:59

(a) Synthetic.

Universal Example Generator

S-t tgds

gene(n,"primary",p) -> gene(n,p)
gene(n,"non-primary",p) -> synonym(n,p)

Class of s-t tgds LAV

Source instance

Host localhost

Port 5432

Username flavius

Password

Database s3

Schema source

Get Universal Example

gene
name type protein

Mb2057c non-primary 14 kDa antigen

synonym
attribute1 attribute2
Mb2057c 14 kDa antigen

Synthetic

Real

Universal Example Generator http://localhost:8080/ueg/

1 of 1 03/07/15 16:23

(b) Real.

Figure 5.2: GUIs of the synthetic and real universal example generators.

22

will be illustrated by synthetic universal examples w.r.t. the stated class of s-t tgds. The prototype
implementation is robust to unsound cases such as illustration of a non-LAV schema mapping w.r.t. the
class of LAV s-t tgds. Furthermore, the universal example construction is dependent on a variation of
the chase procedure known as the naive chase [6]. The source and target instances of each universal
example are only constructed in memory rather than being persisted in a database management system
(DBMS). Finally, the generated universal examples are outputted to the user.

Figure 5.1b shows the typical workflow of generating real universal examples. As before, the user is
expected to provide s-t tgds that describe a schema mapping. In addition, the user is required to provide
information for accessing a source instance stored in a DBMS. The prototype implementation supports
only PostgreSQL1, but this support can be extended to other DBMSs. After parsing the given s-t tgds,
a schema mapping is generated based not only on these s-t tgds but also on metadata about the source
instance. Next, universal examples are generated through repetitive user interactions by relying on the
lazy approach introduced in Section 4.1.2. The eager approach is not exposed to the user due to its
unfeasibility even for simple schema mappings, which is further discussed in Section 5.2.1. The universal
example construction involves generation and execution of queries for retrieval of data from the given
source instance. A query is issued for every universal example to be constructed. As seen before, the
source and target instances of each universal example are only constructed in memory. Finally, every
generated universal example is outputted to the user.

Figure 5.2a shows the graphical user interfaces (GUI) of the synthetic universal example generator,
whereas Figure 5.2b shows the GUI of the real universal example generator.

5.1.1 S-t tgds parser

A parser for s-t tgds has been developed to enable proper reading of s-t tgds from input. The parser
was generated from a basic grammar for the schema-mapping language of s-t tgds using ANTLR [7].
The grammar drops the universal and existential quantifiers, but such quantifiers are implicitly assumed.
Moreover, the grammar allows the use of string and numeric constants inside atoms. It should be noted
that variants of the synthetic and real universal example generators which support s-t tgds with string
and numeric constants have also been implemented. The aforementioned grammar is given in Listing 5.1.

grammar STTGD;

// parser rules

init : source ’->’ target ;

source : atom (’&’ atom)* ;

target : atom (’&’ atom)* ;

atom : relation ’(’ sequence ’)’ ;

relation : ID ;

sequence : (variable | constant) (’,’ (variable | constant))* ;

variable : ID ;

constant : STRING | NUMBER ;

// lexer rules

ID : [a-zA-Z] [a-zA-Z0-9_]* ;

STRING : ’"’ .*? ’"’ ;

NUMBER : [0-9]+ (’.’ [0-9]+)? ;

WS : [\r\t\n]+ -> skip ;

Listing 5.1: A grammar for the schema-mapping language of s-t tgds.

The following is a typical s-t tgd complying with the grammar.

gene(n1,"primary",p) & gene(n2,"non-primary",p) -> synonym(n2,n1)

1http://www.postgresql.org/

23

http://www.postgresql.org/

5.1.2 Naive chase

In [2] construction of universal examples relied on the naive chase and therefore an implementation of
this chase has been developed. The pseudocode is given in Algorithm 4, which performs a naive chase
on a source instance I using a schema mapping M = (S,T,Σ) and returns a target instance J .

For each s-t tgd σ of the form ∀x(ϕ(x)→ ∃yψ(x,y)), the algorithm exhaustively explores all possible
matches between atoms of ϕ(x) and facts of I using backtracking. Procedure Backtrack (lines 17 to 28)
traverses an implicit tree of depth equal to the number of atoms in ϕ(x). Any tree node except the
root is a tentative match between an atom R(x) of ϕ(x) and a fact R(a) of I (line 23). Whenever no
match can be established between an atom and a fact, the entire subtree rooted in that node will be
disregarded. Only paths of length equal to the tree depth from root to leaves will represent successful
matches between atoms of ϕ(x) and facts of I. Procedure Backtrack takes as input two multisets Amatch
and A of atoms from ϕ(x) and two multisets Imatch and I of facts. In the initial call to this procedure A
will consist of all atoms of ϕ(x) and I will correspond to the initial source instance, whereas Amatch and
Imatch will be empty as no matches will have been established at that point (line 8). Subsequent calls
to procedure Backtrack signal an advance to the next level of the tree from root to leaves and therefore
an atom R(x) that matches with a fact R(a) will be subtracted from A (line 24). Moreover, the atom
R(x) and the fact R(a) will be added to Amatch and Imatch, respectively. Whenever all atoms of ϕ(x)
have been successfully matched with some facts of I, Imatch will consist of one single fact for each atom
of ϕ(x). However, there may be the case that further matches between atoms of ϕ(x) and other facts
of I can be uncovered. For this reason, each successful match between all atoms of ϕ(x) and some facts
of I will be preserved in a set S with a global scope (line 19). In other words, S will consist of all
paths of length equal to the tree depth from root to leaves. It should be noted that procedure Backtrack
will always attempt to match the leftmost atom from the remaining atoms of ϕ(x) (line 21), thus the
matching of atoms from ϕ(x) will progress from left to right.

