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Abstract

In times where there is an increasing demand for individualized software products, the pop-
ularity of Software Product Line Engineering (SPLE) as a software engineering paradigm is
growing. As SPLE is being applied for the development of safety critical systems, being able to
perform model checking for the verification of software product lines (SPL) is desirable.

This thesis considers both state-based and event-based models for software product families.
For both of these models we define several equivalences, based on strong bisimulation (both
worlds), branching bisimulation (event-based world), and divergence-blind stuttering equivalence
(state-based world). Using these equivalences, we propose several minimal representations of
the models.

Additionally, embeddings are proposed to convert between state-based and event-based mod-
els on the product-family level, and we show that at least one of the proposed equivalences is
preserved and reflected by these embeddings. The embeddings allow to perform state space
reduction on event-based models using state space reduction algorithms for state-based models
and vice versa. This is beneficial in practice as it saves the costs of implementing and main-
taining different algorithms for state space reduction in both worlds. Furthermore, these results
indicate that both worlds may be equally expressive, as is commonly believed to be true on the
single-product level.

Lastly, a toolset is developed to define SPL, to perform state space reduction on SPL, and
to perform verification of the SPL using mCRL2. A small case study is performed on a vending
machine toy example using the developed toolset. The results show that a product-family based
verification approach in combination with product-family based state space reduction is much
more effective than a regular enumerative method of verification, where each product is verified
separately.
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Chapter 1

Introduction

This master thesis is the final report of the graduation project for the Computer Science and
Engineering master at Eindhoven University of Techonology (TU/e). The project is carried out
within the Formal System Analysis group of the Mathematics and Computer Science department
of TU/e.

This chapter introduces the research problem of this thesis. In Section 1.1 the context of this
research problem is explained, and Section 1.2 describes the research problem itself. Finally, in
Section 1.3 the obtained results are summarized, and an outline for the remainder of the thesis
is provided.

1.1 Research problem context

Over the course of the past few decades software has become more prevalent in our daily lives.
Not only have laptops, tablets, smart phones and personal computers become indispensable, but
nowadays software is also present in devices that used to be purely mechanical, such as cars,
household devices and vending machines. As people are becoming aware of the possibilities
offered by this development, they are demanding their software products to become more and
more individualized.

Companies developing software products try to fulfill this demand for individualization by
building multiple slightly different versions of the same product. A common way to develop a
new variation of an existing product is to copy and adapt this product. However, this way of
working is rather incremental and often poorly documented, and hence companies end up with
a set of products between which the connections are unclear. As a result it is likely that the
same type of changes are implemented multiple times, possibly in a slightly different way each
time, making this way of working expensive. Furthermore, it is both difficult and expensive to
thoroughly test all the products. The latter is especially a problem for safety critical software,
such as in cars, and for software that is produced in high volumes, such as in telephones. Software
product line engineering [1, 25] (SPLE) is a method of software development proposed to solve
these problems. In SPLE, a set of software products, referred to as the software product line
(SPL) or product family, is developed simultaneously. By doing so, code for functions that are
shared between (some of) the products can be reused, which results in lower production costs.
Furthermore it allows for efficient implementation and testing.

/department of computer science 7
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For safety critical systems in particular, it is common practice to develop models of the
behavior of a system before actually producing software. The process of checking whether
such a model satisfies all requirements of the system is called model checking. An advantage
of performing model checking is the ability to discover faults in the modeled behavior before
implementing anything. Once a model is developed that satisfies all requirements it is possible
to develop software based on this model. If this is done correctly it is likely that the developed
software contains less bugs than it otherwise would have. As a drawback, model checking may
be methodologically and computationally expensive, making it difficult to apply in practice for
the verification of complicated software systems.

The behavior of a system is also called the process of the system. Within process theory a
broad spectrum of equivalences is defined [17, 15]. An equivalence defines when two processes
are equal, and hence when two different systems show the same behavior. Furthermore, a logic
may agree with such an equivalence, meaning that two processes that are equal according to
some equivalence either both satisfy a property expressed in this logic, or they both do not
satisfy it. We also say that such a logic and properties expressed in this logic are preserved by
the equivalence. Equivalences play an important role in the field of model checking, as they can
be used to find a smaller process that is equivalent to the actual process of interest. This task
is also called state space reduction. As it is known which properties are preserved by certain
equivalences, it is possible to perform the model checking task using the smaller process, and
still get a valid answer.

The process of a system is often modeled using either a state-based model or an event-based
model. These two types of models differ in the way they store information. However, it is
commonly believed that they are equally expressive. This is supported by [13, 26], which show
that multiple equivalences in one type of model correspond to similar equivalences in the other
type of model, by using embeddings to convert between the two types of models. Furthermore,
such embeddings have practical use, as they can be used to make state space reduction algorithms
for one type of model applicable to the other type as well.

1.2 Problem description

As SPL may (and often do) consist of safety critical software, there is a desire to apply model
checking techniques for the verification of SPL. This can trivially be done by applying these
techniques to each product separately. However, this is often computationally expensive since
industrial SPL can contain very large numbers of products, and it would more or less defeat
the purpose of regarding the entire set of products as a single SPL. Hence, formalisms have
been proposed [10, 21] to model the process of an entire SPL at once, along with algorithms to
perform model checking using such a model.

As on the single-product level, both state-based variants [9, 10] and event-based variants [5, 6]
of such formalisms have been used. However, no research has been done on the relationships
between these two types of models on the product-family level. Therefore it is unknown whether
event-based models and state-based models on the product-family level are equally expressive,
as is the common consensus on the single-product level. Hence, in this thesis we look into the
following research question:

Are event-based models and state-based models on the product-family level equally expressive?

8 /department of computer science
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Secondly, as stated in the previous section, equivalences are powerful tools in the process of
model checking, as they allow for state space reduction. Therefore it is desirable that equiv-
alences are developed for the product-family level models, as well as methods to utilize these
equivalences for the task of state space reduction. Hence, besides the defined research question,
we have the following research goal:

Develop an algorithm to perform state space reduction on product-family level models.

1.3 Results and outline

In this thesis we look into several equivalences for both state-based and event-based models
of SPL. The state-based model has been used by Classen et al. [10, 9] to perform product-
family based verification. A different method to perform family-based verification using event-
based models was proposed by Ter Beek & De Vink [5, 6]. In order to obtain some insights
in the similarities and differences of these approaches, we investigate how these two types of
models and the equivalences defined on them correspond to each other. For this purpose we
define embeddings to convert between state-based and event-based models. We show that these
embeddings preserve and reflect one of the defined equivalences.

Furthermore, we use the proposed equivalences to define minimal representations of both
types of models. Subsequently, we design an algorithm that calculates one of these minimal
representations for the event-based model. Using the defined embeddings, we show that state
space minimization in one world does not completely correspond to minimization in the other
world. In order to work around this issue, we propose small changes to the embeddings and the
minimization methods. With this changes into place, we are able to show that it is possible to
minimize a state-based model by minimizing the embedded artifact in the event-based world.
This result indicates that event-based and state-based models may be equally expressive. Also,
it proves that we can apply our state space reduction algorithm for event-based models to
state-based models as well.

As a final contribution we perform a small case study to investigate the practical usefulness
of the proposed state space reduction algorithm for event-based models. We find that applying
this technique greatly speeds up the verification process.

The remainder of this document consists of the following chapters. We start with some
preliminaries regarding the formal description of SPL in Chapter 2. Chapter 3 describes the
models we will be working with. Chapter 4 defines several equivalence relations on these mod-
els, and in Chapter 5 formal definitions of minimal representations of the models are given. In
Chapter 6 we describe an algorithm for reduction of one of the models, using one of the equiv-
alences, and Chapter 7 contains theoretical results about the possibilities of model reduction
using transformation to a different type of model. Lastly, we developed a toolset for performing
SPL reduction and verification using mCRL2, and the results of a small case study using this
toolset are presented in Chapter 8. We conclude with Chapter 9.

/department of computer science 9
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Chapter 2

Preliminaries

This chapter contains preliminaries on the formal descriptions of SPL, as well as on the formal
descriptions of system processes. Lastly, formal description of system requirements are discussed.

2.1 A formal description of SPL

SPL are commonly modeled by feature diagrams (FD). In order to use such a diagram, each
product is represented as a set of features, where some features are mandatory, and hence are
present in all products, and others are optional, and hence represent the differences between the
products of the SPL. An example of an FD is shown in Figure 2.1.

Figure 2.1: A feature diagram describing a software product line of vending machines.

10 /department of computer science
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We see that the FD specifies exactly which combinations of features are allowed, using
different constraints. For a detailed overview of FD we refer to [27]. The example FD describes
a software product line of vending machines. Each vending machine serves coffee, and may
additionally serve tea and/or water. Moreover, a vending machine may serve free drinks, and
it may have a cancel option. Additionally, the FD expresses that water can only be served as a
free drink, and that the cancel feature is not available for machines that serve free drinks.

For the remainder of this thesis we will assume we are talking about a single SPL. For
simplicity, we will abstract from the feature diagram that specifies this SPL. Instead, our SPL
is specified by a tuple (F,P), where F is the set of features of the SPL, and P ⊆ 2F is the set of
products, where each product is a subset of the set of features.

We will refer to the set B(F) of boolean expressions over the set of features as feature
expressions. Each feature expression represents a set of products. Specifically, the semantics of
a feature expression ϕ is the set of all products that satisfy ϕ.

We say a product P ∈ P satisfies a feature expression ϕ, denoted as P |= ϕ, if and only if ϕ
evaluates to true when each boolean variable in ϕ corresponding to a feature that is included
in P is set to true, and each boolean variable in ϕ corresponding to a feature that is not included
in P is set to false. If P does not satisfy ϕ, this is denoted as P 6|= ϕ.

We define an equivalence relation ∼P over the feature expressions such that two feature
expressions ϕ1, ϕ2 ∈ B(F) are equivalent, denoted as ϕ1 ∼P ϕ2, if and only if

∀P ∈ P : (P |= ϕ1 ⇔ P |= ϕ2).

In a similar fashion, we say that ϕ1 ⇒P ϕ2 if and only if

∀P ∈ P : (P |= ϕ1 ⇒ P |= ϕ2).

We will use ϕ̂ as a shorthand notation for [ϕ]∼P
, denoting the equivalence class of a feature

expression ϕ under the equivalence ∼P. We will use B̂(F) to denote the set of all equivalence
classes of feature expressions.

Lastly, consider two functions f : D → B(F) and g : D → B(F), for some domain D. We say
that f is stronger than g if and only if ∀d ∈ D : f(d) ⇒P g(d).

In the next section we continue by discussing formal descriptions of system processes.

2.2 Formal descriptions of system processes

As mentioned before, thoroughly testing software is a necessary step in the development process.
When working with safety critical systems it may even be considered the most important step.
In order to make sure that such a system satisfies all requirements, formal descriptions can be
made of both the system behavior and the requirements.

As mentioned before, the system process is the behavior of the system. A common way
to describe a system process is by using process algebraic expressions, which are mathematical
high-level descriptions of interactions, communications and synchronizations between multiple
processes. A small example of a process algebraic description of a vending machine is shown
below.

Machine =
∑

b:B

receive(b) · deliver(b) · Machine

/department of computer science 11
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The vending machine receives an order for a certain beverage b (for instance coffee) from the set
of all possible beverages B, which contains tea, coffee and water in our example from Figure 2.1.
The machine delivers a cup of this beverage and starts the same process again.

A process algebraic expression in turn describes a transition system. A transition system
consists of states and transitions. Each state represents a different status of the system, and
the transitions represent possible changes in the system status. It is also common to describe
a system process directly using a transition system, without an intermediate process algebraic
description. A small example of a possible transition system for a vending machine is shown in
Figure 2.2.

coffee

deliver coffee

tea

deliver tea

Figure 2.2: Transition system describing a vending machine serving coffee and tea.

In order to perform model checking, formal descriptions of both the system behavior and
the requirements the system needs to satisfy are needed. Hence, in the next section we continue
by discussing the formal description of system requirements.

2.3 Formal description of system requirements

The requirements that a system needs to satisfy are typically formalized using some logic, for
instance a modal logic. We will refer to such a formalized requirement as a property. An example
of a property in the modal µ-calculus is:

[tea . !deliver_tea] false

This property states that the situation where a tea action is followed by any action other than
deliver tea can never happen. In other words, this property states that a tea action (a cus-
tomer orders tea from the vending machine) must always directly be followed by a deliver tea

action (the vending machine delivers a cup of tea to the customer), or by no action at all (the
machine is unresponsive for some reason).

Regarding model checking on SPL, we say that an SPL satisfies a property if and only if all
of its products satisfy this property.

Definition 2.1. An SPL consisting of the set of products P satisfies a property if and only if
all products in P satisfy this property.

This definition immediately limits the types of logics we can use to describe the properties
an SPL should satisfy. Each property should be such that we know how to verify whether a
single product of the SPL satisfies this property. Whether we know how to do this depends
both on the logic the property is expressed in, and on the type of model describing the process
of this single product.

12 /department of computer science
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Chapter 3

Models

As discussed in Chapter 1, a possible way to describe a process is by using a transition sys-
tem. Two common variants of transition systems are Kripke Structures (KS) [20] and Labeled
Transition Systems (LTS) [19]. As both models are variants of transition systems, they both
use states to represent the status of the system, and transitions to represent possible changes in
system status. The models differ in the way additional information is added.

KS are so-called state-based models, implying that this information is added to the states.
Each state is labeled with a set of atomic propositions, where each proposition gives some
information about the current state of the system. An example of such a proposition could
be tea ordered. In the setting of our vending machine example, a state labeled with this
proposition would represent a system status where tea has been ordered by the customer, but
it is not yet delivered by the machine.

The other model, LTS, is called an event-based model. In this type of model the additional
information is added to the transitions. Each transition is labeled with a single action, which
indicates the event that is happening during a change of the system status. An example of an
action could be deliver tea. In an LTS modeling the vending machine process, a transition
labeled with this action would indicate that tea is being delivered by the machine, and hence
could indicate a system status change from tea ordered to idle, for example.

As becomes clear in the above example, the semantics of state-based and event-based models
are inevitably intertwined, as changes in state-information are caused by events happening in
the system, and actions cause a change in system status. Therefore it could make sense to
construct a model that is both state- and event-based. Such a transition system is sometimes
referred to as a Doubly Labeled Transition System (DLTS) [14]. However, most model checking
techniques are designed for either KS or LTS, and hence most tools for model checking use either
KS or LTS as their underlying semantics. In practice it is therefore difficult to perform model
checking on a DLTS.

In [10], Featured Transition Systems are introduced to represent the behavior of an entire
product-family, instead of that of a single system. However, this model is actually based on
DLTS, as it adds information to its states as well as to its transitions. As model checking
on DLTS is difficult, the algorithms proposed by Classen et al. in [10, 9] to perform model
checking on these Featured Transition Systems only make use of state information, and ignore
the transition labeling. On the other hand, in [5, 6], Ter Beek & De Vink worked around
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this issue by ignoring the state information in Featured Transition Systems, instead using the
transition labeling. In order to be able to compare both methods, in this chapter we give formal
definitions of both versions of Featured Transition Systems. That is, in Section 3.1 we present
a formal definition of the pure state-based version used by Classen et al., and in Section 3.2
we give a formal definition of the pure event-based version as used by Ter Beek & De Vink.
Furthermore, we discuss how these models correspond to their single-product counterparts KS
and LTS, respectively. This correspondence will play a key role in the remainder of this thesis,
as it allows to lift properties already proven on the single-product level to the product-family
level.

3.1 State-based models

We first recall the formal definition of KS.

Definition 3.1. A Kripke Structure is a tuple ks = (S, AP , →, L, s∗), where

• S is a finite set of states,

• AP is a finite set of atomic propositions,

• → ⊆ S × S is the transition relation,

• L : S → 2AP is the state labeling function,

• s∗ ∈ S is the initial state.

We introduce some shorthand notation regarding the transition relation. If (s, s′) ∈ →, this
is denoted as s −→ s′, and we write s −→ as an abbreviation for ∃s′ ∈ S : s −→ s′.

Two KS using the same set of atomic propositions can be merged into a single KS.

Definition 3.2. Let ks i = (Si, AP , →i, Li, s∗ i), for i ∈ {1, 2}, be two KS. We define the
disjoint union of ks1 and ks2, denoted ks1 ⊎ ks2, as the KS

(S1 ⊎ S2, AP , →1 ⊎→2, L1 ⊎ L2, s∗ 1 ).

Now we give the definition of the state-based model for product-families as used by Classen
et al.. We will refer to this model as Feature Kripke Structure (FKS).

Definition 3.3. A Feature Kripke Structure (FKS) is a tuple fks = (S, AP , θ, L, s∗), where

• S is a finite set of states,

• AP is a finite set of atomic propositions,

• θ : S × S → B(F) is the transition constraint function,

• L : S → 2AP is the state labeling function,

• s∗ ∈ S is the initial state.
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In this definition the transition relation → as defined for KS is replaced by the transition
constraint function θ. For each transition (s, t) ∈ S × S, a product P ∈ P may satisfy the
feature expression attached to this transition (P |= θ(s, t) ), in which case the transition (s, t) is
enabled for the product P . In case P does not satisfy the feature expression, the transition is
not enabled for P .

In the special case that an SPL consists of only a single product, we have that ϕ ∼P true or
ϕ ∼P false, for each feature expression ϕ ∈ B(F). The result is that each transition in an FKS
expressing the behavior of this SPL is either enabled or disabled for all products. Hence, the
product-family level model is in this case equivalent to a single-product level model, which is
intuitive as it indeed describes the behavior of a single product.

An example FKS expressing the behavior of the software product family of vending machines
from Figure 2.1 is shown in Figure 3.1.

idle

money inserted

ready for order coffee ordered beverage served

water ordered

tea ordered

¬f

f

¬f

x

c c

t t

w w

m

Figure 3.1: Feature Kripke Structure expressing the behavior of the vending machine SPL
described by the FD from Figure 2.1. Each state is labeled with exactly one atomic proposition,
which is depicted in the state. The transitions are labeled with feature expressions.

Example. The machine starts in the idle state (the state labeled with the atomic proposition
idle), from where it is possible to continue to the ready for order state, either directly if
the f(ree) feature is present, or by passing through the money inserted state if this feature is
not present. From the ready for order state it is possible to go back to the idle state if the
x (cancel) feature is present, and drinks can be ordered for which the corresponding feature is
present. From any of the beverage ordered states the process will continue to the beverage

served state, after which the machine returns to being idle.

We introduce some shorthand notation regarding the transition constraint function. If

θ(s, s′) = ψ this is denoted as s
ψ
−→ s′, and we write s −→ s′ if θ(s, s′) 6∼P false. Similar to

KS, we use s −→ as an abbreviation for ∃s′ ∈ S′ : s −→ s′. Furthermore, we define a generalized
version of the transition constraint function, θ̌ : S × S → B(F). Given a product P ∈ P, this
function is constructed such that P |= θ̌(s, t) if and only if P can reach state t from state s.
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Definition 3.4. Let fks = (S, AP , θ, L, s∗) be an FKS. The generalized transition constraint
function θ̌ : S × S → B(F) for fks is the strongest function such that, for all s, t, u ∈ S:

• θ̌(s, s) ∼P true

• θ̌(s, t) ∧ θ(t, u) ⇒P θ̌(s, u)

Using the generalized transition constraint function we define the reachability function for
FKS to denote which states in an FKS are reachable for which products, from the initial state.

Definition 3.5. Let fks = (S, AP , θ, L, s∗) be an FKS. The reachability function ̺ : S → B(F)
for fks is such that, for all s ∈ S:

̺(s) = θ̌(s∗, s)

As with KS, we can merge two FKS into a single FKS.

Definition 3.6. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS. We define the
disjoint union of fks1 and fks2, denoted fks1 ⊎ fks2, as the FKS

(S1 ⊎ S2, AP , θ
′, L1 ⊎ L2, s∗ 1 ),

where θ′ is such that, for all s, t ∈ S1 ⊎ S2:

θ′(s, t) =





θ1(s, t) if s, t ∈ S1
θ2(s, t) if s, t ∈ S2
false otherwise

The KS of a single product of the SPL can be extracted from the FKS by projecting on the
transitions that are enabled for this product.

Definition 3.7. The projection of an FKS fks = (S, AP , θ, L, s∗) to a product P ∈ P, denoted
as fks|P , is the KS ks = (S, AP , →, L, s∗), where → ⊆ S × S, such that:

∀(s, t) ∈ S × S : ( (s, t) ∈ → ⇔ P |= θ(s, t) ).

The KS resulting from projecting the FKS of Figure 3.1 on the product {m, b, c} is shown
in Figure 3.2.

idle money inserted ready for order coffee ordered

tea ordered water ordered

beverage served

Figure 3.2: Projection of the FKS from Figure 3.1 to the product {m, b, c}.
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Example. This product only consists of mandatory features, and therefore its behavior is very
basic. The machine starts in the idle state, continues to the money inserted and ready for order
states. Hereafter which it passes through the coffee ordered and beverage inserted states, and
then returns to the idle state. All transitions associated with the t(ea), w(ater), f(ree) and x
(cancel) are removed. States associated with these features are unreachable, but still present.

As an intermediary result, we prove that the projection operation distributes over disjoint
union. The actual proof is omitted here, and can be found in Appendix A.

Lemma 3.1. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let P ∈ P be a
product. We have:

(fks1 ⊎ fks2)|P = fks1|P ⊎ fks2|P

Recall Definition 2.1, stating that an SPL satisfies a certain property if and only if this
property is satisfied by all its products. Hence an FKS satisfies a property if and only if the
property is satisfied by its projection on each product.

Definition 3.8. An FKS fks satisfies a property φ, denoted as fks |= φ, iff ∀P ∈ P : fks |P |= φ.

3.2 Event-based models

We first recall the formal definition of LTS.

Definition 3.9. A Labeled Transition System is a tuple lts = (S, A, →, s∗), where

• S is a finite set of states,

• A is a finite set of actions,

• → ⊆ S × (A ∪ {τ}) × S is the transition relation,

• s∗ ∈ S is the initial state.

In the setting of event-based models, the special action τ is used to represent internal behavior
of a system, i.e. events that are not visible by observing the system from the outside world.
Transitions labeled with the action τ are also referred to as silent transitions or silent steps.
The set of actions A is assumed not to include τ , and we use Aτ as a shorthand notation for
A ∪ {τ}.

We also introduce some shorthand notation regarding the transition relation. If (s, α, s′) ∈
→, this is denoted as s

α
−→ s′, and we write s

α
−→ as an abbreviation for ∃s′ ∈ S : s

α
−→ s′. Two

LTS using the same set of actions can be merged into a single LTS.

Definition 3.10. Let lts i = (Si, A, →i, s∗ i), for i ∈ {1, 2}, be two LTS. We define the disjoint
union of lts1 and lts2, denoted lts1 ⊎ lts2, as the LTS

(S1 ⊎ S2, A, →1 ⊎→2, s∗ 1 ).

Now we give the definition of the event-based model for product-families as used by Ter Beek
& De Vink, which we will refer to as Feature Labeled Transition Systems (FTS).
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Definition 3.11. A Feature Labeled Transition System is a tuple fts = (S, A, θ, s∗), where

• S is a finite set of states,

• A is a finite set of actions,

• θ : S ×A× S → B(F) is the transition constraint function,

• s∗ ∈ S is the initial state.

Similar to the state-based model, the transition relation → as defined for LTS is replaced by
the transition constraint function θ. For each transition (s, α, t) ∈ S ×Aτ ×S, a product P ∈ P

may satisfy the feature expression attached to this transition (P |= θ(s, α, t)), in which case the
transition (s, α, t) is enabled for the product P . In case P does not satisfy the feature expression,
the transition is not enabled for P .

As with FKS, each transition is either enabled or disabled for all product in the special
case that an FTS defines the behavior of an SPL consisting of a single product. Hence, the
product-family level model is in this case equivalent to the single-product level model.

An example FTS expressing the behavior of the software product family of vending machines
from Figure 2.1 is shown in Figure 3.3.

pay | ¬f

skip | f

change | ¬f

cancel | x

coffee | c deliverCoffee | c

tea | t deliverTea | t

water | w

deliverWater | w

takeCup | m

Figure 3.3: Feature labeled transition system expressing the behavior of the vending machine
SPL described by the FD from Figure 2.1. The transitions are labeled with actions (left) and
feature expressions (right).

Example. From the initial state it is possible to pay and get change, or to skip this step if the
f(ree) feature is present. Then is possible to go back to the initial state if the x (cancel) feature
is present, or a beverage can be ordered for which the corresponding feature is present. After
ordering a beverage, the machine will deliver the beverage, after which the cup must be taken
out of the machine to return to the initial state.
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We introduce some shorthand notation regarding the transition constraint function. If

θ(s, α, s′) = ψ this is denoted as s
α|ψ
−−→ s′, and we write s

α
−→ s′ if θ(s, α, s′) 6∼P false. As

for LTS, we use s
α
−→ as an abbreviation for ∃s′ ∈ S′ : s

α
−→ s′. Furthermore, we again define a

generalized version of transition constraint function, θ̌ : S×S → B(F). Given a product P ∈ P,
this function is constructed such that P |= θ̌(s, t) if and only if P can reach state t from state s.

Definition 3.12. Let fts = (S, A, θ, s∗) be an FTS. The generalized transition constraint
function θ̌ : S × S → B(F) for fts is the strongest function such that, for all s, t, u ∈ S and for
all α ∈ Aτ :

• θ̌(s, s) ∼P true

• θ̌(s, t) ∧ θ(t, α, u) ⇒P θ̌(s, u)

Using the generalized transition constraint function we define the reachability function for
FTS to denote which states in an FTS are reachable for which products, from the initial state.

Definition 3.13. Let fts = (S, A, θ, s∗) be an FTS. The reachability function ̺ : S → B(F)
for fts is such that, for all s ∈ S:

̺(s) = θ̌(s∗, s)

As with LTS, we can merge two FTS into a single FTS.

Definition 3.14. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS. We define the disjoint
union of fts1 and fts2, denoted fts1 ⊎ fts2, as the FTS

(S1 ⊎ S2, A, θ
′, s∗ 1 ),

where θ′ is such that, for all s, t ∈ S1 ⊎ S2 and for all α ∈ Aτ :

θ′(s, α, t) =





θ1(s, α, t) if s, t ∈ S1
θ2(s, α, t) if s, t ∈ S2
false otherwise

The LTS of a single product of the SPL can be extracted from the FTS by projecting on the
transitions that are enabled for this product.

Definition 3.15. The projection of an FTS fts = (S, A, θ, s∗) to a product P ∈ P, denoted
as fts |P , is the LTS lts = (S, A, →, s∗), where → ⊆ S ×A× S, such that:

∀t ∈ S ×A× S : t ∈ → ⇔ P |= θ(t).

The LTS resulting from projecting the FTS of Figure 3.3 on the product {m, b, c} is shown
in Figure 3.4.

Example. This product only consists of mandatory features, and therefore its behavior is very
basic. From the initial state the actions pay, change, coffee, deliverCoffee and takeCup can
be performed consecutively to return to the initial state. All transitions associated with the
t(ea), w(ater), f(ree) and x (cancel) are removed. States associated with these features are
unreachable, but still present.
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pay change coffee deliverCoffee

takeCup

Figure 3.4: Projection of the FTS from Figure 3.3 to the product {m, b, c}.

As with state-based models, the projection operation distributes over disjoint union. Again
the proof is omitted here. It can be found in Appendix A.

Lemma 3.2. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let P ∈ P be a product.
We have:

(fts1 ⊎ fts2)|P = fts1|P ⊎ fts2|P

An FTS satisfies a property if and only if the property is satisfied by its projection on each
product.

Definition 3.16. An FTS fts satisfies a property φ, denoted as fts |= φ, iff ∀P ∈ P : fts |P |= φ.

Now that we have formally defined both state-based and event-based models to describe
the behavior of product families, and how these models relate to the underlying models of each
individual product, we can start to define equivalences for these models. This is what we will
be doing in the next chapter. However, we would first like to point an interesting difference
between the models on the product-family level and the models on single-product level.

As discussed within the first few paragraphs of this chapter, at the single-product level it is
the case that all additional information in KS is added to the states, and in LTS all additional
information is added to the transitions. In order to transform the models to product-family
level, in both cases one extra dimension of such information was added: the feature dimension.
However, in both the state-based and event-based models this extra dimension of information
was added to the transitions, which is fine for the event-based model, but seems to violate the
property of state-based models that all additional information should be added to the states.
Although this approach is counterintuitive from a definitional point of view, for our purposes it
is necessary to define the product-family level state-based model as in [10, 9].

Furthermore, the additional feature information describes which parts of the model are
present for which products. In other words, it describes which parts of the model are ‘enabled’.
Whereas being enabled is a very intuitive notion for transitions, it is not clear what it means
for a state to be enabled. Defining a semantics for this is something we leave to future work.

While keeping this discrepancy between the state-based models on single-product level and
those on product-family level in mind, we continue by defining equivalences for FTS and FKS.
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Chapter 4

Equivalences

As mentioned in Chapter 1, equivalence relations are widely used in model checking, mostly to
perform state space reduction. In this chapter we consider two well-known equivalence relations:
strong bisimulation and branching bisimulation. For both the state-based model and event-based
model we will recall the original definitions of these relations, and then proceed with extending
the relations to the product-family level.

4.1 Strong bisimulation

(Strong) bisimulation for processes was proposed in [24, 23]. It considers two processes to
be equal if they can execute the same sequences of actions to again reach equivalent states.
Strong bisimulation is the finest equivalence on Van Glabbeek’s linear time - branching time
spectrum [17, 15].

In this section we will propose a generalized version of bisimulation for product-family level
models, for both state-based models (Section 4.1.1) and event-based models (Section 4.1.2). We
investigate the relation between the newly defined equivalences and the original equivalences
on the single-product level. Using the established relationship, we will lift some important
properties of bisimulation from the single-product level to the product-family level.

4.1.1 State-based models

We start by giving the definition of strong bisimulation for Kripke Structures. Using this
definition we define when two states of a KS are bisimilar, and when two KS are bisimilar.

Definition 4.1. Let ks = (S, AP , →, L, s∗) be a KS. A symmetric relation R on S is called a
strong bisimulation relation for KS if and only if for all states s, t ∈ S such that (s, t) ∈ R, the
following conditions are satisfied:

1. L(s) = L(t).

2. If s −→ s′, for some s′ ∈ S then there exists t′ ∈ S such that t −→ t′ and (s′, t′) ∈ R.

We say two states s, t ∈ S are (strongly) bisimilar, denoted by ks |= s ↔ t, if and only if
there exists a strong bisimulation relation R for KS on ks such that (s, t) ∈ R.

/department of computer science 21



2IM91 Master’s Thesis technische universiteit eindhoven

Let ks ′ = (S′, AP , →′, L′, s′∗) be a second KS. We say ks and ks ′ are (strongly) bisimilar,
denoted by ks ↔ ks ′ if and only if ks ⊎ ks ′ |= s∗ ↔ s′∗.

In [23] it has been established that bisimilarity for KS is an equivalence relation.

Lemma 4.1. Bisimilarity for KS (↔) is an equivalence.

Next we adapt the definition of bisimulation of KS to be applicable in FKS. We do this
by extending the bisimulation relation with feature expressions, in such a way that two states
related by a feature expression ϕ are bisimilar for all products satisfying ϕ.

Definition 4.2. Let fks = (S, AP , θ, L, s∗) be an FKS. A relation R ⊆ S × B̂(F)× S is called
a (strong) feature bisimulation relation for FKS if and only if R is symmetric, i.e. (s, ϕ̂, t) ∈ R
iff (t, ϕ̂, s) ∈ R, and if for all states s, t ∈ S and for all feature expressions ϕ ∈ B(F) such that
(s, ϕ̂, t) ∈ R, the following conditions are satisfied:

1. L(s) = L(t).

2. If s
ψ
−→ s′ for some s′ ∈ S and for some ψ ∈ B(F), then there exist states t1 . . . tn ∈ S and

feature expressions ψ1 . . . ψn, ϕ1 . . . ϕn ∈ B(F), for some n ∈ N, such that

t
ψi−→ ti and (s′, ϕ̂i, ti) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n ψi ∧ ϕi.

The first condition of this definition is equal to the first condition of bisimulation for KS,
stating that two states can only be related if they have the same label. The second condition

states that if two states s and t are related for a feature expression ϕ, and s
ψ
−→ s′, then t must be

able to mimic this transition for all products that satisfy ϕ and ψ. However, different outgoing
transitions of t may be used to mimic the step for different products.

Alternatively, condition 2 could be written as

∀s′ ∈ S : (ϕ ∧ θ(s, s′) ⇒P

∨
{ θ(t, t′) ∧ ϕ′ | (s′, ϕ̂′, t′) ∈ R } ).

Here, we do not demand a transition is actually present between s and s′; if there is none, then
θ(s, s′) ∼P false, and hence the condition is trivially satisfied. Similarly, we do not demand there
is a transition between t and t′; if there is none, then θ(t, t′) ∼P false, and hence t′ simply does
not contribute to satisfying the condition.

The transfer diagram for feature bisimulation for FKS is shown in Figure 4.1.
As with bisimulation for KS, we can use a feature bisimulation relation to determine when

two states are feature bisimilar, and when two FKS are feature bisimilar. An example of an
FKS that is feature bisimilar to that of Figure 3.1 is shown in Figure 4.2.

Example. In Figure 4.2 all vending machines with the f(ree) feature have a separate ready

for order state, but this does not change the behavior of the system. Also note that there is
no transition from the ready for order state for paid products to the water ordered state.
This also does not change the behavior, since there are no products in the SPL that satisfy the
feature expression ¬f ∧ w.
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ψnψi
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ϕ̂1

ϕ̂i

ϕ̂n

Figure 4.1: Transfer diagram for strong feature bisimulation for FKS. P and Q are sets of atomic
propositions.

Definition 4.3. Let fks = (S, AP , θ, L, s∗) be an FKS. We say two states s, t ∈ S are (strongly)

feature bisimilar for a feature expression ϕ ∈ B(F), denoted by fks |= s
ϕ
←→f t if and only if

there exists a strong feature bisimulation relation R for FKS on fks such that (s, ϕ̂, t) ∈ R.

Furthermore, we use fks |= s ↔f t as shorthand notation for fks |= s
true
←−→f t.

Let fks ′ = (S′, AP , θ′, L′, s′∗) be a second FKS. We say fks and fks ′ are (strongly) feature

bisimilar for a feature expression ϕ ∈ B(F), denoted by fks
ϕ
←→f fks ′ if and only if fks ⊎ fks ′ |=

s∗
ϕ
←→f s

′
∗. Furthermore, we use fks ↔f fks ′ as shorthand notation for fks

true
←−→f fks ′.

idle money inserted

ready for order

coffee ordered beverage served

water ordered

tea ordered

ready for order

¬f

¬fx
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t

w

w

m

f c
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Figure 4.2: FKS that is feature bisimilar to that of Figure 3.1.

The next step is to establish how feature bisimilarity on the product-family level relates
to bisimilarity on the single-product level. In order to do this we use the relation between
the product-family level model and the single-product-level models, which is defined by the
projection operation (Definition 3.7). Formalizing the relation between feature bisimilarity and
bisimilarity will allow us to lift properties proven about bisimilarity on the single-product level
to the newly defined feature bisimilarity on the product-family level. An example of such a
property is Lemma 4.1, stating that bisimilarity for KS is an equivalence.

First we prove that if two states in an FKS are feature bisimilar for some feature expression φ,
this implies that those states are bisimilar in the projected KS of all products that satisfy φ.
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Theorem 4.1. Let fks = (S, AP , θ, L, s∗) be an FKS, and let s1, s2 ∈ S and φ ∈ B(F). It
holds that

fks |= s1
φ
←→f s2 ⇒ ∀P ∈ P : (P |= φ ⇒ fks|P |= s1 ↔ s2).

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, and let R be a feature bisimulation relation on
fks such that (s1, φ̂, s2) ∈ R, for some s1, s2 ∈ S and φ ∈ B(F). Let P ∈ P be a product such
that P |= φ. We define the relation

R|P = {(s, t) | (s, ϕ̂, t) ∈ R ∧ P |= ϕ}.

We have to show that R|P is a bisimulation relation on the KS fks|P = (S, AP , →, L, s∗)
relating s1 and s2. Since (s1, φ̂, s2) ∈ R and P |= φ, we have that s1R|P s2. Hence, it remains
to establish that R|P is a bisimulation relation.

To show that R|P is a bisimulation relation, we first have to show that it is symmetric. Pick
states s, t ∈ S such that (s, t) ∈ R|P . By definition of R|P this implies that (s, ϕ̂, t) ∈ R∧P |= ϕ,
for some ϕ ∈ B(F). Since R is symmetric we also have (t, ϕ̂, s) ∈ R, and hence (t, s) ∈ R|P ,
which confirms that R|P is symmetric.

Next, we have to prove that the pairs of states (s, t) ∈ S × S such that (s, ϕ̂, t) ∈ R and
P |= ϕ, for some ϕ ∈ B(F), satisfy the conditions from Definition 4.1.

Since R is a feature bisimulation relation on fks and (s, ϕ̂, t) ∈ R, by Definition 4.2 we have
L(s) = L(t), and hence the first condition is satisfied.

Suppose that s −→ s′ for some s′ ∈ S. It must be shown that

• there exists t′ ∈ S such that t −→ t′ and s′R|P t
′.

By Definition 3.7 it follows that s
ψ
−→ s′ in fks, for some ψ ∈ B(F) such that P |= ψ. Since

(s, ϕ̂, t) ∈ R for some ϕ ∈ B(F) such that P |= ϕ, by Definition 4.2 we have that there exist
states ti ∈ S and feature expressions ψi, ϕi ∈ B(F), for 1 ≤ i ≤ n, for some n ∈ N, such that

t
ψi−→ ti and (s′, ϕ̂i, ti) ∈ R,

for all 1 ≤ i ≤ n, and such that

∀P ∈ P : P |= ϕ ∧ ψ ⇒ P |=
∨

1≤i≤n ψi ∧ ϕi.

Since P |= ϕ∧ψ it follows that P |=
∨

1≤i≤n ψi ∧ϕi. We pick i such that P |= ψi ∧ϕi. Since

t
ψi
−→ ti, we have that t −→ ti in fks|P , by Definition 3.7. Furthermore, since (s′, ϕ̂i, ti) ∈ R and

P |= ϕi, by definition of R|P we have that s′R|P ti.
This satisfies the second condition, confirming that R|P is indeed a bisimulation relation on

fks|P .

As a corollary we lift this result to two FKS. The proof is included in Appendix B.

Corollary 4.1. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let ϕ ∈ B(F)
be a feature expression. It holds that

fks1
ϕ
←→f fks2 ⇒ ∀P ∈ P : P |= ϕ ⇒ fks1|P ↔ fks2|P .
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Conversely, given some FKS, we prove that if two states are bisimilar in the projected KS of
all products satisfying some feature expression φ, this implies that those two states are feature
bisimilar in the FKS for φ. However, this only holds for states that are labeled with the same
set of atomic propositions. Without this constraint we could use this theorem to derive that
every pair of states in an FKS is bisimilar for false, which is not the case, since two states that
are labeled differently can never be related by a feature bisimulation relation.

Theorem 4.2. Let fks = (S, AP , θ, L, s∗) be an FKS, let s1, s2 ∈ S such that L(s1) = L(s2),
and let φ ∈ B(F). It holds that

(∀P ∈ P : P |= φ ⇒ fks|P |= s1 ↔ s2) ⇒ fks |= s1
φ
←→f s2.

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, let s1, s2 ∈ S be two states such that L(s1) =
L(s2), and let φ ∈ B(F) be a feature expression. For all products P ∈ P such that P |= φ, let
R|P be a bisimulation relation on fks|P , such that (s1, s2) ∈ R|P . For all products P ∈ P such
that P 6|= φ, let R|P = ∅ be the empty bisimulation relation.

We define the relation

R = { (s, ϕ̂, t) | L(s) = L(t) ∧ ∀P ∈ P : P |= ϕ⇔ (s, t) ∈ R|P }.

We have to show that R is a feature bisimulation relation on fks such that (s1, φ̂, s2) ∈ R.
Since (s1, s2) ∈ R|P ⇔ P |= φ, for all P ∈ P, and L(s1) = L(s2), it immediately follows that
(s1, φ̂, s2) ∈ R, by definition of R. Hence, it remains to establish that R is a feature bisimulation
relation.

To show that R is a feature bisimulation relation, we first have to show that it is symmetric.
Pick states s, t ∈ S and feature expression ϕ ∈ B(F) such that (s, ϕ̂, t) ∈ R. By definition of
R this implies that L(s) = L(t) ∧ ∀P ∈ P : (P |= ϕ ⇔ (s, t) ∈ R|P ). Since R|P is symmetric,
for each P ∈ P, we also have L(t) = L(s) ∧ ∀P ∈ P : (P |= ϕ ⇔ (t, s) ∈ R|P ), and hence
(t, ϕ̂, s) ∈ R, which confirms that R is symmetric.

Next, we have to prove that tuples (s, ϕ̂, t) ∈ S × B(F) × S such that L(s) = L(t) and
∀P ∈ P : (P |= ϕ⇔ (s, t) ∈ R|P ), satisfy the conditions from Definition 4.2.

By construction we have that L(s) = L(t). Hence the first condition is satisfied.

Suppose that s
ψ
−→ s′, for some s′ ∈ S and for some ψ ∈ B(F). It must be shown that there

exist states ti ∈ S and feature expressions ψi, ϕi ∈ B(F), for 1 ≤ i ≤ n, for some n ∈ N, such
that

t
ψi−→ ti and (s′, ϕ̂i, ti) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n ψi ∧ ϕi.

By the definition of R it follows that for each P ∈ P such that P |= ϕ, we have that
(s, t) ∈ R|P . For each P ∈ P such that P |= ψ, it is the case that s −→ s′ in fks|P , by
Definition 3.7. Hence, for each P ∈ P such that P |= ϕ∧ψ, by definition of bisimilarity for R|P
it is the case that t −→ tP in fks|P , for some tP ∈ S, such that (s′, tP ) ∈ R|P . By definition of

projection, this means that t
ψP−−→ tP in fks , for some ψP ∈ B(F) such that P |= ψP . Furthermore,
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by definition of R it follows that (s′, ϕ̂P , tP ) ∈ R, for some ϕP ∈ B(F) such that P |= ϕP . Let
P′ = {P ∈ P | P |= ϕ ∧ ψ} be the set of all products satisfying ϕ ∧ ψ. We conclude that

ϕ ∧ ψ ⇒P

∨
P ′∈P′ ψP ′ ∧ ϕP ′ ,

which satisfies the second condition for feature bisimilarity, proving that relation R is indeed
a feature bisimulation relation on fks.

Note that it may be possible to remove the constraint of L(s1) = L(s2) from the above
theorem if feature information were to be added to the states of the FKS. By including feature
information in the state labeling function it is possible to express that a state has labeling {a}
for products satisfying f , and labeling {b} for products satisfying ¬f , for example. If such
information were present in the FKS we could adapt the feature bisimulation requirements
accordingly, by stating that two states only need to agree on the labeling for the required
products in order to be feature bisimilar. This would lead to each pair of states being trivially
bisimilar for the feature expression false. However, defining such a model is not in the scope of
this thesis, and hence investigating it is left for future work.

We lift the result from Theorem 4.2 to two FKS. Again, the proof is included in Appendix B.

Corollary 4.2. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS such that L1(s∗ 1) =
L2(s∗ 2), and let ϕ ∈ B(F) be a feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fks1|P ↔ fks2|P ) ⇒ fks1
ϕ
←→f fks2.

With Theorems 4.1 and 4.2 we have proven that being feature bisimilar on product-family
level is equivalent to being bisimilar on the single-product level, under the additional constraint
that states have the same labeling. As a result, it is very easy to lift results about bisimilarity
on the single-product level to feature-bisimilarity on the product-family level. We start by
lifting Lemma 4.1, stating that bisimilarity for KS is an equivalence, to establish that feature
bisimilarity for FKS is an equivalence as well.

Theorem 4.3. Feature bisimilarity (
ϕ
←→f ) for FKS for given ϕ ∈ B(F) is an equivalence relation.

Proof. We have to show that feature bisimilarity is reflexive, symmetric and transitive, for some
feature expression ϕ ∈ B(F). Let fks = (S, AP , θ, L, s∗) be an FKS such that s, t, u ∈ S.

1. We prove reflexivity using s. By reflexivity of bisimilarity for KS (Lemma 4.1), we have
∀P ∈ P : P |= ϕ ⇒ fks |= s ↔ s. Obviously L(s) = L(s), and hence by Theorem 4.2 it

follows that fks |= s
ϕ
←→f s. Hence

ϕ
←→f is reflexive.

2. Suppose that fks |= s
ϕ
←→f t, from which it follows that L(s) = L(t). By Theorem 4.1

it follows that ∀P ∈ P : P |= ϕ ⇒ fks|P |= s ↔ t. By symmetry of bisimilarity for
KS (Lemma 4.1), we have ∀P ∈ P : P |= ϕ ⇒ fks|P |= t ↔ s. Since L(t) = L(s), by

Theorem 4.2 it follows that fks |= t
ϕ
←→f s. Hence

ϕ
←→f is symmetric.
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3. Suppose that fks |= s
ϕ
←→f t and fks |= t

ϕ
←→f u, from which it follows that L(s) = L(t) =

L(u). By Theorem 4.1 it follows that ∀P ∈ P : P |= ϕ⇒ fks |P |= s ↔ t ∧ fks|P |= t ↔ u.
By transitivity of bisimilarity for KS (Lemma 4.1), we have ∀P ∈ P : P |= ϕ ⇒ fks|P |=

s ↔ u. Since L(s) = L(u), by Theorem 4.2 it follows that fks |= s
ϕ
←→f u. Hence

ϕ
←→f is

transitive.

The fact that feature bisimilarity is an equivalence will come in useful when performing
state space minimization, as the equivalence classes defined on an FKS by feature bisimilarity
intuitively can be used as the states for the minimized model.

Related to equivalence, we can show that if states in an FKS are feature bisimilar for different
feature expressions, then transitivity is preserved on a product-by-product basis.

Lemma 4.2. Let fks be an FKS with states s, t and u such that fks |= s
ϕ
←→f t and fks |= t

ψ
←→f u,

for some ϕ,ψ ∈ B(F). Then fks |= s
ϕ∧ψ
←−→f u.

Proof. Let fks = (S,AP , θ, L, s∗) be an FKS with such that s, t, u ∈ S, and such that fks |=

s
ϕ
←→f t and fks |= t

ψ
←→f u, from which it follows that L(s) = L(t) = L(u). By Theorem 4.1 it

follows that ∀P ∈ P : P |= ϕ ⇒ fks |P |= s ↔ t and ∀P ∈ P : P |= ψ ⇒ fks |P |= t ↔ u. By
transitivity of bisimilarity for KS (Lemma 4.1), we have ∀P ∈ P : P |= ϕ∧ψ ⇒ fks|P |= s↔ u.

Since L(s) = L(u), by Theorem 4.2 it follows that fks |= s
ϕ∧ψ
←−→f u.

Finally, we conclude that feature bisimilarity preserves the same properties for FKS as that
strong bisimilarity preserves for KS.

Theorem 4.4. A property is preserved by bisimilarity for KS if and only if this property is
preserved by feature bisimilarity for FKS.

Proof. Let fks1 and fks2 be two FKS such that fks1 ↔f fks2, and let φ be a property that is
preserved by bisimilarity for KS. We have to show that fks1 |= φ⇔ fks2 |= φ.

Assume fks1 |= φ. By Definition 3.8 this is equivalent to ∀P ∈ P : fks1|P |= φ. Since
fks1 ↔f fks2, by Corollary 4.1 we have ∀P ∈ P : fks1|P ↔ fks2|P . Since φ is preserved by ↔, it
follows that ∀P ∈ P : fks2|P |= φ, which is equivalent to fks2 |= φ, by Definition 3.8.

The proof for the implication in the other direction is similar.

The result of this last theorem in particular is very useful, as it allows to reuse all research
done on logics agreeing with bisimulation for KS. In other words, if a logic at some point has
been proven to be preserved by bisimilarity for KS, we can immediately conclude that this logic
is also preserved by feature bisimilarity for FKS.
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4.1.2 Event-based models

In this section we discuss strong bisimulation for event-based models. As the theorems in this
section have proofs that are similar to the proofs of the theorems in Section 4.1.1, the proofs for
these theorems are omitted here. The interested reader can find the full proofs in Appendix B.1.

As with the state-based models, we start by giving the definition of strong bisimulation in
a single-product setting. For event-based models we use Labeled Transition Systems for this
purpose. Using the definition of strong bisimulation we define when two states of an LTS are
bisimilar, and when two LTS are bisimilar.

Definition 4.4. Let lts = (S, A, →, s∗) be an LTS. A symmetric relation R on S is called a
strong bisimulation relation for LTS if and only if for all states s, t ∈ S such that (s, t) ∈ R, the
following transfer condition is satisfied:

1. if s
α
−→ s′, for some s′ ∈ S and for some α ∈ Aτ , then there exists t′ ∈ S such that t

α
−→ t′

and (s′, t′) ∈ R.

We say that two states s, t ∈ S are (strongly) bisimilar, denoted by lts |= s ↔ t if and only
if there exists a strong bisimulation relation R for LTS on lts such that (s, t) ∈ R.

Let lts ′ = (S′, A, →′, s′∗), be a second LTS. We say lts and lts ′ are (strongly) bisimilar,
denoted by lts ↔ lts ′ if and only if lts ⊎ lts ′ |= s∗ ↔ s′∗.

