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Abstract

Though most grid-based geographic information systems store a terrain as a uniform tiling of
square grid cells in R2 and cubes in R3, it is possible to use different cell shapes. This master
thesis shall provide both theoretical and practical analysis of the accuracy of commonly used
algorithms for terrains when applied to non-conventional terrain models. We shall look at
terrains of hexagonal grid cells and bitruncated cubes specifically.

For rotations on grids we observe that our alternative terrain models provide an increase in
accuracy, while for least-cost path computation we measure the opposite; grids with square
grid cells (regular grid cells) outperform grids with hexagonal cells. When measuring the accu-
racy of flow accumulation algorithms, we see that the results depend on the weight function
used; the function used to determine how precipitation is divided over neighbouring grid cells.
In general, terrains of square grid cells outperform hexagonal grid cells for weight functions
based on differences in elevation of neighbouring grid cells (the slope). For weight functions
based on the angle of steepest descent we measure the opposite.

Also, even though hexagonal grid cells cannot be tiled recursively, we shall see it is possible
to create efficient algorithms that allow hexagonal grid cells to be used as building blocks
for space-filling curves and hierarchical adaptive grid structures. In this thesis we primarily
discuss the Gosper curve, but will also provide new space-filling curves that have some useful
additional properties. Finally we discuss the use of septuatrees; a modification of quadtrees
that uses the tiling of the Gosper curve. We shall see that these techniques can be implemented
having the same or similar running time complexities as their conventional counterparts.
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1
Introduction

For many decades, computer systems have been used in the area of geography to perform
simulations and analysis on existing or proposed physical terrains. These systems are often
referred to as geographic information systems. The types of computations that are performed on
terrains are countless. Examples include:

• Models of pressure areas in the atmosphere can be used to simulate weather in the nearby
future.[11]

• Analysis of GSM coverage on a terrain allows telecommunication service providers to
deploy new antennae more wisely.[15]

• Simulations of water flow on a terrain can help assessing the dangers of flooding and
volcanic eruptions.

• Satellite navigation systems can be used to efficiently travel to a given destination, by
land, sea or air.

When creating a geographic information system, one of the most important design decisions
is the way terrains are encoded within the system. There are many trade-offs that need to be
considered when deciding which encoding, called a terrain model, suits the application best.
Questions a designer can ask him- or herself include:

• Is the terrain model precise enough? Can it be used to compute the results at a decent
level of detail? For example, a weather forecast with a 100 km precision may be sufficient
to get an overview of the weather in Russia, but this is likely not sufficient to predict
weather locally. Especially in mountainous and coastal regions the weather can vary
radically across short distances.

• Does the terrain model allow accurate computation? For a consumer-grade satellite nav-
igation system, small errors and detours typically cause little damage in practice, while
for simulations of volcano eruptions such mistakes can easily endanger the population
of an entire village.

• Does the terrain model allow the computation to be performed in a timely fashion? As
computer systems have become affordable, they are now used by mainstream users.
Most of these users have little understanding of the actual complexity of a computer
system, meaning they typically expect the system to compute results instantaneously.

1



2 Chapter 1. Introduction

• Is the terrain model used by the system compatible with existing methods used to ac-
quire the datasets? In other words, can available datasets of terrains be used by the
geographical information system with little or no loss of information?

When considering contemporary geographic information systems for two-dimensional spaces,
it seems that in practice most often two types of terrain models are used that address these
constraints sufficiently, namely grids and triangulated irregular networks (TINs). Whereas grid
models use a raster having a fixed structure to store a certain property of a terrain (e.g. eleva-
tion, temperature, pressure), TINs store a terrain as a set of connected triangles, where either
the faces, edges or vertices are associated with a value.[12]

Though practically all applications of grids use square grid cells, there is no requirement
that this needs to be the case. In this master thesis we shall research the feasibility of using
grid cells having non-conventional shapes. In this context, the term feasibility can be inter-
preted in different ways. First, one can consider feasibility being whether it is in fact possible
to implement a fast and robust algorithm that solves a given problem for the terrain model
used. Second, feasibility could be used to denote whether this implementation can compute
the intended results with enough accuracy.

In this master’s thesis we are going to research this feasibility by looking at both aspects. In
chapters 3, 4 and 5 we are going to look at the accuracy of several terrain models by analysing
the results yielded by the application of well-known algorithms. In the second part of this
thesis, we will see whether techniques analogue to Hilbert curves[9] and quadtrees[3] can be
used in conjunction with one of our alternative terrain models (hexagonal grid cells) as well.



2
Terrain models used in this document

In this document, we are going to discuss the application of a variety of terrain models. For
these terrain models we are going to describe how algorithms have to be adapted to work
with these terrain models, but there also will be analysis on how the results generated by these
algorithms are affected by this.

As the number of possible terrain models is infinite and diverse, this document will only
focus on a small number of terrain models, which are either already used in practice quite
often or are not hard to implement. Also, even though parts of the analysis performed in this
document can be generalised to any number of dimensions used, we shall restrict ourselves to
two-dimensional and three-dimensional spaces.

2.1 Terrain models for R2

In computational geometry a two-dimensional terrain can be defined as a function, mapping a
two-dimensional coordinate on a land surface to a numerical property. Examples of properties
of a land surface include pressure, temperature, precipitation and elevation with respect to the
sea. Using a two-dimensional terrain to store elevation data, it is possible to recreate a three-
dimensional rendering of the shape of the surface. Such terrains are called digital elevation
models.

The most common way to store a two-dimensional space on a computer system as a grid, is
to use regular grid cells. Another nice way to represent grids, is to use hexagonal grid cells,
because of their geometric properties, which we shall describe in this section.

2.1.1 Regular grid cells

Probably the easiest and most common way to store a two-dimensional grid terrain on a com-
puter system, is to use regular (rectangular) grid cells, as shown in Figure 2.1(a). What con-
tributes to this fact, is that many programming languages support multi-dimensional arrays
as an integral feature. For example, in the C and C++ programming languages it is part of the
actual syntax of the language, meaning it is simply a matter of writing Cell grid[x][y] to
declare a two-dimensional grid of size x× y.

On a regular grid, a grid cell p has eight neighbours (disregarding cells on the boundary of
the terrain). Four of these neighbouring grid cells, namely the cardinal neighbours, share two
vertices and one edge with p. The other four grid cells, the diagonal neighbours, only share a
single vertex with p. Considering a Cartesian grid of regular grid cells where every grid cell
has size 1× 1, the distance between the centrepoint of a grid cell and its neighbours is either 1
for cardinal neighbours or

√
2 for diagonal neighbours.

3



4 Chapter 2. Terrain models used in this document

(a) Regular grid cells. (b) Hexagonal grid cells.

Figure 2.1: Two-dimensional terrain models used in this document.

This difference in semantics between neighbouring cells has to be taken into account when
designing an algorithm that operates on grids. For example, when implementing a shortest
path algorithm, diagonal steps have to account for distance

√
2. Since this number is irra-

tional, it is hard – if not impossible – to implement such an algorithm without introducing
imprecision. This can be avoided by simply ignoring the diagonal neighbours, but this may
lead to suboptimal path calculation.

2.1.2 Hexagonal grid cells

The second two-dimensional terrain model we will be looking at, is a terrain which is tiled with
hexagons, instead of rectangles. This model has not seen much use in geographic information
systems, but is used in practice in board games and computer games.

Unlike regular grids, where we’ve seen that the neighbours of a grid cell can be divided
in two classes, this is not the case for hexagonal grid cells. Terrains consisting of hexagonal
tiles, as shown in Figure 2.1(b), enforce only a single class of neighbours. Each grid cell p
has six neighbouring grid cells, all of which share two vertices and one edge with grid cell
p. Assuming the hexagons are regular, each neighbouring grid cell has equal distance to p.
Unfortunately it is not possible to lay out a grid of regular hexagons on a two-dimensional
space using only integer coordinates, which is why we shall use the following two production
rules to define how hexagons are placed on the terrain:

• There is a hexagon placed at position
[
0 0

]
.

• If there is a hexagon placed at position
[
x y

]
, then it has six neighbouring hexagons:[

x y + 2
]
,
[
x+ 1 y + 1

]
,
[
x+ 1 y − 1

]
,
[
x y − 2

]
,
[
x− 1 y − 1

]
and

[
x− 1 y + 1

]
.

This implies that the x-coordinate of a grid cell is even, if and only if its y-coordinate is even
as well. Even though this coordinate model allows us to use integer coordinates exclusively, it
has the disadvantage that the terrain is stretched in the y-direction by a factor

√
3. This affects

the way coordinates on the plane can be rotated. Instead of using the standard rotation matrix
R(ϕ), rotation has to be performed as follows:
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ϕ R(ϕ) R′(ϕ)

0

[
1 0
0 1

] [
1 0
0 1

]
1
3π

[
1/2 −

√
3/2√

3/2 1/2

] [
1/2 −1/2
3/2 1/2

]
2
3π

[
−1/2 −

√
3/2√

3/2 −1/2

] [
−1/2 −1/2
3/2 −1/2

]
π

[
−1 0
0 −1

] [
−1 0
0 −1

]
−2

3π

[
−1/2

√
3/2

−
√
3/2 −1/2

] [
−1/2 1/2
−3/2 −1/2

]
−1

3π

[
1/2

√
3/2

−
√
3/2 1/2

] [
1/2 1/2
−3/2 1/2

]
Table 2.1: Rotation matrices for standard angles.

R′(ϕ) =

[
1 0

0
√
3

]
·
[
cosϕ − sinϕ
sinϕ cosϕ

]
·
[
1 0

0 1/
√
3

]
(2.1)

=

[
cosϕ − sinϕ/

√
3√

3 sinϕ cosϕ

]
(2.2)

Rotation matrices for six standard angles are given in Table 2.1. Notice that even though the
rotation matrices contain fractions, they can safely be applied to coordinates on the plane using
only integer arithmetic, by performing the division by two only after performing addition.
Because odd rows are only combined with odd columns and vice versa, we only divide even
numbers by two.

2.2 Terrain models for R3

Though two-dimensional terrains are very well suited for modelling land surfaces, there are
cases in which a three-dimensional environment needs to be modelled by a computer system
to perform a simulation. Examples include simulations of heat dissipation of a combustion
engine or air flow simulation of a hull of an airplane. For these kinds of simulations a certain
property needs to be stored for any point in R3 – not just the points of an outer surface.

For the terrain models for R2 we observed that it is possible to create a layout of grid cells
where the distance between centrepoints of neighbouring grid cells is uniform. Unfortunately
such a tiling does not exist for R3.

Theorem 1 There does not exist a tiling of grid cells for R3 where the distance between centre-
points of all pairs of neighbouring grid cells is equal.

Proof. Suppose there exists a tiling of grid cells where the distance between centrepoints is
equal. When looking at the dual graph of such a tiling, every maximum set of pairwise adjacent
grid cells form the vertices of a polyhedron. As the distance between each pair of vertices of
this polyhedron must be the same, the polyhedron can only be a regular tetrahedron. These
tetrahedra form a face-to-face tiling of R3. This causes a contradiction, as it is impossible to tile
the three-dimensional space with regular tetrahedra.[16] �

We shall therefore compare two models where these distances are non-uniform, namely
cubes with a tiling of bitruncated cubes.
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(a) Cubed grid cells. (b) Bitruncated cubed grid cells.

Figure 2.2: Three-dimensional terrain models used in this document.

2.2.1 Cubed grid cells

As the use of cubes as grid cells as shown in Figure 2.2(a) can be considered a logical extension
of regular grid cells to R3, it shares both the advantages and disadvantages of this model. Just
like regular grid cells, they can easily be mapped to a multi-dimensional array. When looking
at the neighbour relationship, things start to become more complex.

As the number of dimensions increase, so do the number of classes of neighbouring grid
cells. A cubed grid cell has 26 neighbours that can be divided in three classes:

• Six face adjacent neighbours having distance 1,

• Twelve edge adjacent diagonal neighbours having distance
√
2, and

• Eight vertex adjacent neighbours having distance
√
3.

This means that the distance between neighbouring grid cells may vary up to
√
3
1 ≈ +73%.

2.2.2 Bitruncated cubed grid cells

Another way to tile a three-dimensional space, is by using a grid of bitruncated cubes, as
shown in Figure 2.2(b). Bitruncated cubes consist of 14 faces, namely 6 squares and 8 hexagons.
They can be obtained by truncating the vertices of a regular cube, until exactly half the volume
of the cube remains. The easiest way to imagine how they can be tiled in R3, is by simply
placing them in the same layout as normal cubes. Between each group of eight adjacent cubes,
this will yield a hollow space, which has the shape of another bitruncated cube.

The dual graph of a tiling of bitruncated cubes is a tiling of disphenoid tetrahedra. These
tetrahedra have two edges of length 2 and four edges of length

√
3. Where we saw a 73%

difference in edge length for the dual graph of regular cubes, this difference is only 2√
3
≈ +15%

for bitruncated cubes. Of the tetrahedra that allow a face-to-face tiling in R3 described by
Sommerville[16, 2], this specific instance has the smallest difference in edge length.

Bitruncated cubes can easily be mapped to an environment where coordinates may only
consist of integers, for example by using only coordinates where x+ y + z mod 2 = 0.



3
Rotating grids

It is a strong claim that terrains modelled using hexagonal grid cells will lead to higher qual-
ity computations than grids using regular grid cells. In fact, it is impossible to prove such a
thing, since it entirely depends on the application. For example, an algorithm that traverses
a terrain in rectilinear directions exclusively will likely not benefit from a terrain model using
hexagonal grid cells. In this section we shall look at a single operation that can be performed
on terrains, namely rotation. For this operation we can observe that hexagonal grid cells do
have an advantage.

Consider a geographic information system that stores an elevation model for the Earth. Such
datasets are typically obtained from various providers. These datasets will not only use differ-
ent measurement techniques, but also various coordinate models based on different standards.
This is because like most celestial objects, the Earth is not a perfect sphere. This means that in
most cases, the integration of a new dataset into the pool requires the application of funda-
mental operations such as stretching, skewing and rotating.

In this chapter we are only looking at rotating a terrain using an angle ϕ around centrepoint
r. Independent of the cell structure, we can perform rotation as given in Algorithm 1. Essen-
tially, it computes each cell of the output by obtaining a set of cells of the input. This set of cells
is then used to derive a new value, using interpolation.

Algorithm 1 ROTATETERRAIN(Terrain in, Terrain out, Point r, Angle ϕ)
1: for all cells c ∈ out do
2: pout ← coordinate of cell c in terrain out
3: pin ← R(−ϕ) · (pout − r) + r
4: N ← cells in in close to point pin
5: c← INTERPOLATE(pin, N)

It must be noted that this algorithm is intentionally pretty vague. Not only have we omitted
what being ‘close to point pin’ means, we also have not discussed how the interpolation is
performed. These two steps are model specific and shall thus be described for regular grid
cells and hexagonal grid cells separately.

