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ABSTRACT  
The research topic of this thesis is augmented reality (AR). It is a technique which enables the user to 

see computer-generated objects inside a real environment; this is often accomplished by using displays in 
order to augment parts of the scenery with virtual objects. Augmented reality is a wide-ranging research 
field and has many possible applications like in architectural designs, medical examinations and navigation.  

Mobile devices such as smartphones and tablets are becoming more powerful these days w.r.t. their 
processing speed and memory. Because of their compact design they provide an excellent platform for 
augmented reality (e.g. by capturing images from the camera and using them to create an onscreen 
augmented world). 

Real-time augmented reality relies on knowing the user’s location and orientation. In order to extract 
this information different methods exist. A straightforward idea is to simply use GPS; unfortunately GPS 
has its limitations, for example it cannot be used indoors and doesn’t provide information on the user’s 
orientation. To overcome this drawback it can be used alongside orientation sensors (e.g. accelerometers, 
magnetometers and gyroscopes). Another approach is to use computer vision techniques, however, in 
general they are computationally intensive. 

In this thesis we propose a method that combines orientation sensors with computer vision in order to 
determine the location and orientation of the device. It is used to determine the location of the virtual 
object. The orientation is calculated by combining accelerometers, magnetometers and gyroscopes. By 
using the orientation of the device we accelerate the computer vision computations without losing 
accuracy. The processing time for the orientation and computer vision routines require 35%. On the other 
hand, drawing and frame processing consumes 65%, with a frame rate of 1.9 fps. It is a consequence of 
the expensive camera frame conversions that are implemented in software. For future work the focus 
should be on implementing the camera functionality in hardware.  
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1 INTRODUCTION 
Augmented reality or AR for short is a technique which enables the user to perceive in real-time 

computer-generated objects inside a real environment. This is often accomplished by using displays in 
order to augment parts of the scenery with virtual objects. Different types of displays can be used, for 
example; head mounted displays, LCD displays on phones or spatial projection into the real environment. 
This graduation project will research the possibilities of using AR to visualize virtual objects on mobile 
phones. The scenery is augmented with 3D models which are displayed on a screen to the user. 
Augmentation of the scenery is accomplished by using the different available hardware components; like 
GPS, movement sensors, orientation sensors and camera.  

1.1 MOTIVATION 

AR has many interesting and useful applications. For instance it can benefit the development and 
(re)construction of buildings, as shown in figure 1. Instead of looking at rendered scenery users can walk 
around and see the building as if it was actually there by projecting it in real-time on a screen. In this 
particular example a large marker was placed, it functions as a fixed-point for the system and is used to 
extract the location and orientation of the virtual building. The Brazilian developers of Rossi Residential 
hold the Guinness book of world records for producing the largest augmented reality experience (10,000 
Sq. Ft. Augmented Reality Marker Sets Guinness World Record). 

   

Figure 1 The building is projected 
onto the original image to give an 

impression of how the building will 
be, once completed (10,000 Sq. Ft. 

Augmented Reality Marker Sets 
Guinness World Record). 

Figure 2 Virtual hair is augmented 
with the real scenery to train 

hairdressers (Air Hair: Augmented 
reality for those who want to learn 

haircutting). 

Figure 3 AR used to provide 
information about the currently 

visible content (Elcobbola, 2010). 

In addition to construction purposes AR could be used to let people learn and improve certain skills. In 
figure 2 we can see a physical head that is projected on a screen augmented with virtual hair. It was used 
in Tokyo to let student hairdressers practice and improve in their field of expertise (Air Hair: Augmented 
reality for those who want to learn haircutting).  

The application in figure 3 is an entirely different approach of AR, instead of projecting virtual 3D 
objects extra information is displayed inside the image. This data is relevant to the content that is 
displayed at that moment; it provides the user with information about the scenery. In the above example 
the statue of liberty has an overlay which provides additional information, this is accomplished by 
detecting objects inside the scenery and retrieving related information.  

Detected: Statue of Liberty 
Location:  Liberty Island New York NY 
Coordinates: 40°41′21″N 74°2′40″W 
Height:  46 meters 
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There are many other useful applications; like in games or the projection of advertisements during 
football matches (virtual boards with ads are displayed adjacent to the goals). The specific application we 
focus on has most in common with the example shown in figure 1. In our approach we want to create 
augmented scenery based on the position of the user like in figure 1 however we don’t want to depend 
on the usage of markers. Markers have the major advantage that it is less computational intensive than 
non-marker approaches, however the drawback of this approach is that it makes assumptions on the 
environment and limits the usability. Another dissimilarity with the method shown in figure 1 is that we 
want to deploy it in indoor environments. Alten suggested the usage of visualizing indoor object, like 
pipes inside a room shown in figure 4. Accordingly, the project was performed at Alten and developed 
with these intentions in mind.  

 

Figure 4 The room is augmented with pipes to aid in construction work (Winn, 2009) 

1.2 OUTLINE 

The remainder of this thesis is outlined as follows; in the following section we will provide the 
different applications that could benefit from the usage of augmented reality. In chapter 2 we will give a 
problem definition and clarify some basic concepts that should be known before we go into the topic of 
creating AR. The final part of this chapter is dedicated to the functional and non-functional requirements 
that should be adhered to. In chapter 3 we focus on related work that has been done, this includes the 
research performed on a similar topic by a previous student David Hardy (2011). In section 3.1 we will 
study recent developments and see how they are currently used. The different methods and techniques 
to created augmented reality are discussed in the paper of Crijns (2011) that was created in preparation 
of this thesis. The solutions to problems shown in chapter 2 are presented in chapter 4 “Approach”; the 
actual implementation of this is discussed in the subsequent chapter. As a final point we will conclude 
with discussing the results and indicate possible improvements of the implementation. 
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2 PROBLEM DEFINITION 
In this chapter we define the problem in creating augmented reality applications. We will start with a 

general and intuitive description and continue with providing an introduction to viewpoints and matrices. 
These concepts are needed in order to describe transformations which are used in the formal problem 
definition (section 2.4). We will conclude this chapter with the requirements that should be satisfied. 

2.1 GENERAL DESCRIPTION 

There are many useful applications for augmented reality, however if we want to adequately create 
the illusion of AR on mobile devices the location of the user/device should be known. 

 

Figure 5 Inside this scene a cube is projected as an augmented object (Duce, 2010). 

Let’s have a look at the example in figure 5, in order to correctly project the cube inside the scene we 
need to know the location and orientation of the cube (or in general the object) in relation to the world; 
furthermore we need to know the location and orientation of the camera in relation to the world. The 
location and orientation of the cube is predefined, what remains is reconstructing the location and 
orientation of the camera. A location in 3D space is simply a transformation; orientation and translations 
can be described using transformations that are presented in chapter 2.3. In order to formally describe 
relative transformations we first need to define coordinate systems. 

2.2 COORDINATE SYSTEMS 

A single point or location in a right handed 3D Cartesian coordinate system can be represented in 
different ways. We distinguish three coordinate systems; Camera C, World W and Object O. In the three 
examples below we have three points, each of these points are described in relation to a different 
coordinate system.  

World Camera Object 

   

Figure 6 Points represented in a 
world-oriented coordinate system.  

Figure 7 Points represented in a 
camera-oriented coordinate system. 

Figure 8 Points represented in an 
object-oriented coordinate system. 

 
Object 

World 

Camera 

    𝐶𝑤 (2,1,0) 

𝑊𝑤 (0,0,0) 

𝑂𝑤 (-1,2,0) 

    𝐶𝑐 (0,0,0) 

𝑊𝑐 (-2,-1,0) 

𝑂𝑐 (-3,1,0) 

    𝐶𝑜 (3,-1,0) 

𝑊𝑜 (1,-2,0) 

𝑂𝑜 (0,0,0) 

y 

z 

x 
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In the above example we can see that it is possible to describe the same set of points from different 
coordinate systems. If the location of a point   is represented w.r.t. the world we write   , in a similar 
way we write    and   .  

2.3 TRANSFORMATIONS 

Points are transformed from one coordinate system to the other by applying a rotation (shown in eq. 
2) and a consecutive translation (shown in eq. 1) which can be represented by transformation matrices. 
We define    as the zero-matrix with k rows and one column, furthermore    is defined as the identity 
matrix with   rows and   columns. A translation of point              by        and    can be described 

by a translation matrix  . 

[
  

  
  
  

  
  

] [

 
 
 
 

]  [

  
  

  
 

] 

       

 Eq. 1 

Similarly a general rotation of point              with     and   can be described by means of a 
rotation matrix  . 

[

   
          
         

  

  
  

] [

         
   

          
  

  
  

] [

          
         

   

  

  
  

] [

 
 
 
 

]  [

  

  

  

 

] 

       

 Eq. 2 

Where    defines the rotation in radians around the x-axis,    defines the rotation in radians around 
the y-axis and    represents the rotation in radians around the z-axis. By  putting these rotation and 
translation matrices together we can create a transformation matrix  . 

  [
  

  
  
  

  
  

]   [

             
                             

                             
    

] 

 
With                ,                ,                 

 Eq. 3 

If we want to go from a world to camera coordinate system we need to apply the transformation 
matrix   

  to point   , thus      
   . It is also possible to transform back using the inverse matrix.  

   
     

      Eq. 4 

The inverse matrix transformation can be calculated using the following identities; for matrix 
multiplication it holds that                and because our rotation matrix is orthogonal (Bellman, 
1997, p. 15) (Watkins, 2002, p. 192) we have that        (Watkins, 2002, p. 187). Finally the inverse of 
a translation matrix        now we can derive; 

     Eq. 5 
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For sequential composition we can use the formula in eq. 6  (Simon, Fitzgibbon, & Zisserman, 2000, p. 
4). 

    
    

    
   Eq. 6 

2.4 FORMAL DESCRIPTION 

Now all the preliminaries are defined we can give a formal description of the problem. In the first 
section of this chapter we mentioned that if the location and orientation of the model is known then we 
only need to derive the location of the user w.r.t. the world. By using the above equations we can indeed 
show that if the transformation from the world to the object is known   

  then we only need to get the 
transformation of the camera in relation to the world   

  in order to compute the location of the object 
from a camera coordinate system   

 . 

