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Abstract

FPGA devices are flexible hardware devices. FPGAs are used in the area where focus lies on short
design times and small production series. The observability and controllability of these configurable
devices is limited. Therefore, it is difficult to locate and debug problems in FPGA firmware. It is desir-
able to have a debugging methodology together with tooling that provides a better debugging solution
for FPGA firmware. Observability in a running FPGA design enables the inspection of internal signal
values. Controllability allows to pause and continue the execution of parts of a design.

The observability can be improved by routing internal signals to “spare” I/O pins. Furthermore ob-
servability can be improved by instantiating monitor IP1 cores. These methods for increased observ-
ability are time and resource intensive.

This research introduces the FPGA Firmware Qualification Framework (FFQF) methodology. This
methodology is supported by a template design and embedded into a framework with some interface
tooling. The template consists of a library with standard interconnection and debug components. The
FFQF methodology allows a communication centric monitoring approach that increases observability.
The introduction of breakpoints and trace buffers enables off-line analysation of sequences. These
sequences can lead to the source of to a problem situation. The breakpoints enable controllability
while tracing increases observability. If the firmware is stopped at a breakpoint then it is possible to
read-back the FPGA hardware state e.g. flip-flop and blockram contents. This enables observability
at hardware register level.

The expected overhead and impact of the system is determined using a model. The model is verified
with a case-study that also demonstrates the usage of the framework.

The area requirements of interconnection system depend on its configuration. The configuration
used in the case-study consists of two slaves and a single controlling master. This configuration
requires less than 0.1% of the resources of a Virtex-6 LX240T FPGA. The system scales linear with
the number of slaves for all resources except slices, which scales quadratic. In the case study project
the interconnection system increases the area usage with approximately 20%.

1Intellectual Property

i





Preface

This research is conducted at Prodrive B.V. Son. Prodrive B.V. is a solution provider in electronics de-
sign, manufacturing and delivers added value services for Original Equipment Manufactures (OEMs)
and Original Design Manufactures (ODMs) operating in industrial, professional and consumer mar-
kets.

FPGAs play an important role in the wide range of products designed by Prodrive B.V. The market
demands shorter development time of more complex designs. This requires extensive qualification in
limited time. Issues found during qualification need to be resolved as quick as possible. The nature
of FPGAs is that their controllability and observability is limited and difficult to achieve. Therefore,
the qualification and debugging process are time consuming. This is the reason for Prodrive B.V. to
initiated this research project. The case-study design is a electrical current controller designed and
produced by Prodrive B.V. The developed methodology is applicable to a wider range of products
than only this controller.

iii





Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Motivation and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 FPGA debug process 11

2.1 FPGA hardware background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 FPGA software background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 FPGA firmware debug decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 VHDL code review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Firmware execution on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Debugging methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Related work 23

3.1 Observability and controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Debugging methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



CONTENTS

4 FFQF template and framework 29

4.1 Generic communication structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Bus-level spy unit (AXI monitor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Bus-level injection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Break conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Hardware-level inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 MicroBlaze interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Template evaluation 55

5.1 MicroBlaze infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Communication structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 AXI monitor and injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Case-study 63

6.1 Electrical current controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 FFQF electrical current controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 FFQF usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion 69

8 Future work 71

List of Figures 74

List of Tables 78

Bibliography 81

vi



Chapter 1

Introduction

In the industrial market numerous electronics manufacturers design products on customer request.
The products or solutions designed by these manufactures are, depending on the company, mostly
components which are integrated in a larger system by customers. The designs range from a single
Print Circuit Board (PCB) to multiple PCBs integrated in casing running complex applications. The
software or firmware running in this hardware can be of different types. The first type is software
running on a single or multi-core processor as for example a Digital Signal Process (DSP) or Reduced
Instruction Set Computer (RISC). This research does not focus on these type of processors. The
second type of software is the firmware running in Field Programmable Gate Arrays (FPGAs). These
FPGAs are reprogrammable hardware components. The trade-off between FPGAs and Processors
can be made based on cost of goods and the application requirements. If for example 300+ Input-
Output pins are required in combination with 20 fully configurable high-performance parallel tasks
running at 200MHz then an FPGA is a good solution. If a sequential C++ application using multiple
standard interfaces as IIC, UART and Timers is required to run, then a DSP processor is a proper
platform.

The parallel nature of FPGA devices makes them ideal for running multiple tasks concurrently. When
FPGA designs get more complex by the increasing number of parallel tasks working together, it also
gets more difficult to understand these entire designs. The designs for these FPGAs are often written
in the VHSIC1 Hardware Description Language (VHDL). This language allows using the parallel
nature of the device. Figure 1.1 shows a photo of a Virtex-6 FPGA which is used during this research
with some of its features. Figure 1.2 shows a power amplifier designed by Prodrive B.V. using an
FPGA as controlling processor. A similar power amplifier is used for the case-study of this research.

The design cycle of the firmware running on the FPGA consists of different steps. The steps of this
process are shown in Figure 1.3 and are according to the V-Model [2] design flow. In the requirement
analysis phase the customer specifications are written in a specification document. These specifica-
tions are used as input for the architectural and module design. The architectural design describes

1Very-High-Speed Integrated Circuits
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Component Value Value

Slices 37, 680 -
CLB flip-flops 301, 440 -
Blockram memory 14, 976 Kb
DSP Slices 768 -
I/O 730 pins

Figure 1.1: Xilinx Virtex-6 FPGA (LX240T), used during this research. The CLBs are Configurable Logic
Blocks which are elementary FPGA building blocks. The blocks consist of two slices with each four 6-input
LUTs and 8 flip-flops [1].

Figure 1.2: Four axis high linearity power amplifier with FPGA firmware controlling electrical current.

the top-level while the module design specifies all subsystems in detail. All this design information
is written in the design document. This concludes the design phase. The design information is then
used as input when writing VHDL code. Based on the information in the design document and spec-
ification document a qualification document is written. The qualification document should contain all
test cases and expected results required to ensure the system behaves according to its specification.
The subsystems or modules are qualified during the unit tests using a Register Transfer Level (RTL)
behavioural simulation. The top-level is qualified in the integration test, first with behavioural RTL sim-
ulation, and thereafter running it on the actual hardware with less observability. In the acceptance
test the entire system is tested according to the specification.

2



Requirement
Analysis

Architecture
Design

Module
Design

Write VHDL
Code

Unit
Test

Integration 
Test

Acceptance
Test

Specification
Document

Design
Document

Qualification
Document

VHDL Simulation

VHDL Simulation
Run on FPGA

Figure 1.3: Design flow according to the V-Model, every abstraction level in the design includes a qualifi-
cation step at the same level. The blocks denote the documents which contain the specifications, design
descriptions and qualification results.

Since the VHDL simulations at RTL level are behavioural, they do not cover the exact hardware
behaviour [3]. During the behavioural RTL simulation every single register value can be monitored
at every clock cycle. Most issues that exist in the design can be found during simulation. More
information on the simulation of VHDL code can be found in Section 2.3.

After simulation the complete VHDL code is synthesised into a netlist file describing all FPGA re-
quired logic blocks. The synthesis output is used as input for the implementation process. This
process performs a technology mapping where the netlist is mapped to the FPGA logic. Thereafter,
the process determines the location of the components and adds routing logic. The last step is to
write all this information into an FPGA configuration binary file. The time consumed by these individ-
ual process steps depends on the size of the FPGA design. This process is explained in more detail
in Section 2.2.

The FPGA binary file is loaded into the FPGA device for testing. At this point only the input and
output of the FPGA can be used for diagnosis. In order to monitor inputs and outputs an oscilloscope
or logic analyzer needs to be connected to the physical pins on the device. The process that runs
in the FPGA cannot be monitored internally without modifications. If problems arise internal logic
analyzers can be embedded in the design. These analyzers trigger on pre-defined conditions and
store signal traces starting from the moment the trigger condition occurs. Adding and modifying
the logic analyzer requires rerunning the map and placement steps. When the design is changed
in order to correct the mistake, the entire process for generating a binary must be repeated before
testing is possible.

The basic simulation process is easy to setup. Due to a lot of observability during simulations it
tends to get slow. The qualification step of running the firmware on the FPGA is more difficult. There

3
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is limited observability and therefore possible error causes are difficult to locate. It is desirable to
introduce a solution to improve the qualification of running firmware by increasing controllability and
observability. The motivation and problem statement is described in more detail in section 1.1. The
contributions of this research are given in section 1.2 and the remainder of this thesis is outlined in
section 1.3.

1.1 Motivation and problem statement

In the industry there are designs that use an FPGA from a software perspective. In the case of
Prodrive B.V. a selection of products are industrial motion and electrical current controllers. These
controllers are either fitted with only an FPGA or are a hybrid platform with also a DSP or RISC pro-
cessor. The firmware running in the FPGA is responsible for completing a certain function. Based
on received input the FPGA generates a defined output. In case of an electrical current controller
a desired electrical current set-point is configured. Based on the actual electrical current measured
via the sensors an output is generated for an actuator e.g. a step count or a Pulse Width Modulated
(PWM) signal. This PWM signal is fed into an amplifier controlling for example a motor. The respon-
sibility of the manufacturer is to ensure that for all specified situations the correct output is generated.
These specified situations are for instance the bandwidth requirements of the controller. The output
value must be reached within 125µs after setting the desired value. Furthermore, the error may not
be larger than 0.5% in a stable situation. The research applies to more than only these electrical
current controllers; this is only used as an example.

The key task of a design as shown in Figure 1.4 is to control the electric current in a system to
a desired set-point. In order to quickly respond to changes in the environment the controller must
quickly generate output based on measured input. The loop rates of systems range for instance
between 150 − 500kHz. In order not to destroy the product in error situations constant monitoring
is required. When the electrical current is above a limit value for more than for instance 1µs or
even 1ns this could burn the tracks on the PCB or burn electrical components. Besides controlling
and monitoring the system periodically receives new configuration parameters via a communication
interface. All these processes must run in parallel at high clock speeds on a low-cost device with a
lot of I/O ports. Therefore an FPGA is chosen instead of a multi-core application processor.

System

Sensors AmplifierPWM

configuration
FPGA: Electrical Current 

Controller Module

Electrical current

diagnostics

Figure 1.4: Overview of an example system, the electrical current controller is a component in the design.

The complex designs that exist in these FPGAs are build up from multiple smaller parallel building

4



blocks as shown in Figure 1.5. These building blocks are referred to as subsystems. The subsystems
are hierarchically built from process groups. Process groups are a collection of individual processes.
The subsystems inside the FPGA are tightly coupled in existing designs. This coupling means that
processes are connected directly via parallel registers of arbitrary width. These hierarchical levels
can be chosen arbitrarily. More information on the determination of subsystems and processes is
shown in Section 4.1.

There are two types of connections in every FPGA design, namely the internal connections between
processes, process groups or subsystems, and the external connections between the FPGA and
external hardware. The internal and external connections have different constraints, but are handled
equally in VHDL.

FPGA

Amplifier

Sensor
ADC

Electrical
Current 

Controller
Subsystem

External
Communication

Subsystem

Internal 
Communication

Subsystem

Module 
Controller
Subsystem

External 
Host

Diagnostic
Peripherals

External blocks

Internal registers and signals

External registers and signals

Figure 1.5: Overview of an example system, the electrical current controller is a component in the design

The individual subsystems are qualified before they are used in the final design. The qualification
determines whether the subsystem behaves as expected. There are different methods used for
qualification of FPGA firmware. The first method for qualification is simulation in special designed
software as Modelsim [4]. This simulator takes both the source code under test and stimulus source-
code as input; this stimulus source-code is referred to as the test-bench. The output of Modelsim is
a time graph with all internal signals which can be used to determine the behaviour of the design.
This simulation enables extended observability as shown in Figure 1.6. A detailed description of this
debug process is shown in chapter 2.

The simulation of large designs with around 50, 000+ lines of code take hours in the order of mag-
nitude to simulate milliseconds of execution time. For this reason usually only small subsystems are
simulated. The top-level design which glues all subsystems together is often impractical to simulate
because of the long simulation time. Due to these limited simulation possibilities most problems
arise when gluing all subsystems and processes together. It takes even more time to simulate a time
correct model of the FPGA firmware and therefore this is not used within Prodrive B.V.