The final part of the naive chase consists of generating and adding facts to J for each successful
match between all atoms of ϕ(x) and facts of I (lines 9 to 13). Based on Imatch, which consists of a fact
R(a) for each atom R(x) of ϕ(x), function TargetFacts generates a fact P (a,b) for each atom P (x,y)
of ψ(x,y), where a is a tuple of constants interpreting tuple x of universally quantified variables and b
is a tuple of new nulls interpreting tuple y of existentially quantified variables.

This naive chase never fails and always terminates, since schema mapping M is specified only by
source-to-target dependencies and no target dependencies. In general, the chase fails when a target
dependency such as an equality generating dependency is not satisfied and may not terminate due to
cyclic target dependencies. However, when the set of target dependencies is empty, a universal solution
always exists and can be constructed in polynomial time [3, 4].

The naive chase is generally nondeterministic because of an arbitrary trigger2 choice at each chase
step3 [6]. Nevertheless, this naive chase is deterministic, since triggers are chosen in the same order at
each execution, for the same source instance.

Example 6. Consider source instance I = {E(1, 3), E(2, 4), E(3, 4), E(4, 3)} and schema mappingM =
(S,T,Σ), where S = {E}, T = {F}, and Σ consists of the single s-t tgd E(x, z) ∧ E(z, y) → F (x, y),
denoted by σ.

The following is the chase sequence of instance I with Σ, where Ji
∗,(σ,hi)−−−−−→ Ji+1 is a chase step,

(σ, hi) is a trigger, hi is a homomorphism that maps variables occurring on the left-hand side of σ to I,
0 ≤ i ≤ 3, and J4 is a universal solution.

J0
∗,(σ,h0)−−−−−→ J1

∗,(σ,h1)−−−−−→ J2
∗,(σ,h2)−−−−−→ J3

∗,(σ,h3)−−−−−→ J4

2A trigger is a pair consisting of a s-t tgd and a homomorphism that maps variables occurring on the left-hand side of
the s-t tgd to a source instance.

3A chase step is the application of a s-t tgd to an instance using a homomorphism. In function NaiveChase, each
iteration of the middle for loop (lines 9 to 13) corresponds to a chase step.

24

Algorithm 4 Naive chase.

1: function NaiveChase(I,M)
2: J ← ∅
3: for all σ ∈ Σ do
4: S ← ∅
5: Amatch ← ∅
6: A← Atoms(ϕ(x))
7: Imatch ← ∅
8: Backtrack(Amatch, A, Imatch, I)
9: for all Imatch ∈ S do

10: for all P (a,b) ∈ TargetFacts(ψ(x,y), Imatch) do
11: J ← J ∪ {P (a,b)}
12: end for
13: end for
14: end for
15: return J
16: end function

17: procedure Backtrack(Amatch, A, Imatch, I)
18: if A = ∅ then
19: S ← S ∪ {Imatch}
20: else
21: R(x)← LeftmostAtom(A)
22: for all R(a) ∈ I, do
23: if Match(R(x), R(a)) then
24: Backtrack(Amatch ∪ {R(x)}, A− {R(x)}, Imatch ∪ {R(a)}, I)
25: end if
26: end for
27: end if
28: end procedure

25

h0 = {x/1, y/4, z/3}
h1 = {x/2, y/3, z/4}
h2 = {x/3, y/3, z/4}
h3 = {x/4, y/4, z/3}

J0 = ∅
J1 = {F (1, 4)}
J2 = {F (1, 4), F (2, 3)}
J3 = {F (1, 4), F (2, 3), F (3, 3)}
J4 = {F (1, 4), F (2, 3), F (3, 3), F (4, 4)}

5.2 Case studies

5.2.1 Eager generation of real universal examples for a LAV schema mapping

The worst case of eager generation of real universal examples for a simple LAV schema mapping is
examined.

ConsiderM = (S,T,Σ), where S = {R}, T = {P}, and Σ consists of the single ternary copy s-t tgd
R(x1, x2, x3) → P (x1, x2, x3). All attributes of relation R share the same domain, and the same holds
for relation P . The aim is to examine the worst case in which the search space undergoes no reduction
w.r.t. domain constraints. In addition, consider a source instance I.