   
  

    
 

   
    

  

         
 

    
        

     

 Eq. 7 

We can also show that it is equally sufficient to know the location of the camera in relation to the 
object   

  if we want to know the transformation from world to camera space   
  or vice versa. 

   
  

         
 

    
       

    
 

    
    

     

         
 

     
       

     

 Eq. 8 

So if we know one of these transformations   
 ,   

  (or using eq. 4 their inverse   
 ,   

 ) then we can 
project any object point into the camera coordinate system. How to find such a transformation is 
presented in chapter  4 “Approach”. 

2.5 REQUIREMENTS 

The implementation and approach we take should meet specified requirements, which can be split 
into functional and non-functional requirements. The difference between these requirements is that the 
functional requirements describe what the system should do in contrast to how it should behave. Non-
functional requirements don’t change the behavior or function of the product but describe properties 
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that the system should have (e.g. if we look at performance we can say that the system should run at 30 
fps). A detailed list of all the desired requirements can be found in Appendix A.  

For the functional requirements we distinguish the following categories; camera, feature-tracking, 3D 
objects, orientation and peripherals. The camera-related requirements specify what the camera should be 
able to display and that it is calibrated. Feature tracking requirements indicate what should be tracked. All 
the functional requirements in relation to the model that should be augmented with the scene are in the 
3D objects category. Restrictions on the orientation calculation like calculation of pitch, roll and yaw are 
listed under orientation. Finally we have the peripherals that specify the components that should be 
present on the mobile device.  

The non-functional requirements are split into performance and usage-related specifications. For 
performance related issues we have requirements like characterizing system stability and AR immersion. 
Requirements on how the system should be used are under the last category “usage”.  
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3 RELATED WORK 
In this chapter we will focus on work done in the past and look at some recent developments in the 

field of augmented reality which include usage in road trafficking and medical surgery. We continue with 
discussing work that has been done in preparation for and in relation to this thesis. In the last section we 
summarize the related work and explain how it contributed to our final implementation. 

3.1 Recent developments 

In this chapter we will have a look at recent developments in different areas. All papers are published 
from 2011 up to 2012 and cover augmented reality in: vehicles, mobile vision, games and surgery. 

3.1.1 AUGMENTED REALITY IN VEHICLE SYSTEM 

The paper of (Moussa, Radwan, & Hussain, 2011) studied a newly developed augmented reality 
vehicle systems, called ARV. The paper had two goals, one to test the performance of the ARV system and 
the other to test a left-turn maneuver on a two-way stop-controlled intersection. Their findings on a left-
turn maneuver are of less interest and will be skipped. In figure 9 we can see the ARV system built into a 
car. 

  

Figure 9 The ARV consisting of a laptop HMD, camera and GPS (Moussa, Radwan, & Hussain, 2011, p. 4). 

The laptop was the main component that performed all the processing work. It connected with the 
GPS module in order to get the location and direction of the vehicle. The camera was needed to acquire 
the orientation of the vehicle by using image registration techniques. A canny edge detector was used to 
detect the side lines of the road and together with the intrinsic camera parameters (which are also 
discussed in chapter 4.2.3) the orientation could be reconstructed. Based on the orientation and location 
of the driver virtual objects could be rendered inside the camera image which would be displayed to the 
user via the head mounted display (HMD). 

The validation of the ARV system was done by testing the augmented view which had to be free of any 
visual inconsistency due to scale, orientation, and/or position errors in aligning visual objects with real 
objects in the final view. It was tested by two test groups, one with the ARV system and the other without. 
Two scenarios where performed; in one the subjects were asked to drive 40 km/h and as close to the 
center of the lane as possible (along curved and straight road segments). In the second scenario the driver 
had to stop the vehicle as close to a stopping line as possible. For both scenarios the distance to the stop 
line, the average cruising speed and the average offset from the center of the lane where recorded. 
Student t-tests (Strijbosch, 2006) where applied on the group with the ARV system versus without the 
ARV system. At a 95% confidence level no significant differences were found during both scenarios when 
driving along a straight segment, however for the curved segment significant differences were found. The 
authors attributed the HMD and fixed video camera which slowed drivers down when going along curved 
roads (Moussa, Radwan, & Hussain, 2011, p. 12). For straight roads the test showed that the system 
performed adequately without any visual inconsistency. 
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3.1.2 AUGMENTED REALITY IN MOBILE VISION 

The paper of (Hua, Yun, Turk, Pollefeys, & Zhang, 6 December 2011) points out the different 
challenges and explores recent developments in augmented reality on mobile devices. 

There are several important issues that arise when working with mobile devices. First of all we have 
limited computational capacity which is yet insufficient to handle the large amount of processing required 
for most augmented reality applications. Secondly a method should be found in order to handle and 
acquire the vast amounts of data (which is a prerequisite for most mobile vision applications). Finally the 
paper denotes the issue of extracting contextual information. 

Recent developments in the industry includes the SnapTell (2006), Nokia Point & Find (2011) and 
Google (2012) applications. They all work by matching images with a large database in order to extract 
useful information. The image is taken by the user from his camera and used to match it with a large pre-
annotated database, the found match is retrieved and the annotated information is displayed to the user 
(see also figure 3). 

They conclude that more work on these fields will benefit and improve performance and that it will 
increase the shift from personal computer to mobile devices. Furthermore they indicate that it is not only 
about making algorithms faster in order to work in real-time environments, but that it is also about the 
dynamic integration of information (for example dynamically interfacing with different types of sensors). 

3.1.3 AUGMENTED REALITY IN GAMES 

We can distinguish different kinds of games (Bonsignore, et al., 2012). For example we have the 
context aware, alternate reality, social networks and augmented reality games. Augmented reality games 
can be used to entertain, inspire, motivate or educate people. In the paper of (Yamabe & Nakajima, 2012) 
a variety of augmented reality games were designed and tested, one of these was a poker game shown in 
figure 10. 

  

Figure 10 EmoPoker; an augmented reality poker game (Yamabe & Nakajima, 2012, p. 12). 

The EmoPoker system is an augmented reality system created to asses emotional state of players 
during poker games. It can help control the emotional state of a player, e.g. a poker face. We know from 
studies that emotional excitement can increase the amount of irrational decision-making (Schwarz, 2000, 
pp. 433–440) and decrease cognitive skills. EmoPoker assesses the players emotional state by using a 
heart rate monitor. In order to track the poker cards RFID readers were embedded inside the table and 
RFID tags were placed inside the cards. Based on this information a beam of light is projected onto the 
cards inside the players hand, the light color indicated the excitement level of the player. Blue means calm 
and red excitement which is also shown in figure 10. Another usage of this system is to balance poker 
skills between players in a group. This can be accomplished by hiding the excitement level for novice 
players and using earphones to indicate heart rate for self-assessment. Tests were performed in order to 
examine the usefulness of earphones. Their conclusion was that there was no statistical difference (e.g. p 
< 5%) between using and not using earphones (Yamabe & Nakajima, 2012, p. 19). 

3.1.4 AUGMENTED REALITY IN ENDOSCOPIC SURGERY 
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The paper of (Nakamoto, Ukimura, Faber, & Gill, March 2012) studied a system to create augmented 
reality in endoscopic surgery. The goal was to help surgeons and improve surgery by making it more 
precise and safe. An example of the system is shown in figure 11. 

 

Figure 11 Example of the endoscopic surgery system setup (Nakamoto, Ukimura, Faber, & Gill, March 2012, p. 123). 

The three main components are the endoscope, tracker and image display. The tracker determines the 
camera position and orientation w.r.t. the tracker by using the markers on the endoscope. Subsequently 
the camera input from the endoscope is augmented and displayed to the specialist. In their application it 
was used to assists surgeons in achieving a negative surgical margin and maximize the tissue preservation 
around a tumor.  

 

Figure 12 An example of a tumor with corresponding zones (Nakamoto, Ukimura, Faber, & Gill, March 2012, p. 124). 

From a CT scan of a tumor color coded zones where created and augmented with the real image from 
the endoscope. Zone 1 was the tumor itself, zone 2 was a margin of 0 to 5mm around it, zone 3 was 5 to 
10 mm and larger than 10 mm was zone 4 (see figure 12). 

Their conclusion of the usability of such techniques in order to help physicians was that it created 
significant advancements in the precision of endoscopic surgery. However there is a major drawback in 
this approach, it could not track and react to the deformability and dynamic motion of organic tissue 
which limited the usability. 

3.2 PREVIOUS WORK 

This thesis is a continuation of the work previously performed by Hardy (2011), the relation to his 
thesis will be discussed in the following chapter. In preparation of this thesis research was performed on 
the topic of indoor positioning systems (Crijns, 2011). In this paper the different methods available for 
indoor tracking were examined, which will be presented in section 3.2.2. 

3.2.1 AUGMENTED REALITY FOR LANDSCAPE DEVELOPMENT ON MOBILE DEVICES 

The work by David Hardy was performed externally at Alten. It had a similar topic in the sense that it 
researched augmented reality on mobile devices, however its usage was not for indoor environments; it 
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was designed to work outdoors to support in landscape development (e.g. visualizing buildings or other 
planned constructions). In figure 14 we can see an example of how it was used. 

 
 

Figure 13 The six different markers that could be 
recognized (Hardy, 2011, p. 20). 

Figure 14 Example of the implementation (Hardy, 2011, 
p. 50). 

A smartphone was used that recognized the different predefined markers and then projected a model 
(in this example a cube) on the surface. In total there were six types of markers arranged in a circular 
pattern as shown in figure 13. The projection that Hardy had implemented was accurate, however the 
drawback was that the method relied on symbols which had to be planar. This thesis is a continuation of 
that work in the sense that it creates augmented reality and was also developed for mobile devices. 
Furthermore it removed the dependency of predefined marker usage. 