Besides simulation another method is also used for qualification. This method is to program the
FPGA with the generated firmware and apply different test (vector) input, while monitoring the output.

5
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Figure 1.6: Modelsim showing the signals including the clock when simulating a design for correctness
with full observability regarding internal signals.

There are different problems when validating and debugging such complex FPGA firmware. An
FPGA is a closed system with many completely configurable subsystems running in parallel. The
final system can only be validated by triggering the system with a known input at physical input pins.
The value at the output pins is then compared with the expected value. If this information does
not match then there is no default method to extract more internal information from the FPGA. This
means the current value of internal signals and the state of state-machines cannot be determined.
This is also referred to as the current state of the firmware.

If online debugging an FPGA design is required then additional components need to be enabled or
inserted into the design. In order to increase observability in the design an in-circuit online analyser
as ChipScope [5] can be used. This tool is embedded into the FPGA design and interfaced via JTAG.
Beforehand all to be monitored signals and trigger signals must be defined and as core embedded
into the FPGA firmware. During this process the design is changed which could make the problem
disappear. The ChipScope core has the possibility to trigger on a certain condition. When this
condition occurs the code starts filling memory with signal values. The more signals values are
stored, the less time can be buffered. The ChipScope core tends to become very resource intensive
when complex trigger conditions are constructed. No interaction is possible other than getting the
acquisition buffer of ChipScope and setup triggers. Acquisition or triggering during initialization of

6



the FPGA is not possible, since the JTAG connection is required to be initialized. The ChipScope
interface groups the bus interfaces used in the design. A screenshot of the ChipScope interface is
given in Figure 1.7.

Figure 1.7: ChipScope interface showing captured data

If a non-intrusive method for monitoring signals is required, then probes can be inserted in the
firmware. When using probes the Xilinx FPGA editor is used to edit the already fitted design bi-
nary to attach external pins to internal nets. This requires spare pins on the FPGA and is very labour
intensive. Furthermore, the net names are often garbled due to optimization.

180

1161

902

1331

1716

Specification FPGA design

FPGA qualification Hardware design

Hardware qualification

Figure 1.8: Pie-chart of the total project man-hours per phase for an electrical current controller. The FPGA
qualification is a substantial part of the total project time. The debugging framework can also shorten the
FPGA design time since qualification failure requires to locate and fix the mistake, which is design time as
shown in Figure 1.9. The hardware qualification depends on the FPGA firmware. The project lead time
can be shortened when the firmware errors are located and repaired faster.

Due to these complexities and time consuming process steps the qualification of FPGA firmware
takes on average more than 17% of the project’s design time. This time includes source-code sim-
ulation for individual subsystems, but also validation of FPGA output generated for given inputs,

7
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regeneration of FPGA binaries and the search time required for debugging. In Figure 1.8 a graphical
representation of the project hours spent on an electrical current controller is given. The numbers
shown in the graph are man-hours spent per phase. The colors in the graph refer to the project de-
sign steps explained in chapter 1. The actual time spent on qualifying a design is shown in Figure 1.9,
debugging is part of this time. This diagram shows the time spent on both design and qualification in
parallel. This is the time that a problem is being debugged.

0

50
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150

200

M
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-h
o

u
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Date YYMM

FPGA design

FPGA qualification

Figure 1.9: Chart showing the time when FPGA design and qualification runs in parallel. This time is the
debugging phase of a project.

The goal for this project is to reduce the qualification and debug time for FPGA firmware by increasing
observability and controllability of FPGA firmware.

The approach used to solve this problem is to decrease development time and increase design
quality, while keeping the overhead of the system to a minimal.

The components which are responsible for the difficulties in debugging are the time and resource
consuming simulation process which increases with the design complexity. This simulation cannot
be fully trusted, since it abstracts from hardware and timing behaviour. The debug process on the
end-result requires changing the binary; which potentially introduces other errors. The observability
is limited; only for predefined signals measurements are possible. Every single change to the design
requires running a time consuming process to create a new bit-stream. Error injection is only possible
on defined locations using a either a ChipScope core, or specific design code needs to be inserted.

The target of FPGA firmware qualification is to validate that for every given sequence of input the
correct output is generated. Due to state-space explosion this is not possible and only a subset of
situations is tested. When the behaviour is not according to the specification this is marked as a
bug. The debugging process is initiated to find and repair the bug. This debugging process requires
information from within the FPGA in order to determine where the error arises. In most cases the
designs are too large or do not have enough observability to easily locate the fault.

1.2 Contributions

The research conducted during this project contributes to the FPGA debugging world in different
ways. The main contributions are:

8



• An FPGA Firmware Qualification Framework (FFQF) debugging methodology
• A template design supporting this methodology
• A framework using the template and additional tooling
• A model predicting the design impact of using the FFQF template
• A case-study checking this impact and demonstrating the framework and methodology

The FPGA debug methodology enables the possibility to monitor inter-subsystem communication.
This communication centric approach of monitoring enables analyzing the input-output relation of
subsystem data. This information can be used to track problems within a subsystem. If a given input
does not produce the expected output then the subsystem requires further detailed analysis. This
second stage of debugging is also contained in the FFQF debug methodology. The second stage of
debugging enables setting breakpoints. These breakpoints are conditions that can be set at run-time.
If a condition is true then the execution of a subsystem is stopped. The subsystem can be analyzed
in different ways. The first way is to extract the path leading to the problem situation and repeat it in
a simulator with full observability. The second method is to read-back the entire design and inspect
it on flip-flop level.

The introduced template consists of a library with standard components to build the interconnection
system. The library also contains the monitor and acquisition components. The framework adds
tooling to this template used to interface the system and extract debug data. The tooling is currently
in a premature state and ideas are presented in the future work chapter.

The impact of using this debug methodology is predicted in a model. This model shows the scalability
assumptions and expected impact on design area, and communication throughput and latency. This
prediction is validated for a single design via a case-study design.

1.3 Outline

The remainder of this document describes how the observability and controllability of the debug
process is improved by using FFQF. The design template can easily be extended with configurable
debugging modules. These modules are used to debug designs on-the-fly during qualification or
when noticing run-time problems. Background information on FPGAs and current debug methods for
FPGAs are shown in chapter 2. The relevant related work which is studied for this research is outlined
in chapter 3. The techniques which are used to create this template and framework are explained in
chapter 4, in chapter 5 this process and the techniques are evaluated and transformed into a model.
The model is checked using a case-study which is described in chapter 6. The conclusion of the
entire project is found in chapter 7, future work suggestions can be found in chapter 8.

9





Chapter 2

FPGA debug process

FPGA devices are flexible programmable hardware devices. In the industry where focus lies on
short design times and flexibility of products these devices are widely used over Application-Specific
Integrated Circuit (ASIC) devices. Disadvantages of FPGAs over ASICs is the cost of area and
power. FPGA devices are programmed using a bit-stream configuration file. This file is constructed
by converting VHDL in a format accepted by the FPGA. Background information on the internals
of Xilinx FPGAs is shown in section 2.1. Information about the tooling and process of how the bit-
stream is generated is shown in section 2.2. The VHDL code designed for these FPGAs can contain
problems or bugs. The debugging process for FPGA firmware is explained in section 2.3.

2.1 FPGA hardware background

FPGA devices have evolved over time from a simple homogeneous grid of programmable logic blocks
to a bulk of logic blocks in combination with special function blocks and memory. The Virtex-6 FPGA
used in this project contains a number of different components as shown in Figure 2.1. These
components are explained in this section; the information presented is a summary of [6].

The most elementary configurable building block of an FPGA is the Configurable Logic Block (CLB).
These CLB blocks consists of two sub components called slices as shown in Figure 2.2. The slices
are connected to the switch matrix which is used to route the signals that connect all internal FPGA
components. Each individual slice contains four Look-Up Tables (LUTs), eight storage elements,
wide-function multiplexers, and carry logic. The total number of available components in a CLB is
shown in Table 2.1, and per FPGA in Table 2.2. In addition to this, some slices support two additional
functions: storing data using distributed RAM and shifting data with 32bit registers. Slices that
support these additional functions are called SLICEM; while the others are referred to as SLICEL.

Each CLB can contain zero or one SLICEM functions. Every other CLB column contains SLICEMs.
In addition, the two CLB columns to the left of the DSP48E columns, shown in Figure 2.1, both

11
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Clock tileIOB
Blockrams

DSP48E1 slices
DSP48E1 slices

Blockrams
...

CLBs

Figure 2.1: The floorplan taken from Xilinx PlanAhead shows the arrangment of logic components in the
FPGA. Every clock tile can have its own independent clock signal.

Switch 
Matrix

CLBCLB

CINCIN CINCIN

COUTCOUT COUTCOUT

Slice(1)

Slice(0)

Figure 2.2: The two slices that exist in the CLB are connected to the routing logic. The components that
exist in the CLB are divided over the slices and are shown in Table 2.1.

contain a SLICEL and a SLICEM.

The LUTs or function generators of the Virtex-6 are implemented as six-input look-up tables. There
are six independent inputs (A inputs - A1 to A6) and two independent outputs (O5 and O6) for each of
the four function generators in a slice (A, B, C, and D) as shown in Figure 2.3. The function generators
can implement any arbitrarily defined six-input boolean function. Each function generator can also
implement two arbitrarily defined five-input boolean functions, as long as these two functions share
common inputs. Only the O6 output of the function generator is used when a six-input function is
implemented. Both O5 and O6 are used for each of the five-input function generators implemented.

There are different types of distributed memory in the FPGA. This memory is either Random Access
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Slices LUTs Flip-flops Arithmetic Distributed RAMSLICEM Shift RegisterSLICEM

2 8 16 2 256bits 128bits

Table 2.1: Logic available in the Virtex-6 per CLB.
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Figure 2.3: SLICEL component with the function generators in blue, the detailed version of this figure is
found in [6].

Memory (RAM) or Read Only Memory (ROM). The distributed memory is generated by combining
multiple LUTs in a SLICEM. The memory can be generated using special tooling which provides an
interface to this memory. The ROM can be created in both the SLICEM and SLICEL blocks. The
ROM is initialized at FPGA configuration and cannot be changed afterwards.

Besides the distributed memory in CLBs the FPGA also has columns with dedicated memory com-
ponents. These components are referred to as blockrams [7]. A blockram resources stores up to
36Kb of data and can be configured as either two independent 18Kb RAMs, or one 36Kb RAM. The
blockram resources are dual ported, and read and write synchronous. The two ports are symmetrical
and totally independent, sharing only the stored data. The contents of the blockram can be config-
ured and cleared at startup using the configuration bit-stream. The read and write operations on a
blockram both require a single clock cycle per address. The blockram resources can be initiated us-
ing the Xilinx core generator software. This tool also enables higher level interfaces providing First-in
First-out (FIFOs) and dual-clocked blockrams. The dual-clocked blockrams can be used as a barrier

6-input Maximum DSP48E1
Device Slices SLICELs SLICEMs LUTs Distributed RAM Flip-Flops Slices Columns

LX240T 37, 680 23, 080 14, 600 150, 720 3, 770Kb 301, 440 768 8

Table 2.2: Elements and available memory in the Virtex-6 LX240T FPGA.
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between two different clock domains.

All FPGA designs can be implemented using only CLBs, as long as enough of these components
are available and the clock frequency can be set to an infinitely low value so timing errors due to
routing will not occur. This is not the case for a lot of practical designs, therefore it is chosen to equip
the FPGA with additional building blocks, types of these building blocks are the blockram memories
described above. Another standard component is a number of columns with DSP48E1 slices [8].
These Digital Signal Processing elements are introduced to improve flexibility and utilization. The
functions that the DSP slice can fulfill include multiply, multiply accumulate (MAC), multiply add,
three-input add, barrel shift, wide-bus multiplexing, magnitude comparator, bit-wise logic functions,
pattern detect and wide counter. The DSP slices can also be cascaded in order to extend the width
of all functions and perform complex filtering without the use of general FPGA logic. The number of
DSP slices available in the Virtex-6 LX240T device is shown in Table 2.2.

Besides memory and DSP slices the Virtex-6 FPGA also contains even more dedicated components
as High-Speed Serial Transceivers [9] and [10], PCI-express interfaces [11], and Ethernet MACs
[12]. These dedicated blocks make sure that timing and signal requirements can be met for such
high speed interfaces. They also decrease the design effort when using these components.