3.1 Interpolation on regular grid cells

Any point on the grid can always be placed inside or on the boundary of a square formed by
four adjacent grid cells, as shown in Figure 3.1(a). Assume for the sake of simplicity the points
a to d have coordinates

[
0 1

]
,
[
1 1

]
,
[
0 0

]
and

[
1 0

]
, respectively. Then using bilinear

interpolation we can approximate any point within this square as follows:

7



8 Chapter 3. Rotating grids

a

c

b

d

(a) Regular grid cells.

a

b

c

(b) Hexagonal grid cells.

Figure 3.1: Interpolation on two-dimensional terrain models.

V (x, y) = (1− x) · y · a (3.1)
+ x · y · b (3.2)
+ (1− x) · (1− y) · c (3.3)
+ x · (1− y) · d (3.4)

Now consider the general case where x and y can have arbitrary values. On a regular grid,
one can easily use bxc and byc to determine inside which square to interpolate. We can then
use function V on the remainder of x and y to perform the interpolation.

3.2 Interpolation on hexagonal grid cells

Whereas the bilinear interpolation on regular grid cells uses four neighbouring grid cells, we
can use an interpolation scheme for hexagonal grid cells that only depends on three neigh-
bouring grid cells, as shown in Figure 3.1(b), by performing a triangulation.

Assuming there is a triangle placed at points
[
0 0

]
,
[
1 1

]
and

[
1 −1

]
, we have to develop

a linear function that has the following properties:

V (0, 0) = a (3.5)
V (1, 1) = b (3.6)

V (1,−1) = c (3.7)

Because we know function V has the shape V (x, y) = Ax+By + C, we can easily derive A,
B and C. After simplifying the resulting formula, we obtain:

V (x, y) = (1− x) · a (3.8)
+ (12x+ 1

2y) · b (3.9)
+ (12x− 1

2y) · c (3.10)

Unfortunately we cannot apply this function as easily as on the regular grid. For this model,
we cannot use simple flooring of parameters to determine inside which triangle a point is
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placed. Instead, we can use a function as given in Algorithm 2. Every unit square on the
hexagonal grid is intersected diagonally, with either a positive or a negative slope. This func-
tion checks whether the point is above or below this intersection line to determine inside which
triangle the point is placed.

Algorithm 2 INWHICHTRIANGLE(Point p)
1: cx← bp.xc
2: rx← p.x− cx
3: cy ← bp.yc
4: ry ← p.y − cy
5: if cx mod 2 = cy mod 2 then
6: if rx < ry then

7: return
{[
cx
cy

]
,

[
cx

cy + 2

]
,

[
cx+ 1
cy + 1

]}
8: else

9: return
{[
cx
cy

]
,

[
cx+ 1
cy + 1

]
,

[
cx+ 1
cy − 1

]}
10: else
11: if rx < 1− ry then

12: return
{[

cx
cy + 1

]
,

[
cx

cy − 1

]
,

[
cx+ 1
cy

]}
13: else

14: return
{[

cx
cy + 1

]
,

[
cx+ 1
cy + 2

]
,

[
cx+ 1
cy

]}

This function can return triangles which either point to the left (see Figure 3.1(b)) or to the
right. This means that a function similar to V must be developed to interpolate on right-
pointing triangles.

3.3 Quality measurement for rotation

Now that we have described forms of interpolation that can be used to implement a rotation
algorithm for terrains, we shall perform a comparison against them to see which of them pre-
serves the data of the terrain better.

Assume we rotate terrain T around centrepoint r, using angle ϕ, to obtain terrain T ′. Now
we apply a rotation to terrain T ′ around the same centrepoint r, but using angle −ϕ, to ob-
tain terrain T ′′. Terrains T and T ′′ should now encode the same terrain, but the latter will
contain various amounts of jitter induced by the rotation operations. All sample points in T ′′

are partially based on their corresponding sample points in T , but also partially based on cells
nearby.

In the remainder of this section, we shall give a theoretical analysis on the ratios of jitter
induced by rotation and the results of tests performed on realistic terrains.

3.3.1 Theoretical bounds for preservation of sampled data

Let us define a function I(a, b′) that denotes the ratio of influence point a ∈ T has on the value of
point b′ ∈ T ′. It is the multiplication factor that is used by an interpolation function on point a
to compute the value of b′. Any interpolated value V (p′), where p′ ∈ T ′ can now be expressed
as follows:
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a′

c′

b′

d′
m

(a) Regular grid cells, where
W = 1

4
.

a′

b′

c′

m

(b) Hexagonal grid cells,
where W = 1

3
.

Figure 3.2: Overlapping terrains.

V (p′) =
∑
a∈T

I(a, p′) · V (a) (3.11)

We can now apply this mechanism a second time, to obtain an equation for interpolated
values of points in terrain T ′′:

V (p′′) =
∑
a′∈T ′

∑
b∈T

I(a′, p′′) · I(b, a′) · V (b) (3.12)

We now define the worst symmetric ratio of influence for a specific terrain model as the lowest
ratio of influence we can observe between two opposite rotations, for any combination of equal
points on the grid and for any placement of T ′. Assume there exists a function M : T → T ′′

that maps sample points on T to the points having the same location in T ′′. We now define the
worst symmetric ratio of influence for a specific terrain model as follows:

W = min
T ′

min
p∈T

∑
a′∈T ′

I(a′,M(p)) · I(p, a′) (3.13)

Using this measurement we can prove the following properties:

Theorem 2 For the regular grid cell model, W ≤ 1
4 .

Proof. Consider two overlapping terrains of regular grids, as shown in 3.2(a). Assume we
have points m ∈ T and a′, b′, c′, d′ ∈ T ′. The points in T ′ are placed right in between four
points in T . We can now derive W as follows:

W = min
T ′

min
p∈T

∑
a′∈T ′

I(a′,M(p)) · I(p, a′) (3.14)

≤
∑
a′∈T ′

I(a′,M(m)) · I(m, a′) (3.15)

= I(a′,M(m)) · I(m, a′) + I(b′,M(m)) · I(m, b′) (3.16)
+ I(c′,M(m)) · I(m, c′) + I(d′,M(m)) · I(m, d′) (3.17)
= 1

4 · 14 + 1
4 · 14 + 1

4 · 14 + 1
4 · 14 (3.18)

= 1
4 (3.19)
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Figure 3.3: Worst observed ratio of influence as a function of the angle of the placement of T ′.

�

Theorem 3 For the hexagonal grid cell model, W ≤ 1
3 .

Proof. The same trick can be repeated for a terrain with hexagonal grid cells, as shown in
3.2(b). Just like for the regular grid, we place the points in T ′ right in the middle of the inter-
polation cells of T . This yields the following derivation:

W = min
T ′

min
p∈T

∑
a′∈T ′

I(a′,M(p)) · I(p, a′) (3.20)

≤
∑
a′∈T ′

I(a′,M(m)) · I(m, a′) (3.21)

= I(a′,M(m)) · I(m, a′) + I(b′,M(m)) · I(m, b′) (3.22)
+ I(c′,M(m)) · I(m, c′) (3.23)
= 1

3 · 13 + 1
3 · 13 + 1

3 · 13 (3.24)
= 1

3 (3.25)

�

Unfortunately, these two theorems have little use in practice. It would have been nicer if
we were able to prove a lower bound on W instead of an upper bound. Such a lower bound
would act as as a measurement for preservation robustness of sample data. The proofs for the
lower bounds are not trivial, since all possible placements of T ′ must be considered.

Simulations of all possible placements of T ′ for the regular and the hexagonal grid cell model
have been performed, using a resolution of one thousandth the size of a grid cell and rotations
in 1◦ steps. These simulations have not yielded any placements of T ′ that cause a bound lower
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Figure 3.4: The part of the Earth covered by the six GTOPO30 datasets used.

than the upper bounds given previously. This means that it is likely – though unproven – that
the upper bounds are in fact tight. Figure 3.3 illustrates the worst observed ratio of influence
for all simulated placements observed for a single angle at which T ′ is placed.

3.3.2 Measurements on realistic datasets

In addition to providing theoretical bounds on the impact of rotation on a grid terrain, we have
also performed some practical measurements, using six of the GTOPO301 datasets, covering
the part of the Earth shown in Figure 3.4. The datasets used have a resolution of 4800 × 6000
and use a regular grid layout. In order to compare the regular grid layout with the hexagonal
layout, the datasets have been downsampled to 1200 × 1500 and 1290 × 2791 respectively.
Note that both these layouts have approximately the same number of sample points; for the
hexagonal grid layout only half of the coordinates is usable.

Rotating back and forth

Together with the original dataset, these two downsampled terrains have been rotated 359
times back and forth around the centrepoint of the grid, using an angle of 0 < 2πk

360 < 2π, where
k ∈ N. Then, for all sample points in all these rotations we have calculated the difference
with respect to the original terrain. The average difference and the standard deviation of the
difference are shown in Table 3.1.

Rotating iteratively

In addition to performing rotations back and forth, tests have been performed where the ter-
rain is rotated 36 times in a row, using 10◦ steps. The results are shown in Table 3.2.

1http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info
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Sampling Rect 4800× 6000 Rect 1200× 1500 Hex 1290× 2791

Dataset µ σ µ σ µ σ

e020n40 10.62 24.31 17.97 40.17 14.17 32.32
e020n90 3.54 7.79 9.68 22.51 8.53 19.87
w020n40 4.07 12.42 8.28 21.17 6.75 17.12
w020n90 9.31 17.39 28.04 49.76 25.18 44.89
w060n40 0.72 1.90 5.26 10.17 4.73 9.17
w060n90 1.02 3.83 5.83 20.65 5.61 19.85

Table 3.1: Mean difference in metres between terrain before and after two rotations, including
standard deviation.

Sampling Rect 4800× 6000 Rect 1200× 1500 Hex 1290× 2791

Dataset µ σ µ σ µ σ

e020n40 22.13 47.19 34.95 69.64 32.52 66.87
e020n90 8.74 12.28 15.24 16.89 14.53 17.14
w020n40 9.69 25.17 19.98 42.24 18.39 38.80
w020n90 26.40 40.73 46.81 60.50 45.33 61.14
w060n40 5.73 12.83 22.89 32.00 21.31 32.27
w060n90 3.05 14.01 5.78 10.78 6.11 14.31

Table 3.2: Mean difference in metres between terrain before and after 36 ten-degree rotations,
including standard deviation.

Observations

As we can observe from these results from the GTOPO30 datasets, performing rotation on a
terrain using the hexagonal grid cell model preserves the terrain data slightly better. In almost
all cases the mean difference in sample value and its standard deviation are lower.

It must be mentioned though that the rotation performed on these datasets is in reality in-
correct. The GTOPO30 datasets encode the map of the Earth as being a rectangle, meaning
that any circle of latitude has the same number of sample points. This is not taken into account
when performing these rotation benchmarks.

3.4 Extending analysis to R3

So far we have only considered two-dimensional terrains. The definition of the worst sym-
metric ratio of influence is, however, dimensionless. We shall now consider three-dimensional
spaces.

3.4.1 Cubed grid cells

Since we speculated that the worst symmetric ratio of influenceW is equal to 1
4 for regular grid

cells, it may be obvious to assume this bound for cubes in R3 is equal to 1
8 . Indeed, by placing

points in T ′ in the centre of each of the cubes of T , we do obtain a 1
8 ratio. Unfortunately, we

can also construct instances that are slightly worse.

Theorem 4 For the cubed grid cell model, W . 0.120436.

Proof. Assume that the cubes in T , T ′ and T ′′ have size 1 × 1 × 1. For terrains T and T ′′,
the cubes are simply axis-aligned and there exists a sample point m ∈ T , having coordinates
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Vertex x y z

a′ 1
8
(1 +

√
5 +

√
2(5−

√
5)) 1

8
(
√

7− 3
√
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√
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Table 3.3: Coordinates of a cube, that shows W < 1
8 .

[
0 0 0

]
. We can now place terrain T ′ in such a way that we enclose point m inside a cube,

having the coordinates for its eight vertices, a′ to h′, as shown in Table 3.3 and Figure 3.5. It is
identical to an axis-aligned cube that has been transformed using the rotation matrix Rx(π4 ) ·
Ry(

π
5 ).

As this cube is centered around point
[
0 0 0

]
, the ratio of influence between these vertices

and M(m) is 1
8 each. The ratio of influence between m and the vertices of the cube can be

expressed as (1− |x|)(1− |y|)(1− |z|). This allows us to approximate W as follows:

W = min
T ′

min
p∈T

∑
q′∈T ′

I(q′,M(p)) · I(p, q′) (3.26)

≤
∑
q′∈T ′

I(q′,M(m)) · I(m, q′) (3.27)

=
∑

q′∈{a′...h′}

I(q′,M(m)) · I(m, q′) (3.28)

=
∑

q′∈{a′...h′}

1
8 · (1− |q′.x|)(1− |q′.y|)(1− |q′.z|) (3.29)

≈ 4 · 18 · 0.124191 + 4 · 18 · 0.116682 (3.30)
= 0.120436 (3.31)

Even though it is possible to calculate an exact solution for W , the derivation and its answer
are too complex to be of any practical use, hence the approximation. �

As with the previous terrain models, a simulation of this terrain model has been performed,
calculating W as a function of the angle at which the cubes in T ′ are placed. Because we are
working with three-dimensional spaces, cubes have to be rotated in at least two directions to
cover all possible placements. In Figure 3.6, angles ϕ and ψ correspond with rotations around
the x and y axes, respectively. These simulations have been used to obtain the placement used
in Theorem 4. Not a single placement has been observed that yields a lower upper bound.

3.4.2 Bitruncated cubed grid cells

As the dual graph of a tiling of bitruncated cubed grid cells consists of dysphenoid tetrahedra,
having edges of length 2 and

√
3, we can develop a linear interpolation scheme as follows.

Assume there is a tetrahedron placed at sample points
[
0 0 0

]
,
[
0 2 0

]
,
[
1 1 1

]
and[

1 1 −1
]
, having sample values a to d, respectively. Linear interpolation function V can

now be defined as:
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(a) View from above.

(b) View from the front. (c) View from the side.

Figure 3.5: 3D renderings of a cube, that shows W < 1
8 , coloured blue. In all images the same

surface is coloured red. This colouring has no specific meaning, but eases orientation.
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Figure 3.6: Simulation of W for cubes.
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Figure 3.7: Simulation of W for cubes and bitruncated cubes.

Vertex x y z I(q′,M(m)) I(m, q′)

a′ −1
2

1
2

√
3 −1

2
1
4

3
4 − 1

4

√
3

b′ −1
2 −1

2

√
3 1

2
1
4

3
4 − 1

4

√
3

c′ 1
2 −1

2 −1
2

√
3 1

4
3
4 − 1

4

√
3

d′ 1
2

1
2

1
2

√
3 1

4
3
4 − 1

4

√
3

Table 3.4: Placement of a tetrahedron, that shows W ≤ 3
4 − 1

4

√
3.
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V (x, y, z) = (−1
2x− 1

2y + 1) · a (3.32)
+ (−1

2x+ 1
2y) · b (3.33)

+ (12x+ 1
2z) · c (3.34)

+ (12x− 1
2z) · d (3.35)

Even though we managed to prove W < 1
8 for cubes, this seems to be far from possible for

the tiling of bitruncated cubes.

