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Abstract

In this document, several improvements to an initially proposed solution of a planning and
scheduling problem are identified. This challenging problem is found in the production
process of AC!, being the global leader in its product field. The initially proposed solution,
given in the form of an automated planning tool, showed promising results of a potential
cost reduction regarding the product availability for sales. However, within the original
planning tool, two manual post processing steps were required to obtain a solution that
was competitive with the manual production plans. Furthermore, the initial solution
performed worse regarding the maintenance of stock levels and the amount of production
changeovers that were required.

The found improvements mostly involve adaptations made to the original planning tool.
Furthermore, many adaptations to the input data and refinements of the constraints (that
restricted the planning solutions), are applied. The new performance evaluation shows an
even larger cost reduction regarding the product availability for sales. Also, product stock
levels are now maintained better than within the manual production plans. On top of that
it follows that the two manual post processing steps, required for the original planning
tool, are not required anymore.

To increase the confidence in the current planning solution several validation experi-
ment are conducted. A drawback still present in the current solution is the increment
of changeover costs in the solutions of the planning tool. Although it is the case that min-
imization of changeovers does not minimize the other cost objectives, the current planning
tool is shown unable to find the minimum amount of changeovers. This even holds after
the implementation of a post processing step that decreases the amount of changeovers
generated by the planning tool. To be able to use the planning solution for the comparison
of several what-if scenarios, it is shown that many evaluations of the same scenario have
to be compared, in order to make reliable predictions.

!The name of the company is anonymized in this public version of the document, to protect confidential
information.
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Chapter 1

Introduction

Even though a large amount of research is conducted in the area of production planning
and scheduling, still very challenging problem variants exist. Such an instance is found
in the production planning and scheduling process of AC. To improve and support this
process, an initial proposed solution has been suggested in the form of an automated
planning tool by [4]. The work of [4] was the initial step in a larger research project by
TU/e and AC as partner. This graduation project is the second phase and aims to further
investigate the potential of the initially proposed solution and to possibly identify several
improvements. Some of these improvements were already suggested by [4].

For more information about the organizational context of AC and the background of
the planning problem, the reader is referred to the work of [4]. Also, an overview of the
research done in the area of planning and scheduling is given by [4] and is extended here in
Chapter 2. The planning problem at AC was mathematically formalized by [4] and found
to be of large complexity. A drawback of this description is that it is based on solving
a planning problem (assigning productions to fixed buckets). One potential improvement
is to base the problem description on solving a scheduling problem that is more tailored
towards the actual problem that is solved. This type of problem description and a recap
of the textual problem description is given in Chapter 3.

The relevant optimization criteria for the suggested solution can be found in Section 3.2.4.
A comparison of the model output with the manual planning by [4] suggested a potential
improvement of 17% in the non-delivery costs, however with an increase of the inventory
deficit costs and the setup costs. On top of that two manual post processing steps were
required on the generated schedules by the model. In Chapter 5, several improvements
are identified that remove the necessity of these post processing steps. Also, the initial
evaluation given in Chapter 5 shows that all cost objectives are reduced compared to the
original model of [4]. Furthermore, two automatic post processing steps (Section 5.6) are
designed to improve the quality of the generated schedules by the model.

Other improvements involve changes to the technical constraints and fixing errors in the
input data of the model. As can be seen in the updated problem description in Chapter 3,
some technical constraints have been added, whereas others have been removed, compared
to the initial model of [4]. Due to the large amount of changes in the model, a new
implementation description of the current model is given in Chapter 4. A final evaluation
study has been conducted to measure the quality of the current model in Chapter 6. This
is followed by a conclusion and a suggestion for future work in Chapter 7.






Chapter 2

Literature

The objective of production planning is to be able to fulfill customer demand for a given
set of time periods. This involves the allocation of various resources within the production
facility over a time period generally covering a few weeks to a few months. This type of
planning is also referred to as medium-term scheduling in literature. Long-term production
planning on the other hand involves actual changes to the supply chain, such as facility
locations. Short-term scheduling is in general more detailed and provides a production
schedule on a short time horizon covering several days to minutes. The main issue is to
decide when, where, and how to produce a set of items given a set of various processing
recipes. Scheduling can have lots of different objectives such as minimizing makespan,
minimizing earliness/tardiness costs and maximizing profit [8]. Since the boundaries of
planning and scheduling problems are not well established and there is an intrinsic in-
tegration between these decision making stages, there is a lot of work in the literature
addressing the simultaneous consideration of planning and scheduling decisions [28]. Also,
batching decisions (i.e., the number and size of batches) are often treated as planning
decisions (and thus provided to the scheduling problem), but can also be viewed as part
of the scheduling problem [20]. Another thin boundary in literature is between the use of
the terms resource and unit. A resource is usually a physical material or equipment with
a certain capacity. Units on the other hand are mostly the main producing machines and
can perform one task at the time. Units can be viewed as resources modeling wise (by
giving them a capacity of 1) and hence the term unit is often used together with the term
resource. The purpose of chapter is to give an overview of the research done in planning
and scheduling in the batch process industry and hereby highlighting some of the recent
developments covering the last few years.

2.1 Classification of scheduling problems

The classification of scheduling problems shows that there is a tremendous diversity of
factors that must be accounted for, which makes the task of developing unified general
methods quite difficult [21]. Table 2.1 gives an overview of the various characteristics.
This overview shows that there are many different combinations possible of scheduling
problems in practice. An important feature here is the process topology:

e Sequential processes consist either of a single stage or multiple stages. Within these
type of processes, batches are used to represent production, thus it is not necessary
to consider mass balances explicitly. Two different types of plants are distinguished
here: Multiproduct plants produce multiple products following a sequential similar



recipe. Multipurpose plants however, consist of general purpose equipment (re-
sources) used to manufacture a variety of products, where each product can have
different task structures and equipment requirements. This difference is illustrated
in Figure 2.1. The scheduling for multipurpose plants is hence significantly more
difficult that that of multiproduct plants [24].

e In networked processes the topology is of arbitrary structure and the network pro-
cesses are a mix of convergent and divergent flow paths. Hence material balances
are required to be taken into account explicitly. It involves the splitting and mixing
of batches and the use of complex processing recipes.

stage C product A
[

stageD stage B product B
product A
| stage 1 |_.| stage 2 |_.| stage 3 }<product B
stage E product C
product C «
(a) Multiproduct (b) Multipurpose

Regarding the processing tasks two types are distinguished: Batch tasks and continuous
tasks. Batch tasks have a fixed duration and batch size. Furthermore the final product
is produced/delivered in it’s entirety at the end of the tasks execution. Continuous tasks,
however, usually have a fixed processing rate and sometimes can have a minimum or
maximum bound to either the processing rate or the minimum and maximum duration of
the task. On top of that the products being produced are added to the stock during the
tasks execution instead of at the tasks ending time.

The produced materials and products may be stored according to different policies. Un-
limited intermediate storage (UIS) means that produced goods may stay in the inventory
for infinite time without being consumed. If this duration is limited, because for example
the goods spoil after some time, a finite intermediate storage (FIS) is applied. It might
be the case that produced material require to be consumed immediately after production
and then a zero wait (ZW) policy is maintained. If there is no intermitted storage at all
(NIS), this means subsequent tasks that produce and consume the same material can be
seen as one task.

Produced products might require to be delivered during the manufacturing process. This
means that scheduling also needs to determine when to deliver which products and in
what quantity, besides when and how to produce them. The demand of all products can
either be at the end of the scheduling horizon or at intermediate due dates. In some cases
due dates are given in terms of a window having a minimum and/or maximum delivery
time. In this case earliness and tardiness costs can be introduced as well in the objective,
if orders are delivered too early or too late respectively.

In the last decade a new feature of scheduling problems that gets studied, is the degree
of uncertainty within production scheduling. Namely, in practise many of the parameters
that are associated with scheduling are not known exactly. Parameters like raw material
availability, prices, machine reliability, and market requirements vary with respect to time
and are often subject to unexpected deviations [16]. The work in [16] provides an analysis
on the sources of uncertainty in process scheduling and also gives an overview of the
different modeling solutions dealing with these various unknown parameters. Adjusting
the schedule upon realization of these uncertain parameters or occurrences of unexpected
events is called reactive scheduling. The reactive scheduling corrections are performed



either at or right before the execution of scheduled operations and are applied to the
original (deterministically) obtained schedule.

processing topology | sequential, network
intermediate storage policy | unlimited (UIS), no intermediate storage (NIS),
zero wait (ZW), finite intermediate storage (FIS)

changeovers | sequence dependent, time/frequency dependent,
unit dependent, none

operation modes of processing tasks | batch, continuous

demand patterns | end of horizon, intermediate dates

resource considerations | renewable, none

objectives | minimize makespan, minimize earli-
ness/tardiness/changover  costs,  maximize
profit, inventory related, etc...

degree of uncertainty | deterministic, stochastic

Table 2.1: Scheduling problem characteristics

2.2 Optimization models

There exist excellent papers that review and compare the research done regarding the
modeling of scheduling problems. In [7] various mixed integer linear approaches (MILP)
are reviewed. This review is based on the separation between continuous and a discrete
problem formulation of scheduling problems, i.e., between the way time is modeled. An-
other review [20] makes the main distinction between the processing topology. This latter
approach is also meaningful, because all modeling approaches that are based on a sequen-
tial process topology, are batch oriented. Furthermore, only the network based topology
has both discrete and continuous time modeling solutions as shown in the overview [21].