All configurable blocks in the FPGA together with the switch matrix or routing logic need to be con-
figured. The configuration of the FPGA is done by means of a configuration bit-stream [13]. This
bit-stream is a binary representation of all initialization values for all configurable logic. The bit-
stream can be programmed into the FPGA via a debug link or the FPGA can read the configuration
from (external) nonvolatile memory. The FPGA configuration data is stored in CMOS configuration
latches, this requires the FPGA the be reconfigured after power down. The Xilinx tooling generates
multiple types of bit-streams depending on the programming method. The FPGA configuration of the
Virtex-6 LX240T FPGA consists of 73, 859, 552 configuration bits. The sequence used for configuring
the FPGA is shown in Figure 2.4.

Synchronization
Device 

Power-Up

Clear 
Configuration 

Memory

Sample Mode 
Pins

Start

Check Device ID
Load 

Configuration 
Data

CRC
Check

Startup
Sequence

Finish

Setup Bit-stream loading

Figure 2.4: The configuration sequence for the Virtex-6 FPGA. The setup initializes the configuration
process, while bit-stream loading part reads and writes the internal configuration registers using the bit-
stream. The startup sequence gets the device out of shutdown.

Besides the standard hardware components there are also configurable standard software compo-
nents. In Xilinx tooling there is for instance support for the generation of soft-core micro-processors.
These processors are application processors implemented in the FPGA. These processors can
be simple Reduced Instruction Set Computers (RISC), but also Memory Management Unit (MMU)
equipped processor configurations are able of running embedded Linux.

The future FPGA devices are equipped with even more specific building blocks e.g. internal Analog
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Digital Converters (ADCs) [14]. This makes it easier to use standard functions without wasting a
lot of CLB logic. The latest addition is a dual-core ARM embedded into the FPGA fabric. This
enables dividing tasks between a real processor and custom configured FPGA logic. The FPGA
fabric has direct connections to the ARM core and both devices can share the same memory. These
connections consist of approximately 3000 interface signals which also include memory mapped
AMBA AXI connections. This processor can be used to replace the MicroBlaze soft-core processor
which is widely used in FPGA designs. This type of Xilinx FPGA with embedded ARM Cortex-A9
multi-core is released under the name of Zynq [15].

Translate & Map

Synthesis

Place & Route

Generate bit-stream

Write VHDL code

Run FPGA firmware on device

Im
p

lem
en

tatio
n

Figure 2.5: The process of converting the VHDL code to a bit-stream format accepted by the FPGA.

2.2 FPGA software background

In order to make use of FPGA components the VHDL code must be implemented and converted into
an FPGA bit-stream. This implementation process is depicted in Figure 2.5. The process starts with
logic synthesis where the VHDL code which describes the high-level behaviour is turned into a netlist
with only logic gates and building blocks e.g. blockram, clock resources.

The synthesis output is fed into the next process step called translate. During translation all netlist
files are merged into a vendor specific database file. This database contains the logical design
reduced to vendor specific, e.g. Xilinx, primitives. This database is used by the map, or technology
mapping, process to translate this design to CLBs, IOBs, etc. The output of this process is the
physical design mapped to Xilinx components.

The mapped design is placed on a floor-plan of FPGA components. This floor-plan depends on the
type of FPGA. After placing the components on this floor-plan they are connected with each other.
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The place & route process takes care of this. This process takes all timing and signal requirements
into account. If the design passes this step then all these requirements are met. There is only one
step required in order to be able to program this design into the FPGA and that is the generation of
a bit-stream. This bit-stream is generated in the generate bit-stream step.

In the latest FPGAs it is possible to overwrite partitions of a running FPGA. This requires all the
implementation steps for only a portion of the design. This process is referred to as partial recon-
figuration. This technique is described in [16], sample applications are shown in [17], [18], [19] and
[20].

2.3 FPGA firmware debug decision tree

The design and implementation of FPGA firmware is done manually, this inevitably means that the
firmware programmed into FPGA device can contain bugs. These bugs can potentially destroy hard-
ware when for example safety mechanisms fail to activate. In order to find and repair these errors
qualification and debugging is required. The debug process of FPGA firmware is depicted in Fig-
ure 2.6. This decision tree shows the paths which can be taken to ensure that the firmware meets
the requirements. The FPGA firmware is written in VHDL, and then synthesised, and finally placed
and routed into a configuration bit-stream.

Debug
FPGA firmware

Simulation

Firmware 
execution 
on FPGA

Behavioral RTL
(VHDL)

Timing
(Routed design)

Functional
(Input/output 

relation)

FPGA Probes
(Internal signals)

Internal logic 
analyzer 

(ChipScope)

Analyze timing 
diagram

VHDL code review

Configuration binary level

VHDL level

Automatic

Human

Figure 2.6: Decision tree showing the debug process for FPGA firmware. The three branches distinct
between off-line analysis by code review, simulations, and online analysis while executing on the FPGA.
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2.4 VHDL code review

The VHDL code review by Human is the process where other FPGA engineers read the VHDL code
while keeping the architecture and module design in mind. The design document describes the be-
haviour which should be implemented in VHDL. The constructions of code which do not match the
design specified in the design document can be found here. The VHDL code review is on conceptual
level checking the relation between the design and the implementation. The review is also at VHDL
construction level checking the VHDL code style for different constructions. Processes can be imple-
mented synchronously or asynchronously, the use of a reset condition can be required, the method
of initializing signals differs per FPGA, etc.

A VHDL code review can be done at every stage in the project from the moment there is VHDL code.
The downside is that the reviewing engineer must be familiar with the design. Mistakes are easily
missed when reading large amounts of code. The quality of the review depends on the experience
and effort of the reviewing engineer.

An Automatic code review can be performed by linting applications. These applications check the
VHDL code for mistakes, typos and typical error constructions. Problems found by the linter are bus
width mismatches, assignment conflicts, unused signals, reading from output ports and setting input
ports etc. The warning messages of the implementation process steps as map, place and route, and
generate bit-steam are also considered as automatic code review.

Test-bench

Clock 
Generator

Input 
sequence

Check 
output

Subsystem Under Test
LED Indicator

Clk80MHz

StateId

Error

ErrorMask

Led[0:5]

Pass/!Fail

Figure 2.7: An example of a test-bench design. The clock generator generates a clock signal using VHDL
statements. This clock is supplied to the subsystem under test together with a sequence of input signals.
The output signals of the subsystem are checked by the check output block. If the output does not match
the expected value for that input, then a fail is generated. The test-bench execution can be investigated by
inspecting the clock and signal graph generated after execution.

2.5 Simulation

The VHDL code can directly be used for Simulation. In the industry this is referred to as behavioural
RTL simulation. The design in such simulation process consists of two different parts. The first part

17



FPGA debug process

is the module or subsystem under test, this is a process or process group taken directly from the
design. The second part is the test-bench as shown as the white part in Figure 2.7. The test-bench
consists of one or more processes that accepts extended VHDL constructions. This extension on
synthesizable VHDL allows the use of delays, wait statements, file access and print commands.
The test-bench generates all signals routed to the subsystem under test. This includes a clock
and the desired input signals. The output signals of the subsystem are monitored. The test-bench
can automatically report errors by checking the output of the subsystem under test. The sequence
leading to the error can be inspected via the timing diagram. A timing diagram can show all internal
signals at each moment in time of the last execution. This simulation step abstracts from internal
hardware timing behaviour. The simulation is at RTL level, this means that it shows register values in
a timing graph at each clock tick. All changes to registers are immediately applied, unless transport
delays are defined. If the subsystem under test gets larger then the simulation time also increases,
since the value for every signal is calculated for every time interval.

The simulation of VHDL code is fast and delivers a high level of observability. The VHDL code can
be fed directly into the test-bench, no translation and technology mapping of the code is required.
The abstraction from hardware behaviour makes it impossible to fully qualify the FPGA code since
not all cases are covered.

Another type of simulation works with a fully implemented design. Fully implemented means the
design went through the synthesis, place and route, and mapping steps. The output file describes
the required logic and occupied location in the FPGA. These output files can be used for timing simu-
lation. A timing simulation uses libraries that describe the component and wire delays of the design.
During synthesis and during place and route additional netlist files containing this information are
generated. These files are loaded in the test-bench instead of the VHDL file of the subsystem under
test in Figure 2.7. The timing simulator cannot determine the exact delays of all logic in routing. The
simulator makes use of minimal and maximal values on paths. The timing constraints are constantly
monitored to see whether or not timing violations occur. This process requires much more computa-
tional power than the behavioral simulation. It has full observability but requires approximate a factor
100 more time to simulate compared to behavioral. The use of timing simulations is only required
when clock domain crossings exist in designs. When all clocks are synchronous the implementation
process makes sure all timing requirements are met.

2.6 Firmware execution on FPGA

Another branch that can be taken in parallel with the code review and simulation is firmware execution
on FPGA. This means that the configuration bit-steam is loaded into the FPGA and a functional test
is executed. During this functional test the FPGA is used as it would be used in the final product. This
test can be extended with error sequences as for example disabling or overriding input signals and
checking the behaviour in these situations. When for example the serial communication is stopped
an error LED should light up. Signals can also be checked with an oscilloscope or multimeter when
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LEDs are not available or too slow. This monitoring of functional behaviour requires no changes to
the FPGA code. The code runs in its final delivery setup.

The functional test is very fast, since the code is running real-time on the FPGA. When problems are
found during the functional test it is difficult to determine the cause of these problems. The functional
test lacks observability, since only the output signals of the FPGA can be monitored. In some cases
it is possible to read diagnostics data via the external interface.

Figure 2.8: The routed FPGA bit-steam can be opened using the FPGA editor and connections from low-
level nets can be made to external FPGA pins. These external “spare” pins can be monitored using for
example an oscilloscope or logic analyzer.

In order to gain more knowledge about what happens internally it’s can be helpful to be able to view
internal FPGA signals. These internal signals can be manually routed to “spare” pins on the FPGA.
These “spare” pins are unused pins on the FPGA which are routed to an external connection on the
PCB. Using an FPGA editor as shown in Figure 2.8 the configuration bit-steam can be opened and
these extra signals can be routed. This does not require re-running the implementation process, the
bit-steam can immediately be saved. Some signals are difficult to find due to obfuscation. The im-
plementation and synthesis process can combine signals that have equal values in order to optimize
a design. When internal nets are combined they are given new names. These names are difficult,
or sometimes impossible to relate back to the original signal. Another disadvantage of this method
is that “spare” output pins are required on the FPGA. If these pins are not available, e.g. all I/O pins
are in use, then this method cannot be used.

The use of probes has the advantage that probes can easily be added to an FPGA design when nets
are not optimized and “spare” pins are available. Disadvantage is that usually only limited spare pins
are available. It can take a lot of time before the correct probing location is found related to an issue,
only a few bits can be analyzed at a time.

The final method mentioned in the decision tree is the adding an internal logic analyzer e.g. Chip-
Scope [5] to a design. In this chapter the focus lies on ChipScope, but there are also other types of
analyzers e.g. [21]. If a ChipScope analyzer core is added to the design then every build step after
synthesis must be repeated. The design requires a new mapping, routing and bit-stream file. This
step is time intensive for large designs e.g. 100.000+ lines of code can take up to 2h. The advan-
tage of these analyzers is that they connect via the JTAG interface. The JTAG interface is always
embedded into the FPGA, and can be used to program the FPGA and to connect to the analyzer. No
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Translate & Map
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Place & Route

Select data and 
trigger registers

Generate bit file 

Write VHDL code

Run FPGA firmware on device

Figure 2.9: ChipScope triggers and registers to be stored after triggering are configured after synthesis.
The trigger conditions e.g. values and masks are configured when the FPGA firmware is running in the
FPGA. Via the JTAG connection and the and using the configuration file generated after synthesis the
configurations can be made.

additional connect logic as for instance with the probes is required.