3.2.2 INDOOR POSITIONING SYSTEMS  

The opportunity of performing the research on indoor positioning systems was provided by dr.ir. 
H.M.M. (Huub) van de Wetering who is working at the TU/e, it was executed in preparation of this thesis. 
The paper of Crijns (2011) explains the different methods used to determine the location in indoor 
environments. 

The first technique discussed was the usage of radio identification to determine the position of the 
user. An example is the placement of RFID chips in a grid like pattern and a scanner that actively scans the 
chips in order to determine their position.  

Another approach is to measure the angle of incoming radio signals using smart antennas, these 
antennas differ from normal ones in the sense that they can measure the angle of incoming radio waves. 
The requirement for this method to work is that the origin of the waves should be known.  

Measuring the strength of radio signals is another method to determine the position of a device. A 
convenient implementation of this strategy is using widely available Wi-Fi stations together with 
trilateration to determine position.  

It is also possible to measure elapsed time instead of signal intensity (or strength) like in the previous 
example. An implementation of this could be speakers and microphone to measure the elapsed time 
between the departure and arrival time of the sound.  

Inertial measurements units (or IMU’s) can be used to measure orientation if we would combine it 
with a GPS receiver than the position could also be determined.  

The last discussed method relies on camera vision in order to get the position. It is a costly approach 
but when done right can be very accurate (Braunegg, 1989, p. 3) (Crijns, 2011, p. 7). 

In the table 1 we can see a comparison between the different techniques together with the desired 
properties. These properties are deployability, accuracy, self-containedness and low setup costs. A system 
is self-contained if it does not require any external components in order to work. This implies the last 
property, e.g. directly deployable. The other way around is not necessarily valid. A system that can be 
used directly is not always self-contained and could rely on external components in order to function. 
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RFID 

Radio identification 0/+ - 0/+ - 

Smart antennas 

Radio angle of arrival + - o - 

Wi-Fi 
Radio signal strength o - o - 

Microphones 

Sound time of arrival o - o - 

IMU 

Inertial measurements - + + + 

Camera 
Vision o + o -/0 

+ method strongly contributes to this property. 

o method partially contributes to this property. 

-  method weakly contributes to this property. 

Table 1 A comparison of the different methods for indoor positioning system (Crijns, 2011, p. 9) 

The solution presented in this thesis is a combination of the last two strategies, thus IMU’s in 
combination with vision is used to acquire position. 

3.2.3 MARKERLESS APPROACHES 

Before the final approach was chosen different papers with markless tracking approaches were 
studied which include the paper of Simon et al. (2000) and Klein & Murray (2007). In figure 15 we can see 
the algorithm of Klein & Murray (2007) at work. It shows a pre-initialized map with detected feature 
points. This map is tracked across the screen and can be used to project virtual objects on. 

  

Figure 15 The map extended with feature points (Klein 
& Murray, 2007, p. 1). 

Figure 16 The map is used in order to project virtual 
object in the scene. 

The system is implemented with two processes that run in parallel, one tracks feature points and the 
other updates and improves the map with new feature points. The tracking process tries to find the 

 

Points Map 

 

Model Map 
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orientation of the camera w.r.t. the map by tracking and projecting feature points on the map, the 
process continuously receives images from the camera and for each image it performs the following steps.  

 

First it estimates the camera orientation based on the detected motion and projects points of the map 
onto the image using the estimated orientation. The estimated orientation is used by projecting 50 
feature points onto the camera image and using the projection error to further improve the orientation. 
Finally the last step is again performed but this time for 1000 points. The resulting orientation estimation 
is used to transform world points to camera points. In parallel to this thread we have the mapping process, 
its task is to improve and extend the map. The map should be constructed in advance and is then used by 
this process to further improve and extend the map with new feature points. It could for example be 
constructed  using a stereo camera which are two cameras placed in parallel to each other and can be 
used to extract the location of feature points. 

The results of this paper are promising, however it was implemented on a Intel Core 2 Duo 2.66 GHz 
processor running Linux (Klein & Murray, 2007, p. 6). At least for now these performance requirements 
did seem too high for the use on mobile devices, it also required a large point set and a pre-computed 
map in order to work.  

  

Figure 17 Planar surface with points (Simon, Fitzgibbon, 
& Zisserman, 2000, p. 5). 

Figure 18 The projected model onto the planar surface 
(Simon, Fitzgibbon, & Zisserman, 2000, p. 6). 

The paper of Simon et al. (2000) used planar homographies in order to project virtual objects. In figure 
17 we can see a planar surface and model projected onto this plane. On this plane we can project a model 
as shown in figure 18. The algorithm uses a world coordinate space wherein the model location is stored, 
this world coordinate system is projected to the first frame. For each subsequent frame a projection from 
the previous to the current frame is made. In this way we can project anything from the world into the 
current frame. Projections from one coordinate system to the others are performed by using planar 
homographic projections (which are mappings from one 2D surface to another). In figure 19 we can see 
the different coordinate systems, point    (which could be the location of the model) is projected onto 
camera frame   which is then projected to the subsequent frame    .  

 

Point 𝑝 
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Figure 19 Homographic projections from world to subsequent camera frames. 

Mappings are performed using homographic projections denoted by   
 

 which is a 3 by 3 matrix that 
defines the projection from any coordinate system   to  . By applying successive mappings we can 
project a point from a world coordinate system to any camera frame. First we project from the world to 

the first camera frame   
 . We can now project to any subsequent camera frame   using   

  ∏     
  

   . 

Thus we project from the world to camera frame   via   
    

   
 . Given a set of points in the source and 

destination coordinate space we should be able to calculate a homographic transformation that maps all 
these points correctly. It should be noted that the homographic projections we are looking for has a 
scaling factor  . 

      
 
    Eq. 9 

The points are equal up to the scaling factor  . It introduces a set of homogenous equal points, thus 
for a given   there is a    such that eq. 10 holds. 

[
   
   
 

]    
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] 
 Eq. 10 

 By using the fact that we have homogenous equal points we can prove that these points       

         and                   are in parallel.  

     
 
    Eq. 11 

  By definition of    and    
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] 
 Eq. 12 

  By definition of the cross product 
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] 

 Eq. 13 

  By simplifying the equation 

   Eq. 14 
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Hence the of cross product of the homographic projection of two points should be equal to eq. 14. 
Given a set of points     

    
    

    
  in a source coordinate system   and corresponding points 

    
    

    
    

  in the destination coordinate system   and solving eq. 11 we derive: 
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with    
           ,    

    
    

    
  ,and   [

         

         

         

] 

 Eq. 15 

  By substitution of   and   

      Eq. 16 

The matrix   is known, however matrix A should still be found. In order to solve eq. 16 we use singular 
value decomposition (SVD) from eq. 17, which gives us the three matrices   ,   and  . The matrices    
through    represents the individual columns of  . 

         

with      |  |  |  |  |  |  |  |   . 

 Eq. 17 

Now the last column of    gives us the solution for    , this     . Details on SVD and how to find 
an appropriate scaling factor can be found in Zisserman (2004). We now know how to create a 
homography given four points we can explain the algorithm. When the algorithm is started the user 
should manually indicate four points on the screen that should be located in a square. The world 
coordinates points (0, 0), (0, 1), (1, 1) and (1, 0) are mapped to these points via   

 . The world points 
create a flat world wherein the length of the square is 1 unit length in the world (see also the world 
coordinate system in figure 19). For each new camera frame we search for corner points which are  points 
with a high change in intensity. For more information on how to find them inside an image see section 4.1 
“Corner detection”. Corner points are then matched with points from the previous frame using a 
homographic projection. The projection that matches the most corner points is selected as the projection 

  
    that maps points from frame   to frame    . 

The method described in the paper of Simon et al. (2000) was implemented on a mobile device, 
however due to a number of limitations it was not used as a final solution for our problem. For example it 
suffers from drift; this was no surprise because it was already mentioned in Simon et al. (2000). For each 
successive homographic projection a small error is introduced which propagates in time and after a while 
the drift of the projected object becomes too large and we lose the augmented reality experience. 
Another obstacle was that in order to project an object we need to get from world coordinates to the last 
frame and are required to use all the homographic projections from the first to the last frame. This means 
that it is highly vulnerable for projection errors and if any of the homographic mappings are incorrect the 
projection of the object becomes wrong. It is crucial that the point matching algorithm always finds the 
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correct mapping which in practice is not always the case. In our implementation the frame rate was just 
too low. The low frame rate resulted in wrong projections because of the relative large movement 
between frames.  

3.3 SUMMARY 

In this chapter we have seen new developments and different approaches in order to solve the 
problems in the creation of AR. Most existing positioning systems like the one discussed in section 3.1.1 
used GPS to determine location. However this was not an option for our system because GPS is not 
accurate enough and cannot be used in indoor environments. The method presented in section 3.1.4 used 
a stereo tracker to calculate the position of the endoscope. A stationary tracker would severely limit the 
usage of our mobile device and was not an option, however the usage of a tracker as mobile device was 
an option. Based on this observation a technique was implemented that combines visual localization with 
the use of Inertial measurements units from section 3.2.2.  
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4 APPROACH 
A variety of techniques exists in order to calculate orientation and position. These methods range 

from using computer vision (e.g. camera) to GPS and inertial measurement units (IMU’s). Our approach is 
based on using 3D point clouds which are captured by a stereo camera. These points are used to 
reconstruct a virtual world. The reconstruction of the world is based on point matching which is a 
relatively expensive operation in terms of processing time. By using the internal orientation sensors we 
calculate the orientation of the device. This orientation is used to speed up the point cloud matching 
process. Inside the virtual world we can project 3D models that are augmented with camera images. 
These models create the illusion of augmented reality and are displayed onscreen to the users. The three 
main tasks that should be performed are: 

1. Detect corner points on both images captured from the stereo camera. 
2. Generate a 3D point cloud from matches between corner points. 
3. Reconstruct the transformation by performing point cloud registration. 