Both discrete and continuous based modeling approaches have two basic representations
for the network based process topology.

e The State-Task-Network (STN) representation. The STN [14] is a directed graph
consisting of two types of nodes: State nodes that represent raw materials, inter-
mediate products and final products. Task nodes on the other hand represent the
processing tasks and are related to state nodes representing the amount of ma-
terial /product consumed or produced. The advantages of this representation are a
clear distinction between operations and resources, the avoidance of precedence rela-
tions (they are implied by the presence of material) and the allowance of very general
processing recipes [13]. On the downside, as argued by [23], all tasks can change
only material states and resources are handled in an unique manner. For example
to handle multiple resources that can perform the same tasks and use/produce the
same materials, task duplication is required. This drawback is illustrated in Figure
2.1. Given n resources to produce product b from product a, n tasks are required to
model each resource thus increasing the model size.

e Resource-Task-Network (RTN) representation. The RTN is an extension of the
STN by [23]. The resource-task network process regards all processes as bipartite
graphs consisting of two types of nodes: resource and tasks nodes. The concept of
a resource is here very general and can consist of materials, processing equipment,
storage and utilities. In contrast to the STN representation, where a task consumes



and produces materials, in a RTN, a task is assumed only to consume and produce
resources. One advantage over the STN is illustrated in Figure 2.1. Since resources
can be implicitly modeled in the RTN this leads to a more efficient model. A
recent extension [27] of the RTN adds some new modelings features such as more
realistic demand fulfillments (i.e., by introducing delivery start and end window),
adding capacity bounds to resources, and extending the functionalities of a single
task. The task functionality is extended by improving the interaction between tasks
and resources (tasks can modify the resource capacities), and also allowing external
resource transfers and delivery windows instead of fixed due dates (production orders
are modeled as resources in the RTN). In the earlier RTN representation a resource
node is represented using the variable R,; that gives the amount of resource r at
period t and using predefined maximal and minimal values to bound these resources.
In the extension [27] a feature is added that allows to set the minimal and maximal
values during execution of the model. This allows for scenarios that involve storage
tanks for example, to be modeled more efficiently.

|

prod b,y

prod b, 7o

prod b, 7,

STN RTN

Figure 2.1: RTN versus STN representation

2.2.1 Discrete time models

In discrete time modeling approaches the time horizon is divided into fixed intervals of
equal length. The start and end times of all planned events are linked to the boundaries
of these intervals. The discrete formulation of scheduling problems was the first modeling
technique and originated from a solution to the job shop scheduling problem [2]. The
proposed modeling solution by [2] already uses a discrete time division, event sequence
constraints and can deal with the integration of setup costs (i.e., changeovers).

The next series of discrete time models are based on the STN representation. An early
example is the work of [14] using a MILP formulation. The key discrete variable here is
Wijt. Wiji is a binary variable that decides whether task ¢ starts at time interval ¢ on unit
j. Assistance variables are added to deal with batch sizes and mass balances. Optionally,
other assistance variables can be added to deal with sequence-dependent changeovers.
Mathematical constraints are added to enforce any (custom) feature of the scheduling
problem at hand.

The advantage of the discrete time approach is that constraints are added in a relatively
straightforward manner, mainly because of a fixed time grid used by each resource. The
discrete time approach suffers however from two major drawbacks. First of all, the division
of the time horizon into fixed intervals results in suboptimal schedules. This approximation
can even lead to infeasible schedules in some cases. Namely, if too few intervals are chosen,
the total number of possible timing decisions might be not be sufficient to produce a
workable schedule. For example, consider an extreme situation with only one interval, if



within this interval a resource is used by each event then only one event can be scheduled.
With more available intervals however, the resource can be used by more events leading to
a better schedule. Notice that in this case if the objective was to minimize the makespan,
this problem would lead to an infeasible schedule. This is because when minimizing the
makespan all events have to be scheduled. Another large drawback is that if the number of
time intervals (to improve model accuracy), units and tasks increases, the number of binary
variables W;;; becomes very large and a lot of computational power is required to solve
the problem. To tackle the last mentioned problem a few improvements were made [8]: i),
a reformulation that reduces the gap between the optimal solution and its LP relaxation
counterpart, ii) adding cut constraints which are redundant but reduce the region of integer
infeasibility, iii) intervening in the branch and bound solution procedure, iv) the use of
decomposition that divides a large and complex problem into smaller subproblems (see
Section 2.2.3). Furthermore, discrete time models based on the RTN representation were
developed [23]. This method only used three types of variables defining the task allocation
Wi, the batch size Bj;, and the resource availability R,;. The batch scheduling problem
is now reduced to a more simple resource balance problem carried out in each predefined
time period. The unit index is removed under the assumption that it is predefined what
task runs on what unit (i.e., each task runs exactly on one unit). This method leads to
less variables and hence a more efficient computation, but limits the type of problems that
can be modeled.

2.2.2 Continuous time models

Because of the aforementioned limitations of the discrete time models, continuous time
models were introduced. The basic principle is associating the events to continuous vari-
ables instead of a fixed time grid, allowing them to take potentially any value in the time
horizon eliminating the time inaccuracy factor. Like the discrete approach, continuous
time models can be based on both the RTN and the STN representation. Continuous
time models can be further classified into the following categories [24].

e In global event based models, the events or variable time slots are universal for all
units. It is actually similar to the discrete time models except for the fact that the
events can be of variable size, i.e., the timing of time intervals is treated as a model
variable. Downside of this method is that the number of events/time slots still has
to be set apriori, a dilemma between modeling accuracy and size [31].

e Unit-specific event based models allow each task in a unit to start at an event
independent of the other units. Each unit owns a specific sequence of events. Because
the unit-specific events only require an event point for the start of a task (since the
events are sequential) in contradiction to the global event based models, less variables
are used. However also with this method an approximation of the number of events
is required.

e Within precedence based models the variables and constraints enforcing the sequen-
tial use of shared resources are modeled explicitly. Usually a variable X explicitly
stores whether batch ¢ is processed before batch /. The precedence based models
are applied to a sequence based processing topology. This formulation allows for
an intuitive modeling of sequence dependent changeovers. Within some precedence
based models the variable size directly depends on the number of batches to be
scheduled resulting in larger models in practice.

For the multipurpose production variant in the continuous time models, a novel approach
is given in the work of [25] using a MILP formulation. Within this approach resource



diagrams (RDs) are used to represent the process structure. In a RD only task nodes and
arrows between them are used. The direction of the arrows between tasks represent the
task precedence just like within the STN representation. However, within RDs the arrows
also represent the material that flows between the different tasks, obviating the use of
material state nodes. Although the use of multiple units is presented by defining a set of
allowed tasks for each unit within the RD, the use of shared resources between the various
units can not be modeled unless some extension is used. A global event based formulation
is given to model the RD’s. The number of timeslots needs to be defined a priori. However,
the work of [25] suggests a technique that starts with few timeslots and then gradually
increases the amount of timeslots until no improvement is found within the objective. The
method is statistically compared with two other modeling approaches. Both approaches
use a continuous time STN based representation. Because of the reduction in variables
and constraints in the approach of [25], the method is generally the faster approach.

A recent MILP based example of a continuous time formulation for multistage multiprod-
uct batch plants is given in [19]. The work uses some ideas of a multipurpose batch plant
formulation given by [25] to reduce the number of variables. In [19] each batch follows
a series of stages (s = 1,2,...,5). Each stage has some units Uy available and for each
batch ¢, the units .J; can process it. Thus the goal is to schedule for each batch i and for
each stage s a single unit j € (Us N J;) in a certain time period. Two 4-index approaches
are introduced:

e A 4-index unit-slot based model approach introduces for each unit some time slots
(k=1,2,..., Kjs) and uses a binary variable y;;is to determine whether unit j stage
s processes batch i in slot k.

e A 4-index model using stage-slots uses K timeslots for each stage, hence each unit
shares the same timeslots. This is in contradiction to the approach of [25] where the
K timeslots are used for the entire process.

A large drawback of 4-index models is a having a large number of equations and continuous
variables. Therefore, based on the best performing variations of the 4-index models and
some adapted earlier approaches, the following 3-index approaches are introduced by [19]:

e A 3-index unit-slot based model uses a variable x;;s to determine wether batch 4 is
processed in stage s at slot k. Another variable z;;, determines wether unit j is used
for batch ¢ at stage s. The two variables are linked together by means of constraints.
This leads to less variables, however more constraints are used.

e A 3-index model unit- and stage-slots based model uses an additional I contiguous
stage-slots for each stage.

Although 3-index models use less binary variables more constraints and continuous vari-
ables are used. Furthermore two heuristics are introduced to reduce the solution time
of both type of models. Although it is shown in [19] that their existing formulations
outperform earlier methods, a clear winner does not exist between the different intro-
duced models. Thus the authors suggest to try competitive methods for each particular
scheduling problem.

Another approach for multistage multiproduct batch plants using constraint program-
ming (CP) is given in the work [29]. It addresses several features found in industrial
environments, among which sequence-dependent changeovers, topology constraints, for-
bidden job-equipment assignments and various objective functions. As the authors of [29]
argue, constraint programming is mostly only used in hybrid methods that combine CP
and MILP (see Section 2.2.4 for an example), therefore a pure CP solution is interest-
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ing to investigate. Furthermore CP has a simple declarative style and can be combined
with powerful domain-specific search techniques. In [29] all the relevant constraints are
described and can be augmented to any desired problem variation. A nice feature is that
the scheduling of the various production orders does not need to be declared explicitly, but
is enforced by means of using shared processing units. Several case studies are conducted
and a decent performance is obtained by using two smart search strategies that balance
the load of units at each stage. MILP formulations depend on the complexity of the vari-
ous constraints. The performance of CP on the other hand depends on the implemented
search strategy that is tailored towards the problem domain, as concluded by [29].

Although the discussed sequential models for multistage multiproduct batch plants have
a relatively easy structure, there are several large drawbacks. First of all a preprocessing
batching step (lot-sizing) is required in order to decompose the production orders into
properly sized batches. In other scheduling approaches, the batching is usually integrated
or done afterwards. The problem of batching beforehand is that the optimal batch quan-
tities are not known in advance. Therefore the generated batches from the production
orders may be suboptimal. Another large drawback that inventory management is sig-
nificantly more difficult, i.e. the handling of inventory deficit costs. This is because also
beforehand, batches have to be generated that account for stock refilling. The latter step
can also vastly increase the number of batches. This is a problem, because within the
sequential models, the problem size is determined by the number of batches which are to
be scheduled.

2.2.3 Decomposition based solutions

Lots of literature focusses only on short-term scheduling covering a small time horizon. As
shown earlier, larger discrete or continues time models can get computationally infeasible
when spanning larger time-horizons. To deal with this problem, decomposition approaches
are developed and are also an active point of current research. Decomposition of the
planning and scheduling problems can occur at various levels. An extensive overview is
given by [20] reviewing approaches for the integration of medium-term production planning
and short-term scheduling.