The internal logic analyzer works with triggers and buffers. During the analyzer configuration all
signals required for triggering or acquisition need to be defined. Next the clock on which the core
should run is selected. This clock is selected from an internal design clocks and is used as source for
checking the trigger conditions. Different types of possible triggers can be selected when configuring
the core. Setting the actual trigger value and method can be configured during run-time. When
the analyzer is successfully configured and the bit-stream is build the design can be executed on
the FPGA. A desktop tool connects via JTAG to the ChipScope core in the FPGA. Using this tool
the trigger conditions can be configured, as shown in Figure 2.9. When the design triggers on an
condition it starts filling internal memories with data from the selected signals. Due to the limited
internal memory capacity, the more signals are selected the less number of samples can be stored.
After the buffers are full the data is copied via JTAG and the timing diagram is shown. When other
signals are monitored a new bit-stream is required. The design is changed when the analyzer is
added and therefore it could introduce new timing problems. Parts of the design are moved in order
to fit the analyzer. This changes the routing layout and can lead to data misses on the sampling clock
edge of a clock domain crossing.

The advantage of analyzing a design with ChipScope or similar internal logic analyzer is it provides a
lot of observability if configured correctly. Because of the JTAG connection no additional FPGA pins
are required to view debug information. The disadvantage is that for every new signal that must be
triggered or stored a lot of recompilation time is required. The ChipScope core not always fit in the
FPGA together with the design.
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2.7 Debugging methodology

The previous sections describe the current methods for analyzing, debugging and qualifying FPGA
firmware. This research introduces a new debugging methodology to enable the combination of the
advantages of existing debug techniques. The existing research that is studied and of which parts
are reused is described in chapter 3. The FFQF debugging methodology introduces observability
and controllability in FPGA firmware. The observability is introduced at two levels, it enables com-
munication centric analysis of internally communicated information. This information can lead to
the source of error situations. The second level is at flip-flop level storing the actual state of each
low-level component in the FPGA. This enables viewing inside each process.

The controllability is introduced to enable stop conditions or breakpoints. At these points the design
or parts of the design stop executing. When the design is stopped it is possible to load the trace with
input values from the design. These traces can be loaded into an off-line simulation. This combines
the speed of executing a design on the FPGA and full observability when a problem occurs.

The methodology is supported by a template design which includes a generic communication struc-
ture. The template also contains debug blocks as a monitor and replacement slaves. The design is
required to meet the template requirements to be able to make use of all debug features.

2.8 Conclusion

To summarize the FPGA debug decision tree all items are added to Table 2.3. This table summarizes
the advantages and disadvantages of each step in the tree. This table shows there is no optimal
solution. The combination of observability during simulation and speed of run-time would improve the
debug process. This combination makes the design run fast in its final environment while introducing
observability in a problem situation that requires investigation. The injection can be used to overrule
certain signals to trigger error situations or inject test patterns. This is introduced with the FFQF
debug methodology.
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Debugging Requires
method Synthesis Implement. Bit-

stream
Observability Remark

VHDL Code re-
view (human)

No No No -

VHDL Code re-
view (automatic)

No No No -

Behavioral RTL
(VHDL) simula-
tion

No No No Partial Fast for small designs, slow for
larger designs, missing timing
problems on clock domain cross-
ings.

Timing simulation Yes Yes No Maximal Very slow and only edge conditions
shown, still not real hardware.

Functional code
execution

Yes Yes Yes Input / output

FPGA probes in
execution

Yes Yes Yes, for
every
change

Input / output /
internal

Limited signals, only to “spare” out-
puts.

ChipScope ana-
lyzer

Yes Yes, for ev-
ery change

Yes, for
every
change

Input / output /
internal

Can trigger on internal signals and
view traces.

Table 2.3: A summary of the decision tree showing the differences between the FPGA firmware debug
steps. The combination simulation observability and speed of run-time analysis would be ideal.

22



Chapter 3

Related work

There is already a lot of work done in the research and development industry regarding FPGA
firmware debugging and debugging in general. During the start of this project, research has been
done in the form of a pre-study [22]. In order to make debugging possible, observability and control-
lability are required. The research related to increasing observability is discussed in section 3.1. A
selection of the debugging methodologies researched for this thesis are grouped in section 3.2.

3.1 Observability and controllability

The company Temento Systems sells an FPGA debug solution called DiaLite [21]. This tool works
with fifteen different Intellectual Property (IP) blocks and scripts. These blocks and scripts make it
possible to debug run-time FPGAs and add online assertions. Traces to the breakpoints are stored in
order to re-run the faulty path off-line in simulation. The software connects via the JTAG chain. Their
work does not support on-the-fly change of registers values and is therefore purely a viewer/monitor.

Figure 3.1: Non Intrusive FPGA Debugger tool flow
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A system with minimal overhead called Non-Intrusive FPGA Debugger (NIFD) is proposed in the
work of Angepat et al. [23]. Their system creates a debug interface to the FPGA using GDB [24].
This interface is shown in Figure 3.2. The hierarchy of the original design is kept and mapped to the
current state of the firmware running in the FPGA. This makes it possible to view internal registers by
name as shown by the tool flow in Figure 3.1. In addition to this system it is also possible to enable
breakpoints in the design and control the clocking. The read-back option is used to determine the
state of the FPGA. The limitation of this system is the off-line host connecting via JTAG. The JTAG
connection introduces a major communication bottleneck, as mentioned in the paper. The function
of the JTAG connection can also be implemented internally using a MicroBlaze processor running
Linux and GDB. This keeps the communication internal which enables higher throughput. The paper
does not mention this alternative.

Figure 3.2: NIFD debug example in GDB, the figure consists of four independent columns each starting
with (gdb). The first columns shows how the NIFD tool is configured. The second column shows which
internal signals can be printed, in this case the value of cnt. In the third column a breakpoint is set when
cnt=5, the status of the breakpoint is on. The last column shows that the breakpoint triggered.

A design flow for monitor-aware network-on-chips is introduced by Calin Ciordas et al. in [25]. They
propose a method for introducing monitor blocks at a level where the communication requirements
are known. This enables minimal overhead in the monitor structure becase the monitors are adapted
to the communication requirements of the network. The system assumes a network with a set of
routers and standard network interfaces. This work is not applicable since the AXI network in this
research makes use of a single interconnect.

The dissertation [26] of Paul S. Graham describes Local Hardware Debuggers for FPGA-Based Sys-
tems. This report describes the work of creating a software like debugging system with controllability
and observability. The basis of this system is the Java-HDL (JHDL) [27]. The JHDL design environ-
ment provides an Application Programmers Interface (API) for describing FPGA circuits. The Java
objects represent circuit elements in the FPGA. The read-back and state determination techniques
all aim on the relation with the Java objects. Therefore this is not applicable for this research. The
low-level read-back techniques can be used.

The use of hardware context switches, which can be used for debug breakpoints, is researched by
Trong-Yen Lee et al. in [28]. This research has the focus on what information must be extracted
from the FPGAs configuration registers to determine the state of the firmware. The state is used to
be able to make context switches, by storing and re-storing this state at a context switch. A context
switch is in their work required when programming alternative bit-streams in partitions of the FPGA
using partial reconfiguration. The tool created by Trong-Yen Lee et al. takes the state of a portion of
the FPGA via the capture mechanism in the FPGA. This captured data is read-back via an external
interface called SelectMAP. This paper makes use of a shutdown, capture and startup when reading
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the data. In the FFQF research it is desired to leave parts of the FPGA operational while performing
a capture on part of the FPGA. This means that a read-back is required without using the shutdown
mechanism.

3.2 Debugging methodology

Debugging an FPGA device in a software-like fashion is explained by Hemmert et al. [29]. This
software-like fashion means it is possible to set breakpoints on conditions, step with a given num-
ber of cycles and inspect signal values. Using high-level synthesis tools to map programs written
in general-purpose languages to FPGA hardware has grown in popularity. It is becoming neces-
sary to provide comprehensive debugging tools in order to verify the correctness of the synthesised
hardware.

Java compilerJava source file Java class file

Byte-code analyzer CFG & DFG Graph conversion

Predicated Static 
Single Assignment 

Graph
Optimizations

Optimized 
Predicated Static 

Single Assignment 
Graph

Netlister
Debug database 

builder

Net-list Debug database

Hardware names

(a) Overview of the operations performed by synthesis
tool proposed by Hemmert et al. in blue. The oval nodes
represents generated files or formats while the rectangular
nodes represent operations or tools.

(b) The current state in the FPGA is related to the original
high level source code in Hemmert et al.

Figure 3.3: Synthesis operations and uses interface of the system proposed by Hemmert et al..

Currently, post-synthesis debugging is done at the circuit level. This research discusses the is-
sues, as well as some early results, of creating a source level debugger for hardware synthesised
from source code. This research provides insight in what must be added or built into synthesising
compilers in order to allow the debugging of a synthesised circuit at source code level as shown
in Figure 3.3(a). It discusses issues involved with both creating a hardware debug database and
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hardware-source level debugger. In this research high level JAVA code is used as high-level syn-
thesis development language. A custom compiler is used to map the parallel generated instructions
to an actual state in the FPGA as shown in Figure 3.3(b). This work does not fully apply to the re-
search of this thesis since it makes use of high level synthesis and JAVA code. This thesis aims on
debugging VHDL code in a software-like fashion.

Application specification (Object Oriented)

High-level CDFG

Low-level CDFG

Synthesis tools

Probe insertion

Simulation

Probed EDIF

M2000 tools

Probed Verilog

ModelSimPlace & Route

FPGA

Test & Debug

Figure 3.4: The introduction of probes in de EDIF file enables debugging and inspection of running FPGA
code in the approach of Lagadec et al.

A methodology for HDL verification is proposed by Denolf et al. [30]. This research introduces the
use of a C model of each subsystem. These models can be tested extensively by introducing probes
in the model and applying stimuli to these probes. The behaviour is checked with the expected output
of the block. Communication and functionality are separated. This project makes like Hemmert et
al. use of high level synthesis languages in combination with debugging. In this case C code is
synthesised into an FPGA binary and debugged.

Another High-Level synthesis approach for debugging an FPGA in a software like fashion is intro-
duced by Lagadec et al. in [31]. This method uses Control Data Flow Graphs (CDFG) to represent
the behaviour of the subsystems. Using an automatic injection method, breakpoint signals and mon-
itor signals are injected into the Electronic Design Interchange Format (EDIF) file. This EDIF file is
generated by the synthesis tool. The technique used for breakpoints is to insert a control module
in each subsystem during qualification and remove it afterwards without changing the fundamental
behaviour of the design. The process is graphically represented in Figure 3.4.

Online verification of the FPGA code against simulation results is proposed as gNOSIS by Khan et al.
[32]. They propose a system which reads the entire state of the FPGA, converts this to a simulation
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Run for N/2 
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Start Finish
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- Compare with simulation
- Match valid
- Continue

- Read FPGA state (2)
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- Match failed
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- Read FPGA state (0)
- Continue

Figure 3.5: The method of gNOSIS is to run the FPGA code for N cycles and run the simulation for N
cycles. These two outputs are compared. When the outputs match, the design runs for another N cycles.
If the outputs of the FPGA run and the simulation do not match then the previous capture is restored and
run for N

2 cycles. This sort of successive approximation approach is repeated until the exact problem cycle
is found.

Figure 3.6: gNOSIS usage

state file and compares it with simulation output. If these files match then the design runs for another
number of clock cycles and the design is compared again. On a mismatch the previous state of
the FPGA is restored and the sequence is repeated in a smaller number of steps. This process is
repeated until the exact clock-cycle is found where the error occurs as shown in Figure 3.5. In this
research is determined how the translation from a read-back FPGA state line of source-code can be
made. A drawback of the system is that it can only reproduce errors which exist between functional
simulation and real hardware. The system can be used in parallel with ChipScope debugging as
depicted in Figure 3.6. This introduces an extra level of observability.

A system which has a broader perspective and is designed to debug Multi-Core Systems-on-Chip
is researched and designed by B. Vermeulen (NXP) and K.G.W. Goossens (TU/e) [33][34]. This
system does not particularly aim on FPGA systems but on all Multi-Core / Multi-Process implemen-
tations. The system introduces both intrusive and non-intrusive debug cores in the design. Their
on-chip CSAR debug approach stands for Centered on Communication, Using Scan chains, Based
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Related work

Figure 3.7: The communication centric approach introduced by B. Vermeulen (NXP) and K.G.W. Goossens
(TU/e) for the CSAR system.

on Abstraction and Implementing Run/Stop Control. It aims at debugging the system at communica-
tion level as shown in Figure 3.7. This system is combined with an off-chip system called Integrated
Circuit Debug Environment (InCiDE) via the scan-chain TAP interface. This InCiDE performs the
abstraction steps in the design. This means that, for example, low-level reads can be performed on
addresses, but also on named registers. The register names are extracted at compile-time. The
InCiDE system is interfaced via iTCL, an object oriented version of the TCL scripting language,
commands.