Theorem 5 For the bitruncated cubed grid cell model, W ≤ 3
4 − 1

4

√
3 ≈ 0.31699.

Proof. To prove this, we use the same structure as for Theorem 4. Assume we now place a
tetrahedron at the coordinates given in Table 3.4. Because the tetrahedron is centered around[
0 0 0

]
, the ratio of influence forM(m) is 1

4 . The ratios of influence for a′ to d′ can be derived
by applying V :

V (x, y, z) = (−1
2x− 1

2y + 1) · a+ . . . (3.36)

= (−1
2 · 12 − 1

2 · 12
√
3 + 1) · a+ . . . (3.37)

= (34 − 1
4

√
3) · a+ . . . (3.38)

Using similar derivations as before, we can state that W ≤ 3
4 − 1

4

√
3.

�

As before, simulations have been performed for the bitruncated cube. These simulations
seem to suggest that W = 3

4 − 1
4

√
3 is tight, since no lower instances have been observed.

Together with the original simulation for cubes, the results for bitruncated cubes are shown in
Figure 3.7. Whereas W was in the range of 0.120 and 0.142 for cubes, we see that the use of
bitruncated cubes cause a massive improvement. For any angle, W has a value between 0.316
and 0.434. This is fairly impressive, since it shows that the preservation quality of such terrains
under arbitrary rotation in R3 is comparable to that of hexagonal grid cells in R2.

3.5 Open questions

In this chapter we have performed both practical and theoretical measurements to make pre-
dictions about the preservation qualities of terrains under rotation. Still, the lack of exact
derivations, but mere simulations of W leave the results presented in this chapter inconclu-
sive. Therefore, an open topic for research would be to prove the tightness of W .

Also, using this measurement criterion, one could wonder whether there exist terrain mod-
els for R2 and R3 that provide better bounds for W than hexagons and bitruncated cubes. This
could be accomplished by proving a maximum lower bound for W , preferably as a function of
d – the number of dimensions.

So far we have only looked at simple linear interpolation schemes, while it is also possible
to perform higher order interpolations.





4
Least-cost paths on grids

In graph theory, the shortest path problem is the problem of finding a path between two ver-
tices in a graph such that the sum of the weight (e.g. the length) of the edges along the path is
minimal. Algorithms for calculating shortest paths have found many applications in practice,
the most prominent being route planning software and satellite navigation systems.

The shortest path problem cannot be applied to grid-based terrains directly. When looking at
the neighbour graph for a grid of hexagonal grid cells, all edges will simply have equal length,
meaning that computing shortest paths on these grids is rather uninteresting. In practice many
grid-based approaches will use an extended version of the problem called the least-cost path
problem. In this setting, the algorithm minimises a sum of weights which are attached to the
grid cells – the vertices of the neighbour graph. This weight can be interpreted as being the cost
that is inferred when passing through the grid cell. An example of such a system is Terracost.[8]

The weights attached to the grid cells may be based on individual metrics, or even a com-
bination of them. Consider the case where a railway company is interested in building a new
railroad track between two train stations. Not only is it of interest that railroad tracks are built
on surfaces that are as flat as possible, the price of land differs from place to place. Computing
a path that is good with respect to both these metrics, can be achieved by combining them into
a single cost value.

In a more theoretical setting, a least-cost path from point a to point b can be expressed as
follows. Assume there is a two-dimensional plane, having a weight function W : R2 → R+ ∪
{0}, which maps points on the terrain to their corresponding weight value. A path on a plane
can be expressed as a function which maps a distance with respect to its starting point on the
path, to a coordinate, thus having type P : R→ R2. Because the path function uses the distance
as its input, it must progress at a constant speed. This means that for any distance d along the
path the following property holds:

lim
e→0

‖P (d+e)−P (d)‖
e = 1 (4.1)

The least-cost path involves finding a path function P , which minimizes the following ex-
pression: ∫ P−1(b)

P−1(a)
W (P (x)) dx (4.2)

Do observe that for a single terrain, there may be multiple least-cost paths. For example, on
a terrain only consisting of grid cells having weight 0, there are an infinite number of least-
cost paths. From now on, we shall call least-cost paths having the shortest length the shortest
least-cost paths.

19
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Figure 4.1: A high-cost area that resides between the sample points of the grid, coloured grey.
Sample points are shown in black.

Lemma 6 A shortest least-cost path cannot intersect itself.

Proof. Assume there exists a shortest least-cost path that intersects itself. Then the length of
the path can always be reduced further without increasing the cost of the path by cutting off
the part of the path between the intersection point. �

4.1 Properties of least-cost paths on non-interpolated terrains

By the previously given definition, we assume that a terrain is modelled as having an infinite
amount of precision. Though in real life terrains usually have a practically infinite precision,
terrains using grid layouts cannot provide this. The precision of these terrains is simply bound
by their resolution. This imprecision also propagates to the results of the least-cost path calcu-
lation. An example of a terrain where this may lead to large imprecision, is shown in Figure 4.1.
A least-cost path computed for this terrain may decide to pass straight through the high-cost
area, since the high-cost area lies between the sample points. It may be the case that it is less
expensive to avoid the high-cost area altogether.

How physical terrains should be converted to sample values on a grid is outside the scope
of this thesis, since in practice datasets are obtained through external parties or are constrained
by the technique used to sample them. From now on we shall assume that the sampled terrain
is exact. We shall interpret the cost value at a centrepoint of a grid cell identical to any point
within the grid cell it resides in.

The use of grid terrains where the cost value of a grid cell applies to all points within, leads
to the following properties, which we shall refer to later on.

Lemma 7 A shortest least-cost path on a grid terrain having convex grid cells passes through
individual grid cells along the path using only one line segment.

Proof. Since the grid cells are convex of shape, any two points on the boundary can be con-
nected using a line segment. Because a line segment is the shortest way to connect these two
points and the cost value is equal at any point within the grid cell, a shortest least-cost path
must pass through the grid cell using only one line segment. �

Do note that the illustrations in this chapter do not use straight lines, as to make them more
appealing to the eye.
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1 2

3 4 5

Figure 4.2: The five ways of placing two edges of the path in a hexagon, where both edges
share the same pair of edges on the boundary.

Lemma 8 Consider a grid terrain having convex grid cells, where any two points on the bound-
ary of a grid cell can be connected with a line having at most length l. Then the sum of the
length of the edges of a shortest least-cost path that pass through a grid cell cannot exceed l.

Proof. Consider there is a grid cell, where the sum of the length of the edges that pass through
exceeds l. Take the two points on the boundary of the grid cell along the path closest to the
beginning and the end of the path. These two points can be connected with an edge of length
at most l. This operation cannot increase the weight of the path, while it will reduce its length,
thus causing a contradiction. �

Lemma 9 A shortest least-cost path cannot cross the same boundary edge of a grid cell three
or more times consecutively.

Proof. If there were a shortest least-cost path that crosses the same boundary edge two times in
a row, it would imply that one of the grid cells has a lower weight than the other. Three or more
times in a row would imply the inequality to hold in both directions, which is a contradiction.

We shall call the pattern of crossing the same boundary edge more than twice in a row
‘zigzagging’. �

Lemma 10 Consider a shortest least-cost path on a grid terrain of hexagonal grid cells. There
cannot exist a pair of line segments along this path that intersect the same pair of edges on the
boundary of a grid cell.

Proof. There are five ways in which we can place the two edges of the path in a hexagon, as
shown in Figure 4.2. It can be shown that all these five cases cannot exist, as they all conflict
with the previously described properties.

For a grid of hexagonal grid cells where the distance between the centrepoints is equal to
1, we know that the largest possible distance between two points on the boundary is 2√

3
. The

lengths of the edges in case 4 and 5 are at least 1√
3

each, meaning it conflicts with Lemma 8.
Cases 1 and 3 cannot occur, since the outer edge can simply be rerouted to one of the inner
points on the boundary, shortening the length of the path.

Case 2 can develop itself in two different ways, as shown in Figure 4.3. None of these cases
can occur in practice. Case 2a cannot occur, since it involves zigzagging. Case 2b would imply
the bottom cell has at least two edges of length 1√

3
, contradicting Lemma 8.

�
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2a 2b

Figure 4.3: Developments of case 2.
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Figure 4.4: An exact least-cost path coloured in blue and an approximated least-cost path
coloured in red.

It remains questionable whether these lemmas give a full characterisation of all valid short-
est least-cost paths. Still, for a grid terrain of hexagonal grid cells it already places a constant
upper bound on the number of times a grid cell is passed through.

4.2 Approximate least-cost path calculation on non-interpolated terrains

In order to provide efficient least-cost path calculation, there are many implementations that
do not calculate an exact path across the terrain. Instead of allowing the path to cross through
the grid cells arbitrarily, they calculate a path by only allowing straight lines between the cen-
trepoints of the grid cells.

The question is whether such an approximation of least-cost paths yields results that do not
deviate much from the exact solution. We can already demonstrate that this is not the case for
regular grids where we are only allowed to make cardinal steps. In fact, for this terrain model
the approximated least-cost path can have a total cost that is infinitely larger than for an exact
least-cost path. This is demonstrated in Figure 4.4, where the exact least-cost path has total
cost infinitely close to 0, where it crosses an infinitely small part of the cell having weight 8.
The lowest possible total cost for an approximated path is 7.
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1 2

Figure 4.5: Placement of edges of size smaller than 1
2
√
3
.

4.2.1 Hexagonal grid cells

We shall now demonstrate that terrains using hexagonal grid cells do provide an upper bound
on approximated least-cost paths compared to exact paths.

Lemma 11 Assume there is an exact shortest least-cost path on a terrain of hexagonal grid
cells. Let E denote the set of line segments of the shortest least-cost path that pass through
each of the grid cells individually. Let t(c) be the sum of the lengths of all the path segments in
E that pass through cell c. Also let C be the set of grid cells where t(c) ≥ 1

2
√
3
. The grid cells in

C form one connected component.

Proof. We can prove this lemma by showing that if there is a part of the shortest least-cost path
that passes through grid cell c with t(c) < 1

2
√
3
, then there exists a preceding grid cell p and a

succeeding grid cell q along the path that are neighbours (or identical) and t(p), t(q) ≥ 1
2
√
3
.

There are two ways in which paths of at most 1
2
√
3

can be placed in a grid cell, as shown in
Figure 4.5. This is because 1

2
√
3

is equal to half the length of the boundary edges. Of case 1
we can say that since zigzagging is not permitted, the two edges in the neighbouring cell must
traverse to other cells. The length of these edges must sum up to at least 1

2
√
3
, for them to reach

the boundary.
Case 2 becomes a bit more complex. If it weren’t for the previously given lemmas, the

number of possible arrangements of the path would have been infinite. Now if we generate
all possible instances in which the path does not cross itself, does not zigzag and there exists
no pair of line segments on the path that goes to the same pair of neighbouring grid cells, we
obtain the nine cases given in Figure 4.6. Some cases have been omitted, because of horizontal
reflection symmetry. Also, to reduce the number of separate cases, the least-cost path can enter
and leave this cluster through any edge on the outer boundary of the grid cell – not just the
edge used in the picture. Some of these instances are likely impossible to create in practice, but
would require additional lemmas to be filtered out.

For all of the nine cases, we can derive that t(b) ≥ 1
2
√
3
. In cases 2d to 2i, the path traverses

through cell b before and after passing through c, meaning cell c can safely be removed from
the result, without breaking connectivity.

For the first three cases, 2a to 2c, we can prove that t(a) ≥ 1
2
√
3
. Since a and b are adjacent, c

can safely be omitted from C without breaking connectivity. �

Theorem 12 On a terrain consisting of hexagonal grid cells the total cost of the approximated
least-cost path between two sample points is at most 2

√
3 times the total cost of the exact least-

cost path.

Proof. We can prove this by applying Lemma 11. We can obtain a set of grid cells which is a
connected component, where for each grid cell c, t(c) ≥ 1

2
√
3
.
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Because the set of grid cells is a connected component, it is possible to calculate a path over
the grid cells between the two query points. An approximated path can then be generated by
connecting the centrepoints of these grid cells.

In the approximated least-cost path, every grid cell of the exact shortest least-cost path is
either discarded or traversed with two edges, each having length 1

2 , thus 1 in total. Because all
used grid cells were originally traversed with length at least 1

2
√
3
, the approximated path has

at most 2
√
3 times its cost. �

4.2.2 Regular grid cells with cardinal and diagonal steps

At the start of this section, we argued that approximated least-cost paths for regular grid cells
are not bounded by a constant when compared to the exact least-cost path. For this, we as-
sumed we were only allowed to make steps in cardinal directions. The example we have given
in Figure 4.4 does not hold for the case where diagonal steps are also allowed. Just like the
terrain model of hexagonal grid cells, it is bounded.

In this section we shall provide a proof for this terrain model that uses the same outline as
our proof for hexagonal grid cells. Therefore the proof shall only describe the differences to
the original. Let us assume the regular grid cells have size 1× 1.

Theorem 13 On a terrain consisting of regular grid cells the total cost of the approximated
least-cost path between two points is at most 2

√
2 times the total cost of the exact least-cost

path, under the assumption that both rectilinear steps and diagonal steps are allowed.

Proof. Theorem 12 depends on a set of lemmas. The first two lemmas were independent of
the structure of grid cells, meaning only Lemmas 10 and 11 need to be adjusted.

Lemma 10 can trivially be adjusted to prove that a regular grid cell never contains two path
segments passing through the same pair of boundary edges, using the same style of case dis-
tinction on placements to prove a contradiction. For each of these cases it can be reasoned that
a shorter least-cost path must exist.

Lemma 11 can be altered to prove that for every grid cell b where t(b) < 1
2 , there exists

a preceding grid cell p and a succeeding grid cell q along the path that are neighbours (or
identical) and t(p), t(q) ≥ 1

2 . For example, six developments of a grid cell b where an edge
passes through a corner of the grid cell, similar to Figure 4.6 are shown in Figure 4.7. By
enumerating these six and all other developments, it can be shown that this lemma holds.

We can therefore state that any set of grid cells through which a least-cost path traverses,
where all grid cells are removed that are traversed less than 1

2 , is still a connected component.
An approximated path can pass through each of the centrepoints of these grid cells, using two
path segments of length at most 1√

2
, thus at most

√
2 in total. Therefore the total cost of the

path is approximated at most by a factor
√
2/12 = 2

√
2. �

4.2.3 Tightness of the worst-case approximation factors

The proofs given previously have placed an upper bound on the approximation factor of ap-
proximated least-cost paths for hexagonal grid cells and regular grid cells, under the assump-
tion that diagonal steps are allowed. The question remains whether the obtained bounds of
2
√
3 and 2

√
2 are in fact tight. Unfortunately, it does not seem possible to create instances that

reach these bounds.
For hexagonal grid cells, it only seems to be possible to create instances where the length at

which a grid cell is traversed only increases by a factor
√
3, as shown in Figure 4.8(a). For the

regular grid cells, we see a similar pattern, where we can only find examples that demonstrate
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Figure 4.8: Lower bounds for approximation factor for approximated least-cost paths on non-
interpolated terrains.

a bound of
√
2, as shown in Figure 4.8(b). As summarised in Table 4.1, we thus have a factor 2

difference between the lower bound and the upper bound.