  

 

 

 

Figure 20 Corner detection  Figure 21 Cloud generation  Figure 22 Cloud registration 

The following sections will explain each of the above steps. In the final section we will discuss the 
implemented optimizations in order to increase performance in terms of accuracy and speed. 

4.1 CORNER DETECTION  

Corner detection is applied on the capture images that are retrieved from the stereo camera. It 
searches inside each image for corner points. The idea behind this approach is that for a reliable matching 
between points from the left and right stereo images the points with a high amount of information (e.g. 
corner points) are more interesting than points with a low entropy (for example on a large black wall). The 
specific corner detection we use is defined by Shi and Tomasi (Bradski & Kaehler, 2008, p. 318) (Shi & 
Tomasi, 1994). The following steps are performed:  

1. We start by calculating the magnitude of the first order derivative of the image  . It is used to 
estimate the corner quality of a pixel. The   and   derivatives of the image are estimated with 
the Sobel operator. It uses 3×3 kernels that are convolved with the original image. For each pixel 
in the image derivatives we apply the autocorrelation matrix  . The matrix looks at the 3x3 
surrounding neighborhood pixels      in the derivatives. 
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 Eq. 18 

Now we compute the minimal and maximal eigenvalues of matrix  . 
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       √                

 Eq. 19 
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With the pixel quality value as the minimal of the two eigenvalues                   . 
2. Perform a 3x3 non-maxima suppression. For each pixel we look at the surrounding neighbors and 

compute the maximum quality value              . We reject each pixel which has a quality 
value that is smaller than the maximum quality,                      . In this way we 
prevent the detection of corner points that are only locally maximum by thinning the edges.  

3. Reject all corner points that have a quality value less than some pre-defined parameter and sort 
the remaining points in descending order.  

4. Reject all corner points that have a quality value that is smaller than some pre-defined parameter 
 ,                     . 

4.2 CLOUD GENERATION 

We now have our corner points and need to match them from points in the left image to points in the 
right image. There are two types of correspondence estimation methods (Nalwa, 1993, p. 226). The first 
category compares the image intensity around two points and tries to find a match based on their 
similarity. The second category relies on edge detection and finds a match between points based on the 
correspondence  between edges. We used a combination of both approaches. In the following section we 
will illustrate this by showing how corner points are matched based on their intensity calculated in section 
4.2.2. After we found a match between corner points we can reconstruct its depth which is explained in 
section 4.2.4 and create a point cloud. 

4.2.1 POINT MATCHING 

Corner point matching is done by finding for each point in the left image a match in the right image. In 
order to increase computation speed we narrowed the matching search space using epipolar geometry 
constraints. The epipolar geometry defines the geometry of stereo vision. It is used to impose constraints 
on the search space for point registration. For any two camera poses we can calculate the epipolar line, 
which describes the possible locations of a point when it is mapped from one camera to the other. 

 

 

 

Figure 23 Two cameras with origins   ,    and an epipolar 
line going through points   ,   . 

Figure 24 Two cameras with parallel image plains, 
creating in a horizontal epipolar line. 

In figure 23 we can see the two camera origin points which are defined by    and   . On both image 
planes the point    is projected as    and   . Now the epipolar line is defined as the line between    and  
  , wherein    is the projection of point    on the right camera’s image plane. In our setup we have a 
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simplified situation because the image planes of the cameras are in parallel to each other. This creates 
horizontal epipolar lines as shown in figure 24. This means that a correspondence can only be found on 
the same scan line as the source point. So we match a corner point in the left image with a point in the 
right image only if they are on the same line. All possible corner points that are on the same horizontal 
line are collected and compared using the template matching approach explained in the next section. The 
point which is most equal (i.e. has the closest match) with the source point in the left image is considered 
as a match only if it is above a pre-defined threshold value. 

4.2.2 TEMPLATE MATCHING 

Template matching is a technique used to match a source image (the template) with a target image. 
The template should be smaller than the target because it should be fitted inside the target image. Let’s 
define        as the pixel value of the template image at location       and       ,        to be the 
pixel value at the location       of the target resp. result image. The width and height of the template, 
target and result images are defined by    ,   ,   ,   ,    and    respectively. The size of these images 
are related as follows           and          . 

 

Figure 25 The two template and target input images and the result output image (Kuntz, 2009). 

Now we can compare the template and target image given eq. 20 which is a normalized squared 
difference matching method between pixels. 

       
∑                         

     

√∑           ∑              
          

   

Eq. 20 

The pixel        with the highest value is defined as the closest match between the template and 
target image. 

4.2.3 CAMERA MATRIX 

In order to project points in 3D space on our screen we need to use a camera model that maps 3D 
points to pixels coordinates. We use a well-known technique called the pinhole camera model. It uses a 
camera matrix (Zisserman, 2004, p. 163) in order to map 3D camera coordinates onto a 2D image plane 
which is translated into pixel coordinates.  

Template Target Result Largest value 

𝑇 𝑥 𝑦   𝐼 𝑥 𝑦   𝑅 𝑥 𝑦   

𝐼𝑤 
𝐼  𝑇𝑤 

𝑇  

𝑅𝑤 
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Figure 26 The relation between camera center and world coordinates. 

The intrinsic camera matrix has the following components   ,    that describe the coordinates of the 

image center in pixels; and focal lengths   ,    that define the width and height of the focal plane in pixels. 

The focal length   of the camera describes the distance between the camera lens and focal plane in 
centimeters. The focal lengths have components         and         where    and    are 

scaling factors in pixels/centimeter for both the x and y direction of the focal plane. The matrix that maps 
a 3D camera  point to the image plane is defined by, 

  [
     

     

   

]  
 Eq. 21 

From matrix   we can also calculate the generalized inverse matrix (also called the Moore-Penrose 
inverse) which maps points from the image plane back to camera coordinates, it is defined in eq. 22. 
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 Eq. 22 

The image and camera coordinates are related to each other by,  

       [

 

 

 

]       [
     

     

   

] [

 

 

 

] 

 Eq. 23 
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 Eq. 24 

 

Using the   component from the image coordinate        we can form a set of corresponding 

homogeneous coordinates. For example if we have the point       in Euclidean space then we have the 
following set of corresponding homogeneous coordinates             with    . So this single point 
      can be represented by infinitely many homogeneous coordinates. We can use these homogeneous 
coordinates in order to represent affine transformations (which are transformations that preserve straight 

lines). The image coordinate        is mapped to its corresponding homogeneous pixel coordinate by, 

image plane 

𝑃𝑐 = (x, y, z) 

 𝑃𝑖𝑚𝑎𝑔𝑒           

pinhole lens focal plane 
𝜎𝑥 

𝜎𝑦 
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 Eq. 25 

Lefts define       and        to be the resolution in pixels of the camera. Based on this and eq. 25 we 
would expect that a pixel projected in the middle of the screen would have x and y coordinates equal to 
zero.  
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 Eq. 26 

In eq. 26 the approximately equal symbol is used because the matrix parameters are derived from 
calibration images suffer from noise. This noise introduces a small amount of error in the acquired camera 
parameters.  

4.2.4 DEPTH RECONSTRUCTION 

Based on the intrinsic camera parameters derived in section 4.2.2 and the match between two corner 
points (section 4.2.1) we can calculate the distance of that point from the camera using triangulation. 
Let’s assume a point    which is projected on the left and right image as    and   . 
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] 
 Eq. 27 

We define   to be the distance between both the cameras. The distance in centimeters   of    can be 
calculated as follows: 

    

  
    

      
   

  
 Eq. 28 

The equation can be simplified because we assume that the intrinsic parameters for the two cameras 
are equal  

                      Eq. 29 

Now we derive             in order to get the value for  : 

   

      
   

 Eq. 30 
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Figure 27 The stereo camera placed   centimeters apart with camera point    projected on both image planes. 

Now the question is based on the two projections    and    of point   , how far is it from the camera 
  ? We know the distance between    and    which is 2.5 centimeters, this means that we can translate 
   in order to map it onto    using a translation matrix defined in eq. 1. 
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 Eq. 31 

Wherein   is the distance between the two camera lenses. Both    and    can be put into a translation 
matrix which results in the following equation. 
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 Eq. 32 

We want to find the intersection between the two projection lines in figure 27. We know the pixel 
coordinates and the distance between the camera lenses and we need to find the depth in centimeters 
   . 

[
  

 
]  [

 
 

   
 

]   

[
 
 
 
        

        

   
 ]

 
 
 

 and [
  

 
]  [

  
  
   
 

]   

[
 
 
 
         

         

   
 ]

 
 
 

 

 Eq. 33 

The following equation needs to be solved in order to get    . 
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 Eq. 34 
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  By using eq. 32 
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 Eq. 35 

  By removing both translation matrices 
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  By resolving both matrix multiplications 
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 Eq. 37 

  By removing the last two rows which form a tautology 
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 Eq. 38 

  By removing the second row due to epipolar constraints we have     =        making it a tautology 

        

  
 

   
  

  
   

         

  
 

   
  

  
 

 Eq. 39 

  By multiplying with    

                         Eq. 40 

  By solving      

    
    

       
   

 
 Eq. 41 

Using eq. 41 we now have a method to calculate the depth in centimeters of a projection. 

4.3 CLOUD REGISTRATION  

The goal of the cloud registration method is to find the best match between world points and new 
camera points that were just generated from the stereo images. By rotating and translating the camera 
points we try to fit them into the world and in this way we can reconstruct our translation and orientation 
in relation to the world.  
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Because there are infinitely many possibilities to match two point clouds we need to restrict our 
search space. A good idea is to use the available orientation sensors, with these sensors we can retrieve 
the orientation of the camera. The actual method of calculating orientation from sensors is explained in 
the next section. The only parameter we do not yet know is the translation of the camera points with 
respect to the world. The task of finding the correct translation is explained in the second section. We will 
conclude with point merging which is an optimization in order to decrease the number of points.  

4.3.1 ORIENTATION 

The orientation of an object can be described by means of three orthogonal rotations; pitch, roll and 
yaw or sometimes also referred to as elevation, bank and heading. 