3.3 Conclusion

The related work that has been studied during this project contains parts that can be reused. None of
the studied research combines different levels of observability as proposed by the FFQF methodol-
ogy. The different levels of controllability proposed in the related work is also combined in the FFQF
methodology.

The DiaLite system [21] allows the usage of break conditions and traces. The tooling has no possi-
bility to inspect at hardware register level and no method for injecting values. The NIFD [23] provides
a debug interfaces a design via GDB. This NIFD research focusses on intrusive breakpoints and
viewing signals while in break state. Interaction cannot be monitored non-intrusively. The method of
reading hardware-level registers is re-usable. A method for non-intrusive communication monitoring
shown in the work of Calin Ciordas et al. [25]. This method places monitors at routers and network
interfaces. The communication infrastructure is reused when getting information from the monitor.

The researches that aims on debugging High-Level synthesis languages, i.e. [27], [29] and [31],
are not applicable. The techniques used for inspecting hardware registers and capturing firmware
state information is reusable. The debugging techniques that focus on differences between firmware
execution and simulation are not reused. Using FFQF it is only possible to compare input and output
traces of subsystems. The idea of using both intrusive and non-intrusive debug blocks shown in
CSAR [34] is used with FFQF as well. The FFQF does not require the use of JTAG debug connec-
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Chapter 4

FFQF template and framework

The pre-study document [22] advises to follow three orthogonal paths in the process of creating a
qualification and debug framework. These different paths are shown in Figure 4.1. The off-line debug
path refers to analyzing an FPGA design, when its execution has been stopped. This stop behaviour
is initiated by a condition that is triggered internally or externally to the FPGA. The state of the FPGA
is extracted and this information is used for off-line analysis. The online path describes debugging
or analysing a running design without interfering with the behaviour i.e. non-intrusive. The last path
referred to as block reconfiguration describes the partial online reconfiguration of partitions in the
FPGA. The rest of the FPGA remains operational while a separate part is reprogrammed with a new
design.

Block 
reconfiguration

Off-l
ine 

debug

Online debug

Figure 4.1: Different orthogonal paths or approaches to solve the main problem. The block reconfiguration
aims on partial reconfiguration of a running FPGA. Off-line debug is simulation and FPGA register register
data analysis. The online debug path handles debugging, while the firmware is running on the FPGA.

The block reconfiguration path is not considered in this project. The reason for using block recon-
figuration is to possibly reduce the synthesis and build time during development. The method is to
split the design into smaller components. These components or subsystems can be synthesised and
build independently. During the development phase changes are made to these subsystems when
correcting errors. The synthesis for a smaller design part is in theory faster than for the entire design.
The individual subsystems can be connected, when building the final bit-stream.
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If a design partition is defined then next the partition content must be defined. This content is the
subsystems to be located in a certain partition. This is followed by setting the signal constraints of
these partition border logic. This logic is the edge of the partition and communicates with both the
internal and external part of the partition.

The Xilinx design flow states that partitions requiring the most resources must be fitted first. The
reason for this approach is to make sure that all future partial designs will fit in the partition. The
following step is to test whether all constraints can be met. Expected is that the Xilinx tooling will fit
the partial designs in the partition based on the constraints set in the first design. This is partially true,
since the design is synthesised and fitted in a smaller timespan. The problem is that the last step in
the build process is rechecking all constraints. This checking makes the process even slower than
without partial reconfiguration. This tooling limitation makes the application of partial reconfiguration
in this research not applicable. There is another use for partial reconfiguration, but that is described
in chapter 8 as future work.

The off-line and online debug paths are described in the next sections. This includes a chronological
order in which the different template components are introduced. Evaluation of the template is not
included in this chapter but these results are grouped in chapter 5.

The debugging methodology is based on a communication centric approach. In order to achieve this
the template requires a generic communication infrastructure. This communication infrastructure
is described in Section 4.1. The monitoring unit that enables observability in this infrastructure is
shown in Section 4.2. In Section 4.3 a unit to inject or overwrite values is introduced. The notion of
breakpoints is explained in Section 4.4. The breakpoints increase the controllability of the template.
The template can be inspected at hardware level when a breakpoint is active. This inspection is
explained in Section 4.5. The interface of the template is shown in Section 4.6.

4.1 Generic communication structure

In an FPGA design different subsystems perform functional tasks. These FPGA designs consist of
strongly coupled subsystems. This coupling makes it difficult to determine when communication be-
tween subsystems occurs. The difficulty is that registers are updated immediately, when information
is available. The information is used by other subsystems as soon as the information is required. Dur-
ing synthesis the compiler can optimize the design making the design use fewer resources, but more
difficult to observe. Different net-names sharing the same functionality are merged into a new nets,
which are more difficult to identify when probing with ChipScope or Xilinx debug probes. In order to
decouple systems a new communication structure is proposed and introduced. This communication
structure is shown in Figure 4.2.

There are different levels of abstraction possible, when grouping processes into subsystems. In Fig-
ure 4.2 these abstraction levels are shown. There are processes which are grouped into process
groups. When these groups are able to independently fulfill a task they are referred to as a sub-
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system. A task is difficult to define, but examples of tasks are: handling external communication,
calculate an electrical current loop, etc. The more subsystems are introduced, the more commu-
nication overhead, but also the more observability and controllability. This choice is therefore very
application specific.

System (design)

Subsystem B

B.2

B.2.1 B.2.2

Subsystem A

A.1

A.1.1

A.1.2

A.1.3

A.2

A.2.1 A.2.2

Process group B.1

Process B.1.1

Subsystem C

External parallel connection of arbitrary width in bits
Internal Parallel connection of arbitrary width in bits

Figure 4.2: A tightly coupled system with direct connected parallel connections. There are different levels
of abstraction possible in this existing design. The chosen subsystems are A, B and C. One of the chosen
process groups is B.1, while one of the processes is B.1.1.

The subsystems are coupled too tight making it difficult to verify them when they are synthesised into
the final design. The target of this design step is to decouple systems while minimizing the system’s
total overhead. The decoupling also makes it easier to determine the systems internal (execution)
state. The internal state of a subsystem or process combined with the input generates the next state.
This state information is helpful to determine what is computed at a given moment in time. The state
of processor registers is stored when debugging software applications. Since an FPGA does not
have these type of registers the state needs to be determined in another way. The state is required
when design needs to continue after a part of the design is stopped. Stopping a design can be
because of a break condition which is introduced in section 4.4.

There are different standard interconnection bus systems available to be used in FPGA designs. Ex-
amples of these interconnections systems are Avalon [35], On-Chip Peripheral Bus (OPB) [36], Pro-
cessor Local Bus (PLB) [37], AMBA AXI [38] and Open Core Protocol (OCP-IP) [39]. The AMBA AXI4
interconnection system is chosen to be the interconnection system to use. The ARM AMBA AXI4
interconnect is adopted by Xilinx and Altera as interface for their Intellectual Property (IP) blocks.
The interconnection will be referred to as AXI bus for the remainder of the document. The reason for
choosing this interconnection type is to ensure compatibility with future off-the-shelf building blocks of
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the FPGA and other vendors. This reduces development time and improves flexibility. By introducing
this AXI bus in designs it is possible to create and use, fully independent building blocks.

The AXI bus architecture is designed by ARM and adopted by Xilinx for future logic cores [40]. The
AXI interconnect system is implemented as an intelligent crossbar. The AXI bus specification makes
a clear distinction between AXI4, AXI4-Lite and AXI4-Stream. The lite interface is used for single
register reads and writes while the full AXI4 interconnect is able to perform memory mapped burst
transfers. The light interface has a subset of the signals provided by the full interface. The last type is
the stream interface designed for the use with memory and direct memory access (DMA) controllers.
For this project all slaves, masters and interconnections are implemented for the full AXI4 system
and not for the stream and lite interface. The lite interface can be derived from the full AXI4 system
by removing the additional signals and setting burst size to one.

The AXI topology is very flexible, since it supports multiple masters and slaves. The routing is
handled by the interconnection system making the master and slave implementations easy and inde-
pendent. The AXI bus comprises of five individual communication processes or channels as shown
in Figure 4.3. Two of these processes are responsible for handling bus read commands while the
other three handle bus writes. The two read processes are independent of each other. The first
process handles the address and control sequence, while the second process delivers the read data
to the master. The three write processes have a similar setup only with an additional write response
process. The write response process signals the master whether all data has been successfully
received and processed.
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Read data Read data Read data
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(a) AMBA AXI4 Read
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(b) AMBA AXI4 Write

Figure 4.3: Showing the five independent AXI communication processes or channels. Two read channels
and three write channels.

The AXI bus uses independent handshaking on all five separate communication channels. The
handshaking works by means of valid and ready signals. The receiving side asserts a ready signal
to show it is ready to receive data. The transmitting side puts its data on the bus and asserts the
valid signal. Only when both the ready and valid signal are asserted communication occurs. The
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receiving side is at this point allowed to copy the data to internal registers. The specification of the
AXI bus states that as soon as a communication is initiated that it should be completed, even when
errors occur during communication.

The AXI communication protocol defines the handshake behaviour of the different communication
processes. The handshake behaviour is graphically represented in Figure 4.4. There are two types
of dependencies. The light dependencies are indicated as a single headed arrow that denotes a
signal can be asserted both before and after the previous signal is asserted. The double headed
arrows denote a strong dependency meaning that the previous signal must be asserted.

R Valid

AR Ready

R ValidAR Valid

R Ready

(a) AXI read handshake dependencies

R Valid

AW Ready

W ValidAW Valid

W Ready

B Valid

B Ready

(b) AXI write handshake dependencies

Figure 4.4: Showing the handshaking constraints set by the AXI specification. The single arrows are light
dependencies showing signals that can assert before the previous signal is asserted. The double arrows
are strong dependencies which cannot be asserted before the previous signal.

The communication structure comprises of different components. In order to make the template
quickly adoptable to the existing design flow, the slave interfaces map their parallel connections into
a register interface. Parallel connections that exist between processes within a subsystem can be
mapped to the AXI slave but this is not required. If the information is relevant for debugging then this
is advised. Using this method it is possible to monitor internal signal values, other than only the input
and output of a subsystem. The AXI setup of the design in Figure 4.2 is shown in Figure 4.5.

The AXI bus works with an AXI master initiating all communication sequences and AXI slaves pro-
viding data. The control loop firmware is a constantly looping sequence with measure, compare/-
calculate and act actions. The AXI master initiates all inter-subsystem communication. Due to this
looping behaviour an off-line calculated Time Division Multiplexed (TDM) schedule is created. This
schedule is fed into a bus arbitration unit which connects to the AXI master. The bus arbitration unit,
interconnect and slaves are a completely independent system. The schedule of the AXI bus can be
simulated in Modelsim [4] or implemented in the physical FPGA for qualification. The design blocks
can be added to this design by attaching the parallel registers to the register interface.

The arbiter is responsible for the execution of the communication schedule. This schedule is stored
in blockram memory attached to the arbiter. The internal state-machine of the arbiter shown in
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FPGA design

AXI 
Slave

Subsystem A

AXI 
Slave

A
X

I 
In

te
rc

o
n

n
ec

t

Communication
Arbiter

AXI 
Master

Subsystem C

AXI Slave

AXI Master

AXI Signals

AXI 
Slave

A.1

A.2

Subsystem B

B.1

B.2

Internal parallel registers

Arbiter Schedule

Figure 4.5: The original design of Figure 4.2 converted to a system using an AXI memory mapped inter-
connection bus.

Figure 4.6 handles this. The schedule consists of starting a read with a slave and as soon as
data is available writing this data to another slave. Since AXI interconnect is memory mapped only
addresses and sizes are used to initiate connections. In the Read x state the configuration memory
is read to determine which address and size should be read. In the Write x state the next line in the
configuration memory is read to determine the destination.