[12] presents a novel decomposability method applied to short and medium term schedul-
ing. The STN based method can deal with variable batch sizes and processing times, batch
mixing and splitting, sequence dependent changeover times, intermediate due dates, prod-
ucts used as raw materials and several modes of operation. The approach extends the
horizontal horizon approach presented by [18]. The horizontal horizon approach divides
the entire time horizon into smaller sub-horizons, taking into account the tradeoff between
demand satisfaction, unit utilization, and model complexity. First, a decomposition model
is used consisting of two levels:

1. Determining the number of days in the time sub-horizon and the main products
which should be included are determined. The objective is a maximal number of
days in the time sub-horizon, while minimizing the model complexity. The mixed-
integer nonlinear programming problem (MINLP) can be reduced to a equivalent
MILP form by means of constraint rewriting. The initial given formulation is in
MINLP, because a multiplication is used within the constraints that account for the
model complexity limit and the production limit.

2. Adding more products to ensure a high utilization of the fist-stage processing units
using a MILP formulation.

11



After the decomposition step, an adapted continuous scheduling approach is used to handle
the short-term scheduling of the determined time horizon. This cycle is repeated until
the entire time horizon is covered. In [12] a case study is conducted showing that the
horizontal-horizon decomposition method is indeed an effective approach.

In [22] a hierarchical decomposition approach is presented. A three-tiered hierarchical
production planning (HPP) framework for single-stage, identical parallel machines, multi-
product batch plants with restricted batch size is developed. Special features are the
introduction of backorders and product families. A product family is a group of products
sharing the same set up features and/or aggregated demands. The HPP consists of three
main levels. At the top level an Aggregate Production Planning (APP) model is used
to determine the time intervals and quantities of the product families to produce. The
objective is to minimize production, set-up, backorder and inventory costs. Next, at
the second level, the Disaggregation Production Planning (DPP) model disaggregates the
product families into actual product batch quantities, while considering the minimum and
maximum batch-size requirements. The objective is to minimize the excess of production,
inventory and backorder level targets that are determined by the upper level APP model.
Finally, a job scheduling model (JSM) determines the assignment of jobs to production
lines and the processing sequence of batches for a weekly (short) time horizon, using the
outputs of the DPP model. Thus, we see that the composition is based on product family
aggregation at the first and second level and horizontal decomposition at the second and
last level. Although a case study by [22] shows that the approach is effective at reducing
costs for the company at hand, it is unsure how it compares to other (decomposition)
methods.

Another hierarchical approach is presented in [26] and introduces a global-sequence MIP
formulation consisting of the following three levels: i) the selecting and sizing of batches,
ii) the assignment of batches to processing units, and iii) the sequencing and timing of
batches within all units. In the first level the batching of customer orders is determined,
followed by the actual scheduling in the second and third level. The second and third
level are merged together under the notion that there exist multiple ways to batch a
product order, which impacts the scheduling. This is in contradiction to most discussed
approaches that do the bathing step either together or after the first initial step. The first
step determines the minimal and maximal batch sizes using plain calculations. Namely,
given the maximal/minimal batch sizes possible for an order i, the maximal/minimal
quantity of batches can be determined as well. These minimal and maximal batch sizes
for order i can be decided by looking at the minimal/maximal batch sizes at each stage
and for each unit when processing order i. A detailed explanation of this step is given in
[26]. This input is fed into the second and third level where a precedence based MILP
model (as discussed is Section 2.2.2) is used to solve the actual scheduling of the batches
itself. The objective in the example is minimizing the lateness, earliness and processing
costs, however, it can easily be extended towards any custom objectives.

The classic decomposition based method is based on defining an upper level, where an
aggregate planning problem is solved defining production targets and next a lower level,
where detailed scheduling problems are independently solved [1]. As argued by [5] a
major drawback of this technique is that in the lower level the scheduling problems may
be infeasible, because in the planning level factors like changeovers are ignored. In [5] this
problem is tackled by defining an iterated version of the classic two-stage decomposition,
where at the planning level an upper bound for the profit is determined. Also an estimation
of changeovers is already taken into account at this level. In the lower level planning and
scheduling problem products left out in the upper level are ignored, reducing the problem
size. In this level a lower bound is obtained since it is a subset of the original problem.

12



If the difference between the lower and upper bound is beneath a certain tolerance, the
procedure stops. Otherwise, the cycle is repeated after integer cuts and logic cuts are added
to the MILP formulation at the upper level. The latter step reduces the overall search
space. The decomposition method is compared to an original full size MILP formulation
and a significant improvement was found. A downside of the proposed solution is that only
one processing unit is allowed. However, another recent similar decomposition method is
presented in [17] based on the STN presentation and thus eliminates the processing unit
limit. They also define two levels that determine upper and lower bounds respectively
and use linear cuts to reduce the problem size between iterations. Although the STN
representation removes the processing unit limitation, still task duplication is required to
handle multiple units when the same tasks are performed at each unit.

Another approach for removing the processing unit limitation is given in an extension
of [5]. The extension [6] also uses a decomposition method based on a full-space MILP
model. Contrary to [17] the solution method for single stage sequential processes is not
based on the STN representation and thus unnecessary task duplication is not required.
Furthermore in contrast to most of the sequential models discussed in Section 2.2.2, this
MILP formulation is based on defining an amount of time slots for each unit and for
some predefined time periods that are determined by the due dates or orders. This makes
the approach unit-specific event based. The advantage is that now inventory levels (this
also holds for [5]) can be taken into account explicitly, since the inventory levels can be
monitored at each timeslot. On the downside, this method requires a postulated number
of timeslots for each unit and for each time period. Too many timeslots will result in a
larger model, whereas too little will lead to suboptimal solutions.

2.2.4 Other modeling solutions

The discussed modeling techniques in 2.2 are usually solved using MILP and MINLP,
constraint programming (CP), or hybrid approaches where MILP and CP are integrated.
An example of an approach that combines CP and MILP for both single and multiple
staged sequential processes is given in the work of [9]. Here the basic strategy is two
define a job assignment step solved by MILP and next a job sequencing step by using
CP. The job assignment step assigns the jobs to different units. Next the job sequencing
step decides whether a feasible schedule is possible. If a feasible schedule is not possible,
cuts are added to the job assignment step. The general idea is that CP is a lot better
at solving feasibility problems than MILP. A more recent approach [10] combines CP and
MILP a similar decomposition technique called Benders decomposition. In the Benders
approach a MILP master problem is solved of assigning tasks to facilities and a subproblem
(solved using CP) determines the scheduling of tasks assigned to each facility. A major
difference with the approach of [9] is that now a optimization problem is also considered
in the subproblem formulation instead of just a feasibility problem. A drawback of this
approach that it only copes with the tardiness cost of tasks and it is hard to customize
the objective function.

Other used solution techniques are heuristic approaches such as simulated annealing, dis-
patching rules, tabu search and genetic algorithms (GA) [21]. In [15] a simulated annealing
method is presented. The simulated annealing algorithm is a search algorithm, which is
able to find the global minimum/maximum of an objective function in a complex search
space efficiently. It does so by defining a probability acceptance function, where the accep-
tance of solutions depends on a temperature that is cooled down during iterations of the
algorithm. At a high temperature it is more likely to accept worse solutions, however, as
the temperature decreases, only better solutions are accepted. The idea of accepting worse
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solutions is based on the fact that a better solution may eventually be found in the future,
thus avoiding getting stuck in local minima. The search space is here a feasible schedule
S and it is transformed to a schedule S’ by applying several neighborhood strategies.

A novel genetic approach for solving planning and scheduling is presented in [30]. In
a genetic algorithm the evolution is mimicked from a random starting population and
follows a series of future generations. In each generation, the quality is determined using
a fitness function and the best individuals are selected for random recombination into a
new population. This new population is then used in the next iteration of the algorithm.
Thus, the key is define a genetic representation of the solution domain and also a fitness
function to evaluate this solution domain. In [30] this representation is based on two parts:
The first part defines a sequence of production order stages, by indicating the priority of
each order stage with a number. The second part assigns machines (resources) to these
order stages. Three different random transformations are defined, which preserve the
feasibility of the solutions within the newly generated population. The method shows a
slight improvement in comparison to an earlier genetic approach and is able to scale up
for larger planning and scheduling problems. The fitness function can be easily adjusted
to any custom objective function. However, the orders are not bound to due dates as
the objective is to minimize the total makespan. Introducing this feature will introduce
limitations to the random transformations and also, a new genetic representation may be
required.
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Chapter 3

Problem description

A thorough specification of the planning problem at AC is given in [4]. The main issue
with the formulation in [4] is that an assignment problem is solved. Namely, production
recipes are assigned to fixed buckets on the various production lines. In the real physical
model however, tasks are scheduled at various times and are of various lengths, thus there
exists a large difference between the original problem description and the actual physical
model that is solved. In this chapter the mathematical problem description is revisited
and a relevant textual recap is given in Section 3.1. As the scheduling problem in textual
form is the same as that given in [4], some relevant parts are directly copied from [4]. In
Section 3.2 a new mathematical model is given for modeling the scheduling problem at
AC that is based on a MILP formulation having the advantage of incorporating a solution
method directly. Because now a scheduling problem is solved this also reflects the reality
better. A drawback however is that the complexity of modeling the problem increases
greatly for this type of formulation.

3.1 Problem description

The main decision is to determine, for a given timeperiod, which type of product to produce
on what production lines at what time, subject to many resource and technical constraints.
This time period covers 3 months in general. The most important objectives are satisfying
a series of product demands and keeping stock targets of each type of product at desired
levels. A production line produces one product at the time and may do so by using
various processing recipes, which determine the characteristics of the product and also
the production throughput. The production process of product is a continuous process,
because all different steps happen in a continuous chain and do not require a separate
planning. As shown in [4], from the planning perspective, the production process can be
seen as a black box . In this section only the relevant production context is given. For
a more detailed description and an organizational context of AC the reader is referred to
the work of [4].