The groups of isomorphic synthetic tuples for relation R coincide with the groups already seen in
Example 4. Since all attributes of relation R share the same domain, all groups are retained, and no
reduction in terms of domain constraints is possible. Taking into account the number of groups and
the number of tuples in every group, there are 3888 possible sequences of synthetic tuples. The only
viable reduction to this space of sequences is the removal of isomorphic ones. As a result, the number of
sequences is substantially reduced to 648. However, this is still a significant number in terms of potential
conjunctive queries to be executed on I.

In the following, the execution time of the eager approach is reported in three different settings. The
execution time was averaged over 10 runs.

In the first setting, source instance I was loaded with 574,603 tuples in a particular order. For each
attribute of relation R, its set of values from adom(I) was disjoint from the set of values from adom(I)
of any other attribute of R. In other words, executing all conjunctive queries on I would have yielded
no result. The eager approach took 2 minutes and 38.298 seconds to execute all 648 conjunctive queries.

In the second setting, source instance I was loaded with 574,603 tuples in the same order as before.
However, five tuples at random positions were replaced with tuples (a, a, a) (c, b, b) (c, b, c) (b, b, a) (c, b, a),
which in fact were an answer to one of the conjunctive queries. The eager approach took 5 minutes and
46.287 seconds to find the answer after executing 549 out of 648 conjunctive queries.

In the third setting, source instance I was loaded with 574,603 tuples in the same order as before.
However, five tuples at the same positions as before were replaced with tuples (b, b, b) (a, c, c) (a, c, a)
(a, a, b) (c, b, a), which again were an answer to one of the conjunctive queries. The eager approach took
3 minutes and 57.223 seconds to find the answer after executing 401 out of 648 conjunctive queries.

Interestingly, executing all conjunctive queries on a source instance with no answer took less than
executing only a number of queries on a source instance with an answer.

The eager approach, however, is impractical for a LAV schema mapping M′ = (S′,T′,Σ′), where
S′ = {E}, T′ = {F}, and Σ′ consists of the quaternary copy s-t tgds E(x1, x2, x3, x4)→ F (x1, x2, x3, x4).
Using equation (3.1) and equation (3.2) from Section 3.1.1, the number of possible sequences of synthetic
tuples is given by

|G1|S(4,1) · |G2|S(4,2) · |G3|S(4,3) · |G4|S(4,4) = 41 · 127 · 246 · 241 = 657, 366, 253, 849, 018, 368,

which cannot be supported by the standard data structures of the prototype implementation.

5.2.2 Reducing the number of universal examples for a 2-modular schema
mapping

Reductions on the space of source instances and therefore on the space of synthetic universal examples
that illustrate a simple 2-modular schema mapping are examined. These reductions have been introduced
in Section 3.3.1.

26

Consider the 2-modular schema mapping M = (S,T,Σ), where S = {E,G}, T = {F}, and Σ
consists of the single s-t tgd E(x, y)∧G(y, x)→ F (x, y). This s-t tgd was used as a running example in
Section 3.3.

Initially, the number of possible source instances and therefore the number of possible universal
examples is given by |P(T)E(x,y)| · |P(T)G(y,x)| = 15 · 15 = 225, where P(T)E(x,y) and P(T)G(y,x) denote
power sets without the empty set corresponding to source atoms. After applying the unsatisfied join
condition reduction, the number of source instances decreases to 193. Furthermore, after applying the
isomorphic instance reduction, the number of source instances drops to 134.

The unsatisfied join condition reduction arose from the observation that some source instances yield
empty target instances. An example of such a source instance is I = {E(a, a), E(a, b), G(b, b)}, where the
set of values {a, a} corresponding to variable x of E is disjoint from the set of values {b} corresponding
to variable x of G. In the prototype implementation the unsatisfied join condition reduction basically
discards a source instance if sets of values corresponding to a join variable are disjoint. However, this
check is not resilient to every case. An example is source instance I ′ = {E(a, b), E(b, a), G(a, a)}. The set
of values {a, b} corresponding to variable x of E is not disjoint from the set of values {a} corresponding
to variable x of G. Furthermore, the set of values {b, a} corresponding to variable y of E is not disjoint
from the set of values {a}. As a result, the source instance is not discarded, although it yields an empty
target instance. The limitation lies in the fact that {a, b} of x and {b, a} of y are not correlated in a
row-wise fashion, where both x and y are variables of E. For this reason, 13 out of the remaining 134
source instances still yield an empty target instance. Nevertheless, uncovering that a simple schema
mapping such asM requires a number of illustrative universal examples in the order of a hundred w.r.t.
the class of all 2-modular s-t tgds is not a promising result. In the next section, a relatively simple
schema mapping is shown to require a number of universal examples in the order of hundreds w.r.t. the
class of all 3-modular s-t tgds.