Idle

Write B

Interrupt

DataValid

Read B

DataValid

Done

Done

Write A Read A

Figure 4.6: Communication arbiter state machine copying data between subsystem A and B.

In this project a custom implementation of the interconnect is made, because the Xilinx generated
interconnect does not yet support simulation of their interconnect [41]. Therefore the design could
not be validated off-line which significantly delays the implementation and validation process. The
interconnect supports two AXI slaves and a single master. In the future this is easy to expand using
the Xilinx Core Generator to generate a fully configurable AXI interconnect.

Next to the interconnect a generic AXI slave is implemented. This slave implements the complete
AXI required logic for communication. This block works completely independent and can be attached
to the AXI interconnect on one side and to a register interface on the other. Writing to a slave with
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a disconnected register interface has no effect. Reading from a slave with disconnected register
interface returns all zeroes. This slave can be attached to a register interface that maps parallel
registers to a location in the register interface. When this connection is made the slave will return
the values on the matching location in the register interface. This slave can be attached to existing
building blocks in order to insert them in an AXI design. The work required to do this is mapping
parallel register into the register interface and calculate whether the TDM scheduler is fast enough.
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Figure 4.7: AXI acquisition blockram with a low overhead interface for filling, and a standard memory
mapped AXI interface for reading

In order to enable diagnostics an additional AXI slave is designed, which is shown in Figure 4.7. This
slave incorporates a dual ported blockram which is filled using the Xilinx blockram interface [7]. This
interface enables a low latency and low overhead method for writing diagnostics data memory. The
Xilinx blockram interface accepts new address and data signals every clock-cycle. The AXI interface
attached to the other blockram port enables reading the data from the blockram via the standard AXI
interface.

The functionality of the AXI interconnect is validated via simulation and by running the design phys-
ically on the FPGA. The design is inserted into an existing design of an electrical current controller.
The TDM schedule and the input to output latencies have been checked both off-line and online. The
results of the evaluation are grouped in chapter 5.

4.2 Bus-level spy unit (AXI monitor)

The individual subsystems complete a function or task. This output of this function is based on
its current input and/or in combination with the current state of the subsystem. This states that the
output of the subsystem is generated either from new unrelated information, or with history taken into
account. The history, current input and current state are valuable when determining the root-cause of
a problem. This problem can be noticed at the output. Using input and state information the problem
situation can be reconstructed.

The more relevant information that can be extracted from the system. The easier it becomes to
determine the root-cause of an problem [26]. The design is transformed into a structured network
passing information at fixed moments in time. The next step is to determine a method to extract this
information passed in the network without interfering. This form of non-intrusive debugging is used
to determine the sequence that leads to a problem or event.
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The AXI master is responsible for all communication. The master is controlled by the arbitration unit
which executes the communication schedule. The master’s AXI signals connect via the interconnect
and to the slaves, as shown in Figure 4.5. This single connection can be spied by multiplexing it into
an observer or bus spy. Spying the communication at this location introduces the least overhead.
The other options would be to spy inside the interconnect. The disadvantage of this solution is that
the interconnect cannot be generated with external tooling like Xilinx Core Generator [42]. Spying
the slave interfaces requires a spy at each individual slave. This would increase the logic required for
spying with the number of slaves. The used logic remains the same when spying at each the master.
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Figure 4.8: AXI spy interface monitoring the AXI master signals.

The signals that need to be monitored depend on the available resources and required information.
The minimal required signals to monitor are the handshaking signals for each AXI process. The AXI
processes are address read (ar), read data (r), address write (aw), write data (w) and write response
(b). The handshake signals of the interface that requires monitoring need to be present in the monitor.
The monitor can only accept data when both the valid and ready signals of the according data lines
are asserted [38]. The monitor or spy unit designed during this project monitors the handshake,
address and data signals for all AXI processes.

The monitor is able to monitor all address and data signals of the AXI bus. The monitor is also able
to trigger on a certain address and data values. Using different masks and comparison types it is
possible to create different trigger conditions e.g. equal, not equal, smaller and larger than. The
match unit is depicted for a single AXI process in Figure 4.9.

The AXI monitor starts storing the communicated data into the internal blockrams when a trigger is
generated. The AXI slave shown in Figure 4.7 is used to store the acquisition data. The standard
blockram interface is used to fill the blockram since it has no burst size limitations and requires
minimal communication overhead. Reading the blockram is a non-time-critical process and can be
done via the AXI interface. This creates a standard slave interface for reading and a fast and low
overhead interface for writing.
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Figure 4.9: AXI match unit is used to determine whether a valid trigger condition occurs. When the trigger
occurs the monitor starts acquisition of the communicated data.
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Figure 4.10: AXI memory which can be used for the configuration of subsystems

The configuration and control of the monitor unit is handled via control signals and a configuration
memory. The monitor includes an 8bit configuration register. This 8bit register is directly controlling
the state-machines inside the monitoring unit. This interface is similar to a General Purpose Input and
Output (GPIO) register and is shown in Table 4.1. The real-time status of the monitoring unit is stored
in another 8bit register. This status register shows the state ID values of the different internal state-
machines. The additional configuration of the monitoring unit is done via the configuration memory.
This additional configuration includes setting the trigger conditions, mask values and compare types.
This memory is a blockram that is filled via the AXI interface while the monitoring unit reads it via the
standard blockram interface.
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Figure 4.11: The configuration and acquisition blockram implementations are used in the AXI monitor.
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Register Mnemonic Bit Remark

Configuration

MonitorType [1:0] 00, nothing
01, AXI
10, parallel
11, reserved

ReadConfig 2 Read the configuration memory
Reset 3 Reset the state-machine responsible for acquisition
Enable 4 Enable the monitor selected with MonitorType
TriggerCapture 5 Enable the capture primitive
Break 6 Request break condition
Reserved 7 -

Status

ConfigState [1:0] 00: IDLE
01: WAIT
10: STORE
11: DONE

ParallelMonitorState [3:2] 00: IDLE
01: WAIT_DATA
10: TRIGGERED
11: DONE

AXIMonitorState [6:4] 000: IDLE
001: WAIT_ADDRESS
010: WAIT_DATA
011: TRIGGERED
100: DONE

Reserved 7 -

Table 4.1: The 8bit status and control register of the monitor unit. The state codes refer to the states
shown in Figure 4.12

The monitor unit is extended with an additional 32bit register which can also be triggered on. The
32bit length is chosen arbitrarily. Different signals can be combined into this registers. This register
can be used to probe the internal design. Changing the probes means that the design must be
rebuilt entirely. This is an extra feature to be able to acquire parallel register values directly into a
buffer based on a trigger condition. This parallel register is faster to acquire, but less flexible since
changes require the design to be rebuilt. The two parallel acquisition state-machines are depicted in
Figure 4.12. Changing the register does require a complete rebuild of the FPGA image.
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Figure 4.12: The two parallel state-machines responsible for acquiring data when a trigger condition is
met.

4.3 Bus-level injection unit

The AXI monitor is able to monitor and store events that are communicated via the interface. Since
the AXI bus signals are all uni-directional it is not possible to provide subsystems with alternative
input data. This alternative input data can be used to inject events into a subsystem or to qualify
the behaviour for a range of input values. This injection is helpful when qualifying or validating
subsystems. The qualification of a subsystem is checking whether its behaviour is according to the
specification for all specified situations. Since simulation abstracts from real hardware behaviour
running the design on the FPGA is required in the validation process.

It is desirable to introduce a possibility to provide subsystems alternative input data. This can be
at runtime via the register interface. This input cannot be given via the monitor interface since it is
purely a read-only system able to monitor transactions.

The memory mapped bus interface is used to inject this data. Every blockram or register interface
that is connected to the AXI interconnect can behave like another slave. The only change required
is to the communication schedule. The arbitration unit has a number of from and to addresses
which are used to copy data between slaves. Changing the from address to a blockram results in
supplying alternative data to a subsystem under test. This subsystem performs its computations and
the monitor unit can monitor the output generated with the alternative input. The subsystem used to
mimic other subsystems is shown in Figure 4.13.

41



FFQF template and framework

A
Xilinx 

Dual Ported 
Blockram

B
AXI 

Slave

Strobe

Address
Data

Clock

AXI 
Slave

Clock

Valid
Data

Address
Strobe

Figure 4.13: The AXI blockram can be filled and read simultaneously via different AXI interfaces. The
blockram is connect to two different individual AXI interconnection networks and masters.

There are different methods for maintaining the alternative data stored in blockrams such as Fig-
ure 4.13. The first option is to create a filler process that is fast enough to overwrite the data in the
blockram before it is used. This is not desired since timing is a critical component here. When the
data is not updated fast enough the subsystem re-uses old input for computations. Another option is
to store all data in the blockram at once in sequential blocks as depicted in Figure 4.14. This requires
the arbitration unit to be updated with a new address table fast enough, or the arbitration unit must
know how many addresses to skip for each new data transfer. The last option is chosen, because it
introduces the least amount of impact.
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Figure 4.14: Memory map showing sequential data used for replacing subsystem with stub, the step-size
between copy actions is 0x10.

The arbitration unit is provided with a configuration memory and checks this memory to determine
which data needs to be copied. Reading this memory is a part of the TDM schedule that is designed
for the arbitration unit. The configuration AXI slave shown in Figure 4.10 is used for this application.
The AXI interface makes it easy to configure the arbitration dynamically, while the arbitration unit can
read from the memory with 1 cycle latency.

The arbitration unit is supplied with an alternative configuration in order to inject data into the external
registers of subsystems. The injection method works via a communication centric approach. This
means injection is handled via communicated events and not via internal register writes.
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4.4 Break conditions

The events that happen on the communication bus can be monitored and data can be injected when
the alternative data schedule are applied at the right moment in time. This moment in time is difficult
to determine when the FPGA is running e.g. ranging between 40MHz and 200MHz.

In software development it is common to set a breakpoint [43] for when a condition occurs or a certain
line of code is executed. A graphical representation of a breakpoint is given in Figure 4.15. These
breakpoints are not available in Xilinx and Altera FPGA tools. Breakpoints are a powerful method to
determine when new data needs to be supplied to the slave. If the design stops just before supplying
new data then the alternative data memories can be filled. The execution continues and the output
is checked for correctness by reading the output registers.

Program ExecutionProgram Execution

Inspect or update internal 
variables

No execution

Break Continue

Figure 4.15: A breakpoint in typical software debugging. The program executes until a certain line of code.
At this line the execution is stopped and it is possible to update and view internal variables. After viewing
or modifying the variables it is possible to continue execution.

It is desirable to introduce the notion of breakpoints. This enables stopping a design or parts of a
design when a condition occurs. The state of the design must be preserved to ensure a continue
after breaking is possible. This continue means that the design continues to execute starting where
it was stopped taking injected values into account.

Stopping an FPGA design means that all signals and registers are preserved from the moment the
stop is triggered. The designs to which this applies are all clock synchronous designs on the rising
edge of the clock. This means that when the clock remains high that all data is preserved. Starting
and stopping a single subsystem with no relation to other systems is relatively easy. Stopping only
requires a technique to physically stop the clock when it is high. If the subsystem has a relation
with another subsystems, then there are different options. The subsystems that continues executing
is informed that the data from the stopped subsystem is invalid. Another option is to stop both
subsystems. How this is handled is a conceptual choice based on the type of application.

In order to stop on more conditions than only an external trigger the debugger monitors the 32bit
parallel register. This register is used for break conditions. This register can be attached to parallel
signals in the design. The monitor unit can, via the configuration interface, be configured to trigger
on matching conditions on this interface.

The introduction of breakpoints or conditions is split into two independent problems that require their
own approach. The first problem is the FPGA hardware technique required stop design parts. Only
parts of the design are stopped to still have the possibility to read register values of AXI slaves. This
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problem is addressed in subsection 4.4.1. The other problem is the subsystem state and how related
subsystem states are handled. The stating problem is described in subsection 4.4.2.

4.4.1 Technique for stopping the clock (clock gating)

The clocking architecture of the Virtex-6 FPGA [44] used in this project is similar to that of other Xilinx
FPGAs. This research aims on this series of Xilinx FPGAs. Other vendors as Altera [45] also support
clock gating.

It is desirables to determine a technique that can be used to stop individual subsystems while other
parts of the design remain operational.