For the planning of the product some information about the production process is relevant.
In the following paragraphs relevant information about the products, changeovers and
technical constraints will be explained. The changeover time is relevant, since it differs
between products. Not every production line can produce every product and not all
products can be produced simultaneously, which makes the information about technical
constraints relevant for the production planning.
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Changeovers: When a production line needs to switch from producing product z to
product y a changeover takes place. Since the production is a continuous process, the pro-
duction line keeps running and produces B-quality product during most of the changeovers.
This B-quality product is not wasted as it is required for the production of pulp. However,
the required pulp ingredient can be spun more efficient when spun directly.

Specific changeover information is considered classified and has been omitted from this
version of the document. Four different changeover types have been identified, i.e. a
normal change, a blocking change, a soft change, and a spinneret change. These four
changeover types all have a different changeover time.

Technical constraints: These technical constrains are considered classified information
and have been excluded from this version of the document.

Besides the technical constraints there are some constraints that restrict the planning
process of some productions in practice regarding the scheduling of product.

1. Products D1040 1680, D1015 3360 and 2100 1100 can only start from Monday till
(and including) Friday.

2. Changeovers of type spinneret having the largest changeover time may only occur
Monday till (and including) Friday.

3. During productions a minimal production time is required of 5 days. This can be
more and is often less, however, the exact time depends on the recipe that has
run previously on the same production line. Because of difficult modeling issues
regarding this constraint a minimal period of 5 days is assumed.

4. For some types of product the production lines that are suitable for that product are
further limited, due to a difference in spoolsize, or other commercial requirement.
A commercial requirement for example is that some products have to obtain some
chemical properties and then it can only be made on a restricted set of production
lines.

3.2 Mathematical model

The classification of planning and scheduling problems, as explained in Chapter 2, implies
that the production plant at AC follows a sequential, single stage, continuous, multipur-
pose production process. This is because each product can be produced using various
processing recipes using different sets of resources. Also, at an abstract level, the interme-
diate products can be omitted and only one stage is needed for each product. The problem
with sequential solution based models however is that a batching step is required before-
hand to explicitly model production precedences. For AC this is not justified, because all
productions are continuous and a batching step will lead to suboptimal schedules. Also,
within the sequential models, inventory levels are difficult to manage, because there is no
explicit notion of time. Therefore, it is chosen to base the new problem description on
a modified version of the continuous RTN (see Section 2.2) given by [3]. As mentioned
in Section 2.2.2; a continuous model has the advantage of having fewer time points as
discrete models. Notice that since the timing variables are now seen as real values, it is
straightforward to change the time unit from hours to days, should the problem be com-
putationally difficult to solve in practice. Notice that the number of event points 7' should
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be approximated, just as the number of event points a certain task can overlap (At). Un-
derestimation of these values will lead to suboptimal schedules, whereas an overestimation
might result in computational performance issues.

The mathematical description is divided into four parts. First the inputs of the planning
problem are described in Section 3.2.1. This input is a mapping from the instance of the
planning problem at AC to the input of a RTN formulation. Next a description of the
output is given in terms of the input in Section 3.2.2. The constraints that restrict the
possible outputs are given in Section 3.2.3. Finally, the objective function defining the
quality of a planning solution, is defined in Section 3.2.4.

This mathematical description leads to the following problem definition:

Definition. AC Planning and Scheduling Problem (ACPSP).

An instance of ACPSP consists of the input as given in Section 3.2.1. The most important
components are the set of timeslots T, the set of tasks I, the set of resources E used by
these tasks, and also, the relation between the resources and tasks given by the defined
parameter /1; . (equals the capacity of resource e required by task ).

The problem is to find a solution of ACPSP (Section 3.2.2), respecting the constraints in
Section 3.2.3 with a cost of at most C, i.e., for which OF < C, where OF is defined in
Section 3.2.4. The most important components of the ACPSP solution are the assigment
of tasks to event points (N ), the absolute time of each event point T}, and the amount
of materials produced by these tasks (& ;).

3.2.1 Input

Time: The time unit in the mathematical model are hours, as specific production times,
changeover times and constraints are all specified in hours. Instead of dividing the time
horizon H into buckets of fixed size, in this formulation H is spanned by a series of events
points T'= {1,2,...,|T|}.

Product: There are many different products within AC. P is the set of different products
at an aggregated level. A single p € P is an aggregation of a number of products at SAP’s
material level. A product at SAP’s material level is a packaging of spools, with a specific
spool size, that contains a specific weight of a specific product. In SAP there exists a
forecast at this product level. For many customers, the packaging, the spool size, or the
spool weight does not matter. This results in the fact that the forecasts for some different
products at the material level, are forecasts for the same product at the aggregated level.

Production orders: For every product p € P there exists a forecast in tons (1000 kg)
per month. This forecast is a summation of the forecasts of material numbers in SAP
corresponding to p € P. To cope with this, a set of production orders O is included within
the model. Each production order o has a due date (due,), product (pr,) and quantity
(demy). The non-delivery costs of a production order is defined as the profit of p times a
modifier of the production order to emphasize strategic importance.

ndc(o) = profit,,. - ndcModifier,
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Recipes: R is the set of different product recipes. A single r € R is the recipe to produce
a single p € P. A single p € P might have more than one recipe r € R.

Resources: There are two different types of resources, primary and secondary resources,
involved in producing products p € P. The primary resources are the resources that actu-
ally produce the product and the secondary resources are resources that are constraining
the primary resources with a certain capacity.

e H is the set of high-rise resources. Every h € H has a certain throughput capacity.
e [ is the set of production lines. Every production line is linked to one h € H.

e S={D,E,F K,P,S, X} is the set of different spinneret types. Each production re-
quires a certain type of spinneret and the total number of the same type of spinnerets
in use is limited given by capacity spCap, for (s € S)

Changeovers: When recipes 7 € R and ' € R are produced in sequence on the same
production line, a changeover takes place. The time of the changeover is defined by
the changeover type. There are four different types of changeovers (Section 3.1), each
with its own length in hours. The parameter tif,, refers to the type, titer and filaments
identification of the product produced by recipe r. Other more trivial parameters are
found in the nomenclature section.

For changeovers the following functions exist for r,7’ € R:

e cType(r,r") € {no, soft, normal, block, spin} are the changeover type between recipes
r and 7.

e ct(r,r’) returns the changeover time between recipes r and r’.

Current production: At ¢ = 0, for all production lines [ € L there exists a recipe r € R
currently being produced at [. This is relevant for the possibly needed changeovers at the
start of the schedule.

Tasks: The set of spinning tasks I*P™ consists of all recipes that are possible for each
production line subject to all the line/recipe constraints. These constraints are omitted
in this version of the document.

IP™ —{(r 1) € R x L | production line [ satisfies the classified technical constraints of 7}

Next the following set of changeover tasks is defined:

I°° = {i € cType(r,r")|r,r" € R} \ {no, soft}

General resources: To keep track of each resource over time all resources are general-
ized as specified in equation 3.1. The maximum capacities of these resources are omitted
in this version of the document.

E = HULUS U (other classified technical resources) (3.1)
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The required capacities for each task 7 and resource e is defined by p; . and is as follows:

tpruy itie I’ Aec HA hrRes;y = e,

1 if i€ I'PMAee LAe=I(i),

Mie =94 1 ificIP"Aec SAe= spinneret . (3.2)
1 ifiel°NeeLNe=I(i),
0 otherwise.

3.2.2 Output

A solution of the ACPSP consists of an allocation N; ;4 of tasks to event points and the
amount of product §; ; » produced by these tasks. N; ;4 is a binary variable that indicates
whether task ¢ runs from even point ¢ to event point t'. The variable ; ;4 determines the
amount of material produced by task 7 from event point ¢ to ¢’. The absolute time of each
event point ¢ € T is given by the variable T;. Also we have the inventory level of each
product p € P given by I,,; for each t € T". The non-delivered amount of each production
order o at event point ¢, is given by the slack variable psl,,. The binary variable po,
decides whether order o is (partially) fulfilled at time ¢. Notice that each production order
o can only be delivered on at most one event point ¢ € T. An example of the output for
3 production lines is given in Figure 3.1. The grey striped tasks represent the changeover
tasks. At is set to 4 in the example, so all tasks can maximally overlap 4 intervals.

If a certain task ¢ € I is excuted and N;; ; = 1, this means that all resources e € E required
by task ¢ (given by p;.) should be consumed at event point ¢ and freed at t’. Also the
amount of product produced (&; ;) should correspond to the duration of the interval.
Namely, the recipe of task ¢ has a certain throughput and the amount produced is hence
derived from the duration of the inverval divided by this throughput. If a production order
o € O is delivered at time ¢, given by po, ;, the correct amount should be substracted from
the inventory level I,; accordingly, minus the slack (undelivered amount) ps,, ;.

For example, consider task ¢5 in Figure 3.1. This task runs from event point 3 to 6 and
hence Nj536 = 1. Also, this means that Vi € I | i # i5, N;36 = 0. The latter holds
because the resource SB is consumed at t = 3 by task 5 (5,55 = 1) and is therefore
unusable by the other tasks. The amount of material produced by task ¢5 running on
production line SB corresponds to the variable &5 3.

At
1 234 5 6 789 Tl

i5

7 5 ] seur] uorjonpoid

Figure 3.1: Example output for 3 production lines
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3.2.3 Constraints

Timing: Constraints are needed that relate the amount of time passed between event
points and the tasks that are executed on them. Constraint 3.3 states that if a certain
changeover task or production task is executed, the duration of the interval is at least
the changeover duration (cht;) or the needed production time respectively. The latter is
defined by the amount of material produced &;;y and the throughput (tons per hour)
of the recipe belonging to task i (tphr(i)). The constraint is stated per production line
l € L. To check wether production line [ is used by a certain task 4, 1, is used (for the
production line resources | € L, p;; only takes the value 0 or 1).