This discrepancy cannot be eliminated by using the same proof structure. For example, for
the regular grid cells with diagonal steps, one would need to prove that the removal of all cells
that are traversed with a length less than 1 will not cause the grid cells along the path to become
disconnected. A grid having uniform cost as simple as shown in Figure 4.9 already contradicts
this premise, as all grid cells are traversed with a length of only 1√

2
and their omission clearly

makes the approximated least-cost path discontinuous.
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Regular (4) Hexagonal Regular (8)
Lower bound worst-case approximation factor ∞

√
3 ≈ 1.73

√
2 ≈ 1.41

Upper bound worst-case approximation factor ∞ 2
√
3 ≈ 3.46 2

√
2 ≈ 2.83

Table 4.1: Worst-case approximation factors for approximated least-cost paths on non-
interpolated terrains.

Figure 4.9: A diagonal least-cost path across the grid.

4.3 Approximate least-cost path calculation on interpolated terrains

In the previous section we analyzed bounds for the worst-case approximation factor for least-
cost paths under the assumption that the weight for an arbitrary point on the terrain corre-
sponds with the value assigned to the centrepoint of the grid cell it resides in. In practice one
would rather consider an interpolated – thus smoothed – version of the terrain to be a better
representation of the original terrain. In this section we shall assume linear interpolation, as
described in sections 3.1 and 3.2.

First of all, we can argue that calculating approximated least-cost paths for interpolated
terrains is performed almost identical to non-interpolated terrains. For regular grid cells where
only cardinal steps are allowed and hexagonal grid cells, we can easily derive that the added
cost of a single step is accounted half to the source grid cell and half to the destination grid
cell. For diagonal steps on a regular grid, this is not the case.

Consider the grid shown in Figure 4.8(b). For a non-interpolated terrain, an exact least-
cost path algorithm will return a path having total cost 1. If the terrain is considered to be
interpolated, there exists no least-cost path having a finite total cost. This is due to the fact
that on an approximated least-cost path, the source and destination cells only account for 1

3
of the added cost, while the intersected neighbours account for 1

6 each. This can be shown by
integrating over the interpolation function V for regular grids diagonally:

∫ 1

0
V (i, i) di =

∫ 1

0
(1− i) · i · a+ i · i · b+ (1− i) · (1− i) · c+ i · (1− i) · ddi (4.3)

=
[
1
2ai

2 − 1
3ai

3 + 1
3bi

3 + ci− ci2 + 1
3ci

3 + 1
2di

2 − 1
3di

3
]1
i=0

(4.4)

= 1
6a+

1
3b+

1
3c+

1
6d (4.5)

It is unknown whether proofs similar to the ones from the previous section can be adjusted
to provide bounds on a worst-case approximation factor for least-cost paths on interpolated
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(a) Regular grid cells (4). (b) Hexagonal grid cells. (c) Regular grid cells (8).

Figure 4.10: Lower bounds for approximation factor for approximated least-cost paths on in-
terpolated terrains.

Regular (4) Hexagonal Regular (8)
Lower bound worst-case approximation factor

√
2 ≈ 1.41 2√

3
≈ 1.15 1+

√
2√

5
≈ 1.08

Upper bound worst-case approximation factor ∞ ∞ ∞

Table 4.2: Worst-case approximation factors for approximated least-cost paths on interpolated
terrains.

(a) 125 vertices (b) 250 vertices (c) 500 vertices (d) 1000 vertices

Figure 4.11: Random TINs.

terrains. We can however provide weak lower bounds on the approximation factor by looking
at the case where the exact least-cost path traverses between two angles on a terrain having
uniform cost, as shown in Figure 4.10. These cases lead to the lower bounds given in Table 4.2.

4.4 Measuring terrain model quality using random TINs

In addition to the theoretical analysis performed previously, we shall now look at measure-
ments of least-cost paths performed on TINs, which are generated by calculating the Delaunay
triangulation of a randomly generated pointset. Each vertex on the TIN has a uniformly dis-
tributed random cost value between 0 and 1. Each of the TINs has a circular shape, but have a
varying number of vertices. The four TINs generated are shown in Figure 4.11.

In order to perform a fair comparison, one should compare the approximated least-cost
paths with an exact least-cost path on the same dataset, but unfortunately such a compari-
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Figure 4.12: Least-cost paths from centrepoint to circle of measurement points.

TIN size Regular (4) Hexagonal Regular (8) Regular (8) + I
125 vertices 0.041041 0.016837 0.008697 0.008692
250 vertices 0.037515 0.015284 0.007236 0.007238
500 vertices 0.027110 0.011140 0.005391 0.005389
1000 vertices 0.028249 0.009577 0.005436 0.005448

Table 4.3: Coefficients of variation observed for least-cost path calculations for various ran-
domly generated TINs.

son is hard to achieve, as calculating least-cost paths on TINs is far from trivial.[10] Therefore
we use a different method of comparing our three terrain models.

For each of the datasets, we calculate the least-cost paths from the centrepoint of the grid to
360 equidistant measurement points that are placed on a circle which has a radius 3

4 the size
of the TIN itself, as depicted in Figure 4.12. Because the least-cost path algorithms work on
grids – not TINs – we repeat the same test for 360 samplings of the TIN under different angles.
This means that the least-cost path to each of the measurement points is calculated under 360
different angles. Each grid is sampled from the TIN at a resolution of 224 grid cells.

For each of the measurement points, we calculate the coefficient of variation (cv = σ
µ ) of the

360 least-cost paths that have been calculated. For exact least-cost paths, this coefficient should
of course be 0, but the lack of resolution and angles in which an approximated least-cost path
can progress, will yield different results for each angle.

For each terrain model, the average coefficient of variation for the 360 measurement points
is provided in Table 4.3. As we can see, the best results are obtained when using a regular
grid, but only if diagonal steps are allowed. The coefficient of variation for hexagonal grid
cells is approximately twice as large, but still 2.5 times smaller than regular grid cells where
only cardinal steps are allowed. The last column of the table uses the alternative interpolation
method for diagonal steps as described in the previous section. As we can see, it has little to
no influence on the final results.

The approximation algorithms are implemented in such a way that they never underapprox-
imate the total cost of a least-cost path. Therefore we can use the results acquired by these tests
to determine whether the theoretical bounds can in fact be reached in practice. In Table 4.4
we provide the highest observed ratio between the shortest least-cost path and the longest
least-cost path computed for a single measurement point. Though we see the same trend as
in Table 4.3, we can also observe that these ratios come pretty close to the lower bounds we
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TIN size Regular (4) Hexagonal Regular (8) Regular (8) + I
125 vertices 1.27433 1.12197 1.05711 1.05713
250 vertices 1.30345 1.09792 1.05774 1.05776
500 vertices 1.26135 1.07666 1.03520 1.03523
1000 vertices 1.22048 1.07947 1.03064 1.03064

Table 4.4: Ratio between shortest and longest path observed for a single measurement point.

saw for interpolated terrains. Because the sampled grids are based on flat surfaces of triangles
and would thus be an accurate representation of an interpolated terrain, this is an interesting
phenomenon. It doesn’t rule out that the lower bounds for linearly interpolated terrains are in
fact tight.

4.5 Open questions

In this chapter we have seen some fundamental analysis of least-cost paths for various types
of two-dimensional terrain models. Even though we have already demonstrated that for some
terrain models approximated least-cost paths are bounded by a constant approximation factor,
we have not managed to prove the tightness of this bound. Moreover, no upper bounds have
been determined for interpolated terrains, though benchmarks haven’t managed to produce
instances worse than the derived lower bounds.

In this chapter we have only restricted analysis to two-dimensional terrain models. One
might be interested in performing similar analysis for terrain models in R3.



5
Flow accumulation on grids

In addition to the applications of grid terrains discussed previously, we shall now consider the
calculation of flow accumulation. Flow accumulation typically answers the following ques-
tion. Given a grid terrain T , where each grid cell is subject to a certain amount of precipitation
P (c), how much of this precipitation will flow through a specific grid cell before reaching its
final destination (e.g. a valley, river or lake)?

Essentially, this problem is solved by translating a dataset (e.g. an elevation map) to a di-
rected graph that indicates whether precipitation may flow out of a grid cell, and if so into
which of its neighbours. In the general case, water always tends to traverse downward, so it is
safe to assume that this graph is acyclic; a DAG.

In this chapter we shall look at how different terrain models and techniques affect the quality
of flow accumulation. First we shall only consider the case where each cell can only propagate
precipitation to one of its neighbours as shown in Figure 5.1, called single-flow-direction (SFD).
Later on, we shall also discuss multiple-flow-direction (MFD).
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Figure 5.1: An example of a computation of flow accumulation for SFD.

Though algorithms for calculating flow accumulation are given in this chapter, they are
merely provided for completeness. I/O efficient versions of these algorithms can be found
in an article written by Haverkort and Janssen[7], but also in the TerraFlow suite.[17]

5.1 Calculating flow accumulation for single-flow-direction

Algorithms that calculate the flow accumulation for every cell on a grid, are trivial to write. As
the flow on the terrain can be expressed as a DAG, we can use topological sorting algorithms
to process the input in such a way that precipitation can be propagated across the entire terrain
in a single pass.

31
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Still, even without topological sorting it is possible to calculate the flow accumulation, as
demonstrated in Algorithms 3 and 4. The algorithm works by processing each of the cells
individually. For each of these cells we propagate the flow accumulation to its out-neighbour,
if and only if the flow accumulation for the cell itself is fully computed. This algorithm is
identical to the naı̈ve algorithm given in Janssen’s paper, except that it is decomposed in two
separate routines. This decomposition shall later be used to support MFD.

Algorithm 3 NAÏVEACCUMULATION

1: for each cell c ∈ T do
2: FlowAcc[c]← P (c)
3: mark[c]← false
4: for each cell c ∈ T do
5: if mark[c] = false then
6: MARKCELL(c)

Algorithm 4 MARKCELL(Cell c)
1: if there exists an in-neighbour of c called d, where mark[d] = false then
2: {The value of c has not yet been determined.}
3: return
4: mark[c]← true
5: if cell c has an out-neighbour, called d then
6: FlowAcc[d]← FlowAcc[d] + FlowAcc[c]
7: MARKCELL(d)

5.1.1 Comparison of various terrain models

As we will be applying the previously described algorithm on different terrain models, we
must construct a dataset that is not biased towards a specific terrain model. Also, the dataset
must not depend on in-flow from the boundary of the terrain. For example, a regular terrain
where all the precipitation flows to the centrepoint may already be unfair for regular grid cells,
depending on the angle at which the grid is placed, since diagonal steps cover a larger distance
than axis-aligned steps.

The easiest and probably most model-independent terrain one could think of, would be
a terrain consisting of a perfectly circular hill on which precipitation is released uniformly.
Theoretically, each point on a circle centered at the top of the hill must have an equal amount
of flow accumulation. Obviously, the angle at which precipitation flows at a certain point is
identical to the angle the point has respective to the top of the hill. In this comparison we shall
round this angle to the nearest neighbour.

In this section we will be comparing three terrain models:

• A terrain consisting of regular grid cells, where precipitation can flow cardinally, thus in
four directions,

• A terrain consisting of hexagonal grid cells, where precipitation can flow in six directions,

• A terrain consisting of regular grid cells, where in addition to the first terrain model,
precipitation can also flow diagonally, thus in eight directions.

By applying the previously described algorithms, we obtain the results shown in Figure 5.2.
As we can see, these results barely resemble the uniform distribution of flow we anticipated.
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(a) Regular grid cells, cardinal
flow.

(b) Hexagonal grid cells, flow in
six directions.

(c) Regular grid cells, flow in
eight directions.

Figure 5.2: Flow accumulation on a round hilltop. Black indicates a low amount of accumula-
tion, while white regions correspond with a large amount of accumulation.
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Figure 5.3: Standard deviation of flow accumulation on the boundary of a circle.

As we round the angle of flow to the nearest neighbour, we effectively turn our circular hill
into a pyramid, where the centre of each face collects more precipitation than the corners.

Now that we have calculated the flow accumulation for each terrain model, we can calculate
the mean value and standard deviation observed on a circle having a variable radius. Because
the density of grid cells of the terrain models is incomparable, we disregard the actual radius,
but compare the standard deviation by mean value. This way we obtain the graph shown in
Figure 5.3.

This graph raises some interesting observations. First of all, when using regular grid cells
where water can flow in eight directions, the standard deviation is the largest. This is due to
the fact that flow in the four diagonals goes faster than for the rectilinear sides. Contrary to
what we hoped, we can also observe that the hexagonal grid model performs worse than the
regular grid model.
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Figure 5.4: Eight segments of waterflow in four directions.

5.1.2 Derivation of coefficient of variation

In the previous section, we have seen that using the naı̈ve flow accumulation algorithm, simple
regular grid cells where flow can only be performed in four directions offers the best results
for our benchmark. Also, we saw that the standard deviation scaled linear with respect to
the mean value of the sample values on the boundary. We shall now prove these properties
formally, by deriving exact equations for the mean (µ), standard deviation (σ) and coefficient
of variation (cv = σ

µ ).
In this section we shall not derive this constant for flow accumulation in eight directions.

Of course, it can be derived using a similar approach. For this model, care must be taken to
distinguish flow in rectilinear and diagonal directions, as diagonal steps speed up the flow by
a factor

√
2.

Theorem 14 For a terrain having regular grid cells where water can only flow in cardinal di-
rections, the coefficient of variation (cv) of flow accumulation for a certain circle of radius R

placed around a circular mountaintop is
√
−48+32

√
2−2π+π2

4(
√
2−1) ≈ 0.55358.

Proof. As we can see in Figure 5.4, our mountaintop consists of eight segments that are all
symmetric. Therefore, it is sufficient to derive the coefficient of variation for only one of the
eight segments. In this proof we shall consider the segment indicated in grey.

Let us define a continuous function A that for an angle on the boundary calculates the
amount of accumulated water. This amount is equal to the horizontal distance between the
boundary and the diagonal edge. This property can simply be expressed by the following
equation:

A(ϕ) = (cos(ϕ)− sin(ϕ))R (5.1)

Now we can derive the mean amount of flow accumulation on the boundary and its stan-
dard deviation:
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µ = 4
π ·
∫ π

4

0
A(ϕ) dϕ (5.2)

= 4
π · (
√
2− 1)R (5.3)

σ =

√
4
π ·
∫ π

4

0
(A(ϕ)− µ)2 dϕ (5.4)

=

√
−48+32

√
2−2π+π2

π2 R2 (5.5)

=

√
−48+32

√
2−2π+π2

π R (5.6)

Combining these results, we obtain the following coefficient of variation:

cv =
σ
µ =

√
−48+32

√
2−2π+π2

4(
√
2−1) (5.7)

≈ 0.55358 (5.8)

�

Theorem 15 For a terrain having hexagonal grid cells, the coefficient of variation (cv) of flow
accumulation for a certain circle of radius R placed around a circular mountaintop is approxi-
mately 0.56679.