5.2.3 STBenchmark basic mapping scenarios

STBenchmark [1] was originally introduced to support assessment of tools intended for schema mapping
design. It includes a number of basic mapping scenarios that describe typical data transformations from
a source schema to a target schema such as copying of relations, horizontal and vertical partitioning of
relations, and augmenting of relations with additional attributes. These mapping scenarios were initially
conceived for XML data and therefore some of them considered nested structures. For the purpose of this
work, relevant mapping scenarios were adapted to the relational model. Each mapping scenario consists
of a schema mapping and a realistic source instance. This source instance is used only to generate
real universal examples. In what follows, the horizontal partition scenario is discussed, but additional
scenarios are covered in Appendix A.

Horizontal Partition

Consider LAV schema mapping M = (S,T,Σ), where S = {gene}, T = {gene, synonym}, and Σ
consists of the following s-t tgds:

gene(n, “primary”, p)→ gene(n, p)

gene(n, “non-primary”, p)→ synonym(n, p)

In this scenario, source relation gene is horizontally partitioned into target relations gene and
synonym based on attribute type of source relation gene. If the value of this attribute is “primary”, a
tuple is created in target relation gene. However, if the value of this attribute is “non-primary”, a tuple
is created in target relation synonym.

The synthetic universal examples that illustrate M w.r.t. the class of all LAV s-t tgds include the
source instances given in Table 5.1 and the target instances shown in Tables 5.2 and 5.3. For readability
purposes, all source instances are listed in the same table. However, the reader should bear in mind
that each source instance Ii consists of one relation gene with one single tuple, where 1 ≤ i ≤ 10. This
fact is in accordance with the steps on constructing universal examples given in Section 3.1. Synthetic
universal examples are generated under the assumption that all attributes of source relation gene share
the same domain of values. For this reason, some tuples include repeated values.

27

name type protein
I1 c primary b
I2 b primary b
I3 primary primary b
I4 b primary primary
I5 primary primary primary
I6 c non-primary b
I7 b non-primary b
I8 non-primary non-primary b
I9 b non-primary non-primary
I10 non-primary non-primary non-primary

Table 5.1: gene (source)

name protein
J1 c b
J2 b b
J3 primary b
J4 b primary
J5 primary primary

Table 5.2: gene (target)

name protein
J6 c b
J7 b b
J8 non-primary b
J9 b non-primary
J10 non-primary non-primary

Table 5.3: synonym (target)

The synthetic universal examples that illustrate M w.r.t. the class of all strict LAV s-t tgds include
the source instances given in Table 5.4 and the target instances shown in Tables 5.5 and 5.6. Source
instance I1 of Table 5.4 is isomorphic to source instance I1 of Table 5.1. Likewise, the corresponding
target instance J1 of Table 5.5 is isomorphic to target instance J1 of Table 5.2. In effect, universal
examples that illustrate a schema mapping w.r.t. the class of all strict LAV s-t tgds have isomorphic
counterparts among universal examples that illustrate a schema mapping w.r.t. the class of all LAV s-t
tgds.

name type protein
I1 a primary b
I2 a non-primary b

Table 5.4: gene (source)

name protein
J1 a b

Table 5.5: gene (target)

name protein
J2 a b

Table 5.6: synonym (target)

The initial number of synthetic universal examples that illustrateM w.r.t. the class of all 3-modular
s-t tgds is given by

|P(T)|+ |P(T ′)| = 2|T | − 1 + 2|T
′| − 1 = 29 − 1 + 29 − 1 = 1022,

where P(T) is the power set without the empty set corresponding to atom gene(n, “primary”, p), and
P(T ′) is the power set without the empty set corresponding to atom gene(n, “non-primary, p). Set T is
obtained by first considering all possible 3-tuples with elements from D = {primary, b, c} and afterwards
discarding those 3-tuples whose second element is not constant “primary”. Set D is defined as indicated
in Section 3.3, but here one of the set elements is replaced by constant “primary”. Set T ′ is obtained
similarly.

Considering the isomorphic instance reduction introduced in Section 3.3.1, the number of universal
examples decreases to 682. Even for a relatively simple schema mapping such as M, the number of
synthetic universal examples generated w.r.t. the class of all 3-modular s-t tgds can be high. Only one
of these universal examples is reported here. Table 5.7 shows the source instance I of this universal
example, whereas Table 5.8 gives the target instance J of this universal example.