VieLVt,t eT |t<t <t+At,t' <T

Ty =Ty 2 Y (pig - Nige - chtilo—eir + Y

ielco j€ [spin

it - it ot ) (3.3)
tph ()

Vie LVt eT |t<t <t+At,t' <T
Ty —T, <H(1— Z (i - Nigp)|er=t41 — Z (g - Nigy))

ielco j€ Ispin
il it (34)
+ > iy Nigy - chti)lp—rpr + Y (%)
jelco i€ Ispin tp T(Z)

Notice that since changeover times are relatively small compared to production times, it
is assumed that they can last only one time interval. Moreover, the summations of the
changeovers and the production tasks can be taken together, because only one task can be
executed at each interval at the same time due to the resource balance constraints. Vice
versa, constraint 3.2.3 states that a maximal processing time should be accounted for. If
no task can be executed between two event points, there should not be an upper bound
between two event points on the amount of time passed.

Operational: Constraint 3.5 expresses that a minimal amount of material should be
produced (depending on the recipe) if a spinning task is executed. The upper bound is
specified a the maximal amount that can be produced if the whole time horizon was used.
Notice that the minimum production time of a recipe of a task (mpt, ;) should be larger
than zero, otherwise N;; can be equal to one (and thus executed), while no material is
produced.

Vi, eTie PP [t <t/ <t+ ALt <T

(3.5)
mpt,) - tphy iy - Ny < i < H - tphyy - Nig

Resource balance: The variable E,; maintains the amount of resource e available at
event point . This amount equals the starting amount (E**|;—; )plus the amount of
resources that are freed up by all previously executed tasks (those ending at ¢) and minus
the consumption of all starting tasks (beginning at t). Constraint 3.7 states that the
amount of resource can not be empty at each event point. The parameter p; . specifies
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the amount of resource e that is required by task .

Yeec EVteT (3.6)

Bey =EP™|imy + Eey1ls1+ Y > mieNiga— D> pie- Nigw

i€ spin t'eT t'eT
t—At>t <t t<t'<t+At
+ Z Mie - Nitt—1 — g Mie s Nigit1
ielcoe t>1 relco t<|T|
Vee EVteT 0<Eq; (3.7)

Inventory: Similar to the resource balance constraints the inventory of each product is
maintained as well at each event point by the variable I, ;. The initial inventory level for
product p is defined by the parameter Ig. In addition, the delivery of all production orders
o € O is accounted for. This might not be possible at all times, therefore a slack variable
psl, 4 is introduced that directly accounts for the unsatisfied demand for production order
o (given by dem,) at time t.

Vpe PVvteT

Ins = I§|t:1 + Ipi—1le>1 + Z Z S| — Z demg - po, ¢ + psl,,  (3.8)
jeIspin t'eT 0€0|pr,=p
P =p Lt—At>t'<t

Vpe PVteT 1I,,>0 (3.9)

Production orders: If a production order o is (partially) fulfilled at time ¢, represented
by the binary variable po,;, the event point should have a ending time before or at the
due date of the order. If the order is not fulfilled at all then there is no restriction on the
corresponding event point.

Voe OVteT T, <dueys+ (1—po,,) - H (3.10)
Furthermore if a production order o is not (partially) satisfied, then the sum of the slack
variable psl,; for all ¢t € T' should be zero. This is to prevent that the model misuses the
slack variable to boost the inventory level, while no production order is satisfied.

VoeOVteT 0<psl,; <dem,-po,, (3.11)

Finally, at most one time point can be used to satisfy each production order o € O.

YocO Y po,, <1 (3.12)
tel
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Changeovers: To deal with the various changovers for each production line [ € L, all
pairs of tasks that require a changeover should execute a changeover task (constraint 3.13).
To this end all pairs of recipes 7,7/ € R that require a changeover and all ordered event
points t1,t2 € T | t1 < t2 are considered. The constraint states that between event point
t1 and event point ¢2 a changeover task must be executed if there is a task executed that
ends on t1 and has recipe r, and there is a task started at ¢2 that has recipe r’, and finally,
between event points ¢1 and {2 no other task is executed.

Vie LVr,r' € RVt1, 12 € T Vi € I°° | t1 < 2,7 = cType(r,r'),i’ & {soft,no}

Z par g - Niv g1 2> Z Z pit - Niger + Z Z g - Nigag  —

Elspm EIbpm
1Sk - M2ty (i)=r t2§t<t2+Atr(i):T/

Z Z Z 41 - z,t,t’ - 1

1€ Ispin
t1<t<t2 t1<t’<t+At

(3.13)

Remaining constraints: Some product types may not be produced simultaneously.

vVt € T Vr,r' € R | —allowSim(r,r")

Y Nt XY N 1

uu' €T i€l|ri=r u,u' €T i€l|ri=r'
u —u<At u' —u<At

u>t—At u>t—At

u' >t+1 u'>t+1

3.2.4 Objectives

The objective function of ACPSP is a combination of four different objectives with different
weights. The best output corresponds to the minimum of this fuction.

OF = wpqc X Opge + wst X Ogt + Wpe X Opc

e Non-delivery costs:  One objective of a solution to ACPSP is to minimize the
difference between the production need and the actual production. This difference
is measured as non-delivery costs, i.e. the money that would have been earned if the
product was produced. The non-delivered amount for each production order o € O
is equal to the demand of the order dem, minus any amount that might have been
deliverd at a (single) time point. This is multiplied by the non-delivery costs of the
order (ndc(0)).

Ondc = Z Z dem, — Zpoovt - demo — psl, ;| - ndc(o)

pEP o€O|pr,=p teT
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e Stock target: In order to account for uncertainties in the forecast, AC tries to keep
the stock levels of all the products at a defined target. A ACPSP solution should
keep all the stocks above their required target. If the stock is beneath its target, the
solution should be penalized for that. The stock target of a product is defined in
terms of days of sales corresponding to a certain amount in tons.

((stockTarget,, — I,;) 1 0) - stDays,
st — tey - :
Ost Z Z St stockTarget,,

pEP teT

The function O corresponds to the sum of the stock deficit costs times the number
of days the stock is below the target, per event point per product. Notice this is an
approximation of the actual stock deficit costs as these costs are now only evaluated
at each event point. It is possible to be more precise by introducing a non linear
objective function (as shown in [3]) that compares the inventory level difference and
the time difference between subsequent event points.

e Production costs: When the complete demand can be fulfilled and all the stocks are
above their required target, the next objective is minimizing the production costs.

Opc — Z Z Z M . Cphr(z)

tph..c;
icIspin tcT  ¢'eT Pl (i)
t#T t<t! <t+At
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Chapter 4

Implementation

A solution for solving the planning and scheduling problem at AC has been proposed by
[4]. Due to the large problem complexity and size, a powerful and generic software tool
for planning and scheduling is adapted by means of a custom made plugin. The planning
tool used within the process is IBM ILOG Plant PowerOps (PPO) [11]. The advantage of
using PPO is that an entire framework is already incorporated for solving generic planning
and scheduling problems. Namely, several solving methods and algorithms are already
incorporated. Some of these methods are discussed in Chapter 2. Another advantage of
using PPO is that a rich GUI is also already included. This is because several convenient
views exist to inspect or adapt the produced schedules and also to view their quality. To
be able to make PPO usable for the planning and scheduling problem at AC, one has to
define an instance of PPO’s internally used data model. The initial proposed solution by
[4], therefore consists of the following two steps:

1. Define an intermediate model that defines the scheduling problem of AC

2. Write a custom plugin (in the Java language) that maps the intermediate data model
to PPO’s internally used data model

Since the creation of the plugin and the intermediate data model, several changes have
occurred in the organizational context of AC. Several technical constraints, as listed in
Section 3.1, have been added and several constraints that were described in [4] have become
deprecated and are removed.

Because of the many changes and adaptations, in this chapter both the intermediate data
model and the mapping to PPO’s internal data model are documented. Furthermore,
because the two post processing steps in Chapter 5 work on the level of PPO’s internal
data model, also a simplified data model of PPO is included. Finally, the implementation
of the objectives that correspond to the mathematical model are described.

4.1 Intermediate data model

The intermediate data model is not included in this version of the document as it contains
lots of classified information
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4.2 PPO’s data model

A simplified version of PPQ’s partially used data model is given in Figure 4.1. Some
parts of this diagram are constructed by referencing the documentation of PPO. The
classes shaded with a grey background are used by PPO to represent a solution. Hence,
regarding the mapping from the intermediate data model to that of PPO, they can be
ignored.

The main container of PPO’s data model is lloMSModel which contains resources and
recipes. Resources in PPO have natural numbered capacities and can be shut down at
certain times by relating them to a defined calender. Resources can be connected to setup
matrices through a so-called feature. A setup matrix defines for a given set of states .S,
the duration of each possible pair (S x S) — N.

Recipes are the core data structure of PPO. A recipe in PPO consists of several activities
and each activity can be executed in several modes. An activity can have several setup
features and a particular state s € S for each feature. If there exists a mode where a
resource is connected to a setup matrix with the same feature as that of the activity,
setups are respected between subsequent activities on the same resource. Each mode
can use one primary resource and can optionally use several secondary resources. Also a
mode in PPO can produce several materials and can be tied to either a fixed or variable
processing time. A variable processing time means that the time needed for production
is proportional to the amount of material produced. Similar to a resource, a mode in
PPO can be connected to a calendar as well. For the materials in PPO a demand can be
specified at any given time during the planning horizon.

The solving process of PPO is performed uses the classic decomposition method that is
similar to the ones discussed in Section 2.2.3. First a planning problem is solved using
MIP. To this end, the time horizon of the schedule is divided into buckets of user preferred
sizes. Then the planning engine determines which recipes to produce in what quantity
for each time bucket and also allocates them to resources. The latter means that the
planning engine already chooses a mode for each planned recipe and each activity. A
planned production is an instance of IloMSProductionOrder as shown in Figure 4.1. After
the planning phase the created production orders, they are batched by the batching engine
using a heuristic programming method. The planned production orders are inspected and
may be split up into several production orders of the same product respecting the minimum
and maximum batch size. Also, for each production order, it is determined which parts
of the produced quantity go to the stock or the available customer demands (instances
of IloMSDemand). Finally, the batched production orders are scheduled, by scheduling
all activities belonging to the chosen recipe of each production order. Notice that at this
point the scheduling engine can not change the chosen recipes determined by the planning
engine, although it may change the chosen mode of some activities. This is a serious
drawback as is discussed in Section 5.6. The scheduling engine uses CP for the solving
process.