In [23] it has been established that bisimilarity for LTS is an equivalence relation.

Lemma 4.3. Bisimilarity for LTS (↔) is an equivalence.

Next we adapt the definition of bisimulation of LTS to be applicable in FTS. We do this
by extending the bisimulation relation with feature expressions, similar to the approach with
the state-based models. Hence, two states related by a feature expression ϕ are bisimilar for all
products satisfying ϕ.

Definition 4.5. Let fts = (S, A, θ, s∗) be an FTS. A relation R ⊆ S × B̂(F) × S is called a
(strong) feature bisimulation relation for FTS if and only if R is symmetric, i.e. (s, ϕ̂, t) ∈ R
iff (t, ϕ̂, s) ∈ R, and if for all states s, t ∈ S and for all feature expressions ϕ ∈ B(F) such that
(s, ϕ̂, t) ∈ R, the following transfer condition is satisfied:

1. If s
α|ψ
−−→ s′ for some s′ ∈ S, α ∈ Aτ and ψ ∈ B(F), then there exist states t1 . . . tn ∈ S

and feature expressions ψ1 . . . ψn, ϕ1 . . . ϕn ∈ B(F), , for some n ∈ N, such that

t
α|ψi
−−−→ ti and (s′, ϕ̂i, ti) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n ψi ∧ ϕi

The transfer condition is similar to the second condition of feature bisimulation for FKS, and

states that if two states s and t are related for a feature expression ϕ, and s
α|ψ
−−→ s′, then t must

be able to mimic this transition for a superset of all products that satisfy ϕ and ψ. However,
different outgoing α-transitions of t can be used to mimic the step for different products. Two
examples of feature bisimulation relations are shown in Figure 4.3.
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Example. A superset of products is used as it allows for relations of the type shown in the
left part of Figure 4.3. Such a relation is intuitively a valid feature bisimulation relation, as the
two related FTS are equal. However, without the option to use supersets this relation is not
valid. The tuple (s′, f̂ , t′) would have to be added to the relation in order to fulfill the transfer
condition.

If none of the products that satisfy ϕ satisfy ψ, then the transition may be mimicked by
using zero paths, as illustrated in the right part of Figure 4.3.

Alternatively, the condition could be written as

∀α ∈ Aτ∀s
′ ∈ S : (ϕ ∧ θ(s, α, s′) ⇒P

∨
{ θ(t, α, t′) ∧ ϕ′ | (s′, ϕ̂′, t′) ∈ R } ).

As with bisimulation for LTS, we can use the feature bisimulation relation to determine
when two states are feature bisimilar, and when two FTS are feature bisimilar.

Definition 4.6. Let fts = (S, A, θ, s∗) be an FTS. We say that two states s, t ∈ S are (strongly)

feature bisimilar for a feature expression ϕ ∈ B(F), denoted by fts |= s
ϕ
←→f t, if and only if

there exists a strong feature bisimulation relation R for FTS on fts such that (s, ϕ̂, t) ∈ R.

Furthermore, we use fts |= s ↔f t as shorthand notation for fts |= s
true
←−→f t.

Let fts ′ = (S′, A, θ′, s′∗) be a second FTS. We say fts and fts ′ are (strongly) feature bisimilar

for a feature expression ϕ ∈ B(F), denoted by fts
ϕ
←→f fts ′, if and only if fts ⊎ fts ′ |= s∗

ϕ
←→f s

′
∗.

Furthermore, we use fts ↔f fts
′ as shorthand notation for fts

true
←−→f fts

′.

As for the state-based models, we will now establish the relation between feature bisimilarity
on the product-family level and the bisimilarity on the single-product level. First we prove that
if two states in an FTS are feature bisimilar for some feature expression φ, this implies that
those states are bisimilar in the projected LTS of all products that satisfy φ. We furthermore
lift this result to two FTS.

Theorem 4.5. Let fts = (S, A, θ, s∗) be an FTS, and let s1, s2 ∈ S and φ ∈ B(F). It holds
that

fts |= s1
φ
←→f s2 ⇒ ∀P ∈ P : (P |= φ ⇒ fts|P |= s1 ↔ s2).

s

s′

t

t′

s

s′

t

α|f α|f α|¬f

t̂rue

t̂rue

f̂

Figure 4.3: Two valid feature bisimulation relations. (Left) A relation using the option to relate
supersets. (Right) A relation using the option to use zero paths.
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Corollary 4.3. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

fts1
ϕ
←→f fts2 ⇒ ∀P ∈ P : (P |= ϕ ⇒ fts1|P ↔ fts2|P )

Conversely, given some FTS, we prove that if two states are bisimilar in the projected LTS of
all products satisfying some feature expression φ, this implies that those two states are feature
bisimilar for φ in the FTS. Note that two states of an FTS are trivially related for the feature
expression false, which is not true for each pair of states in an FKS, as discussed in the previous
section. Hence, in this event-based setting we obtain the result that being bisimilar on the
single-product level is equivalent to being feature-bisimilar on the product-family level, without
any further constraints.

Theorem 4.6. Let fts = (S, A, θ, s∗) be an FTS, and let s1, s2 ∈ S and φ ∈ B(F). It holds
that

(∀P ∈ P : P |= φ ⇒ fts |P |= s1 ↔ s2) ⇒ fts |= s1
φ
←→f s2.

We again lift this result to two FTS.

Corollary 4.4. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fts1|P ↔ fts2|P ) ⇒ fts1
ϕ
←→f fts2.

As in the state-based setting, we can now easily lift results obtained about bisimilarity on
the single-product level to feature-bisimilarity on the product-family level. We start by lifting
Lemma 4.3, stating the bisimilarity for LTS is an equivalence, to prove that feature bisimilarity
for FTS is an equivalence as well.

Theorem 4.7. Feature bisimilarity (
ϕ
←→f ) for FTS for given ϕ ∈ B(F) is an equivalence relation.

Related to equivalence, we can show that if states in an FTS are feature bisimilar for different
feature expressions, then transitivity is preserved on a product-by-product basis.

Lemma 4.4. Let fts be an FTS with states s, t and u such that fts |= s
ϕ
←→f t and fts |= t

ψ
←→f u,

for some ϕ,ψ ∈ B(F). Then fts |= s
ϕ∧ψ
←−→f u.

Finally, we show that feature bisimilarity preserves the same properties for FTS as that
strong bisimilarity preserves for LTS. As for FKS, this particular theorem is very useful, as it
eliminates the need to investigate which logics are preserved by feature bisimulation for FTS.
All research done on this topic for bisimulation for LTS can immediately be used on the product-
family level.

Theorem 4.8. A property is preserved by bisimilarity for LTS if and only if this property is
preserved by feature bisimilarity for FTS.
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We conclude this section by summarizing the achieved results. For both the state-based
models and action-based models, we started by generalizing the definition of bisimilarity on
the single-product level to a definition of feature bisimilarity on the product-family level. This
resulted in Definitions 4.2, 4.3, 4.5 and 4.6. Using Theorems 4.1, 4.2, 4.5 and 4.6, we proved that
two states being feature bisimilar for some feature expression ϕ on the product-family level is
equivalent to those states being bisimilar on the single-product level of all products satisfying ϕ.
However, for state-based models this only holds under the condition that those states are labeled
with the same set of atomic propositions.

Utilizing the established correspondence between bisimilarity on the single-product level and
feature bisimilarity on the product-family level we were able to show that feature bisimilarity is
an equivalence, in Theorems 4.3 and 4.7. Furthermore we proved that all properties preserved by
bisimilarity on the single-product level are also preserved by feature-bisimilarity on the product-
family level, in Theorems 4.4 and 4.8.

In the next section we will achieve the same results for branching bisimulation.
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4.2 Branching bisimulation

Branching bisimulation was proposed in [16] as an alternative to the well-known weak bisimula-
tion equivalence, originally proposed by Milner as observation equivalence [22]. Weak bisimula-
tion equivalence is a branching time equivalence for event-based models that allows to abstract
from silent steps in a process. The main idea behind this concept is that an outside observer
of the system cannot tell when the system performs a silent transition. He is only aware that
the system is doing something if non-silent transitions are being executed. Hence, from the
observer’s point of view two states can be considered equivalent if they can mimic each other’s
steps after a series of silent transitions. This in contrast to strong bisimulation, where steps
have to be mimicked immediately.

However, in [16] it was argued that this equivalence does not respect the branching structure
of processes whenever such silent steps are present. This argument follows from the idea that
the outside observer can not only see the current system state, but also the non-silent steps that
can be performed by the system in the direct future. Hence, it is argued, two states can only
be considered equivalent if they can mimic each other’s steps after a series of silent transitions,
without altering the possible future behaviors during this series of silent steps.

In order to address this problem weak bisimulation was refined to branching bisimulation.
The corresponding equivalence in the world of state-based models is divergence-blind stuttering
equivalence, which was first defined in [14]. It is a coarser variant of the well-known stuttering
equivalence [8], as it ignores cycles of silent transitions (divergence).

As with strong bisimulation, we will lift these equivalences to the product-family level. We
furthermore establish the relation between the equivalences on the single-product level and
those on the product-family level, which we use to lift some important properties of branching
bisimulation from the single-product level to the product-family level. Even though we are
considering different equivalences, the proofs for the theorems in this section are very similar
to those of Section 4.1, and hence they are omitted here. The interested reader is referred to
Appendix B.2.

4.2.1 State-based models

We start by giving the definition of divergence-blind stuttering bisimulation for Kripke Struc-
tures. Using this definition we define when two states of a KS are divergence-blind stuttering
equivalent, and when two KS are divergence-blind stuttering equivalent.

Divergence-blind stuttering equivalence is an equivalence for KS that abstracts from silent
transitions. We say a transition s −→ s′ between some states s and s′ is silent if these states
have the same label. That is, L(s) = L(s′). The reasoning behind this definition is that an
outside observer can only observe that the system is doing something if the system status, i.e.
the state labeling, changes. Therefore a transition that does not change the state labeling can
not be observed, and hence is silent.

The notation s →−→ s′ is used in KS as an abbreviation for ‘a sequence of zero or more silent
transitions from s to s′’. More formally, s →−→ s′ if and only if there exist states s0, s1, . . . , sn,
such that s0 = s and sn = s′, and L(si) = L(si+1) and si −→ si+1, for 0 ≤ i < n, and n ∈ N.

Furthermore, we use s 99K s′ as an abbreviation for ‘s −→ s′, or s = s′’.
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Definition 4.7. Let ks = (S, AP , →, L, s∗) be a KS. A symmetric relation R on S is called
a divergence-blind stuttering bisimulation for KS if and only if for all states s, t ∈ S such that
(s, t) ∈ R, the following conditions are satisfied:

1. L(s) = L(t).

2. If s −→ s′, for some s′ ∈ S then there exist states t′, t′′ ∈ S such that t →−→ t′ 99K t′′ and
(s, t′) ∈ R and (s′, t′′) ∈ R.

We say that two states s, t ∈ S are divergence-blind stuttering equivalent, which we denote
as ks |= s ≈dbs t, if and only if there exists a divergence-blind stuttering bisimulation relation R
on ks such that (s, t) ∈ R.

Let ks ′ = (S′, AP , →′, L′, s′∗) be a second KS. We say ks and ks ′ are divergence-blind
stuttering equivalent, denoted by ks ≈dbs ks

′ if and only if ks ⊎ ks ′ |= s∗ ≈dbs s
′
∗.

In [14] divergence-blind stuttering equivalence is introduced as an equivalence relation.

Lemma 4.5. Divergence-blind stuttering equivalence (≈dbs) is an equivalence.

Next we adapt the definition of divergence-blind stuttering equivalence to be applicable in
FKS. We do this by extending the stuttering bisimulation relation with feature expressions,
in such a way that two states related by a feature expression ϕ are divergence-blind stuttering
equivalent for all products satisfying ϕ.

We adapt the generalized transition constraint function from Definition 3.4 to construct the
generalized silent transition constraint function θ̌τ : S×S → B(F). Given a product P ∈ P, this
function is constructed such that P |= θ̌τ (s, t) if and only if P can reach state t from state s by
only using silent transitions.

Definition 4.8. Let fks = (S, AP , θ, L, s∗) be an FKS. The generalized silent transition con-
straint function θ̌τ : S × S → B(F) for fks is the strongest function such that, for all s, t, u ∈ S:

• θ̌τ (s, s) ∼P true

• θ̌τ (s, t) ∧ L(t) = L(u) ∧ θ(t, u) ⇒P θ̌τ (s, u)

The notation s
Ψ
−→−→ t is used in FKS as a abbreviation for ‘a sequence of zero or more silent

transitions from s to t, with combined feature expression Ψ’. More formally, s
Ψ
−→−→ t if and only

if Ψ⇒P θ̌τ (s, t).

Furthermore, we use s
ψ
99K s′ as an abbreviation for ‘s

ψ
−→ s′, or s = s′ and ψ = true’.

Definition 4.9. Let fks = (S, AP , θ, L, s∗) be an FKS. A relation R ⊆ S × B̂(F) × S is
called a divergence-blind stuttering feature bisimulation relation if and only if R is symmetric,
i.e. (s, ϕ̂, t) ∈ R iff (t, ϕ̂, s) ∈ R, and if for all states s, t ∈ S and for all feature expressions
ϕ ∈ B(F) such that (s, ϕ̂, t) ∈ R, the following conditions are satisfied:

1. L(s) = L(t)
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2. If s
ψ
−→ s′ for some s′ ∈ S and ψ ∈ B(F), then there exist states t′1 . . . t

′
n, t

′′
1 . . . t

′′
n ∈ S and

feature expressions Ψ1 . . .Ψn, ψ1 . . . ψn, ϕ1 . . . ϕn, ϕ
′
1 . . . ϕ

′
n ∈ B(F), for some n ∈ N, such

that

t
Ψi−→−→ t′i

ψi
99K t′′i and (s, ϕ̂i, t

′
i) ∈ R and (s′, ϕ̂′

i, t
′′
i ) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n Ψi ∧ ϕi ∧ ψi ∧ ϕ

′
i

The second condition of this definition differs from that of feature bisimulation for FKS in
the sense that a step does not have to be mimicked immediately. Instead, a number of silent
steps may be present before mimicking the actual transition. Furthermore, the transition can
be mimicked using zero steps if the transition was silent.

Alternatively, condition 2 could be written as

∀s′ ∈ S : ϕ ∧ θ(s, s′) ⇒P

∨
{ θ̌τ (t, t

′) ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′ ∧ ϕ′′ | (s, ϕ̂′, t′), (s′, ϕ̂′′, t′′) ∈ R } .

We use a divergence-blind stuttering feature bisimulation relation to determine when two
states are divergence-blind stuttering feature equivalent, and when two FKS are divergence-blind
stuttering feature equivalent. An example of two divergence-blind stuttering feature equivalent
FKS is shown in Figure 4.4.

S
{a}

{a} {b}

{b}

T
{a}

{b}{a}

true
f

¬f

true¬f

Figure 4.4: Two divergence-blind stuttering feature equivalent FKS.

Definition 4.10. Let fks = (S, AP , θ, L, s∗) be an FKS. We say that two states s, t ∈ S

are divergence-blind stuttering feature equivalent for a feature expression ϕ ∈ B(F), denoted

by fks |= s
ϕ
≈dbsf t if and only if there exists a divergence-blind stuttering feature bisimulation

relation R on fks such that (s, ϕ̂, t) ∈ R. Furthermore, we use fks |= s ≈dbsf t as shorthand

notation for fks |= s
true
≈ dbsf t.

Let fks ′ = (S′, AP , θ′, L′, s′∗) be a second FKS. We say fks and fks ′ are divergence-blind

stuttering feature equivalent for a feature expression ϕ ∈ B(F), denoted by fks
ϕ
≈dbsf fks

′ if and

only if fks ⊎ fks ′ |= s∗
ϕ
≈dbsf s

′
∗. Furthermore, we use fks ≈dbsf fks

′ as shorthand notation for

fks
true
≈ dbsf fks

′.

As with strong bisimulation, we continue by establishing how divergence-blind stuttering
feature equivalence on the product-family level relates to divergence-blind stuttering equivalence
on the single-product level. We first prove that if two states in an FKS are divergence-blind
stuttering feature equivalent for some feature expression φ, this implies that those states are
divergence-blind stuttering equivalent in the KS of all products that satisfy φ.
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Theorem 4.9. Let fks = (S, AP , θ, L, s∗) be an FKS, and let s1, s2 ∈ S and φ ∈ B(F). It
holds that

fks |= s1
φ
≈dbsf s2 ⇒ ∀P ∈ P : (P |= φ ⇒ fks|P |= s1 ≈dbs s2).

We furthermore lift this result to two FKS.

Corollary 4.5. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let ϕ ∈ B(F)
be a feature expression. It holds that

fks1
ϕ
≈dbsf fks2 ⇒ (∀P ∈ P : P |= ϕ ⇒ fks1|P ≈dbs fks2|P ).

Conversely, given some FKS, we prove that if two states are divergence-blind stuttering
equivalent in the KS of all products satisfying some feature expression φ, this implies that those
two states are divergence-blind stuttering feature equivalent in the FKS for φ. However, as with
feature bisimulation for FKS, this only holds for states that are labeled with the same set of
atomic propositions.

Theorem 4.10. Let fks = (S, AP , θ, L, s∗) be an FKS, and let s1, s2 ∈ S such that L(s1) =
L(s2), and let φ ∈ B(F). It holds that

(∀P ∈ P : P |= φ ⇒ fks|P |= s1 ≈dbs s2) ⇒ fks |= s1
φ
≈dbsf s2.

We again lift this result to two FKS.

Corollary 4.6. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS such that L1(s∗ 1) =
L2(s∗ 2), and let ϕ ∈ B(F) be a feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fks1|P ≈dbs fks2|P ) ⇒ fks1
ϕ
≈dbsf fks2.

As with strong bisimulation, we are now able to easily lift properties from the single-product
level models to the product-family level models. We first prove that divergence-blind stuttering
feature equivalence is an equivalence relation using that divergence-blind stuttering equivalence
for KS is an equivalence relation.

Theorem 4.11. Divergence-blind stuttering feature equivalence (
ϕ
≈dbsf) for given ϕ ∈ B(F) is

an equivalence relation.

Related to equivalence, we can show that if states in an FKS are divergence-blind stuttering
feature equivalent for different feature expressions, then transitivity is preserved on a product-
by-product basis.

Lemma 4.6. Let fks be an FKS with states s, t and u such that fks |= s
ϕ
≈dbsf t and fks |=

t
ψ
≈dbsf u, for some ϕ,ψ ∈ B(F). Then fks |= s

ϕ∧ψ
≈ dbsf u.

Finally, we conclude with the important property that divergence-blind stuttering feature
equivalence preserves the same properties for FKS as that divergence-blind stuttering equiva-
lence preserves for KS.
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Theorem 4.12. A property is preserved by divergence-blind stuttering equivalence for KS if and
only if this property is preserved by divergence-blind stuttering feature equivalence for FKS.

Similarly to strong bisimulation, the result of this theorem is particularly valuable, as it
allows to reuse all research done on logics agreeing with divergence-blind stuttering equivalence
for KS.

We continue with branching-bisimilarity for event-based models.

4.2.2 Event-based models

As with the state-based models, we start by giving the definition of branching bisimulation for
LTS. Using this definition we define when two states of an LTS are branching bisimilar, and
when two LTS are branching bisimilar.

The notation s →−→ s′ is used in LTS as an abbreviation for ‘a sequence of zero or more
τ -transitions from s to s′’. More formally, s →−→ s′ if and only if there exist states s0, s1, . . . , sn,
such that s0 = s and sn = s′, and si

τ
−→ si+1, for 0 ≤ i < n, and n ∈ N.

Furthermore, we use s
(α)
−−→ s′ as an abbreviation for ‘s

α
−→ s′, or α = τ and s = s′’.

Definition 4.11. Let lts = (S,A,→, s∗) be an LTS. A symmetric relation R on S is called a
branching bisimulation relation for LTS if and only if for all states s, t ∈ S such that (s, t) ∈ R,
the following transfer condition is satisfied:

1. if s
α
−→ s′, for some s′ ∈ S and for some α ∈ Aτ then there exist t′, t′′ ∈ S such that

t →−→ t′
(α)
−−→ t′′ and (s, t′) ∈ R and (s′, t′′) ∈ R.

We say two states s, t ∈ S are branching bisimilar, denoted by lts |= s ↔b t if and only if
there exists a branching bisimulation relation R for LTS on lts such that (s, t) ∈ R.

Let lts ′ = (S′, A,→′, s′∗) be a second LTS. We say lts and lts ′ are branching bisimilar,
denoted by lts ↔b lts

′ if and only if lts ⊎ lts ′ |= s∗ ↔b s
′
∗.

The transfer diagram for branching bisimulation is shown in Figure 4.5.

s

s′

t

t′

t′′

α

(α)

Figure 4.5: Transfer diagram for branching bisimilarity.

In [4] it has been established that branching bisimulation for LTS is an equivalence relation.
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Lemma 4.7. Branching bisimulation for LTS (↔b) is an equivalence.

Next we adapt the definition of branching bisimulation for LTS to be applicable in FTS.
We do this by extending branching bisimulation relations with feature expressions, similar to
the approach with state-based models. Hence, two states related by a feature expression ϕ are
branching bisimilar for all products satisfying ϕ.

As for state-based models, we adapt the generalized transition constraint function from
Definition 3.12 to construct the generalized silent transition constraint function θ̌τ : S × S →
B(F). Given a product P ∈ P, this function is constructed such that P |= θ̌τ (s, t) if and only
if P can reach state t from state s by only using silent transitions.

Definition 4.12. Let fts = (S, A, θ, s∗) be an FTS. The generalized silent transition constraint
function θ̌τ : S × S → B(F) for fts is the strongest function such that, for all s, t, u ∈ S:

• θ̌τ (s, s) ∼P true

• θ̌τ (s, t) ∧ θ(t, τ, u) ⇒P θ̌τ (s, u)

The notation s
Ψ
−→−→ t is used in FTS as an abbreviation for ‘a sequence of zero or more silenct

(τ) transitions from s to t, with combined feature expression Ψ’. More formally, s
Ψ
−→−→ t if and

only if Ψ⇒P θ̌τ (s, t). Furthermore, we use s
(α|ψ)
−−−→ s′ as an abbreviation for ‘s

α|ψ
−−→ s′, or α = τ

and s = s′ and ψ = true’.

Definition 4.13. Let fts = (S, A, θ, s∗) be an FTS. A relation R ⊆ S × B̂(F) × S is called
a branching feature bisimulation relation if and only if R is symmetric, i.e. (s, ϕ̂, t) ∈ R ⇔
(t, ϕ̂, s) ∈ R, and if for all states s, t ∈ S and for all feature expressions ϕ ∈ B(F) such that
(s, ϕ̂, t) ∈ R, the following transfer condition is satisfied:

1. If s
α|ψ
−−→ s′ for some s′ ∈ S, α ∈ Aτ , and ψ ∈ B(F), then there exist states t′1 . . . t

′
n, t

′′
1 . . . t

′′
n ∈

S and feature expressions Ψ1 . . .Ψn, ψ1 . . . ψn, ϕ1 . . . ϕn, ϕ
′
1 . . . ϕ

′
n ∈ B(F), for some n ∈ N,

such that

t
Ψi−→−→ t′i

(α|ψi)
−−−−→ t′′i and (s, ϕ̂i, t

′
i) ∈ R and (s′, ϕ̂′

i, t
′′
i ) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n Ψi ∧ ϕi ∧ ψi ∧ ϕ

′
i

The transfer diagram for branching feature bisimulation is shown in Figure 4.6.
The transfer condition is similar to the second condition of divergence-blind feature stuttering

bisimulation for FKS, adding the option to mimic steps after performing sequence of silent
transitions.

Alternatively, the transfer condition could be written as

∀α ∈ Aτ∀s
′ ∈ S : ϕ ∧ θ(s, α, s′) ⇒P

∨
{ θ̌τ (t, t

′) ∧ ( (t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′) ) ∧ ϕ′ ∧ ϕ′′ | (s, ϕ̂′, t′), (s′, ϕ̂′′, t′′) ∈ R } .

We use a branching feature bisimulation relation to determine when two states are branching
feature bisimilar, and when two FTS are branching feature bisimilar.
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s

s′

t

t′1

t′′1

t′i

t′′i

t′n

t′′n

α|ψ
Ψ1

(α|ψ1)

Ψn

(α|ψn)

Ψi

(α|ψi)

ϕ̂

ϕ̂1

ϕ̂′
1

ϕ̂i

ϕ̂′
i

ϕ̂n

ϕ̂′
n

Figure 4.6: Transfer diagram for branching feature bisimilarity.

Definition 4.14. Let fts = (S, A, θ, s∗) be an FTS. We say two states s, t ∈ S are branching

feature bisimilar for a feature expression ϕ ∈ B(F), denoted by fts |= s
ϕ
←→bf t, if and only if there

exists a branching feature bisimulation relation R on fts such that (s, ϕ̂, t) ∈ R. Furthermore,

we use fts |= s ↔bf t as shorthand notation for fts |= s
true
←−→bf t.

Let fts ′ = (S′, A, θ′, s′∗) be a second FTS. We say fts and fts ′ are branching feature bisimilar

for a feature expression ϕ ∈ B(F), denoted by fts
ϕ
←→bf fts ′ if and only if fts ⊎ fts ′ |= s∗

ϕ
←→bf s

′
∗.

Furthermore, we use fts ↔bf fts
′ as shorthand notation for fts

true
←−→bf fts

′.

Next we prove that if two states in an FTS are branching feature bisimilar for some feature
expression φ, this implies that those states are branching bisimilar in the LTS of all products
that satisfy φ.

Theorem 4.13. Let fts = (S, A, θ, s∗) be an FTS, and let s1, s2 ∈ S and φ ∈ B(F). It holds
that

fts |= s1
φ
←→bf s2 ⇒ ∀P ∈ P : (P |= φ ⇒ fts |P |= s1 ↔b s2).

We furthermore lift this result to two FTS.

Corollary 4.7. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

fts1
ϕ
←→bf fts2 ⇒ (∀P ∈ P : P |= ϕ ⇒ fts1|P ↔b fts2|P ).

Conversely, given some FTS, we prove that if two states are branching bisimilar in the
LTS of all products satisfying some feature expression φ, this implies that those two states are
divergence-blind stuttering feature equivalent in the FTS for φ.

Theorem 4.14. Let fts = (S, A, θ, s∗) be an FTS, let s1, s2 ∈ S, and let φ ∈ B(F). It holds
that

(∀P ∈ P : P |= φ ⇒ fts|P |= s1 ↔b s2) ⇒ fts |= s1
φ
←→bf s2.

We again lift this result to two FTS.
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Corollary 4.8. Let ftsi = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fts1|P ↔b fts2|P ) ⇒ fts1
ϕ
←→bf fts2.

We now lift Lemma 4.7 from the single-product level to the product-family level, in order to
prove that branching feature bisimilarity is an equivalence relation.

Theorem 4.15. Branching feature bisimilarity (
ϕ
←→bf ) for given ϕ ∈ B(F) is an equivalence

relation.

Related to equivalence, we can show that if states in an FTS are branching feature bisimilar
for different feature expressions, then transitivity is preserved on a product-by-product basis.

Lemma 4.8. Let fts be an FTS with states s, t and u such that fts |= s
ϕ
←→bf t and fts |= t

ψ
←→bf u,

for some ϕ,ψ ∈ B(F). Then fts |= s
ϕ∧ψ
←−→bf u.

Finally, we conclude that branching feature bisimulation preserves the same properties for
FTS as that branching bisimulation preserves for LTS.

Theorem 4.16. A property is preserved by branching bisimulation for LTS if and only if this
property is preserved by branching feature bisimulation for FTS.

We conclude this section by summarizing the achieved results. As stated at the end of
Section 4.1, we have achieved the same results for branching bisimilarity as we did for strong
bisimilarity.

We started by generalizing the definitions of divergence-blind stuttering equivalence and
branching bisimilarity on the single-product level to definitions of divergenge-blind stuttering
feature equivalence and branching feature bisimilarity on the product-family level. This resulted
in Definitions 4.9, 4.10, 4.13 and 4.14. Using Theorems 4.9, 4.10, 4.13 and 4.14, we proved that
two states being divergenge-blind stuttering feature equivalent or branching feature bisimilar
for some feature expression ϕ on the product-family level is equivalent to those states being
divergenge-blind stuttering equivalent or branching bisimilar on the single-product level of all
products satisfying ϕ. However, for state-based models this only holds under the condition that
those states are labeled with the same set of atomic propositions.

Utilizing the established correspondence of the equivalences on the single-product level and
those on the product-family level we were able to show that the defined relations on product-
family are an equivalence, in Theorems 4.11 and 4.15. Furthermore we proved that all properties
preserved by the equivalences on the single-product level are also preserved by the corresponding
equivalences on the product-family level, in Theorems 4.12 and 4.16.

In the next section we relate the work done in this chapter to the work done in [11] on
equivalences for state-based Featured Transition Systems.
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4.3 Related work

In [11], work is presented by Cordy et al. on simulation equivalence for Featured Transition
Systems. Simulation equivalence is very similar to bisimilarity, as it uses the same transfer
conditions. The difference between the two definitions is rooted in symmetry. Two states are
bisimilar if there exists a symmetrical simulation relation - a bisimulation relation - relating the
two states. On the other hand, two states s and t are simulation equivalent if there exist two
simulation relations, of which one relates s to t and the other relates t to s. As a bisimulation
relation can act as both of these simulation relations, we find that simulation equivalence is
coarser than bisimilarity.

The Featured Transition Systems used in [11] have labeled states and unlabeled transitions,
making them equivalent to our FKS. Cordy et al. extended the definition of simulation equiva-
lence for KS to featured simulation equivalence, in a very similar way as we have extended the
definitions of strong bisimulation and divergence-blind stuttering equivalence to product-family
based definitions. That is, the transfer conditions are formulated differently, but the idea of
being able to mimic a transition using different paths for different products is identical.

However, the featured simulation relation proposed by Cordy et al. does not consist of triples
of the form S ×B(F)× S, with S a set of states, as is the case with our definition of a featured
bisimulation relation. Instead, they have defined a featured simulation relation as a binary func-
tion from pairs of states to feature expressions. The consequence of this alternate formulation
is that all pairs of states are trivially related for the feature expression false, regardless of the
labeling of these states. At first sight this seems like an advantage, since it allows to prove
that featured simulation equivalence for some feature expressions is equivalent to simulation
equivalence for all product satisfying this expression. This in contrast to our results, where this
is only true under the additional constraint that the state-labeling is equal. However, one of the
purposes of calculating a featured (bi)simulation is to be able to perform state space reduction.
Since each state has only one label, it is not possible to merge states that are labeled differently.
Hence, using the approach of Cordy et al. merging states related for the feature expression
false can only be done after performing an additional check of the state labelings, whereas this
problem is non-existent using our formulation.

In the next chapter we will discuss state space reduction of both FTS and FKS using the
equivalences we proposed in this chapter. It will then become clear under which circumstances
it is desirable to merge states that are related for the feature expression false.
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Chapter 5

Quotients

Now that we have defined some equivalence relations on the different models, we can define
minimal representations of the models with respect to those relations. We refer to such minimal
representations as quotients. As already discussed in Chapter 1, quotients play an important
role in the field of model checking, as they can speed up the model-checking process significantly
without invalidating any results.

In this chapter we will propose two types of quotients for both state-based and event-based
models on the product-family level. Both types of quotients are aimed at minimizing the number
of states of the model, while making sure the number of transitions does not grow.

We will refer to the first type of quotient as naive. This type is a straightforward general-
ization of the quotients at single-product level. However, it is not very powerful. Secondly, we
define the coherent quotient. This quotient exploits the reachability information of the product-
family level model, and as a result it is more powerful than the naive type. As a drawback, a
single model may have multiple coherent quotients, and hence it is harder to calculate.

In Section 5.1 we discuss both types of quotients for state-based models, and in Section 5.2
we do the same for event-based models.

We will use the notation [s]≃ to denote the equivalence class of a state s ∈ S under some
equivalence relation ≃, where S is the state space of some transition system S. That is:

[s]≃ = {t ∈ S | S |= s ≃ t}.

We will use the notation [S]≃ =
⋃
s∈S [s]≃ to denote the set of all equivalence classes of S

under ≃. Note that [S]≃ is a partition of S. We will refer to elements C ∈ [S]≃ as classes.
Complementary, given any partition P of S, we let ≃P be the equivalence relation on S such
that [S]≃P

= P .
Furthermore, in this chapter we will define relations ∼ that are reflexive and symmetric, but

not transitive. We will use the notation 〈S〉∼ to denote the set of maximal cliques in the graph
induced on S by ∼. Formally,

〈S〉∼ = { C ∈ 2S | ∀s, t ∈ C : S |= s ∼ t ∧ ¬∃C ′ ∈ 2S : (C ⊂ C ′ ∧ ∀s, t ∈ C ′ : S |= s ∼ t) }.

Note that, since ∼ is not transitive, 〈S〉∼ may not be a partition of S. That is, there may
be some states in S that are included in multiple classes of 〈S〉∼. We still refer to elements
C ∈ 〈S〉∼ as classes, even though these elements are not technically equivalence classes.
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5.1 State-based models

We start by giving a definition of the bisimulation and divergent-blind stuttering quotients for
KS.

Definition 5.1. Let ks = (S, AP ,→, L, s∗) be a KS, and let ≃ ∈ {↔,≈dbs}. The ≃-quotient
of ks is the KS ks ′ = (S′, AP ,→′, L′, s′∗), such that

• S′ = [S]≃.

• If ≃ = ↔, we have

→′ = { (C1, C2) ∈ S
′ × S′ | ∃(s, t) ∈ C1 ×C2 : (s, t) ∈ →}.

Otherwise, if ≃ = ≈dbs, we have

→′ = { (C1, C2) ∈ S
′ × S′ | C1 6= C2 ∧ ∃(s, t) ∈ C1 × C2 : (s, t) ∈ →}.

• L′([s]≃) = L(s), for all s ∈ S.

• s′∗ = [s∗]≃.

The function that yields the ≃-quotient of a KS is denoted by ≃-minKS, for ≃ ∈ {↔,≈dbs}.
We say that a KS ks is minimal modulo bisimulation if and only if ↔ -minKS(ks) = ks.
Similarly, we say it is minimal modulo divergence-blind stuttering equivalence if and only if
≈dbs-minKS(ks) = ks.

To extend this definition to FKS we need to consider the extra dimension of feature ex-
pressions. In particular, we have seen that both feature bisimulation and divergence-blind
stuttering feature equivalence are an equivalence for a fixed feature expression (Theorem 4.3
and Theorem 4.11). Hence we can define feature bisimulation and divergence-blind stuttering
feature quotients for FKS using a fixed feature expression, in a similar way as bisimulation and
divergence-blind stuttering quotients for KS are defined. We will refer to these quotients as
the naive feature bisimulation quotient and the naive divergence-blind stuttering feature quotient
for FKS.

Definition 5.2. Let fks = (S, AP , θ, L, s∗) be an FKS, let ϕ ∈ B(F) be a feature expression,
and let ≃ ∈ {↔f ,≈dbsf}. The naive ≃-quotient of fks for ϕ is the FKS fks ′ = (S′, AP , θ′, L′, s′∗),
such that

• S′ = [S]ϕ
≃
.

• θ′ : S′ × S′ → B(F) is constructed such that, for all C1, C2 ∈ S
′:

θ′(C1, C2) =

{
false if ≃ = ≈dbsf and C1 = C2∨
{ θ(s, t) | s ∈ C1 ∧ t ∈ C2 } otherwise

• L′([s]≃) = L(s), for all s ∈ S.

• s′∗ = [s∗]≃.
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The function that yields the naive ≃-quotient for a feature expression ϕ ∈ B(F) of an FKS is

denoted by
ϕ
≃-minFKS, for ≃ ∈ {↔f ,≈dbsf}. We use ≃-minFKS as an abbreviation for

true
≃ -minFKS.

An example of an FKS fks and its naive ↔f -quotient fks
′ are shown in Figure 5.1. We say that

an FKS fks is minimal modulo naive feature bisimulation if and only if ←→f -minFKS(fks) = fks .
Similarly, we say it is minimal modulo naive divergence-blind stuttering feature equivalence if
and only if ≈dbsf -minFKS(fks) = fks.

fks
{a}

{b}{b}

{c}{c}

fks ′

{a}

{b}{b}

{c}

fks ′′

{a}

{b}

{c}

f¬f

f¬f

f¬f

f¬f

true

true

Figure 5.1: An FKS fks, its naive true-feature bisimulation quotient fks ′, and its only coherent
feature bisimulation quotient fks ′′.

We show that, for each feature expression φ, every FKS is feature bisimilar for φ to its naive
feature bisimulation quotient for φ.

Theorem 5.1. For each FKS fks, and for all φ ∈ B(F), it holds that
φ
←→f -minFKS(fks)

φ
←→f fks.

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, let φ ∈ B(F) be a feature expression, and let
φ
←→f -minFKS(fks) = (S′, AP , θ′, L′, s′∗) be the naive feature bisimulation quotient for φ of fks .
We define the relation R such that:

R ={(s, [ϕ ∧ φ]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fks |= s

ϕ
←→f t}∪

{(C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fks |= s

ϕ
←→f t}

We have to show that R is a feature bisimulation relation on fks ⊎
φ
←→f -minFKS(fks) such that

(s∗, φ̂, s
′
∗) ∈ R.

Since
φ
←→f is reflexive, we find that, for all s ∈ S, (s, φ̂, C) ∈ R, where C ∈ S′ is such that

s ∈ C. Using that s∗ ∈ s
′
∗ by Definition 5.2, it immediately follows that (s∗, φ̂, s

′
∗) ∈ R. Hence,

it remains to show that R is a feature bisimulation relation.

From the definition of R it immediately follows that it is symmetric, and hence it remains
to show that R satisfies the conditions from Definition 4.2.

Consider a tuple (s, [ϕ ∧ φ]∼P
, C) ∈ S × B(F) × S′ such that fks |= s

ϕ
←→f t and t ∈ C, for

some t ∈ S. Let t be such.

We first show that (L⊎L′)(s) = (L⊎L′)(C). Since fks |= s
ϕ
←→f t we know that L(s) = L(t),

and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎ L′)(s) = L(s) = L(t) =
L′(C) = (L ⊎ L′)(C).
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Now we prove the transfer condition. Suppose that s
ψ
−→ s′, for some ψ ∈ B(F), and for some

s′ ∈ S. We first show that this transition can be mimicked by state t for all products satisfying

ϕ ∧ ψ. Since fks |= s
ϕ
←→f t, there exists a set T ⊆ S × B(F) such that fks |= s′

ϕ′

←→f t
′, for all

(t′, ϕ′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′)∈T

θ(t, t′) ∧ ϕ′.

Now we show that C can mimic all transitions from t, which we use to conclude that C
can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.2 it follows that

θ(t, t′) ⇒P θ
′(C,Ct′ ), with t′ ∈ Ct′ , for all (t′, ϕ′) ∈ T. Since t′ ∈ Ct′ and fks |= s′

ϕ′

←→f t
′, by

construction of R we have (s′, [ϕ′ ∧ φ]∼P
, Ct′) ∈ R, for all (t

′, ϕ′) ∈ T. We find that

φ ∧
∨

(t′,ϕ′)∈T

θ(t, t′) ∧ ϕ′ ⇒P

∨

(t′,ϕ′)∈T

θ′(C,Ct′) ∧ ϕ
′ ∧ φ,

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, φ̂, s) ∈ S′ × B̂(F) × S such that s ∈ C. From Definition 5.2 it
follows immediately that (L ⊎ L′)(C) = (L ⊎ L′)(s).

Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. From Definition 5.2 it

follows that ψ =
∨
{θ(u, u′) | u ∈ C ∧ u′ ∈ C ′}. Pick a pair (u, u′) ∈ C × C ′. Since both

s ∈ C and u ∈ C, by Definition 5.2 we know that fks |= s
φ
←→f u. Hence we can find a

set S(u,u′) ⊆ S × B(F) for each tuple (u, u′) ∈ C × C ′ such that fks |= s′
ϕ′

←→f u
′, for all

(s′, ϕ′) ∈ S(u,u′), and such that

φ ∧ θ(u, u′) ⇒P

∨

(s′,ϕ′)∈S(u,u′)

θ(s, s′) ∧ ϕ′.

For each tuple (u, u′) ∈ C × C ′ we have that fks |= s′
ϕ′

←→f u
′, and hence by construction

of R we have (C ′, [ϕ′ ∧ φ]∼P
, s′) ∈ R, for all (s′, ϕ′) ∈ S(u,u′). We find that

φ ∧ ψ ⇒P

∨

(u,u′)∈C×C′

∨

(s′,ϕ′)∈T(u,u′)

θ(s, s′) ∧ ϕ′ ∧ φ,

and hence the transfer condition for this tuple is satisfied.

2. Lastly consider a tuple (C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F)× S such that s 6∈ C, and such that

fks |= s
ϕ
←→f t and t ∈ C, for some t ∈ S. Let t be such.

We first show that (L⊎L′)(C) = (L⊎L′)(s). Since fks |= s
ϕ
←→f t we know that L(s) = L(t),

and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎ L′)(C) = L′(C) =
L(t) = L(s) = (L ⊎ L′)(s).
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Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. By construction of R

we have (C, φ̂, t) ∈ R. We have already shown that the transfer conditions are satisfied for
such pairs in R, and hence we can find a set T ⊆ S×B(F) such that (C ′, [φ∧ϕ′

t]∼P
, t′) ∈ R,

for all (t′, ϕ′
t) ∈ T, and such that

φ ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

θ(t, t′) ∧ ϕ′
t ∧ φ.

Now we show that s can mimic all transitions from t, which we use to conclude that s can

mimic the transition from C to C ′. Since fks |= s
ϕ
←→f t, we can find sets St′ ⊆ S × B(F)

for each (t′, ϕ′
t) ∈ T such that, for all (s′, ϕ′

s) ∈ St′ , we have fks |= s′
ϕ′
s←→f t

′ and such that

ϕ ∧ θ(t, t′) ⇒P

∨

(s′,ϕ′
s)∈St′

θ(s, s′) ∧ ϕ′
s.

Since (C ′, [φ ∧ ϕ′
t]∼P

, t′) ∈ R, for all (t′, ϕ′
t) ∈ T, by definition of R this means that

fks |= t′
ϕ′
t←→f u′, for some u′ ∈ C ′. Since fks |= s′

ϕ′
s←→f t′ for all (s′, ϕ′

s) ∈ St′ , we

derive fks |= s′
ϕ′
s∧ϕ

′
t←−−→f u

′ using productwise transitivity. By construction of R we have
(C ′, [φ ∧ ϕ′

s ∧ ϕ
′
t]∼P

, s′) ∈ R. We find that

ϕ ∧
∨

(t′,ϕ′
t)∈T

θ(t, t′) ∧ ϕ′
t ∧ φ ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, s′) ∧ ϕ′
s ∧ ϕ

′
t ∧ φ,

and hence that

ϕ ∧ φ ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, s′) ∧ ϕ′
s ∧ ϕ

′
t ∧ φ,

from which we conclude that the transfer condition for this pair is also satisfied.

Similarly we show that, for each feature expression φ, every FKS is divergence-blind stut-
tering feature equivalent for φ to its naive divergence-blind stuttering feature quotient for φ.
As this theorem is similar to Theorem 5.1, the proof is omitted here. The interested reader is
referred to Appendix C.

Theorem 5.2. For each FKS fks, and for all φ ∈ B(F), it holds that
φ
≈dbsf -minFKS(fks)

φ
≈dbsf

fks.

The approach sketched above is naive since it requires that two states are equivalent for
every product satisfying the feature expression ϕ in order to be mapped to the same state in
the quotient. However, since we are considering FKS with an initial state, not all states are
reachable for all products, meaning some states do not specify any behavior for some products.
Hence it suffices to require that two states are equivalent for all the products they have in
common in order to be mapped to the same state in the quotient. To specify this we use the
reachability function ̺, as specified in Definition 3.5.
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Definition 5.3. Let fks = (S, AP , θ, L, s∗) be an FKS, and let ̺ denote its reachability func-
tion. We say two states s, t ∈ S are coherent feature bisimilar or coherent divergence-blind
stuttering feature equivalent, denoted by fks |= s ↔cf t and fks |= s ≈cdbsf t, if and only if

fks |= s
̺(s)∧̺(t)
≃ t, for ≃ ∈ {↔f ,≈dbsf}, respectively.

The relations ↔cf and ≈cdbsf are not transitive and therefore different ‘equivalence classes’
induced by these relations (maximal cliques in the graph induced by ↔cf or ≈cdbsf) may have
a non-empty intersection. Because the relations are not transitive in general, unique quotients
may not exist. This phenomenon is illustrated in Figure 5.2. In this example the state with
label {a} and the state with label {c} both belong to equivalence classes consisting of one state.
Furthermore we have three equivalence classes each consisting of two states with label {b}, where
the inner states with label {b} both belong to two of those classes.

fks
{a}

{b}{b}{b}{b}

{c}

true
f¬f

true

f
f¬f

¬f

f̂f̂alse¬̂f

Figure 5.2: An FKS with the maximal coherent feature bisimulation relation. Reflexive parts
of the relation are omitted.

We proceed by giving the definition of a coherent quotient of an FKS. All quotients adhering
to this definition are included in the set of coherent quotients of this FKS. The state space
of a coherent quotient is constructed by assigning each state to exactly one of its ‘equivalence
classes’, in such a way that the remaining number of non-empty classes is minimal. Since it
may be possible to do this in multiple ways, this part of the definition is non-deterministic.
The transition-constraint function of a coherent quotient is strengthened with the reachability
information of the original FKS. This is necessary since we assumed that a state can only define
behavior for the products included in its reachability set, but it is possible that the transition-
constraint function of the original FKS does not respect this assumption.

Definition 5.4. Let fks = (S, AP , θ, L, s∗) be an FKS with reachability function ̺, and let
∼ ∈ {↔cf ,≈cdbsf}. A ∼-quotient of fks is an FKS fks ′ = (S′, AP , θ′, L′, s′∗), such that

• S′ ⊆
⋃
C∈〈S〉∼

2C , such that

1.
⋃
S′ = S;

2. C1 ∩ C2 = ∅, for all distinct C1, C2 ∈ S
′;

3. |S′| is minimal.

• θ′ : S′ × S′ → B(F) is constructed such that, for all C1, C2 ∈ S
′:

θ′(C1, C2) =

{
false if ∼ = ≈cdbsf and C1 = C2∨
{ θ(s, t) ∧ ̺(s) | s ∈ C1 ∧ t ∈ C2 } otherwise
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• L′([s]≃S′
) = L(s), for all s ∈ S.

• s′∗ = [s∗]≃S′
.

In the construction of the state space of the coherent quotient we demand that |S′| is minimal.
Figure 5.2 illustrates why this is necessary. The FKS in this figure would have five coherent
quotients without this requirement: three of which would have a state space of size five, one
with a state space of size six, and the last one would have a state space of size four. By adding
the requirement that |S′| is minimal, the only coherent quotient of this FKS is the quotient with
a state space of size four.

Note that fks |= s ≃ t implies fks |= s ∼ t, for (≃,∼) ∈ {(↔f ,↔cf ), (≈dbsf,≈cdbsf)}, by
Definition 5.3. It follows that each FKS that is minimal modulo ∼ is also minimal modulo ≃.
Hence the naive quotient of an FKS is at least as large as its coherent quotients.

The function that yields the set of ∼-quotients of an FKS is denoted by ∼ -minFKS, for
∼ ∈ {↔cf ,≈cdbsf}. An example of an FKS and its (unique) ↔cf -quotient are shown in the
left and right parts of Figure 5.1, respectively. We say that an FKS fks is minimal modulo
coherent feature bisimulation if and only if ↔cf -minFKS(fks) = {fks}. Similarly, we say it is
minimal modulo coherent divergence-blind stuttering feature equivalence if and only if ≈cdbsf

-minFKS(fks) = {fks}.

We show that every FKS is feature bisimilar to its coherent feature bisimulation quotients.

Theorem 5.3. For each FKS fks and for all fks ′ ∈ ↔cf -minFKS(fks), it holds that fks ′ ↔f fks.

Proof. The proof is similar to that of Theorem 5.1 for the naive quotient. The full proof can be
found in Appendix C.

Similarly we show that every FKS is divergent-blind stuttering feature equivalent to its
coherent divergent-blind stuttering feature quotients. As with Theorems 5.2 and 5.3, the proof
for this theorem can be found in Appendix C.

Theorem 5.4. For each FKS fks and for all fks ′ ∈ ≈cdbsf -minFKS(fks), it holds that fks ′ ≈dbsf

fks.

We continue with the quotients for event-based models.

5.2 Event-based models

The theorems in this section are similar to those of Section 5.1. Hence, the proofs are omitted.
The interested reader can find them in Appendix C.

We first define the bisimulation quotient for LTS:

Definition 5.5. Let lts = (S, A, →, s∗) be an LTS, and let ≃ ∈ {↔,↔b}. The ≃-quotient of
lts is the LTS lts ′ = (S′, A, →′, s′∗), such that

• S′ = [S]≃.
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• If ≃ = ↔, we have

→′ = { (C1, α, C2) ∈ S
′ ×Aτ × S

′ | ∃(s, t) ∈ C1 × C2 : (s, α, t) ∈ →}.

Otherwise, if ≃ = ↔b, we have

→′ = { (C1, α, C2) ∈ S
′×Aτ ×S

′ | (C1 6= C2∨α 6= τ) ∧ ∃(s, t) ∈ C1×C2 : (s, α, t) ∈ →}.