The FPGA is build-up from a different number of individual clock-tiles. These clock tiles are split by
the clock-spine in the vertical direction and horizontal clock-buffers in horizontal direction. A single
clock tile is divided into a number of clock regions. These regions are the smallest granularity in
which the design can be supplied with an individual clock. These different clock regions are shown in
Figure 4.16. The figure shows only four clock tiles, while the Virtex-6 FPGA contains a total number
of twelve clock tiles, six on the left and six on the right.
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Figure 4.16: Different clock routing components of the Xilinx Virtex-6 FPGA. Clock gating is applied at the
BUFR components. The BUFR is a regional clock buffer, BUFH is an horizontal clock buffer and the BUFG
is a global clock buffer.

The clocks of the FPGA are usually generated by the MMCM (Mixed Mode Clock Manager) blocks.
It is also possible to directly accept an external clock bypassing the MMCMs. The MMCM blocks
route the clock signals to all other components. The regions shown in Figure 4.16 are BUFG which
are Global Clock Buffers. These buffers run from the center clock-spine to all individual tiles. The
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tiles get their clock from this clock-spine via the BUFH components. These Horizontal Clock Buffers
splits the main clock-spine into branches. The BUFR of Regional Clock Buffers route the clock to the
clocked logic.

BUFRegional
BUFR
BUFR_DIVIDE(“1”)

CE
CLR = ‘0’

I
O

Figure 4.17: FPGA BUFR component, when CE is high the clock I is passed to the output O. If the divider
is used the then clock is divided with this factor.

The clock controlling logic is chosen at the lowest level, e.g. BUFR [44]. The regional clock buffers
are given an extra enable signal. The BUFR component is shown in Figure 4.17. The BUFR_DIVIDE

setting allows to specify a clock divider at this level. The clock divider must be set to 1 since the
register interface and function clock must be equal. The CLR or clear signal is ignored since the
divider is set to 1. The wrapper created around the BUFR primitive routes the I input clock, CE clock
enable and output clock O.

4.4.2 Subsystem behaviour on a break condition

It is desirable to stop a subsystem for inspection. Stopping a subsystem or parts of the design means
that this subsystem stops interacting with the rest of the design. There are different problems with
stopping a functional part of the design which require attention. The input provided to the stopped
subsystem is not used, since the functional code is not running. The output of the system which
still exists in the output registers cannot be trusted, since it is unknown whether these registers are
up-to-date. In order to avoid these problems all subsystems are stopped at the same time. The
only active part of the design is the interconnection structure including the master and slaves. This
structure remains operational to be able to read all registers and buffers from the moment the design
is stopped. The architecture of this system is shown in Figure 4.18. The clock is deactivated for
the light blue parts. The dark blue communication arbiter stops after its current copy action and the
interconnect, AXI slaves and register interfaces remain operational.

The clock to the slaves is stopped immediately, when the communication arbiter finishes its last
transaction. Finishing the current transaction is required, because the same communication bus is
used to retrieve the state of the subsystem. The AXI specification states that all initiated transactions
must be finished even when an error occurs. The state of a subsystem represents all information or
data which is used determine the next state of the subsystem.

The state needs to be stored for all individual subsystems that require inspection. The designer of
a subsystem is aware of which information is used in the state determination. The state is stored
in ring-buffers which are similar to the acquisition AXI slave Figure 4.19. The difference between
the AXI acquisition slave and AXI state acquisition slave is the number of blockrams. This state
acquisition blockram has internal logic and procedures making it easier to insert it into a subsystem.
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Figure 4.18: Top-level architecture of the FQF system showing the which components stop and which
remain operational during a break condition.
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Figure 4.19: State acquisition blockram contains multiple ring-buffer blockrams which stores parallel acqui-
sition traces while only being a single AXI slave on AXI side.

The state acquisition blockram is able to store the internal state of the subsystem. This state is
stored in internal blockram ring-buffers. In Figure 4.19 this state acquisition blockram is attached to a
subsystem. The detailed version of this system is shown in Figure 4.20. The designer of the system
determines which acquisition points e.g. Data0, Data1, Data2, Data3, etc. are relevant for state
information. The trigger determines at which moment acquisition must be done. Triggering on the
clock makes sure every clock-cycle the state is captured. Every 32bit register is assigned to its own
blockram. This implementation makes sure that it is possible to acquire data every clock-cycle. The
acquisition occurs in parallel and the blockram interface requires only a single clock-cycle for writing.

When the subsystems clock is stopped, due to a break condition, the data of that clock-cycle is the
last record in the ring-buffer. The ring-buffer is acquired via the AXI read interface. The blockram
selector and address translator, translates the AXI read command to the correct internal blockram.
Since the blockram is a ring-buffer the AXI read addresses do not match the internal blockram ad-
dresses as shown in Figure 4.21. In order to solve this difference an address translator is imple-
mented. The ring-buffer loops at the end of the buffer and each cycle represents a trigger.

The information read from the state acquisition subsystem ring-buffers, can be imported or loaded
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Figure 4.20: Detailed figure of the state acquisition subsystem shown in Figure 4.19.
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Figure 4.21: Blockram internal address is translated to the external address used by the AXI interface

into the Modelsim test-bench. Providing this information to Modelsim enables replaying the sequence
that leads to the break condition with full behavioural observability. If the output signals are stored
as well, unlike in Figure 4.20, then it is also possible to validate the simulations behaviour with the
real FPGA behaviour. This can show problems that exist between the FPGA implementation and the
way the simulator handles this. The simulator abstract from low-level hardware behaviour and signal
timing behaviour and could therefore behave differently.

The test-bench is equipped with a procedure that reads a line in the file that contains the trace on
every clock cycle. This means that every clock cycle the same data is provided to the subsystem
under test as it was during execution. The timing diagram shows the internal signal values calculated
by the simulator. This provides additional observability.

In order to continue the execution of the design, until a new break condition occurs sometimes re-
initialization must be done. If the design is stopped, and the current transfer is finished then this data
must be discarded or marked invalid. The data that has been marked bad must be re-transfered,
when the subsystem restarts. There are different moments in time at which a break condition can
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Phase Description Action

#2 − #0 Idle No data requires to be discarded since all communication already
completed successfully. The arbiter jumps to a wait state until
execution is continued.

#0 − #1 After initialization of the read
sequence

Discard the data read from the subsystem’s register. The read
is already initiated thus cannot be stopped. The data should not
be written to the receiving slave. This is referred to as discarding
the read data. When execution continues it restarts at the point
just before initialize read. This restart the read process.

#1 − #2 After initialization of the write
sequence

The read has already been started and cannot be stopped. This
is the same as for condition #0 − #1, but in this case parts of
the read data have already been written to the destination sub-
system. If possible the destination subsystem must be notified
that incorrect data has been written. This is referred to marking
data invalid. It is also possible to disallow breakpoints during this
phase and postpone them until #2 − #0 or #0 − #1.

Table 4.2: Different phases of the arbiters communication schedule, see Figure 4.21 for a timeline refer-
ence.

occur. The amount of data that needs to be discarded differs per situation. These distinct situations
are depicted in Figure 4.22 and the according actions are shown in Table 4.2.

Idle Initialize read Read data

#0 #1 #2

Idle

Idle Initialize write Write data

Figure 4.22: A break conditions can occur in different phases of the arbiters communication schedule, see
Table 4.2 for the impact and actions.

In Table 4.2 is explained that it is impractical to stop the design during an active bus transaction,
e.g. interval #1 − #2. The slave has already received parts of the input data and immediately starts
computing with this data. Due to these immediate calculations some of the internal register integrity
cannot be guaranteed. It is too resource intensive to keep shadow registers of the entire register
interface. This introduces latency, because the entire register interface must be written in the shadow
register. This register is copied to the real register in a single clock-cycle. The time it takes to fill
the shadow register is added. Since additionally introduced delay is intrusive, and limits the design
possibilities it is chosen to delay the break situation until the bus transaction is complete. The moment
in time where the break is generated is stored in the state acquisition buffer in order, to identify the
trigger location in the Modelsim simulation.

During a break condition in the red area of Figure 4.23 and Figure 4.22 the arbiter is notified about
the break request. This request will be accepted after the write transaction completing at clock cycle
15 and 30 in the example. The arbiter jumps to the breakpoint state where it constantly reads the
configuration memory and processes those transactions. At the end of each transaction the arbiter
is allowed to jump back to the point where it came from. The extended state diagram of the arbiter
can be found in Figure 4.24.
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Figure 4.23: Detailed clock schedule, break requests in the red region are postponed, until the end of the
region.
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Figure 4.24: The arbiter of Figure 4.6 is extended with a break mode. The break mode can be entered
from within the read state, after the write states or in the idle state. The break mode returns to the state it
came from.

4.5 Hardware-level inspection

When debugging a problem the more relevant information is available the easier it is to localize the
root-cause of a problem. When a design is stopped the interconnection system remains operational
to be able to copy information from the subsystem under test. This information is used to determine
the next steps in the debug process. A distinction is made between different types of stop conditions
or breakpoints. The soft breakpoints are requested and applied when all communication is finished.
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The second type of breakpoints are the hard breakpoints, these are introduced for hardware-level
inspection and applied immediately.

Since there is a certain level of abstraction, when defining subsystem boundaries there are still pro-
cess groups that communicate internally within a subsystem. These process groups share informa-
tion, which is not available in the register interface. This information can be valuable, even when the
creation of an individual subsystem would introduce too much communication overhead. Debugging
these type of systems is done in two steps. The first step is by using the communication spy to locate
in which area the problem lies. When the subsystem with the problem is found more observability at
a known moment in time can be valuable. Internal blockrams can be filled with information during the
entire run-time of the FPGA making this information not present in the state acquiring ring-buffers.
During the hard breakpoints it is not possible to use the interconnection structure. The clock of the
communication arbiter and the interconnection structure are both stopped as well.

It is desirable to find a way to introduce observability, while a hard breakpoint or condition is active.
This can be an intrusive method, since the nature of a hard break condition is already intrusive.

In Xilinx FPGAs there exists a method to capture and read-back the state of the FPGA. This method
cannot be used with Xilinx tooling and is only briefly described in the Virtex documentation and
datasheets [13]. The read-back and capture method consists of different independent steps. The
first step is capturing the active state of the FPGA. This means that the state of all switching logic
e.g. LUTs and flip-flops is stored in the configuration registers. This state contains, thus the active
signals at a particular moment in time. This capture technique is described in subsection 4.5.1. The
second step is reading the data in these configuration registers. This read-back is performed by
addressing all logic in the FPGA and reading it. The captured logic has a slightly different approach
for read-back of blockrams, this is explained in subsection 4.5.2.

4.5.1 Capture FPGA state

The FPGA is configured by writing the binary data of the bit-stream in the configuration memory. As
soon as the FPGA is released from shutdown this memory is read and the FPGA is initialized. When
reading this memory without a capture unit the boot time configuration is returned. This information
is used by the Xilinx configuration tools to verify the program action before releasing from shutdown.
When the FPGA is released from shutdown with capture enabled then the configuration is constantly
changing. Every clock-cycle the current state of each internal FPGA component is stored in the
configuration registers.

In order to be able to capture the FPGA state vendor Xilinx provides a primitive or component called
CAPTURE_VIRTEX6 shown in Figure 4.25. If this block is supplied with a clock and an enable signal
(CAP) then the FPGA its registers (flip-flops and latches) are captured into the configuration memory.
The Look-Up Table (LUT) RAM, Shift Lookup Registers (SLR) and blockram blocks are not captured.
Blockram memory only has two ports and cannot be accessed any other way and therefore can be
read-back but not be captured. An asserted high CAP signal indicates that registers in the device
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CAPTURE_VIRTEX6
Clock

CAP

Figure 4.25: CAPTURE_VIRTEX6 primitive, when clock is supplied and CAP is high this module stores
the active FPGA configuration in the configuration memory. As soon as CAP is low the last configuration
remains in these registers.

Device Configuration Device total Frame length Overhead

LX240T 28464 frames 28488 frames 81 words 583 words
2305584 words

Table 4.3: Virtex-6 LX240T total number of configuration frames and sizes.

are captured at the next low to high clock transition.

The capture technique is used to be able to store state information of low-level internal logic at
an exact moment in time. Reading this state information is not part of the capture technique and
explained in subsection 4.5.2.