4.3 Mapping

The detailed mapping of the intermediate data model to the PPO model is not included
in this version of the document. The mapping involves the creation of several objects in
PPO for the elements in the intermediate data model.
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Figure 4.1: UML diagram of PPO’s internal data model
4.4 Objectives

Currently, the following objectives are implemented:

4.4.1 Inventory deficit costs

The inventory deficit costs is measured by the total surface that a product quantity is
below the stock target of the product. The objective is implemented according to the
corresponding formula in the mathematical model. The difference is that in PPO the
entire surface below the stock target is seen as inventory deficit costs, instead of only at
several time points as in the mathematical model.

4.4.2 Non-delivery costs

These costs are measured according to the formula specified mathematical model. Another
implemented objective is the normalized non-delivery cost. These costs are same, except
that the multiplier (ndcModifier,) in the mathematical model and ndcModifier in the
intermediate model are set to 1 for each product. This gives better insights in the actual
costs of the produced schedules.

4.4.3 Setup costs

These costs measure the total setup time for all changeovers in the model. This can
be multiplied by a multiplier to emphasize importance of fewer changeovers. Less large
changeovers, namely spinneret changes, lead to more total production. However it might
also be the case that less demands can be satisfied.
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Chapter 5

Improvements

In this chapter all the improvements and features added to the original model, in com-
parison to the version described in [4], are documented. These improvements include a
rounding error fix of the planning horizon (Section 5.1), a fix in the original mathemat-
ical model regarding the inventory deficit costs objective (Section 5.2), simultaneously
optimizing the non delivery and the inventory deficit costs (Section 5.3), and finally, a
constraint relaxation regarding the production lines that share a high rise resource (Sec-
tion 5.4). This is followed by a final comparison of the original model and the model with
all implemented improvements in Section 5.5, showing a significant cost reduction. Notice
that the improvements, as listed in this chapter, only improve the performance of the
initial model. Also, the comparison test results are derived from the same original input
data and the same technical constraints as that of the initial model.

5.1 Rounding error

Within the model that is implemented in PPO (see Chapter 4) the time horizon is divided
into buckets b1,...,b, of a fixed length. Originally, this is done by taking a fixed bucket
size w. However, it is almost always the case that H can not be entirely divided by w,
for example, if H = 10 and w = 3. So this means that H falls somewhere before the end
of the last bucket (see Figure 5.1). This poses a problem because at time H demands
are defined for certain products, which have to be satisfied. The planning engine of PPO,
however, does not consider the last bucket (the one H falls into) in the optimization. This
leaves several demands at the end of the last month in the planning unsatisfied.

w
l | | | ‘
[ N N N
bl bg b3 b4 b5 an

Figure 5.1: Rounding error regarding fixed bucket size and planning horizon H

To fix this rounding error, the plugin now determines the time bucket where H falls into
and adjusts this time bucket to fit H. In this manner H falls on the edge of the last bucket
and the bucket is now included by the planning engine. A comparison is performed on the
test data of April, May, June 2011 using the default scheduling weights as specified in [4].
This rounding scheme leads to a significant improvement regarding the non delivery costs,
however, the inventory deficit costs have increased slightly (see Table 5.1). The latter is
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likely the case because satisfying demands is more important than satisfying stock targets
according to the default planning weights.

non delivery costs | inventory deficit costs
original 40.66 385.19
rounding fix 26.10 388.27

Table 5.1: Rounding error cost improvement (millions)

5.2 Inventory deficit cost

In the original mathematical model there is an error regarding the inventory deficit costs
objective. The inventory deficit costs in [4] are specified as follows:

Ou = Z Z ste(p) - 01 (stockTarget(p) — (0 1 st(p,m)) (5.1)

rep \o<m<mma: stDays(p)

p is the set of products, m the month within the planning, stockTarget(p) is the amount
in ton of p to be in stock, st(p,m) is the actual stock of p in month m and stDays(p) is
the amount of days p should be in stock. Finally, ste(p) specifies the cost per day when p
is below the stock target. The objective in equation 5.1 is incorrect because the multiplier
ste(p) is specified per day and not per ton. So the amount of days that the stock of p
is below the stock target of p should be determined. This can be done correctly by the
equation specified as follows.

O = Z Z ste(p) - (0 1 (stockTarget(p) — st(p,m))) - stDays(p)

5.2
stockTarget(p) (5:2)

peP 0<m<mmazx

Fortunately, in the planning tool the inventory deficit costs were implemented according
to formula 5.2, however, in the planning tool the time units are hours and not days, so the
total costs should be divided by 24 in the planning tool. This means that all inventory
deficit costs of the earlier results in [4] should be divided by 24 as well. This fact does
not yield an actual objective improvement, although the relation between the non delivery
costs and the inventory deficit costs changes. Thus, for a fair comparison the model weights
have to be adjusted regarding the changed inventory deficit costs. Another issue is that in
the original model, the inventory deficit costs where also calculated over the extra added
time buckets beyond the scheduling horizon. This resulted in inventory deficit costs that
were twice the actual size.

5.3 Simultaneous optimization of non-delivery and inven-
tory deficit costs

Within the planning tool, using the original plugin, it is not possible to optimize the non
delivery costs and the inventory deficit costs at the same time in the scheduling engine, as
mentioned in Section 6.2 of [4]. To cope with this, in [4] a post processing step is proposed
that explicitly reduces the inventory deficit costs by fixing the production orders for the
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non delivery costs. The problem regarding the simultaneous optimization appears to result
from a constraint regarding the storage capacities. However, since in the model the storage
of materials is omitted, this constraint can be left out. Disabling this constraint allows
for simultaneous optimization of the non-delivery and inventory deficit costs and removes
the need for the mentioned post processing step in the new model.

5.4 Shunt line constraints

One important requirement in the original model, as mentioned in [4], is the following:
The polymer concentration for production lines LX and LY can in general maximally differ
dx and in some rare cases dy. LY is a shunt line of LX, similar to LM and LN.

In the planning tool using the original plugin, this problem is tackled by defining a setup
matrix containing all possible polymer concentrations (gathered from all possible produc-
tion recipes). A fictional example is given in Table 5.2. By using this method the modeling
of the polymer constraint is too strict, because all pair of recipes that differ in polymer can
not be produced simultaneously instead of only the ones that differ in polymer too much.
This drawback comes from the fact that the setup matrix has to be fully filled in the
planning tool (each state has to contain a setup to all other states). According to Table
5.2, recipes with polymer 0.1 can not be produced together with recipes having polymer
0.2 on production lines sharing the same high rise process. However, according to the
mathematical model, this should be allowed. To cope with this, in the original model, the
possible recipes are copied in the allowed polymer range for all shunt lines. In this manner
there is always a compatible allowed recipe within the dr range. The scheduling engine
however has a lot of trouble selecting the right recipes, requiring a necessary manual post
processing step as explained in Section 6.2 of [4].

polymer || 0.1 | 0.2 | 0.5
0.1 X X
0.2 X X
0.5 X X

Table 5.2: Example setup matrix, x denotes that two recipes may not be produced simul-
taneously

The improved plugin uses a different approach instead of the setup matrix. For each high
rise resource that is shared by more than one production line, a resource is created for each
different polymer value . Now the following scheme is applied: One line sharing the high
rise resource that produces a recipe seizes all disallowed polymer concentrations, while the
other production line requires the actual needed polymer concentration. In the case of
production lines LM LN, this would mean that LM seizes all polymer resources that are
not compatible with its current recipe, so that LN is forced to produce a compatible recipe
(because that does not require a seized resource). The scheme is the same for production
lines LX and LY only for a different set of polymer resources. Hence the planning engine
is forced to plan the right recipes on the shunt lines, as now resources are used to enforce
this behavior. A drawback is that this resource scheme only works when at most two
production lines share the same high rise process.

The impact of this improvement is quite extensive since there are two pairs of production
lines that share the same high rise process. The results regarding the costs reduction using
the default scheduling weights (as specified in [4]) are given in Table 5.3.
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Performance indicator Original polymer fix

Non-delivery costs 31.2 10.7
Inventory deficit costs 15.1 16.8

Table 5.3: Influence of the shunt line constraint improvement
5.5 Evaluation

In this section a comparison is performed between the manual planning solution, the
original model from [4], the manual post processing steps by [4] and the model containing
all improvement steps as described in this chapter so far. The test is conducted on the
instance of April, May, June 2011. The scheduled downtimes of each resource have been
added as well. The scheduling weights for the new model are given in Table 5.4, and for
the old model the weights are used as described Section 6 of [4]. Notice, that as explained
in Section 5.2, the inventory deficit cost differ by a factor 24 and this is accounted for in
the new scheduling weights and also in the comparison between all test instances. Also,
the scheduling engine now has a weight set for the inventory deficit costs, because these
costs can be simultaneously optimized.

Performance indicator Planning weight Scheduling weight

Non-delivery costs 2 2
Inventory deficit costs 1 1
Setup costs 0 0

Table 5.4: Planning and scheduling weights for the improved model

The results in Table 5.5 and Figure 5.2 show a huge improvement with respect to all
costs in the improved model. Another important fact is that with the latest model the
post processing steps as described in [4] are not required anymore. The setup costs have
decreased slightly in the latest model, while not being part of the optimization. However,
the setup costs are still much higher than that of the manual planning solution. This
confirms that more changeovers can lead to better costs reductions even though time is
needed for these changeovers. Notice that the results given in Table 5.5 are based on
the old model input data and technical constraints and are only usable for the sake of
comparison.

Non-delivery costs Inventory deficit costs Setup costs

(millions) (millions) (hours)
Manual 38.90 19.42 309
Original 26.20 21.86 1289
Original post processed 18.60 21.58 1050
Improved 12.01 15.04 956

Table 5.5: Results comparison on test case April, May, June 2011

5.6 Automatic post processing steps

Two automatic post processing steps are added to improve the quality of the resulting so-
lutions from PPO. One post processing step reduces the amount of unnecessary spinneret
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Figure 5.2: Results comparison on test case April, May, June 2011

changeovers (Section 5.6.1). Because in PPO a planning problem is solved first, where it
is decided what products are produced in which time buckets and also what recipes are to
be used, the scheduling engine can not change these recipes. For the AC scheduling prob-
lem this leads to quite a substantial number of unnecessary changeovers per production
line. The second post processing step inflates the scheduled production orders (Section
5.6.2). The latter is necessary because the production lines contain many small gaps be-
tween the scheduled production orders of PPO. These gaps can often be filled with useful
productions. The impact of the post processing steps is evaluated in 5.6.3.