• s′∗ = [s∗]≃.

The function that yields the ≃-quotient of an LTS is denoted by ≃-minLTS, for ≃ ∈ {↔,↔b}.
We say that an LTS lts is minimal modulo bisimulation if and only if ↔ -minLTS(lts) = lts .
Similarly, we say it is minimal modulo branching bisimulation if and only if↔b-minLTS(lts) = lts .

We will extend this definition to FTS in the same ways as we extended the quotients for KS
to quotients for FKS. As with FKS, we first define the naive quotients.

Definition 5.6. Let fts = (S, A, θ, s∗) be an FTS, let ϕ ∈ B(F) be a feature expression, and
let ≃ ∈ {↔f ,↔bf }. The naive ≃-quotient of fts for ϕ is the FTS fts ′ = (S′, A, θ′, s′∗), such
that

• S′ = [S]ϕ
≃
.

• θ′ : S′ ×Aτ × S
′ → B(F) is constructed such that, for all C1, C2 ∈ S

′ and α ∈ Aτ :

θ′(C1, α, C2) =

{
false if ≃ = ↔bf and C1 = C2 and α = τ∨
{ θ(s, α, t) | s ∈ C1 ∧ t ∈ C2 } otherwise

• s′∗ = [s∗]≃.

The function that yields the naive ≃-quotient for a feature expression ϕ ∈ B(F) of an FTS

is denoted by
ϕ
≃-minFTS, for ≃ ∈ {↔f ,↔bf }. We say that an FTS fts is minimal modulo naive

feature bisimulation if and only if ←→f -minFTS(fts) = fts. Similarly, we say it is minimal modulo
naive branching feature bisimulation if and only if ←→bf -minFTS(fts) = fts.

We show that, for each feature expression φ, every FTS is feature bisimilar for φ to its naive
feature bisimulation quotient for φ.

Theorem 5.5. For each FTS fts, and for all φ ∈ B(F), it holds that
φ
←→f -minFTS(fts)

φ
←→f fts.

Similarly we show that, for each feature expression φ, every FTS is branching feature bisim-
ilar for φ to its naive branching feature bisimulation quotient for φ.

Theorem 5.6. For each FTS fts, and for all φ ∈ B(F), it holds that
φ
←→bf -minFTS(fts)

φ
←→bf fts.

Next we define when two states in an FTS are coherent feature bisimilar or coherent branching
feature bisimilar.
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Definition 5.7. Let fts = (S, A, θ, s∗) be an FTS, and let ̺ denote its reachability function.
We say two states s, t ∈ S are coherent feature bisimilar or coherent branching feature bisimilar,

denoted by fts |= s ↔cf t and fts |= s ↔cbf t, if and only if fts |= s
̺(s)∧̺(t)
≃ t, for ≃ ∈ {↔f ,↔bf },

respectively.

As with FKS, these relations are not transitive and therefore different ‘equivalence classes’
induced by these relations (maximal cliques in the graph induced by ↔cf or ↔cbf ) may have a
non-empty intersection. Hence, unique coherent quotients do not exist. We proceed by giving
the definition of a coherent quotient of an FTS. All quotients adhering to this definition are
included in the set of coherent quotients of this FTS.

Definition 5.8. Let fts = (S, A, θ, s∗) be an FTS with reachability function ̺, and let ∼ ∈
{↔cf ,↔cbf }. A ∼-quotient of fts is an FTS fts ′ = (S′, A, θ′, s′∗), such that

• S′ ⊆
⋃
C∈〈S〉∼

2C , such that

1.
⋃
S′ = S;

2. C1 ∩ C2 = ∅, for all distinct C1, C2 ∈ S
′;

3. |S′| is minimal.

• θ′ : S′ ×Aτ × S
′ → B(F) is constructed such that, for all C1, C2 ∈ S

′ and α ∈ Aτ :

θ′(C1, C2) =

{
false if ∼ = ↔bf and C1 = C2 and α = τ∨
{ θ(s, α, t) ∧ ̺(s) | s ∈ C1 ∧ t ∈ C2 } otherwise

• s′∗ = [s∗]≃S′
.

The function that yields the set of ∼-quotients of an FTS is denoted by ∼ -minFTS, for
∼ ∈ {↔cf ,↔cbf }. We say that an FTS fts is minimal modulo coherent feature bisimulation if
and only if ↔cf -minFTS(fts) = {fts}. Similarly, we say it is minimal modulo coherent branching
feature bisimulation if and only if ↔cbf -minFTS(fts) = {fts}.

We show that every FTS is feature bisimilar to its coherent feature bisimulation quotients.

Theorem 5.7. For each FTS fts and for all fts ′ ∈ ↔cf -minFTS(fts) it holds that fts ′ ↔f fts.

Similarly, we show that every FTS is branching feature bisimilar to its coherent branching
feature bisimulation quotients.

Theorem 5.8. For each FTS fts and for all fts ′ ∈ ↔cbf -minFTS(fts) it holds that fts ′ ↔bf fts.

Note that the coherent ∼-quotients of an FTS fts are not always minimal in the number of
states modulo ≃, for (≃,∼) ∈ {(↔f ,↔cf ), (↔bf ,↔cbf )}. An example is shown in Figure 5.3.
The FTS fts ′ is branching feature bisimilar to the FTS fts, and has a state space of size 2.
However, the FTS fts ′′ is one of the coherent branching feature bisimulation quotients of fts ,
and has a state space of size 3.

This example suggests that it is in general not possible to construct a minimal FTS modulo
(branching) feature bisimulation without allowing to split states. However, allowing to split
states can easily lead to a growth in the number of transitions, even when keeping the number
of states minimal, as shown in Figure 5.4.
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fts
s1

s2 s3

s4

fts ′

t1

t2

fts ′′

u3

u1

u2τ |true
a|f

a|¬f

a|trueτ |¬f

τ |true

a|¬f

a|f

Figure 5.3: An FTS fts, its minimal representation modulo branching feature bisimulation fts ′,
and one of its coherent branching feature bisimulation quotients fts ′′.

Such a result is unwanted as it ‘breaks up’ the family-level behavior of the system. Hence, we
leave the challenge of defining a quotient that is truly minimal (in both states and transitions)
modulo (branching) feature bisimulation for future work, as well as establishing whether such
a quotient is actually unique. The above discussion is also applicable to FKS, for relations
(≃,∼) ∈ {(↔f ,↔cf ), (≈dbsf,≈cdbsf)}.

We now give an overview of the the relations between the different quotients defined on
the product-family level. In general, let S be an FKS or FTS, and let the tuple (≃,∼) be
in {(↔f ,↔cf ), (≈dbsf,≈cdbsf)} or {(↔f ,↔cf ), (↔bf ,↔cbf )}, respectively. Let |S| denote the
number of states of the transition systems S. For a concrete example, we pick S as the FTS fts ,
and (≃,∼) as (↔f ,↔cf ).

We let [fts ]↔
f
= {fts ′ | fts ↔f fts

′} denote the set of all FTS that are feature bisimilar to fts .
We have the following properties regarding the coherent quotients.

1. The FTS fts has a set of coherent feature bisimulation quotients ↔cf -minFTS(fts). Each of
these quotients has the same number of states, by Definition 5.8.

2. We have ↔cf -minFTS(fts) ⊆ [fts]↔
f
by Theorem 5.7.

3. An FTS fts ′ that is minimal modulo coherent feature bisimulation does not have to be
minimal modulo feature bisimulation. That is, there may be an fts ′′ ∈ [fts ]↔

f
such that

|fts ′′| < |fts ′|. An example is shown in Figure 5.3.

4. Conversely, each FTS that is minimal modulo feature bisimulation is also minimal modulo
coherent feature bisimulation. This follows directly from point 2.

Lastly, we have the following properties regarding the naive quotients.

fts

t1 t2 t3

fts ′

u2

u1

u3

a|true a|true
a|fa|¬f

a|¬f

a|f

Figure 5.4: Two feature bisimilar FTS.
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1. The FTS fts has exactly one naive feature bisimulation quotient
true
←−→f -minFTS(fts).

2. We have
true
←−→f -minFTS(fts) ∈ [fts ]↔

f
by Theorem 5.5.

3. An FTS fts ′ that is minimal modulo naive feature bisimulation does not have to be
minimal modulo coherent feature bisimulation. That is, it may be the case that | ↔cf

-minFTS(fts
′)| < |fts ′|. An example is shown in Figure 5.1.

4. Conversely, each FTS that is minimal modulo coherent feature bisimulation is also minimal
modulo naive feature bisimulation. This follows directly the definition of coherent feature
bisimulation (Definition 5.7.

We conclude this chapter with a section on related work.

5.3 Related work

In [11], Cordy et al. propose simulation-equivalence quotients for their Featured Transition
Systems. Similar to our work, their first proposal is a quotient that merges states that are
simulation equivalent for all products. Hence, this quotient is equivalent to our naive true-
quotients. Experiments performed by Cordy et al. showed that this quotient does not result in
useful reduction in practice, and hence they defined a second quotient that takes the reachability
function into account. For this purpose they defined that 1) a state s trivially simulates a state t
for all products that cannot reach t, and that 2) a state s cannot simulate a state t for products
that can reach t but not s.

Using this definition a new equivalence relation is defined, where two states are reachability-
aware simulation equivalent iff they can simulate each other for all products. Note that this im-
plies that the reachability sets of two states must be equal for those two states to be reachability-
aware simulation equivalent. Hence, this second equivalence is much finer than our definition of
coherent equivalence, and is therefore much less powerful. It is, however, more powerful than
the naive quotient.

Lastly a quotient was proposed based on the featured simulation preorder, again taking
reachability into account. This quotients is, like our coherent quotient, not unique, which makes
it more difficult to define than the previous two quotients. Moreover, since this quotient is
not based on an equivalence, behavior may be added during the state space reduction process.
Hence, validity of proporties is not always preserved by this quotient, which may be problematic.
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Chapter 6

An algorithm for coherent branching
feature bisimulation

In this chapter we present an algorithm [7] to calculate a coherent branching feature bisimulation
quotient for a given FTS. This algorithm is based on the algorithm for branching bisimilarity as
described by Groote and Vaandrager [18]. The coherent branching feature bisimulation quotient
does not allow to ‘split’ a state from the original system over its features and map different parts
of the state to different states in the reduced FTS. Hence, as argued in the previous chapter,
the ‘minimal’ representations of FTS calculated by the algorithm may actually not be minimal
modulo branching feature bisimulation. However, as we will see, even for this restricted class of
quotients the addition of the feature dimension to the system introduces multiple challenges for
the adaptation of the algorithm, making this a far from trivial problem.

In Section 6.1 we discuss the complexity of coherent feature bisimulation reduction in gen-
eral, and we prove that this problem is NP-hard. In Section 6.2 we present our adaptation of
the Groote-Vaandrager algorithm. Lastly, Section 6.3 contains implementation details of the
algorithm, including detailed pseudo-code.

6.1 Complexity of coherent feature bisimulation reduction

The traditional algorithm for minimization modulo branching bisimilarity maintains a partition
of the states of an LTS. It keeps refining this partition until it satisfies the transfer conditions
of branching bisimilarity, which means a branching bisimulation relation has been found. This
approach uses the transitivity of the branching bisimulation relation: if state s1 is branching
bisimilar to state s2, but not to state s3, then we also know that state s2 is not branching
bisimilar to s3. Hence, it is always possible to split a block of the partition in two strict subsets,
which means the result is again a partition.

With the addition of the feature dimension, our goal is to calculate a coherent branching
feature bisimulation quotient, which means we are relating different states for different sets of
products. As a result, it is not possible to maintain a partition of the state space as done by
the original algorithm, since a violation of the transfer condition does not necessarily result in
a division of the state space into two non-overlapping subsets. This can also be observed from
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Definition 5.8 of the coherent branching feature bisimulation quotient, where we used 〈S〉↔
cbf

instead of [S]↔
cbf

to determine its state space. As a result the complexity of the minimization
process increases significantly, which we show by proving that the problem of finding a coherent
(branching) feature bisimulation quotient is NP-hard by reducing the chromatic number problem
to it: given a graph, what is the minimum number of colors to color the nodes such that adjacent
nodes have different colors?

Consider undirected connected graph G = (V,E) with V the set of nodes with |V | ≥ 2, and
E ⊆ V × V the set of edges. Let F = { fv | v ∈ V } and let P = { Pv | v ∈ V } such that
Pv |= fu ⇔ u = v. Let the FTS ftsG = (SG, A, θG, s∗) of G be such that

• SG = {s∗, s⊥} ∪ { sv | v ∈ V }, for distinguished states s∗ and s⊥.

• A = {a}.

• θG : SG ×Aτ × SG → B(F) is constructed such that, for all s, t ∈ SG and α ∈ Aτ :

θG(s, α, t) =





∨
u∈V { fu | (u, v) ∈ G } ∨ fv if s = s∗ and ∃v ∈ V : t = sv and α = a

fv if ∃v ∈ V : s = sv and t = s⊥ and α = a

false otherwise

We will show that the number of states of a coherent feature bisimulation quotient of ftsG
is equal to the chromatic number of G plus 2. Since ftsG does not contain any silent transitions
the obtained result is also applicable to the coherent branching feature bisimulation quotient.

We first prove a lemma stating that two states s, t ∈ SG are coherent feature bisimilar if and
only if there exist vertices u, v ∈ V such that s = su and t = sv, and such that u and v are not
neighbors in G.

Lemma 6.1. Let the graph G = (V, E) and the FTS ftsG = (SG, AG, θG, s∗G) be as given
above. For distinct s, t ∈ SG, we have that

ftsG |= s ↔cf t ⇔ (∃u, v ∈ V : s = su ∧ t = sv ∧ (u, v) 6∈ E ).

Proof. The proof for this lemma is included in Appendix D.

We now prove the main theorem.

Theorem 6.1. Let fts ′G be a coherent feature bisimulation quotient of the FTS ftsG given above.
Then the number of states in fts ′G is equal to the chromatic number of G plus 2.

Proof. Let G = (V, E) be as given above. Let fts ′G = (S′
G, AG, θ

′
G, s

′
∗G) be a coherent feature

bisimulation quotient of the FTS ftsG = (SG, AG, θG, s∗G) given above.
Consider S′

G as a set of colors. The state space S′
G is a partition of SG, and hence it induces

a coloring γ : V → S′
G for G, where γ(u) = γ(v) if and only if [su]≃S′

G

= [sv]≃S′
G

, for all u, v ∈ V .

If [su]≃S′

G

= [sv]≃S′

G

, then ftsG |= su ↔cf sv, which implies that (u, v) 6∈ E by Lemma 6.1.

Hence, γ is a valid coloring of G. It remains to show that γ is a minimal coloring. That is, we
have to show that |{γ(v) | v ∈ V }| is minimal. From Lemma 6.1 it follows that [s∗]≃S′

G

= {s∗},

and that [s⊥]≃S′

G

= {s⊥}, from which we derive that |{γ(v) | v ∈ V }| = |S′
G| − 2.
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Assume we can find a set of colors Γ such that |Γ| < |{γ(v) | v ∈ V }|, and a valid coloring
γ′ : V → Γ of G using all colors. We derive a contradiction by showing that fts ′G is not a coherent
feature bisimulation quotient of ftsG.

For every pair of vertices u, v ∈ V we have that γ′(u) = γ′(v) implies (u, v) 6∈ E. Since
γ′ is a valid coloring of G by assumption, from Lemma 6.1 it follows that ftsG |= su ↔cf sv.
Hence, the set S′′

G =
⋃
v∈V {u ∈ V | γ

′(u) = γ′(v)} ∪ {s∗} ∪ {s⊥} is a partition of SG such that
[s]≃S′′

G

= [t]≃S′′

G

implies ftsG |= s ↔cf t, for all s, t ∈ SG. We find that

|S′′
G| = |Γ|+ 2 < |{γ(v) | v ∈ V }|+ 2 = |S′

G| − 2 + 2 = |S′
G|,

from which it follows that fts ′G is not a coherent feature bisimulation quotient of ftsG.
From the contradiction obtained we derive that |{γ(v) | v ∈ V }| is the chromatic number

of G, from which we conclude that the number of states in fts ′G is indeed equal to the chromatic
number of G plus 2.

From the theorem we obtain the following result.

Corollary 6.1. Constructing a minimal coherent (branching) feature bisimilar FTS is NP-
hard.

In the next section we present the algorithm for coherent branching feature bisimulation
minimization for FTS.

6.2 Coherent branching feature bisimulation minimization

As stated in the previous section, due to the nature of coherent branching feature bisimulation it
is not possible to maintain a strict partition of the state space while calculating its quotient. As
a solution, we introduce the concept of a semi-partition and transform the branching bisimilarity
minimization algorithm based on this concept.

A collection B = { Bi | i ∈ I } of non-empty subsets of a set S is called a semi-partition
of S if (i)

⋃
i∈I Bi = S, and (ii) for j 6= i : Bj \Bi 6= ∅. Thus, B covers S and no Bj is strictly

contained in a Bi. Also, for a semi-partition its elements are referred to as blocks. We say that a
semi-partition B′ is a refinement of a semi-partition B if every block of B′ is a subset of a block
of B. Likewise, we say that B is coarser than B′. A semi-partition B of S induces a relation ∼B

on S (not necessarily an equivalence relation), where two elements of S are related iff they are
included in the same block of B.

Given an FTS fts = (S, A, θ, s∗) with reachability function ̺, we first do some pre-processing.
We eliminate unreachable states and strengthen the transition constraint function with the
reachability condition for its source state:

S := { s ∈ S | ̺(s) 6∼P false } and θ(s, α, s′) := θ(s, α, s′) ∧ ̺(s)

Note that this pre-processing step is quite expensive, as determining reachability in FTS is
NP-complete [9]. Hence, calculating the entire reachability function is NP-hard. However, the
reachability function has a crucial role in the definition of coherent branching feature bisimilarity,
and therefore calculating it is unavoidable.
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We define the set Af of so-called featured labels by Af = { (α,ψ) | ∃s, t ∈ S : s
α|ψ
−−→ t }. For

a semi-partition B of S, B,B′ ∈ B and featured label (α,ψ) ∈ Af we let

non-neg(α,ψ)(B,B
′) =

{ s ∈ B | ∀P ∈ P, P |= ̺(s) ∧ ψ : ∃n ∃s0, . . . , sn ∈ B ∃s
′ ∈ B′ ∃ψ1, . . . , ψn, ψ

′ :

s0 = s ∧ (∀i, 1 ≤ i ≤ n : si−1
τ |ψi
−−→ si ∧ P |= ψi) ∧ sn

(α|ψ′)
−−−−→ s′ ∧ P |= ψ′ },

and define its subset pos(α,ψ)(B,B
′) to include all states s ∈ non-neg(α,ψ)(B,B

′) that are reach-
able for all products satisfying ψ, and that reach block B′ using a real step. That is, if α = τ

and s ∈ B ∩ B′, then s is only in pos(α,ψ)(B,B
′) if it can reach B′ using a real τ -transition.

pos(α,ψ)(B,B
′) = { s ∈ B | ψ ⇒P ̺(s)∧

∀P ∈ P, P |= ψ : ∃n ∃s0, . . . , sn ∈ B ∃s
′ ∈ B′ ∃ψ1, . . . , ψn, ψ

′ :

s0 = s ∧ (∀i, 1 ≤ i ≤ n : si−1
τ |ψi
−−→ si ∧ P |= ψi) ∧ sn

α|ψ′

−−→ s′ ∧ P |= ψ′ }.

Moreover, we define neg(α,ψ)(B,B
′) = B \ non-neg(α,ψ)(B,B

′). We know for sure that
two states s and t of a block B are behaviorally different, if s ∈ pos(α,ψ)(B,B

′) and t ∈
neg(α,ψ)(B,B

′). Therefore, we say that B′ is a splitter of B with respect to (α,ψ) if B 6= B′

or α 6= τ , and pos (α,ψ)(B,B
′),neg (α,ψ)(B,B

′) 6= ∅ . If B is a semi-partition of S and B′ is a
splitter of B with respect to (α,ψ), then the semi-partition B′ is obtained from B by replacing
block B by B1 = non-neg(α,ψ)(B,B

′) and B2 = B\ pos (α,ψ)(B,B
′). However, in the case that

B1 or B2 is a subset of another block in the partition (apart from B), it is not added to ensure
that B′ is a semi-partition.

The minimization algorithm starts from the trivial semi-partition {S}, and keeps refining
the semi-partition until no splitters are left.

B := {S} ;

while a splitter B′ for a block B with respect to a featured label (α,ψ) exists do

B := B\{B} ;

if non-neg(α,ψ)(B,B
′) ⊆ B′′ for no B′′ ∈ B

then B := B ∪ {non-neg(α,ψ)(B,B
′)} ;

end ;

if B\ pos(α,ψ)(B,B
′) ⊆ B′′ for no B′′ ∈ B

then B := B ∪ {B\ pos(α,ψ)(B,B
′)} ;

end ;

It is easy to see that the algorithm terminates. The resulting semi-partition B′ after each
iteration is a strict refinement of the semi-partition B before this iteration. That is, B′ is
a refinement of B and B′ 6= B. It is not possible to keep refining indefinitely, since after a
finite amount of iterations the finest semi-partition { {s} | s ∈ S } will be obtained. Hence we
conclude the algorithm terminates. However, the size of a semi-partition of S can be exponential
in |S|. Since after each iteration of the algorithm the number of blocks of the semi-partition is
increased by at most one, the number of iterations may be exponential in |S| as well. This is a
huge decrease in performance from the original Groote-Vaandrager algorithm, which terminates
after at most |S| − 1 iterations.
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In the theorem below, we call a semi-partition C a stable partition with respect to a block B′

if for no block B and for no featured label (α,ψ), B′ is a splitter of B with respect to (α,ψ).
The semi-partition C is itself called stable if C is stable with respect to all its blocks.

Lemma 6.2. For an FTS fts = (S, θ, s∗), Bmin obtained from the algorithm is the coarsest
stable semi-partition refining {S}.

Proof. We show by induction on the number of iterations of the algorithm that each stable
partition refines the current semi-partition B. Let C be a stable semi-partition. Clearly the
statement holds initially, each semi-partition refines {S}. Suppose C refines semi-partition B

obtained after a number of iterations and suppose a splitter B′ of a block B exists with respect to
a featured label (α,ψ). It suffices to show that any block C of C is included in a block of B′, the
semi-partition obtained by splitting B. Pick a block of B containing C. If this block is different
from B, we are done. So, suppose C ⊆ B. We have to show that either C ⊆ non-neg(α,ψ)(B,B

′)
or C ⊆ B \ pos (α,ψ)(B,B

′).

Suppose s, t ∈ C with s ∈ pos (α,ψ)(B,B
′) and t ∈ neg(α,ψ)(B,B

′). We derive a contradiction.
Pick a product P ∈ P such that P |= ψ. Such a product exists by definition of Af . Choose

s0, . . . , sn ∈ B, s′ ∈ B′, ψ1, . . . , ψn, ψ
′ ∈ B(F) such that s0 = s, si−1

τ |ψi
−−→ si for 1 ≤ i ≤ n,

sn
(α|ψ′)
−−−−→ s′, and moreover P |= ψi, for 1 ≤ i ≤ n, and P |= ψ′. Let C0, . . . , Cn, C

′ be the blocks
of C such that si ∈ Ci and s

′ ∈ C ′. Note that Ci ⊆ B, for 0 ≤ i ≤ n, and C ′ ⊆ B′. Using the
fact that C is stable we can construct a sequence t0, . . . , tm ∈ B, t′ ∈ B′, ϕ1, . . . , ϕm, ϕ

′ ∈ B(F)

such that t0 = t, ti−1
τ |ϕi
−−→ ti for 1 ≤ i ≤ m, tn

(α|ϕ′)
−−−−→ t′, and moreover P |= ϕi for 1 ≤ i ≤ m,

and P |= ϕ′. This contradicts t ∈ neg (α,ψ)(B,B
′), and proves the induction step.

Given an FTS fts with state space S, we would now like to show that the semi-partition Bmin

obtained from the algorithm is equivalent to the partition 〈S〉↔
cbf

induced by coherent branching
feature bisimulation, as this would imply that a coherent branching feature bisimulation quotient
is being calculated. However the example given in Figure 6.1 shows that this is not the case.

fts
s0

s3s1

s4s2

a|true

a|true

a|¬f

a|f

a|f

f̂

f̂

Figure 6.1: An FTS fts of which states s1 and s3 are coherent feature bisimilar. However, these
states will not end up in the same block of the partition after applying the algorithm.
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Example. Figure 6.1 shows an FTS fts of which states s1 and s3 are coherent feature bisimilar.
This is witnessed by a feature bisimulation relation relating states s2 and s4 for the feature
expression f . However, states s2 and s4 are not coherent feature bisimilar, since they are both
reachable for all products, and only state s2 can perform an a-step for the products satisfying ¬f .
Hence, the algorithm will separate the states s2 and s4 on the featured label (a,¬f). As a result,
this pair of states cannot witness that states s1 and s3 are in fact coherent feature bisimilar.
Therefore, in a next iteration of the algorithm the pair of states s1 and s3 will be separated as
well.

This example shows that the algorithm can only identify states as coherent feature bisimilar
if this is witnessed by states that are also coherent feature bisimilar. We therefore define a slight
adaptation of coherent branching feature bisimulation, which we refer to as complete coherent
branching feature bisimulation.

Definition 6.1. Let fts = (S, A, θ, s∗) be an FTS, and let ̺ denote its reachability function.
We say two states s, t ∈ S are complete coherent branching feature bisimilar, denoted by fts |=
s ↔ccbf t, if and only if there exists a branching feature bisimulation relation R on fts such that
(s, [̺(s) ∧ ̺(t)]∼P

, t) ∈ R, and such that ∀(s1, ϕ̂, s2) ∈ R : ̺(s1) ∧ ̺(s2) ⇒P ϕ.

Hence, two states are complete coherent branching feature bisimilar if and only if they
are coherent branching feature bisimilar, and this fact is witnessed by a branching feature
bisimulation relation containing only coherent branching feature bisimilar pairs of states. It
follows that complete coherent branching feature bisimilarity is a stronger notion than coherent
branching feature bisimilarity.

We show that the semi-partition Bmin obtained from the algorithm is equal to the semi-
partition 〈S〉↔

ccbf
induced by complete coherent branching feature bisimulation. Note that, as

complete coherent branching feature bisimulation is a stronger notion than coherent branching
feature bisimulation, we have that 〈S〉↔

ccbf
is a refinement of 〈S〉↔

cbf
. Hence, showing that Bmin

is equal to 〈S〉↔
ccbf

implies that the complete coherent quotient obtained by post-processing
Bmin is a refinement of a coherent quotient of fts .

Theorem 6.2. Assume that Bmin is the partition obtained upon termination after applying the
algorithm to the FTS fts = (S, A, θ, s∗). Then Bmin = 〈S〉↔

ccbf
.

Proof. Let fts = (S, A, θ, s∗) be an FTS. We prove the theorem by showing that 1) Bmin is a
refinement of 〈S〉↔

ccbf
, and 2) that 〈S〉↔

ccbf
is a refinement of Bmin .

We show that Bmin is a refinement of 〈S〉↔
ccbf

by showing that the relation

R = {(s, [̺(s) ∧ ̺(t)]∼P
, t) ∈ S × B̂(F)× S | [s]≃Bmin

= [t]≃Bmin
}

is a branching feature bisimulation relation. By construction of R, this implies

( [s]≃Bmin
= [t]≃Bmin

) ⇒ fts |= s ↔ccbf t,

for all states s, t ∈ S, which proves that Bmin is a refinement of 〈S〉↔
ccbf

.
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We show that R satisfies the transfer condition from Definition 4.13. Take a tuple of the form

(s, [̺(s) ∧ ̺(t)]∼P
, t) ∈ S × B(F)× S, such that [s]≃Bmin

= [t]≃Bmin
= B. Suppose s

α|ψ
−−→ s′, for

some α ∈ Aτ , ψ ∈ B(F) and s′ ∈ S. This implies that s ∈ pos(α,ψ)(B,B
′), where B′ = [s′]≃Bmin

.
Since [t]≃Bmin

= B and Bmin is stable, by Theorem 6.2, it follows that t ∈ non-neg(α,ψ)(B,B
′).

Hence, by definition of non-neg, we have

∀P ∈ P, P |= ̺(t) ∧ ψ : ∃n ∃t0, . . . , tn ∈ B ∃t
′ ∈ B′ ∃ψ1, . . . , ψn, ψ

′ :

t0 = t ∧ (∀i, 1 ≤ i ≤ n : ti−1
τ |ψi
−−→ ti ∧ P |= ψi) ∧ tn

(α|ψ′)
−−−−→ t′ ∧ P |= ψ′ },

By definition of R we have (s, [̺(s) ∧ ̺(ti)]∼P
, ti) ∈ R, for all 0 ≤ i ≤ n, and (s′, [̺(s′) ∧

̺(t′)]∼P
, t′) ∈ R, which satisfies the transfer condition.

We show that 〈S〉↔
ccbf

is a refinement of Bmin by showing that 〈S〉↔
ccbf

is a stable semi-
partition refining {S}.

By definition 〈S〉↔
ccbf

is a semi-partition. Hence it remains to show that 〈S〉↔
ccbf

is stable
indeed. Suppose that there are blocks B,B′ in 〈S〉↔

ccbf
such that B′ is a splitter of B with

respect to a featured label (α,ψ). This means there are states s and t in B such that s ∈
pos(α,ψ)(B,B

′) and t ∈ neg(α,ψ)(B,B
′). We pick P ∈ P such that P |= ̺(s) ∧ ̺(t) ∧ ψ. Note

that such P exists: by definition of featured labels we have ψ̂ 6= f̂alse. By definition of pos we
have ψ ⇒P ̺(s), and by definition of neg we have [̺(t) ∧ ψ]∼P

6= f̂alse.
By definition of the pos-set there exist s0, . . . , sn ∈ B, s′ ∈ B′, ψ1, . . . , ψn, ψ

′ ∈ B(F) such

that s0 = s, si−1
τ |ψi
−−→ si for 1 6 i 6 n, sn

(α|ψ′)
−−−−→ s′, and moreover P |= ψi, for 1 6 i 6 n, and

P |= ψ′.
Since sn and t are in the same block of 〈S〉↔

ccbf
we have fts |= sn ↔ccbf t. Let R be the

bisimulation relation that witnesses this. Using the transfer condition of this relation we can

construct a sequence t0, . . . , tm ∈ B, t′ ∈ B′, ϕ1, . . . , ϕm, ϕ
′ ∈ B(F) such that t0 = t, ti−1

τ |ϕi
−−→ ti

for 1 6 i 6 m, tn
(α|ϕ′)
−−−−→ t′, and moreover P |= ϕi for 1 6 i 6 m, and P |= ϕ′. This contradicts

t ∈ neg (α,ψ)(B,B
′), and proves that 〈S〉↔

ccbf
is stable.

Since Bmin is the coarsest stable semi-partition refining {S} by Theorem 6.2, we can conclude
that 〈S〉↔

ccbf
is a refinement of Bmin .

Thus, given an FTS fts with set of states S, we continue to refine the trivial semi-partition
until no more splitters can be found. The final semi-partition Bmin that is reached is equal to the
semi-partition induced on S by complete coherent branching feature bisimulation. A complete
coherent branching feature bisimulation quotient can now be constructed by finding a smallest
partition C of S that refines Bmin . This last step requires solving the set cover problem, which
is NP-hard.

6.3 Implementation details

The implementation of the algorithm described in this section assumes its input is already pre-
processed, i.e. the reachability information of the states is already calculated and pushed on the
transitions, and all unreachable elements are removed.
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The algorithm uses three defined data types: blocks, states, and transitions. The initial semi-
partition P0 contains a single block B. this block contains all states of the FTS. It moreover
has a list with its incoming inert transitions, which are all transitions labeled with action τ ,
and a list containing its incoming non-inert transitions, which are all transitions labeled with
an action other than τ .

States contain a list of all their incoming transitions, a list of blocks they appear in (initially
[B] for all states), a set of products for which they are reachable, and a product set that is used
as a flag, which is initially empty.

Each transition contains the state it comes from, the state it leads to, the action it is labeled
with and the set of products it is labeled with.

Formal descriptions of these data types can be found in Appendix D. We proceed by dis-
cussing the pseudo code of the algorithm, which is shown below.

Algorithm BFB-Reduction(P0)
1. list toBeProcessed := P0

2. list Stable := ∅
3. for B′ ∈ toBeProcessed
4. for (α,ϕ) ∈ B′.labels
5. list BL := ∅
6. for t ∈ B′.nonInert : t.label == α

7. RaiseFlags({t})
8. BL := BL ∪ t.from .blocks
9. list pos [B ∈ BL] := {s ∈ B.states | (s.products ∩ ϕ) \ s.flag == ∅}
10. list all [B ∈ BL] := {s ∈ pos [B] | ϕ ⊆ s.products}
11. for B ∈ BL : all [B] 6= ∅ ∧ pos [B] 6= B

12. RemoveBlock(B)
13. if ∀b ∈ Blocks : pos [B] 6⊆ b.States
14. then toBeProcessed.add(splitBlock(B, pos [B]))
15. if ∀b ∈ Blocks : B \ all 6⊆ b.States
16. then toBeProcessed.add(splitBlock(B, B \ all [B]))
17. LowerFlags(BL)
18. if B′ ∈ BL
19. then break
20. if B′ 6∈ BL
21. then toBeProcessed .remove(B′)
22. Stable.add(B′)
23. return Stable

The algorithm uses three lists of blocks: toBeProcessed, Stable and BL. The list toBeProcessed
contains all blocks that might be a splitter of some other block. The list Stable contains all blocks
that are proven to be stable. The last list is an auxiliary list used to store the blocks that might
need splitting.

Initially, all states are contained in a single block (P0), which is added to the list toBePro-
cessed (line 1). The Stable list is initially empty (line 2).
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While the list toBeProcessed is not empty, a block B′ is taken from it (line 3), and it is
checked of which blocks it is a splitter with regard to a featured label (α,ϕ) incoming to B′

(lines 4-11). This is done by raising the flags of all states that can reach B′ with an α-
transition (lines 6-7). All blocks containing such a state are added to the list BL (line 7).
Hereafter the pos-set and all-set are calculated for each block in the list BL (lines 9-10).

The blocks of which B′ is a splitter are split and newly created blocks are added to the list
toBeProcessed (lines 12-16). The flags are reset before continuing to the next featured label
(line 17). If B′ itself was split, we continue immediately by evaluating the next block, instead
of evaluating the next featured label (lines 18-19). If the splitting was performed with regard
to all incoming featured labels, and B′ itself was never split, it is added to the list Stable, and
we continue with the next block from toBeProcessed (lines 20-22).

When toBeProcessed is empty, the list of stable blocks is returned (line 23), which at this
point contains the coarsest stable semi-partition. Post-processing has to be applied to this data
to obtain the state space of a complete coherent branching feature bisimulation quotient.

Pseudo code of the subroutines is included in Appendix D.

We conclude this chapter by summarizing the achieved results. Our goal was to define an
algorithm that calculates a coherent branching feature bisimulation quotient of a given FTS.
In Section 6.1 we established that this problem is NP-hard. Hence, we are not able to solve it
efficiently.

In Section 6.2 we presented our adaptation of the Groote-Vaandrager algorithm. We showed
that both the pre-processing and post-processing steps of the algorithm require to solve NP-
hard problems. Furthermore, the size of the semi-partition resulting from the main algorithm
may be exponential in the number of states, and hence this part of the algorithm may also
take exponential time. We found that the presented algorithm may not compute a coherent
branching feature bisimulation quotient. Instead a refinement is calculated, which we refer to
as the complete coherent branching feature bisimulation quotient. We formally proved that this
refinement is indeed calculated by the algorithm.

As we now have an algorithm to perform branching feature bisimulation reduction on event-
based family-level models, it would be beneficial if this algorithm is applicable to state-based
family-level models as well. Hence, in the next chapter we will investigate the possibility of
converting from one type of model to the other and back, in order to facilitate this.
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Chapter 7

Minimization using embeddings

As discussed earlier, state space reduction is a major application for equivalence relations on both
state-based and event-based models. For this purpose we defined several quotients in Chapter 5
using the notions of (branching) feature bisimulation for both FKS and FTS. However, as
we have seen in the previous chapter, designing and implementing an algorithm to calculate
such a quotient, in either world, is a challenging task. Hence it would be beneficial if existing
algorithms could be used to perform minimization in both worlds, regardless of the world they
were designed for.

In this chapter, we will discuss the possibilities of minimizing state-based models by per-
forming minimization for event-based models, and the other way around. We restrict ourselves
to minimization modulo feature bisimulation. We leave minimization modulo branching feature
bisimulation / divergence-blind stuttering feature equivalence to future work.

In order to compare the two worlds, we first define transformations, called embeddings, from
state-based models to event-based models, and from event-based models to state-based models.
Using these embeddings, we are able to compare the naive and coherent feature bisimulation
quotients in both worlds. In the end, we are able to prove that it is possible to minimize a model
by minimizing its embedding in the other world.

7.1 Minimization for state-based models

In this section we discuss the possibilities of minimizing state-based models by performing
minimization for event-based models. Sections 7.1.1 and 7.1.2 discuss embeddings from state-
based to event-based models, and Section 7.1.4 presents the possibilities for minimization using
these embeddings.

7.1.1 Embeddings to event-based models

In [14] an embedding from KS to LTS has been proposed. The definition of this embedding is
given below.

Definition 7.1. Let ks = (S, AP ,→ks , L, s∗) be a KS. The embedding lts : KS → LTS is
defined such that lts(ks) = (S′, A,→lts , s∗) is an LTS such that:
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• S′ = S ∪ {s̄ | s ∈ S}, such that s̄ 6∈ S for all s ∈ S,

• A = 2AP ∪ {⊥},

• →lts ⊆ S
′ ×Aτ × S

′ is the least relation satisfying the following rules for all s, t ∈ S:

s
⊥
−→lts s̄ s̄

L(s)
−−→lts s

s −→ks t L(s) = L(t)

s
τ
−→lts t

s −→ks t L(s) 6= L(t)

s
L(t)
−−→lts t

In this embedding each state is duplicated in order to facilitate the encoding of the state
information of the KS. The fresh symbol ⊥ is used to signal a forthcoming of such information.
An example of the application of the embedding lts is shown in Figure 7.1.

ks
{a}

{a}{b}

lts(ks)

τ{b}

⊥

{a}

⊥{a}⊥ {b}

Figure 7.1: A KS ks and its corresponding LTS lts(ks).

Example. In Figure 7.1 the KS ks is embedded into the LTS lts(ks). The three states of ks
are duplicated, and transitions between the original and duplicated states are added, labeled
with ⊥ (from the original to the duplicate), and with the state information (from the duplicate
to the original). The two transitions of ks are in lts(ks) labeled with the state information of
the target state in case of a non-silent transition, and with τ in case of a silent transition.

In [26], it has been proven that the embedding lts preserves and reflects bisimulation.

Theorem 7.1. Let ks = (S, AP ,→, L, s∗) be a KS. Then, for all s, s′ ∈ S, ks |= s ↔ s′ if and
only if lts(ks) |= s ↔ s′.

Proof. As in Theorem 5.3 of [26].

With the embedding of KS into LTS given, the challenge here is to find an embedding
from state-based models to event-based models on the product family level. We first propose a
straightforward generalization from the embedding lts to an embedding fts, that transforms
an FKS to an FTS.

Definition 7.2. Let fks = (S, AP , θ, L, s∗) be an FKS. The embedding fts : FKS → FTS is
defined such that fts(fks) = (S′, A, θ′, s∗) is an FTS such that:

• S′ = S ∪ {s̄ | s ∈ S}, such that s̄ 6∈ S for all s ∈ S,
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• A = 2AP ∪ {⊥},

• θ′ : S′ ×Aτ × S
′ → B(F) is constructed such that, for all s, t ∈ S′ and α ∈ Aτ :

θ′(s, α, t) =





true if s ∈ S ∧ t = s̄ ∧ α = ⊥
true if t ∈ S ∧ s = t̄ ∧ α = L(t)
θ(s, t) if s, t ∈ S ∧ L(s) = L(t) ∧ α = τ

θ(s, t) if s, t ∈ S ∧ L(s) 6= L(t) ∧ α = L(t)
false otherwise

This embedding is, apart from the feature-expressions attached to the transitions, identical
to the embedding lts. The newly-introduced transitions that facilitate the encoding of the
state information of the FKS are assigned the feature expression true. The feature-expressions
attached to the transitions in the FKS are carried over unaltered to the transitions in the FTS.
An example of the application of the embedding fts is shown in Figure 7.2.

fks
{a}

{a}{b}

fts(fks)

f¬f
τ |f

{b}|¬f

⊥|true

{a}|true

⊥|true
{a}|true

⊥|true
{b}|true

Figure 7.2: An FKS fks and its corresponding FTS fts(fks).

For this embedding we can prove that projection on a product distributes over the embedding
from a state-based to an event-based model. This lemma will be useful to lift properties already
proven for the embeddings on the single-product level to the product-family level. The proof
for the lemma can be found in Appendix E.

Lemma 7.1. Let fks be an FKS. Then, for all P ∈ P, we have fts(fks)|P = lts(fks |P ).

Using this lemma we prove that the embedding fts preserves and reflects feature bisim-
ulation, using that the embedding lts preserves and reflects strong bisimulation. However,
reflection can only be proven under the additional assumption that the labels of the related
states are equal. This is due to the additional constraint in Theorem 4.2, stating that bisimula-
tion on the single-product level of a state-based model can only be lifted to feature bisimulation
on the product-family level if the state-labeling is equal.

Theorem 7.2. Let fks = (S, AP , θ, L, s∗) be an FKS. Then, for all s, s′ ∈ S, and ϕ ∈ B(F),

we have fks |= s
ϕ
←→f s

′ if and only if fts(fks) |= s
ϕ
←→f s

′ ∧ L(s) = L(s′).

Proof. Let fks = (S,AP , θ, L, s∗) be an FKS, and let s, s′ ∈ S and ϕ ∈ B(F).
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Suppose fks |= s
ϕ
←→f s

′. By Theorem 4.1 this implies ∀P ∈ P : P |= ϕ ⇒ fks|P |= s ↔ s′.
By Theorem 7.1 we get ∀P ∈ P : P |= ϕ ⇒ lts(fks |P ) |= s ↔ s′, and by Lemma 7.1 this is
equivalent to ∀P ∈ P : P |= ϕ ⇒ fts(fks)|P |= s ↔ s′. Now we use Theorem 4.6 to obtain

fts(fks) |= s
ϕ
←→f s

′. Furthermore, by Definition 4.2 it immediately follows that L(s) = L(s′).

Suppose fts(fks) |= s
ϕ
←→f s

′. By Theorem 4.5 this implies ∀P ∈ P : P |= ϕ ⇒ fts(fks)|P |=
s ↔ s′, which is equivalent to ∀P ∈ P : P |= ϕ ⇒ lts(fks|P ) |= s ↔ s′ by Lemma 7.1. Using
Theorem 7.1 we obtain ∀P ∈ P : P |= ϕ ⇒ fks |P |= s ↔ s′, from which we conclude that

fks |= s
ϕ
←→f s

′, by Theorem 4.2, using that L(s) = L(s′).

Although this embedding does preserve bisimulation, we still found it to be unsuitable for
our purposes. Consider the FKS fks shown in Figure 7.3. Note that fks is minimal modulo
strong feature bisimulation.

fks
{a}

{b}

{c}

{d}

f f

¬f ¬f

Figure 7.3: Example FKS fks of which minimality modulo coherent feature bisimulation is not
preserved after applying the embedding fts.

The FTS fts(fks) resulting from embedding fks is shown in Figure 7.4. One of the coherent
quotients of fts(fks) is shown in Figure 7.5.

fts(fks)

{b}|f {d}|f

{c}|¬f {d}|¬f

⊥|true {a}|true

⊥|true {b}|true

⊥|true{c}|true

⊥|true {d}|true

Figure 7.4: Embedding fts(fks) of the FKS fks from Figure 7.3
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fts ′
{b}|f

{c}|¬f

{d}|true

⊥|true
{a}|true

⊥|true
{b}|f

{c}|¬f

⊥|true
{d}|true

Figure 7.5: Coherent quotient fts ′ of the FTS fts(fks) from Figure 7.4

The quotient from Figure 7.5 has fewer states than the FTS fts(fks), proving that fts(fks)
is not minimal modulo coherent feature bisimulation. However, the FKS fks is minimal modulo
strong feature bisimulation, and hence also modulo coherent feature bisimulation, since all states
have a different label. So although it may be possible, with some creativity, to revert this quotient
back to an FKS (which would then be equal to the original FKS), this is not what we are looking
for; preservation of minimality is a nice property for an embedding, and hence we would like
our embeddings to possess this property.

Note that this embedding is actually suitable for naive feature bisimulation reduction. That
is, the embedding fts does preserve minimality modulo naive feature bisimulation. However,
we are looking for a more generic embedding that is compatible with both naive- and coherent
feature bisimulation reduction.

Hence, we will propose an alternative embedding in the next section.

7.1.2 Embeddings+ to event-based models

The previously proposed embedding fts was not suitable for coherent bisimulation reduction in
FKS, since bisimulation for FTS does not have a constraint that is equivalent to the constraint
on FKS that the labels of two states have to be equal in order for those states to be feature
bisimilar. Hence, coherent bisimulation reduction on FTS can group states together that are
not feature bisimilar in the original FKS.

To solve this problem, we propose an adapted definition of the embedding fts. In this new
definition we add a dummy feature to the set of features, and a dummy product to the set of
products. This dummy product is used in the FTS to make sure the labels of states are equal
in the FKS. We call this new embedding the embedding+, since it is designed to always work
with at least one product: the newly introduced dummy product. Since we will be modifying
the feature- and product sets with this embedding, we will now consider these sets as part of
FTS and FKS definitions.

Some of the theorems in this section are very similar to the ones in Section 7.1.1, and hence
the proofs are omitted. The interested reader is refered to Appendix E, as well as for the proofs
of the lemmas in this section.

Definition 7.3. Let fks = (S, AP , θ, L, s∗, F, P) be an FKS. The embedding fts+ : FKS→ FTS

is defined such that fts+(fks) = (S′, A, θ′, s∗, F
′, P′) is an FTS such that:

• S′ = S ∪ {s̄ | s ∈ S}, such that s̄ 6∈ S for all s ∈ S,
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• A = 2AP ∪ {⊥},

• θ′ : S′ ×Aτ × S
′ → B(F′) is constructed such that, for all s, t ∈ S′ and α ∈ Aτ :

θ′(s, α, t) =





true if s ∈ S ∧ t = s̄ ∧ α = ⊥
true if t ∈ S ∧ s = t̄ ∧ α = L(t)
θ(s, t) ∧ ¬f⊥ if s, t ∈ S ∧ L(s) = L(t) ∧ α = τ

θ(s, t) ∧ ¬f⊥ if s, t ∈ S ∧ L(s) 6= L(t) ∧ α = L(t)
false otherwise

• F′ = F ∪ {f⊥}, such that f⊥ 6∈ F,

• P′ = P ∪ {{f⊥} }.

In this adaptation of the embedding fts, all transitions facilitating the encoding of the state-
information of the FKS are still assigned the feature expression true, which means they are also
enabled for the dummy product {f⊥}. The constraint ¬f⊥ is added to the feature expressions
of all other transitions, meaning that these transitions are not enabled for the dummy product.
An example of an application of the embedding fts+ is shown in Figure 7.6.

fks
{a}

{a}{b}

fts+(fks)

f¬f
τ |f ∧ ¬f⊥

{b}|¬f ∧ ¬f⊥

⊥|true

{a}|true

⊥|true
{a}|true

⊥|true
{b}|true

Figure 7.6: An FKS fks and its corresponding FTS fts+(fks).

We show that bisimilarity of two states in an FKS corresponds to bisimilarity of their re-
spective additional states in the embedded FKS using the fts+ embedding.

Lemma 7.2. Let fks = (S, AP , θ, L, s∗, F, P) be an FKS. Then we have, for all s, s′ ∈ S,

fts+(fks) |= s
ϕ
←→f s

′ ⇔ fts+(fks) |= s̄
ϕ
←→f s̄

′, for all ϕ ∈ B(F).

Similar to the embedding fts, the embedding fts+ also distributes over projection.

Lemma 7.3. Let fks be an FKS. Then, for all P ∈ P, we have fts+(fks)|P = lts(fks|P ).

In Theorem 7.2 we showed that the embedding fts only reflects feature bisimilarity if the
labels of the related states are equal. We will show this constraint coincides with states being
f⊥-bisimilar in the embedding fts+.

Lemma 7.4. Let fks = (S, AP , θ, L, s∗, F, P) be an FKS. Then we have, for all s, s′ ∈ S,
fts+(fks)|{f⊥} |= s ↔ s′ ⇔ L(s) = L(s′).
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Using the above lemma, we can formulate the additional constraint for reflection of feature
bisimilarity in an alternative way.

Theorem 7.3. Let fks = (S, AP , θ, L, s∗, F, P) be an FKS.Then, for all s, s′ ∈ S, and ϕ ∈

B(F), we have fks |= s
ϕ
←→f s

′ if and only if fts+(fks) |= s
ϕ∨ f⊥←−−−→f s

′.

Now that the additional constraint is formulated as part of the feature bisimulation constraint
for the FTS, we can define a slightly adapted coherent quotient for FTS that respects this
constraint. This quotient is discussed in Section 7.1.3.