28

name type protein
I primary primary primary

b primary primary
c primary primary
primary primary b
b primary b
c primary b
primary primary c
b primary c
c primary c

Table 5.7: gene (source)

name protein
J primary primary

b primary
c primary
primary b
b b
c b
primary c
b c
c c

Table 5.8: gene (target)

The real universal examples that illustrate M w.r.t. the class of all LAV s-t tgds include the source
instances given in Table 5.9 and the target instances shown in Table 5.10 and 5.11. These universal
examples consist of realistic tuples as opposed to the universal examples given above, and these tuples
have been retrieved from a realistic source instance accompanying the mapping scenario. Furthermore,
these real universal examples have been generated under the assumption that attributes of relation gene
have distinct domains of values. It can be argued that a value such as “GF14A” of attribute name and
a value such as “primary” of attribute type can originate from a domain such as varchar(64) associated
with both attributes, but nevertheless these attributes have different semantics and therefore their values
are assumed to be distinct.

name type protein
I1 GF14A primary 14-3-3-like protein A
I2 Mb2057c non-primary 14 kDa antigen

Table 5.9: gene (source)

name protein
J1 GF14A 14-3-3-like protein A

Table 5.10: gene (target)

name protein
J2 Mb2057c 14 kDa antigen

Table 5.11: synonym (target)

29

Chapter 6

Conclusions

In this work, construction of synthetic and real universal examples for schema mappings with a finite
semantic description was examined. A schema mapping specified by a class of s-t tgds such as LAV, strict
LAV, n-modular, and self-join-free on the source can be illustrated by finitely many universal examples,
and a main concern was the reduction of this space of universal examples.

For LAV schema mappings a reduction based on isomorphism between tuples was shown. The source
instance of each universal example that describes a LAV schema mapping holds a single relation with one
tuple and therefore it was sufficient to reason about isomorphism only in terms of tuples. By contrast,
n-modular and self-join-free on the source schema mappings can be described by universal examples
whose source instance can hold multiple tuples across different relations, and in this case a reduction
based on isomorphism between source instances was shown.

In addition, for n-modular and self-join-free on the source schema mappings a second reduction of
the number of illustrative universal examples was proposed, which is based on unsatisfied join conditions
between relations from the same source instance. Such a source instance yields an empty target instance,
and a universal example consisting of such a pair reveals no more than behavior disallowed by the schema
mapping and is not deemed to be informative enough.

The space of illustrative universal examples for strict LAV schema mappings is already minimal and
therefore requires no reduction, since the number of universal examples is given by the number of source
relations.

In addition, the reduction of universal examples for LAV schema mappings revealed a result in terms
of the number of universal examples needed to illustrate LAV s-t tgds. This result confirms that the
number of variables occurring on the left-hand side of a LAV s-t tgd exponentially impacts the number of
illustrative universal examples and is closely connected with combinatorial notions such as Bell number
and Stirling number of the second kind.

Two approaches to construct real universal examples for LAV schema mappings were shown. In
both approaches the starting point is a space of synthetic tuples corresponding to source relations.
Furthermore, in both approaches domain constraints from source relations are considered. The first
approach attempts to eagerly generate all illustrative universal examples in one go, and it employs
several reductions of the synthetic tuple space. Initially, isomorphism between tuples is used to group
them, and domain constraints are used to discard some of them. Next, the focus shifts on sequences of
tuples, that is, all possible ways of selecting one tuple from every remaining group. Isomorphism between
sequences is used to discard some of them, and domain constraints are used once more to discard some of
the sequences. The remaining sequences form building blocks for conjunctive queries intended to retrieve
real tuples mimicking the synthetic ones from a source database. Finally, each tuple leads to construction
of a universal example, since universal examples for LAV schema mapping hold no more than a single
tuple in their source instance.

The second approach generates in a lazy fashion one universal example at a time as the need for it
arises and is more light in terms of reductions on the synthetic tuple space. As in the eager approach,
isomorphism between tuples is used to group them, and domain constraints are used to discard them.
However, no rigorous reduction is performed for sequences of tuples because the aim in this case is to
find only one such sequence, which still needs to conform with domain constraints. Finally, each tuple
of the identified sequence is a building block for a simple query that retrieves a real tuple mimicking

31

the synthetic one. As in the eager approach, each retrieved tuple leads to construction of a universal
example. Although this approach might lack the sophistication of the eager approach, it is resilient to
cases that cannot be resolved by the eager approach.

By using a prototype implementation of the approaches to construct synthetic and real universal
examples, several case studies were examined. The eager approach to construct real universal examples
was revealed to be impractical even for simple LAV schema mappings due to an exponential blow-up of
the space represented by possible sequences of tuples. Furthermore, it was uncovered that illustration of
relatively simple schema mappings w.r.t. the class of all n-modular s-t tgds already requires a number of
synthetic universal examples in the order of hundreds, and the prototype implementation is not suited
to explore huge spaces of universal examples associated with more complex schema mappings. However,
this finding gives enough ground to assert that for a n-modular s-t tgd not only the number of variables
occurring on the left-hand side exponentially impacts the number of illustrative universal examples, as
seen in the case of LAV s-t tgds, but also the number of atoms in the conjunction on the left-hand side.