5.6.1 Minimizing changeovers

This post processing steps scans for each production line (i.e. the corresponding instances
of IloMSresource), the products to be produced and finds possible alternative recipes for
these products actively minimizing the amount of changeovers. This is illustrated in Figure
5.3(a). The nodes in the graph represent the possible recipes for each material (m1...m6)
belonging to the production orders. The edges represent the changeover cost to each
subsequent node. The shortest path in this directed graph represents a set of recipe choices
(nodes along the path) that lead to a minimum amount of scheduled changeovers. To find
the shortest path for this special type of graph, a dynamic programming algorithm has
been implemented. The implementation of the algorithm is shown in Figure 5.3(b). After
the possible alternative recipes are gathered for each material, the algorithm calculates
the total minimum setup required for each material. The edges in Figure 5.3(b) represent
the total minimal setup costs so far. This starts from the leftmost material and ends at
the rightmost material. Next, working backwards, the minimal path is chosen and the
production orders are adapted accordingly.

After the shortest path is found the scheduled production orders on the production line are
assigned the newly chosen recipes. This might result in changeovers that are removed and
in some cases a changeover might be introduced. The overall total number of changeovers is
minimal however. In the worst case scenario an introduced changeover might be scheduled
during the weekend, as this is difficult to detect by the algorithm. Should this occur,
slight manual post processing has to be done to rearrange the allocated changeovers.
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Figure 5.3: Post processing step for a single production line

The removed changeovers lead to gaps that can possible be filled by the subsequent post
processing step as discussed in the next section. Should filling not be possible (due to for
example a resource constraint) a little manual post processing can be used to fix the small

gap.

5.6.2 Inflating the scheduled production orders

This post processing step inflates the scheduled production orders as much as possible,
until either a resource conflict arises or a scheduled downtime is reached. The procedure
works entirely in the data model of PPO and can be applied to production orders of any
generic PPO problem. The pseudocode of the post processing step is given in Algorithm
1.

Algorithm 1 InflateProductionOrders
for po instance of IloMSProductionOrder do
minGap < scheduling horizon
for instances of lloMSScheduledActivity ac belonging to po do
mG < scheduling horizon
for instances of IloSMResource r in scheduled mode of ac do
mG + min(mG, size ac can increase without exceeding capacity of r)
if r has an upcoming downtime after ac then
mG < min(mG, next downtime of r )
end if
end for
minGap < min(minGap, mG)
end for
increase production order size to found minGap
end for

5.6.3 Evaluation

To determine the impact of both post processing steps, the instance of April, May, June
2011 is evaluated. After PPO has found a scheduling solution, the results are compared
with and without the post processing steps applied.

The results given in Table 5.6 indicate that inflating the production orders reduces the
costs slightly. However, the inventory deficit cost have increased a little. This can be
explained by an introduced spinneret changeover that removes a day production from a
certain production line. Of course more other changeovers are removed, but they might
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Performance indicator Before After

Non-delivery costs (million) 17.5  17.3
Normalized non-delivery costs (million) 104  10.3
Inventory deficit costs (million) 6.7 6.8

Setup time (hours) 1057 758

Spinneret changes 34 19

Table 5.6: Performance impact post processing April, May, June 2011

contribute less (or not at all) towards meeting important stock targets. The removal of a
unnecessary spinneret changeover is however always better cost wise.
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Chapter 6

Evaluation

In order to verify and validate the quality of the final model after all model improvements
(see Chapter 5), an evaluation study has been conducted. In order to verify that the
output of the final model is correct and satisfies the technical constraints, a comparison
is made between two manual planning solutions and the corresponding schedules by the
model (Section 6.1). Also, to verify that the model generates solutions that are correct
and intuitive, some validation experiments have been conducted in 6.2. Finally, several
what-if scenarios and experiments are evaluated in Section 6.3.

6.1 Verification manual planning

In order to compare the model schedules and the manual schedules, two manually designed
schedules are created in the model and compared to the output of the model on the same
input data. The default objective weights used for this verification are given in Table
6.1 and correspond to the chosen weights in [4], having the inventory deficit costs weight
corrected (see Section 5.2 of Chapter 5). The time used for the planning engine was 500
seconds and the scheduling engine is executed till completion (after about 2500 seconds).
The planning engine does not find substantially better solutions after 200 seconds and is
therefore capped to 500 seconds.

Performance indicator Planning weight Scheduling weight

Non-delivery costs 2 2
Inventory deficit costs 1 1
Setup costs 0 0

Table 6.1: Planning and scheduling weights used for the comparison between the manual
and model schedules

6.1.1 Instance April, May, June, 2011

During the creation of the manual schedule in the model, several technical constraints are
violated. The reason is that some of these constraints were not (yet) taken into account
during the planning process. Furthermore, some constraints turn out to be not so strict
in practise. To make a fare comparison between the model and the manually created
schedules some technical constraints have been relieved.
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Also, the scheduled downtimes and fixed productions present in the manual schedule are
added to the schedule of the model. The summarized results are shown in Table 6.2.
There is a large reduction in the top three costs objectives for the model output. The
amount of spinneret changes, setup time, and the total produced amount is worse than
that of the manual planning though. It should be mentioned some an important factor
was not accounted for in the model.

In the month of April, a very large production order for the product 2040930_A is satisfied
by the model, however a lot less is satisfied by the manual schedule. This is because the
forecast of that product has been reduced later and this is adapted afterwards in the
manual schedule, but not in the forecast data of that moment. The model hence uses
outdated forecast data. The model result is thus probably of lesser quality, than is shown
in Table 6.2 regarding the non-delivery costs objective.

Performance indicator Manual planning Model output

Non-delivery costs (million) 28.9 17.0
Normalized non-delivery costs (million) 16.0 10.3
Inventory deficit costs (million) 11.5 6.8

Setup time (hours) 350 697

Spinneret changes 4 19
Total produced (ton) 5241 4847

Table 6.2: Comparison results April, May, June 2011

6.1.2 Instance Oct, Nov, Dec 2011

Here some constraints are violated as well, during the creation of the manual schedule in
the model.

Also, the scheduled downtimes and fixed productions present in the manual schedule
are added to the schedule of the model. Another important remark is that within this
comparison no strategically important product have been emphasized. This means that
the non-delivery costs and normalized non-delivery cost are equal.

Performance indicator Manual planning Model output

Non-delivery costs (million) 5.3 0.1
Inventory deficit costs (million) 12.5 7.3
Setup time (hours) 350 975

Spinneret changes 8 29
Total produced (tons) 4842 4574

Table 6.3: Comparison results Oct, Nov, Dec 2011

The summarized results are shown in Table 6.3. Interestingly, the non-delivery costs are
closer to each other in comparison to the results of April, May, June, 2011. This may
result from the fact that there are no forecast data errors like there were in the instance
of April, May, June, 2011. Although the model shows a cost reduction, many more
setup time is used and especially a lot more spinneret changeovers. This large amount of
changeovers is even present after minimizing the amount of setups per production line by
the first post processing step, as discussed in Section 5.6.1. The reason for this might be
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the extra constraints that have been added compared to those present in the instance of
April, May, June 2011.

Notice that also in this case, the model schedules still shows some small gaps. These gaps
are mostly at the start of the production lines, because a minimum of 5 days production
is required in the model and the gaps are too short to fill with production. In practice,
however, this could be resolved by lengthening the previous running recipes for one or two
days.

6.2 Validation

Some validation experiments are conducted to improve the confidence in the model. The
results from these experiments are considered as classified information and have been
omitted in this version of the document.

6.3 Analysis

6.3.1 Nondeterminism

A problem with PPO is that it suffers from nondeterminism. This means that different
runs (i.e., solving the same instance multiple times), can lead to different results. To
investigate this behavior, a similar problem instance of April, May, June 2011 is solved
multiple times and the cost outcome is summarized. Because the outcome of each run is
independent, a 95% confidence interval can be constructed using the normal distribution.
This only holds if we have sufficient runs.

Run | Non-delivery Non-delivery (n.) Inventory deficit Setup
1 12.99 8.49 6.84 745

2 13.34 8.85 6.87 674

3 12.09 8.19 7.41 689

4 12.46 7.90 10.76 859

) 12.34 7.99 10.84 693

6 10.19 7.25 9.02 811

7 13.30 8.80 6.88 683

8 12.11 7.77 10.86 690

9 13.30 8.80 6.90 690

10 13.30 8.80 6.89 683
11 10.55 8.03 8.77 614
12 12.42 7.89 7.21 786
13 11.94 7.55 7.54 675
14 11.50 8.07 7.06 753
15 12.08 8.32 7.00 785
Min 10.19 7.25 6.84 614
Max 13.34 8.85 10.86 859
Avg. 12.26 8.18 8.06 722
Std. Dev. 0.96 0.49 1.58 65.16
95% conf. | [11.77;12.75] [7.03:8.43] [7.26:8.85] [689.02;754.98]

Table 6.4: Costs summary of multiple runs of the instance of April, May, June 2011
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The results (Table 6.4) show a cost summary for the (normalized) non-delivery costs and
inventory deficit costs (million euros), and also the setup costs (in hours). This overview
shows that there exists a large variation in the outcome of the same problem instance.
This means that when comparing the model solutions of two problem instances, no reliable
conclusions can be drawn if only a single run is executed (the outcome of one problem
instance, might be better by coincidence). To fairly evaluate the costs of a single scenario,
the average of multiple runs has to be used. The number of runs should be sufficiently
large as well. Notice that for even 15 runs, the confidence intervals are still fairly large.
In order to make reliable predictions when comparing the outcome of the model, at least
20 to 30 runs will probably have to be used.