Proof. Reusing the same structure as the previous theorem, we can also calculate the coef-
ficient of variation for a terrain where water flows in six directions, thus twelve segments.
Again, we start by defining function A. As the diagonal edge of our segment is now slightly
steeper, the definition changes accordingly.

A(ϕ) = (cos(ϕ)−
√
3 sin(ϕ))R (5.9)

As before, we can now use this function to calculate the mean and the standard deviation
of the amount of accumulated water on the boundary. Even though an exact derivation of the
standard deviation is possible, it is omitted, because of its vast complexity.

µ = 6
π ·
∫ π

6

0
A(ϕ) dϕ (5.10)

= 6
π · (2−

√
3)R (5.11)

σ =

√
6
π ·
∫ π

6

0
(A(ϕ)− µ)2 dϕ (5.12)

≈ 0.29005R (5.13)

This leads to the following coefficient of variation:

cv =
σ
µ ≈ 0.29005R

6
π ·(2−

√
3)R

(5.14)

≈ 0.56679 (5.15)

�

As mentioned before, these coefficients are independent ofR – thus constant, which explains
the linearity of Figure 5.3. In fact, the constants given in these two theorems can almost exactly
be obtained by using the results from this benchmark.
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(a) Regular grid cells, cardinal
flow.

(b) Hexagonal grid cells, flow in
six directions.

(c) Regular grid cells, flow in
eight directions.

Figure 5.5: Flow accumulation on a round hilltop, modeling the waterflow using a DAG.

5.2 From forests to DAGs: multiple-flow-direction

So far we have only compared terrain models by considering SFD. This model behaved badly.
In fact, it behaved so bad that the coefficient of variation exceeds 0.5 for all terrain models
analysed. Therefore we shall repeat the same tests for MFD.

When using SFD, the flow between grid cells can be expressed as a forest. A cell can have
multiple in-neighbours, but only a single out-neighbour. For MFD, a cell can have multiple
out-neighbours, meaning the flow relationship is expressed using a full DAG. To account for
this, the provided algorithm must be changed accordingly. Algorithm 5 is a modified version
of the MARKCELL function, altered to propagate its FlowAcc value to multiple neighbours
according to an edge weight function W .

Algorithm 5 MARKCELLDAG(Cell c)
1: if there exists an in-neighbour of c called d, where mark[d] = false then
2: {The value of c has not yet been determined.}
3: return
4: mark[c]← true
5: for each cell d, being an out-neighbour of c do
6: FlowAcc[d]← FlowAcc[d] +W (cd) · FlowAcc[c]
7: for each cell d, being an out-neighbour of c do
8: if mark[c] = false then
9: MARKCELLDAG(d)

Now we have to decide how to choose our weight function. For our specific testcase –
the perfect round hill – the simplest way would be to spread the flow between two adjacent
neighbouring grid cells, according to a ratio based on the actual angle. Using this procedure
we obtain the results shown in Figure 5.5.

These renderings are close to what we expect. To the eye they seem like a uniform accumu-
lation of precipitation in any direction. Though hardly visible on paper, each of these maps
contain a set of hairlines that pass through the origin, where the amount of accumulation is
very large compared to other sample points. This effect is depicted in Figure 5.6. Precipitation
that flows across the terrain along one of the axes will pass to a single neighbouring cell, while
all other precipitation will be scattered. For the rest of this section we shall disregard these
cases and omit them from any measurements.

Similar to the measurements performed for SFD, it has been observed that the mean amount
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Figure 5.6: Hairlines induced by dividing flow to two neighbours. The dark grey cell corre-
sponds with the top of the hill.
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Figure 5.7: Accumulated flow as a function of the angle, for a fixed mean value of approxi-
mately 800.

of accumulated flow on a circle and its standard deviation scale linearly with respect to the
radius of a circle centered around the hilltop. As can be seen in Figure 5.7, the amount of
accumulated water is pretty close to uniform, though a terrain having hexagonal grid cells
performs better than one having regular grid cells. For an approximate mean value of 800,
they have cv = 0.00116 and cv = 0.00616, respectively.
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5.2.1 Constructing gradient-based weight functions

So far we have only performed measurements for weight functions that were based on the an-
gle of steepest descent. Typically, flow accumulation algorithms are applied to existing eleva-
tion maps. For these maps, flow direction is initially unknown. Therefore we shall investigate
whether it is possible to recompute this angle of steepest descent based on an elevation map.

From a mathematical point of view, we are interested in computing the gradient for a given
point on the grid. The gradient is a vector field that points in the direction of the greatest rate
of increase in elevation. By taking the inverse of this vector field, we thus obtain the direction
of greatest rate of decrease. The gradient is defined as follows:

∇f(x, y) =
[ ∂
∂xf(x, y)
∂
∂yf(x, y)

]
(5.16)

Now the problem is that our terrain is not defined as a function that we can use to calculate
the gradient, but as a set of sample points. Still, we can work around this by creating a poly-
nomial function f that approximates the shape of the terrain given. For example, for a regular
grid it is possible to create a polynomial function that is equal in value for point

[
x y

]
and all

its neighbours, having the following shape:

f(x, y) = A+Bx+ Cx2 +Dy + Exy + Fx2y +Gy2 +Hxy2 + Ix2y2 (5.17)

Now assume we want to develop this function centered around the sample point at position[
0 0

]
. By solving A to I as a set of linear equations, we obtain their valuations in terms of the

sample values of the grid cell and its neighbours. The gradient then becomes:

∇f(0, 0) =

[
B
D

]
(5.18)

=

[
1
2(f(1, 0)− f(−1, 0))
1
2(f(0, 1)− f(0,−1))

]
(5.19)

In other words, the gradient can simply be obtained by calculating the difference between
the neighbouring grid cells on the horizontal and vertical axis.

Unfortunately it is a lot harder to perform a similar derivation for a grid of hexagonal grid
cells. A hexagonal grid cell and its six neighbours are placed at 3 distinct x-coordinates and 5
distinct y-coordinates. This means that a polynomial function of at most 15 terms is sufficient
to cause an identical valuation of the seven sample points. The problem with this approach is
that if one would attempt to solve a set of 7 linear equations of 15 terms, the resulting system
will consist of 8 free variables. This makes it hard in practice to make a fair comparison.

Even worse, the use of gradient-based weight functions is very likely to break one of the very
first assumptions we made about input, namely that the flow relationship can be expressed as
a DAG. The use of gradient-based weight functions can easily cause cyclic flow, as shown in
Figure 5.8. Here we model a very simple one-dimensional terrain model. For both sample
points 1 and 2, the shape of the terrain can be approximated using the polynomial function
f(x) = 1

2x
2 − 3

2x + 3. As we can see, a gradient-based weight function will simply cause
precipitation on sample point 1 to flow to sample point 2, while sample point 2 will send this
back to sample point 1.

Fortunately our hilltop benchmark doesn’t feature any valleys, meaning gradient-based
weight functions can still be applied to this dataset. Simulations for regular grids have shown
that for this dataset the coefficient of variation (cv) is indistinguishable to the values presented
for our angle-based weight function.
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Figure 5.8: Simple one-dimensional terrain model, where water flows cyclic.

5.2.2 Measuring existing slope-based weight functions

Now that we have discussed the practical implications of using gradient-based weight func-
tions, we shall present a method for calculating flow accumulation for arbitrary elevation
maps, in such a way that the flow relationship is guaranteed to be acyclic. One of the most com-
mon ways to accomplish this, is by using slope-based weight functions. Slope-based weight
functions are designed in such a way that water is only allowed to flow to neighbouring grid
cells that have a lower elevation, meaning that cycles cannot occur.

In this section we shall consider the work done by Quinn et al.[14], Freeman et al.[4] and
Qin et al.[13]. All previously referenced literature base their work on a slope-based weight
function, that calculates the weight for neighbour cell i as follows:

Wi =
(Si)

p×Li∑
n∈N (Sn)p×Ln

(5.20)

In this expression, the N set denotes all neighbours of a grid cell. S corresponds with the
negative slope of a neighbouring cell (e.g. 0 for a flat surface, 1 for a slope of −45◦). If the
neighbouring cell has a positive slope – thus having a higher altitude – it has a slope of 0. L
denotes a weight factor to be attached to a specific neighbouring grid cell. The work of Quinn
and Qin suggests this weight factor to be set to 1√

2
for diagonal neighbours and 1 otherwise,

as diagonal steps cover a larger distance. Freeman proposes a uniform assignment. In this
section we shall use the former definition, as the latter is discussed later on.

The most important difference between the slope-based weight functions, is how the expo-
nent p is assigned:

• Quinn’s weight function uses no exponent, hence p = 1.

• Freeman observed that p = 1.1 offers the most uniform dispersion.

• Qin et al. propose an exponent that is a function of the steepest descent. They perform
measurements using p = 1.1+8.9×min(e, 1), where e is the maximum slope of all of the
neighbouring grid cells.

From now on, we shall refer to these approaches as MFD-Quinn, MFD-Freeman and MFD-
md, respectively. It must be noted that an assignment of p = ∞ would yield identical results
to SFD, as the neighbour with the largest negative slope will always be preferred exclusively.

We can now perform a similar benchmark as we have done previously – by simulating a
perfectly round hilltop and calculating the average coefficient of variation observed for circles
centered at the hilltop. As the slope-based weight function depends on elevation levels to
calculate the slope between two adjacent grid cells, we define the shape of our mountain as
a cone, where the difference in elevation compared to the hilltop is equal to the Euclidean
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Terrain model Regular (4) Hexagonal Regular (8)
MFD-Quinn 0.09780 0.04199 0.02845
MFD-Freeman 0.05901 0.01689 0.01692
MFD-md 0.50616 0.41533 0.23057

Table 5.1: Coefficients of variation observed for different slope-based weight functions for
MFD.

p cv
Regular (4) 1.2252 0.03340
Hexagonal 1.1469 0.01244
Regular (8) 1.0984 0.00912

Table 5.2: Measured optimal values for p.

distance from the top. By applying the flow accumulation algorithm, we obtain the results
provided in Table 5.1. Renderings of the terrains are given in Figure 5.9.

Even though the renderings of MFD-Quinn and MFD-Freeman come close to a rendering of
a round hilltop, the MFD-md slope-based weight function seems not to perform the way we
expect it would. The flow accumulation resembles more the shape of a flower than a round
hilltop. This is due to the fact that the hill we have simulated is rather steep, meaning p of-
ten reaches values close to the upper bound of 10. This exposes an interesting property of
MFD-md. If the elevation data of the entire terrain is multiplied by a constant factor, the flow
accumulation algorithm will yield different results. Therefore it is likely that this approach
requires tuning for individual terrain datasets.

Disregarding the results from MFD-md and limiting our research to constant values of p,
we can see that the exponent p can be used to influence the roundness of our renderings. For
the hexagonal terrain model and the regular grid model where we do allow diagonal flow, we
see that Freeman’s observation that p = 1.1 provides good results can be reproduced in this
benchmark. The results show that the standard deviation is less than 1.7% of the average value
of all points on a circle centered at the hilltop.

5.2.3 Optimising the weight function’s exponent

Now that we have measured the coefficients of variation for existing slope-based weight func-
tions, we may ask ourselves whether there are assignments for p that yield even lower standard
deviations. After performing automated tests, we can conclude the following:

• Freeman’s approach of assigning uniform values to L seems to yield better results for
our hilltop benchmark.

• Freeman’s assignment of p = 1.1 seems close to the optimal value measured for the
regular terrain model, with diagonal steps, which is p = 1.0984.

• The assignment of p is dependent of the terrain model used, as different optimal values
have been derived for the other terrain models.

The optimal values of p measured, together with their coefficients of variation are provided
in Table 5.2. Renderings of the hilltop using these constants are shown in Figure 5.10.
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(a) MFD-Quinn, regular (4) (b) MFD-Quinn, hexagonal (c) MFD-Quinn, regular (8)

(d) MFD-Freeman, regular (4) (e) MFD-Freeman, hexagonal (f) MFD-Freeman, regular (8)

(g) MFD-md, regular (4) (h) MFD-md, hexagonal (i) MFD-md, regular (8)

Figure 5.9: Renderings of slope-based weight functions.
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(a) Regular (4) (b) Hexagonal (c) Regular (8)

Figure 5.10: Renderings of slope-based weight functions, using optimised values of p.

5.3 Open questions

In this chapter we have managed to prove that for SFD, a circular mountain can better be
modelled using a terrain that uses regular grid cells, instead of hexagonal grid cells. For MFD
using an angle-based weight function, we have performed measurements that demonstrate
the opposite.

In addition, we have done research on slope-based weight functions, where we have seen
that existing functions may need to be tuned to provide better performance for specific terrain
models.

The provided research can be extended in many ways. For example:

• In this chapter we have only used a round hill as an artificial dataset. Are there any other
shapes or structures that can be used to compare these terrain models in a fair way?

• So far we have only considered an artificial dataset. How do the results given in this
chapter compare to realistic datasets? Are the improved constants for slope-based weight
functions for MFD an actual improvement in practice?

• Theoretical analysis has been performed for SFD. Can a similar exact derivation of cv be
given for MFD?

• Research has only been restricted to simulation of flow on two-dimensional terrains.
What would be proper measurement criteria for flow simulation in R3 (e.g. pressure/gas
flow simulation)?

• Both the analysed angle-based and slope-based weight functions analyzed suffer from
the problem that hairlines occur on the axes of the grid. Which techniques can be used
to filter these out effectively?



6
Space-filling curves for hexagonal grid cells

As mentioned in chapter 2, when using a terrain composed of hexagonal grid cells using an
integer coordinate system, only half of all possible (x, y)-coordinates can be used to place a
hexagon. This means that a naı̈ve approach of simply storing the terrain in two-dimensional
array indexed by both axes independently is wasteful. Because a translation of coordinates
needs to be performed to prevent this anyway, it is good to look at space-filling curves. An
advantage of a space-filling curve is that it may provide better locality of grid cells, which may
for some algorithms reduce the number of disk I/Os needed during execution.

Space-filling curves for regular grids have received much attention in both literature and
practice. The most commonly used space-filling curves for regular grids are the Hilbert curve
and the Z-order curve. Both of these curves recursively divide a terrain in four regions and tra-
verse through these regions individually. The Z-order curve, shown in Figure 6.1(a), traverses
the four regions in a Z-shape. Because it makes discontinuous jumps, it is in most literature
considered to be an order – not a curve. The Hilbert curve, shown in Figure 6.1(b), is slightly
more complex. It traverses the four regions in a U-shape, with alternating rotations to provide
a curve without any discontinuities.

(a) Z-order (b) Hilbert curve

Figure 6.1: Space-filling curves for regular grids.