Future work

The number of illustrative universal examples for relatively simple n-modular schema mappings can be
high in spite of considering two reductions of the space of universal examples. A more precise indication
of this number similar to the combinatorial result for LAV s-t tgds would be relevant in establishing
whether further reductions are possible.

An aspect overlooked by this work is whether universal examples generated by the prototype imple-
mentation can support users in gaining understanding of schema mappings, and such a study would be
in order.

The algorithm for generating synthetic universal examples for LAV schema mappings can yield uni-
versal examples with an empty target instance. This outcome can be observed by considering a LAV s-t
tgd whose left-hand side consists of repeated variables. Should universal examples with an empty target
instance be deemed uninformative just as in the n-modular case, the LAV algorithm could be adjusted
to rely on the number of variables occurring on the left-hand side of the s-t tgd instead of the arity of
the source relation symbol.

Extending the support of the prototype implementation to other DBMSs would involve not only a
simple connectivity adjustment, but also a reconsideration of how some queries are generated.

32

Bibliography

[1] Bogdan Alexe, Wang Chiew Tan, and Yannis Velegrakis. Stbenchmark: towards a benchmark for
mapping systems. PVLDB, 1(1):230–244, 2008.

[2] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew Tan. Characterizing schema
mappings via data examples. ACM Trans. Database Syst., 36(4):23, 2011.

[3] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: semantics
and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[4] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: getting to the core. ACM
Trans. Database Syst., 30(1):174–210, 2005.

[5] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd
Edition. Addison-Wesley, 1981.

[6] Adrian Onet. The chase procedure and its applications in data exchange. In Phokion G. Kolaitis,
Maurizio Lenzerini, and Nicole Schweikardt, editors, Data Exchange, Integration, and Streams,
volume 5 of Dagstuhl Follow-Ups, pages 1–37. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2013.

[7] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition, 2013.

[8] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts. McGraw-Hill Education,
6th edition, 2010.

[9] Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge University Press, New York,
NY, USA, 2nd edition, 2011.

[10] Balder ten Cate and Phokion G. Kolaitis. Structural characterizations of schema-mapping lan-
guages. In Ronald Fagin, editor, Database Theory - ICDT 2009, 12th International Conference, St.
Petersburg, Russia, March 23-25, 2009, Proceedings, volume 361 of ACM International Conference
Proceeding Series, pages 63–72. ACM, 2009.

33

Appendix A

Additional STBenchmark basic
mapping scenarios

Copying

Consider LAV schema mapping M = (S,T,Σ), where S = {protein}, T = {protein}, and Σ consists of
the s-t tgd

protein(n, a, c)→ protein(n, a, c).

In this scenario, a ternary relation is simply copied from source to target. In Tables A.1 and A.2 are
given the source and target instances, respectively, of the synthetic universal examples that illustrateM
w.r.t. the class of all LAV s-t tgds.

name accession created
I1 a a a
I2 b a a
I3 a b a
I4 b b a
I5 c b a

Table A.1: protein (source)

name accession created
J1 a a a
J2 b a a
J3 a b a
J4 b b a
J5 c b a

Table A.2: protein (target)

In addition, in Tables A.3 and A.4 are given the source and target instances, respectively, of the
synthetic universal example that illustrates M w.r.t. the class of all strict LAV s-t tgds.

name accession created
I a b c

Table A.3: protein (source)

name accession created
J a b c

Table A.4: protein (target)

The initial number of synthetic universal examples that illustrateM w.r.t. the class of all 3-modular
s-t tgds is given by

|P(T)| = 2|T | − 1 = 227 − 1,

where P(T) is the power set without the empty set corresponding to source atom protein(n, a, c). Due
to the largeness of the space of synthetic universal examples, no reductions could be performed using the
prototype implementation.

In Tables A.5 and A.6 are given the source and target instances, respectively, of the real universal
example that illustrates M w.r.t. the class of all LAV s-t tgds. This real universal example has been
generated under the assumption that attributes of source relation protein have distinct domains of values.

35

name accession created
I 12-alpha-hydroxysteroid dehydrogenase P21215 1991-08-01

Table A.5: protein (source)

name accession created
J 12-alpha-hydroxysteroid dehydrogenase P21215 1991-08-01

Table A.6: protein (target)

Surrogate Key Assignment

Consider LAV schema mapping M = (S,T,Σ), where S = {gene}, T = {gene, synonym}, and Σ
consists of the following s-t tgds:

gene(n, “primary”, p)→ ∃wid(gene(n, p, wid))

gene(n, “non-primary”, p)→ ∃wid(synonym(n, p, wid))

This scenario is similar to the horizontal partition scenario discussed in Section 5.2.3. However, in this
scenario, target relations gene and synonym are augmented with attribute wid. The synthetic universal
examples that illustrate M w.r.t. the class of all LAV s-t tgds include the source instances shown in
Table A.7 and the target instances given in Tables A.8 and A.9.