As we will see in Section 7.1.4, this definition for the embedding does preserve minimality
for both naive feature bisimulation and coherent feature bisimulation. Therefore we believe this
embedding is suitable for our purposes, and hence we define the reverse embedding fts+−1.
Since this reverse embedding will not be applicable to all FTS, we first specify which FTS are
reversible. Note that properties 5a, 5b, 5d, 5e and 6b of the definition of reversible FTS are
not strictly necessary for the embedding fts+−1 to be applicable. However, we will need those
properties further on in Section 7.1.4 to prove that the embedding does preserve minimality.

Definition 7.4. Let fts = (S, A, θ, s∗, F, P) be an FTS. Then fts is reversible iff the following
conditions are satisfied:

1. A = 2AP ∪ {⊥}, for some set AP.

2. f⊥ ∈ F and {f⊥} ∈ P. Furthermore, ∀P ∈ P : (P 6= {f⊥} ⇒ P 6|= f⊥ ).

3. S can be partitioned in two sets S⊥ and S̄.

4. s∗ ∈ S⊥.

5. For all s⊥, t⊥ ∈ S⊥, s̄, t̄ ∈ S̄, and α,α
′ ∈ Aτ , we require that θ is such that

(a) (f⊥ ∧ θ(s⊥, α, t⊥)) ∼P false.

(b) θ(s⊥,⊥, s̄) 6∼P false implies f⊥ ⇒P θ(s⊥,⊥, s̄).

(c) (f⊥ ∨ ̺(s⊥))⇒P

∨
s̄∈S̄ θ(s⊥,⊥, s̄).

(d) θ(s̄, α, t̄) ∼P false.

(e) θ(s̄, α, s⊥) 6∼P false and θ(s̄, α′, t⊥) 6∼P false implies α = α′.

6. For each s⊥ ∈ S⊥ there exists an action L(s⊥) ∈ A\{⊥} such that, for all t⊥ ∈ S⊥, s̄ ∈ S̄,
and α ∈ Aτ :

(a) θ(s̄, α, s⊥) 6∼P false implies α = L(s⊥).

(b) θ(s̄, L(s⊥), s⊥) ∼P θ(s⊥,⊥, s̄).

(c) L(t⊥) = L(s⊥) and θ(t⊥, α, s⊥) 6∼P false implies α = τ .

(d) L(t⊥) 6= L(s⊥) and θ(t⊥, α, s⊥) 6∼P false implies α = L(s⊥).

Note that any embedding fts+(fks) of an FKS fks is a reversible FTS. We now give the
definition of the reverse embedding fts+−1.
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Definition 7.5. Let fts = (S, A, θ, s∗, F, P) be a reversible FTS. The embedding fts+−1 : FTS→
FKS is defined such that fts+−1(fts) = (S′,AP , θ′, L, s∗,F

′,P′) is an FKS such that:

• S′ = {s ∈ S | s
⊥
−→},

• AP is such that A = 2AP ∪ {⊥},

• For all s ∈ S′, L(s) = a, for the unique a ∈ 2AP such that s′
a
−→ s, for some s′ ∈ S.

• θ′ : S′ × S′ → B(F) is constructed such that, for all s, t ∈ S′,

θ′(s, t) = θ(s, L(t), t) ∨ θ(s, τ, t).

• F′ = F \ {f⊥}.

• P′ = P \ {{f⊥}}.

We show that the defined reverse embedding fts+−1 is the left inverse of the embedding
fts+, by proving that composing these embeddings results in the identify function.

Theorem 7.4. We have fts+−1 ◦ fts+ = Id.

Proof. Let fks = (S,AP , θ, L, s∗,F,P) be an FKS. Let fts+(fks) = (S′,A′, θ′, s′∗,F
′,P′) and

fts+−1(fts+(fks)) = (S′′,AP ′, θ′′, L′, s′′∗ ,F
′′,P′′). We establish the isomorphism by proving

that there are isomorphisms between S and S′′, AP and AP ′, θ and θ′′, L and L′, s∗ and s′′∗ , F
and F′′, and P and P′′.

From the definition of fts+ (applied to fks) it follows that

• S′ = S ∪ {s̄ | s ∈ S},

• A′ = 2AP ∪ {⊥},

• For s, t ∈ S′ and α ∈ A′
τ we have:

θ′(s, α, t) =





true if s ∈ S ∧ t = s̄ ∧ α = ⊥
true if t ∈ S ∧ s = t̄ ∧ α = L(t)
θ(s, t) ∧ ¬f⊥ if s, t ∈ S ∧ L(s) = L(t) ∧ α = τ

θ(s, t) ∧ ¬f⊥ if s, t ∈ S ∧ L(s) 6= L(t) ∧ α = L(t)
false otherwise

• s′∗ = s∗.

• F′ = F ∪ {f⊥}.

• P′ = P ∪ {{f⊥}}.

An application of fts+−1, applied to fts+(fks), gives:

• S′′ = {s′ ∈ S′ | s′
⊥
−→} = {s′ ∈ (S ∪ {s̄ | s ∈ S} ) | s′

⊥
−→}. Since s′

⊥
−→ iff s′ ∈ S, we obtain

S′′ = {s′ ∈ S} = S.
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• AP ′ is such that A′ = 2AP ′

∪ {⊥}. Since A′ = 2AP ∪ {⊥}, we obtain AP ′ = AP .

• For all s ∈ S′′, L′(s) = a for the unique a ∈ 2AP such that s′
a
−→ s, for some s′ ∈ S′′. By

construction of θ′ we know that s′ = s̄ and a = L(s). Hence, L′ = L.

• Let s, t ∈ S′′ be two states. Note that the images of s and t in S are s and t, respectively.
We have:

θ′′(s, t) = θ′(s, L′(t), t) ∨ θ′(s, τ, t).

We now distinguish two cases.

1. If L(s) = L(t) we have θ′(s, L′(t), t) = θ′(s, L(t), t) = false, and θ′(s, τ, t) = θ(s, t) ∧
¬f⊥.

2. Otherwise, if L(s) 6= L(t), we have θ′(s, L′(t), t) = θ′(s, L(t), t) = θ(s, t) ∧ ¬f⊥, and
θ′(s, τ, t) = false.

In both cases, we find that θ′′(s, t) = θ(s, t) ∧ ¬f⊥. Since θ(s, t) ∧ ¬f⊥ ∼P θ(s, t) and s
and t are there own images, we can conclude that θ′′ = θ.

• s′′∗ = s′∗ = s∗.

• F′′ = F′ \ {f⊥} = (F ∪ {f⊥}) \ {f⊥} = F.

• P′′ = P′ \ {{f⊥}} = (P ∪ {{f⊥}}) \ {{f⊥}} = P.

We conclude that fts+−1 ◦ fts+ = Id.

Hence we have shown that we can transform and FKS fks to and from an event-based model
using the embeddings fts+ and fts+−1 without changing fks . In the next section we discuss
how the coherent quotient for FTS should be adapted in order to work with this embedding.

7.1.3 The coherent+ quotients for FTS

With Lemma 7.4 we showed that two states of an FKS fks have the same label if and only
if these states are f⊥-bisimilar in the FTS fts+(fks). Hence, a quotient for fts+(fks) that
respects f⊥-bisimilarity does also respect the constraint that two equivalent states should have
the same label in fks .

Including f⊥ in the feature expression of the naive quotient is a simple method to make

this quotient respect f⊥-bisimilarity. That is, the
φ
←→f -quotient for fks should correspond to the

φ∨ f⊥←−−→f -quotient for fts
+(fks), for any feature expression φ ∈ B(F). We will come back to this

conjecture in the next section.

On the other hand, the coherent quotient from Definition 5.8 does not respect f⊥-bisimilarity
for fts+(fks), since most states in this FTS are not reachable for the product {f⊥}. Hence, the
coherent quotient ignores this product. Therefore, we will provide an adaptation of the coherent
quotient that always takes this product into account, whether it is reachable or not. In order to
do this, we first adapt the definition of coherent feature bisimulation.

/department of computer science 69



2IM91 Master’s Thesis technische universiteit eindhoven

Definition 7.6. Let fts = (S, A, θ, s∗, F, P) be an FTS such that f⊥ ∈ F, and let ̺ denote
its reachability function. We say two states s, t ∈ S are coherent+ feature bisimilar, denoted by

fts |= s ↔cf+ t if and only if fts |= s
(̺(s)∧̺(t)) ∨ f⊥
←−−−−−−−−→f t.

The coherent+ feature bisimulation quotient is now defined as follows:

Definition 7.7. Let fts = (S, A, θ, s∗, F, P) be an FTS such that f⊥ ∈ F, with reachability
function ̺. A coherent+ bisimulation quotient of fts is an FTS fts ′ = (S′, A, θ′, s′∗, F, P), such
that

• S′ ⊆
⋃
C∈〈S〉↔

cf+

2C , such that

1.
⋃
S′ = S;

2. C1 ∩ C2 = ∅, for all distinct C1, C2 ∈ S
′;

3. |S′| is minimal.

• θ′ : S′ ×Aτ × S
′ is constructed such that, for all C1, C2 ∈ S

′ and α ∈ Aτ :

θ′(C1, α, C2) =
∨
{ θ(s, α, t) ∧ (̺(s) ∨ f⊥) | s ∈ C1 ∧ t ∈ C2 }.

• s′∗ = [s∗]≃S′
.

Note that the feature f⊥ is also included in the construction of new transition constraint
function θ′. This prevents the feature f⊥ from being stripped from the transition constraint
function, which ensures that the coherent+ quotients of a reversible FTS are still reversible.
This will be discussed in more detail in the next section. The function that yields the set of
coherent+ feature bisimulation quotients of an FTS is denoted by ↔cf+ -minFTS.

We show that every FTS is feature bisimilar to its coherent+ feature bisimulation quotients.

Theorem 7.5. For each FTS fts and for all fts ′ ∈ ↔cf+ -minFTS(fts) it holds that fts ′ ↔f fts.

Proof. Let fts = (S, A, θ, s∗) be an FTS, and let fts ′ = (S′, A, θ′, s′∗) be a coherent+ feature
bisimulation quotient of fts .

We define the relation R such that:

R ={(s, [ϕ ∧ ((̺(s) ∧ ̺(t)) ∨ f⊥)]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fts |= s

ϕ
←→f t}∪

{(C, [ϕ ∧ ((̺(s) ∧ ̺(t)) ∨ f⊥)]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fts |= s

ϕ
←→f t}

We have to show that R is feature bisimulation relation on fts ⊎ fts ′ such that (s∗, t̂rue, s
′
∗) ∈ R.

Since ↔f is reflexive, we find that, for all s ∈ S, (s, [̺(s) ∨ f⊥]∼P
, C) ∈ R, where C ∈ S′ is

such that s ∈ C. Using that s∗ ∈ s
′
∗ by Definition 7.7, it immediately follows that (s∗, t̂rue, s

′
∗) ∈

R. Hence, it remains to show that R is a feature bisimulation relation.
From the definition of R it immediately follows that it is symmetric, and hence it remains

to show that R satisfies the conditions from Definition 4.5.

Consider a tuple (s, [ϕ ∧ ((̺(s) ∧ ̺(t)) ∨ f⊥)]∼P
, C) ∈ S×B(F)×S′ such that fts |= s

ϕ
←→f t

and t ∈ C, for some t ∈ S. Let t be such.
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We prove the transfer condition. Suppose that s
α|ψ
−−→ s′, for some α ∈ Aτ , ψ ∈ B(F), and

for some s′ ∈ S. We first show that this transition can be mimicked by state t for all products

satisfying ϕ ∧ ψ. Since fts |= s
ϕ
←→f t, there exists a set T ⊆ S × B(F) such that fts |= s′

ϕ′

←→f t
′,

for all (t′, ϕ′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′)∈T

θ(t, α, t′) ∧ ϕ′.

Now we show that C can mimic all transitions from t, which we use to conclude that C
can mimic the transition from s to s′. Using that t ∈ C, from Definition 7.7 it follows that
(θ(t, α, t′) ∧ (̺(t) ∨ f⊥)) ⇒P θ

′(C,α,Ct′ ), with t
′ ∈ Ct′ , for all (t′, ϕ′) ∈ T. Since t′ ∈ Ct′ and

fts |= s′
ϕ′

←→f t
′, by construction of R we have (s′, [ϕ′ ∧ ((̺(s′) ∧ ̺(t′)) ∨ f⊥)]∼P

, Ct′) ∈ R, for
all (t′, ϕ′) ∈ T. Using that ̺(s) ∧ ψ ⇒P ̺(s′) and ̺(t) ∧ ϕ′ ⇒P ̺(t′), for all (t′, ϕ′) ∈ T, by
definition of reachability, we find that

((̺(s)∧̺(t)) ∨ f⊥) ∧
∨

(t′,ϕ′)∈T

θ(t, α, t′)∧ϕ′ ⇒P

∨

(t′,ϕ′)∈T

θ′(C,α,Ct′ )∧ϕ
′ ∧ ((̺(s′) ∧ ̺(t′)) ∨ f⊥),

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, [̺(s) ∨ f⊥]∼P
, s) ∈ S′ × B̂(F)× S such that s ∈ C.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. From

Definition 7.7 it follows that ψ =
∨
{θ(u, α, u′) ∧ (̺(u) ∨ f⊥) | u ∈ C ∧ u′ ∈ C ′}. Take

such a pair (u, u′) ∈ C ×C ′. Since both s ∈ C and u ∈ C, by Definition 7.7 we know that
fts |= s↔cf+ u. Hence we can find a set S(u,u′) ⊆ S×B(F) for each tuple (u, u′) ∈ C×C ′

such that fts |= s′
ϕ′

←→f u
′, for all (s′, ϕ′) ∈ S(u,u′), and such that

((̺(s) ∧ ̺(u)) ∨ f⊥) ∧ θ(u, α, u
′) ⇒P

∨

(s′,ϕ′)∈S(u,u′)

θ(s, α, s′) ∧ ϕ′.

For each tuple (u, u′) ∈ C × C ′ we have that fts |= s′
ϕ′

←→f u
′, and hence by construction

of R we have (C ′, [ϕ′ ∧ ((̺(s′) ∧ ̺(u′)) ∨ f⊥)]∼P
, s′) ∈ R, for all (s′, ϕ′) ∈ S(u,u′). Using

that ̺(s) ∧ θ(s, α, s′)⇒P ̺(s
′) and ̺(u) ∧ θ(u, α, u′)⇒P ̺(u

′), we find that

(̺(s) ∨ f⊥) ∧ ψ ⇒P

∨

(u,u′)∈C×C′

∨

(s′,ϕ′)∈S(u,u′)

θ(s, α, s′) ∧ ϕ′ ∧ ((̺(s′) ∧ ̺(u′)) ∨ f⊥),

and hence the transfer condition for this tuple is satisfied.
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2. Lastly consider a tuple (C, [ϕ ∧ ((̺(s) ∧ ̺(t)) ∨ f⊥)]∼P
, s) ∈ S′ × B̂(F) × S, such that

fts |= s
ϕ
←→f t and t ∈ C, for some t ∈ S. Let t be such.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. By

construction of R we have (C, [̺(t) ∨ f⊥]∼P
, t) ∈ R. We have already shown that the

transfer conditions are satisfied for such pairs in R, and hence we can find a set T ⊆
S × B(F) such that (C ′, ϕ̂′

t, t
′) ∈ R, for all (t′, ϕ′

t) ∈ T, and such that

(̺(t) ∨ f⊥) ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

θ(t, α, t′) ∧ ϕ′
t.

Now we show that s can mimic all transitions from t, which we use to conclude that s can

mimic the transition from C to C ′. Since fts |= s
ϕ
←→f t, we can find sets St′ ⊆ S × B(F)

for each (t′, ϕ′
t) ∈ T such that, for all (s′, ϕ′

s) ∈ St′ , we have fts |= s′
ϕ′
s←→f t

′ and such that

ϕ ∧ θ(t, α, t′) ⇒P

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s.

Since (C ′, ϕ̂′
t, t

′) ∈ R, for all (t′, ϕ′
t) ∈ T, by definition of R this means that ϕ′

t ∼P ϕ
′′
t ∧

((̺(t′) ∧ ̺(ut′)) ∨ f⊥), for some ϕ′′
t ∈ B(F) and some ut′ ∈ C

′, such that fts |= t′
ϕ′′
t←→f ut′ .

Since fts |= s′
ϕ′
s←→f t

′ for all (s′, ϕ′
s) ∈ St′ , we derive fts |= s′

ϕ′
s∧ϕ

′′
t←−−−→f ut′ using productwise

transitivity. By construction of R we have (C ′, [ϕ′
s∧ϕ

′′
t ∧ ((̺(s′) ∧ ̺(ut′)) ∨ f⊥)]∼P

, s′) ∈ R.
Using that ̺(s) ∧ θ(s, α, s′)⇒P ̺(s

′) and ϕ′
t ⇒P ϕ

′′
t ∧ (̺(ut′) ∨ f⊥), we find that

ϕ ∧
∨

(t′,ϕ′
t)∈T

θ(t, α, t′) ∧ ϕ′
t ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s ∧ ϕ

′
t,

and hence that

ϕ∧ ((̺(s)∧̺(t))∨f⊥)∧ψ ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′)∧ϕ′
s∧ϕ

′′
t ∧ ((̺(s

′)∧̺(ut′))∨f⊥),

from which we conclude that the transfer condition for this pair is also satisfied.

Hence we can conclude that fts ′ ↔f fts .

With this theorem in place, in the next section we continue by proving that minimization of
an FKS corresponds to minimization of its embedding+ into an FTS.

7.1.4 Minimization using the embedding fts
+

Using the new embeddings and quotients defined in the previous sections, we will show that we
can find the naive φ quotient of an FKS by finding the naive φ ∨ f⊥-quotient of its corresponding
FTS, for any φ ∈ B(F), and that we can find the coherent quotients of an FKS by finding the
coherent+ quotients of its corresponding FTS.

We first show that, for any φ ∈ B(F), the
φ∨ f⊥←−−→f -quotient of a reversible FTS also is

reversible.

72 /department of computer science



technische universiteit eindhoven 2IM91 Master’s Thesis

Theorem 7.6. Let fts be an arbitrary reversible FTS. Then
φ∨f⊥←−−→f -minFTS(fts) is reversible,

for all φ ∈ B(F).

Proof. Let fts = (S, A, θ, s∗, F, P) be a reversible FTS, and φ ∈ B(F) be a feature expression.

Let
φ∨ f⊥←−−→f -minFTS(fts) = (S′, A, θ′, s′∗, F, P). Let ̺ and ̺′ denote the reachability functions

of fts and
φ∨ f⊥←−−→f -minFTS(fts), respectively. We show that

φ∨ f⊥←−−→f -minFTS(fts) is reversible.

1. A = 2AP ∪ {⊥} for some set AP follows directly from reversibility of fts.

2. f⊥ ∈ F and {f⊥} ∈ P and ∀P ∈ P : (P 6= {f⊥} ⇒ P 6|= f⊥ ) follows directly from
reversibility of fts .

3. Since fts is reversible, we know that S = (S⊥, S̄). We furthermore know that s⊥
⊥|ψ
−−→

for some ψ ∈ B(F) such that f⊥ ⇒ ψ, for all s⊥ ∈ S⊥, and that s̄ 6
⊥
−→ for all s̄ ∈ S̄.

By definition of feature bisimulation we derive that s
f⊥←→f t implies that s, t ∈ S⊥ or

s, t ∈ S̄, for all s, t ∈ S. By definition of
φ∨ f⊥←−−→f -minFTS it follows that s, t ∈ C implies

s, t ∈ S⊥ or s, t ∈ S̄, for all C ∈ S′. Hence we can find a partition (S′
⊥, S̄

′) of S′ where
S′
⊥ = {C ∈ S′ | ∀C ⊆ S⊥} and S̄′ = {C ∈ S′ | ∀C ⊆ S̄}.

4. Since s∗ ∈ S⊥ and s∗ ∈ s
′
∗, it follows that s

′
∗ ∈ S

′
⊥.

5. For all C1, C2 ∈ S
′
⊥, C̄1, C̄2 ∈ S̄′, and α,α′ ∈ Aτ we have

(a) For all s ∈ C1 and t ∈ C2 we have s, t ∈ S⊥ and hence (f⊥ ∧ θ(s, α, t)) ∼P false. By

definition of
φ∨ f⊥←−−→f -minFTS it follows that (f⊥ ∧ θ

′(C1, α, C2)) ∼P false.

(b) For all s ∈ C1 and t ∈ C̄1 we have s ∈ S⊥ and t ∈ S̄ and hence θ(s,⊥, t) 6∼P

false implies f⊥ ⇒P θ(s,⊥, t). By definition of
φ∨ f⊥←−−→f -minFTS it follows that

θ′(C1,⊥, C̄1) 6∼P false implies f⊥ ⇒P θ′(C1,⊥, C̄1).

(c) For all s ∈ C1 we have s ∈ S⊥ and hence (f⊥ ∨ ̺(s)) ⇒P

∨
s̄∈S̄ θ(s,⊥, s̄). We have

̺′(C1) ∼P

∨
s∈C1

̺(s), and hence we can derive

f⊥ ∨ ̺
′(C1) ⇒P

∨
s∈C1

∨
s̄∈S̄ θ(s,⊥, s̄).

By definition of
φ∨ f⊥←−−→f -minFTS we have

∨
s∈C1

∨
s̄∈S̄ θ(s,⊥, s̄) ∼P

∨
C̄∈S̄′ θ′(C1,⊥, C̄),

and hence we have f⊥ ∨ ̺
′(C1) ⇒P

∨
C̄∈S̄′ θ′(C1,⊥, C̄).

(d) For all s ∈ C̄1 and t ∈ C̄2 we have s, t ∈ S̄ and hence θ(s, α, t) ∼P false. By definition

of
φ∨ f⊥←−−→f -minFTS it follows that θ′(C̄1, α, C̄2) ∼P false.
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(e) Assume θ′(C̄1, α, C) 6∼P false and θ′(C̄1, α
′, C ′) 6∼P false, for some C,C ′ ∈ S′

⊥. By

definition of
φ∨ f⊥←−−→f -minFTS this implies there exist s, t ∈ C̄1 such that θ(s, α, s′) 6∼P

false and θ(t, α′, t′) 6∼P false, for some s′ ∈ C and some t′ ∈ C ′, and hence s′, t′ ∈ S⊥.

By reversibility of fts, using condition 6(a) it follows that α = L(s′), from which

we derive f⊥ ⇒P θ(s, α, s′) using conditions 6(b) and 5(b). By definition of
φ∨ f⊥←−−→f

-minFTS we know that fts |= s
f⊥←→f t, and hence t must be able to mimic the α-step

for f⊥. By conditions 5(d) and 5(e) we know that for all β, β′ ∈ Aτ it holds that t
β
−→

and t
β′

−→ implies β = β′, from which it follows that the transfer conditions can only
be satisfied if α = α′, which satisfies this condition.

6. From conditions 5(c) and 6(b) it follows that each state s⊥ ∈ S⊥ has at least one incoming
transition with label L(s⊥).

We show that for all s, t ∈ C⊥, for each C⊥ ∈ S
′
⊥, we have L(s) = L(t). Using conditions

5(b), 5(c) and 6(b) we derive that θ(s,⊥, s̄) ∼P θ(s̄, L(s), s) and f⊥ ⇒P θ(s,⊥, s̄), for

some s̄ ∈ S̄. By definition of
φ∨ f⊥←−−→f -minFTS we know that fts |= s

f⊥←→f t and hence

f⊥ ⇒P θ(t,⊥, t̄), for some t̄ ∈ S̄ such that fts |= s̄
f⊥←→f t̄. By conditions 5(d) and 6(a) it

follows that θ(t̄, α, t′) 6∼P false implies α = L(t), for all t′ ∈ S, and hence it must be the
case that L(s) = L(t) for the transfer conditions to be satisfied.

Now we can define L(C⊥) = L(s), for all s ∈ C⊥, for all C⊥ ∈ S
′
⊥.

For all C⊥, C
′
⊥ ∈ S

′
⊥, C̄ ∈ S̄

′, and α ∈ Aτ we have:

(a) For all s ∈ C̄ we have s ∈ S̄ and hence θ(s, α, t) 6∼P false implies α = L(t), for all

t ∈ C⊥. By definition of
φ∨ f⊥←−−→f -minFTS, and since L(C⊥) = L(t), for all t ∈ C⊥, it

follows that θ′(C̄, α,C⊥) 6∼P false implies α = L(C⊥).

(b) For each pair of states (s, t) ∈ C̄ × C⊥ we have θ(s, L(t), t) ∼P θ(t,⊥, s). Hence, by

definition of
φ∨ f⊥←−−→f -minFTS it follows that

θ′(C̄, L(C⊥), C⊥) =
∨

(s,t)∈C̄×C⊥

θ(s, L(t), t) ∼P

∨

(s,t)∈C̄×C⊥

θ(t,⊥, s) = θ′(C⊥,⊥, C̄).

(c) For each pair of states (t, s) ∈ C ′
⊥ × C⊥ we have L(t) = L(s) and θ(t, α, s) 6∼P false

implies α = τ . By definition of
φ∨ f⊥←−−→f -minFTS it follows that L(C ′

⊥) = L(C⊥) and
θ′(C ′

⊥, α, C⊥) 6∼P false implies α = τ .

(d) For each pair of states (t, s) ∈ C ′
⊥ × C⊥ we have L(t) 6= L(s) and θ(t, α, s) 6∼P false

implies α = L(s). By definition of
φ∨ f⊥←−−→f -minFTS it follows that L(C ′

⊥) 6= L(C⊥)
and θ′(C ′

⊥, α, C⊥) 6∼P false implies α = L(s) = L(C⊥).

We conclude that
φ∨ f⊥←−−→f -minFTS(fts) is indeed reversible.
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We will need the following lemma to show that we can find the
φ
←→f -quotient of an FKS by

finding the
φ∨ f⊥←−−→f -quotient of its corresponding FTS.

Lemma 7.5. We have
φ∨ f⊥←−−→f -minFTS ◦ fts

+ = fts+ ◦
φ
←→f -minFKS, for all φ ∈ B(F).

Proof. Consider an FKS fks = (S, AP , θ, L, s∗, F, P). Let the FTS ftsi = (Si, Ai, θi, s∗ i, Fi, Pi)

be such that fts1 =
φ∨ f⊥←−−→f -minFTS(fts

+(fks)) and fts2 = fts+(
φ
←→f -minFKS(fks)), for some

φ ∈ B(F).
We establish the isomorphism by proving that there are isomorphisms between S1 and S2,

A1 and A2, θ1 and θ2, s∗ 1 and s∗ 2, F1 and F2, and P1 and P2.

• The set of states of
φ
←→f -minFKS(fks) is, by definition of

φ
←→f -minFKS, [S]

FKS

φ
←→

f

.

Hence we have S2 = [S]FKS
φ
←→

f

∪ {C̄ | C ∈ [S]FKS
φ
←→

f

}.

The set of states of fts+(fks) is S′ = S ∪ S̄, where S̄ = {s̄ | s ∈ S}. Since s
⊥|f⊥
−−−→, for all

s ∈ S, and s̄ 6
⊥
−→, for all s̄ ∈ S̄, we know that fts+(fks) 6|= s

ϕ∨f⊥←−−→f s̄, for all (s, s̄) ∈ S× S̄.

Hence we have S1 = [S]FTS
φ∨ f⊥←−−→

f

∪ [S̄]FTS
φ∨ f⊥←−−→

f

.

In order to show that S1 = S2, it suffices to establish that there are isomorphisms between
[S]FKS

φ
←→

f

and [S]FTS
φ∨ f⊥←−−→

f

, and between [S̄]FTS
φ∨ f⊥←−−→

f

and {C̄ | C ∈ [S]FKS
φ
←→

f

}.

Using Theorem 7.3 we immediately obtain [S]FKS
φ
←→

f

= [S]FTS
φ∨ f⊥←−−→

f

.

Furthermore, we can combine Theorem 7.3 with Lemma 7.2 to derive that fts+(fks) |=

s̄
φ∨ f⊥←−−−→f t̄ iff fks |= s

φ
←→f t, for all s, t ∈ S, from which it follows that [S̄]FTS

φ∨ f⊥←−−→
f

= {C̄ |

C ∈ [S]FKS
φ
←→

f

}.

• Since feature bisimulation reduction does not modify the set of actions, we immediately
obtain A1 = 2AP ∪ {⊥} = A2. We will refer to A1 and A2 as A.

• The transition constraint function of fts+(fks) is θ′ : S′ × Aτ × S
′ → B(F′), which is

defined such that, for all s, t ∈ S′ and α ∈ Aτ :

θ′(s, α, t) =





true if s ∈ S ∧ t = s̄ ∧ α = ⊥
true if t ∈ S ∧ s = t̄ ∧ α = L(t)
θ(s, t) ∧ ¬f⊥ if s, t ∈ S ∧ L(s) = L(t) ∧ α = τ

θ(s, t) ∧ ¬f⊥ if s, t ∈ S ∧ L(s) 6= L(t) ∧ α = L(t)
false otherwise

We have θ1 : S1 ×Aτ × S1 → B(F1) is such that, for all C1, C2 ∈ S1 and α ∈ Aτ :
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θ1(C1, α, C2) =
∨
{ θ′(s, α, t) | s ∈ C1 ∧ t ∈ C2 }.

The transition constraint function of
φ
←→f -minFKS(fks) is θ′′ : [S]FKS

φ
←→

f

× [S]FKS
φ
←→

f

→ B(F),

which is defined such that, for all C1, C2 ∈ [S]FKS
φ
←→

f

:

θ′′(C1, C2) =
∨
{ θ(s, t) | s ∈ C1 ∧ t ∈ C2 }.

We have θ2 : S2 ×Aτ × S2 → B(F2) is such that, C1, C2 ∈ S2 and α ∈ Aτ :

θ2(C1, α, C2) =





true if C1 ∈ [S]FKS
φ
←→

f

∧ C2 = C̄1 ∧ α = ⊥

true if C2 ∈ [S]FKS
φ
←→

f

∧ C1 = C̄2 ∧ α = L(C2)

θ′′(C1, C2) ∧ ¬f⊥ if C1, C2 ∈ [S]FKS
φ
←→

f

∧ L(C1) = L(C2) ∧ α = τ

θ′′(C1, C2) ∧ ¬f⊥ if C1, C2 ∈ [S]FKS
φ
←→

f

∧ L(C1) 6= L(C2) ∧ α = L(t)

false otherwise

Here, L(C) = L(s) for all s ∈ C, for all C ∈ [S]FKS
φ
←→

f

.

We will now show that θ1 = θ2. Pick two states C1, C2 ∈ S1 and action α ∈ Aτ . We
distinguish four cases:

1. C1, C2 ∈ [S]FTS
φ∨ f⊥←−−→

f

. In this case the images of C1 and C2 in S2 are C1 and C2,

respectively. Since C1, C2 ∈ [S]FTS
φ∨ f⊥←−−→

f

we have s, t ∈ S, for all s ∈ C1 and t ∈ C2.

Now we distinguish two cases:

(a) α = τ and L(C1) = L(C2), or α 6= τ and L(C1) 6= L(C2). We find

θ1(C1, α, C2) =
∨
{ θ(s, t) ∧ ¬f⊥ | s ∈ C1 ∧ t ∈ C2 },

and

θ2(C1, α, C2) =
∨
{ θ(s, t) | s ∈ C1 ∧ t ∈ C2 } ∧ ¬f⊥.

(b) α = τ and L(C1) 6= L(C2), or α 6= τ and L(C1) = L(C2). We find

θ1(C1, α, C2) = false = θ2(C1, α, C2).

In both cases we find that θ1(C1, α, C2) = θ2(C1, α, C2).
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2. C1 ∈ [S]FTS
φ∨ f⊥←−−→

f

and C2 ∈ [S̄]FTS
φ∨ f⊥←−−→

f

. Let C3 denote the corresponding class of C2 in

[S]FTS
φ∨ f⊥←−−→

f

. That is, C3 = {s ∈ S : s̄ ∈ C2}.

In this case the images of C1 and C2 in S2 are C1 and C̄3, respectively.

We distinguish two cases:

(a) α = ⊥ and C3 = C1, which implies C̄3 = C̄1. We find

θ1(C1, α, C2) = true = θ2(C1, α, C̄3).

(b) α 6= ⊥ or C3 6= C1. We find

θ1(C1, α, C2) = false = θ2(C1, α, C̄3).

In both cases we find that θ1(C1, α, C2) = θ2(C1, α, C̄3).

3. C1 ∈ [S̄]FTS
φ∨ f⊥←−−→

f

and C2 ∈ [S]FTS
φ∨ f⊥←−−→

f

. Let C3 denote the corresponding class of C1 in

[S]FTS
φ∨ f⊥←−−→

f

. That is, C3 = {s ∈ S : s̄ ∈ C1}.

In this case the images of C1 and C2 in S2 are C̄3 and C2, respectively.

We distinguish two cases:

(a) α = L(C2) and C3 = C2, which implies C̄3 = C̄2. We find

θ1(C1, α, C2) = true = θ2(C̄3, α, C2).

(b) α 6= L(C2) or C3 6= C2. We find

θ1(C1, α, C2) = false = θ2(C̄3, α, C2).

In both cases we find that θ1(C1, α, C2) = θ2(C̄3, α, C2).

4. C1, C2 ∈ [S̄]FTS
φ∨ f⊥←−−→

f

. Let C3, C4 denote the corresponding classes of C1, C2 in [S]FTS
φ∨ f⊥←−−→

f

,

respectively. That is, C3 = {s ∈ S : s̄ ∈ C1} and C4 = {s ∈ S : s̄ ∈ C2} .

In this case the images of C1 and C2 in S2 are C̄3 and C̄4, respectively.

We find θ1(C1, α, C2) = false = θ2(C̄3, α, C̄4).

We conclude that θ1 = θ2.

• The embedding fts+ does not change the initial state, and hence we have s∗ 1 = [s∗]≃S1
,

and s∗ 2 = [s∗]≃S2
. Since S1 = S2, it follows that s∗ 1 = s∗ 2.

• Since feature bisimulation reduction does not modify the set of features, we immediately
obtain F1 = F ∪ f⊥ = F2.

• Since feature bisimulation reduction does not modify the set of products, we immediately
obtain P1 = P ∪ {f⊥} = P2.
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It follows that
φ∨ f⊥←−−→f -minFTS ◦ fts

+ = fts+ ◦
φ
←→f -minFKS.

Using the lemma, we straightforwardly obtain the desired result:

Theorem 7.7. We have
φ
←→f -minFKS = fts+−1 ◦

φ∨ f⊥←−−→f -minFTS ◦ fts
+, for all φ ∈ B(F).

Proof. Lemma 7.5 gives us

fts+−1 ◦
φ∨ f⊥←−−→f -minFTS ◦ fts

+ = fts+−1 ◦ fts+ ◦
φ
←→f -minFKS.

Using Theorem 7.4 we obtain our desired conclusion:

fts+−1 ◦
φ∨ f⊥←−−→f -minFTS ◦ fts

+ =
φ
←→f -minFKS.

Since FKS and FTS may have multiple coherent quotients, we cannot prove the above
theorem for the function ↔cf -minFKS. However, we can show that the set of coherent quotients
of an FKS fks corresponds to the set of coherent+ quotients of the FTS fts+(fks).

We first show that the coherent+ quotients of a reversible FTS are also reversible. Since the
proof is similar to that of Theorem 7.6, it is omitted here and included in Appendix E.

Theorem 7.8. Let fts be an arbitrary reversible FTS. Then the FTS each fts ′ ∈↔cf+ -minFTS(fts)
is also reversible.

With this theorem in place, we show that for each coherent quotient of an FKS fks , we can
find a corresponding coherent+ quotient of the FTS fts+(fks). That is, we are showing that
the set of coherent quotients of fks corresponds to a subset of the the set of coherent+ quotients
of fts+(fks).

Lemma 7.6. Let fks be an FKS. For each FKS fks ′ ∈ ↔cf -minFKS(fks) there exists an FTS
fts ∈ ↔cf+ -minFTS(fts

+(fks)) such that fks ′ = fts+−1(fts).

Proof. Let fks = (S1,AP , θ1, L, s∗ 1,F1,P1) be an FKS, and let fks ′ = (S′
1,AP , θ

′
1, L

′, s′∗ 1,F1,P1)
be a coherent quotient of fks. Let ̺1 denote the reachability function of fks. Let fts+(fks) =
(S2,A, θ2, s∗ 2,F2,P2) be the corresponding FTS of fks, where S2 = S1 ∪ {ū | u ∈ S1}. Let ̺2
denote the reachability function of fts+(fks).

By definition of ↔cf -minFKS, we know that S′
1 is a partition of S1. Furthermore, we know

that for each class C ∈ S′
1, for each pair of states s, t ∈ C we have that fks |= s ↔cf t. By

Theorem 7.3 and Lemma 7.2 we derive that fts+(fks) |= s ↔cf+ t and fts+(fks) |= s̄↔cf+ t̄.

From this it follows that S′
2 = S′

1 ∪
⋃
C∈S′

1
{s̄ | s ∈ C} is the state space of a coherent+ quo-

tient of fts+(fks). Let fts ′ = (S′
2,A, θ

′
2, s

′
∗ 2,F2,P2) denote this quotient, and let fts+−1(fts ′) =

(S3, AP
′, θ3, L

′′, s∗ 3, F3, P3) be its corresponding FKS. We show that fks ′ = fts+−1(fts ′).

We establish the isomorphism by proving that there are isomorphism between S′
1 and S3,

AP and AP ′, θ′1 and θ3, L
′ and L′′, s′∗ 1 and s∗ 3, F1 and F3, and P1 and P3.
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• We find that the set of states of fts+−1(fts ′) is

S3 = {s ∈ S
′
2 | s

⊥
−→} = {s ∈ (S′

1 ∪
⋃

C∈S′

1

{s̄ | s ∈ C} ) | s
⊥
−→}.

By definition of fts+ and ↔cf -minFKS we know that this is equal to S′
1.

• The set of actions is unchanged by ↔cf+ -minFTS, as is the set of atomic propositions by
↔cf -minFKS, and hence AP = AP ′ follows from fts+−1 ◦ fts+ = Id.

• Pick states C1, C2 ∈ S′
1. Note that the images of C1 and C2 in S3 are C1 and C3,

respectively.

By definition of ↔cf -minFKS we have:

θ′1(C1, C2) =
∨
{ θ1(s, t) ∧ ̺1(s) | s ∈ C1 ∧ t ∈ C2 }.

Pick states (s, t) ∈ C1 × C2. By definition of fts+ we have:

θ2(s, α, t) =





θ1(s, t) ∧ ¬f⊥ if L(s) = L(t) ∧ α = τ

θ1(s, t) ∧ ¬f⊥ if L(s) 6= L(t) ∧ α = L(t)
false otherwise

By definition of ↔cf+ -minFTS we have, for all α ∈ Aτ :

θ′2(C1, α, C2) =
∨
{ θ2(s, α, t) ∧ (̺2(s) ∨ f⊥) | s ∈ C1 ∧ t ∈ C2 },

which is equal to:

θ′2(C1, α, C2) =





∨
{θ(s, t) ∧ ¬f⊥ ∧ ̺2(s) | s, t ∈ C1, C2} if L′(C1) = L′(C2) ∧ α = τ∨
{θ(s, t) ∧ ¬f⊥ ∧ ̺2(s) | s, t ∈ C1, C2} if L′(C1) 6= L′(C2) ∧ α = L′(C2)

false otherwise

By definition of fts+−1 we have:

θ3(C1, C2) = θ′2(C1, L
′′(C2), C2) ∨ θ

′
2(C1, τ, C2).

Using that L′ = L′′, this is equal to:

θ3(C1, C2) =
∨
{θ(s, t) ∧ ¬f⊥ ∧ ̺2(s) | s, t ∈ C1, C2}.

Using that ̺2(s) ∧ ¬f⊥ ∼P1 ̺1(s), for all s ∈ S1, we conclude that θ′1 = θ3.

• For all C2 ∈ S3, L
′′(C2) = a for the unique a ∈ 2AP such that C1

a
−→ C2 in fts ′, for some

C1 ∈ S
′
2. By construction of θ′2 we know we can pick C1 = {s̄ | s ∈ C2} and a = L′(C2).

Hence L′′ = L′.
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• The initial state is unchanged by the embedding fts+−1, and hence we find s∗ 3 = s′∗ 2,
which is the unique class C ∈ S′

2 such that s∗ 2 ∈ C. Since s∗ 2 = s∗ 1 and s∗ 1 ∈ s
′
∗ 1, we

derive that s∗ 3 = s′∗ 1.

• The set of features is unchanged by↔cf -minFKS, and hence F1 = F3 follows from fts+−1 ◦
fts+ = Id.

• The set of products is unchanged by↔cf -minFKS, and hence P1 = P3 follows from fts+−1◦
fts+ = Id.

We conclude that the set of coherent quotients of fks indeed corresponds to a subset of the set
of coherent+ quotients of fts+(fks).

Conversely, given an FKS fks, we show that for each coherent+ quotient of the FTS fts+(fks),
we can find a corresponding coherent quotient of the fks. That is, we show that the set of
coherent+ quotients of fts+(fks) corresponds to a subset of the set of coherent quotients of fks.

Lemma 7.7. Let fks be an FKS. For each FTS fts ∈ ↔cf+ -minFTS(fts
+(fks)) there exists an

FKS fks ′ ∈ ↔cf -minFKS(fks) such that fks ′ = fts+−1(fts).

Proof. The proof is similar to that of Lemma 7.6. The interested reader is referred to Ap-
pendix E.

Combining these two lemmas we find that the set of coherent quotients of an FKS fks
corresponds exactly to the set of coherent+ quotients of the FTS fts+(fks).

Theorem 7.9. Let fks be an FKS. Then

↔cf -minFKS(fks) = {fts
−1(fts) | fts ∈ ↔cf+ -minFTS(fts(fks))}.

Proof. This follows immediately from Lemmas 7.6 and 7.7.

Hence, in this section we have shown that it is possible to perform both naive and coherent
feature bisimulation reduction on an FKS by performing this reduction on its embedding into
an FTS.

We will now summarize the results obtained so far in this chapter. We started in Section 7.1.1
by proposing a straightforward generalization of the embedding lts to the product-family level,
resulting in the embedding fts. We found that this embedding does preserve feature bisim-
ulation, which was proved by Theorem 7.2. However, it did not preserve minimality modulo
coherent feature bisimulation.

Therefore, we proposed a slightly adapted embedding fts+ in Section 7.1.2, that uses a
dummy feature and a dummy product to ensure that minimality is preserved. We found that
also this embedding preserves minimality modulo feature bisimulation (Theorem 7.3), and fur-
thermore we defined a reverse embedding fts+−1 that is the left inverse of fts+, as proven by
Theorem 7.4. In order to make use of the dummy product and ensure preservation of minimality
modulo coherent feature bisimulation, a slightly adapted definition of the coherent quotients was
needed as well, and was proposed in Section 7.1.3. We proved that these coherent+ quotients of
an FTS fts are feature bisimilar to fts in Theorem 7.5, similar to the original coherent quotients.
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Finally, in Section 7.1.4 we proved that we can find the naive feature bisimulation quo-
tient of an FKS by performing naive feature bisimulation reduction to its corresponding FTS
(Theorem 7.7), and that the set of coherent feature bisimulation quotients of an FKS exactly
corresponds to the set of coherent+ feature bisimulation quotients of its corresponding FTS
(Theorem 7.9).

In the next section we will discuss minimization in event-based models through minimization
in state-based models.
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7.2 Minimization for event-based models

In this section we discuss the possibilities of minimizing event-based models by performing
minimization for state-based models. Section 7.2.1 presents an embedding from event-based
to state-based models, and Section 7.2.2 presents the possibilities for minimization using this
embedding.

Many of the proofs in this section are similar to the proofs in Section 7.1, and are therefore
omitted. The interested reader is referred to Appendix E.

7.2.1 Embeddings to state-based models

In [14] an embedding from LTS to KS has been proposed. In [26], a slight adaptation of this
embedding is presented, and that preserves minimality modulo bisimulation. The definition of
this adapted embedding is presented below.

Definition 7.8. Let lts = (S, A,→lts , s∗) be an LTS. The embedding ks : LTS → KS is defined
such that ks(lts) = (S′, AP ,→ks , L, s∗) is a KS such that:

• S′ = S ∪ {t̄a | t ∈ S ∧ a ∈ A ∧ ∃s ∈ S : s
a
−→ t},

• AP = A ∪ {⊥}, where ⊥ 6∈ A,

• →ks ⊆ S
′×S′ is the least relation satisfying the following rules for all s, t ∈ S and a ∈ A:

s
a
−→lts t

s −→ks t̄a t̄a −→ks t

s
τ
−→lts t

s −→ks t

• L(s) = {⊥} for s ∈ S, and L(t̄a) = {a}.

In this embedding a new state is introduced for each incoming action different from τ to an
existing state, to facilitate the encoding of the transition labeling of the LTS. The fresh atomic
proposition ⊥ is used to label the states from the LTS. The newly introduced states are labeled
with a singleton set containing the action it represents. An example of the application of the
embedding ks is shown in Figure 7.7.

lts ks(lts)
{⊥}

{⊥}{⊥}

{a}

{a}

{⊥}

aτ

a

Figure 7.7: An LTS lts and its corresponding KS ks(lts).

In [26] it has been proven that the embedding ks preserves and reflects bisimulation.
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Theorem 7.10. Let lts = (S,A,→, s∗) be an LTS. Then, for all s, s′ ∈ S, lts |= s ↔ s′ if and
only if ks(lts) |= s ↔ s′.

Proof. As in Theorem 5.4 of [26].

The next is step is to find an embedding from event-based models to state-based models on
the product family level. We propose a straightforward generalization from the embedding ks

to an embedding fks, that transforms an FTS into an FKS.

Definition 7.9. Let fts = (S, A, θ, s∗) be an FTS. The embedding fks : FTS → FKS is defined
such that fks(fts) = (S′, AP , θ′, L, s∗) is an FKS such that:

• S′ = S ∪ {t̄a | t ∈ S ∧ a ∈ A ∧ ∃s ∈ S : s
a
−→ t},

• AP = A ∪ {⊥}, where ⊥ 6∈ A,

• θ′ : S′ × S′ → B(F) is constructed such that, for all s, s′ ∈ S′, t ∈ S and a ∈ A:

θ′(s, s′) =





true if s = t̄a and s′ = t

θ(s, a, t) if s ∈ S and s′ = t̄a
θ(s, τ, s′) if s, s′ ∈ S
false otherwise

• L(s) = {⊥} for s ∈ S, and L(t̄a) = {a}.

The embedding fks is identical to the embedding ks, apart from the feature expressions
attached to the transitions. The outgoing transitions of the states that facilitate the encoding
of the action information of the FTS are assigned the feature expression true. All other feature
expressions are carried over from the FTS to the FKS. An example of the application of the
embedding fks is shown in Figure 7.8.

fts
fks(fts)

{⊥}

{⊥}{⊥}

{a}

{a}

{⊥}

a|¬fτ |true

a|f

¬f

true

true

f

true

Figure 7.8: An FTS fts and its corresponding FKS fks(fts).
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With Lemma 7.1 we proved that projection on a product distributes over the embedding from
an event-based to a state-based model. This lemma was useful to lift properties of the embedding
on the single-product level to the embedding on the product-family level. Unfortunately, for the
embedding fks projection on a single product does not distribute over the embedding from a
state-based to an event-based model. This is the case since the embeddings from state-based to
event-based models introduce a new state for each transition. However, the projection operation
removes transitions from the model, while it does not remove states. Hence we have a situation
where applying the embedding before performing projection will result in a system with more
states than the other way around. A simple example of this behavior is shown in Figure 7.9.

fts

fks(fts)|{f}
{⊥} {a} {⊥}

ks(fts |{f})
{⊥} {⊥}

fks(fts)
{⊥} {a} {⊥}

a|¬f

¬f true

Figure 7.9: An FTS fts, for which the KS ks(fts |{f}) is different from the KS fks(fts)|{f}.

Therefore, we will prove a slightly weaker lemma, stating that bisimulation is preserved when
changing the order of the embedding an projection operation. The proof for this lemma can be
found in Appendix E.

Lemma 7.8. Let fts = (S, A, θ, s∗) be an FTS. Then, for all P ∈ P and for all s, t ∈ s we have
fks(fts)|P |= s ↔ t ⇔ ks(fts |P ) |= s ↔ t.

Using this lemma, we show that the embedding fks preserves and reflects feature bisimilarity.

Theorem 7.11. Let fts = (S, A, θ, s∗) be an FTS.Then, for all s, s′ ∈ S, and ϕ ∈ B(F), we

have fts |= s
ϕ
←→f s

′ if and only if fks(fts) |= s
ϕ
←→f s

′.

We define a reverse embedding fks−1 for the embedding fks. In order for this embedding
to be well-defined, we first define which FKS are reversible.

Definition 7.10. Let fks = (S, AP , θ, L, s∗) be an FKS. Then fks is reversible iff the following
conditions are satisfied:

1. AP = A ∪ {⊥}, for some set A.

2. |L(s)| = 1 for all s ∈ S.

3. For all s ∈ S for which ⊥ 6∈ L(s), we require that, for all s′, s′′ ∈ S, s
ψ
−→ s′ and s

ψ′

−→ s′′

implies both s′ = s′′ and L(s′) = {⊥} and ψ = ψ′ = true. Furthermore, we require there

exists a state s′ ∈ S such that s
true
−−−→ s′. We will refer to this state s′ as the target of s.