6.3.2 Non-delivery versus inventory deficit costs

One of the improvements, as stated in Chapter 5, is that the non-delivery and inventory
deficit costs can now be simultaneously optimized. Therefore an analysis has been made
to compare the weights used for these costs. To this end the instance of April, May,
June 2011 is used. Notice that the since we are now comparing between model results,
the scheduled downtimes and fixed productions are not added to the schedules of the
model. Note that it is not useful to investigate scenario’s with higher weights for the
inventory deficit costs, since at AC it is always a higher priority to satisfy demands over
stock. Furthermore, only one instance is solved for each weight setting. The results of
the nondeterminism investigation in Section 6.3.1 show that different runs should could be
used for each weight setting, to be more accurate. However, the purpose of this experiment
is to investigate the impact of the weights rather than giving a true cost prediction.

Weights Objectives
Non-delivery Inventory deficit | Non-delivery Inventory deficit
1 0 7.5 12.9
4 1 11.7 6.4
2 1 11.1 7.4
4 3 11.9 6.7
1 1 10.3 7.3

Table 6.5: Comparison results Oct, Nov, Dec 2011

The results in Table 6.5 show that there is little variation in the total non-delivery costs,
regardless of the used weights. This does no hold if the weight is zero for the inventory
deficit costs. In that case, the non-delivery costs are much lower compared to the other
test results. The weight distribution does however seem affect the inventory deficit costs
by a large amount. The best results are achieved when the weight of the non-delivery costs
is set not too much higher than that of the inventory deficit costs. Apparently, putting
to much weight on the non-delivery costs, results in the model putting too much effort in
satisfying few demands, while it is easier to satisfy the stock targets.

6.3.3 Non-delivery versus setup costs

An analysis has been performed to investigate the influence of these costs on the model,
because the costs regarding changeovers of type spinneret are very large for AC. To this
end the setup costs of spinneret changeovers are gradually increased and the impact is
observed on the non-delivery costs. The model is adjusted such that only for spinneret
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changeovers costs are introduced. The costs of a spinneret changeover is derived in the
same way as was done in [4] by taking the average daily contribution per production line
of 50000 euros per day.

Weights Objectives
Non-delivery = Setup cost | Non-delivery nr. of spinneret changes
1 0 11.0 15
1 1.5 9.4 14
1 1 13.1 11
1 2 9.6 11
1 3 14.2 6
1 4 8.9 11
1 6 13.2 7
1 8 12.1 6
1 10 12.4 7
1 15 13.2 10
1 20 17.3 10
1 25 26.1 4

Table 6.6: Non-delivery versus setup costs

The results from Table 6.6 indeed show that when the setup costs are gradually increased,
the number of spinneret changes are generally reduced in the schedules generated by the
model. This comes at the costs of the non-delivery costs. Notice that these results are still
very susceptible to PPO’s non-determinism. However, even with the first post processing
step enabled (Section 5.6.1), the model is unable to find the minimal number of setups
that can be used as the setup costs get very large. Namely, the manual solution shown in
Section 6.1, shows that a solution exists that uses just four spinneret changeovers. The
best solution found by the model (regarding the setups) also uses four changeovers and has
comparable costs, however, visually inspecting the model solution shows many large gaps
and even an empty production line. From this we can conclude that the PPO model still
has issues regarding the setup minimization. This result weakens the initial assumption
that more changeovers are the necessary result of a better cost reductions. However, note
that this result does not invalidate the assumption that minimizing the amount of setups
does not minimize the costs.
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Chapter 7

Conclusion

The goal of this project was to improve the existing planning and scheduling solution for
the production process at AC. The initial proposed solution by [4] showed potential and
several improvements have been identified since then. One type of improvements involve
adaptations made to the data model used by the planning tool. This is achieved by making
adaptations to the mapping from the intermediate data model that is used to contain a
problem instance. To compare the performance of the current model with the original
one by [4], a comparison was made between a manually created schedule and the schedule
outcomes of both models. The following results have been found:

e The two manual post processing steps needed to improve the quality of the produced
schedules of the original model are not required for the new model.

e The non-delivery costs and inventory deficit costs showed a cost reduction of 60%
and 20% respectively in the current model. This is against the 17% and even an
increase of inventory deficit costs for the first model. Moreover the setup costs used
by the current model are reduced slightly although not part of the optimization.
Note that these results were obtained using the original input data.

e The resulting output of the schedules lead to less gaps and better filling of the heavily
constrained production lines.

To further boost the model’s performance an automatic post processing step is imple-
mented that inflates the production orders of the produced schedules and removes the few
small gaps that still existed (if possible). Although this only leads to minor cost reduc-
tions, the resulting schedules look more realistic. The new model has been thoroughly
tested and the output is reviewed in detail. As a result, some technical constraints have
been changed and refined in the current model. Also, several large errors in the input
data have been corrected. These adaptations greatly influenced the models performance
and also increased the quality of the manual plans when put into the model. In order to
evaluate the current modeling solution better, a new objective is added to measure the
normalized non-delivery costs.

To evaluate the current model a new comparison is made for two problem instances be-
tween the model outcomes and the corresponding manual schedules. The model output of
April, May, June, 2011 shows a reduction of 41% in non-delivery costs and another 41%
in inventory deficit costs. However, a large portion of the difference in non-delivery costs
has been explained by outdated forecast data in the models input data. The model results
of Oct, Nov, Dec 2011 show a schedule with almost no non-delivery costs at all compared
to the manual plan and also a reduction of inventory deficit costs by 42%. This leads to an
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overall costs difference (non-delivery plus inventory deficit) of 60%. From this perspective
the model quality is good, however, the setup cost objective suggests there may be room
for improvement. Also, be aware that not all cost objectives have been implemented yet.

The schedules produced by the model contain more large changeovers (of type spinneret).
As suspected by [4], this difference was due to the many more different demands being
satisfied by the model. However, after more careful inspection, the scheduling engine tends
to generate unnecessary changeovers. Even though another post processing step has been
implemented to remove all unnecessary changeovers per production line, the scheduling
engine still has issues when trying to minimize the amount of setups used. This has been
confirmed with an experiment in Section 6.3.

Although the current model might be suboptimal regarding the setup time reduction, it is
still of better quality than the manual schedules, i.e., leads to a better objective function
value. Also the model can still be used to evaluate several interesting what-if scenarios.
Furthermore, as part of the testing, and in order to increase the confidence in the current
model, several validation experiments have been performed. To be able to use the current
planning solution for the comparison between several what-if scenarios however, one has
to be aware of the nondeterministic behavior regarding PPO. This behavior has been
investigated with another experiment in Section 6.3.1.

7.1 Future work

As stated in the conclusion, the performance of the current model has thoroughly been
improved. Also, the model is better comparable to the manual planning. However, there
is still an open issue regarding the minimization of the amount of changeovers. Further-
more, due to time constraints and many last minute changes to the model (input data
and constraints), several experiments have not yet been performed. Hence the following
suggestions are made for future work:

e The current planning and scheduling engine of PPO is suboptimal regarding the
minimization of setup costs. An improvement would be to write a custom engine that
can handle the setup costs better. Given the environment of PPO the best option
would be to use CP for this. MILP can also be used, however, some constraints and
objective functions might be difficult to linearize.

e Investigate the use of a totally different scheduling solution (outside of PPO). Several
possibilities have been identified in the literature (Chapter 2). This could be used
as a second verification method along side of the current PPO solution. Optionally,
this solution can implement the MILP formulation as discussed in Chapter 3. An
advantage of using MILP for the entire solving process is that there exist many
deterministic solving algorithms, so that the current nondeterminism problem of
PPO would not be an issue.

e Implement the remaining optimization criteria regarding the transportation costs
and also resort allocation.

e Continue to investigate scenarios regarding the configuration of production lines and
technical constraints. To this end the current solution can be used as a tool. It has
been shown that several runs of each scenario have to be compared though, in order
to make reliable predictions.
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Nomenclature

High rise resources
hrCapy, throughput capacity of h in kilos per hour

Production lines

hrRes; high rise resource h used by production line [
minTp, minimum throughput required on [
name; identification of [

Model parameters

At maximal number of events points a task can overlap
dem, specifies the quantity of production order o

due, due time of production order o

D maximum capacity of resource e

cht; changeover time (in hours) needed for changeover task 4
Hie required capacity of resource e by task ¢

ndcModifier, modifier to enforce strategically important value of production order o

P, specifies the product of production order o
1(4) production line [ of task ¢
(i) recipe 7 of task i

H time horizon

Ig initial stock of product p
Objectives

Ohnde total non-delivery costs

Opc total production costs

OF total objective outcome
Wnde weight of non-delivery costs
Wnde weight of stock deficit costs
Wpe weight of production costs
Products
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profit,, profit of product p per ton in euros

stey cost per day of supply when the stock is below the stock target
stDays,, total days of sales p corresponding to stock target

stockTarget,, stock target of product p in tons

Recipes

allowSim,.,» wether if two recipes r, 7’ are allowed to be produced concurrently
mpt,. minimal processing time (in hours) of recipe r

pr, product p produced by recipe r

spinneret,  required spinneret for r

spoolweight, spool weight of r

titer, weight (in grams per 10 kilometers) of the product produced by r

tp, throughput required of the high-rise resource for r in kilos per hour

tph, the number of tons produced per hour by r

ttf, type, titer and filaments identification of the product produced by r

type, integer type number of the product produced by r (without the optional “D”

in front of it)

Sets/indices
I<° changeover tasks
Ispin spinning tasks
Ee generalized model resources
H,h, I high rise resources
1,14 processing tasks
L, production lines

0,0,0 production orders
Pop,p products

R,rr production recipes

S, s spinneret types
T,t,t event points

Variables
PO, binary variable deciding wether production order o is (partially) fulfilled at

event point ¢

pslyy slack (unfulfilled demand) of production order o at event point ¢

it total amount of material processed by task 4, starting at ¢ and finishing at ¢/
Ee excess amount of resource e at event point t

Iy amount of product p at event point ¢
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Nigp binary variable that assigns the end of task 4, which began at ¢, to point ¢/

T; absolute time of event point ¢
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