 

Figure 28 The orientation of an object can be described using; pitch, roll and yaw. 

The orientation of our camera is calculated by means of acceleration meters, gyroscopes and a 
compass module. They need to work together in a specific way to correct measurement errors. 

Accelerometers measure changes in acceleration, a value of 1 means that the sensor measures 1G (or 
1 time the gravity). In order to conveniently parse the data the three sensors are aligned in each of the 
three dimensions. If the object would be in rest then we measure         because we have the 
gravitation pull. It is possible to create a vector from these three values which can be used as an estimate 
to correct the pitch and roll of an object. 

 

 

 

 

 

Figure 29 The acceleration vector in 
red. 

 Figure 30 Inverse rotation matrix 
applied. 

 Figure 31 The error vector in 
green. 

1. First we create an acceleration vector from the accelerometer values, this vector is described 
in an object coordinate system. 

2. Rotate the acceleration vector with the inverse rotation matrix in order to go from an object 
to a world coordinate system. 

3. The error vector can be used to correct the rotation matrix. We rotate the matrix in such a 
way that the length of this vector (and thus the error) is decreased. The ratio between the 
original length of the vector and the new length is defined by a predefined parameter. 
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The gyroscopes measure rotary changes and are also aligned in each of the three dimensions. A 
clockwise rotation results in a positive value and a counter clockwise rotation in a negative value. The 
speed of the rotation is represented by the magnitude of the value. Because the gyroscopes are aligned in 
each of the three dimensions we can measure changes in pitch, roll and yaw. 

The compass module is needed in order to get the heading; it shows the derivation of magnetic north 
in clockwise direction (e.g. north is 0, east 90, south 180 and west 270 degrees). The actual 
implementation is less trivial because the magnetic module doesn’t provide the actual heading and only 
gives the three values from the magnetic sensors inside the compass module. Like the accelerometers 
they measure the strength in each direction, only it is not gravity but the magnetic field. To get from these 
sensor values to the actual heading let’s look at the following simplified 2D example. 

  

Figure 32 The compass module measuring magnetic 
fields in the    and    directions. 

Figure 33 The same compass is tilted by 45 degrees, 
resulting in a changed measured magnetic field. 

We can see how the two sensors change when they are rotated away from direction of the magnetic 
field. In our scenario we have three sensors, in a 3D situation the third sensor    would point away from 

the user (e.g. in the direction orthogonal to the magnetic field). If the compass is not tilted we can directly 
calculate the heading; we simply use eq. 42 and substitute  ̂ for   and  ̂ for  . However if the compass is 
tilted we should somehow compute these compensated values. 
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 Eq. 42 

The    and    components can be compensated by translating              from camera 

to world coordinates. We can use eq. 4 and the rotation matrix we are updating in order to calculate 
  

     
        

   . Now we have the inverse rotation matrix and we can use it to translate    from 
camera to world coordinates. 
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 Eq. 43 

The heading can now be calculated by using eq. 43 and eq. 42. Note that in the above equations the 
computed     values are not relevant because it describes the rotation of the z component which is not 
used in our heading calculations. 
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A rotation matrix is needed in order to describe the orientation of the camera. On each iteration we 
update the rotation matrix with changes measured by the gyroscopes. These updates should be 
performed in the order of kHz to be useful. These sensors are not 100% accurate and each measurement 
will introduce a small error in the orientation update. To compensate for this we correct the rotation 
matrix with the actual heading measured by the compass and pitch/yaw from the accelerometer. In order 
to let this approach work we have to assume that on average the accelerometers will point towards the 
ground (which is introduced by the gravitationally pull) and the compass points towards north.  

4.3.2 TRANSLATION 

Now we know the orientation of our cloud w.r.t the world we only need to find the translation. We 
need to define some quality measure in order to determine the score of a match between camera and 
world points. We propose the following quality measure; 
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Camera point cloud   and World point cloud  . 

 Eq. 44 

The goodness or score between two point sets is defined by their separation in Euclidian space and 
strength value. For each point   we have a strength parameter    that defines how sure we are that a 
point is present. The initial strength is derived from the similarity value of the template matching 
algorithm (section 4.2.2).   

For each world point   we find the highest scoring (thus nearest) camera point in the other set. If the 
distance is smaller than 1 we take that distance and divide it by   to increase the total score value. This 
means that if the distance between both points is zero the score is maximal. On the other hand if the 
distance is larger than   we don’t care and just add a score of 0. In this way we try not to search for an 
average maximal score but for an error which is minimal when the greatest number of individual point 
matches are found. We further multiply this value by the average strength values to reflect point strength 
in the score result.  
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 Eq. 45 

We now normalize the score value w.r.t. the number of world points. Using this normalized score we 
finally want to find a translation  ≔       of   such that the score we have is maximized. 

                             ≔                                     

With           the set of translated points w.r.t. translation   and set   

 Eq. 46 

The idea is to match the camera points   with the world   by searching for the smallest error given a 
translation   for the camera points; this translation translates the camera points from camera to world 
perspective. The possible translations we take into account are the ones that map a given point in   to a 
point in the world  , thus      . Because this is an exhaustive search we could optimize it by only using 
a subset      of constant size. Taking a subset of world points would not be a good idea because for each 
point we expect it has an equal possibility to match it with the world, however the other way around is 
not necessarily valid and thus we should take all world points into account. This results in a matching 
approach which is dependent on the number of world points.  
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4.4 OPTIMIZATIONS  

We will now discuss implemented optimizations which have as effect an increased frame rate and 
higher tolerance to noise. The depth scaling technique deals with the fact that in general the calculated 
depth error of a 3D point in a camera coordinate system is larger than the error in the x and y direction. In 
the second optimization technique we try to decrease the number of points inside the point clouds. In this 
way we gain frame rate because there are less points to compare during the score calculation. 

4.4.1 SCALING 

Instead of directly applying the score function from eq. 45 to a world and camera point cloud, we first 
scale it to increase the tolerance for measured depth errors. The scaling should be done in camera 
coordinates because the depth is measured in the perspective of the camera. Thus we first transform the 
world point cloud to the camera coordinates using    

      . In figure 34 we have the camera with 
camera point cloud    and world point cloud   . The camera points    of world point    are likely to be 
projected along the homogenous coordinates that point.  

  

Figure 34 Camera with world and camera point clouds. Figure 35 The same camera with scaling applied. 

In figure 35 we have the world and camera point clouds after scaling is applied. The scaling factor is 
defined by  , thus       . The scaling on the z component is performed using the matrix    in eq. 47. 

   [

    
    
    
    

] 

 Eq. 47 

The scale factor   determines the amount of error in the x and y components with respect to the 
depth. A smaller scale factor would produce a higher matching score  even if the distortion in the depth is 
larger. The consecutive matrix multiplications for the world and camera point clouds are shown in eq. 48 
and eq. 49.  

    
         Eq. 48 

Camera 

Homogenous  
coordinates of 𝑊𝑐  

 

World point 𝑤𝑐 

World points 𝑊𝑐 Camera points 𝐶𝑐 

𝑑 

z 

y 

x Camera 

World points 𝑊𝑐
  Camera points 𝐶𝑐

  

Homogenous  
coordinates of 𝑊 𝑐  

World point 𝑤 𝑐 

𝑑  

z 

y 

x 



 

31 
 

          Eq. 49 

The score function from eq. 45 can now be applied to the scaled world     and camera     point  
clouds. In order to transform the clouds back we can use eq. 50 and eq. 51. 

  
               Eq. 50 

             Eq. 51 

4.4.2 MERGING 

To increase performance we try to optimize a single point cloud by merging individual points together. 
When two points   and    are separated from each other by a distance smaller than some pre-defined 
constant α, e.g.          . Given the two strength values    and      the merged point strength would 
be; 

    ≔               Eq. 52 

This is due to mutually non-exclusiveness of the two events (Montgomery & Runger, 2011, p. 38).  

                         Eq. 53 

Thus the probability that events A and B occur is equal to the probability that event A or event B 
happens minus the possibility that both events happen. Besides the likelihood of a point also the 
coordinates should be merged. In our implementation the point with the highest strength has the most 

influence on the merged values, it is achieved using the following fractions;      
  

≔
  

      
 and 

      
 

≔        
  

. The corresponding x, y and z coordinates are updated as follows; 

    ≔        
  

          
 

 

    ≔        
  

          
 

 

    ≔        
  

          
 

 

 Eq. 54 
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5 IMPLEMENTATION 
In the next section we will discuss the development model used during this project, in the subsequent 

section the different specifications of the mobile device will be explained. The remainder of this chapter 
will discuss the application that was developed.  

5.1 DEVELOPMENT MODEL 

Different techniques and methods exist in order to manage deliverables and develop software. The 
software development methodology used in this project is scrum. This method is incremental and Agile 
based, in figure 36 we can see the Scrum approach (Kniberg, 2007). 

 

Figure 36 The Scrum development model with product increment cycles. 

The Scrum method has different roles; we have the scrum master, product owner and team. The 
scrum master is responsible for maintaining the processes and coaching his team. He can be thought of as 
the project manager. The product owner represents the business or costumer and guides the team 
toward building the right product. The team is the group of people who perform the actual work on the 
product (e.g. design and implementation).  

The product requirements are listed in the product backlog and functions as a list of features that 
should be implemented. They are ordered and executed based on their importance. The project 
progresses during these sprints, which usually take about two weeks. A sprint is defined as a unity of work 
that is executed by the team. Before the sprint starts features are taken from the product backlog and 
stored in the sprint backlog. Features inside the sprint backlog should be finished during a sprint. However, 
if for some reason a sprint backlog item is not completed before the sprint finishes it is put back into the 
product backlog. After the sprint is finished a sprint review meeting is held, during this meeting the team 
demonstrates the newly integrated features to the product owner. The product owner in its turn provides 
feedback to the team. During this meeting the goals and features for the next sprint are collected which 
are often influenced by the comments from the product owner. 