Note that any embedding fks(fts) of an FTS fks is a reversible FKS. We now give the
definition of the reverse embedding fks−1.
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Definition 7.11. Let fks = (S, AP , θ, L, s∗) be a reversible FKS. The embedding fks−1 : FKS→
FTS is defined such that fks−1(fks) = (S′, A, θ′, s∗) is an FTS such that:

• S′ = {s ∈ S | L(s) = {⊥}},

• A = AP \ {⊥}.

• θ′ : S′ ×Aτ × S
′ → B(F) is constructed such that, for all s, t ∈ S′, and α ∈ Aτ :

θ′(s, α, t) =





θ(s, t) if α = τ ∧ L(s) = L(t)∨
{θ(s, s′) ∧ θ(s′, t) | s′ ∈ S ∧ α ∈ L(s′)} if α 6= τ

false otherwise

We show that the defined reverse embedding fks−1 is the left inverse of the embedding fks,
by proving that composing these embeddings results in the identity function.

Theorem 7.12. We have fks−1 ◦ fks = Id.

Proof. Let fts = (S, A, θ, s∗) be an FTS. Let fks(fts) = (S′, AP , θ′, L, s′∗) and fks
−1(fks(fts)) =

(S′′, A′, θ′′, s′′∗ ). We establish the isomorphism by proving that there are isomorphisms between
S and S′′, A and A′, θ and θ′′, and s∗ and s′′∗ .

From the definition of fts (applied to fks) it follows that

• S′ = S ∪ {t̄a | t ∈ S ∧ a ∈ A ∧ ∃s ∈ S : s
a
−→ t},

• AP = A ∪ {⊥},

• For s, s′ ∈ S′, t ∈ S and a ∈ A we have:

θ′(s, s′) =





true if s = t̄a and s′ = t

θ(s, a, t) if s ∈ S and s′ = t̄a
θ(s, τ, s′) if s, s′ ∈ S
false otherwise

• L(s) = {⊥} for s ∈ S, and L(t̄a) = {a}.

• s′∗ = s∗.

An application of fks−1, applied to fks(fts), gives:

• S′′ = {s ∈ S′ | L(s) = {⊥}}. Since L(s) = {⊥} if and only if s ∈ S, we immediately
obtain S = S′′.

• A′ = AP \ {⊥} = (A ∪ {⊥}) \ {⊥} = A.

• For s, t ∈ S′′ and α ∈ Aτ we have:

θ′′(s, α, t) =





θ′(s, t) if α = τ ∧ L(s) = L(s′)∨
{θ′(s, s′) ∧ θ′(s′, t) | s′ ∈ S ∧ α ∈ L(s′)} if α 6= τ

false otherwise
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which is equivalent to:

θ′′(s, α, t) =





θ(s, τ, t) if α = τ∨
{θ(s, a, t) ∧ true} if α 6= τ

false otherwise

Since S = S′′ the images of s and t in S are s and t, respectively, and hence we conclude
θ′′ = θ.

• s′′∗ = s′∗ = s∗.

We conclude that fks−1 ◦ fks = Id.

Hence we have shown that we can transform an FTS fts to and from a state-based model
using the embedding fks and fks−1 without changing fts. In the next section we discuss how
minimization of an FTS corresponds to minimization of its embedding into an FKS.

7.2.2 Naive minimization using the embedding fks

Using the embeddings defined in the previous section, we will show that we can find the naive
quotient of an FTS by finding the naive quotient of its corresponding FKS.

We first show that the naive quotient of a reversible FKS also is reversible.

Lemma 7.9. Let fks be an arbitrary reversible FKS. Then
φ
←→f -minFKS(fks) is reversible, for all

φ ∈ B(F).

Proof. Let fks = (S, AP , θ, L, s∗) be a reversible FKS, and let φ ∈ B(F) be a feature expression.

Let
φ
←→f -minFKS(fks) = (S′, AP ′, θ′, L′, s′∗). We show that

φ
←→f -minFKS(fks) is reversible.

1. Since AP ′ = AP , AP ′ = A ∪ {⊥} for some set A follows directly from AP = A ∪ {⊥}
for some set A.

2. Since |L(s)| = 1 for all s ∈ S, it follows from the definition of
φ
←→f -minFKS that |L′(s′)| = 1

for all s′ ∈ S′.

3. Since fks is reversible we have that for all s ∈ S for which ⊥ 6∈ L(s), and for all s′, s′′ ∈ S,

s
ψ
−→ s′ and s

ψ′

−→ s′′ implies s′ = s′′ and L(s′) = {⊥} and ψ = ψ′ = true.

Let C ∈ S′ be such that ⊥ 6∈ L′(C). By reversibility of fks and definition of strong feature

bisimilarity for FKS we find that for all s, t ∈ C and for all s′, t′ ∈ S, s
ψ
−→ s′ and t

ψ′

−→ t′

implies fks |= s′
φ
←→f t

′. From this and the definition of
φ
←→f -minFKS it follows that for all

C ′, C ′′ ∈ S′, C
ψ
−→ C ′ and C

ψ′

−→ C ′′ implies C ′ = C ′′ and L′(C ′) = {⊥} and ψ = ψ′ = true.

Lastly, pick a state s ∈ S. Since fks is reversible there exists a state s′ ∈ S such that

s
true
−−−→ s′. Let C ′ ∈ S′ be such that s′ ∈ C ′. It follows that C

true
−−−→ C ′.

We conclude that
φ
←→f -minFKS(fks) is indeed reversible.
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We prove the following lemma for reversible FKS, stating that two states that have the same
label, and are not labeled with {⊥}, are feature bisimilar if and only if their target states are
bisimilar. The proof can be found in Appendix E.

Lemma 7.10. Let the FKS fks = (S, AP , θ, L, s∗) be a reversible FKS. For states s, t ∈ S such
that L(s) 6= {⊥} and L(t) 6= {⊥}, and states s′, t′ ∈ S such that s −→ s′ and t −→ t′ we have, for
all ϕ ∈ B(F):

fks |= s
ϕ
←→f t ⇔ ( fks |= s′

ϕ
←→f t

′ ∧ L(s) = L(t) ).

We will need the following lemma to show that we can find the naive quotient of an FTS by
finding the naive quotient of its corresponding FKS.

Lemma 7.11. We have
φ
←→f -minFKS ◦ fks = fks ◦

φ
←→f -minFTS, for all φ ∈ B(F).

Proof. Consider an FTS fts = (S, A, θ, s∗). Let the FKS fksi = (Si, AP i, θi, Li, s∗ i) be such

that fks1 =
φ
←→f -minFKS(fks(fts)) and fks2 = fks(

φ
←→f -minFTS(fts)), for some φ ∈ B(F).

We establish the isomorphism by proving that there are isomorphisms between S1 and S2,
AP1 and AP2, θ1 and θ2, L1 and L2, and s∗ 1 and s∗ 2.

• The set of states of
φ
←→f -minFTS(fts) is, by definition of

φ
←→f -minFTS, [S]

FTS
φ
←→

f

.

Hence we have S2 = [S]FTS
φ
←→

f

∪ [S]FTS
φ
←→

f

, where [S]FTS
φ
←→

f

=
⋃
a∈A [S]FTS

φ
←→

f

|a, and where [S]FTS
φ
←→

f

|a =

{C̄a | C ∈ [S]FTS
φ
←→

f

∧ ∃C ′ ∈ [S]FTS
φ
←→

f

: C ′ a
−→ C}, for all a ∈ A.

The set of states of fks(fts) is S′ = S ∪ S̄, where S̄ =
⋃
a∈A S̄a, with S̄a = {t̄a | t ∈

S ∧ ∃s ∈ S : s
a
−→ t}, for all a ∈ A. Furthermore, L(s) = {⊥} for s ∈ S, and L(t̄a) = {a},

for t̄a ∈ S̄. Hence, we know that fks(fts) 6|= s
ϕ
←→f t̄a, for all (s, t̄a) ∈ S × S̄, and for all

ϕ ∈ B(F). Furthermore fks(fts) 6|= s̄a
ϕ
←→f t̄b if a 6= b, for all (s̄a, t̄b) ∈ S̄a × S̄b, and for all

ϕ ∈ B(F).

Hence we have S1 = [S]FKS
φ
←→

f

∪
⋃
a∈A[S̄a]

FKS

φ
←→

f

.

In order to show that S1 = S2, it suffices to establish that there are isomorphisms between
[S]FTS

φ
←→

f

and [S]FKS
φ
←→

f

, and between [S̄a]
FKS
φ
←→

f

and [S]FTS
φ
←→

f

|a, for all a ∈ A.

Using Theorem 7.11 we immediately obtain [S]FTS
φ
←→

f

= [S]FKS
φ
←→

f

.

Furthermore, we can combine Theorem 7.11 with Lemma 7.10 to derive that fks(fts) |=

s̄a
φ
←→f t̄a iff fks |= s

φ
←→f t, for all s, t ∈ S such that s̄a, t̄a ∈ S̄, for all a ∈ A, from which

it follows that [S̄a]
FKS

φ
←→

f

= [S]FTS
φ
←→

f

|a

• Since feature bisimulation reduction does not modify the set of atomic propositions, we
immediately obtain AP1 = A ∪ {⊥} = AP2. We will refer to AP1 and AP2 as AP .
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• The transition constraint function of fks(fts) is θ′ : S′×S′ → B(F), which is defined such
that, for all s, s′ ∈ S′, t ∈ S and a ∈ A:

θ′(s, s′) =





true if s = t̄a and s′ = t

θ(s, a, t) if s ∈ S and s′ = t̄a
θ(s, τ, s′) if s, s′ ∈ S
false otherwise

We have θ1 : S1 × S1 → B(F) is such that, for all C1, C2 ∈ S1:

θ1(C1, C2) =
∨
{ θ′(s, t) | s ∈ C1 ∧ t ∈ C2 }.

The transition constraint function of
φ
←→f -minFTS(fts) is θ

′′ : [S]FTS
φ
←→

f

×Aτ× [S]FTS
φ
←→

f

→ B(F),

which is defined such that, for all C1, C2 ∈ [S]FTS
φ
←→

f

, and all α ∈ Aτ :

θ′′(C1, α, C2) =
∨
{ θ(s, α, t) | s ∈ C1 ∧ t ∈ C2 }.

We have θ2 : S2 × S2 → B(F) is such that, for all C1, C2 ∈ S2, C3 ∈ [S]FTS
φ
←→

f

, and for all

a ∈ A.

θ2(C1, C2) =





true if C1 = C̄3a and C2 = C3

θ′′(C1, a, C3) if C1 ∈ [S]FTS
φ
←→

f

and C2 = C̄3a

θ′′(C1, τ, C2) if C1, C2 ∈ [S]FTS
φ
←→

f

false otherwise

We will now show that θ1 = θ2. Pick two states C1, C2 ∈ S1. We distinguish four cases:

1. C1, C2 ∈ [S]FKS
φ
←→

f

. In this case the images of C1 and C2 in S2 are C1 and C2, re-

spectively. Since C1, C2 ∈ [S]FKS
φ
←→

f

we have s, t ∈ S, for all s ∈ C1 and t ∈ C2. We

find
θ1(C1, C2) =

∨
{ θ(s, τ, t) | s ∈ C1 ∧ t ∈ C2 } = θ2(C1, C2).

2. C1 ∈ [S]FKS
φ
←→

f

and C2 ∈ [S̄a]
FKS
φ
←→

f

, for some a ∈ A. Let C ′
2 ⊆ S denote the set of states

in S corresponding to C2. That is, C ′
2 = {t ∈ S : t̄a ∈ C2}. Now let C3 ∈ [S]FKS

φ
←→

f

be

such that C ′
2 ⊆ C3. Note that such C3 exists by Lemma 7.10.

In this case the images of C1 and C2 in S2 are C1 and C̄3a, respectively. We find

θ1(C1, C2) =
∨
{ θ(s, a, t) | s ∈ C1 ∧ t̄a ∈ C2 }
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and
θ2(C1, C̄3a) = θ′′(C1, a, C3) =

∨
{ θ(s, a, t)|s ∈ C1 ∧ t ∈ C3 }.

From which we conclude that θ1(C1, C2) = θ2(C1, C̄3a).

3. C1 ∈ [S̄a]
FKS

φ
←→

f

, for some a ∈ A and C2 ∈ [S]FKS
φ
←→

f

. Let C ′
1 ⊆ S denote the set of states

in S corresponding to C1. That is, C ′
1 = {t ∈ S : t̄a ∈ C1}. Now let C3 ∈ [S]FKS

φ
←→

f

be

such that C ′
1 ⊆ C3. Note that such C3 exists by Lemma 7.10.

In this case the images of C1 and C2 in S2 are C̄3a and C2, respectively.

We distinguish two cases:

(a) C3 = C2. We find
θ1(C1, C2) = true = θ2(C̄3a, C2).

(b) C3 6= C2. We find
θ1(C1, C2) = false = θ2(C̄3a, C2).

In both cases we find that that θ1(C1, C2) = θ2(C̄3a, C2).

4. C1 ∈ [S̄a]
FKS

φ
←→

f

and C2 ∈ [S̄b]
FKS

φ
←→

f

, for some a, b ∈ A. Let C ′
1 ⊆ S denote the set of states

in S corresponding to C1. That is, C ′
1 = {t ∈ S : t̄a ∈ C1}. Now let C3 ∈ [S]FKS

φ
←→

f

be

such that C ′
1 ⊆ C3. Note that such C3 exists by Lemma 7.10. Furthermore, let C ′

2 ⊆ S
denote the set of states in S corresponding to C2. That is, C ′

2 = {t ∈ S : t̄a ∈ C2}.
Now let C4 ∈ [S]FKS

φ
←→

f

be such that C ′
2 ⊆ C4. Note that such C4 exists by Lemma 7.10.

In this case the images of C1 and C2 in S2 are C̄3a and C̄4b, respectively. We find

θ1(C1, C2) = false = θ2(C̄3a, C̄4b).

We conclude that θ1 = θ2.

• For each state C ∈ [S]FKS
φ
←→

f

we have L1(C) = {⊥}, by definition of fks. The image of C in

S2 is C, and we also have L2(C) = {⊥}. For each state C ∈ [S̄a]
FKS

φ
←→

f

, for some a ∈ A, we

have L1 = {a}, by definition of fks. Let C ′ ⊆ S denote the set of states in S corresponding
to C. That is, C ′ = {t ∈ S : t̄a ∈ C}. Now let C ′′ ∈ [S]FKS

φ
←→

f

be such that C ′ ⊆ C ′′. Note

that such C ′′ exists by Lemma 7.10.

The image of C in S2 is now C̄ ′′
a, and we find L2(C̄ ′′

a) = {a}. Hence we conclude that
L1 = L2.

• The embedding fks does not change the initial state, and hence we have s∗ 1 = [s∗]≃S1
,

and s∗ 2 = [s∗]≃S2
. Since S1 = S2, it follows that s∗ 1 = s∗ 2.

We conclude that indeed
φ
←→f -minFKS ◦ fks = fks ◦

φ
←→f -minFTS.
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Using the lemma, we straightforwardly obtain the desired result:

Theorem 7.13. We have
φ
←→f -minFTS = fks−1 ◦

φ
←→f -minFKS ◦ fks, for all φ ∈ B(F).

Proof. Lemma 7.11 gives us

fks−1 ◦
φ
←→f -minFKS ◦ fks = fks−1 ◦ fks ◦

φ
←→f -minFTS.

Using Theorem 7.12 we obtain our desired conclusion:

fks−1 ◦
φ
←→f -minFKS ◦ fks =

φ
←→f -minFTS.

Unfortunately, minimality modulo coherent feature bisimilarity is not preserved by the em-
bedding fks. An example of this is shown in Figure 7.10.

fts fks(fts)
{⊥} {a} {⊥}

{a} {⊥} {b}

a|¬f

a|f b|f

¬f true

f

true f

true

Figure 7.10: An FTS fts that is minimal modulo coherent feature bisimulation, and its corre-
sponding FKS fks(fts), of which the two states with label {a} are coherent feature bisimilar.

We see that the two states with label {a} in the FKS are coherent feature bisimilar. The
issue is that these states are reachable for less products than their target states. Hence, it is
now possible to identify two states representing transitions from the FTS, without identifying
their target states. This is not possible in the single-product setting, and hence the embedding
ks does preserve minimality modulo bisimulation.

In an attempt to solve this, we will define a slightly adapted coherent quotient, specifically
developed to be applied to reversible FKS.

7.2.3 The coherent+-quotients for FKS

We observed that minimality modulo coherent bisimulation for FTS is not being preserved by
the embedding fks. Also, the coherent quotient for FKS does not preserve reversibility of FKS.
Hence, we propose an alternative for this quotient.

In a reversible FKS we can divide the state space in two subsets: the states with label {⊥},
which we will refer to as S⊥, and the states with a label that does not contain {⊥}, which we
will refer to as SA. Each state from s ∈ SA has exactly one outgoing transition to a state from
s′ ∈ S⊥, which is labeled with the feature expression true.

We refer to s′ as the target of s, from now on denoted as t(s) = s′. Using this target function
we redefine the reachability function ̺.
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Definition 7.12. Given a reversible FKS fks = (S, AP , θ, L, s∗) with reachability function ̺.
The reachability+ function ̺+ of fks is defined such that, for all s ∈ S:

̺+(s) =

{
̺(t(s)) if ⊥ 6∈ L(s)
̺(s) if ⊥ ∈ L(s)

Note that ̺(s)⇒P ̺
+(s), for all s ∈ S. This is the case since each s ∈ SA we have s

true
−−−→ t(s)

and hence ̺(s) ⇒P ̺(t(s)). Using the new reachability function we give an adapted definition
of coherent bisimilarity.

Definition 7.13. Let fks = (S, AP , θ, L, s∗) be a reversible FKS with reachability+ function
̺+. We say two states s, t ∈ S are coherent+ feature bisimilar, denoted by fks |= s ↔cf+ t if

and only if fks |= s
̺+(s)∧ ̺+(t)
←−−−−−−−→f t .

We use coherent+ feature bisimilarity to define a set of quotients for reversible FKS.

Definition 7.14. Let fks = (S,AP , θ, L, s∗) be a reversible FKS with reachability+ function ̺+.
A coherent+ bisimulation quotient of fks is an FKS fks ′ = (S′,AP , θ′, L′, s′∗), such that

• S′ ⊆
⋃
C∈〈S〉↔

cf+

2C , such that

1.
⋃
S′ = S;

2. C1 ∩ C2 = ∅, for all distinct C1, C2 ∈ S
′;

3. |S′| is minimal.

• for all C ∈ S′, L′(C) = L(s) for all s ∈ C.

• θ′ : S′ × S′ is constructed such that, for all C1, C2 ∈ S
′:

θ′(C1, C2) =





true if ⊥ 6∈ L′(C1) and ∃(s, t) ∈ C1 × C2 : s −→ t∨
{ θ(s, t) ∧ ̺+(s) | otherwise

(s, t) ∈ C1 × C2 }

• s′∗ = [s∗]≃S′
.

The function that yields the set of all coherent+ feature bisimulation quotients of a reversible
FKS is denoted by ↔cf+ -minFKS.

Note that the value of the transition constraint function is defined to be true for all outgoing
transitions of classes not labeled with ⊥. This is done to preserve the third requirement of
reversibility for FKS (Definition 7.10), stating that each state s not labeled with ⊥ must have

exactly one target state t(s) such that s
true
−−−→ t(s).

From Lemma 7.10 it follows that two states s, t ∈ SA of a reversible FKS fks with state
space S, such that L(s) = L(t), are coherent+ feature bisimilar if and only if their respective
target states t(s) and t(t) are coherent+ feature bisimilar. It follows that the set of target states
{t(s) | s ∈ C} of each class C ∈ 〈SA〉↔cf+

is a subset of some class C ′ ∈ 〈S⊥〉↔cf+
. Using this

knowledge it seems like a coherent+ feature bisimulation quotient fks ′ of fks indeed satisfies the
third requirement of reversibility for FKS. However, here we are not taking into account that
〈S〉↔

cf+
differs from the actual state space of fks ′. Consider the example shown in Figure 7.11.
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fks
{⊥}

{a}{a}{a}

{⊥}{⊥}{⊥}

{b}

{⊥}

fks ′

{⊥}

{a}{a}

{⊥}{⊥}

{b}

{⊥}

fks ′′

{⊥}

{a}{a}

{⊥}{⊥}

{b}

{⊥}

true

f

¬f

truetruetrue

f

f

¬f

true

true
¬f

true

truetrue

f

true

true

true
¬f

truetrue

f
¬f

true

Figure 7.11: A reversible FKS fks and two of its coherent+ feature bisimulation quotients fks ′

and fks ′′.

The FKS fks in Figure 7.11 has multiple coherent+ feature bisimulation quotients. Some of
these quotients, for example fks ′, do not respect reversibility for FKS, while others such as fks ′′

do. From this example we conclude that not all coherent+ feature bisimulation quotients of a
reversible FKS are reversible, but it seems that there is always at least one reversible coherent+

feauture bisimulation quotient. However, we found that this is also not true. Consider the
example shown in Figure 7.12.

fks
{⊥}

{b}{a}{a}{b}

{⊥}{⊥}{⊥}{⊥}

{c}

{⊥}

fks ′

{⊥}

{b}{a}{b}

{⊥}{⊥}

{c}

{⊥}

true
f¬f

true

truetruetruetrue

f
f¬f

¬f

true

true

true

true

true

truetrue

true

f¬f

true

Figure 7.12: A reversible FKS fks and its only coherent+ feature bisimulation quotient fks ′.

The reversible FKS fks in Figure 7.12 has only one coherent+ feature bisimulation quotient,
which is not reversible. Even worse, it is not feature bisimilar to fks. The problem is that
the classes formed in SA correspond to subsets of the classes formed in S⊥. Therefore it may
happen, as shown in Figure 7.12, that the coherent+ feature bisimulation quotients of an FKS
consist of non-corresponding classes on these two levels, which violates the third condition of
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reversibility for FKS. A possible solution could be to weaken this condition. However, if we
do this we are not able to prove anymore that the naive feature bisimulation quotient for FKS
preserves reversibility. Therefore we are not sure how to resolve this problem, and we leave it
to future work to determine whether it is possible to calculate a coherent feature bisimulation
quotient of an FTS by minimizing its corresponding FKS.

We again conclude by summarizing the obtained results. As for the embedding to an event-
based model, we started in Section 7.2.1 by proposing a straightforward generalization of the
embedding ks to the product-family level, resulting in the embedding fks. We proved that this
embedding preserves feature bisimulation in Theorem 7.11. We defined the embedding fks−1,
and showed that it is the left inverse of fks (Theorem 7.12).

In Section 7.2.2 we proved with Theorem 7.13 that we can perform naive feature bisimu-
lation minimization on an FTS by performing naive feature bisimulation minimization on its
corresponding FKS.

Unfortunately, as with the embedding fts we found that fks does not preserve minimality
modulo coherent feature bisimulation. Furthermore we found that the coherent quotient for FKS
does not preserve reversibility of FKS. We made an attempt to solve the problem by proposing a
coherent+ feature bisimulation quotient for reversible FKS in Section 7.2.3, but also this quotient
does not preserve reversibility. Since we are not sure how to resolve this problem, we leave it
to future work to determine whether it is possible to calculate a coherent feature bisimulation
quotient of an FTS by minimizing its corresponding FKS.
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Chapter 8

Experimental evaluation

In order to evaluate the practical usefulness of the developed algorithm to perform complete
coherent branching feature bisimulation reduction, we performed a small case study. As a toy
example we extended the example SPL of a coffee vending machine described in [2, 3, 5, 6]
with a soup component running in parallel. The complete SPL consists of 18 features and 118
products and the FTS modeling it contains 182 states and 691 transitions.

The details of this SPL are described in Section 8.1. Section 8.2 describes the developed SPL
toolset, Section 8.3 describes the performed experiments, and Section 8.4 presents the results.

8.1 The coffee-soup machine SPL

The coffee-soup machine SPL is an extension of the coffee vending machine described in [2, 3, 5, 6]
with a soup component running in parallel with the usual beverage component. It has the
following list of functional requirements:

• Each product contains a beverage component. Optionally, also a soup component is
present.

• Initially, either a euro must be inserted, exclusively for European products, or a dollar
must be inserted, exclusively for Canadian products. The money can be inserted in either
of the components.

• Optionally, money inserted in a component can be retrieved via a cancel button, after
which money can be inserted in this component anew.

• If money was inserted in the beverage component, the user has to choose whether (s)he
wants sugar, by pressing one of two buttons, after which (s)he can select a beverage.

• The choice of beverage (coffee, tea, cappuccino) varies, but coffee must be offered by all
products whereas cappuccino may be offered solely by European products.

• Optionally, a ringtone may be rung after delivering a beverage. However, a ringtone must
be rung by all products offering cappuccino.

• After the beverage is taken, money can be inserted again in the beverage component.
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• If money was inserted in the soup component, the user has to choose a type of soup
(chicken, tomato, pea). The types of soup offered vary, but at least one type must be
offered by all products with a soup component.

• The soup component does not contain cups to serve the soup in. Hence, the user has to
place a cup to pour the soup in. Optionally, a cup detector may be present in the soup
component. It is required that all Canadian products with a soup component are equipped
with a cup detector.

• If cup detection is present, the chosen type of soup will only be delivered after a cup has
been detected by the soup component. However, the cup detector may fail to detect an
already placed cup, after which the user will have to place it again. If a cancel option is
available, the user may cancel the order as long as no cup has been detected.

• If cup detection is not present, the soup will be delivered immediately after a type of soup
was chosen, regardless of whether a cup was placed. If no cup was placed there will be no
soup to take.

• Optionally, a ringtone (shared with the beverage component) may be rung after delivering
soup.

• If a cup was present, money can be inserted again in the soup component after the soup
is taken. If no cup was present, money can be inserted again immediately after the soup
has been delivered.

These yield the attributed feature model in Figure 8.1 and the behavioral models in Figures 8.2
and 8.3.

M
machine

O
coin slot

R
ringtone

BC
beverage
component

SC
soup

component

X
cancel

E
euro

D
dollar

B
beverage

W
sweet

U
cup detection

S
soup

P
cappuccino

C
coffee

T
tea

CS
chicken soup

PS
pea soup

TS
tomato soup

1055

5 5 5 3

7 5 3 2 2 2

maximum cost 35

Figure 8.1: Feature model of family of coffee vending machines
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In the attributed feature model, mandatory (core) features are marked by a closed bullet, op-
tional features by an open one. Exactly one of the features E and D is selected, while at least
one of the features CS, PS and TS is selected. As to cross-tree constraints, features P and D
exclude each other, feature P requires feature R, and the simultaneous selection of features D
and SC requires feature U . The value of the cost attribute of the concrete features is put inside
a small circle (i.e. cost(X) = 10). Finally, as an additional constraint, we require that the total
costs of all selected features does not exceed the threshold 35.
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ring | R

take cup | M

Figure 8.2: FTS of beverage component

The FTS of the beverage component contains 14 states and 23 transitions and that of the soup
component contains 13 states and 28 transitions, for a total of 182 states and 691 transitions in
parallel composition.

8.2 The SPL toolset

A toolset was developed to define, abstract and reduce SPL. The SPL are defined using FD and
FTS, and a conversion tool was created to convert SPL specifications to mCRL2 specifications,
which allows for automated model checking using the mCRL2 toolset1.

The developed SPL toolset consists of the following tools:

1http://www.mcrl2.org
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take soup | M

bad luck | ¬U

Figure 8.3: FTS of soup component

• parseFD: Calculates products and feature expressions for a given FD.

• abstractSPL: Abstracts from certain parts of the FTS specifying the behavior of a given
SPL.

• BFBreduction: Reduce an the FTS specifying the behavior of a given SPL modulo com-
plete coherent branching feature bisimulation.

• spl2mcrl2: Converts an SPL specification to an mCRL2 specification.

• fts2aut: Converts an FTS to an LTS in Aldebaran format2.

• projectSPL:Reduces the FFTS specifying the behavior of a given SPL to a given product.

• splprod2mcrl2: Converts an SPL-product specification to an mCRL2 specification.

2http://www.mcrl2.org/release/user_manual/language_reference/lts.html#aldebaran-format
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• lts2aut: Converts an LTS to an LTS in Aldebaran format.

Appendix F contains a detailed user manual of the FTS toolset.

8.3 Experiments

We used the SPL and mCRL2 toolsets to verify 12 properties against the coffee-soup machine
SPL. These properties are listed next, together with their formalization in the mCRL2 variant
of the modal µ-calculus.

1. If a coffee is ordered and the system does not deadlock, then eventually coffee is poured:
[ true ∗ . coffee ] (muX. [ ! pour coffee ]X)

2. The SPL is deadlock-free:
[ true∗ ] 〈true〉 true

3a. A machine that accepts Euros does not accept Dollars:
[true ∗ .(insertBev(Euro) || insertSoup(Euro)).true ∗ .
(insertBev(Dollar) || insertSoup(Dollar))] false

3b. A machine that accepts Dollars does not accept Euros:
[true ∗ .(insertBev(Dollar) || insertSoup(Dollar)).true ∗ .
(insertBev(Euro) || insertSoup(Euro))] false

4a. A cup can only be taken out of the beverage component after a beverage was ordered:
[ (! coffee && ! tea && ! cappuccino) ∗ . take cup ] false

4b. A cup can only be taken out of the soup component after soup was ordered:
[ (! tomato && ! chicken && ! pea) ∗ . take soup] false

5a. If a beverage is ordered and the system does not deadlock, then eventually the beverage
is canceled or a cup is taken out of the beverage component:
[ true ∗ . ( coffee || tea || cappuccino) ] (muX. [ (! cancelBev && ! take cup) ]X)

5b. If soup is ordered and the system does not deadlock, then eventually the soup is canceled,
a cup is taken out of the soup component or the customer has bad luck:
[ true∗. (tomato || chicken || pea) ] (muX. [ (! cancelSoup && ! take soup && ! bad luck) ]X)

6. If the machine has a soup component, then a beverage can be ordered without inserting
more money after soup was ordered:
[ true ∗ . (insertSoup(Euro) || insertSoup(Dollar)) ] 〈true ∗ . (tomato || chicken || pea).
(! insertBev(Euro) && ! insertBev(Dollar)) ∗ . (coffee || tea || cappuccino)〉 true

7a. A beverage cannot be ordered without inserting more money if a previous beverage order
is still pending:
[true ∗ .(coffee || tea || cappuccino).(!insertBev(Dollar) && !insertBev(Euro)) ∗ .(coffee ||
tea || cappuccino)] false

7b. Soup cannot be ordered without inserting more money if a soup order is pending:
[ true∗. (tomato || chicken || pea). (! insertSoup(Dollar) && ! insertSoup(Euro))∗. (tomato ||
chicken || pea) ] false
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8. In a machine with cup detection, witnessed by the possibility to perform a cup present
action, soup can only be poured after detecting a cup:
[ true ∗ . cup present ][true ∗ . (take soup || bad luck). (! cup present) ∗ .
(pour tomato || pour chicken || pour pea)] false

We verified the properties both product-by-product and by using the FTS-based family
approach described in [5, 6], and both with and without branching (feature) bisimulation min-
imization. For the approach with bisimulation we applied branching feature bisimulation to
the FTS, resulting in a reduced FTS, which we projected to obtain the reduced LTS for each
product. For the product-by-product approaches, generating the projections for all products
is included in the computation time, and so is the time for bisimulation reduction in case of
the approaches with bisimulation. To even out effects caused by other processes running whilst
performing the experiments, all computation times are averaged over 5 runs.

8.4 Results

The verification results are shown in Table 8.1.

product-by-product FTS-based family approach

without bisimulation with bisimulation without bisimulation with bisimulation

time (s) result time (s) result time (s) result time (s) result

1 32.67 false 29.50 true 29.43 false 1.45 true

2 31.90 true 32.42 true 29.43 true 25.77 true

3a 32.83 true 27.79 true 41.14 true 1.62 true

3b 32.33 true 27.80 true 33.29 true 1.55 true

4a 31.47 true 28.46 true 11.13 true 1.22 true

4b 30.95 true 28.59 true 7.12 true 1.52 true

5a 33.21 false 28.63 true 37.01 false 1.62 true

5b 33.45 false 29.10 true 41.06 false 2.10 true

6 34.80 true 29.65 true 67.27 true 8.32 true

7a 33.19 true 29.18 true 40.78 true 1.71 true

7b 33.16 true 28.32 true 48.30 true 1.70 true

8 33.58 true 29.04 true 50.90 true 2.95 true

tot 393.54 348.48 436.86 51.53

Table 8.1: Experimental evaluation results (time in seconds)

Regarding the product-by-product approach, performing bisimulation reduction for the prod-
uct LTS reduces the computation time by about 11%. For property 2 (The SPL is deadlock-free),
the computation time with bisimulation is significantly larger than for other properties. In this
case no actions can be abstracted from, and hence applying branching bisimulation does not
significantly reduce the LTS.
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We observe that the properties 1 (If a coffee is ordered, it is eventually poured), 5a (If a
beverage is ordered, then eventually it is canceled or a cup is taken) and 5b (If soup is ordered,
then eventually it is canceled, a cup is taken or the customer has bad luck) are false, but deemed
true after applying bisimulation reduction. They state that some event eventually happens,
which is not true in reality since the two components are running in parallel, and hence infinite
loops exist that allow postponing that event indefinitely. Applying bisimulation reduction causes
these loops to be abstracted from completely, making the properties true for the reduced system.

Now consider the FTS-based family approach. Without applying bisimulation reduction,
the total computation time increases by about 11% with respect to the product-by-product
approach. Hence, for this SPL, FTS-based verification with mCRL2 is not beneficial compared
to regular enumerative verification. However, if we apply bisimulation reduction, then the FTS-
based computation times decrease by >85%. Note that in case fewer actions are involved in
a property, it is possible to abstract from larger parts of the FTS, implying faster verification.
This effect was much less in the product-by-product approach. Hence, the more local a property,
the more beneficial it is to perform FTS-based family verification in combination with branching
feature bisimulation reduction using mCRL2. Obviously, this observation needs to be confirmed
by experimenting with different SPL, but based on this example the proposed techniques look
rather promising.
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Chapter 9

Conclusions

In this master thesis we have done research on the topic of model checking for software product
lines. In times where people have an increasing interest in products that are fine tuned to fulfill
their individual demands, the popularity of SPLE as a software engineering paradigm is growing.
As SPLE is being applied for the development of safety critical systems, being able to perform
model checking for the verification of SPL is desirable.

The starting point for our research was the work performed by Classen et al. in [10, 9]. They
proposed a model based on transition systems to describe the behavior of SPL, which they called
Featured Transition Systems. Although in theory this model contains both state information
and event information, only the state information was used in the verification and abstraction
techniques from [10, 9, 11]. Building on this work, Ter Beek & De Vink [5, 6] proposed a method
to perform verification of Featured Transition Systems using the mCRL2 toolset [12]. However,
here only the event information of the Featured Transition Systems was utilized, while the state
information was ignored.

The research question and the research goal of this thesis are defined as follows:

1. Are event-based models and state-based models on the product-family level equally expres-
sive?

2. Develop an algorithm to perform state space reduction on product-family level models.

To answer this question and fulfill this goal we first refined the model of Featured Transition
Systems into a state-based variant as used by Classen et al., coined Feature Kripke Structure
(FKS) for our purposes, and an event-based variant as used by Ter Beek & De Vink, which
we call Feature Labeled Transition Systems (FTS). We immediately discovered a discrepancy
between the two types of models, as the feature information was added to the transitions in
both FKS and FTS, whereas one would expect this information to be added to the states
in FKS. Even so, we continued by defining several equivalences for both types of models,
based on strong bisimulation (both models), branching bisimulation (FTS), and divergence-
blind stuttering equivalence (FKS). Here we noticed the effect of the discrepancy between the
two models, as two states in an FTS are trivially considered equivalent for the empty set of
product, whereas this is not the case for FKS.
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Using the above equivalences, we proposed two types of quotients for the models. We refer
to the first type as naive, as it naively requires equivalence for all possible products in order
to perform minimization. This type of quotient corresponds to a simulation-equivalence based
quotient for Featured Transition Systems as described in [11]. We refer to the second type of
quotient as coherent. This type takes into account which products are capable of reaching which
parts of the model, and hence results in smaller quotients.

As to partly fulfill the research goal of this thesis, we looked into the possibility of perform-
ing coherent branching feature bisimulation reduction on FTS. Unfortunately we found that
performing coherent (branching) feature bisimulation reduction on FTS is NP-hard, as it can be
reduced to the chromatic number problem. In spite of this negative result, we made an attempt
to design an algorithm to perform coherent branching feature bisimulation reduction on FTS,
based on the algorithm for branching bisimulation reduction proposed in [18]. However, we
found that the proposed algorithm does not find an actual coherent branching feature bisimu-
lation quotient. Instead, a refinement of coherent branching feature bisimulation is calculated,
which we called complete coherent branching feature bisimulation.

To investigate the usefulness of the designed algorithm, we developed the SPL toolset. This
toolset allows to define SPL using feature diagrams and FTS and to perform complete coherent
branching feature bisimulation reduction on these FTS. Finally it allows to perform verification
of the SPL using mCRL2, as proposed by Ter Beek & De Vink. We performed a small case study
on a combined coffee and soup vending machine using the developed toolset. The results showed
that a product-family based approach of verification in combination with complete coherent
branching feature bisimulation reduction was much more effective than the regular enumerative
method of verification, where each product is verified separately.

We continued by investigating whether event-based models and state-based models on the
product-family level are equally expressive by defining and discussing embeddings between FTS
and FKS. The embeddings we proposed are based on the embeddings by De Nicola & Vaan-
drager [13], between Labeled Transition Systems and Kripke Structures. Using the results
from [26] on the properties of these embeddings we were able to show that our newly proposed
embeddings preserve and reflect strong feature bisimulation. We also showed it is possible to
perform naive feature bisimulation reduction in one world by using the embeddings and perform-
ing reduction in the other world. However, in order to make this work for coherent reduction,
some small modifications had to be made to the embedding fts and the coherent quotient for
FTS, since we found that a coherent strong feature bisimulation quotient in the event-based
world does not completely correspond to coherent strong feature bisimulation in the action-
based world. We did not succeed at all in performing coherent reduction in the event-based
world by using embeddings to the action-based world. We believe this phenomenon is caused
by the afore-mentioned discrepancy between the two models, but further research has to be
performed in order to confirm this.

We have showed that we can perform naive state space reduction in one world by performing
reduction in the other world. This observation indicates that event-based models and state-based
models on the product-family level may be equally expressive, despite the observed difference
between the two models. However, there is a clear discrepancy between the coherent quotients
in both worlds. It remains to future work to investigate whether this is caused by the difference
between the two types of models, or that it is a flaw of the coherent quotient itself.
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We did however show that it is possible to perform coherent state space reduction in the
action-based world by using the embeddings and performing a slightly adapted form of coherent
reduction in the event-based world. This observation has practical use, as it implies that a
variant of the designed algorithm to perform complete coherent strong feature bisimulation
reduction will also be applicable to FKS. Furthermore, since the embeddings can be applied in
polynomial time, we conclude that such state space reduction on FKS is NP-hard, just as it is
for FTS.

9.1 Future work

In this thesis we have laid the theoretical foundations for embeddings between state-based and
event-based systems for product families. A clear gap in the obtained results is the inability to
perform coherent state-space reduction in the event-based world by performing reduction in the
action-based world. Future work should determine if it is after all possible to perform this task,
or if the discrepancy between the coherent bisimulation quotients in both worlds is a flaw of the
coherent quotient itself.

As the obtained results in the thesis are theoretical, in order to evaluate the practical rele-
vance of these embeddings an experimental evaluation should be performed in which reduction
of product-family models is performed using these embeddings. Furthermore, in this thesis we
only showed that the proposed embeddings preserve and reflect strong feature bisimulation. The
work should be extended to investigate whether this also holds for branching feature bisimula-
tion and divergence-blind stuttering feature equivalence, as this will tell us whether the proposed
algorithm for complete coherent branching feature bisimulation reduction can also be applied
to FKS.

In our case study, we noticed that several properties that were not satisfied by the original
system were verified to be true after applying branching feature bisimulation reduction. This
behavior occurs since branching bisimulation hides loops consisting of silent transitions. On the
single-product level this problem is dealt with by refining the notion of branching bisimulation
to divergence-sensitive branching bisimulation, which corresponds to stuttering equivalence in
a state-based setting. In order to also apply these notions on the product-family level their
definitions have to be lifted, as was done with the definitions of both strong and branching
bisimulation. Subsequently, quotients on the product-family level have to be defined, as well
as algorithms to calculate these quotients. Finally, to complete the picture it would have to be
shown that the lifted equivalences are preserved and reflected by the embeddings we defined.

Even though the results of our work indicate that FKS and FTS may be equally expressive,
we still found a discrepancy between the two types models which was visible at multiple points in
our research. As suggested in Chapters 3 and 4, it may be possible to eliminate this discrepancy
by defining an alternative state-based model, where the feature information is added to the
states instead of to the transitions. It would be interesting to see how such an alternative model
compares to FTS, and whether in this case the coherent feature bisimulation quotients of both
worlds do correspond exactly.
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Appendix A

Full proofs for Chapter 3

This appendix contains the full proofs that were omitted in Chapter 3.

Lemma 3.1. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let P ∈ P be a
product. We have:

(fks1 ⊎ fks2)|P = fks1|P ⊎ fks2|P

Proof. Let P ∈ P be a product and let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS.
Let the KS (fks1 ⊎ fks2)|P = (S, AP , →, L, s∗) be the projection to P of their disjoint union,
and let the KS fks1|P ⊎ fks2|P = (S′, AP , →′, L′, s′∗) be the disjoint union of their projections
to P . We establish the isomorphism by proving that there are isomorphisms between S and S′,
→ and →′, L and L′, and s∗ and s′∗.

• The set of states is unchanged under projection, and hence S = S1 ⊎ S2 = S′.

• Let the transition constrained function θ′ of fks1 ⊎ fks2 be as defined in Definition 3.6.

We have

→ = { t ∈ S1 ⊎ S2 × S1 ⊎ S2 | P |= θ′(t) }

= { t ∈ S1 × S1 | P |= θ1(t) } ⊎ { t ∈ S2 × S2 | P |= θ2(t) }

=→′

• The state labeling function is unchanged under projection, and hence L = L1 ⊎ L2 = L′.

• The initial state is unchanged under projection, and hence s∗ = s∗ 1 = s′∗.

Lemma 3.2. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let P ∈ P be a product.
We have:

(fts1 ⊎ fts2)|P = fts1|P ⊎ fts2|P
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Proof. Let P ∈ P be a product and let ftsi = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS. Let
the LTS (fts1 ⊎ fts2)|P = (S, A, →, s∗) be the projection to P of their disjoint union, and let
the LTS fts1|P ⊎ fts2|P = (S′, A, →′, s′∗) be the disjoint union of their projections to P . We
establish the isomorphism by proving that there are isomorphisms between S and S′, → and
→′, and s∗ and s′∗.

• The set of states is unchanged under projection, and hence S = S1 ⊎ S2 = S′.

• Let the transition constrained function θ′ of fts1 ⊎ fts2 be as defined in Definition 3.14.

We have

→ = { t ∈ S1 ⊎ S2 ×Aτ × S1 ⊎ S2 | P |= θ′(t) }

= { t ∈ S1 ×Aτ × S1 | P |= θ1(t) } ⊎ { t ∈ S2 ×Aτ × S2 | P |= θ2(t) }

=→′

• The initial state is unchanged under projection, and hence s∗ = s∗ 1 = s′∗.

/department of computer science 109



2IM91 Master’s Thesis technische universiteit eindhoven

Appendix B

Full proofs for Chapter 4

This appendix contains the full proofs that were omitted in Chapter 4. Section B.1 of this
appendix contains the omitted proofs from Section 4.1, and Section B.2 of this appendix contains
the omitted proofs from Section 4.2.

B.1 Full proofs for Section 3.1

Corollary 4.1. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let ϕ ∈ B(F)
be a feature expression. It holds that

fks1
ϕ
←→f fks2 ⇒ ∀P ∈ P : P |= ϕ ⇒ fks1|P ↔ fks2|P .

Proof. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let ϕ ∈ B(F) be a feature

expression, such that fks1
ϕ
←→f fks2. By Definition 4.2 this means fks1 ⊎ fks2 |= s∗ 1

ϕ
←→f s∗ 2. By

Theorem 4.1 this means that (fks1⊎ fks2)|P |= s∗ 1 ↔ s∗ 2, and hence fks1|P ⊎ fks2|P |= s∗ 1 ↔ s∗ 2
by Lemma 3.1, for all P ∈ P such that P |= ϕ

By Definition 4.1 this is equivalent to ∀P ∈ P : P |= ϕ ⇒ fks1|P ↔ fks2|P .

Corollary 4.2. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS such that L1(s∗ 1) =
L2(s∗ 2), and let ϕ ∈ B(F) be a feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fks1|P ↔ fks2|P ) ⇒ fks1
ϕ
←→f fks2.

Proof. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS such that L1(s∗ 1) = L2(s∗ 2),
and let ϕ ∈ B(F) be a feature expression, such that ∀P ∈ P : (P |= ϕ ⇒ fks1|P ↔ fks2|P ). By
Definition 4.1 this means fks1|P ⊎ fks2|P |= s∗ 1 ↔ s∗ 2, and hence (fks1 ⊎ fks2)|P |= s∗ 1 ↔ s∗ 2
by Lemma 3.1, for all P ∈ P such that P |= ϕ.

Since (L1⊎L2)(s∗ 1) = L1(s∗ 1) = L2(s∗ 2) = (L1⊎L2)(s∗ 2), by Theorem 4.2 this implies that

fks1 ⊎ fks2 |= s∗ 1
ϕ
←→f s∗ 2.

By Definition 4.2 this is equivalent to fks1
ϕ
←→f fks2.
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Theorem 4.5. Let fts = (S, A, θ, s∗) be an FTS, and let s1, s2 ∈ S and φ ∈ B(F). It holds
that

fts |= s1
φ
←→f s2 ⇒ ∀P ∈ P : (P |= φ ⇒ fts|P |= s1 ↔ s2).

Proof. Let fts = (S, A, θ, s∗) be an FTS, and let R be a feature bisimulation relation on fts
such that (s1, φ̂, s2) ∈ R, for some s1, s2 ∈ S and φ ∈ B(F). Let P ∈ P be a product such that
P |= φ. We define the relation

R|P = {(s, t) | (s, ϕ̂, t) ∈ R ∧ P |= ϕ}.

We have to show that R|P is a bisimulation relation on fts|P relating s1 and s2. Since (s1, φ̂, s2) ∈
R and P |= φ, we have that (s1, s2) ∈ R|P . Hence, it remains to establish that R|P is a
bisimulation relation.

To show that R|P is a bisimulation relation, we first have to show that it is symmetric. Pick
states s, t ∈ S such that (s, t) ∈ R|P . By definition of R|P this implies that (s, ϕ̂, t) ∈ R∧P |= ϕ,
for some ϕ ∈ B(F). Since R is symmetric we also have (t, ϕ̂, s) ∈ R, and hence (t, s) ∈ R|P ,
which confirms that R|P is symmetric.

Next, we have to prove that the pairs of states (s, t) ∈ S × S such that (s, ϕ̂, t) ∈ R and
P |= ϕ, for some ϕ ∈ B(F), satisfy the transfer condition from Definition 4.4.

Suppose that s
α
−→ s′ for some s′ ∈ S and for some α ∈ Aτ . It must be shown that

• there exists t′ ∈ S such that t
α
−→ t′ and (s′, t′) ∈ R|P .

By Definition 3.15 it follows that s
α|ψ
−−→ s′ in fts , for some ψ ∈ B(F) such that P |= ψ. Since

(s, ϕ̂, t) ∈ R for some ϕ ∈ B(F) such that P |= ϕ, by Definition 4.5 we have that there exist
states ti ∈ S and feature expressions ψi, ϕi ∈ B(F), for 1 ≤ i ≤ n, for some n ∈ N, such that

t
α|ψi
−−−→ ti and (s′, ϕ̂i, ti) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n ψi ∧ ϕi.

Since P |= ϕ∧ψ it follows that P |=
∨

1≤i≤n ψi ∧ϕi. We pick i such that P |= ψi ∧ϕi. Since

t
α|ψi
−−−→ ti, we have that t

α
−→ ti in fts|P , by Definition 3.15. Furthermore, since (s′, ϕ̂i, ti) ∈ R

and P |= ϕi, by definition of R|P we have that (s′, t′) ∈ R|P .
This satisfies the transfer condition, confirming that R|P is indeed a bisimulation relation

on fts|P .

Corollary 4.3. Let ftsi = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

fts1
ϕ
←→f fts2 ⇒ ∀P ∈ P : (P |= ϕ ⇒ fts1|P ↔ fts2|P )

Proof. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a feature

expression, such that fts1
ϕ
←→f fts2. By Definition 4.5 this means fts1 ⊎ fts2 |= s∗ 1

ϕ
←→f s∗ 2. By

Theorem 4.5 this means that (fts1 ⊎ fts2)|P |= s∗ 1 ↔ s∗ 2, and hence fts1|P ⊎ fts2|P |= s∗ 1 ↔ s∗ 2
by Lemma 3.2, for all P ∈ P such that P |= ϕ.

By Definition 4.4 this is equivalent to ∀P ∈ P : P |= ϕ ⇒ fts1|P ↔ fts2|P .
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Theorem 4.6. Let fts = (S, A, θ, s∗) be an FTS, and let s1, s2 ∈ S and φ ∈ B(F). It holds
that

(∀P ∈ P : P |= φ ⇒ fts |P |= s1 ↔ s2) ⇒ fts |= s1
φ
←→f s2.