The Hilbert curve and the Z-order curve are recursive tilings, meaning the shape of a cell
is retained at each level of the recursive division. For a terrain with hexagonal grid cells this
is not possible; it is not possible to arrange two or more hexagons in such a way that they
form a hexagon of greater size.[6] This makes the construction of an algorithm that converts
coordinates to curve indices more complicated. A simple top-down conversion is practically
infeasible. Because the borders of cells have a very complex structure at higher levels of depth,
it cannot easily be determined whether a given coordinate is part of a cell or not.

43
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(a) Depth 1 (b) Depth 2 (c) Depth 21

Figure 6.2: Gosper curves at various levels of depth.

In this chapter we will see there does exist an O(D) time algorithm, which combines a
bottom-up, a top-down and a bottom-up pass, where D denotes the depth of the curve. We
shall assume that integer arithmetic typically supported by hardware instructions (addition,
subtraction, multiplication, division and modulo, but not exponentiation) can be executed in
constant time.

6.1 The Gosper curve

A space-filling curve which has been designed for hexagonal grids specifically, is the Gosper
curve. This curve, discovered by Bill Gosper in 1973, performs a non-recursive clustering of
seven hexagons, as shown in Figure 6.2.[5] The curve enters and leaves each of the hexagons
through its vertices. The angle between these two vertices is 2

3π. The seven subcells are not
placed at the same angle as the tiling itself. Compared to the tiling, they are placed at an angle
of − arctan

√
3
5 ≈ −0.11π. This rotation can clearly be observed in Figure 6.2(b), by comparing

the angle of the thin and the thick curve. At each increasing level of depth, the curve grows by
a factor of

√
7 in both dimensions.

The Gosper curve is not the only space-filling curve for hexagonal grids. In fact, the number
of space-filling curves based on tilings of hexagons is infinite.[1] In this section we are only
considering the case where we have seven hexagons (which we will from now on refer to as
k = 7). In principle, the described algorithms can be generalised to work with other layouts as
well, as long as these layouts are threefold rotational symmetric.

In order to develop algorithms that convert between coordinates and Gosper curve indices,
we must first formally define how the hexagons are arranged inside a cell and how the curve
goes through them. Not only does each grid cell have an index along the curve, a position
in the tiling and an angle at which the curve passes through the cell, we must also consider
that some grid cells are traversed in inverse order. For example, consider grid cells 0 and 2 as
shown in Figure 6.2(a). Even though these grid cells are rotated equally, the index for points
within these subcells must be calculated oppositely. Table 6.1 gives a formal description of
each grid cell.

We shall now describe two iterative algorithms that can be used to convert indices along
the curve to a pair of (x, y)-coordinates and vice versa. Even though recursive versions of the
algorithm are likely to be more simple to analyse, these routines are typically used in critical
code paths of a larger application, where iterative versions are more preferable.
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Cell Position Angle Inverted

0
[
0
−2

]
0 no

1
[
1
−1

]
−2

3π yes

2
[
0
0

]
0 yes

3
[
−1
−1

]
2
3π no

4
[
−1
1

]
0 no

5
[
0
2

]
0 no

6
[
1
1

]
2
3π yes

Table 6.1: Formal description of grid cells of the Gosper curve.

6.1.1 Converting a curve index to an (x, y)-coordinate

Even though conversion of an (x, y)-coordinate to a curve index is typically performed more
often by applications, we start off by describing its inverse function, since it is rather easy to
understand and implement.

Before we actually start calculating actual the (x, y)-coordinate at which the curve index
is located, we first eliminate the inversion which is induced by three of the grid cells. This
transforms the curve into a discontinuous order, but now every cell within the tiling will use
the same indexing internally, except for its rotation. Assume the point is placed in a cell at
level d which is inverted. We can remove this inversion as follows:

R(i, d) = last index within cell− offset within cell (6.1)
= first index within cell + (length of cell− 1)− offset within cell (6.2)
= (i− (i mod 7d)) + (7d − 1)− (i mod 7d) (6.3)
= i+ 7d − 1− 2 · (i mod 7d) (6.4)

We can now apply a bottom-up algorithm, which for each level of depth adds the position of
the centrepoint of the cell the curve passes through, while applying rotation to the coordinate
calculated at the previous level.

An implementation of this approach is given in Algorithm 6. We shall now prove that the
running time of this algorithm is O(D).

Theorem 16 Converting an index on a Gosper curve, having k cells and depth D, to an (x, y)-
coordinate can be calculated in O(D) time. When using the integer-only terrain model, it can
be implemented using only integer arithmetic.

Proof. Looking at the pseudocode provided in Algorithm 6, we can see that both loops sepa-
rately can be implemented in O(D) time. Assuming it takes O(1) time to determine whether a
cell is part of I , R+ or R−, each iteration of both loops is bounded by O(1) time. This can for
example be accomplished by encoding these sets as bitmasks. The positions of each of the cells,
P (c), can be encoded using an array, which also yields O(1) access time. The exponentiations
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Algorithm 6 GOSPERINDEXTOCOORDINATE(Integer i)
1: Let I be the set of cells with inverted subcurves.
2: Let R+ be the set of cells having angle 2

3π.
3: Let R− be the set of cells having angle −2

3π.
4: Let P be a function, mapping cell numbers to their position within the tiling.
5: {Index must be in bounds.}
6: if i < 0 ∨ i ≥ 7D then
7: return NIL

8: {Top-down removal of inverted subcurves.}
9: for d← D − 1 to 1 do

10: c← i
7d

mod 7
11: if c ∈ I then
12: i← i+ 7d − 1− 2 · (i mod 7d)
13: {Bottom-up calculation of coordinates, taking rotation into account.}
14: p←

[
0
0

]
15: r ←

[
1 0
0 1

]
16: for d← 0 to D − 1 do
17: c← i

7d
mod 7

18: {Apply rotation at current level.}
19: if c ∈ R+ then
20: p← R′(23π) · p
21: else if c ∈ R− then
22: p← R′(−2

3π) · p
23: {Add position of where this cell is placed.}
24: p← p+ r · P (c)
25: r ←

√
7 ·R′(arctan

√
3
5 ) · r

26: return p
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can simply be calculated based on values of previous iterations, meaning all mathematical
operations separately can be executed in O(1) time.

To prove that this algorithm can be implemented using only integer math, we need to look
at the values assigned to the variables p and r. At any time, the r variable stores the identity
matrix, multiplied with

√
7 · R′(arctan

√
3
5 ) a certain number of times. Let us first calculate√

7 ·R′(arctan
√
3
5 ):

√
7 ·R′(arctan

√
3
5 ) =

√
7 ·
[
5/2
√
7 −1/2

√
7

3/2
√
7 5/2

√
7

]
(6.5)

=

[
5/2 −1/2
3/2 5/2

]
(6.6)

As we can see, this matrix has the same property as the rotation matrices we mentioned in
chapter 2. As long as the coordinate it is multiplied with conforms to our terrain model, it
can perform the transformation using only integer arithmetic. Unfortunately, the columns of
the identity matrix do not conform to the terrain model, meaning any multiplication will lead
to fractions. This, however, can easily be solved by initialising r with

[
2 0
0 2

]
. This will cause

the algorithm to calculate a coordinate having a distance twice as large, but this can simply be
solved by returning 1

2p.
Since the application of r on a point on the terrain will always yield to another point that also

conforms to the terrain model, line 24 will always update p to a proper point on the terrain,
using only integer arithmetic. �

6.1.2 Converting an (x, y)-coordinate to a curve index

Now that we have described conversion of curve indices to (x, y)-coordinates, we are going to
present an algorithm that calculates the inverse. This function is used more often in practice,
since applications typically only work with (x, y)-coordinates and simply want to convert these
to indices, to determine where to load and store terrain data on storage.

We can already speculate that a top-down approach is not going to help us here. As the level
of depth of the curve increases, the border of each of the seven cells is becoming more complex,
as shown in Figure 6.2(c). A top-down algorithm would effectively perform point location on a
fractal. Similarly, a bottom-up approach is also not of much use. It is impossible to determine
in which subcell a point is placed, without knowing how the original cell is positioned and
rotated. This depends on information from the levels above.

Let us assume we work with a simplified model of the curve, where none of the cells are
inverted or rotated. Would it be possible to create a bottom-up algorithm to perform the con-
version? The answer is yes. At the lowest level of the curve, the terrain simply consists of a
uniform tiling of seven hexagons. All of these tilings of seven are centered at α ·

[
1
−5

]
+β ·

[
0
14

]
, for

some α, β ∈ Z. Since these two vectors are in row echelon form, it is trivial to check whether
any given point is a centrepoint of a tiling of seven hexagons. In fact, this specific instance
can simply be transformed to checking whether y + 5x mod 14 = 0. Checking whether a
given point corresponds with a cell that is not the centrepoint, can simply be accomplished by
subtracting the cell’s position on beforehand.

Now we have only discussed a way to determine the subcell position at the lowest level of
depth. Instead of describing an approach that works for each level separately, we can repeat
the previously described mechanism by contracting our terrain, by combining every seven
hexagons into one, as shown in Figure 6.3. This can be achieved by multiplying the position
of the centrepoint with 1√

7
· R′(− arctan

√
3
5 ). In the end we obtain a list of cells the point is
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Figure 6.3: Contracting a Gosper curve.

placed in at all the levels of depth. If after executing this procedure D times, the point still has
a non-zero coordinate, it means that the point is not placed within a Gosper curve of size kD.

Now that we have found a procedure that allows us to determine in which cell a point is
placed at all levels, we can use a top-down traversal to apply the rotation and a bottom-up
traversal to restore the inversion. This is the opposite of what is done in the algorithm that
maps curve indices to (x, y)-coordinates.

Theorem 17 Converting an (x, y)-coordinate to an index on a Gosper curve having k cells and
depth D, can be calculated in O(kD) time. When using the integer-only terrain model, it can
be implemented using only integer arithmetic.

Proof. Looking at the pseudocode shown in Algorithm 7, we can conclude that the first pass of
the algorithm requires O(kD) time. The second and third pass of the algorithm require O(D)
time.

Line 23 of the algorithm depends on an inverse function that is able to map points to cell
indices. We can still perform this in constant time, if we simply replace it by a new a function:

P ∗(c, ϕ) = P−1(R′(ϕ) · P (c)) (6.7)

Because ϕ can only have three possible values, 0, 2
3π and −2

3π, this function can be imple-
mented by using three separate lookup tables, meaning it can be executed in constant time.

To determine that the algorithm works properly with integer arithmetic only, we calculate
the rotation matrix that is used on line 14:

1√
7
·R′(− arctan

√
3
5 ) = 1√

7
·
[
5/2
√
7 1/2

√
7

−3/2
√
7 5/2

√
7

]
(6.8)

=

[
5/14 1/14
−3/14 5/14

]
(6.9)

When multiplying this rotation matrix with a vector – as is done on line 14 – we can perform
the division by 14 after performing the addition first. We can say that this will not cause any
rounding in the end result, since pc always denotes a centrepoint of a cluster of seven hexagons.
Every centrepoint has a corresponding cell on the grid after contraction. �
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Algorithm 7 GOSPERCOORDINATETOINDEX(Coordinate p)
1: {Respect terrain model.}
2: if p.x mod 2 6= p.y mod 2 then
3: return NIL

4: {Bottom-up calculation of cell index, not taking rotation and inversion into account.}
5: Let C be a stack to store cell numbers.
6: for d← 1 to D − 1 do
7: {Determine in which cell p is placed at the root level.}
8: for c← 0 to 6 do
9: pc ← p− P (c)

10: if (pc.y + 5 · pc.x) mod 14 = 0 then
11: break
12: {Store at which cell p is placed and rotate terrain inwards.}
13: PUSH(C, c)

14: p← 1√
7
·R′(− arctan

√
3
5 ) · pc

15: {Check whether coordinate is inside the Gosper island.}
16: if p 6=

[
0
0

]
then

17: return NIL

18: {Top-down application of rotation.}
19: ϕ← 0
20: i← 0
21: for d = D − 1 to 1 do
22: {Obtain cell index, taking rotation into account.}
23: c← P−1(R′(ϕ) · P (POP(C)))
24: i← i+ c · 7d
25: if c ∈ R+ then
26: ϕ← ϕ− 2

3π
27: else if c ∈ R− then
28: ϕ← ϕ+ 2

3π
29: {Bottom-up reintroduction of inverted subcurves.}
30: for d← 1 to D − 1 do
31: c← i

7d
mod 7

32: if c ∈ I then
33: i← i+ 7d − 1− 2 · (i mod 7d)
34: return i
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Figure 6.4: A tiling where i = 2.

It should be noted that for this specific curve, we can use a small trick to improve its running
time to O(D). Probably by coincidence, the formula y + 5x mod 7 returns a distinct number
for every of the seven cells within the tiling. Instead of testing each of the cells separately, we
can simply use this formula, in combination with a lookup table to obtain the cell number in
O(1) time.

6.2 Constructing a rotation-free space-filling curve

Even though the previously discussed Gosper curve often suffices the requirements of provid-
ing a practically usable space-filling curve for hexagonal grids, its shape does have a disad-
vantage; it doesn’t allow the terrain to be scaled easily. Consider that one wants to increase
the resolution of an existing terrain, having 7D cells stored on a Gosper curve of depth D. One
easy way to accomplish this, is to replace each hexagon with a cell of seven hexagons. Such a
terrain can be stored on a Gosper curve of depth D + 1, but unfortunately this transformation
rotates the terrain with an angle of arctan

√
3
5 .

In this section we are going to construct a new space-filling curve of which the tiling is sixfold
rotational symmetrical and is rotation-free. In this sense, rotation-free means that curve runs
in such a way that the angles at which the entry point and the exit point of the curve are placed
with respect to the centrepoint, only differ by a multiple of 2

3π between levels of depth.

Lemma 18 Every rotation-free space-filling curve having a sixfold rotational symmetrical tiling
of hexagonal grid cells has k = (2i + 1)2 cells, where 2i + 1 denotes the distance between the
centrepoints of two adjacent tilings.
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Proof. Sixfold rotational symmetry for a tiling of hexagons can only be achieved by placing the
centrepoint of the tiling in the middle of the face of a hexagon. Placing the centrepoint on an
edge or vertex only yields twofold or threefold symmetry. Also, because the space-filling curve
has to be rotation-free, the shape of the tiling is restricted to the layout shown in Figure 6.4. In
this figure, the dark grey hexagon denotes the centrepoint and the light grey hexagons denote
the legs that connect the centrepoints of adjacent tilings, having length i.

In addition to its centrepoint and the 6i hexagons that connect the centrepoints of the tilings,
each tiling also has to pick cells from the white pockets that reside between three centrepoints.
Each of these pockets has size

∑2i−1
j=0 j. To maintain sixfold rotational symmetry, each tiling

can only pick 1
3 of cells from each pocket.

This means that a tiling where the centrepoints have a distance of 2i + 1 has the following
number of tiles:

k = 1 + 6i+ 6 · 13
2i−1∑
j=0

j (6.10)

= 1 + 6i+ 2 · 12 · 2i(2i− 1) (6.11)
= (2i+ 1)2 (6.12)

�

Now we know that we only have to consider tilings of size k = 9, 25, 49, 81, 121, .... Unfortu-
nately, we have to make the following observation:

Lemma 19 There exists no rotation-free space-filling curve, having sixfold rotational symme-
try, where k < 49.