In this specific project there is a project team which consists of a single person, T.K.A. (Thorstin) Crijns. 
The product owner is Alten and represented by Ir. D.W. (David) Hardy and Drs. A.A.G. (Ard) Willems. 

5.2 MOBILE DEVICE 

In this section we will describe the development environment that was used along with its 
dependencies. We will continue with the target environment of the mobile device and conclude with the 
different used hardware components. 

  

Product backlog Sprint backlog 

2 weeks 

24 hours Product increment 
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5.2.1 DEVELOPMENT ENVIRONMENT 

The application was developed using the Eclipse IDE for Java Developers, it was targeted for the 
Android platform version 2.3.3 and compatible with the API level 10. Using the Real3D Add-On we get an 
actual 3D application meaning that it can use the 3D screen and stereo camera. Because of the required 
image processing techniques the OpenCV (version 2.3.1) computer vision library is used. 

5.2.2 TARGET ENVIRONMENT 

The target environment is the LG Optimus 3D P920 which is an Android based smartphone. In order to 
use the most recent API functionalities the OS was upgraded to the latest version available at the time of 
development, called Gingerbread (version 2.3). 

5.2.3 CAMERA CALIBRATION 

In order to get the intrinsic camera parameters calibration was performed on the stereo camera. We 
used a software tool “Camera Calibration Tools” (2012) and calibrated each of the two cameras separately. 
For the calibration the following pattern was used.  

 

Figure 37 The used calibration pattern was a 7x10 checker pattern. 

The calibration pattern was photographed from different angles at a resolution of 320 by 480 pixels. 
On each image the pattern was manually marked as shown below, in total there were 15 calibration 
picture (see figure 38). 

  

Figure 38 For each image the checkerboard corners were manually marked. 

Based on the calibration images the relative transformations and checkerboard were calculated as 
visualized in figure 38. In the left picture we can see the relative transformations from a camera 
coordinate system, on the right the same mapping but from a checkerboard coordinate system. 
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Figure 39 The computed relative positions of the camera and checkerboard.  

Based on all these images the camera positions, extrinsic and extrinsic parameters were calculated, we 
have the following intrinsic parameters for the left camera. 

   ≔    ,   ≔    ,   ≔    ,   ≔      Eq. 55 

Using eq. 55  It is now possible to substitute these values in the matrix from eq. 21 resulting in the 
actual calibration matrix for our specific camera. 

  ≔ [
        
        
    

] 
 Eq. 56 

The same steps are performed for the right camera which provides us with the intrinsic parameters in 
eq. 57. 

    ≔    ,    ≔    ,    ≔    ,    ≔      Eq. 57 

Based on the parameters the calibration matrix in eq. 58 was constructed. 

  ≔ [
        
        
    

] 
 Eq. 58 

In order to simplify the calculations that are performed in the subsequent sections we assume both 
matrices are equal, e.g.      and   ≔   . By doing so we increase computation speed at the cost of 
accuracy. 

5.2.4 HARDWARE 

The LG Optimus has the following hardware components; a GPS module, three accelerometers, three 
gyroscopes, compass, speakers, microphone, stereo camera and 3D touchscreen. The display is 4,3 inch 
and has a resolution of 800 x 480 pixels, it is possible to enable stereo vision by simultaneously projecting 
two images onto the screen which give the illusion of 3D.  
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Figure 40 The LG Optimus 3D with stereoscopic camera (Toor, 2011). 

In figure 40 we can see the stereoscopic camera, it is a 5 megapixel camera and able to capture stereo 
images. It should be noted that for our application not all components were needed, e.g. the GPS module, 
speakers and microphone remained unused.  

5.3 APPLICATION 

In the first part of this section we will explain the structure of the application and look at the different 
software components. We will also examine the different application modes and show we can switch 
between them. Different data files are created during the execution of the application. The last section 
will show how they are created and explain the purpose of each file. 

5.3.1 DESIGN 

An efficient and modular design is essential in order to improve performance and decrease 
maintenance costs. The different threads create a more modular architecture and decrease the overall 
computation time by utilizing the multicore processor. In figure 41 a global overview is shown of the 
different software components. 

 

Figure 41 The four main components and dependencies between them.  

The frame extraction module handles the data processing for each stereo frame that is received from 
the camera. In order to split the stereo data we first need to translate it into the appropriate data format. 
The raw data from the camera is in YUV420 (also known as NV21) and should be converted to ARGB. 
Image conversion is performed by converting each pixel of the image which has three components. The 
first component is the Y signal that represents the luminance. The other two U and V components are the 
blue and red luma values; these are defined by resp. the blue and red color without luminance. In NV21 
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these components are encoded as defined in (Bouguet, p. 10), for each component one byte is used, 
these bytes are ordered as shown in figure 42. 

 

Figure 42 The two data blocks of an     image in YUV420 format. 

The first     bytes in the raw data stream of the above image are the luminance components which 
represent a gray scale image. The blue and red luma values can be found in the subsequent    

 
 bytes, 

they form a     subsampling of the original image. In total the data stream has a size of   
 
     bytes 

creating an      YUV420 image. In figure 47 the mapping between the Y and U/V components is shown, 
they form an interleaved U/V plane. 

 

Figure 43 A     image has the following mapping between blue/red and luminance. 

The ARGB8888 bitmap has four components; alpha, red, blue and green. Each component is one byte, 
thus in order to represent an     image we need       which form a 24-bit true color image with an 
8-bit alpha channel. The alpha value 0x00 denotes a fully transparent pixel and a 0xFF a fully opaque pixel. 
Bytes are ordered as shown in figure 44. 

 

Figure 44 A true color ARGB8888 image of size     is represented by     32-bit integers. 

By applying the matrix transformation in eq. 59 we can convert an image in YUV420 format to 
ARGB8888. 
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 Eq. 59 

The pseudo inverse matrix in eq. 60 gives the mapping from ARGB888 to YUV420. It should be noted 
that we lose the alpha value because this is not supported in the YUV420 image format. 

[
 
 
 
]  [

                         
                        
                            

] [

 
 
 
 

] 
 Eq. 60 

After the camera data is transformed into a bitmap we get an image of 640 by 480 pixels (we used the 
lowest camera resolution to increase processing time). The bitmap contains both stereo images from the 
camera as shown in figure 45. 

 

Figure 45 The left and right stereo image of size      are split from the original     image. 

The retrieved images are from the left and right camera and have a size of 320 by 480 pixels. Both of 
these images are passed onto the frame processing module. 

The frame processing module estimates the location of the camera based on the stereo images, 
orientation and intrinsic camera parameters. A separate thread handles the orientation by continuously 
pulling data from the sensors and updating the rotation matrix as described in section 4.3.1. Based on the 
stereo images a point cloud is generated which is matched with the world point cloud, the matching 
algorithm returns the translation in order to get from camera to world coordinates. Because the location 
of the 3D model is known based on the translation we can calculate the location and orientation of the 
object with respect to the camera. 

The calculated location and orientation of the 3D model with respect to the camera is used by the 
scene rendering module to project the model over the scene (bitmap) from the camera image. In order to 
save processing time scene updates are only performed when a new camera image is received or the 
location of the model changes. 

User input is handled by the user input module. It processes GUI commands and is exclusively invoked 
by events (for example if the user wants to view the context menu to switch to a different application 
mode). 

 ≔     

 
≔

 
 
 

 

  ≔     

Left stereo image Right stereo image 
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There are not only dependencies between software modules but also between modules and the 
different hardware components, they  are visualized in figure 46. 

 

Figure 46 The dependencies between hardware components and software modules. 

In the above model the dataflow and dependencies between the different hardware components and 
software modules are indicated by arrows. An arrow from component A to B indicates that B depends on 
A. The frame processing module from figure 46 is split into its two sub modules (e.g. the orientation and 
translation calculation modules). The orientation module requires the gyro’s accelerometers and compass 
module in order to determine orientation. The translation module does not depend on any hardware 
components, however it requires the frame extraction module which in its turn uses the stereo camera. 

5.3.2 MODES 

In this section we describe the different application modes that the application has. In figure 47 all 
modes and flows between them are visualized. 

 

Figure 47 The different application modes. 

Frame extraction Orientation calculation Translation calculation 

Scene rendering 

Hardware 
Software 

Acceleration Compass Gyroscope Stereo camera 3D Display 

User input 

Starting Settings 

Calibration 

Viewing 

 



 

39 
 

In the above flow diagram the clock symbol indicates that the event is triggered automatically. An 
arrow without a symbol means that it can only be triggered manually by the user. When the application is 
initialized we enter the starting mode. It waits for the orientation module until it reports that an accurate 
orientation has been acquired and enters the viewing mode. The orientation is defined to be accurate 
when the orientation error measured by the compass and accelerometers is below a predefined threshold 
value. If the user triggers the context menu and enters the settings page the application will exit the 
starting mode and enter the settings mode. The settings mode is used to modify application parameters 
such as the point cloud merge distance, number of world points and maximum allowed template 
difference. The user can change settings which are automatically saved to the settings file. If the menu is 
closed the startup process is activated. The viewing mode tries to find the orientation and translation of 
the camera in relation to the 3D model which is then drawn into the scene. The user can enter the 
calibration mode or change settings in the settings page. If the calibration mode is active then the user 
can create the world point cloud and location of the 3D model. A point cloud of the world is built from the 
camera images, which represents the area currently visible to the camera. This environment is the world 
space which consists of 3D points (the point cloud). If the environment is reliable enough (e.g. satisfies the 
constraints which are set in the settings page) then it automatically stores the world space and triggers 
the startup process. However the user can also manually exit via the settings page. 

5.3.3 DATA FILES 

The settings file stores all the parameters of the application, it is a binary file consisting of integer 
values and is saved under the name “settings" in the root folder.  All the application settings are 
categorized into 4 groups; settings in relation to world camera matching, corner points, world points and 
point strength. For each category the parameters are summarized in the tables below. The data types 
shows the expected data type and is either in mm, cm, *, #, %. The ‘mm’/’cm’ represents a unit length in 
millimeters/centimeters, the factor ’*’ is a multiplication factor, ‘#’ is the number of elements and ‘%’ 
defines the percentage which should usually be in the range of 0-100.   