Proof. Let fts = (S, A, θ, s∗) be an FTS, let s1, s2 ∈ S be two states, and let φ ∈ B(F) be a
feature expression. For all product P ∈ P such that P |= φ, let R|P be a bisimulation relation
on fts|P such that (s1, s2) ∈ R|P . For all all products P ∈ P such that P 6|= φ, let R|P be the
empty bisimulation relation.

We define the relation

R = {(s, ϕ̂, t) | ∀P ∈ P : P |= ϕ⇔ (s, t) ∈ R|P}.

We have to show that R is a feature bisimulation relation on fts such that (s1, φ̂, s2) ∈ R. Since
(s1, s2) ∈ R|P ⇔ P |= φ, for all P ∈ P, it immediately follows that (s1, φ̂, s2) ∈ R. Hence, it
remains to establish that R is a feature bisimulation relation.

To show that R is a feature bisimulation relation, we first have to show that it is symmetric.
Pick states s, t ∈ S and feature expression ϕ ∈ B(F) such that (s, ϕ̂, t) ∈ R. By definition of
R this implies that ∀P ∈ P : P |= ϕ ⇔ (s, t) ∈ R|P . Since R|P is symmetric, for each P ∈ P,
we also have ∀P ∈ P : P |= ϕ⇔ (t, s) ∈ R|P , and hence (t, ϕ̂, s) ∈ R, which confirms that R is
symmetric.

Next, we have to prove that the tuples (s, ϕ̂, t) ∈ S×B(F)×S such that ∀P ∈ P : P |= ϕ⇔
(s, t) ∈ R|P , satisfy the transfer condition from Definition 4.5.

Suppose that s
α|ψ
−−→ s′, for some s′ ∈ S, for some α ∈ Aτ , and for some ψ ∈ B(F). It must

be shown that there exist states ti ∈ S and feature expressions ψi, ϕi ∈ B(F), for 1 ≤ i ≤ n, for
some n ∈ N, such that

t
α|ψi
−−−→ ti and (s′, ϕ̂i, ti) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n ψi ∧ ϕi.

By the definition of R it follows that for each P ∈ P such that P |= ϕ, we have that
(s, t) ∈ R|P . For each P ∈ P such that P |= ψ, it is the case that s

α
−→ s′ in fts |P , by

Definition 3.15. Hence, for each P ∈ P such that P |= ϕ ∧ ψ, by definition of bisimilarity it
is the case that t

α
−→ tP in fts |P , for some tP ∈ S, such that (s′, tP ) ∈ R|P . By definition

of projection, this means that t
α|ψP
−−−→ tP in fts, for some ψP ∈ B(F) such that P |= ψP .

Furthermore, by definition of R it follows that (s′, ϕ̂P , tP ) ∈ R, for some ϕP ∈ B(F) such that
P |= ϕP . Let P

′ = {P ∈ P | P |= ϕ∧ψ} be the set of all products satisfying ϕ∧ψ. We conclude
that

ϕ ∧ ψ ⇒P

∨
P ′∈P′ ψP ′ ∧ ϕP ′

Hence this satisfies the transfer condition for feature bisimilarity, proving that relation R is
indeed a feature bisimulation relation on fts .

Corollary 4.4. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fts1|P ↔ fts2|P ) ⇒ fts1
ϕ
←→f fts2.
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Proof. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a feature
expression, such that ∀P ∈ P : P |= ϕ ⇒ fts1|P ↔ fts2|P . By Definition 4.4 this means
fts1|P ⊎ fts2|P |= s∗ 1 ↔ s∗ 2, and hence (fts1 ⊎ fts2)|P |= s∗ 1 ↔ s∗ 2, by Lemma 3.2, for all P ∈ P

such that P |= ϕ. By Theorem 4.6 this implies that fts1 ⊎ fts2 |= s∗ 1
ϕ
←→f s∗ 2.

By Definition 4.5 this is equivalent to fts1
ϕ
←→f fts2.

Theorem 4.7. Feature bisimilarity (
ϕ
←→f ) for FTS for given ϕ ∈ B(F) is an equivalence relation.

Proof. We have to show that feature bisimilarity is reflexive, symmetric and transitive, for some
feature expression ϕ ∈ B(F). Let fts = (S, A, θ, s∗) be an FTS such that s, t, u ∈ S.

1. We prove reflexivity using s. By reflexivity of bisimilarity for LTS (Lemma 4.3), we have

∀P ∈ P : P |= ϕ ⇒ fts |= s ↔ s.Hence by Theorem 4.6 it follows that fts |= s
ϕ
←→f s.

Hence
ϕ
←→f is reflexive.

2. Suppose that fts |= s
ϕ
←→f t. By Theorem 4.5 it follows that ∀P ∈ P : P |= ϕ ⇒ fts|P |=

s ↔ t. By symmetry of bisimilarity for LTS (Lemma 4.3), we have ∀P ∈ P : P |= ϕ ⇒

fts|P |= t↔ s. By Theorem 4.6 it follows that fts |= t
ϕ
←→f s. Hence

ϕ
←→f is symmetric.

3. Suppose that fts |= s
ϕ
←→f t and fts |= t

ϕ
←→f u. By Theorem 4.5 it follows that ∀P ∈

P : P |= ϕ ⇒ fts |P |= s ↔ t ∧ fts |P |= t ↔ u. By transitivity of bisimilarity for LTS
(Lemma 4.3), we have ∀P ∈ P : P |= ϕ⇒ fts |P |= s ↔ u. By Theorem 4.6 it follows that

fts |= s
ϕ
←→f u. Hence

ϕ
←→f is transitive.

Lemma 4.4. Let fts be an FTS with states s, t and u such that fts |= s
ϕ
←→f t and fts |= t

ψ
←→f u,

for some ϕ,ψ ∈ B(F). Then fts |= s
ϕ∧ψ
←−→f u.

Proof. Let fts = (S, A, θ, s∗) be an FTS with such that s, t, u ∈ S, and such that fts |= s
ϕ
←→f t

and fts |= t
ψ
←→f u. By Theorem 4.5 it follows that ∀P ∈ P : P |= ϕ ⇒ fts |P |= s ↔ t and

∀P ∈ P : P |= ψ ⇒ fts |P |= t↔ u. By transitivity of bisimilarity for LTS (Lemma 4.3), we have

∀P ∈ P : P |= ϕ ∧ ψ ⇒ fts|P |= s↔ u. By Theorem 4.6 it follows that fts |= s
ϕ∧ψ
←−→f u.

Theorem 4.8. A property is preserved by bisimilarity for LTS if and only if this property is
preserved by feature bisimilarity for FTS.

Proof. Let fts1 and fts2 be FTS such that fts1 ↔f fts2, and let φ be a property that is preserved
by bisimilarity for LTS. We have to show that fts1 |= φ⇔ fts2 |= φ.

Assume fts1 |= φ. By Definition 3.16 this is equivalent to ∀P ∈ P : fts1|P |= φ. Since
fts1 ↔f fts2, by Corollary 4.3 we have ∀P ∈ P : fts1|P ↔ fts2|P . Since φ is preserved by ↔, it
follows that ∀P ∈ P : fts2|P |= φ, which is equivalent to fts2 |= φ, by Definition 3.16.

The proof for the implication in the other direction is symmetric.
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B.2 Full proofs for Section 3.2

Theorem 4.9. Let fks = (S, AP , θ, L, s∗) be an FKS, and let s1, s2 ∈ S and φ ∈ B(F). It
holds that

fks |= s1
φ
≈dbsf s2 ⇒ ∀P ∈ P : (P |= φ ⇒ fks|P |= s1 ≈dbs s2).

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, and let R be a divergence-blind stuttering feature
bisimulation relation on fks such that (s1, φ̂, s2) ∈ R, for some s1, s2 ∈ S and φ ∈ B(F). Let
P ∈ P be a product such that P |= φ. We define the relation

R|P = {(s, t) | (s, ϕ̂, t) ∈ R ∧ P |= ϕ}.

We have to show that R|P is a divergence-blind stuttering bisimulation relation on the KS
fks|P = (S,AP ,→, L, s∗) relating s1 and s2. Since (s1, φ̂, s2) ∈ R and P |= φ, we have that
s1R|P s2. Hence, it remains to establish that R|P is a divergence-blind stuttering bisimulation
relation.

To show that R|P is a divergence-blind stuttering bisimulation relation, we first have to show
that it is symmetric. Pick states s, t ∈ S such that (s, t) ∈ R|P . By definition of R|P this implies
that (s, ϕ̂, t) ∈ R ∧ P |= ϕ, for some ϕ ∈ B(F). Since R is symmetric we also have (t, ϕ̂, s) ∈ R,
and hence (t, s) ∈ R|P , which confirms that R|P is symmetric.

Next, we have to prove that the pairs of states (s, t) ∈ S × S such that (s, ϕ̂, t) ∈ R and
P |= ϕ, for some ϕ ∈ B(F), satisfy the conditions from Definition 4.7.

Since R is a divergence-blind stuttering feature bisimulation relation on fks and (s, ϕ̂, t) ∈ R,
by Definition 4.9 we have L(s) = L(t), and hence the first condition is satisfied.

Suppose that s −→ s′ for some s′ ∈ S. It must be shown that

• there exist states t′, t′′ ∈ S such that t →−→ t′ 99K t′′ and (s, t′) ∈ R|P and (s′, t′′) ∈ R|P .

By Definition 3.7 it follows that s
ψ
−→ s′ in fks, for some ψ ∈ B(F) such that P |= ψ. Since

(s, ϕ̂, t) ∈ R for some ϕ ∈ B(F) such that P |= ϕ, by Definition 4.9 we have can find states
t′i, t

′′
i ∈ S and feature expressions Ψi, ψi, ϕi, ϕ

′
i ∈ B(F), for 1 ≤ i ≤ n, for some n ∈ N, such that

t
Ψi−→−→ t′i

ψi
99K ti and (s, ϕ̂i, t

′
i) ∈ R and (s′, ϕ̂′

i, t
′′
i ) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n Ψi ∧ ψi ∧ ϕi ∧ ϕ

′
i.

Since P |= ϕ ∧ ψ it follows that P |=
∨

1≤i≤n Ψi ∧ ψi ∧ ϕi ∧ ϕ
′
i. We pick i such that

P |= Ψi∧ψi∧ϕi∧ϕ
′
i. Since t

Ψ
−→−→ t′i

ψi
99K t′′i , we have that t −→−→ t′i 99K t

′′
i in fks |P , by Definition 3.7.

Furthermore, since (s, ϕ̂i, t
′
i) ∈ R and (s, ϕ̂′

i, t
′′
i ) ∈ R and P |= ϕi ∧ ϕ

′
i, by definition of R|P we

have that (s, t′i) ∈ R|P and (s′, t′′i ) ∈ R|P .
This satisfies the second condition, confirming that R|P is indeed a divergence-blind stutter-

ing bisimulation relation on fks|P .
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Corollary 4.5. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let ϕ ∈ B(F)
be a feature expression. It holds that

fks1
ϕ
≈dbsf fks2 ⇒ (∀P ∈ P : P |= ϕ ⇒ fks1|P ≈dbs fks2|P ).

Proof. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS, and let ϕ ∈ B(F) be a feature

expression, such that fks1
ϕ
≈dbsf fks2. By Definition 4.9 this means fks1 ⊎ fks2 |= s∗ 1

ϕ
≈dbsf s∗ 2.

By Theorem 4.9 this means that (fks1 ⊎ fks2)|P |= s∗ 1 ≈dbs s∗ 2, and hence fks1|P ⊎ fks2|P |=
s∗ 1 ≈dbs s∗ 2 by Lemma 3.1, for all P ∈ P such that P |= ϕ

By Definition 4.7 this is equivalent to ∀P ∈ P : P |= ϕ ⇒ fks1|P ≈dbs fks2|P .

Theorem 4.10. Let fks = (S, AP , θ, L, s∗) be an FKS, and let s1, s2 ∈ S such that L(s1) =
L(s2), and let φ ∈ B(F). It holds that

(∀P ∈ P : P |= φ ⇒ fks|P |= s1 ≈dbs s2) ⇒ fks |= s1
φ
≈dbsf s2.

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, let s1, s2 ∈ S be two states such that L(s1) =
L(s2), and let φ ∈ B(F) be a feature expression. For all products P ∈ P such that P |= φ, let
R|P be a divergence-blind stuttering bisimulation relation on fks|P , such that (s1, s2) ∈ R|P .
For all products P ∈ P such that P 6|= φ, let R|P = ∅ be the empty divergence-blind stuttering
bisimulation relation.

We define the relation

R = { (s, ϕ̂, t) | L(s) = L(t) ∧ ∀P ∈ P : P |= ϕ⇔ (s, t) ∈ R|P }.

We have to show that R is a divergence-blind stuttering feature bisimulation relation on fks
such that (s1, φ̂, s2) ∈ R. Since (s1, s2) ∈ R|P ⇔ P |= φ, for all P ∈ P, and L(s1) = L(s2), it
immediately follows that (s1, φ̂, s2) ∈ R. Hence, it remains to establish that R is a divergence-
blind stuttering feature bisimulation relation.

To show that R is a divergence-blind stuttering feature bisimulation relation, we first have
to show that it is symmetric. Pick states s, t ∈ S and feature expression ϕ ∈ B(F) such that
(s, ϕ̂, t) ∈ R. By definition of R this implies that L(s) = L(t) ∧ ∀P ∈ P : (P |= ϕ ⇔ (s, t) ∈
R|P ). Since R|P is symmetric, for each P ∈ P, we also have L(t) = L(s) ∧ ∀P ∈ P : (P |= ϕ⇔
(t, s) ∈ R|P ), and hence (t, ϕ̂, s) ∈ R, which confirms that R is symmetric.

Next, we have to prove that tuples (s, ϕ̂, t) ∈ S × B(F) × S such that L(s) = L(t) and
∀P ∈ P : (P |= ϕ⇔ (s, t) ∈ R|P ), satisfy the conditions from Definition 4.9.

By construction we have that L(s) = L(t). Hence the first condition is satisfied.

Suppose that s
ψ
−→ s′, for some s′ ∈ S and for some ψ ∈ B(F). It must be shown that there

exist states t′i, t
′′
i ∈ S and feature expressions Ψi, ψi, ϕi, ϕ

′
i ∈ B(F), for 1 ≤ i ≤ n, for some

n ∈ N, such that

t
Ψi−→−→ t′i

ψi
99K t′i and (s, ϕ̂i, t

′
i) ∈ R and (s′, ϕ̂′

i, t
′′
i ) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n Ψi ∧ ψi ∧ ϕi ∧ ϕ

′
i.
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By definition of R it follows that for each P ∈ P such that P |= ϕ, we have that (s, t) ∈ R|P .
For each P ∈ P such that P |= ψ, it is the case that s −→ s′ in fks |P , by Definition 3.7. Hence,
for each P ∈ P such that P |= ϕ ∧ ψ, by definition of divergence-blind stuttering equivalence
for R|P it is the case that t −→−→ t′P 99K t′′P in fks|P , for some t′P , t

′′
P ∈ S, such that (s, t′P ) ∈ R|P

and (s′, t′′P ) ∈ R|P . By definition of projection, this means that t
ΨP−−→−→ t′P

ψP
999K t′′P in fks , for

some ΨP , ψP ∈ B(F) such that P |= ΨP ∧ ψP . Furthermore, by definition of R it follows that
(s, ϕ̂P , t

′
P ) ∈ R and (s′, ϕ̂′

P , t
′′
P ) ∈ R, for some ϕP , ϕ

′
P ∈ B(F) such that P |= ϕP ∧ ϕ

′
P . Let

P′ = {P ∈ P | P |= ϕ ∧ ψ} be the set of all products satisfying ϕ ∧ ψ. We conclude that

ϕ ∧ ψ ⇒P

∨
P ′∈P′ ΨP ′ ∧ ψP ′ ∧ ϕP ′ ∧ ϕ′

P ′ ,

which this satisfies the second condition for divergence-blind stuttering feature bisimulation,
proving that relation R is indeed a divergence-blind stuttering feature bisimulation relation on
fks.

Corollary 4.6. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS such that L1(s∗ 1) =
L2(s∗ 2), and let ϕ ∈ B(F) be a feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fks1|P ≈dbs fks2|P ) ⇒ fks1
ϕ
≈dbsf fks2.

Proof. Let fksi = (Si, AP , θi, Li, s∗ i), for i ∈ {1, 2}, be two FKS such that L1(s∗ 1) = L2(s∗ 2),
and let ϕ ∈ B(F) be a feature expression, such that ∀P ∈ P : (P |= ϕ ⇒ fks1|P ≈dbs fks2|P ). By
Definition 4.7 this means fks1|P ⊎ fks2|P |= s∗ 1 ≈dbs s∗ 2, and hence (fks1⊎ fks2)|P |= s∗ 1 ≈dbs s∗ 2
by Lemma 3.1, for all P ∈ P such that P |= ϕ.

Since (L1 ⊎ L2)(s∗ 1) = L1(s∗ 1) = L2(s∗ 2) = (L1 ⊎ L2)(s∗ 2), by Theorem 4.10 this implies

that fks1 ⊎ fks2 |= s∗ 1
ϕ
≈dbsf s∗ 2.

By Definition 4.9 this is equivalent to fks1
ϕ
≈dbsf fks2.

Theorem 4.11. Divergence-blind stuttering feature equivalence (
ϕ
≈dbsf) for given ϕ ∈ B(F) is

an equivalence relation.

Proof. We have to show that divergence-blind stuttering feature equivalence is reflexive, sym-
metric and transitive, for some feature expression ϕ ∈ B(F). Let fks = (S, AP , θ, L, s∗) be an
FKS such that s, t, u ∈ S.

1. We prove reflexivity using s. By reflexivity of divergence-blind stuttering equivalence for
KS (Lemma 4.5), we have ∀P ∈ P : P |= ϕ⇒ fks |= s ≈dbs s. Obviously L(s) = L(s), and

hence by Theorem 4.10 it follows that fks |= s
ϕ
≈dbsf s. Hence

ϕ
≈dbsf is reflexive.

2. Suppose that fks |= s
ϕ
≈dbsf t, from which it follows that L(s) = L(t). By Theorem 4.9

it follows that ∀P ∈ P : P |= ϕ ⇒ fks|P |= s ≈dbs t. By symmetry of divergence-blind
stuttering equivalence for KS (Lemma 4.5), we have ∀P ∈ P : P |= ϕ ⇒ fks|P |= t ≈dbs s.

Since L(t) = L(s), by Theorem 4.10 it follows that fks |= t
ϕ
≈dbsf s. Hence

ϕ
≈dbsf is

symmetric.
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3. Suppose that fks |= s
ϕ
≈dbsf t and fks |= t

ϕ
≈dbsf u, from which it follows that L(s) = L(t) =

L(u). By Theorem 4.9 it follows that ∀P ∈ P : P |= ϕ⇒ fks |P |= s ≈dbs t ∧ fks |P |= t ≈dbs

u. By transitivity of divergence-blind stuttering equivalence for KS (Lemma 4.5), we have
∀P ∈ P : P |= ϕ ⇒ fks|P |= s ≈dbs u. Since L(s) = L(u), by Theorem 4.10 it follows that

fks |= s
ϕ
≈dbsf u. Hence

ϕ
≈dbsf is transitive.

Lemma 4.6. Let fks be an FKS with states s, t and u such that fks |= s
ϕ
≈dbsf t and fks |=

t
ψ
≈dbsf u, for some ϕ,ψ ∈ B(F). Then fks |= s

ϕ∧ψ
≈ dbsf u.

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS with such that s, t, u ∈ S, and such that fks |=

s
ϕ
≈dbsf t and fks |= t

ψ
≈dbsf u, from which it follows that L(s) = L(t) = L(u). By Theorem 4.9

it follows that ∀P ∈ P : P |= ϕ ⇒ fks |P |= s ≈dbs t and ∀P ∈ P : P |= ψ ⇒ fks|P |= t ≈dbs u.
By transitivity of divergence-blind stuttering equivalence for KS (Lemma 4.5), we have ∀P ∈
P : P |= ϕ ∧ ψ ⇒ fks |P |= s ≈dbs u. Since L(s) = L(u), by Theorem 4.10 it follows that

fks |= s
ϕ∧ψ
≈ dbsf u.

Theorem 4.12. A property is preserved by divergence-blind stuttering equivalence for KS if and
only if this property is preserved by divergence-blind stuttering feature equivalence for FKS.

Proof. Let fks1 and fks2 be FKS such that fks1 ≈dbsf fks2, and let φ be a property that is
preserved by divergence-blind stuttering equivalence for KS. We have to show that fks1 |= φ⇔
fks2 |= φ.

Assume fks1 |= φ. By Definition 3.8 this is equivalent to ∀P ∈ P : fks1|P |= φ. Since
fks1 ≈dbsf fks2, by Corollary 4.5 we have ∀P ∈ P : fks1|P ≈dbs fks2|P . Since φ is preserved by
↔, it follows that ∀P ∈ P : fks2|P |= φ, which is equivalent to fks2 |= φ, by Definition 3.8.

The proof for the implication in the other direction is similar.

Theorem 4.13. Let fts = (S, A, θ, s∗) be an FTS, and let s1, s2 ∈ S and φ ∈ B(F). It holds
that

fts |= s1
φ
←→bf s2 ⇒ ∀P ∈ P : (P |= φ ⇒ fts|P |= s1 ↔b s2).

Proof. Let fts = (S, A, θ, s∗) be an FTS, and let R be a branching feature bisimulation relation
on fts such that (s1, φ̂, s2) ∈ R, for some s1, s2 ∈ S and φ ∈ B(F). Let P ∈ P be a product such
that P |= φ. We define the relation

R|P = {(s, t) | (s, ϕ̂, t) ∈ R ∧ P |= ϕ}.

We have to show that R|P is a branching bisimulation relation on the LTS fts |P = (S, A,→, s∗)
relating s1 and s2. Since (s1, φ̂, s2) ∈ R and P |= φ, we have that s1R|P s2. Hence, it remains
to establish that R|P is a branching bisimulation relation.

To show that R|P is a branching bisimulation relation, we first have to show that it is
symmetric. Pick states s, t ∈ S such that (s, t) ∈ R|P . By definition of R|P this implies that
(s, ϕ̂, t) ∈ R ∧ P |= ϕ, for some ϕ ∈ B(F). Since R is symmetric we also have (t, ϕ̂, s) ∈ R, and
hence (t, s) ∈ R|P , which confirms that R|P is symmetric.
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Next, we have to prove that the pairs of states (s, t) ∈ S × S such that (s, ϕ̂, t) ∈ R and
P |= ϕ, for some ϕ ∈ B(F), satisfy the transfer condition from Definition 4.11.

Suppose that s
α
−→ s′ in fts |P , for some s′ ∈ S and for some α ∈ Aτ . It must be shown that

• there exist states t′, t′′ ∈ S such that t →−→ t′
(α)
−−→ t′′ and (s, t′) ∈ R|P and (s′, t′′) ∈ R|P .

By Definition 3.15 it follows that s
α|ψ
−−→ s′ in fts, for some ψ ∈ B(F) such that P |= ψ. Since

(s, ϕ̂, t) ∈ R for some ϕ ∈ B(F) such that P |= ϕ, by Definition 4.13 we have can find states
t′0, t

′′
i ∈ S and feature expressions Ψi, ψi, ϕi, ϕ

′
i ∈ B(F), for 1 ≤ i ≤ n, for some n ∈ N, such that

t
Ψi−→−→ t′i

(α|ψi)
−−−−→ ti and (s, ϕ̂i, t

′
i) ∈ R and (s′, ϕ̂′

i, t
′′
i ) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n Ψi ∧ ψi ∧ ϕi ∧ ϕ

′
i.

Since P |= ϕ ∧ ψ it follows that P |=
∨

1≤i≤n Ψi ∧ ψi ∧ ϕi ∧ ϕ
′
i. We pick i such that

P |= Ψi ∧ ψi ∧ ϕi ∧ ϕ
′
i. Since t

Ψ
−→−→ t′i

(α|ψi)
−−−−→ t′′i , we have that t −→−→ t′i

(α)
−−→ t′′i in fts|P , by

Definition 3.15. Furthermore, since (s, ϕ̂i, t
′
i) ∈ R and (s, ϕ̂′

i, t
′′
i ) ∈ R and P |= ϕi ∧ ϕ

′
i, by

definition of R|P we have that (s, t′i) ∈ R|P and (s′, t′′i ) ∈ R|P .
This satisfies the transfer condition, confirming that R|P is indeed a branching bisimulation

relation on fts |P .

Corollary 4.7. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

fts1
ϕ
←→bf fts2 ⇒ (∀P ∈ P : P |= ϕ ⇒ fts1|P ↔b fts2|P ).

Proof. Let ftsi = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a feature

expression, such that fts1
ϕ
←→bf fts2. By Definition 4.13 this means fts1 ⊎ fts2 |= s∗ 1

ϕ
←→bf s∗ 2.

By Theorem 4.13 this means that (fts1 ⊎ fts2)|P |= s∗ 1 ↔b s∗ 2, and hence fts1|P ⊎ fts2|P |=
s∗ 1 ↔b s∗ 2 by Lemma 3.2, for all P ∈ P such that P |= ϕ

By Definition 4.11 this is equivalent to ∀P ∈ P : P |= ϕ ⇒ fts1|P ↔b fts2|P .

Theorem 4.14. Let fts = (S, A, θ, s∗) be an FTS, let s1, s2 ∈ S, and let φ ∈ B(F). It holds
that

(∀P ∈ P : P |= φ ⇒ fts|P |= s1 ↔b s2) ⇒ fts |= s1
φ
←→bf s2.

Proof. Let fts = (S, A, θ, s∗) be an FTS, let s1, s2 ∈ S be two states, and let φ ∈ B(F) be a
feature expression. For all products P ∈ P such that P |= φ, let R|P be a branching bisimulation
relation on fts |P , such that (s1, s2) ∈ R|P . For all products P ∈ P such that P 6|= φ, let R|P = ∅
be the empty branching bisimulation relation.

We define the relation

R = { (s, ϕ̂, t) | ∀P ∈ P : P |= ϕ⇔ (s, t) ∈ R|P }.
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We have to show that R is a branching feature bisimulation relation on fts such that (s1, φ̂, s2) ∈
R. Since (s1, s2) ∈ R|P ⇔ P |= φ, for all P ∈ P, it immediately follows that (s1, φ̂, s2) ∈ R.
Hence, it remains to establish that R is a branching feature bisimulation relation.

To show that R is a branching feature bisimulation relation, we first have to show that it
is symmetric. Pick states s, t ∈ S and feature expression ϕ ∈ B(F) such that (s, ϕ̂, t) ∈ R. By
definition of R this implies that ∀P ∈ P : (P |= ϕ ⇔ (s, t) ∈ R|P ). Since R|P is symmetric,
for each P ∈ P, we also have ∀P ∈ P : (P |= ϕ ⇔ (t, s) ∈ R|P ), and hence (t, ϕ̂, s) ∈ R, which
confirms that R is symmetric.

Next, we have to prove that tuples (s, ϕ̂, t) ∈ S × B(F)× S such that ∀P ∈ P : (P |= ϕ ⇔
(s, t) ∈ R|P ), satisfy the transfer condition from Definition 4.13.

Suppose that s
α|ψ
−−→ s′, for some s′ ∈ S, α ∈ Aτ and ψ ∈ B(F). It must be shown that

there exist states t′i, t
′′
i ∈ S and feature expressions Ψi, ψi, ϕi, ϕ

′
i ∈ B(F), for 1 ≤ i ≤ n, for some

n ∈ N, such that

t
Ψi−→−→ t′i

(α|ψi)
−−−−→ t′i and (s, ϕ̂i, t

′
i) ∈ R and (s′, ϕ̂′

i, t
′′
i ) ∈ R,

for all 1 ≤ i ≤ n, and such that

ϕ ∧ ψ ⇒P

∨
1≤i≤n Ψi ∧ ψi ∧ ϕi ∧ ϕ

′
i.

By definition of R it follows that for each P ∈ P such that P |= ϕ, we have that (s, t) ∈ R|P .
For each P ∈ P such that P |= ψ, it is the case that s

α
−→ s′ in fks|P , by Definition 3.15. Hence,

for each P ∈ P such that P |= ϕ∧ψ, by definition of branching bisimulation for R|P it is the case

that t −→−→ t′P
(α)
−−→ t′′P in fts |P , for some t′P , t

′′
P ∈ S, such that (s, t′P ) ∈ R|P and (s′, t′′P ) ∈ R|P .

By definition of projection, this means that t
ΨP−−→−→ t′P

(α|ψP )
−−−−→ t′′P in fts , for some ΨP , ψP ∈ B(F)

such that P |= ΨP ∧ ψP . Furthermore, by definition of R it follows that (s, ϕ̂P , t
′
P ) ∈ R and

(s′, ϕ̂′
P , t

′′
P ) ∈ R, for some ϕP , ϕ

′
P ∈ B(F) such that P |= ϕP ∧ϕ

′
P . Let P

′ = {P ∈ P | P |= ϕ∧ψ}
be the set of all products satisfying ϕ ∧ ψ. We conclude that

ϕ ∧ ψ ⇒P

∨
P ′∈P′ ΨP ′ ∧ ψP ′ ∧ ϕP ′ ∧ ϕ′

P ′ ,

which this satisfies the transfer condition of branching feature bisimulation, proving that
relation R is indeed a branching feature bisimulation relation on fts.

Corollary 4.8. Let ftsi = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a
feature expression. It holds that

(∀P ∈ P : P |= ϕ ⇒ fts1|P ↔b fts2|P ) ⇒ fts1
ϕ
←→bf fts2.

Proof. Let fts i = (Si, A, θi, s∗ i), for i ∈ {1, 2}, be two FTS, and let ϕ ∈ B(F) be a feature
expression, such that ∀P ∈ P : (P |= ϕ ⇒ fts1|P ↔b fts2|P ). By Definition 4.11 this means
fts1|P ⊎ fts2|P |= s∗ 1 ↔b s∗ 2, and hence (fts1 ⊎ fts2)|P |= s∗ 1 ↔b s∗ 2 by Lemma 3.2, for all
P ∈ P such that P |= ϕ.

By Theorem 4.14 this implies that fts1 ⊎ fts2 |= s∗ 1
ϕ
←→bf s∗ 2.

By Definition 4.13 this is equivalent to fts1
ϕ
←→bf fts2.
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Theorem 4.15. Branching feature bisimilarity (
ϕ
←→bf ) for given ϕ ∈ B(F) is an equivalence

relation.

Proof. We have to show that branching feature bisimilarity is reflexive, symmetric and transitive,
for some feature expression ϕ ∈ B(F). Let fts = (S, A, θ, s∗) be an FTS such that s, t, u ∈ S.

1. We prove reflexivity using s. By reflexivity of branching bisimilarity for LTS (Lemma 4.7),

we have ∀P ∈ P : P |= ϕ⇒ fts |= s ↔b s. By Theorem 4.14 it follows that fts |= s
ϕ
←→bf s.

Hence
ϕ
←→bf is reflexive.

2. Suppose that fts |= s
ϕ
←→bf t. By Theorem 4.13 it follows that ∀P ∈ P : P |= ϕ ⇒

fts |P |= s ↔b t. By symmetry of branching bisimilarity for LTS (Lemma 4.7), we have

∀P ∈ P : P |= ϕ⇒ fts |P |= t↔b s. By Theorem 4.14 it follows that fts |= t
ϕ
←→bf s. Hence

ϕ
←→bf is symmetric.

3. Suppose that fts |= s
ϕ
←→bf t and fts |= t

ϕ
←→bf u. By Theorem 4.13 it follows that

∀P ∈ P : P |= ϕ ⇒ fts |P |= s ↔b t ∧ fts |P |= t ↔b u. By transitivity of branching
bisimilarity for LTS (Lemma 4.7), we have ∀P ∈ P : P |= ϕ ⇒ fts |P |= s ↔b u. By

Theorem 4.14 it follows that fts |= s
ϕ
←→bf u. Hence

ϕ
←→bf is transitive.

Lemma 4.8. Let fts be an FTS with states s, t and u such that fts |= s
ϕ
←→bf t and fts |= t

ψ
←→bf u,

for some ϕ,ψ ∈ B(F). Then fts |= s
ϕ∧ψ
←−→bf u.

Proof. Let fts = (S, A, θ, s∗) be an FTS such that s, t, u ∈ S, and such that fts |= s
ϕ
←→bf t

and fts |= t
ψ
←→bf u. By Theorem 4.13 it follows that ∀P ∈ P : P |= ϕ ⇒ fts|P |= s ↔b t

and ∀P ∈ P : P |= ψ ⇒ fts|P |= t ↔b u. By transitivity of branching bisimilarity for LTS
(Lemma 4.7), we have ∀P ∈ P : P |= ϕ∧ψ ⇒ fts |P |= s ↔b u. By Theorem 4.14 it follows that

fts |= s
ϕ∧ψ
←−→bf u.

Theorem 4.16. A property is preserved by branching bisimulation for LTS if and only if this
property is preserved by branching feature bisimulation for FTS.

Proof. Let fts1 and fts2 be FTS such that fts1 ↔bf fts2, and let φ be a property that is preserved
by branching bisimulation for LTS. We have to show that fts1 |= φ⇔ fts2 |= φ.

Assume fts1 |= φ. By Definition 3.16 this is equivalent to ∀P ∈ P : fts1|P |= φ. Since
fts1 ↔bf fts2, by Corollary 4.7 we have ∀P ∈ P : fts1|P ≈dbs fts2|P . Since φ is preserved by ↔b,
it follows that ∀P ∈ P : fts2|P |= φ, which is equivalent to fts2 |= φ, by Definition 3.16.

The proof for the implication in the other direction is similar.
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Appendix C

Full proofs for Chapter 5

This appendix contains the full proofs that were omitted in Chapter 5.

Theorem 5.2. For each FKS fks, and for all φ ∈ B(F), it holds that
φ
≈dbsf -minFKS(fks)

φ
≈dbsf

fks.

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, let φ ∈ B(F) be a feature expression, and let
φ
≈dbsf -minFKS(fks) = (S′, AP , θ′, L′, s′∗) be the naive divergence-blind stuttering feature quotient
for φ of fks . We define the relation R such that:

R ={(s, [ϕ ∧ φ]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fks |= s

ϕ
≈dbsf t}∪

{(C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fks |= s

ϕ
≈dbsf t}

We have to show that R is a divergence-blind stuttering feature bisimulation relation on fks ⊎
φ
≈dbsf

-minFKS(fks) such that (s∗, φ̂, s
′
∗) ∈ R.

Since
φ
≈dbsf is reflexive, we find that, for all s ∈ S, (s, φ̂, C) ∈ R, where C ∈ S′ is such that

s ∈ C. Using that s∗ ∈ s
′
∗ by Definition 5.2, it immediately follows that (s∗, φ̂, s

′
∗) ∈ R. Hence,

it remains to show that R is a divergence-blind stuttering feature bisimulation relation.

From the definition of R it immediately follows that it is symmetric, and hence it remains
to show that R satisfies the conditions from Definition 4.9.

Consider a tuple (s, [ϕ ∧ φ]∼P
, C) ∈ S × B(F) × S′ such that fks |= s

ϕ
≈dbsf t and t ∈ C, for

some t ∈ S. Let t be such.

We first show that (L⊎L′)(s) = (L⊎L′)(C). Since fks |= s
ϕ
≈dbsf t we know that L(s) = L(t),

and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎ L′)(s) = L(s) = L(t) =
L′(C) = (L ⊎ L′)(C).
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Now we prove the transfer condition. Suppose that s
ψ
−→ s′, for some ψ ∈ B(F), and for

some s′ ∈ S. We first show that this transition can be mimicked by state t for all products

satisfying ϕ ∧ ψ. Since fks |= s
ϕ
≈dbsf t, there exists a set T ⊆ S × B(F) × S × B(F) such that

fks |= s
ϕ′

≈dbsf t
′ and fks |= s′

ϕ′′

≈dbsf t
′′, for all (t′, ϕ′, t′′, ϕ′′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′,t′′,ϕ′′)∈T

θ̌τ (t, t
′) ∧ ϕ′ ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′.

Now we show that C can mimic all transitions from t, which we use to conclude that
C can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.2 it follows
that θ̌τ (t, t

′) ⇒P θ̌′τ (C,Ct′) and θ(t′, t′′) ⇒P θ′(Ct′ , Ct′′), with t′ ∈ Ct′ and t′′ ∈ Ct′′ , for all

(t′, ϕ′, t′′, ϕ′′) ∈ T. Since t′ ∈ Ct′ and fks |= s
ϕ′

≈dbsf t
′, and t′′ ∈ Ct′′ and fks |= s′

ϕ′′

≈dbsf t
′′,

by construction of R we have (s, [ϕ′ ∧ φ]∼P
, Ct′) ∈ R and (s′, [ϕ′′ ∧ φ]∼P

, Ct′′) ∈ R, for all
(t′, ϕ′, t′′, ϕ′′) ∈ T. We find that

φ ∧
∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌τ (t, t
′) ∧ ϕ′ ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′ ⇒P∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌′τ (C,Ct′) ∧ ϕ
′ ∧ (Ct′ = Ct′′ ∨ θ

′(Ct′ , Ct′′)) ∧ ϕ
′′ ∧ φ,

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, φ̂, s) ∈ S′ × B̂(F) × S such that s ∈ C. From Definition 5.2 it
follows immediately that (L ⊎ L′)(C) = (L ⊎ L′)(s).

Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. From Definition 5.2 it

follows that ψ =
∨
{θ(u, u′) | u ∈ C ∧ u′ ∈ C ′}. Pick a pair (u, u′) ∈ C × C ′. Since both

s ∈ C and u ∈ C, by Definition 5.2 we know that fks |= s
φ
≈dbsf u. Hence we can find a set

S(u,u′) ⊆ S × B(F)× S × B(F) for each tuple (u, u′) ∈ C × C ′ such that fks |= s′
ϕ′

≈dbsf u

and fks |= s′′
ϕ′′

≈dbsf u
′, for all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′), and such that

φ ∧ θ(u, u′) ⇒P

∨

(s′,ϕ′,s′′,ϕ′′)∈S(u,u′)

θ̌τ (s, s
′) ∧ ϕ′ ∧ (s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′.

For each tuple (u, u′) ∈ C × C ′ we have that fks |= s′
ϕ′

≈dbsf u and fks |= s′′
ϕ′′

≈dbsf u
′, and

hence by construction of R we have (C, [ϕ′ ∧φ]∼P
, s′) ∈ R and (C ′, [ϕ′′ ∧φ]∼P

, s′′) ∈ R, for
all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′). We find that

φ ∧ ψ ⇒P

∨

(u,u′)∈C×C′

∨

(s′,ϕ′,s′′,ϕ′′)∈T(u,u′)

θ̌τ (s, s
′) ∧ ϕ′ ∧ (s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′ ∧ φ,

and hence the transfer condition for this tuple is satisfied.
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2. Lastly consider a tuple (C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F) × S such that s 6∈ C, and such that

fks |= s
ϕ
≈dbsf t and t ∈ C, for some t ∈ S. Let t be such.

We first show that (L ⊎ L′)(C) = (L ⊎ L′)(s). Since fks |= s
ϕ
≈dbsf t we know that

L(s) = L(t), and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎
L′)(C) = L′(C) = L(t) = L(s) = (L ⊎ L′)(s).

Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. By construction of R

we have (C, φ̂, t) ∈ R. We have already shown that the transfer conditions are satisfied
for such pairs in R, and hence we can find a set T ⊆ S × B(F) × S × B(F) such that
(C, [φ∧ϕ′

t]∼P
, t′) ∈ R and (C ′, [φ∧ϕ′′

t ]∼P
, t′′) ∈ R, for all (t′, ϕ′

t, t
′′, ϕ′′

t ) ∈ T, and such that

φ ∧ ψ ⇒P

∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′
t ∧ φ.

Now we show that s can mimic all transitions from t, which we use to conclude that s

can mimic the transition from C to C ′. Since fks |= s
ϕ
≈dbsf t, we can find sets S(t′,t′′) ⊆

S × B(F)× S × B(F) for each (t′, ϕ′
t, t

′′, ϕ′′) ∈ T such that, for all (s′, ϕ′
s, s

′′, ϕ′′
s ) ∈ S(t′,t′′),

we have fks |= s′
ϕ′
s
≈dbsf t

′ and fks |= s′′
ϕ′′
s
≈dbsf t

′′, and such that

ϕ∧ θ̌τ (t, t
′)∧(t′ = t′′∨θ(t′, t′′)) ⇒P

∨

(s′,ϕ′
s,s

′′,ϕ′′
s )∈St′,t′′

θ̌τ (s, s
′)∧ϕ′

s∧(s
′ = s′′∨θ(s′, s′′))∧ϕ′′

s .

Since (C, [φ ∧ ϕ′
t]∼P

, t′) ∈ R and (C, [φ ∧ ϕ′′
t ]∼P

, t′′) ∈ R, for all (t′, ϕ′
t, t

′′, ϕ′′
t ) ∈ T, by

definition of R this means that fks |= t′
ϕ′
t
≈dbsf u and fks |= t′′

ϕ′′
t
≈dbsf u

′, for some u ∈ C,

u′,∈ C ′. Since fks |= s′
ϕ′
s
≈dbsf t

′ and fks |= s′′
ϕ′′
s
≈dbsf t

′′ for all (s′, ϕ′
s, s

′′, ϕ′′
s) ∈ S(t′,t′′), we

derive fks |= s′
ϕ′
s∧ϕ

′
t

≈ dbsf u and fks |= s′′
ϕ′′
s∧ϕ

′′
t

≈ dbsf u
′ using productwise transitivity. By

construction of R we have (C, [φ ∧ ϕ′
s ∧ ϕ

′
t]∼P

, s′) ∈ R and (C ′, [φ ∧ ϕ′′
s ∧ ϕ

′′
t ]∼P

, s′′) ∈ R.
We find that

ϕ ∧
∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′
t ∧ φ ⇒P∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

′
t ∧ (s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′

s ∧ ϕ
′′
t ∧ φ,

and hence that

ϕ ∧ φ ∧ ψ ⇒P∨
(t′,ϕ′

t,t
′′,ϕ′′

t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

′
t ∧ (s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′

s ∧ ϕ
′′
t ∧ φ,

from which we conclude that the transfer condition for this pair is also satisfied.

Theorem 5.3. For each FKS fks and for all fks ′ ∈ ↔cf -minFKS(fks), it holds that fks ′ ↔f fks.
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Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, let φ ∈ B(F) be a feature expression, and let
fks ′ = (S′, AP , θ′, L′, s′∗) be a coherent feature bisimulation quotient of fks. We define the
relation R such that:

R ={(s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fks |= s

ϕ
←→f t}∪

{(C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fks |= s

ϕ
←→f t}

We have to show that R is a feature bisimulation relation on fks ⊎fks ′ such that (s∗, t̂rue, s
′
∗) ∈ R.

Since ←→f is reflexive, we find that, for all s ∈ S, (s, ̺̂(s), C) ∈ R, where C ∈ S′ is such
that s ∈ C. Using that s∗ ∈ s

′
∗ by Definition 5.4, it immediately follows that (s∗, true , s

′
∗) ∈ R.

Hence, it remains to show that R is a feature bisimulation relation.

From the definition of R it immediately follows that it is symmetric, and hence it remains
to show that R satisfies the conditions from Definition 4.2.

Consider a tuple (s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B(F) × S′ such that fks |= s

ϕ
←→f t and

t ∈ C, for some t ∈ S. Let t be such.

We first show that (L⊎L′)(s) = (L⊎L′)(C). Since fks |= s
ϕ
←→f t we know that L(s) = L(t),

and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎ L′)(s) = L(s) = L(t) =
L′(C) = (L ⊎ L′)(C).

Now we prove the transfer condition. Suppose that s
ψ
−→ s′, for some ψ ∈ B(F), and for some

s′ ∈ S. We first show that this transition can be mimicked by state t for all products satisfying

ϕ ∧ ψ. Since fks |= s
ϕ
←→f t, there exists a set T ⊆ S × B(F) such that fks |= s′

ϕ′

←→f t
′, for all

(t′, ϕ′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′)∈T

θ(t, t′) ∧ ϕ′.

Now we show that C can mimic all transitions from t, which we use to conclude that C
can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.4 it follows that

(θ(t, t′)∧ ̺(t))⇒P θ
′(C,Ct′), with t

′ ∈ Ct′ , for all (t
′, ϕ′) ∈ T. Since t′ ∈ Ct′ and fks |= s′

ϕ′

←→f t
′,

by construction of R we have (s′, [ϕ′ ∧ ̺(s′) ∧ ̺(t′)]∼P
, Ct′) ∈ R, for all (t

′, ϕ′) ∈ T. Using that
̺(s)∧ψ ⇒P ̺(s

′) and ̺(t)∧ θ(t, t′)⇒P ̺(t
′), for all (t′, ϕ′) ∈ T, by definition of reachability, we

find that

̺(s) ∧ ̺(t) ∧
∨

(t′,ϕ′)∈T

θ(t, t′) ∧ ϕ′ ⇒P

∨

(t′,ϕ′)∈T

θ′(C,Ct′) ∧ ϕ
′ ∧ ̺(s′) ∧ ̺(t′),

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, ̺̂(s), s) ∈ S′× B̂(F)× S such that s ∈ C. From Definition 5.4 it
follows immediately that (L ⊎ L′)(C) = (L ⊎ L′)(s).
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Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. From Definition 5.4 it

follows that ψ =
∨
{θ(u, u′) ∧ ̺(u) | u ∈ C ∧ u′ ∈ C ′}. Pick a pair (u, u′) ∈ C ×C ′. Since

both s ∈ C and u ∈ C, by Definition 5.4 we know that fks |= s↔cf u. Hence we can find

a set S(u,u′) ⊆ S × B(F) for each tuple (u, u′) ∈ C × C ′ such that fks |= s′
ϕ′

←→f u
′, for all

(s′, ϕ′) ∈ S(u,u′), and such that

̺(s) ∧ ̺(u) ∧ θ(u, u′) ⇒P

∨

(s′,ϕ′)∈S(u,u′)

θ(s, s′) ∧ ϕ′.

For each tuple (u, u′) ∈ C × C ′ we have that fks |= s′
ϕ′

←→f u
′, and hence by construction

of R we have (C ′, [ϕ′ ∧ ̺(s′) ∧ ̺(u′)]∼P
, s′) ∈ R, for all (s′, ϕ′) ∈ S(u,u′). Using that

̺(s) ∧ θ(s, s′)⇒P ̺(s
′) and ̺(u) ∧ θ(u, u′)⇒P ̺(u

′), we find that

̺(s) ∧ ψ ⇒P

∨

(u,u′)∈C×C′

∨

(s′,ϕ′)∈T(u,u′)

θ(s, s′) ∧ ϕ′ ∧ ̺(s′) ∧ ̺(u′),

and hence the transfer condition for this tuple is satisfied.

2. Lastly consider a tuple (C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F) × S such that s 6∈ C, and

such that fks |= s
ϕ
←→f t and t ∈ C, for some t ∈ S. Let t be such.

We first show that (L⊎L′)(C) = (L⊎L′)(s). Since fks |= s
ϕ
←→f t we know that L(s) = L(t),

and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎ L′)(C) = L′(C) =
L(t) = L(s) = (L ⊎ L′)(s).

Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. By construction of R

we have (C, ̺̂(t), t) ∈ R. We have already shown that the transfer conditions are satisfied
for such pairs in R, and hence we can find a set T ⊆ S × B(F) such that (C ′, ϕ̂′

t, t
′) ∈ R,

for all (t′, ϕ′
t) ∈ T, and such that

̺(t) ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

θ(t, t′) ∧ ϕ′
t.

Now we show that s can mimic all transitions from t, which we use to conclude that s can

mimic the transition from C to C ′. Since fks |= s
ϕ
←→f t, we can find sets St′ ⊆ S × B(F)

for each (t′, ϕ′
t) ∈ T such that, for all (s′, ϕ′

s) ∈ St′ , we have fks |= s′
ϕ′
s←→f t

′ and such that

ϕ ∧ θ(t, t′) ⇒P

∨

(s′,ϕ′
s)∈St′

θ(s, s′) ∧ ϕ′
s.
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Since (C ′, ϕ̂′
t, t

′) ∈ R, for all (t′, ϕ′
t) ∈ T, by definition of R this means that ϕ′

t ∼P ϕ
′′
t ∧

̺(t′) ∧ ̺(ut′), for some ϕ′′
t ∈ B(F) and some ut′ ∈ C

′, such that fks |= t′
ϕ′′
t←→f ut′ . Since

fks |= s′
ϕ′
s←→f t

′ for all (s′, ϕ′
s) ∈ St′ , we derive fks |= s′

ϕ′
s∧ϕ

′′
t←−−−→f ut′ using productwise

transitivity. By construction of R we have (C ′, [ϕ′
s ∧ ϕ

′′
t ∧ ̺(s

′) ∧ ̺(ut′)]∼P
, s′) ∈ R. Using

that ̺(s) ∧ ψ ⇒P ̺(s
′) and ̺′t ⇒P ̺

′′
t ∧ ̺(ut′), we find that We find that

ϕ ∧
∨

(t′,ϕ′
t)∈T

θ(t, t′) ∧ ϕ′
t ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, s′) ∧ ϕ′
s ∧ ϕ

′
t,

and hence that

ϕ ∧ ̺(s) ∧ ̺(t) ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, s′) ∧ ϕ′
s ∧ ϕ

′′
t ∧ ̺(s

′) ∧ ̺(ut′),

from which we conclude that the transfer condition for this pair is also satisfied.