Proof. First, we consider the case where i = 1, thus k = 9. In this case, we know that each of
the pockets can only consist of 9−1−6

6 = 1
3 cells. This is not a valid integer.

Now we consider the case where i = 2, thus k = 25. For i = 2, we have to pick 25−1−12
6 = 2

cells from every corner pocket. If a tiling has a cell with only one neighbour (thus at least six
cells having one neighbour), it is impossible to calculate a Hamiltonian path – let alone a valid
space-filling curve. This means that there is only one way we can create a rotation-free sixfold
rotational symmetric tiling where k = 25, namely as shown in Figure 6.5.

Because the curve enforces that only three of the six vertices of each hexagon are used, we
can assume without loss of generality that the curve only uses the paths shown in black. Then
there are three hexagons which share only a single vertex of the curve with the others, as shown
in grey. These cells cannot be passed through, meaning they must either be the first or the last
cell on the curve. Of course this cannot be realised with more than two cells.

Since 9 and 25 were our first two candidates, we can conclude that there cannot exist a
rotation-free space-filling curve, having sixfold rotational symmetry, smaller than 49. �

Theorem 20 The smallest rotation-free space-filling curve, having a sixfold rotational symmet-
ric tiling of hexagonal grid cells has size 49.

Proof. Combining lemmas 18 and 19, we can conclude that the next candidate tiling has size
49. To demonstrate this, we have generated two curves, which we shall call the alternating
Gosper curve and the Marita curve, as shown in Figure 6.6.

The alternating Gosper curve is similar to the original Gosper curve. Essentially it has the
same pattern as a Gosper curve of depth 2, except that between levels, the curve is applied in
inverse order. This effectively cancels out the arctan

√
3
5 angle.
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Figure 6.5: Only tiling of size 25, where all cells have two or more neighbours.

The Marita curve uses the same tiling, but uses a curve that differs for 12 of the 49 cells.
The advantage of this curve compared to the alternating Gosper curve, is that the 25th cell
on the curve corresponds with the centrepoint of the tiling. If one creates a curve of higher
depth using this approach, point

[
0 0

]
will always reside at index b12kDc. By normalising the

curve indices to range from−b12kDc to b12kDc, one can create a space-filling curve of practically
infinite size where indices grow automatically as a larger portion of the terrain is used.

In addition to the two curves mentioned previously, this tiling has three other curves that
are rotation-free. �

6.3 Adapting the algorithms to work with rotation-free tilings

The algorithms described previously can easily be adjusted to allow conversion of indices and
(x, y)-coordinates of the rotation-free space-filling curves, having sixfold rotational symmetry.
Unfortunately, the running time of GOSPERCOORDINATETOINDEX is O(kD), while we men-
tioned an optimisation for Gosper curves specifically that reduces the running time to O(D).
Would it be possible to do something similar for these curves as well?

Essentially, we have to develop a procedure that maps (x, y)-coordinates to cell numbers
for a uniform tiling at the lowest level of the curve. The sixfold rotational symmetric tiling is
pretty hard to reason about, so let us assume we are performing a uniform tiling of the terrain
using a different shape, namely a rhombus of size (2i+ 1)2.

Assume we use a simple way of indexing the cells, namely lexicographically by row and
column, as shown in Figure 6.7. Also assuming there is a rhombus for which cell 0 is placed at[
0 0

]
, we can easily convert a coordinate to the column it corresponds to, using x mod (2i+

1). The row it is placed in can be calculated using y−x
2 mod (2i + 1). This means the cell

number can be derived as follows:
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(a) Alternating Gosper curve. (b) Marita curve.

(c) Unnamed curve 1. (d) Unnamed curve 2. (e) Unnamed curve 3.

Figure 6.6: Rotation-free space-filling curves of size 49. Grey cells indicate difference with
respect to the Alternating Gosper curve.
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Figure 6.7: A tiling of rhombuses of size (2i+ 1)2, where i = 2.

C(p) = (p.y−p.x2 mod (2i+ 1)) + (p.x mod (2i+ 1)) · (2i+ 1) (6.13)

Now we can make the following interesting observation. The repetition of rhombuses of
size (2i + 1)2 on the plane is identical to the repetition of sixfold rotational symmetric tilings
of equal size. This means that there exists a bijection between its cell numbers. This allows
us to simply map the result of C(p) to correspond with the actual cell number of the sixfold
rotational symmetric tiling, using constant time.

The fact that this is possible leads to a rather special property. We have now constructed
a framework where the running time of the algorithms is independent of k. This means that
increasing k could in theory make these procedures faster, since a lower value ofD can be used
to store the same number of points on the curve.

6.4 Performance of conversion algorithms

Even though theoretical analysis of the conversion algorithms is useful, in typical cases the
values k and D are small enough that theoretical upper bounds provide no practical value.
This is why it is more interesting to look at running times of an actual implementation.

Both the algorithm to convert indices to (x, y)-coordinates and its counterpart have been
implemented in the C programming language and have been released to the community un-
der the 2-clause BSD license1. To provide a frame of reference, these algorithms will be com-
pared against an implementation of conversion routines for the Hilbert curve, obtained from
Wikipedia2.

The largest Alternating Gosper curve and Marita curve that can be addressed using 64-bit
indices and a 32-bit coordinate model, has size 4910. Therefore, we shall compare it against a

1Flowsnake: http://80386.nl/projects/flowsnake/
2Hilbert curve: http://en.wikipedia.org/wiki/Hilbert_curve

http://80386.nl/projects/flowsnake/
http://en.wikipedia.org/wiki/Hilbert_curve
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Alternating Gosper curve
Gosper curve Marita curve Hilbert curve

Curve length 720 ≈ 8.0 · 1016 4910 ≈ 8.0 · 1016 428 ≈ 7.2 · 1016
Object file size 1572 bytes 1687 bytes 354 bytes

Index to (x, y)-coordinate 1653 ns 561 ns 240 ns
(x, y)-coordinate to index 1528 ns 768 ns 210 ns

Table 6.2: Performance of conversion routines.

Gosper curve of size 720. The Hilbert curve uses a tiling of size 4. When choosing size 428, the
curve has 90% the size of the other curves.

We simply benchmark the algorithms by invoking them 1010 times and dividing the to-
tal running time of the benchmark process by the number of invocations. For the index-to-
coordinate conversion, we select a chain of length 1010 passing through to the centre of the
grid. For the coordinate-to-index conversion, we select a rectangular area of size 4000 × 5000,
placed at the centre of the grid.

When executing this benchmark on an Intel Core 2 Duo 2.26 GHz running Ubuntu 11.04,
shipped with GCC 4.5.2, we gain the results shown in Table 6.2. We can immediately conclude
that the algorithms for hexagonal grids have a hard time competing with algorithms for regular
grids. Not only are the algorithms bigger in code size, they are also slower. This is to be
expected, considering that our algorithms are a lot more complex. Whereas our algorithms
require 2 or 3 passes to calculate its final result, the Hilbert curve can be processed with a
single pass.

As we analysed, the running time of our algorithms does not depend on the size of the tiling,
but only on the depth of the curve. This can clearly be observed by comparing the results for
the Gosper curve and the rotation-free curves. While we see a twofold performance improve-
ment for coordinate-to-index conversion, the performance of index-to-coordinate conversion
has increased a threefold. This threefold performance improvement is likely due to the fact that
the lack of rotation allows the compiler to simplify the arithmetic significantly. The compiler
can optimize the rotation matrix to a single scalar value.

Even though the use of space-filling curves for hexagonal grids comes at a larger cost than
it does for regular grids, it may well be the case that this amount of overhead is acceptable. In
our measurements we used rather large curve sizes. Considering we want to map the surface
of the Earth on a Gosper curve of depth 20, we would have 720

5.1·1014 ≈ 156 grid cells per square
metre. In almost all practical cases, a lower level of depth is sufficient. Still, at a depth of 20,
we are capable of performing conversion in less than a microsecond. Even in cases where disk
I/Os only have a millisecond of latency, this approach already runs break even when it can
prevent a single disk I/O every 1000 calls.

6.5 Open questions

Even though this chapter already provides insight in complex ways of applying space-filling
curves to a terrain of hexagonal grid cells, there are still many topics that are open for research.

• The algorithms provided in this chapter are specifically designed for hexagonal grid cells
in R2. Can they be generalised for a larger class of terrain models, for example tilings of
bitruncated cubes in R3? If so, can a running time of O(D) still be realised?

• As proven, the smallest sixfold rotational symmetrical rotation-free tiling is composed
of 49 hexagons. Would it be possible to create smaller rotation-free tilings that are only
threefold rotational symmetric?





7
Terrains with variable-sized grid cells

In earlier chapters, we have compared performance of various terrain models under the as-
sumption that all grid cells are identical in shape and size. Though often easy to implement, it
places a strong requirement on the sampling resolution.

• If the terrain is sampled under a resolution that is too large, the grid may encode a large
amount of redundant information, for example by encoding a flat surface using a large
number of samples that are equal in value.

• Even worse, if the resolution is too low, the stored terrain might lose its original seman-
tics.

For large environments this can easily cause a dilemma. Certain parts of a terrain may
require a large amount of detail to encode properly, whereas other parts of the terrain have low
complexity and will suffer from redundancy. To provide a good trade-off between detail and
storage space requirements, one could implement an adaptive approach, where the resolution
can be differed for parts of the terrain as needed.

In this chapter we are going to discuss two data structures for storing terrains using adaptive
grid cell sizes, namely quadtrees and septuatrees. As septuatrees seem not to be published in
existing literature, we shall also describe how various fundamental operations on these trees
can be implemented, which are used by practically any algorithm that operates on these data
structures.

Finally, we shall compare their performance by repeating the benchmarks for least-cost paths
as described in chapter 4.

7.1 Quadtrees for regular grid cells

Likely the most common technique to store grid terrains using variable precision, is by storing
the grid in a quadtree, as characterised by Finkel and Bentley[3]. A quadtree is a tree structure
that is composed of two types of nodes:

• Leaf nodes, which store a value for a square piece of the terrain. More specifically, if a
leaf is stored at height h, it corresponds with a tile of size 2h × 2h.

• Non-leaf nodes, which when stored at height h, decomposes a tile of size 2h × 2h into
four tiles of size 2h−1 × 2h−1. A non-leaf node has exactly four children.

57
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Figure 7.1: A simple quadtree.
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Figure 7.2: G-order at various levels of depth.

Because of this structure, a quadtree always has 1+3k leaves, where k is the number of non-
leaf nodes. In this document we shall assume the four children are always stored in Z-order.
Figure 7.1 shows an example of a simple quadtree, storing a terrain of size 8 × 8, dividing 64
points over 13 grid cells.

7.2 Septuatrees for hexagonal grid cells

Now that we have described a method of storing adaptive grid cells ordered in Z-order in a
tree structure, we can mimic the same approach to construct a tree for hexagons, based on the
tiling of the Gosper curve. As each non-leaf node in this tree has exactly seven children, we
shall call this tree a septuatree.

As we’ve seen in the previous chapter, implementing algorithms that operate on Gosper
curves can be a tedious job. Just as the Hilbert curve and Z-order only differ in their ordering
and not in their shape, we shall therefore base the work in this chapter on an easier layout,
which we call the G-order. Instead of using the cell description provided by Table 6.1, it uses a
simpler layout as shown in Table 7.1. Figure 7.2 depicts renderings of this order.

In order to execute algorithms on top of septuatrees, we must first describe how primitive
operations that are used by these algorithms can be implemented. First, we shall look at oper-
ations that can be used to convert between coordinates on the grid and nodes in the tree. Then
we shall define an algorithm that computes the set of neighbours for a given grid cell. Such an
operation is fundamental for implementing a least-cost path algorithm efficiently.
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Cell Position Angle Inverted

0
[
0
0

]
0 no

1
[
0
2

]
0 no

2
[
1
1

]
0 no

3
[
1
−1

]
0 no

4
[
0
−2

]
0 no

5
[
−1
−1

]
0 no

6
[
−1
1

]
0 no

Table 7.1: Formal description of grid cells of the G-order.

7.2.1 Converting a septuatree node to an (x, y)-coordinate

For septuatrees, node-to-coordinate conversion can simply be implemented by performing a
bottom-up traversal of the node given. At each level, we add to the result the placement of
the node with respect to the position of the parent. Algorithm 8 demonstrates how such a
procedure can be implemented for septuatrees.

Algorithm 8 SEPTUATREENODETOCOORDINATE(Node n)
1: Let P be a function, mapping cell numbers to their position within the tiling.
2: {Bottom-up calculation of coordinates.}
3: p←

[
0
0

]
4: while PARENT(n) 6= NIL do
5: for c← 0 to 6 do
6: if CHILD(PARENT(n), c) = n then
7: {Node is part of the c’th child.}
8: break
9: {Add position of where this cell is placed.}

10: p← p+ (
√
7 ·R′(arctan

√
3
5 ))HEIGHT(n) · P (c)

11: n← PARENT(n)
12: return p

Theorem 21 The SEPTUATREENODETOCOORDINATE algorithm runs inO(H) worst-case time,
under the assumption that integer arithmetic can be executed in O(1) worst-case time. H de-
notes the height of the septuatree.

Proof. The loop on line 4 is executed at most H times and disregarding line 10, each iteration
takes O(1) time. The result of the exponentiation performed on line 10 can be reused between
iterations, as the exponent increases by 1 between every iteration. As the exponent is at most
equal to H , line 10 can be implemented in O(H) time over all iterations. �
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7.2.2 Converting an (x, y)-coordinate to a septuatree node

As we saw with the Gosper curve, it is not possible to convert coordinates to indices on the
curve using a single top-down pass. Because the G-order uses the same tiling as the Gosper
curve, it is therefore also impossible to convert a coordinate to a node at once.

Therefore we implement coordinate-to-node conversion using multiple passes. Just like
the conversion routine for the Gosper curve, we use the first pass to obtain the cell numbers
bottom-up. The second pass is then used to walk down the septuatree to obtain the node in
the tree.

Algorithm 9 implements coordinate-to-node conversion, based on many of the principles
of the coordinate-to-index conversion algorithm for Gosper curves. To provide flexibility, this
algorithm can also be used to return a subtree in which a point resides. The m argument
denotes the maximum depth of the node returned. If m = ∞, the algorithm is guaranteed to
return a leaf node.