name type protein
I1 c primary b
I2 b primary b
I3 primary primary b
I4 b primary primary
I5 primary primary primary
I6 c non-primary b
I7 b non-primary b
I8 non-primary non-primary b
I9 b non-primary non-primary
I10 non-primary non-primary non-primary

Table A.7: gene (source)

name protein wid
J1 c b null0
J2 b b null0
J3 primary b null0
J4 b primary null0
J5 primary primary null0

Table A.8: gene (target)

name protein wid
J6 c b null0
J7 b b null0
J8 non-primary b null0
J9 b non-primary null0
J10 non-primary non-primary null0

Table A.9: synonym (target)

In addition, the synthetic universal examples that illustrate M w.r.t. the class of all strict LAV s-t
tgds include the source instances given in Table A.10 and the target instances shown in Tables A.11 and
A.12.

name type protein
I1 a primary b
I2 a non-primary b

Table A.10: gene (source)

name protein wid
J1 a b null0

Table A.11: gene (target)

name protein wid
J2 a b null0

Table A.12: synonym (target)

The initial number of synthetic universal examples that illustrateM w.r.t. the class of all 3-modular

36

s-t tgds is given by

|P(T)|+ |P(T ′)| = 2|T | − 1 + 2|T
′| − 1 = 29 − 1 + 29 − 1 = 1022,

where P(T) is the power set without the empty set corresponding to atom gene(n, “primary”, p) and
P(T ′) is the power set without the empty set corresponding to atom gene(n, “non-primary”, p). As seen
before in the horizontal partion scenario discussed in Section 5.2.3, after applying the isomorphic instance
reduction, the number of remaining universal examples is 682.

The real universal examples that illustrate M w.r.t. the class of all LAV s-t tgds include the source
instances show in Table A.13 and the target instances given in Tables A.14 and A.15. These real
universal examples have been generated under the assumption that attributes of relation gene have
distinct domains of values.

name type protein
I1 GF14A primary 14-3-3-like protein A
I2 Mb2057c non-primary 14 kDa antigen

Table A.13: gene (source)

name protein wid
J1 GF14A 14-3-3-like protein A null0

Table A.14: gene (target)

name protein wid
J2 Mb2057c 14 kDa antigen null0

Table A.15: synonym (target)

37

Vertical Partition (Normalization)

Consider LAV schema mapping M = (S,T,Σ), where S = {reaction}, T = {reaction, chemicalinfo}, and Σ consists of the s-t tgd

reaction(en, n, c, o, d, eq)→ ∃f(reaction(en, n, c, o, f) ∧ chemicalinfo(d, eq, f)).

In this scenario, source relation reaction is vertically partitioned into target relations reaction and chemicalinfo. The synthetic universal examples
that illustrate M w.r.t. the class of all LAV s-t tgds include the source instances given in Table A.16 and the target instances show in Tables A.17 and
A.18.

entry name comment orthology definition equation
I1 a a a a a a
I2 b a a a a a
I3 a b a a a a
I4 b b a a a a
I5 c b a a a a
...
I199 b e d c b a
I200 c e d c b a
I201 d e d c b a
I202 e e d c b a
I203 f e d c b a

Table A.16: reaction (source)

entry name comment orthology cofactor
J1 a a a a null0
J2 b a a a null0
J3 a b a a null0
J4 b b a a null0
J5 c b a a null0
...
J199 b e d c null0
J200 c e d c null0
J201 d e c c null0
J202 e e d c null0
J203 f e d c null0

Table A.17: reaction (target)

definition equation cofactor
J1 a a null0
J2 a a null0
J3 a a null0
J4 a a null0
J5 a a null0
...
J199 b a null0
J200 b a null0
J201 b a null0
J202 b a null0
J203 b a null0

Table A.18: chemicalinfo (target)

38

Furthermore, the synthetic universal example that illustrates M w.r.t. the class of all strict LAV s-t tgds includes the source instance shown in
Table A.19 and the target instance given in Tables A.20 and A.21.

entry name comment orthology definition equation
I a b c d e f

Table A.19: reaction (source)

entry name comment orthology cofactor
J a b c d null0

Table A.20: reaction (target)

definition equation cofactor
J e f null0

Table A.21: chemicalinfo (target)

The initial number of synthetic universal examples that illustrate M w.r.t. the class of all 6-modular s-t tgds is given by

|P(T)| = 2|T | − 1 = 246656 − 1,

where P(T) is the power set without the empty set corresponding to atom reaction(en, n, c, o, d, eq). Due to the largeness of the space of synthetic universal
examples, no reductions could be performed using the prototype implementation.