Theorem 5.4. For each FKS fks and for all fks ′ ∈ ≈cdbsf -minFKS(fks), it holds that fks ′ ≈dbsf

fks.

Proof. Let fks = (S, AP , θ, L, s∗) be an FKS, let φ ∈ B(F) be a feature expression, and let
fks ′ = (S′, AP , θ′, L′, s′∗) be a coherent divergence-blind stuttering feature quotient of fks. We
define the relation R such that:

R ={(s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fks |= s

ϕ
≈dbsf t}∪

{(C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fks |= s

ϕ
≈dbsf t}

We have to show that R is a divergence-blind stuttering feature bisimulation relation on fks ⊎fks ′

such that (s∗, t̂rue, s
′
∗) ∈ R.

Since ≈dbsf is reflexive, we find that, for all s ∈ S, (s, ̺̂(s), C) ∈ R, where C ∈ S′ is such
that s ∈ C. Using that s∗ ∈ s

′
∗ by Definition 5.4, it immediately follows that (s∗, t̂rue, s

′
∗) ∈ R.

Hence, it remains to show that R is a divergence-blind stuttering feature bisimulation relation.
From the definition of R it immediately follows that it is symmetric, and hence it remains

to show that R satisfies the conditions from Definition 4.9.

Consider a tuple (s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B(F) × S′ such that fks |= s

ϕ
≈dbsf t and

t ∈ C, for some t ∈ S. Let t be such.

We first show that (L⊎L′)(s) = (L⊎L′)(C). Since fks |= s
ϕ
≈dbsf t we know that L(s) = L(t),

and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎ L′)(s) = L(s) = L(t) =
L′(C) = (L ⊎ L′)(C).

Now we prove the transfer condition. Suppose that s
ψ
−→ s′, for some ψ ∈ B(F), and for

some s′ ∈ S. We first show that this transition can be mimicked by state t for all products

satisfying ϕ ∧ ψ. Since fks |= s
ϕ
≈dbsf t, there exists a set T ⊆ S × B(F) × S × B(F) such that

fks |= s
ϕ′

≈dbsf t
′ and fks |= s′

ϕ′′

≈dbsf t
′′, for all (t′, ϕ′, t′′, ϕ′′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′,t′′,ϕ′′)∈T

θ̌τ (t, t
′) ∧ ϕ′ ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′.
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Now we show that C can mimic all transitions from t, which we use to conclude that C
can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.4 it follows that
(θ̌τ (t, t

′)∧̺(t))⇒P θ̌
′
τ (C,Ct′) and (θ(t′, t′′)∧̺(t′))⇒P θ

′(Ct′ , Ct′′), with t
′ ∈ Ct′ and t

′′ ∈ Ct′′ , for

all (t′, ϕ′, t′′, ϕ′′) ∈ T. Since t′ ∈ Ct′ and fks |= s
ϕ′

≈dbsf t
′, and t′′ ∈ Ct′′ and fks |= s′

ϕ′′

≈dbsf t
′′, by

construction of R we have (s, [ϕ′∧̺(s)∧̺(t′)]∼P
, Ct′) ∈ R and (s′, [ϕ′′∧̺(s′)∧̺(t′′)]∼P

, Ct′′) ∈ R,
for all (t′, ϕ′, t′′, ϕ′′) ∈ T. Using that ̺(s)∧ψ ⇒P ̺(s

′) and ̺(t)∧ θ̌τ (t, t
′)∧ (t′ = t′′∨θ(t′, t′′))⇒P

̺(t) ∧ ̺(t′), for all (t′, ϕ′, t′′, ϕ′′) ∈ T, by definition of reachability, we find that

̺(s) ∧ ̺(t) ∧
∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌τ (t, t
′) ∧ ϕ′ ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′ ⇒P∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌′τ (C,Ct′) ∧ ϕ
′ ∧ ̺(s) ∧ ̺(t′) ∧ (Ct′ = Ct′′ ∨ θ

′(Ct′ , Ct′′)) ∧ ϕ
′′ ∧ ̺(s′) ∧ ̺(t′′),

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, ̺̂(s), s) ∈ S′× B̂(F)× S such that s ∈ C. From Definition 5.4 it
follows immediately that (L ⊎ L′)(C) = (L ⊎ L′)(s).

Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. From Definition 5.4

it follows that ψ =
∨
{θ(u, u′) ∧ ̺(u) | u ∈ C ∧ u′ ∈ C ′}. Pick a pair (u, u′) ∈ C × C ′.

Since both s ∈ C and u ∈ C, by Definition 5.4 we know that fks |= s ≈cdbsf u. Hence we
can find a set S(u,u′) ⊆ S × B(F) × S × B(F) for each tuple (u, u′) ∈ C × C ′ such that

fks |= s′
ϕ′

≈dbsf u and fks |= s′′
ϕ′′

≈dbsf u
′, for all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′), and such that

̺(s) ∧ ̺(u) ∧ θ(u, u′) ⇒P

∨

(s′,ϕ′,s′′,ϕ′′)∈S(u,u′)

θ̌τ (s, s
′) ∧ ϕ′ ∧ (s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′.

For each tuple (u, u′) ∈ C × C ′ we have that fks |= s′
ϕ′

≈dbsf u and fks |= s′′
ϕ′′

≈dbsf u
′,

and hence by construction of R we have (C, [ϕ′ ∧ ̺(s′) ∧ ̺(u)]∼P
, s′) ∈ R and (C ′, [ϕ′′ ∧

̺(s′′) ∧ ̺(u′)]∼P
, s′′) ∈ R, for all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′). Using that ̺(s) ∧ θ̌τ (s, s

′) ∧ (s′ =
s′′ ∨ θ(s′, s′′))⇒P ̺(s

′) ∧ ̺(s′′) and ̺(u) ∧ θ(u, u′)⇒P ̺(u
′), we find that

̺(s) ∧ ψ ⇒P

∨
(u,u′)∈C×C′

∨
(s′,ϕ′,s′′,ϕ′′)∈T(u,u′)

θ̌τ (s, s
′) ∧ ϕ′ ∧ ̺(s′) ∧ ̺(u)∧

(s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′ ∧ ̺(s′′) ∧ ̺(u′),

and hence the transfer condition for this tuple is satisfied.

2. Lastly consider a tuple (C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F) × S such that s 6∈ C, and

such that fks |= s
ϕ
≈dbsf t and t ∈ C, for some t ∈ S. Let t be such.

We first show that (L ⊎ L′)(C) = (L ⊎ L′)(s). Since fks |= s
ϕ
≈dbsf t we know that

L(s) = L(t), and since t ∈ C we know that L(t) = L′(C). Hence we can derive (L ⊎
L′)(C) = L′(C) = L(t) = L(s) = (L ⊎ L′)(s).
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Suppose that C
ψ
−→ C ′, for some ψ ∈ B(F), and for some C ′ ∈ S′. By construction of R

we have (C, ̺̂(t), t) ∈ R. We have already shown that the transfer conditions are satisfied
for such pairs in R, and hence we can find a set T ⊆ S × B(F) × S × B(F) such that
(C, ϕ̂′

t, t
′) ∈ R and (C ′, ϕ̂′′

t , t
′′) ∈ R, for all (t′, ϕ′

t, t
′′, ϕ′′

t ) ∈ T, and such that

̺(t) ∧ ψ ⇒P

∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′
t .

Now we show that s can mimic all transitions from t, which we use to conclude that s

can mimic the transition from C to C ′. Since fks |= s
ϕ
≈dbsf t, we can find sets S(t′,t′′) ⊆

S × B(F)× S × B(F) for each (t′, ϕ′
t, t

′′, ϕ′′) ∈ T such that, for all (s′, ϕ′
s, s

′′, ϕ′′
s ) ∈ S(t′,t′′),

we have fks |= s′
ϕ′
s
≈dbsf t

′ and fks |= s′′
ϕ′′
s
≈dbsf t

′′, and such that

ϕ∧ θ̌τ (t, t
′)∧(t′ = t′′∨θ(t′, t′′)) ⇒P

∨

(s′,ϕ′
s,s

′′,ϕ′′
s )∈St′,t′′

θ̌τ (s, s
′)∧ϕ′

s∧(s
′ = s′′∨θ(s′, s′′))∧ϕ′′

s .

Since (C, ϕ̂′
t, t

′) ∈ R and (C ′, ϕ̂′′
t , t

′′) ∈ R, for all (t′, ϕ′
t, t

′′, ϕ′′
t ) ∈ T, by definition of R this

means that ϕ′
t ∼P ϕ

∗
t ∧̺(t

′)∧̺(ut′) and ϕ
′′
t ∼P ϕ

∗∗
t ∧̺(t

′′)∧̺(ut′′), for some ϕ∗
t , ϕ

∗∗
t ∈ B(F)

and some ut′ ∈ C, ut′′ ∈ C
′, such that fks |= t′

ϕ∗
t
≈dbsf ut′ and fks |= t′′

ϕ∗∗
t
≈ dbsf ut′′ . Since

fks |= s′
ϕ′
s
≈dbsf t

′ and fks |= s′′
ϕ′′
s
≈dbsf t

′′ for all (s′, ϕ′
s, s

′′, ϕ′′
s) ∈ S(t′,t′′), we derive fks |=

s′
ϕ′
s∧ϕ

∗
t

≈ dbsf ut′ and fks |= s′′
ϕ′′
s∧ϕ

∗∗
t

≈ dbsf ut′′ using productwise transitivity. By construction
of R we have (C, [ϕ′

s∧ϕ
∗
t∧̺(s

′)∧̺(ut′)]∼P
, s′) ∈ R and (C ′, [ϕ′′

s∧ϕ
∗∗
t ∧̺(s

′′)∧̺(ut′′ )]∼P
, s′′) ∈

R. Using that ̺(s)∧ θ̌τ (s, s
′)∧ (s′ = s′′ ∨ θ(s′, s′′))⇒P ̺(s

′)∧ ̺(s′′) and ϕ′
t ⇒P ϕ

∗
t ∧ ̺(ut′)

and ϕ′′
t ⇒P ϕ

∗∗
t ∧ ̺(ut′′), we find that

ϕ ∧
∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ (t′ = t′′ ∨ θ(t′, t′′)) ∧ ϕ′′
t ⇒P∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

′
t ∧ (s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′

s ∧ ϕ
′′
t ,

and hence that

ϕ ∧ ̺(s) ∧ ̺(t) ∧ ψ ⇒P∨
(t′,ϕ′

t,t
′′,ϕ′′

t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

∗
t ∧ ̺(s

′) ∧ ̺(ut′)∧

(s′ = s′′ ∨ θ(s′, s′′)) ∧ ϕ′′
s ∧ ϕ

∗∗
t ∧ ̺(s

′′) ∧ ̺(ut′′),

from which we conclude that the transfer condition for this pair is also satisfied.

Theorem 5.5. For each FTS fts, and for all φ ∈ B(F), it holds that
φ
←→f -minFTS(fts)

φ
←→f fts.
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Proof. Let fts = (S, A, θ, s∗) be an FTS, let φ ∈ B(F) be a feature expression, and let
φ
←→f

-minFTS(fts) = (S′, A, θ′, s′∗) be the naive feature bisimulation quotient for φ of fts . We define
the relation R such that:

R ={(s, [ϕ ∧ φ]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fts |= s

ϕ
←→f t}∪

{(C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fts |= s

ϕ
←→f t}

We have to show that R is a feature bisimulation relation on fts ⊎
φ
←→f -minFTS(fts) such that

(s∗, φ̂, s
′
∗) ∈ R.

Since
φ
←→f is reflexive, we find that, for all s ∈ S, (s, φ̂, C) ∈ R, where C ∈ S′ is such that

s ∈ C. Using that s∗ ∈ s
′
∗ by Definition 5.6, it immediately follows that (s∗, φ̂, s

′
∗) ∈ R. Hence,

it remains to show that R is a feature bisimulation relation.

From the definition of R it immediately follows that it is symmetric, and hence it remains
to show that R satisfies the conditions from Definition 4.5.

Consider a tuple (s, [ϕ ∧ φ]∼P
, C) ∈ S × B(F) × S′ such that fts |= s

ϕ
←→f t and t ∈ C, for

some t ∈ S. Let t be such.

Suppose that s
α|ψ
−−→ s′, for some α ∈ Aτ , ψ ∈ B(F), and for some s′ ∈ S. We first show that

this transition can be mimicked by state t for all products satisfying ϕ∧ψ. Since fts |= s
ϕ
←→f t,

there exists a set T ⊆ S × B(F) such that fts |= s′
ϕ′

←→f t
′, for all (t′, ϕ′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′)∈T

θ(t, α, t′) ∧ ϕ′.

Now we show that C can mimic all transitions from t, which we use to conclude that C
can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.6 it follows that

θ(t, α, t′) ⇒P θ
′(C,α,Ct′ ), with t

′ ∈ Ct′ , for all (t′, ϕ′) ∈ T. Since t′ ∈ Ct′ and fts |= s′
ϕ′

←→f t
′,

by construction of R we have (s′, [ϕ′ ∧ φ]∼P
, Ct′) ∈ R, for all (t

′, ϕ′) ∈ T. We find that

φ ∧
∨

(t′,ϕ′)∈T

θ(t, α, t′) ∧ ϕ′ ⇒P

∨

(t′,ϕ′)∈T

θ′(C,α,Ct′ ) ∧ ϕ
′ ∧ φ,

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, φ̂, s) ∈ S′ × B̂(F)× S such that s ∈ C.
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Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. From

Definition 5.6 it follows that ψ =
∨
{θ(u, α, u′) | u ∈ C ∧ u′ ∈ C ′}. Pick a pair (u, u′) ∈

C × C ′. Since both s ∈ C and u ∈ C, by Definition 5.6 we know that fts |= s
φ
←→f u.

Hence we can find a set S(u,u′) ⊆ S × B(F) for each tuple (u, u′) ∈ C × C ′ such that

fts |= s′
ϕ′

←→f u
′, for all (s′, ϕ′) ∈ S(u,u′), and such that

φ ∧ θ(u, α, u′) ⇒P

∨

(s′,ϕ′)∈S(u,u′)

θ(s, α, s′) ∧ ϕ′.

For each tuple (u, u′) ∈ C × C ′ we have that fts |= s′
ϕ′

←→f u
′, and hence by construction

of R we have (C ′, [ϕ′ ∧ φ]∼P
, s′) ∈ R, for all (s′, ϕ′) ∈ S(u,u′). We find that

φ ∧ ψ ⇒P

∨

(u,u′)∈C×C′

∨

(s′,ϕ′)∈T(u,u′)

θ(s, α, s′) ∧ ϕ′ ∧ φ,

and hence the transfer condition for this tuple is satisfied.

2. Lastly consider a tuple (C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F)× S such that s 6∈ C, and such that

fts |= s
ϕ
←→f t and t ∈ C, for some t ∈ S. Let t be such.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. By con-

struction of R we have (C, φ̂, t) ∈ R. We have already shown that the transfer conditions
are satisfied for such pairs in R, and hence we can find a set T ⊆ S × B(F) such that
(C ′, [φ ∧ ϕ′

t]∼P
, t′) ∈ R, for all (t′, ϕ′

t) ∈ T, and such that

φ ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

θ(t, α, t′) ∧ ϕ′
t ∧ φ.

Now we show that s can mimic all transitions from t, which we use to conclude that s can

mimic the transition from C to C ′. Since fts |= s
ϕ
←→f t, we can find sets St′ ⊆ S × B(F)

for each (t′, ϕ′
t) ∈ T such that, for all (s′, ϕ′

s) ∈ St′ , we have fts |= s′
ϕ′
s←→f t

′ and such that

ϕ ∧ θ(t, α, t′) ⇒P

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s.

Since (C ′, [φ ∧ ϕ′
t]∼P

, t′) ∈ R, for all (t′, ϕ′
t) ∈ T, by definition of R this means that

fts |= t′
ϕ′
t←→f u′, for some u′ ∈ C ′. Since fts |= s′

ϕ′
s←→f t′ for all (s′, ϕ′

s) ∈ St′ , we

derive fts |= s′
ϕ′
s∧ϕ

′
t←−−→f u

′ using productwise transitivity. By construction of R we have
(C ′, [φ ∧ ϕ′

s ∧ ϕ
′
t]∼P

, s′) ∈ R. We find that

ϕ ∧
∨

(t′,ϕ′
t)∈T

θ(t, α, t′) ∧ ϕ′
t ∧ φ ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s ∧ ϕ

′
t ∧ φ,
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and hence that

ϕ ∧ φ ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s ∧ ϕ

′
t ∧ φ,

from which we conclude that the transfer condition for this pair is also satisfied.

Theorem 5.6. For each FTS fts, and for all φ ∈ B(F), it holds that
φ
←→bf -minFTS(fts)

φ
←→bf fts.

Proof. Let fts = (S, A, θ, s∗) be an FTS, let φ ∈ B(F) be a feature expression, and let
φ
←→bf

-minFTS(fks) = (S′, A, θ′, s′∗) be the naive divergence-blind stuttering feature quotient for φ of
fks . We define the relation R such that:

R ={(s, [ϕ ∧ φ]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fts |= s

ϕ
←→bf t}∪

{(C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fts |= s

ϕ
←→bf t}

We have to show that R is a branching feature bisimulation relation on fts ⊎
φ
←→bf -minFTS(fts)

such that (s∗, φ̂, s
′
∗) ∈ R.

Since
φ
←→bf is reflexive, we find that, for all s ∈ S, (s, φ̂, C) ∈ R, where C ∈ S′ is such that

s ∈ C. Using that s∗ ∈ s
′
∗ by Definition 5.6, it immediately follows that (s∗, φ̂, s

′
∗) ∈ R. Hence,

it remains to show that R is a branching feature bisimulation relation.
From the definition of R it immediately follows that it is symmetric, and hence it remains

to show that R satisfies the conditions from Definition 4.13.

Consider a tuple (s, [ϕ ∧ φ]∼P
, C) ∈ S × B(F) × S′ such that fts |= s

ϕ
←→bf t and t ∈ C, for

some t ∈ S. Let t be such.

Suppose that s
α|ψ
−−→ s′, for someα ∈ Aτ , ψ ∈ B(F), and for some s′ ∈ S. We first show that

this transition can be mimicked by state t for all products satisfying ϕ∧ψ. Since fts |= s
ϕ
←→bf t,

there exists a set T ⊆ S × B(F)× S × B(F) such that fts |= s
ϕ′

←→bf t
′ and fts |= s′

ϕ′′

←→bf t
′′, for

all (t′, ϕ′, t′′, ϕ′′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′,t′′,ϕ′′)∈T

θ̌τ (t, t
′) ∧ ϕ′ ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′.

Now we show that C can mimic all transitions from t, which we use to conclude that C
can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.6 it follows that
θ̌τ (t, t

′) ⇒P θ̌′τ (C,Ct′) and θ(t′, α, t′′) ⇒P θ′(Ct′ , α, Ct′′), with t′ ∈ Ct′ and t′′ ∈ Ct′′ , for all

(t′, ϕ′, t′′, ϕ′′) ∈ T. Since t′ ∈ Ct′ and fts |= s
ϕ′

←→bf t
′, and t′′ ∈ Ct′′ and fts |= s′

ϕ′′

←→bf t
′′,

by construction of R we have (s, [ϕ′ ∧ φ]∼P
, Ct′) ∈ R and (s′, [ϕ′′ ∧ φ]∼P

, Ct′′) ∈ R, for all
(t′, ϕ′, t′′, ϕ′′) ∈ T. We find that

φ ∧
∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌τ (t, t
′) ∧ ϕ′ ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′ ⇒P∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌′τ (C,Ct′) ∧ ϕ
′ ∧ ((Ct′ = Ct′′ ∧ α = τ) ∨ θ′(Ct′ , α, Ct′′ )) ∧ ϕ

′′ ∧ φ,
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and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, φ̂, s) ∈ S′ × B̂(F)× S such that s ∈ C.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. From

Definition 5.6 it follows that ψ =
∨
{θ(u, α, u′) | u ∈ C ∧ u′ ∈ C ′}. Pick a pair (u, u′) ∈

C × C ′. Since both s ∈ C and u ∈ C, by Definition 5.6 we know that fts |= s
φ
←→bf u.

Hence we can find a set S(u,u′) ⊆ S×B(F)×S×B(F) for each tuple (u, u′) ∈ C×C ′ such

that fts |= s′
ϕ′

←→bf u and fks |= s′′
ϕ′′

←→bf u
′, for all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′), and such that

φ ∧ θ(u, α, u′) ⇒P

∨

(s′,ϕ′,s′′,ϕ′′)∈S(u,u′)

θ̌τ (s, s
′) ∧ ϕ′ ∧ ((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′.

For each tuple (u, u′) ∈ C × C ′ we have that fts |= s′
ϕ′

←→bf u and fts |= s′′
ϕ′′

←→bf u
′, and

hence by construction of R we have (C, [ϕ′ ∧φ]∼P
, s′) ∈ R and (C ′, [ϕ′′ ∧φ]∼P

, s′′) ∈ R, for
all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′). We find that

φ∧ψ ⇒P

∨

(u,u′)∈C×C′

∨

(s′,ϕ′,s′′,ϕ′′)∈T(u,u′)

θ̌τ (s, s
′)∧ϕ′∧((s′ = s′′∧α = τ)∨θ(s′, α, s′′))∧ϕ′′∧φ,

and hence the transfer condition for this tuple is satisfied.

2. Lastly consider a tuple (C, [ϕ ∧ φ]∼P
, s) ∈ S′ × B̂(F)× S such that s 6∈ C, and such that

fts |= s
ϕ
←→bf t and t ∈ C, for some t ∈ S. Let t be such.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. By construc-

tion of R we have (C, φ̂, t) ∈ R. We have already shown that the transfer conditions are
satisfied for such pairs in R, and hence we can find a set T ⊆ S × B(F)× S × B(F) such
that (C, [φ∧ϕ′

t]∼P
, t′) ∈ R and (C ′, [φ∧ϕ′′

t ]∼P
, t′′) ∈ R, for all (t′, ϕ′

t, t
′′, ϕ′′

t ) ∈ T, and such
that

φ ∧ ψ ⇒P

∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′
t ∧ φ.

Now we show that s can mimic all transitions from t, which we use to conclude that s

can mimic the transition from C to C ′. Since fts |= s
ϕ
←→bf t, we can find sets S(t′,t′′) ⊆

S × B(F)× S × B(F) for each (t′, ϕ′
t, t

′′, ϕ′′) ∈ T such that, for all (s′, ϕ′
s, s

′′, ϕ′′
s ) ∈ S(t′,t′′),

we have fts |= s′
ϕ′
s←→bf t

′ and fts |= s′′
ϕ′′
s←→bf t

′′, and such that

ϕ ∧ θ̌τ (t, t
′) ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ⇒P∨

(s′,ϕ′
s,s

′′,ϕ′′
s )∈St′,t′′

θ̌τ (s, s
′) ∧ ϕ′

s ∧ ((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′
s .
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Since (C, [φ ∧ ϕ′
t]∼P

, t′) ∈ R and (C, [φ ∧ ϕ′′
t ]∼P

, t′′) ∈ R, for all (t′, ϕ′
t, t

′′, ϕ′′
t ) ∈ T, by

definition of R this means that fts |= t′
ϕ′
t←→bf u and fts |= t′′

ϕ′′
t←→bf u

′, for some u ∈ C,

u′,∈ C ′. Since fts |= s′
ϕ′
s←→bf t

′ and fts |= s′′
ϕ′′
s←→bf t

′′ for all (s′, ϕ′
s, s

′′, ϕ′′
s ) ∈ S(t′,t′′), we

derive fts |= s′
ϕ′
s∧ϕ

′
t←−−→bf u and fts |= s′′

ϕ′′
s∧ϕ

′′
t←−−−→bf u

′ using productwise transitivity. By
construction of R we have (C, [φ ∧ ϕ′

s ∧ ϕ
′
t]∼P

, s′) ∈ R and (C ′, [φ ∧ ϕ′′
s ∧ ϕ

′′
t ]∼P

, s′′) ∈ R.
We find that

ϕ ∧
∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′
t ∧ φ ⇒P∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

′
t ∧

((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′
s ∧ ϕ

′′
t ∧ φ,

and hence that

ϕ ∧ φ ∧ ψ ⇒P

∨
(t′,ϕ′

t,t
′′,ϕ′′

t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

′
t ∧

((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′
s ∧ ϕ

′′
t ∧ φ,

from which we conclude that the transfer condition for this pair is also satisfied.

Theorem 5.7. For each FTS fts and for all fts ′ ∈ ↔cf -minFTS(fts) it holds that fts ′ ↔f fts.

Proof. Let fts = (S, A, θ, s∗) be an FTS, let φ ∈ B(F) be a feature expression, and let fts ′ =
(S′, A, θ′, s′∗) be a coherent feature bisimulation quotient of fts . We define the relation R such
that:

R ={(s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fts |= s

ϕ
←→f t}∪

{(C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fts |= s

ϕ
←→f t}

We have to show that R is a feature bisimulation relation on fts ⊎fts ′ such that (s∗, t̂rue, s
′
∗) ∈ R.

Since ←→f is reflexive, we find that, for all s ∈ S, (s, ̺̂(s), C) ∈ R, where C ∈ S′ is such
that s ∈ C. Using that s∗ ∈ s

′
∗ by Definition 5.8, it immediately follows that (s∗, true , s

′
∗) ∈ R.

Hence, it remains to show that R is a feature bisimulation relation.
From the definition of R it immediately follows that it is symmetric, and hence it remains

to show that R satisfies the conditions from Definition 4.5.

Consider a tuple (s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B(F) × S′ such that fts |= s

ϕ
←→f t and

t ∈ C, for some t ∈ S. Let t be such.

Suppose that s
α|ψ
−−→ s′, for some α ∈ Aτ , ψ ∈ B(F), and for some s′ ∈ S. We first show that

this transition can be mimicked by state t for all products satisfying ϕ∧ψ. Since fts |= s
ϕ
←→f t,

there exists a set T ⊆ S × B(F) such that fts |= s′
ϕ′

←→f t
′, for all (t′, ϕ′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′)∈T

θ(t, α, t′) ∧ ϕ′.
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Now we show that C can mimic all transitions from t, which we use to conclude that
C can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.8 it follows
that (θ(t, α, t′) ∧ ̺(t)) ⇒P θ′(C,α,Ct′ ), with t′ ∈ Ct′ , for all (t′, ϕ′) ∈ T. Since t′ ∈ Ct′ and

fts |= s′
ϕ′

←→f t
′, by construction of R we have (s′, [ϕ′∧̺(s′)∧̺(t′)]∼P

, Ct′) ∈ R, for all (t
′, ϕ′) ∈ T.

Using that ̺(s) ∧ ψ ⇒P ̺(s′) and ̺(t) ∧ θ(t, t′) ⇒P ̺(t′), for all (t′, ϕ′) ∈ T, by definition of
reachability, we find that

̺(s) ∧ ̺(t) ∧
∨

(t′,ϕ′)∈T

θ(t, α, t′) ∧ ϕ′ ⇒P

∨

(t′,ϕ′)∈T

θ′(C,α,Ct′ ) ∧ ϕ
′ ∧ ̺(s′) ∧ ̺(t′),

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, ̺̂(s), s) ∈ S′ × B̂(F)× S such that s ∈ C.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. From

Definition 5.8 it follows that ψ =
∨
{θ(u, α, u′) ∧ ̺(u) | u ∈ C ∧ u′ ∈ C ′}. Pick a

pair (u, u′) ∈ C × C ′. Since both s ∈ C and u ∈ C, by Definition 5.8 we know that
fks |= s ↔cf u. Hence we can find a set S(u,u′) ⊆ S × B(F) for each tuple (u, u′) ∈ C ×C ′

such that fts |= s′
ϕ′

←→f u
′, for all (s′, ϕ′) ∈ S(u,u′), and such that

̺(s) ∧ ̺(u) ∧ θ(u, α, u′) ⇒P

∨

(s′,ϕ′)∈S(u,u′)

θ(s, α, s′) ∧ ϕ′.

For each tuple (u, u′) ∈ C × C ′ we have that fts |= s′
ϕ′

←→f u
′, and hence by construction

of R we have (C ′, [ϕ′ ∧ ̺(s′) ∧ ̺(u′)]∼P
, s′) ∈ R, for all (s′, ϕ′) ∈ S(u,u′). Using that

̺(s) ∧ θ(s, α, s′)⇒P ̺(s
′) and ̺(u) ∧ θ(u, α, u′)⇒P ̺(u

′), we find that

̺(s) ∧ ψ ⇒P

∨

(u,u′)∈C×C′

∨

(s′,ϕ′)∈T(u,u′)

θ(s, α, s′) ∧ ϕ′ ∧ ̺(s′) ∧ ̺(u′),

and hence the transfer condition for this tuple is satisfied.

2. Lastly consider a tuple (C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F) × S such that s 6∈ C, and

such that fts |= s
ϕ
←→f t and t ∈ C, for some t ∈ S. Let t be such.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. By

construction of R we have (C, ̺̂(t), t) ∈ R. We have already shown that the transfer
conditions are satisfied for such pairs in R, and hence we can find a set T ⊆ S×B(F) such
that (C ′, ϕ̂′

t, t
′) ∈ R, for all (t′, ϕ′

t) ∈ T, and such that

̺(t) ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

θ(t, α, t′) ∧ ϕ′
t.
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Now we show that s can mimic all transitions from t, which we use to conclude that s can

mimic the transition from C to C ′. Since fts |= s
ϕ
←→f t, we can find sets St′ ⊆ S × B(F)

for each (t′, ϕ′
t) ∈ T such that, for all (s′, ϕ′

s) ∈ St′ , we have fts |= s′
ϕ′
s←→f t

′ and such that

ϕ ∧ θ(t, α, t′) ⇒P

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s.

Since (C ′, ϕ̂′
t, t

′) ∈ R, for all (t′, ϕ′
t) ∈ T, by definition of R this means that ϕ′

t ∼P ϕ
′′
t ∧

̺(t′) ∧ ̺(ut′), for some ϕ′′
t ∈ B(F) and some ut′ ∈ C

′, such that fts |= t′
ϕ′′
t←→f ut′ . Since

fts |= s′
ϕ′
s←→f t

′ for all (s′, ϕ′
s) ∈ St′ , we derive fts |= s′

ϕ′
s∧ϕ

′′
t←−−−→f ut′ using productwise

transitivity. By construction of R we have (C ′, [ϕ′
s ∧ ϕ

′′
t ∧ ̺(s

′) ∧ ̺(ut′)]∼P
, s′) ∈ R. Using

that ̺(s) ∧ ψ ⇒P ̺(s
′) and ̺′t ⇒P ̺

′′
t ∧ ̺(ut′), we find that We find that

ϕ ∧
∨

(t′,ϕ′
t)∈T

θ(t, α, t′) ∧ ϕ′
t ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s ∧ ϕ

′
t,

and hence that

ϕ ∧ ̺(s) ∧ ̺(t) ∧ ψ ⇒P

∨

(t′,ϕ′
t)∈T

∨

(s′,ϕ′
s)∈St′

θ(s, α, s′) ∧ ϕ′
s ∧ ϕ

′′
t ∧ ̺(s

′) ∧ ̺(ut′),

from which we conclude that the transfer condition for this pair is also satisfied.

Theorem 5.8. For each FTS fts and for all fts ′ ∈ ↔cbf -minFTS(fts) it holds that fts ′ ↔bf fts.

Proof. Let fts = (S, A, θ, s∗) be an FTS, let φ ∈ B(F) be a feature expression, and let fts ′ =
(S′, A, θ′, s′∗) be a coherent branching feature quotient of fts . We define the relation R such
that:

R ={(s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B̂(F)× S′ | ∃t ∈ C : fks |= s

ϕ
←→bf t}∪

{(C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F)× S | ∃t ∈ C : fks |= s

ϕ
←→bf t}

We have to show that R is a branching feature bisimulation relation on fts ⊎ fts ′ such that
(s∗, t̂rue, s

′
∗) ∈ R.

Since ←→bf is reflexive, we find that, for all s ∈ S, (s, ̺̂(s), C) ∈ R, where C ∈ S′ is such
that s ∈ C. Using that s∗ ∈ s

′
∗ by Definition 5.8, it immediately follows that (s∗, t̂rue, s

′
∗) ∈ R.

Hence, it remains to show that R is a branching feature bisimulation relation.
From the definition of R it immediately follows that it is symmetric, and hence it remains

to show that R satisfies the conditions from Definition 4.13.

Consider a tuple (s, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, C) ∈ S × B(F) × S′ such that fts |= s

ϕ
←→bf t and

t ∈ C, for some t ∈ S. Let t be such.
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Suppose that s
α|ψ
−−→ s′, for some α ∈ Aτ , ψ ∈ B(F), and for some s′ ∈ S. We first show that

this transition can be mimicked by state t for all products satisfying ϕ∧ψ. Since fts |= s
ϕ
←→bf t,

there exists a set T ⊆ S × B(F)× S × B(F) such that fts |= s
ϕ′

←→bf t
′ and fts |= s′

ϕ′′

←→bf t
′′, for

all (t′, ϕ′, t′′, ϕ′′) ∈ T, and such that

ϕ ∧ ψ ⇒P

∨

(t′,ϕ′,t′′,ϕ′′)∈T

θ̌τ (t, t
′) ∧ ϕ′ ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′.

Now we show that C can mimic all transitions from t, which we use to conclude that
C can mimic the transition from s to s′. Using that t ∈ C, from Definition 5.8 it follows
that (θ̌τ (t, t

′) ∧ ̺(t)) ⇒P θ̌′τ (C,Ct′) and (θ(t′, α, t′′) ∧ ̺(t′)) ⇒P θ′(Ct′ , α, Ct′′ ), with t′ ∈ Ct′

and t′′ ∈ Ct′′ , for all (t′, ϕ′, t′′, ϕ′′) ∈ T. Since t′ ∈ Ct′ and fts |= s
ϕ′

←→bf t′, and t′′ ∈ Ct′′

and fts |= s′
ϕ′′

←→bf t′′, by construction of R we have (s, [ϕ′ ∧ ̺(s) ∧ ̺(t′)]∼P
, Ct′) ∈ R and

(s′, [ϕ′′ ∧ ̺(s′) ∧ ̺(t′′)]∼P
, Ct′′) ∈ R, for all (t

′, ϕ′, t′′, ϕ′′) ∈ T. Using that ̺(s) ∧ ψ ⇒P ̺(s
′) and

̺(t) ∧ θ̌τ (t, t
′) ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ⇒P ̺(t) ∧ ̺(t′), for all (t′, ϕ′, t′′, ϕ′′) ∈ T, by

definition of reachability, we find that

̺(s) ∧ ̺(t) ∧
∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌τ (t, t
′) ∧ ϕ′ ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′ ⇒P∨

(t′,ϕ′,t′′,ϕ′′)∈T θ̌′τ (C,Ct′) ∧ ϕ
′ ∧ ̺(s) ∧ ̺(t′)∧

((Ct′ = Ct′′ ∧ α = τ) ∨ θ′(Ct′ , α, Ct′′)) ∧ ϕ
′′ ∧ ̺(s′) ∧ ̺(t′′),

and hence the transfer condition for this tuple is satisfied.

We prove the transfer conditions for the remaining tuples of R in two steps, using a case
distinction.

1. First consider a tuple (C, ̺̂(s), s) ∈ S′ × B̂(F)× S such that s ∈ C.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. From

Definition 5.8 it follows that ψ =
∨
{θ(u, α, u′) ∧ ̺(u) | u ∈ C ∧ u′ ∈ C ′}. Pick a pair

(u, u′) ∈ C×C ′. Since both s ∈ C and u ∈ C, by Definition 5.8 we know that fts |= s↔cbf

u. Hence we can find a set S(u,u′) ⊆ S × B(F)× S × B(F) for each tuple (u, u′) ∈ C × C ′

such that fts |= s′
ϕ′

←→bf u and fts |= s′′
ϕ′′

←→bf u
′, for all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′), and such

that

̺(s)∧̺(u)∧θ(u, α, u′) ⇒P

∨

(s′,ϕ′,s′′,ϕ′′)∈S(u,u′)

θ̌τ (s, s
′)∧ϕ′∧((s′ = s′′∧α = τ)∨θ(s′, α, s′′))∧ϕ′′.

For each tuple (u, u′) ∈ C × C ′ we have that fts |= s′
ϕ′

←→bf u and fts |= s′′
ϕ′′

←→bf u
′, and

hence by construction of R we have (C, [ϕ′ ∧ ̺(s′)∧ ̺(u)]∼P
, s′) ∈ R and (C ′, [ϕ′′ ∧ ̺(s′′)∧

̺(u′)]∼P
, s′′) ∈ R, for all (s′, ϕ′, s′′, ϕ′′) ∈ S(u,u′). Using that ̺(s)∧ θ̌τ (s, s

′)∧((s′ = s′′∧α =
τ) ∨ θ(s′, α, s′′))⇒P ̺(s

′) ∧ ̺(s′′) and ̺(u) ∧ θ(u, α, u′)⇒P ̺(u
′), we find that

̺(s) ∧ ψ ⇒P

∨
(u,u′)∈C×C′

∨
(s′,ϕ′,s′′,ϕ′′)∈T(u,u′)

θ̌τ (s, s
′) ∧ ϕ′ ∧ ̺(s′) ∧ ̺(u)∧

((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′ ∧ ̺(s′′) ∧ ̺(u′),
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and hence the transfer condition for this tuple is satisfied.

2. Lastly consider a tuple (C, [ϕ ∧ ̺(s) ∧ ̺(t)]∼P
, s) ∈ S′ × B̂(F) × S such that s 6∈ C, and

such that fts |= s
ϕ
←→bf t and t ∈ C, for some t ∈ S. Let t be such.

Suppose that C
α|ψ
−−→ C ′, for some α ∈ Aτ , ψ ∈ B(F), and for some C ′ ∈ S′. By

construction of R we have (C, ̺̂(t), t) ∈ R. We have already shown that the transfer
conditions are satisfied for such pairs in R, and hence we can find a set T ⊆ S × B(F)×
S ×B(F) such that (C, ϕ̂′

t, t
′) ∈ R and (C ′, ϕ̂′′

t , t
′′) ∈ R, for all (t′, ϕ′

t, t
′′, ϕ′′

t ) ∈ T, and such
that

̺(t) ∧ ψ ⇒P

∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′
t .

Now we show that s can mimic all transitions from t, which we use to conclude that s

can mimic the transition from C to C ′. Since fts |= s
ϕ
←→bf t, we can find sets S(t′,t′′) ⊆

S × B(F)× S × B(F) for each (t′, ϕ′
t, t

′′, ϕ′′) ∈ T such that, for all (s′, ϕ′
s, s

′′, ϕ′′
s ) ∈ S(t′,t′′),

we have fts |= s′
ϕ′
s←→bf t

′ and fts |= s′′
ϕ′′
s←→bf t

′′, and such that

ϕ ∧ θ̌τ (t, t
′) ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ⇒P∨

(s′,ϕ′
s,s

′′,ϕ′′
s )∈St′,t′′

θ̌τ (s, s
′) ∧ ϕ′

s ∧ ((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′
s .

Since (C, ϕ̂′
t, t

′) ∈ R and (C ′, ϕ̂′′
t , t

′′) ∈ R, for all (t′, ϕ′
t, t

′′, ϕ′′
t ) ∈ T, by definition of R this

means that ϕ′
t ∼P ϕ

∗
t ∧̺(t

′)∧̺(ut′) and ϕ
′′
t ∼P ϕ

∗∗
t ∧̺(t

′′)∧̺(ut′′), for some ϕ∗
t , ϕ

∗∗
t ∈ B(F)

and some ut′ ∈ C, ut′′ ∈ C
′, such that fts |= t′

ϕ∗
t←→bf ut′ and fts |= t′′

ϕ∗∗
t←−→bf ut′′ . Since fts |=

s′
ϕ′
s←→bf t

′ and fts |= s′′
ϕ′′
s←→bf t

′′ for all (s′, ϕ′
s, s

′′, ϕ′′
s ) ∈ S(t′,t′′), we derive fts |= s′

ϕ′
s∧ϕ

∗
t←−−−→bf

ut′ and fts |= s′′
ϕ′′
s∧ϕ

∗∗
t←−−−→bf ut′′ using productwise transitivity. By construction of R we have

(C, [ϕ′
s∧ϕ

∗
t ∧̺(s

′)∧̺(ut′)]∼P
, s′) ∈ R and (C ′, [ϕ′′

s ∧ϕ
∗∗
t ∧̺(s

′′)∧̺(ut′′)]∼P
, s′′) ∈ R. Using

that ̺(s)∧ θ̌τ (s, s
′)∧ ((s′ = s′′ ∧α = τ)∨ θ(s′, s′′))⇒P ̺(s

′)∧ ̺(s′′) and ϕ′
t ⇒P ϕ

∗
t ∧ ̺(ut′)

and ϕ′′
t ⇒P ϕ

∗∗
t ∧ ̺(ut′′), we find that

ϕ ∧
∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

θ̌τ (t, t
′) ∧ ϕ′

t ∧ ((t′ = t′′ ∧ α = τ) ∨ θ(t′, α, t′′)) ∧ ϕ′′
t ⇒P∨

(t′,ϕ′
t,t

′′,ϕ′′
t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

′
t ∧

((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′
s ∧ ϕ

′′
t ,

and hence that

ϕ ∧ ̺(s) ∧ ̺(t) ∧ ψ ⇒P∨
(t′,ϕ′

t,t
′′,ϕ′′

t )∈T

∨
(s′,ϕ′

s,s
′′,ϕ′′

s )∈St′,t′′
θ̌τ (s, s

′) ∧ ϕ′
s ∧ ϕ

∗
t ∧ ̺(s

′) ∧ ̺(ut′)∧

((s′ = s′′ ∧ α = τ) ∨ θ(s′, α, s′′)) ∧ ϕ′′
s ∧ ϕ

∗∗
t ∧ ̺(s

′′) ∧ ̺(ut′′),

from which we conclude that the transfer condition for this pair is also satisfied.
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Appendix D

Supplementaries for Chapter 6

This appendix contains the full proofs that were omitted in Chapter 6 (Section D.1). It further-
more contains formal descriptions of the data types used in the algorithm (Section D.2), as well
as pseudo code of the used subroutines (Section D.3).

D.1 Full proofs for Chapter 6

Lemma 6.1. Let the graph G = (V, E) and the FTS ftsG = (SG, AG, θG, s∗G) be as given
above. For distinct s, t ∈ SG, we have that

ftsG |= s ↔cf t ⇔ (∃u, v ∈ V : s = su ∧ t = sv ∧ (u, v) 6∈ E ).

Proof. We prove the lemma in two steps.

1. Assume ftsG |= s ↔cf t. We first show that ∃u, v ∈ V : s = su ∧ t = sv. Recall that
SG = {s∗, s⊥} ∪ { sv | v ∈ V }, for distinguished states s∗ and s⊥. Assume s = s∗. Pick
a product Pw ∈ P such that Pw |= ̺(s) ∧ ̺(t), for some w ∈ V . Such a product exists
since ̺(s∗) ∼P true, and ̺(t) 6∼P false, by construction of ftsG. We find that s

a
−→ sw

a
−→ s⊥

in ftsG|Pw , while t
a
−→ s⊥ or 6 ∃t′ ∈ SG : t

a
−→ t′, by definition of θG. It follows that

ftsG 6|= s↔cf t, and hence we conclude s 6= s∗. Similarly, t 6= s∗.

Assume s = s⊥. By definition of θG there exists a product P ∈ P such that t
a
−→ t′ in

ftsG|P , for some t′ ∈ SG. Since s does not have any outgoing transitions, it follows that
ftsG 6|= s ↔cf t, and hence we conclude s 6= s⊥. Similarly, t 6= s⊥. It follows that indeed
∃u, v ∈ V : s = su ∧ t = sv. Let u and v be such.

We now show that (u, v) 6∈ E. Assume (u, v) ∈ E. By definition of θG we have Pu |=
̺(s)∧ ̺(t). Furthermore we have s

a
−→ s⊥ and 6 ∃t′ ∈ SG : t

a
−→ s⊥ in ftsG|Pu . It follows that

ftsG 6|= s↔cf t, and hence we conclude(u, v) 6∈ E.

2. Assume ∃u, v ∈ V : s = su ∧ t = sv ∧ (u, v) 6∈ E. By definition of θG we have Pu 6|= ̺(v)

and Pv 6|= ̺(u). Furthermore both s and t have only one outgoing transition: s
a|Pu
−−−→ s⊥

and t
a|Pv
−−−→ t⊥. It immediately folllows that indeed ftsG |= s ↔cf t.
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D.2 Data type definitions

Block {
list<State> states
list<Transition> inert
list<Transition> nonInert
list<(Action, Set<Product>)> labels

}

State {
list<Transition> transitions
list<Block> blocks
set<Product> products
set<Product> flag

}

Transition {
State from
State to
Action action
set<Product> products

}

D.3 Pseudo code of subroutines

Algorithm RaiseFlags(tr)
1. for b ∈ tr.from .blocks
2. list T := {tr}
3. for t ∈ T
4. set newFlag := t.products ∪ t.from .flag
5. if t.from .flag 6= newFlag
6. then t.from .flag := newFlag
7. T := T ∪{t′ ∈ t.from .transitions | t′.label == τ∧b ∈ t′.from .blocks}
8. return

Algorithm LowerFlags(BL)
1. for b ∈ BL, s ∈ b.states
2. do s.flag := ∅
3. return

Algorithm RemoveBlock (B)
1. for s ∈ B.states
2. s.blocks .remove(B)
3. if B′ ∈ toBeProcessed
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4. then toBeProcessed .remove(B)
5. if B′ ∈ Stable
6. then Stable.remove(B)
7. return

Algorithm SplitBlock (B,S)
1. list inert := {t ∈

⋃
s∈S s.transitions | t.label == τ ∧ t.from ∈ S}

2. list nonInert := {t ∈
⋃
s∈S s.transitions | t.label 6= τ ∨ t.from 6∈ S ∨ t.from .blocks 6= ∅}

3. list labels := {(t.label , t.products) | t ∈ nonInert}
4. return (S, inert, nonInert, labels)
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Appendix E

Full proofs for Chapter 7

This appendix contains the full proofs that were omitted in Chapter 7.

Lemma 7.1. Let fks be an FKS. Then, for all P ∈ P, we have fts(fks)|P = lts(fks |P ).

Proof. Let fks = (S,AP , θ, L, s∗) be an FKS and let P ∈ P be a product. Let the LTS
fts(fks)|P = (S′,A,→, s′∗) be the projection to P of its corresponding FTS, and let lts(fks |P ) =
(S′′,A′,→′, s′′∗ ) be the corresponding LTS of its projection to P . We establish the isomorphism
by proving that there are isomorphisms between S′ and S′′, A and A′, → and →′, and s′∗ and
s′′∗ .

• The set of states is unchanged under projection, and hence S′ = S ∪ {s̄ | s ∈ S} = S′′.

• The set of actions is unchanged under projection, as well as the set of atomic propositions,
and hence A = 2AP ∪ {⊥} = A′.

• We have → = {(s,⊥, s̄) | s ∈ S} ∪ {(t̄, L(t), t) | t ∈ S} ∪ {(s, τ, t) | P |= θ(s, t) ∧ L(s) =
L(t)} ∪ {(s, L(t), t) | P |= θ(s, t) ∧ L(s) 6= L(t)} =→′

• The initial state is unchanged by both projection and the embedding fts, and hence
s′∗ = s∗ = s′′∗ .

Lemma 7.2. Let fks = (S, AP , θ, L, s∗, F, P) be an FKS. Then we have, for all s, s′ ∈ S,

fts+(fks) |= s
ϕ
←→f s

′ ⇔ fts+(fks) |= s̄
ϕ
←→f s̄

′, for all ϕ ∈ B(F).

Proof. We distinguish two cases.

1. ϕ̂ = f̂alse. This case is satisfied immediately since we trivially have fts+(fks) |= t
false
←−→f t

′,
for all states t, t′ of fts+(fks).

2. ϕ̂ 6= f̂alse.

Suppose that fts+(fks) |= s
ϕ
←→f s

′. By definition of fts+, we know that both s and s′

have only one outgoing ⊥-transition: s
⊥|true
−−−−→ s̄ and s′

⊥|true
−−−−→ s̄′. Hence we must have

fts+(fks) |= s̄
ϕ
←→f s̄

′ in order to satisfy the transfer conditions.
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Suppose that fts+(fks) |= s̄
ϕ
←→f s̄

′. By definition of fts+, we know that both s̄ and s̄′

have only one outgoing transition: s̄
L(s)|true
−−−−−−→ s and s̄′

L(s′)|true
−−−−−−→ s′. Hence we must have

fts+(fks) |= s
ϕ
←→f s

′ in order to satisfy the transfer conditions.

Lemma 7.3. Let fks be an FKS. Then, for all P ∈ P, we have fts+(fks)|P = lts(fks|P ).

Proof. Let fks = (S,AP , θ, L, s∗,F,P) be an FKS and let P ∈ P be a product. Let the
LTS fts+(fks)|P = (S′,A,→, s′∗) be the projection to P of its corresponding FTS, and let
lts(fks|P ) = (S′′,A′,→′, s′′∗ ) be the corresponding LTS of its projection to P . We establish the
isomorphism by proving that there are isomorphisms between S′ and S′′, A and A′, → and →′,
s′∗ and s′′∗ .

• The set of states is unchanged under projection, and hence S′ = S ∪ {s̄ | s ∈ S} = S′′.