Algorithm 9 SEPTUATREECOORDINATETONODE(Coordinate p, Tree T , Integer m)
1: Let P be a function, mapping cell numbers to their position within the tiling.
2: {Respect terrain model.}
3: if p.x mod 2 6= p.y mod 2 then
4: return NIL

5: {Bottom-up calculation of cell number in tree.}
6: Let C be a stack to store cell numbers.
7: for d← 1 to HEIGHT(T )− 1 do
8: for c← 0 to 6 do
9: pc ← p− P (c)

10: if (pc.y + 5 · pc.x) mod 14 = 0 then
11: break
12: {Store at which cell p is placed and rotate terrain inwards.}
13: PUSH(C, c)

14: p← 1√
7
·R′(− arctan

√
3
5 ) · pc

15: {Check whether coordinate is inside the snowflake.}
16: if p 6=

[
0
0

]
then

17: return NIL

18: {Top-down traversal of tree to obtain node.}
19: n← ROOT(T )
20: while ¬ISLEAF(n) ∧m > 0 do
21: n← CHILD(n, POP(C))
22: m← m− 1
23: return n

Compared to a quadtree, we see that the non-recursive structure of the tiling requires us
to first convert the coordinate into a sequence of steps in the septuatree bottom-up. Whereas
on the quadtree such an algorithm can run in O(min(H,m)) time, this cannot be achieved for
septuatrees.

Theorem 22 The SEPTUATREECOORDINATETONODE algorithm has a worst-case running time
of O(H) on the assumption that integer arithmetic can be performed in O(1) time, where H
denotes the depth of the septuatree.

Proof. The loop performed on line 7 of the algorithm runs at most H − 1 iterations, where
each iteration can be executed in O(1) time. The second loop either terminates when m = 0
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(a) This dark grey leaf has 10 neighbouring leaves.
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(b) Grid cells on boundaries of neighbouring nodes.

Figure 7.3: Neighbours in septuatrees.

or when a leaf node is obtained, therefore having a worst-case running time of O(min(H,m)).
This leads to a total worst-case running time of O(H). �

7.2.3 Neighbour queries

When implementing a least-cost path algorithm for grids, it is of great importance that we can
efficiently obtain a set of neighbouring grid cells for a given node in the tree, as shown in Fig-
ure 7.3(a). For recursive tilings such as the quadtree, these operations are rather intuitive and
can even be solved at the cost of poor performance by querying every coordinate on the outer
boundary of the grid cell. For the septuatree this is not as easy, as the tiling is not recursive and
the boundary of a cell thus has a complex shape. Still it is possible to implement neighbour
queries on septuatrees using an algorithm that is structurally identical to existing algorithms
for quadtrees.

A node p in a septuatree is enclosed by up to six neighbouring nodes, which either have
the same depth as node p, or are leaves of lower depth. To obtain the set of neighbouring
grid cells, we can traverse each of these neighbouring nodes to return its cells on the outer
boundary adjacent to node p.

First, let us first define a recursive function that traverses all leaves of neighbouring node n
for a given boundary on edge b of that node. If the node is a leaf, then we can simply return
node n. If the node is not a leaf, we must traverse its children. Depending on the value of b,
we must choose a different set of children.

As illustrated in Figure 7.3(b), every non-leaf neighbour node n is connected to the node p by
two of its child nodes. For example, the white southernmost neighbour is connected to node p
through cells 1 and 6. Because cell 1 shares two edges with node p, we must traverse this child
twice. For all six neighbours, this leads to the recursion scheme on the child nodes as provided
in Table 7.2.

Using this table, we can implement boundary traversal as shown in Algorithm 10. Instead
of implementing all six cases of b explicitly, it uses the PREVIOUSNEIGHBOUR routine to obtain
the previous neighbouring cell on the boundary (e.g. by computing (b+ 4) mod 6 + 1).

Now that we have a routine that can traverse the boundary of a single neighbour, we can
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b Cell 1 Direction 1 Cell 2 Direction 2 Cell 3 Direction 3
1 1 1 1 6 6 1
2 2 2 2 1 1 2
3 3 3 3 2 2 3
4 4 4 4 3 3 4
5 5 5 5 4 4 5
6 6 6 6 5 5 6

Table 7.2: Children that need to be recursed for a given value of b.

Algorithm 10 SEPTUATREETRAVERSEBOUNDARY(Node n, Integer b)
1: if ISLEAF(n) then
2: {Node is leaf. Return it directly.}
3: return n
4: else
5: {Node is non-leaf. Traverse boundaries of its three edges.}
6: r1 ← SEPTUATREETRAVERSEBOUNDARY(CHILD(n, b), b)
7: r2 ← SEPTUATREETRAVERSEBOUNDARY(CHILD(n, b), PREVIOUSNEIGHBOUR(b))
8: r3 ← SEPTUATREETRAVERSEBOUNDARY(CHILD(n, PREVIOUSNEIGHBOUR(b)), b)
9: return r1 + r2 + r3

compute the entire set of neighbours for node p by executing it six times, as demonstrated in
Algorithm 11. It uses the existing node-to-coordinate and coordinate-to-node routines to ob-
tain the corresponding neighbouring nodes n to perform boundary traversal on. As we must
traverse the boundary of the neighbour adjacent to node p, the code uses an OPPOSITENEIGH-
BOUR function to convert the boundary number (e.g. by computing (b+ 2) mod 6 + 1).

Algorithm 11 SEPTUATREERETURNNEIGHBOURS(Node p)
1: Let P be a function, mapping cell numbers to their position within the tiling.
2: r ← ∅
3: for c← 1 to 6 do
4: {Calculate coordinate of centrepoint of neighbour.}
5: l← SEPTUATREENODETOCOORDINATE(p) + (

√
7 ·R′(arctan

√
3
5 ))HEIGHT(n) · P (c)

6: {Top-down traversal of neighbour along its boundary.}
7: n← SEPTUATREECOORDINATETONODE(l, TREEOFNODE(p),DEPTH(m))
8: if n 6= NIL then
9: r ← r + SEPTUATREETRAVERSEBOUNDARY(n,OPPOSITENEIGHBOUR(c))

10: return r

Now that we have presented an algorithm to compute the set of neighbours for a node in a
septuatree, we shall derive its running time.

Theorem 23 The worst-case running time of SEPTUATREERETURNNEIGHBOURS is O(H + k),
where k is the number of leaves reported, assuming integer arithmetic can be performed in
O(1) time.

Proof. Disregarding the boundary traversal, the SEPTUATREERETURNNEIGHBOURS function
runs in O(H) worst case time, as it calls SEPTUATREENODETOCOORDINATE and SEPTUA-
TREECOORDINATETONODE a constant number of times. Also the exponent used to calculate
the coordinates of the neighbours can be computed in O(H) time.
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The worst-case running time of the invocation of SEPTUATREETRAVERSEBOUNDARY can be
derived as follows. Every leaf node of the tree returned by this function is traversed for every
edge it shared with node p. As each cell on the boundary of the tiling has exactly three neigh-
bours, each grid cell has at most three edges on the boundary of the tiling. This means that
SEPTUATREETRAVERSEBOUNDARY is invoked on at most 3k leaf nodes of the septuatree.

As we know the number of traversed leaf nodes, we can now use the following recurrence
to derive the total number of invocations of SEPTUATREETRAVERSEBOUNDARY:

T (k) = 3 ·
H∑
i=0

k
3i

(7.1)

< 3k ·
∞∑
i=0

1
3i

(7.2)

= 4.5k (7.3)

As each invocation separately consumes O(1) time, the worst-case running time of SEPTUA-
TREERETURNNEIGHBOURS therefore is O(H + k). �

7.3 Measuring least-cost path quality

Now that we have described how quadtrees and septuatrees work, we shall repeat the mea-
surements on least-cost path quality that were performed in section 4.4. During every mea-
surement we convert the same TIN of 125 vertices to 360 grids. Each of these grids is sampled
from the TIN under a different angle, in 1◦ steps.

For these 360 grids, we calculate 360 shortest paths from the centrepoint of the grid to uni-
formly spaced points on a ring at 3

4 the radius of the TIN. These 360× 360 least-cost paths are
combined to obtain the coefficient of variance.

Before computing these least-cost paths, the grids are converted to quadtrees and septu-
atrees. These trees are simplified iteratively by repeatedly replacing a node with seven leaf
nodes as its children by a new leaf node. The cost value of the new leaf node is equal to the
average value of the children. During each iteration, the node selected to be replaced is the one
that would cause the lowest per-cell difference in weight to be added to the terrain.

Least-cost paths are calculated in two different ways:

• by converting the septuatree back to a uniform grid and executing the original least-cost
path algorithms, and

• by calculating the least-cost paths on the cells of the tree structure directly.

The first approach is far more precise than the second approach, as it allows the path to
traverse the grid at a higher level of precision. For the first approach, we only consider the
tree structure to be an intermediate storage format for the terrain. When using the second
approach, a sparsely filled part of the terrain can only be traversed by performing large steps,
thus likely causing detours.
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Resolution of grid
Cells in tree 210 212 214 216 218 220 222

210 0.024863 0.017518 0.017931 0.018831 0.019316 0.019526 0.019693
212 - 0.012939 0.010406 0.010588 0.010947 0.011261 0.011477
214 - - 0.009506 0.008584 0.008625 0.008832 0.009005
216 - - - 0.008875 0.008520 0.008483 0.008550
218 - - - - 0.008724 0.008617 0.008602
220 - - - - - 0.008711 0.008662
222 - - - - - - 0.008703

Table 7.3: Coefficients of variation for least-cost paths on quadtree converted to uniform grid.

Resolution of grid
Cells in tree 210 212 214 216 218 220 222

210 0.031752 0.025343 0.026472 0.020738 0.020696 0.022791 0.022793
212 - 0.021522 0.019204 0.017589 0.015322 0.015587 0.016655
214 - - 0.019913 0.017236 0.015933 0.015417 0.015023
216 - - - 0.017846 0.016574 0.016289 0.016116
218 - - - - 0.016962 0.016653 0.016586
220 - - - - - 0.016858 0.016734
222 - - - - - - 0.016843

Table 7.4: Coefficients of variation for least-cost paths on septuatree converted to uniform grid.

Resolution of grid
Cells in tree 210 212 214 216 218 220 222

210 0.024863 0.053702 0.068175 0.075478 0.079836 0.082583 0.083611
212 - 0.012939 0.034207 0.041270 0.045477 0.048126 0.049202
214 - - 0.009506 0.015569 0.020066 0.022834 0.023825
216 - - - 0.008875 0.010925 0.012956 0.013814
218 - - - - 0.008724 0.009286 0.009893
220 - - - - - 0.008711 0.008729
222 - - - - - - 0.008703

Table 7.5: Coefficients of variation for least-cost paths on quadtree.

Resolution of grid
Cells in tree 210 212 214 216 218 220 222

210 0.031752 0.057252 0.069741 0.064266 0.065157 0.068720 0.071806
212 - 0.021522 0.030693 0.041228 0.046264 0.031980 0.038793
214 - - 0.019913 0.024454 0.023007 0.024641 0.026634
216 - - - 0.017846 0.018480 0.022130 0.017176
218 - - - - 0.016962 0.015859 0.016558
220 - - - - - 0.016858 0.015210
222 - - - - - - 0.016843

Table 7.6: Coefficients of variation for least-cost paths on septuatree.
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7.3.1 Least-cost paths on non-uniform grids converted to uniform grids

When only using quadtrees and septuatrees as an intermediate storage format, we observe the
results given in Tables 7.3 and 7.4. Similar to the results provided in section 4.4, we see that
the coefficients of variation for septuatrees using hexagons are higher than for quadtrees using
rectangles for all measurements performed.

Disregarding this, we can make an interesting observation. While we see the coefficient of
variation increase by more than a factor of two when we decrease the number of cells in a
quadtree from 222 to 210, we can only observe a 35% increase for the septuatree. Still, on an
absolute scale the septuatree still performs worse, so it is not yet possible to conclude that a
septuatree has better characteristics with respect to preservation of the terrain.

7.3.2 Least-cost paths on non-uniform grids

When also using quadtrees and septuatrees as a structure to calculate the least-cost paths on
directly, we see the results differ more radically, as shown in Tables 7.5 and 7.6. First of all, we
must make the unfortunate observation that the use of the adaptive structures only adds an
imprecision to the results of the computation. For each row in the table, the coefficients of vari-
ation increase as the resolution of the grid increases. This demonstrates that it is questionable
whether computations of least-cost paths should be done on these structures directly.

Still, we do observe that for very high levels of sparseness in these trees, the least-cost paths
computed on septuatrees start to become of better quality than their quadtree equivalents.

7.4 Open questions

In this chapter we have thoroughly described how primitive operations on septuatrees can be
implemented, that can act as a basis for implementing larger algorithms that operate on ter-
rains of various precision. Unfortunately, we have seen that the measurements on the quality of
least-cost paths don’t provide a practical use-case for this data structure yet. Still, these results
don’t limit the performance of septuatrees in general, meaning there are still many subjects in
this area that can be researched:

• How do other conventional algorithms for grid terrains, such as flow accumulation and
viewshed computation, behave when being executed on tree structures directly?

• Can the negative influence of using trees for least-cost path computation be cancelled
out if the tree adheres to additional constraints (e.g. limiting the number of neighbouring
grid cells)?

• In this chapter we only considered storing hexagons in the G-order. In which aspect do
the described algorithms need to be modified to work on the curves and tilings presented
in chapter 6?

• Can septuatrees be used to improve the running times algorithms that depend on effi-
cient extraction of points inside a disc from a point cloud? For the tiling of the Gosper
curve, it is known that its Arrwwid number is smaller than the for Z-order and the Hilbert
curve.[6] Informally speaking, the Arrwwid number is the smallest number a such that
any disk is covered by at most a relatively small tiles.
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Conclusion

In this master’s thesis we have attempted to determine the accuracy of algorithms for grid ter-
rains when applied to alternative terrain models. Unfortunately we have seen that the results
presented in each chapter make it hard to draw universal conclusions.

For both rotations on grids and flow accumulation using an angle-based weight function,
we have seen that the use of hexagonal grid cells causes an improvement to the results com-
puted. However, for both the least-cost paths and the slope-based weight functions for flow
accumulation, we have observed the opposite, namely that regular grid cells perform the best.

It seems that this difference in performance can be attributed to the fact that every type of
algorithm depends on a different property of a terrain model to work precisely. For the rotation
we observed that interpolation on a smaller number of sample points causes an improvement,
while for least-cost paths a greater freedom of directions to pass through the grid seems to be
of importance.

This observation seems to suggest that for the questions mentioned in the introduction there
is no single answer. Depending on the type of computation performed, a different terrain
model may be preferred.

Looking at the chapters on space-filling curves and adaptive data structures for hexagonal
grid cells, results do seem to be promising. The main contribution provided by this master’s
thesis in this area, is that it demonstrates that a recursive tiling of a grid does not have to be
one of the prerequisites to provide efficient algorithms that operate on hierarchical adaptive
grid structures. This has been demonstrated by the use of a septuatree.

Looking forward, the research performed in this master’s thesis can be extended in multiple
directions. These extensions can essentially be divided in two groups. On one hand, there
are still many other algorithms one could use to compare different terrain models, including
the computation of viewsheds. This research can both be focussed on practical analysis (e.g.
performing measurements) and theoretical analysis (e.g. deriving bounds). On the other hand,
the last two chapters of this thesis could potentially be used as a foundation for creating algo-
rithms for new classes of space-filling curves and hierarchical adaptive grid structures.
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[9] D. Hilbert. “Über die stetige Abbildung einer Linie auf ein Flächenstück”. In: Mathema-
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