Index Description Type 

1 How large is the error in depth projection in relation to the other directions. If this 
value is 1 it means that depth error is equal to the error in the other directions. 

* 

3 The minimal acceptable point cloud matching score. % 

7 How tolerant should we be to errors when in viewing mode. A higher value results in 
more matching but also in more false positives. If this factor is 1 it means we are as 
tolerant for errors in calibration mode as in viewing mode. 

* 

Table 2 World camera matching settings. 
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Index Description Type 

2 Minimal number of corner points needed in order to continue with the generation of 
a camera point cloud. 

# 

4 The maximal number of corner points that can be detected by the corner point 
algorithm. The value represents corner points on the left in addition to the right 
camera. 

# 

5 The minimal required corner strength. % 

11 The maximal acceptable template difference. % 

15 The maximum allowed depth of a point (a larger depth results in greater errors). cm 

Table 3 corner points settings. 
 

Index Description Type 

6 The maximum number of points that we can store in the world. # 

10 The required number of world points when calibration should be stopped. # 

Table 4 World points settings. 
 

Index Description Type 

8 Maximal acceptable error between camera and world points when matching points 
are earned. 

mm 

9 The distance when points should be merged together. mm 

12 The initial point strength which is multiplied by the template score. % 

13 Points that have a lower strength than this value will be removed and are classified 
meaningless. 

% 

14 The percentage of remaining point strength at each calibration iteration. % 

Table 5 Point strength settings. 

In addition to the settings file there is also a file for storing information about the calibrated 
environment. When construction of the world point cloud is finished all information about the points and 
location of the model are saved in the world file. It is located in the root directory under the name ‘world’. 
These world files can be swapped between mobile devices to exchange environment models. The data 
format is binary, however there is a separate file with the extension ‘xyz’ that can be read by many 3D 
point cloud visualization applications including CloudCompare (2010). It is an open source initiative that 
can be freely downloaded.  
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6 RESULTS 
In this chapter we will perform various tests in order to determine the capabilities of the stereo 

camera. We will conclude this chapter by summarizing our findings and look at possible improvements.  

6.1 VALIDATION 

The different tests are executed using the test cube in figure 48. The cube can be used to verify the 
results because it has known spatial and visual properties. It has a high contrast with black points which 
are detected by the camera as corner points. 

 

Figure 48 The test cube of 9x10x12 cm with point patterns on each side. 

In total we will perform 5 tests. Each test is designed to asses different properties of the system. In the 
first test we will simply track one single point and determine the accuracy of the measured depth. The 
second test is used to determine the accuracy of the generated point cloud. In the third test we will 
measure the accuracy of the detected camera location in relation to the 3D model by comparing the 
measured location to the known real location of the camera. In the corner point test we will look at the 
impact of incorrectly detected corner points. Finally in the last test we measure timing statistics for each 
of the different processing tasks. 

6.1.1 DEPTH TEST 

In this test we will verify the accuracy of the calculated depth by the stereo camera. We have a single 
black corner point that is drawn on a white surface. This point is captured by the stereo camera that will 
create a point cloud of just a single point. The data we collect is the depth of this point cloud. In figure 49 
we can see the test setup.  
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Figure 49 The depth test. 

The test is executed a number of times for different distances. In plot 1 we performed 35 
measurements over the distances of 10, 20, 30 and 40 centimeters. 

 

Plot 1 The measured distance compared to the real distance with standard deviations 

In the plot we have the real distance on the x-axis and the measured distances on the y-axis which are 
all in centimeters. The two lines above and below the average measured distance are the standard 
deviations, we can see they are minimal for a distance of 30 centimeters. The measured and real 
distances are off by a factor of     which could be the result of a non-perfect alignment of the two stereo 
cameras or small errors in the calculated camera parameters during calibration. 
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6.1.2 PROJECTION TEST 

In this test we will compare the generated point cloud with the real point on the test cube. The 
camera was targeted at one side of the cube in order to generate a world point cloud. The cloud (stored in 
the xyz file, see section 5.3.3) was copied and opened in CloudCompare (2010). The point cloud together 
with the test cube resulted in the following projections. 

  

Figure 50 Front view of the point cloud. Figure 51 Top view of the point cloud. 

The values in the above two projections were extracted from the generated xyz point cloud files. In 
this test we explicitly disabled the merging of individual points in order to see that there is a large 
difference in the measured depth. The error is almost   times larger than the in the x and y directions, 
because a small error in the corner point matching results in large errors in the calculated depth. E.g. the 
relation between measurement errors and calculated x and y location is linear where the relation for the 
depth is nonlinear, see also eq. 30. 

6.1.3 LOCALIZATION TEST 

In this test we verify the localization of the device by comparing the calculated location with the real 
location coordinates. In figure 52 we can see the camera placed at a distance of 45 centimeters and 
height of 15 centimeters from the object. 
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Figure 52 Localization test and screenshots from the application. 

The right two windows in figure 52 visualize the augmentation of the real scene were the Alten logo is 
displayed in the middle of the calibration cube. The white points on the right bottom screen are world 
point cloud that displayed during calibration mode. We performed 91 measurements and acquired the 
following results. 

Component Real distance (in cm) Mean (in cm) SD (in cm) 

X 0 0.878584408 8.936851184 

Y 15 14.07093571 1.678411259 

Z 45 44.50705213 2.442091036 

Table 6 Results of the localization test. 

The found translation from camera to world coordinates is within a centimeter of the real measured 
location. The large standard deviation in the x component is the result of wrong matches between the 
camera and world point cloud, this is probably because we have two rows of corner points which all have 
equal y values.  
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6.1.4 CORNER POINT TEST 

This test is performed in order to determine the performance of the corner point matching algorithm 
that was presented in section 4.2.1. In figure 54 we can see the world point cloud created from the corner 
points on the plane. 

  

Figure 53 Camera above the plane with 
points in a row. 

Figure 54 The point cloud created from corner points on the plane. 

In total there are 61 points in the point cloud of which are wrong. This is due to the fact that the all 
corner points are in the same row. The corner point matching algorithm has many options to match 
corner points in the left camera with corner points on the right camera because they all are on the same 
epipolar line (see also figure 24). The high number of 24% incorrect projections does not happen in 
normal conditions, however in this extreme case we have many points on the same line as the epipolar 
line. 

6.1.5 PROCESSING TEST 

In this test we measured the processing time spend on different tasks. In total we performed 629 
measurements which are summarized in table 7. 

Task 
For each call (in MS) Processing time 

(in %) Average SD 

OpenGL Drawing 148 57 28 

Creating point cloud from corner points <1 1 < 1 

Camera frame processing 332 127 37 

Localization based on point cloud 304 333 29 

Orientation update  <1 2 5 

Table 7 Result of 629 measurements for each task. 

The first column shows the specific task that was measured. In the second and third column we have 
the mean time and standard deviation spend on a single execution of that task. The last column shows the 
total percentage of time that is devoted to that task. So if a task has a low average execution time and a 
high processing time then it will be executed many times per second. We can see that most time is 
devoted to the camera frame processing, the reason for this is that  frame conversions are performed in 

Camera Plane with points 

Camera Plane with points Point cloud points 
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software. As can be expected, the localization takes 29% of CPU time. Based on table 7 we can calculate 
the number of frame per second. On average 148 milliseconds is spend on drawing a single frame. It takes 
28% of the total time, thus the number of frames per second is                        . 

6.2 CONCLUSION 

The research was performed in order to create augmented reality for mobile devices. The tests show 
that the question of creating AR without the need for markers can be answered positivity. However there 
are still a number of improvements that could be made.  

The ability to correctly project a 3D model and thus find the translation between world an camera 
coordinates is dependent on the match between camera and world point clouds. Recall that the point 
clouds are constructed based on the found match between corner points, discussed in section 4.2.1. As 
we have seen in the corner point test, this matching between corner points is not always calculated 
correctly. And an incorrect point cloud can either result in a wrong projection of the 3D model or a low 
matching score and thus no projection of the 3D model. For future work more research should be 
performed in order to improve corner point matching without severely increasing computation time. This 
could for example be accomplished by introducing more constraints on the search space. 

Another issue is the ability to project 3D objects over relatively large distances. The two cameras are 
relatively close together resulting in a more accurate depth calculation for close objects at the cost of 
calculated depth on objects that are further away. We can calculate the theoretically possible maximum 
distance that can be found by the stereo camera. Using eq. 41 for calculating depth and camera 
parameters in eq. 55 we have that the maximal depth would be                    

          

          meters. However in practice an accuracy of just an single pixel is not achieved, a more likely 
value would be a larger difference for example of 8 pixels. It would decrease the maximum depth to only 
2.6 meters. This limitation could be resolved by increasing the distance between the two cameras or using 
a higher resolution. 

In section 6.1.5 we performed measurements in order to determine the processing time needed by 
the different tasks. The frame rate was calculated to be only 1.9 fps, the reason for this is that we are not 
able to directly access camera images in the correct format (which is an limitation of the API). Currently 
each frame conversion is implemented as a matrix multiplication. In OpenCV this can be performed 
relatively efficiently, however the operation is still in software. To overcome this problem we have to wait 
for an new API release.  
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Appendix A  
In this section all the requirements of the system can be found, they are divided into functional and 

non-functional requirements. The functional requirements specify what the system should do or have and 
the non-functional requirements describe how it should behave. For instance performance requirements 
are an example of non-functional requirements. 

1. FUNCTIONAL REQUIREMENTS 

The following requirements are functional requirements; they are grouped into 5 categories. The first 
category shows all the functional requirements concerning the stereo camera. The next type shows all the 
tracking related requirements of corner points. In the 3D objects category we define how a model should 
be augmented with the scene (e.g. its position shape) and also how it should be loaded. The fourth 
category defines all the requirements that are needed for the functionality required in orientation 
calculation. Finally, the last is about the peripherals of the devices (e.g. the required components of the 
system). 