• The set of actions is unchanged under projection, as well as the set of atomic propositions,
and hence A = 2AP ∪ {⊥} = A′.

• We have → = {(s,⊥, s̄) | s ∈ S} ∪ {(t̄, L(t), t) | t ∈ S} ∪ {(s, τ, t) | P |= θ(s, t) ∧ L(s) =
L(t)} ∪ {(s, L(t), t) | P |= θ(s, t) ∧ L(s) 6= L(t)} =→′

• The initial state is unchanged by both projection and the embedding fts, and hence
s′∗ = s∗ = s′′∗ .

Lemma 7.4. Let fks = (S, AP , θ, L, s∗, F, P) be an FKS. Then we have, for all s, s′ ∈ S,
fts+(fks)|{f⊥} |= s ↔ s′ ⇔ L(s) = L(s′).

Proof. Let fks = (S,AP , θ, L, s∗,F,P) be an FKS, and let s, s′ ∈ S.
Suppose that fts+(fks)|{f⊥} |= s↔ s′. By Lemma 7.2 we derive that fts+(fks)|{f⊥} |= s̄↔

s̄′. By definition of fts+, we know that both s̄ and s̄′ have only one outgoing transition in {f⊥}:

s̄
L(s)
−−→ s and s̄′

L(s′)
−−−→ s′. It follows that L(s) = L(s′).

Suppose that L(s) = L(s′). We show that the relation R = {(s, s′), (s̄, s̄′)} is a bisimulation
relation on fts+(fks)|{f⊥}. By definition of fts+, we know that both s and s′ have only one

outgoing transition in fts+(fks)|{f⊥}: s
⊥
−→ s̄ and s′

⊥
−→ s̄′. This is the case since all other

outgoing transitions of s and s′ in fts+(fks) have feature constraint ¬f⊥ attached to them.
Since the pair (s̄, s̄′) is included in R, the transfer condition for the pair (s, s′) is satisfied.
Again by definition of fts+, we know that both s̄ and s̄′ have only one outgoing transition in

fts+(fks)|{f⊥}: s̄
L(s)
−−→ s and s̄′

L(s′)
−−−→ s′. Since we know that L(s) = L(s′) and the pair (s, s′)

is included in R, the transfer condition for the pair (s̄, s̄′) is satisfied. We can conclude that
fts+(fks)|{f⊥} |= s↔ s′.

Theorem 7.3. Let fks = (S, AP , θ, L, s∗, F, P) be an FKS.Then, for all s, s′ ∈ S, and ϕ ∈

B(F), we have fks |= s
ϕ
←→f s

′ if and only if fts+(fks) |= s
ϕ∨ f⊥←−−−→f s

′.
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Proof. Let fks = (S,AP , θ, L, s∗,F,P) be an FKS, and let s, s′ ∈ S and ϕ ∈ B(F).

Suppose fks |= s
ϕ
←→f s

′. By Theorem 4.1 this implies ∀P ∈ P : P |= ϕ ⇒ fks|P |= s ↔ s′.
By Theorem 7.1 we get ∀P ∈ P : P |= ϕ ⇒ lts(fks|P ) |= s ↔ s′, and by Lemma 7.3 this is
equivalent to ∀P ∈ P : P |= ϕ ⇒ fts+(fks)|P |= s ↔ s′. Now we use Theorem 4.6 to obtain

fts+(fks) |= s
ϕ
←→f s

′. By Definition 4.2 we have L(s) = L(s′), and hence we can use Lemma 7.4

to obtain fts+(fks) |= s
f⊥←→f s

′. Combining these results gives us fts+(fks) |= s
ϕ∨ f⊥←−−−→f s

′.

Suppose fts+(fks) |= s
ϕ∨f⊥←−−→f s

′. Hence we also have fts+(fks) |= s
ϕ
←→f s

′. By The-
orem 4.5 this implies ∀P ∈ P : P |= ϕ ⇒ fts+(fks)|P |= s ↔ s′, which is equivalent to
∀P ∈ P : P |= ϕ ⇒ lts(fks|P ) |= s ↔ s′ by Lemma 7.3. Using Theorem 7.1 we obtain

∀P ∈ P : P |= ϕ ⇒ fks|P |= s ↔ s′. Since fts+(fks) |= s
f⊥←→f s

′, we use Lemma 7.4 to obtain

L(s) = L(s′). Using this we can conclude that fks |= s
ϕ
←→f s

′, by Theorem 4.2.

Theorem 7.8. Let fts be an arbitrary reversible FTS. Then the FTS each fts ′ ∈↔cf+ -minFTS(fts)
is also reversible.

Proof. Let fts = (S, A, θ, s∗, F, P) be a reversible FTS. Let fts ′ = (S′, A, θ′, s′∗, F, P) be a
coherent+ feature bisimulation quotient of fts. Let ̺ and ̺′ denote the reachability functions of
fts and fts ′, respectively. We show that fts ′ is reversible.

1. A = 2AP ∪ {⊥} for some set AP follows directly from reversibility of fts.

2. f⊥ ∈ F and {f⊥} ∈ P and ∀P ∈ P : (P 6= {f⊥} ⇒ P 6|= f⊥ ) follows directly from
reversibility of fts .

3. Since fts is reversible, we know that S = (S⊥, S̄). We furthermore know that s⊥
⊥|ψ
−−→

for some ψ ∈ B(F) such that f⊥ ⇒ ψ, for all s⊥ ∈ S⊥, and that s̄ 6
⊥
−→ for all s̄ ∈ S̄.

By definition of feature bisimulation we derive that s
f⊥←→f t implies that s, t ∈ S⊥ or

s, t ∈ S̄, for all s, t ∈ S. By definition of ↔cf+ -minFTS it follows that s, t ∈ C implies
s, t ∈ S⊥ or s, t ∈ S̄, for all C ∈ S′. Hence we can find a partition (S′

⊥, S̄
′) of S′ where

S′
⊥ = {C ∈ S′ | ∀C ⊆ S⊥} and S̄′ = {C ∈ S′ | ∀C ⊆ S̄}.

4. Since s∗ ∈ S⊥ and s∗ ∈ s
′
∗, it follows that s

′
∗ ∈ S

′
⊥.

5. For all C1, C2 ∈ S
′
⊥, C̄1, C̄2 ∈ S̄′, and α,α′ ∈ Aτ we have

(a) For all s ∈ C1 and t ∈ C2 we have s, t ∈ S⊥ and hence (f⊥ ∧ θ(s, α, t)) ∼P false. By
definition of ↔cf+ -minFTS it follows that (f⊥ ∧ θ

′(C1, α, C2)) ∼P false.

(b) For all s ∈ C1 and t ∈ C̄1 we have s ∈ S⊥ and t ∈ S̄ and hence θ(s,⊥, t) 6∼P false im-
plies f⊥ ⇒P θ(s,⊥, t). By definition of ↔cf+ -minFTS it follows that θ′(C1,⊥, C̄1) 6∼P

false implies f⊥ ⇒P θ′(C1,⊥, C̄1).

(c) For all s ∈ C1 we have s ∈ S⊥ and hence (f⊥ ∨ ̺(s)) ⇒P

∨
s̄∈S̄ θ(s,⊥, s̄). We have

̺′(C1) ∼P

∨
s∈C1

̺(s), and hence we can derive

f⊥ ∨ ̺
′(C1) ⇒P

∨
s∈C1

∨
s̄∈S̄ θ(s,⊥, s̄).
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By definition of ↔cf+ -minFTS we have
∨
s∈C1

∨
s̄∈S̄ θ(s,⊥, s̄) ∼P

∨
C̄∈S̄′ θ′(C1,⊥, C̄),

and hence we have f⊥ ∨ ̺
′(C1) ⇒P

∨
C̄∈S̄′ θ′(C1,⊥, C̄).

(d) For all s ∈ C̄1 and t ∈ C̄2 we have s, t ∈ S̄ and hence θ(s, α, t) ∼P false. By definition
of ↔cf+ -minFTS it follows that θ′(C̄1, α, C̄2) ∼P false.

(e) Assume θ′(C̄1, α, C) 6∼P false and θ′(C̄1, α
′, C ′) 6∼P false, for some C,C ′ ∈ S′

⊥. By
definition of ↔cf+ -minFTS this implies there exist s, t ∈ C̄1 such that θ(s, α, s′) 6∼P

false and θ(t, α′, t′) 6∼P false, for some s′ ∈ C and some t′ ∈ C ′, and hence s′, t′ ∈ S⊥.

By reversibility of fts , using condition 6(a) it follows that α = L(s′), from which we
derive f⊥ ⇒P θ(s, α, s′) using conditions 6(b) and 5(b). By definition of↔cf+ -minFTS

we know that fts |= s
f⊥←→f t, and hence t must be able to mimic the α-step for f⊥.

By conditions 5(d) and 5(e) we know that for all β, β′ ∈ Aτ it holds that t
β
−→ and

t
β′

−→ implies β = β′, from which it follows that the transfer conditions can only be
satisfied if α = α′, which satisfies this condition.

6. From conditions 5(c) and 6(b) it follows that each state s⊥ ∈ S⊥ has at least one incoming
transition with label L(s⊥).

We show that for all s, t ∈ C⊥, for each C⊥ ∈ S
′
⊥, we have L(s) = L(t). Using conditions

5(b), 5(c) and 6(b) we derive that θ(s,⊥, s̄) ∼P θ(s̄, L(s), s) and f⊥ ⇒P θ(s,⊥, s̄), for

some s̄ ∈ S̄. By definition of ↔cf+ -minFTS we know that fts |= s
f⊥←→f t and hence

f⊥ ⇒P θ(t,⊥, t̄), for some t̄ ∈ S̄ such that fts |= s̄
f⊥←→f t̄. By conditions 5(d) and 6(a) it

follows that θ(t̄, α, t′) 6∼P false implies α = L(t), for all t′ ∈ S, and hence it must be the
case that L(s) = L(t) for the transfer conditions to be satisfied.

Now we can define L(C⊥) = L(s), for all s ∈ C⊥, for all C⊥ ∈ S
′
⊥.

For all C⊥, C
′
⊥ ∈ S

′
⊥, C̄ ∈ S̄

′, and α ∈ Aτ we have:

(a) For all s ∈ C̄ we have s ∈ S̄ and hence θ(s, α, t) 6∼P false implies α = L(t), for all
t ∈ C⊥. By definition of ↔cf+ -minFTS, and since L(C⊥) = L(t), for all t ∈ C⊥, it
follows that θ′(C̄, α,C⊥) 6∼P false implies α = L(C⊥).

(b) For each pair of states (s, t) ∈ C̄ × C⊥ we have θ(s, L(t), t) ∼P θ(t,⊥, s). Hence, by
definition of ↔cf+ -minFTS it follows that

θ′(C̄, L(C⊥), C⊥) =
∨

(s,t)∈C̄×C⊥

̺(s)∧θ(s, L(t), t) ∼P

∨

(s,t)∈C̄×C⊥

̺(t)∧θ(t,⊥, s) = θ′(C⊥,⊥, C̄).

(c) For each pair of states (t, s) ∈ C ′
⊥ × C⊥ we have L(t) = L(s) and θ(t, α, s) 6∼P false

implies α = τ . By definition of ↔cf+ -minFTS it follows that L(C ′
⊥) = L(C⊥) and

θ′(C ′
⊥, α, C⊥) 6∼P false implies α = τ .

(d) For each pair of states (t, s) ∈ C ′
⊥ × C⊥ we have L(t) 6= L(s) and θ(t, α, s) 6∼P false

implies α = L(s). By definition of ↔cf+ -minFTS it follows that L(C ′
⊥) 6= L(C⊥) and

θ′(C ′
⊥, α, C⊥) 6∼P false implies α = L(s) = L(C⊥).
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We conclude that fts ′ is indeed reversible.

Lemma 7.7. Let fks be an FKS. For each FTS fts ∈ ↔cf+ -minFTS(fts
+(fks)) there exists an

FKS fks ′ ∈ ↔cf -minFKS(fks) such that fks ′ = fts+−1(fts).

Proof. Let fks = (S1,AP , θ1, L, s∗ 1,F1,P1) be an FKS with reachability function ̺1. Let
fts+(fks) = (S2,A, θ2, s∗ 2,F2,P2) be its corresponding FTS with reachability function ̺2, and
let fts ′ = (S′

2,A, θ
′
2, s

′
∗ 2,F2,P2) be a coherent+ quotient of fts+(fks). Lastly, let fts+−1(fts ′) =

(S3,AP
′, θ3, L

′, s∗ 3,F3,P3) denote the corresponding FKS of fts ′.
By definition of ↔cf+ -minFTS, we know that S′

2 is a partition of S2. Furthermore we know
that for each class C ∈ S′

2 we have C ⊆ S1 or C ∩ S1 = ∅. For each class C ∈ S′
2 such

that C ⊆ S1, for each pair of states s, t ∈ C we have that fts+(fks) |= s ↔cf+ t, and hence
fks |= s↔cf t, by Theorem 7.3.

From this it follows that S′
1 = {C ∈ S′

2 | C ⊆ S1} is the statespace of a coherent
quotient of fks. Let fks ′ = (S′

1,AP , θ
′
1, L

′′, s′∗ 1,F1,P1) denote this quotient. We show that
fks ′ = fts+−1(fts ′).

We establish the isomorphism by proving that there are isomorphism between S′
1 and S3,

AP and AP ′, θ′1 and θ3, L
′ and L′′, s′∗ 1 and s∗ 3, F1 and F3, and P1 and P3.

• We find that the set of states of fts+−1(fts ′) is

S3 = {C ∈ S
′
2 | C

⊥
−→}

By definition of fts+ and ↔cf -minFKS we know that this is equal to {C ∈ S′
2 | C ⊆ S1 } =

S′
1.

• The set of actions is unchanged by ↔cf -minFKS, and hence AP = AP ′ follows from
fts+−1 ◦ fts+ = Id.

• By definition of ↔cf -minFKS we have that θ′1 : S
′
1 ×S

′
1 → B(F) is defined such that, for all

C1, C2 ∈ S
′
1:

θ′1(C1, C2) =
∨
{ θ1(s, t) ∧ ̺1(s) | s ∈ C1 ∧ t ∈ C2 }.

By definition of fts+ we have that θ2 : S2 ×Aτ × S2 → B(F) is defined such that, for all
s, t ∈ S2 and α ∈ Aτ :

θ2(s, α, t) =





true if s ∈ S1 ∧ t = s̄ ∧ α = ⊥
true if t ∈ S2 ∧ s = t̄ ∧ α = L(t)
θ(s, t) ∧ ¬f⊥ if s, t ∈ S1 ∧ L(s) = L(t) ∧ α = τ

θ(s, t) ∧ ¬f⊥ if s, t ∈ S1 ∧ L(s) 6= L(t) ∧ α = L(t)
false otherwise

By definition of ↔cf+ -minFTS we have that θ′2 : S
′
2×Aτ ×S

′
2 → B(F) is defined such that,

for all C1, C2 ∈ S
′
2 and α ∈ Aτ :

θ′2(C1, α, C2) =
∨
{ θ2(s, α, t) ∧ (̺2(s) ∨ f⊥) | s ∈ C1 ∧ t ∈ C2 },
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which is equal to:

θ′2(C1, α, C2) =





∨
{̺2(s) ∨ f⊥ | s ∈ C1 ∧ s̄ ∈ C2} if C1 ∈ S

′
1 ∧ α = ⊥∨

{̺2(t) ∨ f⊥ | t ∈ C2 ∧ t̄ ∈ C1} if C2 ∈ S
′
1 ∧ α = L′′(C2)∨

{θ(s, t) ∧ ¬f⊥ ∧ ̺2(s) | s, t ∈ C1, C2} if C1, C2 ∈ S
′
1 ∧ L

′′(C1) = L′′(C2) ∧ α = τ

| s, t ∈ C1, C2}∨
{θ(s, t) ∧ ¬f⊥ ∧ ̺2(s) | s, t ∈ C1, C2} if C1, C2 ∈ S

′
1 ∧ L

′′(C1) 6= L′′(C2) ∧ α = L′′(C2

| s, t ∈ C1, C2}
false otherwise

By definition of fts+−1 we have that θ3 : S3 × S3 → B(F) is defined such that, for all
C1, C2 ∈ S3:

θ3(C1, C2) = θ′2(C1, L
′(C2), C2) ∨ θ

′
2(C1, τ, C2).

Using that L′ = L′′, this is equal to:

θ3(C1, C2) =
∨
{θ(s, t) ∧ ¬f⊥ ∧ ̺2(s) | s, t ∈ C1, C2}.

Using that S′
1 = S3 and that ̺2(s) ∧ ¬f⊥ ∼P ̺1(s), for all s ∈ S1, we conclude that

θ′1 = θ3.

• For all C2 ∈ S3, L
′(C2) = a for the unique a ∈ 2AP such that C1

a
−→ C2 in fts ′, for some

C1 ∈ S′
2. Pick some s ∈ C2. By construction of θ′2 we know we can pick C1 such that

s̄ ∈ C1 and a = L′′(C2). Hence L
′ = L′′.

• The initial state is unchanged by the embedding fts+−1, and hence we find s∗ 3 = s′∗ 2,
which is the class C ∈ S′

2 such that s∗ 2 ∈ C. Since s∗ 2 = s∗ 1 and s∗ 1 ∈ s
′
∗ 1, we derive

that s∗ 3 = s′∗ 1.

• The set of features is unchanged by↔cf -minFKS, and hence F1 = F3 follows from fts+−1 ◦
fts+ = Id.

• The set of products is unchanged by↔cf -minFKS, and hence P1 = P3 follows from fts+−1◦
fts+ = Id.

Lemma 7.8. Let fts = (S, A, θ, s∗) be an FTS. Then, for all P ∈ P and for all s, t ∈ s we have
fks(fts)|P |= s ↔ t ⇔ ks(fts |P ) |= s ↔ t.

Proof. Let fts = (S, A, θ, s∗) be an FTS, and let P ∈ P be product. Let fks(fts)|P =
(S1, AP , →1, s∗) and ks(fts |P ) = (S2, AP , →2, s∗). Note that S2 ⊆ S1, such that all states in
S1\S2 are unreachable in fks(fts)|P . Furthermore→2 ⊆ →1, such that→1\→2 ⊆ (S1\S2)×S2.
Let s, t ∈ S be two states.

Assume fks(fts)|P |= s ↔ t, and let R ⊂ S1 × S1 be the smallest bisimulation relation
witnessing this. Since R is the smallest relation all states in S1\S2 are unreachable in fks(fts)|P ,
it follows that R ⊂ S2 × S2. Since →2 ⊆ →1 we conclude that R is also a bisimulation relation
for ks(fts |P ).
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Assume ks(fts |P ) |= s ↔ t, and let R ⊂ S2 × S2 be a bisimulation relation witnessing this.
Since S1 \ S2, it follows that R ⊂ S1 × S1. Since →1 \→2 ⊆ (S1 \ S2)× S2 we conclude that R
is also a bisimulation relation for fks(fts)|P .

Theorem 7.11. Let fts = (S, A, θ, s∗) be an FTS.Then, for all s, s′ ∈ S, and ϕ ∈ B(F), we

have fts |= s
ϕ
←→f s

′ if and only if fks(fts) |= s
ϕ
←→f s

′.

Proof. Let fts = (S, A, θ, s∗) be an FTS, and let s, s′ ∈ S and ϕ ∈ B(F).

Suppose fts |= s
ϕ
←→f s

′. By Theorem 4.5 this implies ∀P ∈ P : P |= ϕ ⇒ fts |P |= s ↔ s′.
By Theorem 7.10 we get ∀P ∈ P : P |= ϕ ⇒ ks(fts |P ) |= s ↔ s′. Using Lemma 7.8 we get
∀P ∈ P : P |= ϕ ⇒ fks(fts)|P |= s ↔ s′. By definition of the embedding fks(fks), we know
that the labels of both s and s′ in fks(fts) are {⊥}. Hence we can use Theorem 4.2 to obtain

fks(fts) |= s
ϕ
←→f s

′.

Suppose fks(fts) |= s
ϕ
←→f s

′. By Theorem 4.1 this implies ∀P ∈ P : P |= ϕ ⇒ fks(fts)|P |=
s ↔ s′. By Lemma 7.8 we get ∀P ∈ P : P |= ϕ ⇒ ks(fts |P ) |= s ↔ s′. Using Theorem 7.10

we obtain ∀P ∈ P : P |= ϕ ⇒ fts|P |= s ↔ s′, from which we conclude that fts |= s
ϕ
←→f s

′, by
Theorem 4.6.

Lemma 7.10. Let the FKS fks = (S, AP , θ, L, s∗) be a reversible FKS. For states s, t ∈ S such
that L(s) 6= {⊥} and L(t) 6= {⊥}, and states s′, t′ ∈ S such that s −→ s′ and t −→ t′ we have, for
all ϕ ∈ B(F):

fks |= s
ϕ
←→f t ⇔ ( fks |= s′

ϕ
←→f t

′ ∧ L(s) = L(t) ).

Proof. Let fks = (S, AP , θ, L, s∗) be a reversible FKS. Let s, t ∈ S be such that L(s) 6= {⊥}
and L(t) 6= {⊥}. Let states s′ and t′ be targets of s and t, respectively.

Assume fks |= s
ϕ
←→f t, for some ϕ ∈ B(F). By definition of feature bisimilarity for FKS

it immediately follows that L(s) = L(t). By definition of reversibility both s and t have only

one outgoing transition: s
true
−−−→ s′ and t

true
−−−→ t′. Hence, in order to satisfy the transfer

condition if ϕ 6∼P false it must be the case that fks |= s′
ϕ
←→f t′. If ϕ ∼P false it trivially

follows that fks |= s′
ϕ
←→f t

′ as long as L(s′) = L(t′). By definition of reversibility we find that
L(s′) = {⊥} = L(t′), and hence this case is also satisfied.

Assume fks |= s′
ϕ
←→f t

′, let R ⊂ S × B̂(F) × S be the relation that witnesses this, and
L(s) = L(t). We show that R ∪ (s, ϕ̂, t) is a feature bisimulation relation for fks as well. By
assumption we have L(s) = L(t). By definition of reversibility both s and t have only one

outgoing transition: s
true
−−−→ s′ and t

true
−−−→ t′. Since the tuple (s′, ϕ̂, t′) is included in R, the

transfer condition for the tuple (s, ϕ̂, t) is immediately satisfied.
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Appendix F

FTS Toolset User Manual

The FTS toolset was developed to define, abstract and reduce SPLs. The SPLs are defined
using FDs and FTSs, and a conversion tool was created to convert SPL specifications to mCRL2
specifications, which allows for automated model checking using the mCRL2 tool set.

The different file formats used in the toolset are described in Section F.1. The different tools
and their usage are discussed in Section F.2.
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F.1 File formats

This section describes the purpose and syntax of the eight different file formats of the FTS
Toolset. An example of each type of file will also be provided.
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F.1.1 SPL (.xml)

An SPL specification defines a software product line.

Syntax

The syntax of an SPL file consists of an XML schema. An overview of the schema is provided
at page 152. Optional XML elements are displayed in square brackets. The schema has an spl

root element, with a mandatory name attribute. This attribute specifies the name of the SPL.
The spl root element has a number of child elements:

• feature diagram is an element that specifies the products of this SPL. It has the following
child elements:

– feature model is an element specifying the FD file (Section F.1.2) of this SPL. It
has a mandatory name attribute specifying the path from this SPL file to the FD file.

– products is an optional element specifying the Products file (Section F.1.3) of this
SPL. It has a mandatory name attribute specifying the path from this SPL file to the
Products file.

– expressions is an optional element specifying the Expressions file (Section F.1.4) of
this SPL. It has a mandatory name attribute specifying the path from this SPL file
to the Expressions file.

• feature transitions systems is an element that specifies the behavior of this SPL,
as a number of FTS running in parallel. It has at least one fts child element with
mandatory name attribute specifying the path from this SPL file to its corresponding FTS
file (Section F.1.5).

• datatypes is an optional element that specifies user-defined data-types. Each data-type
is specified using a struct element that has a mandatory name attribute specifying the
name of the data-type. Each struct element has at least on value child element with
a mandatory name attribute, specifying the value name. Note that all values should be
unique.

• parameterized actions is an optional element that specifies actions with parameters.
Each parameterized action is specified using an action element that has a mandatory name
attribute specifying the name of the action. Its parameters are defined using parameter

child elements, each having a mandatory attributes id, specifying whether this parameter
is the first parameter of this actions, the second parameter of this action, etc. Furthermore
each parameter has a mandatory type attribute specifying the type of the parameter. The
value of this parameter can be the name of any user-defined type in the datatypes section,
or one of the predefined mCRL2 sorts1 (Bool, Pos, Nat, Int or Real).

1http://www.mcrl2.org/release/user_manual/language_reference/data.html#predefined-sorts
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• communication is an optional that specifies which multi-actions are renamed to a single
action. Each multi-action is specified using a multiaction element that has a mandatory
name attributed specifying the name of the renamed multi-action. The separate actions
this multi-actions consists of are specified using action child elements, each having a
mandatory name attribute. All of the actions of a single multi-action must have the
same parameter types. Each multi-action element has an optional type attribute that
should be assigned the value optional if communication is not enforced (i.e. the actions
of the multi-action can also be executed individually).

Example

A small example SPL file specifying the vending machine product line is provided below.

<spl name="VendingMachine_SPL">

<feature_diagram>

<feature_model name="VM_FD.xml" />

</feature_diagram>

<feature_transition_systems>

<fts name="VM_FTS.fts" />

</feature_transition_systems>

<datatypes>

<struct name="Beverage">

<value name="Coffee" />

<value name="Tea" />

<value name="Water" />

</struct>

</datatypes>

<parameterized_actions>

<action name="order">

<parameter id="1" type="Beverage" />

</action>

<action name="serve">

<parameter id="1" type="Beverage" />

</action>

</parameterized_actions>

</spl>
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The SPL file XML schema:

<spl name="SPL_name">

<feature_diagram>

<feature_model name="FD_file" />

[ <products name="Products_file" /> ]

[ <expressions name="Expressions_file" /> ]

</feature_diagram>

<feature_transition_systems>

<fts name="FTS_file" />

[ <fts name="FTS_file2" /> ]

...

</feature_transition_systems>

[ <datatypes>

<struct name="Struct1">

<value name="Value1" />

[ <value name="Value2" /> ]

...

</struct>

...

</datatypes> ]

[ <parameterized_actions>

<action name="Action1">

<parameter id="1" type="Struct1" />

[ <parameter id="2" type="Int" /> ]

...

</action>

...

</parameterized_actions> ]

[ <communication>

<multiaction name="MultiAction1" [type="optional"]>

<action name="Act1">

<action name="Act2">

[ <action name="Act3"> ]

...

</multiaction>

...

</communication> ]
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</spl>
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F.1.2 FD (.xml)

An FD specification defines an attributed feature model defining the products of a software
product line.

Syntax

The syntax of an FD file consists of an XML schema. An overview of the schema is provided
at page 156. Optional XML elements are displayed in square brackets. The schema has an
feature model root element, with a mandatory name attribute. This attribute specifies the
name of the SPL. The spl root element has a number of child elements:

• attributes is an element that specifies that attributes of the FD. Each attribute is speci-
fied using a attribute element that has a mandatory name attribute specifying the name
of the attribute. It furthermore has an optional type attribute, for which the only sup-
ported value is Integer. If the type attribute is not used, this attribute is assigned the
type Integer. Lastly it has an optional default attribute, specifying the default value
this attribute is assigned for each feature. If the default attribute is not used, default
value 0 is used.

• feature tree is an element that specifies the feature of th FD and their tree-structure.
It has a single child feature element with mandatory name, id and type attributes,
specifying the name, short identifier and type of the feature, respectively. The value
of the type attribute must be ‘root’. The root feature element has an arbitrary
number of feature tree element child elements. A feature tree element is either a
feature element or a group element, where:

– a feature element is a feature element. It has mandatory name and id attributes,
specifying the name and short identifier of the feature. Furthermore it has an op-
tional type attribute that should be assigned the value mandatory if the feature has
an ‘mandatory’ link to its parent feature, meaning that when a product contains
the parent feature, this feature must also be included in the product. If the value
optional is assigned to the attribute type, or the type attribute is not used at all,
the feature has a ‘optional’ link to its parent feature, meaning that when a product
contains the parent feature, this feature may also be in included in the product, but
does not have to be.

The feature element may have attribute child elements to assign values to the
attributes declared in the attributes section for this feature. An attribute element
has mandatory value and name attributes, specifying a value and the name of the
attribute to assign this value to, respectively. Lastly, the feature element may have
an arbitrary amount of child feature tree element elements, specifying the child
features of this feature.
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– a group element is a group element. It has a mandatory type attribute that should
be assigned either the value XOR or the value OR. If the type is XOR it means that
when a product contains the parent feature of this group element, exactly one of the
features contained in the group element must be in the product. Likewise, if the type
is OR it means that when a product contains the parent feature of this group element,
at least one of the features contained in the group element must be in the product.

A group element must have at least on child feature element element, specifying
the features included in this group.

• constraints is an optional element that specifies additional constraints on the FD. Each
constraint is specified using a constraint element that has a mandatory type attribute
specifying the type of the constraint. The supported values for the type attribute are
CTC and attribute. If the value CTC is used, the constraint element must have value

attribute specifying a cross-tree constraint over the short feature identifiers (id attribute
of feature elements) in disjunctive normal formal form, using | for disjunction, & for
conjunction and ! for negation. If the value attribute is used for the type attribute,
the constraint element must have name, operator and value attributes, specifying a
constraint on the sum over the attribute values for each product, for the attribute specified
by name. Supported values for the operator attribute are &lt; (less than), &lt;= (at
most), == (equal), &gt;= (at least), &gt; (greater than) and != (not equal). The value of
the value attribute should be an integer.

Example

A small example FD file specifying the products of the vending machine product line is provided
below.

<feature_model name="VendingMachine_FD">

<attributes/>

<feature_tree>

<feature name=’Machine’ id=’m’ type=’root’>

<feature name=’Beverage’ id=’b’ type=’mandatory’>

<feature name=’Coffee’ id=’c’ type=’mandatory’/>

<feature name=’Tea’ id=’t’ type=’optional’/>

<feature name=’Water’ id=’w’ type=’optional’/>

</feature>

<feature name=’FreeDrinks’ id=’f’ type=’optional’/>

<feature name=’CancelPurchase’ id=’x’ type=’optional’/>

</feature>

</feature_tree>

<constraints>

<constraint type=’CTC’ value=’!w|f’/>

<constraint type=’CTC’ value=’!f|!x’/>

</constraints>

</feature_model>
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The FD file XML schema:

<feature_model name="FD_name">

<attributes>

[ <attribute name="Attribute1" [type="Integer"]

default="DefaultValue"] /> ]

...

</attributes>

<feature_tree>

<feature name="RootFeature" id="R" type="root">

[ <feature_tree_element /> ]

...

</feature>

</feature_tree>

<constraints>

[ <constraint type="CTC" value="ConstraintValue"> ]

...

[ <constraint type="attribute" name="Attribute1"

operator="&lt;=" value="ConstraintValue" /> ]

...

</constraints>

</feature_model>

The XML schema of the feature tree element element:

<feature_tree_element /> ::= <feature_element/> | <group_element/>

<feature_element/> ::=

<feature name="Feature1" id="F1" [type="mandatory"]>

[ <attribute name="Attribute1" value="AttributeValue" /> ]

...

[ <feature_tree_element /> ]

...

</feature>

<group_element/> ::=

<group type="XOR">

<feature_element />

[ <feature_element /> ]

...

</group>
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F.1.3 Products (.prod)

A Products file explicitly contains the products of a software product line.

Syntax

The syntax of an Products file consists of a number of lines. The first line consists of a single
number (n) representing the number of products in the SPL. The following n lines specify the n
different products, and have the following syntax:

product ::= id ‘ ’ product

id ::= number

product ::= ‘[‘ feature_list ‘]’

feature_list ::= feature_identifier | feature_list ‘, ’ feature_list

feature_identifier ::= string

Here:

• id is a natural number less than n. Each of the n product lines must have a unique id.

• product is a comma separated list of feature-identifiers, representing the features that
form this product.

Example

A small example Products file explicitly specifying the products of the vending machine product
line is provided below.

8

0 [m, w, f, t, c, b]

1 [w, f, m, c, b]

2 [m, t, c, b, x]

3 [f, m, t, c, b]

4 [m, c, b, x]

5 [f, m, c, b]

6 [m, t, c, b]

7 [m, c, b]
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F.1.4 Expressions (.expr)

An Expressions file contains the expression values corresponding to the feature-identifiers of the
software product line.

Syntax

The syntax of an Products file consists of a number of lines. The first line consists of a single
feature-identifier representing the root feature of the SPL. The second line consists of a space
separated list of feature-identifiers representing the core features of the SPL, i.e. the features
that are present in all products of the SPL. The third line consists of a space-separated list
of feature-identifiers representing the remaining (non-core) features of the SPL (n in total).
The following n lines specify expression values for the non-core features, and have the following
syntax

expression ::= feature_identifier ‘ ’ value

feature_identifier ::= string

expression_value ::= number

Here:

• feature identifier is the feature-identifier of one of the non-core features. Each of the
n expression lines must have a unique feature-identifier.

• value is a natural number less than 2p, where p is the number of products of the SPL.
Here, the bit at position x of the p-bit binary representation of value is 1 iff product x (as
specified in the corresponding Products file (Section F.1.3)) contains feature identifier,
where position 0 corresponds to the right-most bit, and position p-1 corresponds to the
left-most bit.

Example

A small example Expressions file specifying the expression values corresponding to the feature-
identifiers of the vending machine product line is provided below.

m

m b c

t w f x

t 77

w 3

f 43

x 20
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F.1.5 FTS (.fts)

An FTS specification defines a feature labeled transition system.

Syntax

The syntax of an FTS file consists of a number of lines. The first line consists of a single number
representing the number of states in the FTS. The second line contains the set actions of action
names separated by spaces. The third line contains the set components of component names,
also separated by spaces. The remaining lines specify transitions, and have the following syntax:

transition ::= from_state ‘ ’ to_state ‘ ’ action ‘ ’

feature_expression ‘ ’ components

from_state ::= number

to_state ::= number

action ::= string

feature_expression ::= DNFstring

components ::= string | components ‘,’ components

DNFstring ::= DNFclause | DNFstring ‘|’ DNFstring

DNFclause ::= DNFliteral | DNFclause ‘&’ DNFclause

DNFliteral ::= feature_identifier | ‘!’ feature_identifier

feature_identifier ::= string

Here:

• from state is a number representing the state the transition comes from;

• to state is a number representing the state the transition leads to;

• action is a string from the set actions that represents the action-label of the transition;

• feature expression is a string that represents the feature expression of the transition in
disjunctive normal form;

• components is a comma separated list representing the component(s) this transition is
part of.

Example

A small example FTS file specifying the collective behavior of the vending machine product line
is provided on the next page.
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9

0

pay change free cancel order(Coffee) serve(Coffee)

order(Water) serve(Water) order(Tea) serve(Tea) take

Machine Beverage Coffee Water Tea FreeDrinks CancelPurchase

0 1 pay m&!f Machine

1 2 change m Machine

6 0 take m Machine

2 3 order(Coffee) c Beverage,Coffee

3 6 serve(Coffee) c Beverage,Coffee

2 4 order(Water) w Beverage,Water

4 6 serve(Water) w Beverage,Water

2 5 order(Tea) t Beverage,Tea

5 6 serve(Tea) t Beverage,Tea

0 2 free f FreeDrinks

2 0 cancel x CancelPurchase
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F.1.6 FTS-abstraction (.abstr)

An FTS-abstraction specification defines parameters for the FTS-abstraction operator.

Syntax

The syntax of an FTS file consists of a number of lines. The first line contains the set actions
of action names separated by spaces. the second line contains the set features of feature
expressions separated by spaces. Feature expressions have the following syntax:

feature_expression ::= DNFstring

DNFstring ::= DNFclause | DNFstring ‘|’ DNFstring

DNFclause ::= DNFliteral | DNFclause ‘&’ DNFclause

DNFliteral ::= feature_identifier | ‘!’ feature_identifier

feature_identifier ::= string

The third and last line contains the set components separated by spaces.
Here:

• actions is a list of strings separated by spaces representing the actions that can be ab-
stracted from;

• features is a list of feature expression separated by spaces representing feature expression
that can not be abstracted from;

• components is a list of strings separated by spaces by spaces representing components that
can not be abstracted from.

Example

A small example ABSTR file specifying that it is possible to abstract from every action, but
not from the f feature and the Beverage component is provided below.

pay change free cancel order(Coffee) serve(Coffee) order(Water)

serve(Water) order(Tea) serve(Tea) take

f

Beverage
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F.1.7 SPL-product (.xml)

An SPL-product specification defines a single product of a software product line.

Syntax

The syntax of an SPL-product file consists of an XML schema. An overview of the schema is
provided at page 165. Optional XML elements are displayed in square brackets. The schema
has an spl product root element, with a mandatory name attribute. This attribute specifies
the name of the SPL-product. The spl product root element has a number of child elements:

• labeled transitions systems is an element that specifies the behavior of this SPL-
product, as a number of LTS running in parallel. It has at least one lts child element
with mandatory name attribute specifying the path from this SPL-product file to its cor-
responding LTS file (Section F.1.8).

• datatypes is an optional element that specifies user-defined data-types. Each data-type
is specified using a struct element that has a mandatory name attribute specifying the
name of the data-type. Each struct element has at least on value child element with
a mandatory name attribute, specifying the value name. Note that all values should be
unique.

• parameterized actions is an optional element that specifies actions with parameters.
Each parameterized action is specified using an action element that has a mandatory name
attribute specifying the name of the action. Its parameters are defined using parameter

child elements, each having a mandatory attributes id, specifying whether this parameter
is the first parameter of this actions, the second parameter of this action, etc. Furthermore
each parameter has a mandatory type attribute specifying the type of the parameter. The
value of this parameter can be the name of any user-defined type in the datatypes section,
or one of the predefined mCRL2 sorts2 (Bool, Pos, Nat, Int or Real).

• communication is an optional that specifies which multi-actions are renamed to a single
action. Each multi-action is specified using a multiaction element that has a mandatory
name attributed specifying the name of the renamed multi-action. The separate actions
this multi-actions consists of are specified using action child elements, each having a
mandatory name attribute. All of the actions of a single multi-action must have the
same parameter types. Each multi-action element has an optional type attribute that
should be assigned the value optional if communication is not enforced (i.e. the actions
of the multi-action can also be executed individually).

Example

A small example SPL-product file specifying product 0 of the vending machine product line is
provided on the next page.

2http://www.mcrl2.org/release/user_manual/language_reference/data.html#predefined-sorts
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<spl_product name="VendingMachine_SPL_p0">

<labeled_transition_systems>

<lts name="VM_FTS.lts" />

</labeled_transition_systems>

<datatypes>

<struct name="Beverage">

<value name="Coffee" />

<value name="Tea" />

<value name="Water" />

</struct>

</datatypes>

<parameterized_actions>

<action name="order">

<parameter id="1" type="Beverage" />

</action>

<action name="serve">

<parameter id="1" type="Beverage" />

</action>

</parameterized_actions>

</spl_product>
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The SPL-product file XML schema:

<spl_product name="SPL_product_name">

<labeled_transition_systems>

<lts name="LTS_file" />

[ <lts name="LTS_file2" /> ]

...

</labeled_transition_systems>

[ <datatypes>

<struct name="Struct1">

<value name="Value1" />

[ <value name="Value2" /> ]

...

</struct>

...

</datatypes> ]

[ <parameterized_actions>

<action name="Action1">

<parameter id="1" type="Struct1" />

[ <parameter id="2" type="Int" /> ]

...

</action>

...

</parameterized_actions> ]

[ <communication>

<multiaction name="MultiAction1" [type="optional"]>

<action name="Act1">

<action name="Act2">

[ <action name="Act3"> ]

...

</multiaction>

...

</communication> ]

</spl_product>

/department of computer science 165



2IM91 Master’s Thesis technische universiteit eindhoven

F.1.8 LTS (.lts)

An LTS specification defines a labeled transition system.

Syntax

The syntax of an LTS file consists of a number of lines. The first line consists of a single number
representing the number of states in the FTS. The second line contains the set actions of action
names separated by spaces. The third line contains the set components of component names,
also separated by spaces. The remaining lines specify transitions, and have the following syntax:

transition ::= from_state to_state action components

from_state ::= number

to_state ::= number

action ::= string

components ::= string | components ‘,’ components

Here:

• from state is a number representing the state the transition comes from;

• to state is a number representing the state the transition leads to;

• action is a string from the set actions that represents the action-label of the transition;

• components is a comma separated list representing the component(s) this transition is
part of.

Example

A small example LTS file specifying the behavior of product 0 the vending machine product line
is provided below.

6

0

pay change free cancel order(Coffee) serve(Coffee) order(Water)

serve(Water) order(Tea) serve(Tea) take

Machine Beverage Coffee Water Tea FreeDrinks CancelPurchase

1 0 take Machine

2 3 order(Coffee) Beverage,Coffee

3 1 serve(Coffee) Beverage,Coffee

2 4 order(Water) Beverage,Water

4 1 serve(Water) Beverage,Water

2 5 order(Tea) Beverage,Tea

5 1 serve(Tea) Beverage,Tea

0 2 free FreeDrinks
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F.2 Tools

This chapter describes the purpose and usage of each of the eight tools of the FTS Toolset.
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F.2.1 parseFD

Parses an SPL file and produces Products and Expressions files.

Usage

parseFD -i <INFILE> [-v] [-d]

Description

Parse the SPL file specified in INFILE. The input file must be in SPL format. The Products
file NAME.prod and Expressions file NAME.expr are produced, where NAME is the SPL-name
specified in INFILE. The feature diagram section of INFILE is updated to include the names of
the produced files.

Command line options

-iINFILE, –ifileINFILE
parse the FD from INFILE. Must be in SPL format. [mandatory]

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.
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F.2.2 abstractSPL

Produces an abstracted SPL specification.

Usage

abstractSPL -i <INFILE> -a <ABSTRFILE> -o <OUTFILE>

Description

Abstract the FTS specified in INFILE using the abstraction parameters specified in ABSTR-
FILE. INFILE must be in SPL format, and ABSTRFILE must be in FTS-abstraction format.
The FTS files FTSNAME-abstract.fts are produced, where FTSNAME is the name of an FTS
specifed in INFILE. The updated SPL specification is written to OUTFILE, in SPL format.

Command line options

-iINFILE, –ifileINFILE
abstract the FTS from INFILE. Must be in SPL format. [mandatory]

-aABSTRFILE, –afileABSTRFILE
use the abstraction parameters from ABSTRFILE. Must be in FTS-abstraction format.

[mandatory]

-oOUTFILE, –ofileOUTFILE
write the abstracted SPL to OUTFILE. Will be in SPL format. [mandatory]

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.
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F.2.3 BFBreduction

Produces a reduced SPL specification.

Usage

BFBreduction -i <INFILE> -o <OUTFILE>

Description

Reduce the FTS specified in INFILE using complete coherent branching feature bisimulation
reduction. INFILE must be in SPL format. The FTS files FTSNAME-reduced.fts are produced,
where FTSNAME is the name of an FTS specifed in INFILE. The updated SPL specification
is written to OUTFILE, in SPL format.

Command line options

-iINFILE, –ifileINFILE
reduce the FTS from INFILE. Must be in SPL format. [mandatory]

-oOUTFILE, –ofileOUTFILE
write the reduced SPL to OUTFILE. Will be in SPL format. [mandatory]

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.
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F.2.4 spl2mcrl2

Converts and SPL specification to an mCRL2 specification.

Usage

spl2mcrl2 -i <INFILE> -o <OUTFILE> [-p]

Description

Converts the SPL defined by INFILE to an mCRL2 specification. INFILE must be in SPL
format. The produced mCRL2 specification is written to OUTFILE, in mCRL2 format.

Command line options

-iINFILE, –ifileINFILE
convert the SPL from INFILE. Must be in SPL format. [mandatory]

-oOUTFILE, –ofileOUTFILE
write the mCRL2 specification to OUTFILE. Will be in mCRL2 format. [mandatory]

-p, –parallel
will produce an mCRL2 specification with a process for each component. All components

run in parallel and are coordinated by driver processes.

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.
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F.2.5 fts2aut

Converts an FTS file to an Aldebaran file3.

Usage

fts2aut -i <INFILE> -o <OUTFILE>

Description

Converts the FTS defined by INFILE to an LTS specification. INFILE must be in FTS format.
The produced LTS specification is written to OUTFILE, in Aldebaran format. Aldebaran
format files can be visualized using the tool ltsgraph4 from the mCRL2 toolset. Hence, using
a combination of fts2aut and ltsgraph it is possible to visualize FTS files.

Command line options

-iINFILE, –ifileINFILE
convert the FTS from INFILE. Must be in FTS format. [mandatory]

-oOUTFILE, –ofileOUTFILE
write the LTS specification to OUTFILE. Will be in Aldebaran format. [mandatory]

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.

3http://www.mcrl2.org/release/user_manual/language_reference/lts.html#aldebaran-format
4http://www.mcrl2.org/release/user_manual/tools/ltsgraph.html
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F.2.6 projectSPL

Project an SPL on a single product.

Usage

projectSPL -i <INFILE> -p <NUMBER> -o <OUTFILE>

Description

Project the SPL defined by INFILE on the product with number NUMBER. INFILE must be in
SPL format. The produced SPL product will be written to OUTFILE, in SPL-product format.

Command line options

-iINFILE, –ifileINFILE
project the SPL from INFILE. Must be in SPL format. [mandatory]

-pNUMBER, –productNrNUMBER
project on the product with number NUMBER. [mandatory]

-oOUTFILE, –ofileOUTFILE
write the SPL product specification to OUTFILE. Will be in SPL-product format. [manda-

tory]

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.
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F.2.7 splprod2mcrl2

Converts an SPL-product specification to an mCRL2 specification.

Usage

splprod2mcrl2 -i <INFILE> -o <OUTFILE> [-p]

Description

Converts the SPL-product defined by INFILE to an mCRL2 specification. INFILE must be in
SPL-product format. The produced mCRL2 specification is written to OUTFILE, in mCRL2
format.

Command line options

-iINFILE, –ifileINFILE
convert the SPL-product from INFILE. Must be in SPL-product format. [mandatory]

-oOUTFILE, –ofileOUTFILE
write the mCRL2 specification to OUTFILE. Will be in mCRL2 format. [mandatory]

-p, –parallel
will produce an mCRL2 specification with a process for each component. All components

run in parallel and are coordinated by driver processes.

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.
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F.2.8 lts2aut

Converts an LTS file to an Aldebaran file5.

Usage

lts2aut -i <INFILE> -o <OUTFILE>

Description

Converts the LTS defined by INFILE to an LTS specification. INFILE must be in LTS format.
The produced LTS specification is written to OUTFILE, in Aldebaran format. Aldebaran
format files can be visualized using the tool ltsgraph6 from the mCRL2 toolset. Hence, using
a combination of fts2aut and ltsgraph it is possible to visualize LTS files.

Command line options

-iINFILE, –ifileINFILE
convert the LTS from INFILE. Must be in LTS format. [mandatory]

-oOUTFILE, –ofileOUTFILE
write the LTS specification to OUTFILE. Will be in Aldebaran format. [mandatory]

Standard options

-v, –verbose
display short intermediate messages.

-d, –debug
display detailed intermediate messages.

-h, –help
display help information.

5http://www.mcrl2.org/release/user_manual/language_reference/lts.html#aldebaran-format
6http://www.mcrl2.org/release/user_manual/tools/ltsgraph.html

/department of computer science 175

http://www.mcrl2.org/release/user_manual/language_reference/lts.html#aldebaran-format
http://www.mcrl2.org/release/user_manual/tools/ltsgraph.html

	Introduction
	Research problem context
	Problem description
	Results and outline

	Preliminaries
	A formal description of SPL
	Formal descriptions of system processes
	Formal description of system requirements

	Models
	State-based models
	Event-based models

	Equivalences
	Strong bisimulation
	State-based models
	Event-based models

	Branching bisimulation
	State-based models
	Event-based models

	Related work

	Quotients
	State-based models
	Event-based models
	Related work

	An algorithm for coherent branching feature bisimulation
	Complexity of coherent feature bisimulation reduction
	Coherent branching feature bisimulation minimization
	Implementation details

	Minimization using embeddings
	Minimization for state-based models
	Embeddings to event-based models
	Embeddings+ to event-based models
	The coherent+ quotients for FTS
	Minimization using the embedding fts+

	Minimization for event-based models
	Embeddings to state-based models
	Naive minimization using the embedding fks
	The coherent+-quotients for FKS


	Experimental evaluation
	The coffee-soup machine SPL
	The SPL toolset
	Experiments
	Results

	Conclusions
	Future work

	Bibliography
	Appendices
	Full proofs for Chapter 3
	Full proofs for Chapter 4
	Full proofs for Section 3.1
	Full proofs for Section 3.2

	Full proofs for Chapter 5
	Supplementaries for Chapter 6
	Full proofs for Chapter 6
	Data type definitions
	Pseudo code of subroutines

	Full proofs for Chapter 7
	FTS Toolset User Manual
	File formats
	SPL (.xml)
	FD (.xml)
	Products (.prod)
	Expressions (.expr)
	FTS (.fts)
	FTS-abstraction (.abstr)
	SPL-product (.xml)
	LTS (.lts)

	Tools
	parseFD
	abstractSPL
	BFBreduction
	spl2mcrl2
	fts2aut
	projectSPL
	splprod2mcrl2
	lts2aut