The real universal example that illustrates M w.r.t. the class of all LAV s-t tgds includes the source instance shown in Table A.22 and the target
instance given in Tables A.23 and A.24. This real universal example has been generated under the assumption that attributes of relation reaction have
distinct domains of values.

entry name comment orthology definition equation
I R06733 carboxylesterase multi-step reaction KO: K01913 Hygrine gives Tropinone C06179 gives C00783

Table A.22: reaction (source)

entry name comment orthology cofactor
J R06733 carboxylesterase multi-step reaction KO: K01913 null0

Table A.23: reaction (target)

definition equation cofactor
J Hygrine gives Tropinone C06179 gives C00783 null0

Table A.24: chemicalinfo (target)

39

Nesting

Consider LAV schema mapping M = {S,T,Σ}, where S = {reference}, T = {period, author, publication}, and Σ consists of the s-t tgd

reference(t, y, p, n)→ ∃pid, aid(period(y, pid) ∧ author(n, aid, pid) ∧ publication(t, p, aid)).

In this scenario, the “flat” source relation reference is transformed into target relations period, author, and publication such that for each period
there is a number of authors and for each author there is a number of publications. However, this hierarchical structure is not completely captured byM
due to the lack of target constraints. For instance, relation period may contain more than one tuple for the same period, but each of these tuples would
have a different value for attribute pid. The synthetic universal examples that illustrateM w.r.t. the class of all LAV s-t tgds include the source instances
given in Table A.25 and the target instances shown in Tables A.26, A.27, and A.28.

title year publishedin name
I1 a a a a
I2 b a a a
I3 a b a a
I4 b b a a
I5 c b a a
I6 a a b a
I7 b a b a
I8 c a b a
I9 a b b a
I10 b b b a
I11 c b b a
I12 a c b a
I13 b c b a
I14 c c b a
I15 d c b a

Table A.25: reference (source)

40

year pid
J1 a null0
J2 a null0
J3 b null0
J4 b null0
J5 b null0
J6 a null0
J7 a null0
J8 a null0
J9 b null0
J10 b null0
J11 b null0
J12 c null0
J13 c null0
J14 c null0
J15 c null0

Table A.26: period (target)

name aid pid
J1 a null1 null0
J2 a null1 null0
J3 a null1 null0
J4 a null1 null0
J5 a null1 null0
J6 a null1 null0
J7 a null1 null0
J8 a null1 null0
J9 a null1 null0
J10 a null1 null0
J11 a null1 null0
J12 a null1 null0
J13 a null1 null0
J14 a null1 null0
J15 a null1 null0

Table A.27: author (target)

title publishedin aid
J1 a a null1
J2 b a null1
J3 a a null1
J4 b a null1
J5 c a null1
J6 a b null1
J7 b b null1
J8 c b null1
J9 a b null1
J10 b b null1
J11 c b null1
J12 a b null1
J13 b b null1
J14 c b null1
J15 d b null1

Table A.28: publication (target)

Moreover, the synthetic universal example that illustratesM w.r.t. the class of all strict LAV s-t tgds includes the source instance shown in Table A.29
and the target instance given in Tables A.30, A.31, and A.32.

title year publishedin name
I a b c d

Table A.29: reference (source)

year pid
J b null0

Table A.30: period (target)

name aid pid
J d null1 null0

Table A.31: author (target)

title publishedin aid
J a c null1

Table A.32: publication (target)

41

The initial number of synthetic universal examples that illustrate M w.r.t. the class of all 4-modular s-t tgds is given by

|P(T)| = 2|T | − 1 = 2256 − 1,

where P(T) is the power set without the empty set corresponding to atom reference(t, y, p, n). Due to the largeness of the space of synthetic universal
examples, no reductions could be performed using the prototype implementation.

The real universal example that illustrates M w.r.t. the class of all LAV s-t tgds includes the source instance given in Table A.33 and the target
instance shown in Tables A.34, A.35, and A.36. This real universal example has been generated under the assumption that attributes of relation reference
have distinct domains of values.

title year publishedin name
I Trie Methods for Text and Spatial Data on Secondary Storage 1994 Published by McGill University Heping Shang

Table A.33: reference (source)

year pid
J 1994 null0

Table A.34: period (target)

name aid pid
J Heping Shang null1 null0

Table A.35: author (target)

title publishedin aid
J Trie Methods for Text and Spatial Data on Secondary Storage Published by McGill University null1

Table A.36: publication (target)

42

	Introduction
	Background
	Preliminaries
	Schemas and instances
	Source-to-target tuple generating dependencies
	Data exchange and data examples
	Additional source-to-target tuple generating dependencies

	Related work

	Synthetic universal example generation
	LAV schema mappings
	The number of universal examples needed to illustrate LAV s-t tgds

	Strict LAV schema mappings
	n-modular schema mappings
	Reductions on the number of universal examples

	Real universal example generation
	LAV schema mappings
	Eager approach
	Lazy approach

	Prototype implementation and case studies
	Prototype implementation
	S-t tgds parser
	Naive chase

	Case studies
	Eager generation of real universal examples for a LAV schema mapping
	Reducing the number of universal examples for a 2-modular schema mapping
	STBenchmark basic mapping scenarios

	Conclusions
	Additional STBenchmark basic mapping scenarios