1.1. CAMERA  

The system must be able to capture and display camera images (see user story 1). 

 

1 

 

 High 

 

16 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I want to see the images that captured from the camera. 

 

Motivation 
The camera shows the reality which is needed in order to create AR. 

 

Acceptance test 
Images captured from the camera are shown to the user. 

 

The camera of the systems must be calibrated correctly (see user story 2). 

 

2 

 

 High 

 

16 Hrs.  
 

ID Priority Duration 

   

User story As a user I want to see a correct overlay of the augmented reality which 
is drawn on the camera image. 

 

Motivation 
The camera should be calibrated correctly in order to create AR. 

 

Acceptance test Given a fixed orientation and position in 3D it should be possible to draw 
a pixel on the screen that matches the 3D position. 

 

Given a 3D position (in centimeters) it should be drawn correctly on the camera image independent of 
the systems orientation (see user story 3). 
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3 

 

 High 

 

8 Hrs.  
 

ID Priority Duration 

   

User story As a user I want to see a correct overlay of the augmented reality which 
is drawn on the camera image that is functions independent of my 
orientation.  

Motivation 
The orientation of the system should be used to correctly display AR. 

 

Acceptance test Given an unknown orientation and position in 3D a pixel on the screen 
should be drawn that matches the 3D position independent of the device 
orientation.  

1.2. FEATURE TRACKING 

The system must be able to track features from the camera images (see user story 4). 

 

4 

 

 Medium 

 

24 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I want the system to track points in space. 

 

Motivation Feature tracking is used to recognize and track points in space, based on 
these and other measurements the 3D location of these points is calculated.  

Acceptance test 
Individual points are tracked in space and shown on the display. 

 

The system must be able to derive the relative distance of a feature it is tracking (see user story 5). 

 

5 

 

 Medium 

 

24 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I want the system calculate the distance of points it is tracking.  

 

Motivation If we know the distances between tracked points, we can calculate the 
relative location of the device w.r.t. these points.  

Acceptance test Given a set of camera images and a tracked pixel the system can 
estimate the distance of that pixel and display it on the screen.  
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1.3. 3D OBJECTS 

The user must be able to import 3D object files (see user story 6). 

 

6 

 

 Low 

 

8 Hrs.  
 

ID Priority Duration 

   

User story As a user I have to be able to import 3D models in the OBJ file format 
into the application.  

Motivation The user should be able to change the augmented reality by importing 
external 3D models into the system.  

Acceptance test 
The user must be able to load a 3D object file into the application. 

 

The system must be able to render 3D objects (see user story 7). 

 

7 

 

 Medium 

 

24 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I should be able to see the 3D object files.  

 

Motivation 
The system should display the 3D OBJ models into OpenGL. 

 

Acceptance test 
The user must be able to view 3D object files inside the application. 

 

The system must be able merge the 3D object with the images from the camera (see user story 8).  

 

8 

 

 Medium 

 

8 Hrs.  
 

ID Priority Duration 

   

User story As a user I want to see the images from the camera merged with the 3D 
object model.   

Motivation In order to create AR the system has to be able to merge the camera 
image with the object model.  

Acceptance test 
The user must be able to see the 3D model inside the camera image.  

 

The user must be able to project the 3D object correctly inside the scene in order to create AR (see 
user stories 9, 10 and 11).  
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9 

 

 Medium 

 

16 Hrs.  
 

ID Priority Duration 

   

User story The system has to be able to project the 3D object at the correct location 
inside the scene. 

 

Motivation In order to create AR the object should be rendered at the correct 
location. 

 

Acceptance test When the camera is moved the object is projected at exactly the same 
location inside the scene. 

 

 

 

10 

 

 Medium 

 

16 Hrs.  
 

ID Priority Duration 

   

User story The system has to be able to project the 3D object at the correct 
orientation inside the scene. 

 

Motivation To create AR object should be rotated in such a way that their 
orientation is correct, meaning that from a scene perspective the object 
orientation shouldn’t change.  

Acceptance test 
The object is rendered at a fixed orientation from a scene perspective. 

 

 

 

11 

 

 Medium 

 

8 Hrs.  
 

ID Priority Duration 

   

User story As a user I want the system to see the 3D object at a correct size w.r.t. 
the scene. 

 

Motivation The object should have a fixed size w.r.t. the scene in order to create AR. 
This means that if the distance between the camera and object increases 
the size of the object decreases.  

Acceptance test When the camera is moved such that the distance between it and the 
object changes then the relative size of the object w.r.t. the scene stays the 
same.  
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1.5. ORIENTATION  

The system must be able to calculate its velocity based on the accelerometers (see user story 12). 

 

12 

 

 High 

 

8 Hrs.  
 

ID Priority Duration 

   

User story As a user I want the system to measure its velocity and be able to 
calculate the distance of tracked objects.  

Motivation The velocity of the system is needed in order to determine the distance 
of tracked objects.  

Acceptance test 
When the system is moved its speed is visualized on the screen. 

 

The system must be able to compute its orientation using the computed pitch, roll, yaw and gyroscope 
values (see user stories 13, 14, 15, 16 and 17). 

 

13 

 

 High 

 

8 Hrs.  
 

ID Priority Duration 

   

User story As a user I want the system to calculate the pitch based on the 
accelerometers.  

 

Motivation Calculating the pitch using the accelerometers is needed in order to 
compensate for drift caused by the gyroscopes.  

Acceptance test 
The pitch of the system is shown on the display. 

 

 

 

14 

 

 High 

 

8 Hrs.  
 

ID Priority Duration 

   

User story As a user I want the system to calculate the roll based on the 
accelerometers.  

Motivation Calculating the roll based on the accelerometers is needed in order to 
compensate for drift caused by the gyroscopes.  

Acceptance test 
The roll of the system is shown on the display. 
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15 

 

 High 

 

2 Hrs.  
 

ID Priority Duration 

   

User story As a user I want the system to calculate the yaw using the digital 
compass.  

Motivation Calculating yaw using the digital compass is required in order to 
compensate for drift caused by the gyroscopes.  

Acceptance test 
The yaw of the system is shown on the display. 

 

 

 

16 

 

 High 

 

8 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I want correct digital compass values.  

 

Motivation The system should compensate the digital compass values introduced by 
tilt. 

 

Acceptance test 
When the system is tilted the compass values don’t change. 

 

 

 

17 

 

 High 

 

16 Hrs.  
 

ID Priority Duration 

   

User story 
The system must be able to update its orientation using the gyroscopes. 

 

Motivation 
Gyroscopes are ideally suited to calculate change in orientation. 

 

Acceptance test 
When the system is rotated the change in orientation is visualized. 
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1.7. PERIPHERALS 

The system must have the required components (see user stories 18, 19, 20, 21 and 22). 

 

18 

 

 High 

 

1 Hr.  
 

ID Priority Duration 

   

User story 
The system has to be able to use accelerometers. 

 

Motivation 
Accelerometers are needed in order to calculate orientation. 

 

Acceptance test 
The device has accelerometers. 

 

 

 

19 

 

 High 

 

1 Hr.  
 

ID Priority Duration 

   

User story 
The system has to be able to use gyroscopes. 

 

Motivation 
Gyroscopes are needed in order to calculate orientation. 

 

Acceptance test 
The device has gyroscopes. 

 

 

 

20 

 

 High 

 

1 Hr.  
 

ID Priority Duration 

   

User story 
As a user I want the system to have a compass module. 

 

Motivation 
The compass module is used to calculate orientation. 

 

Acceptance test 
The device has a compass module. 
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21 

 

 High 

 

1 Hr.  
 

ID Priority Duration 

   

User story 
As a user I want the system to have a screen. 

 

Motivation 
A screen is needed in order to visualize AR. 

 

Acceptance test 
The device has a screen. 

 

 

 

22 

 

 High 

 

1 Hr.  
 

ID Priority Duration 

   

User story 
As a user I want the system to have a camera. 

 

Motivation 
A camera is needed in order to create AR. 

 

Acceptance test 
The device has a camera. 
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3. NON-FUNCTIONAL REQUIREMENTS 

The nonfunctional requirements specify how the system should behave. They are divided into 
performance and usage related requirements. 

1.8. PERFORMANCE 

The system AR projection must be updated and displayed at a minimum of 1 fps (see user stories 23, 
24 and 25). 

 

23 

 

 Medium 

 

8 Hrs.  
 

ID Priority Duration 

   

User story 
As I user I want the system to perform fast enough to experience AR. 

 

Motivation 
A slow frame rate decreases the AR experience. 

 

Acceptance test 
The system runs at a minimum of 1 fps. 

 

 

 

24 

 

 High 

 

8 Hrs.  
 

ID Priority Duration 

   

User story 
OpenGL must be used to free the processor of rendering computations. 

 

Motivation The use of OpenGL increases the available computation time because 
rendering related calculations are not performed in software.  

Acceptance test 
OpenGL is implemented on the system. 

 

The system must be reliable in terms of operability (see user story). 

 

25 

 

 High 

 

32 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I want the system to perform reliably.  

 

Motivation 
A system that doesn’t function consistently and reliably is not desirable. 

 

Acceptance test 
The system performs correctly during a 5 minute test. 
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1.9. USAGE 

The system must be used in bright environments (see user story 26). 

 

26 

 

 High 

 

0 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I operate the system in bright environments. 

 

Motivation 
This is a specific design decision of the system. 

 

Acceptance test 
The system is used in bright environments. 

 

The system must either be used indoor or outside in dry and clear conditions (see user story 27). 

 

27 

 

 High 

 

0 Hrs.  
 

ID Priority Duration 

   

User story 
As a user I operate the system in clear weather conditions. 

 

Motivation 
The system is designed with this specific requirement in mind. 

 

Acceptance test The system is used in clear and dry weather conditions. 
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Appendix B  
The paper on indoor positioning systems that investigates the different techniques to determine 

position in indoor environments. 
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