4.5.2 Read-back FPGA state

The configuration registers of the FPGA can be read using different interfaces like JTAG, Internal
Configuration Access Port (ICAP) and SelectMAP. SelectMAP is the external implementation of ICAP.
The interfaces for accessing the configuration memory in a similar way using configuration messages.

The Virtex-6 configuration memory is arranged in tiles consisting of frames [13]. These frames are
the smallest addressable segments of the FPGA configuration. The configuration must always be
done on whole configuration frames. The configuration of the Virtex-6 FPGA used in this project is
shown in Table 4.3.

The configuration of the FPGA is done by sequentially writing or reading the FPGA bit-stream the
configuration registers. The FPGA binary consists of a number of commands that need to be exe-
cuted. These commands are grouped in two different packets. These packets are required in the
read-back sequence since the same configuration registers are used. The type 2 packet must always
follow a type 1 packet and has therefore no address. The lay-out of these header packets is shown
in Table 4.4. The relevant subset of register address is included in the table. The Virtex-6 FPGA
support more configuration addresses.

Using Xilinx tooling it is possible to generate a read-back command sequence file. This file contains
a list of commands to read-back the FPGA configuration. The read-back data can be masked with a
mask file also generated by the tooling. These files are used by the Xilinx tooling to verify the FPGA
configuration in the device. The mask file hides all configuration fields subjected to change during
execution of the code on the FPGA.
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Name Bit Remark

Type 1

Word Count [10:0 ] xxxxxxxxxxx, number of words to read or write
Reserved [12:11] 00
Register Address [26:13] 000000000xxxxx

00000000000001, Frame Address Register (FAR)
00000000000010, Frame Data Register In (FDRI),
write only
00000000000011, Frame Data Register Out
(FDRO), read only
00000000000100, Command Register (CMD),

Opcode 00, NOOP
01, Read
10, Write
11, Reserved

Header Type [31:29] 001, for type 1 packet

Type 2
Word Count [26:0 ] xxxxxxxxxxxxxxxxxxxxxxxxxxx, commands
Opcode [28:27] 00, Reserved
Header Type [31:29] 010, for type 2 packet

Table 4.4: Type 1 and 2 packet header used for addressing the configuration registers of a Virtex-6 FPGA.

This mask file cannot be used in the research, since the goal is to read-back the variable part and not
the static part. The read-back sequence file can not be used either, because it assumes the read-
back commands are issued externally of the FPGA. The FPGA is put in shutdown first and in this
sequence CRC checking is also enabled. Both methods corrupt the design since in this template the
MicroBlaze and AXI interconnection bus must remain operational. The CRC cannot be used together
with the capture primitive because the CRC is computed over the original configuration data. This
original configuration CRC will not be equal to the constantly changing variable part. The command
sequence used for read-back is shown in Table 4.6.

The original read-back sequence is altered in order to cope with these differences. This design also
doesn’t perform a full read-back of the FPGA, but only relevant parts for that moment in time. The
addressing of the read-back logic is set via the FAR address. This frame address register is used
to address all individual configuration frames in the FPGA. The layout of this register is shown in
Table 4.5. The FAR address register is set via the messages shown in Table 4.4.

Name Bit Remark

Minor address [ 6:0] Select frame in a column
Column address [ 14:7] Select major column (e.g. a column of CLBs). Start at

address 0 on the left and increase to the right
Row address [19:15] Select the current row. Address is increased from center to

top, reset then center to bottom
TOP_B 20 0, top half of the FPGA

1, bottom half of the FPGA
Block type [23:21] 000, Configurable Logic Blocks (CLBs)

001, Blockram contents
010, CLB configuration

Table 4.5: Description of the Frame Address Register (FAR) used for read-back

The FAR address can be used in two different ways for read-back. The first way is to supply the FAR
address with the first frame address e.g. 0x0000 0000 and set the Frame Data Read Out (FDRO)
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register to the number of configuration frames available. Using this method the entire FPGA is read.
The ICAP handles the internal incrementation of the register addresses. The second method is to
determine in which column logic is located and write that address to the FAR register. The FDRO
register should contain the number of frames in this column type plus a dummy frame. The second
method is used to read-back values. The determination of locations is shown in Figure 4.26.
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Figure 4.26: Example of how logic is addressed in the FPGA during a read-back.

The layout in Figure 4.26 also shows that there are different type of columns. These columns contain
a different number of frames. The Input Output Block (IOB) columns contain 44 frames, while the
Configurable Logic Block (CLB) columns have only 36 valid configuration frames. The addressing of
blockram columns differs from other logic. If a blockram column is addressed with block type set to
0b000 only the interconnection configuration is read-back. In order to address the blockram data the
block type must be set to 0b001. The addressing of these columns also differ, since this type only
consists of blockram columns.

The Xilinx logic allocation file (.ll) contains the relation between the physical location of logic in the
FPGA and location in the read-back data stream. A part of this allocation file is shown in Table 4.7.
The information from the allocation file must be manually parsed to find the location of a register.
In chapter 8, future work suggestions are given to automate this process to increase usability. The
NIFD [23] system shown in chapter 3 also parses this information.
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Direction Command Value Remark

Write

Packet::Dummy 0xffffffff
Packet::Sync 0x000000bb
Packet::Detect 0x11220044
2x Packet::Noop 0x20000000
Packet::Type1Header 0x30008001 Type 1, Write, CMD register, 1 word
Packet::Rcrc 0x00000007 Register CRC, CRC configuration
2x Packet::Noop 0x20000000
Packet::Type1Header 0x30008001 Type 1, Write, CMD register, 1 word
Packet::Rcfg 0x00000004
3x Packet::Noop 0x20000000
Packet::Type1Header 0x30002001 Type 1, Write, FAR register, 1 word
Packet::FAR - Table 4.5
Packet::Type1Header 0x28006000 Type 1, Read, FDRO, 0 words
Packet::Type2Header 0x48000000 +((81 + 1) ∗ FramesPerColumn)
32x Packet::Noop 0x20000000 Wait for the FPGA to become ready

Read - Read number of requested words
Write Packet::Desync 0x0000000d

Table 4.6: Read-back command sequence for reading a single FPGA column without shutdown sequence
and disabled CRC.

Part of the Logic Allocation file of the design
Bit 40929826 0x0010941e 2146 Block=SLICE_X63Y73 Latch=AQ Net=LEDs_8Bits_TRI_O_1_OBUF
Bit 40929832 0x0010941e 2152 Block=SLICE_X62Y73 Latch=AMUX Net=MonitorLinkOut<3>
Bit 40929879 0x0010941e 2199 Block=SLICE_X63Y73 Latch=DMUX Net=MonitorLinkOut<4>

Component Value Remark

Location
Offset 40929826 bit
Frame address 0x0010941
Frame offset 2146

Information
Block SLICE_X63Y73 Block in memory location
Latch AQ Latch in memory location
Net LEDs_8Bits_TRI_O_1_OBUF User net name

Table 4.7: Logic allocation file generated during FPGA binary generation contains the physical location of
signals in logical blocks.

4.6 MicroBlaze interface

The debug and qualification template requires an interface to configure all individual components.
During the pre-study phase [22] it is chosen to use an internal MicroBlaze processor running Em-
bedded Linux. This processor and operating system enables the use of standard drivers for ICAP
port and AXI slaves. The processor still requires user interface tooling that makes use of these de-
vice drivers. The MicroBlaze enables re-use of existing components and the entire solution can be
tested within a single FPGA.

The supporting tools for this template are incorporated in the framework and implemented inside the
FPGA. The base of the template is chosen in a way that the internal processor can be replaced by an
external debug processor in the future. This processor can in theory connect to the debug framework
via for example external AXI, JTAG or a another protocol e.g. UART. This project determines whether
the debug applications can be used. The usability suggestion of how the system can be improved
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are added as future work chapter 8.

The interface system of the qualification and debug framework consists of two different parts both
working together. The MicroBlaze system is a fully configurable soft-core processor. The design
of this system is referred to as the MicroBlaze hardware and is described in subsection 4.6.1. The
Linux kernel, included drivers and application software is considered software and explained in sub-
section 4.6.2.

4.6.1 MicroBlaze hardware

The MicroBlaze hardware consists of a base processor core which is configured to work with an AXI
interconnect structure. The slaves that are connected to this interconnect can be found in Figure 4.27.
The Ethernet Slave [46] and UART Slave [47] are used as user-interface. The ICAP Slave [48]
is required to translate the read-back commands from the internal ICAP primitive to MicroBlaze
memory. The GPIO Slave [49] functions as a 8-bit two way control and status interface with the
monitor. The External Slave [50] components are blocks to attach AXI slaves which are not part of
the Xilinx MicroBlaze project. This component takes care of leading the AXI signal to the external
interface of the MicroBlaze.
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Figure 4.27: FFQF template design with all individual library components instantiated.

The external slave modules which are connected to the MicroBlaze design are explained in the sec-
tions above. The Arbiter Configuration slave is a block memory that contains the arbiter schedule.
This configuration is read at the start of each communication cycle. This configuration can be over-
written by the MicroBlaze, to for instance enable an alternative schedule which copies data from
anInjection Unit slave. This slave provides alternative data to be used by one of the subsystems.

The AXI Monitor is an AXI slave and AXI spy. The side connected to the MicroBlaze is the AXI
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Tool Description

ICAP interface The ICAP application performs read and write commands on the ICAP file descriptor.
This descriptor is obtained by opening the /dev/icap0 device node. This is a direct link
to the internal driver [51]. The write commands are the commands given in Table 4.6.

Monitor Control The monitor control application handles the AXI writes to the configuration blockram
based in its input. The status of the monitor unit is printed using internal GPIO reads.

Table 4.8: Linux interface tools used to communicate with the qualification and debug template.

slave. This slave write the internal configuration memory on writes and returns the acquisition data
on reads. The register connection is the bidirectional 8bit connection handled by the 8bit GPIO
slave.

The MicroBlaze processor can run any frequency. The entire interconnection system and all attached
slaves both internal and external run at 80MHz. The standard Xilinx interconnection system is able
to handle clock region crossing but this is not required and not tested.

4.6.2 MicroBlaze software

The software running on the MicroBlaze processor is an Embedded Linux version especially com-
piled for the MicroBlaze. The code is supplied by Xilinx via http://git.xilinx.com. This package
includes cross-compilers, a base Linux configuration and drivers code.

The Xilinx supplied drivers do not support the Xilinx Virtex-6 processor. The drivers support up-to the
Virtex-5 series. The driver supports Virtex-6 devices after modifying the configuration register lay-out
according to the datasheet. The memory map drivers are able to handle memory mapped read and
write commands to AXI slaves. Single memory reads and writes can be used to access the status
and control registers via the GPIO driver. The custom tools which are required for this template are
a user-space applications which make use of the Linux drivers shown in Table 4.8.
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Chapter 5

Template evaluation

The introduction of the FFQF template improves observability and controllability. These benefits
come at a price of area overhead, increasing latencies and less throughput. A model is defined
in this evaluation which quantizes the overhead. The accepted overhead of this system cannot be
determined in general. It depends on the project or design on which the template is applied. The
requirements for the template are modularity and minimal area usage. The power consumption of
the template is not taken into account and outside the scope of this research. The assumption can
be made that if the area increase is minimal the power increase will be minimal as well, but research
has not been done here.

The evaluation of the MicroBlaze infrastructure is given in section 5.1. The communication infras-
tructure that scales with the number of slaves is evaluated in section 5.2. The modules or units which
make use of the template its infrastructure are analysed in section 5.3. The conclusion of this chapter
is given in section 5.4. The area overhead is expressed in logic cells, these cells are explained in
section 2.1. The area measurements of the template are performed with keep hierarchy enabled dur-
ing synthesis. This disables optimizations between hierarchical blocks and gives worst-case results.
The area usage is extracted from the map report.

5.1 MicroBlaze infrastructure

The MicroBlaze processor is used as an interface to the system. The part of the design that is
considered as MicroBlaze processor is shown in Figure 5.1. The resources used by this processor
are shown in Table 5.1. To indicate the impact of this interfacing processor the number of available
resources is also added to this table. The MicroBlaze processor is a module in the system and can
be replaced by for example a Zynq ARM core or another FPGA. This module is not required to be
physically in the same FPGA. Removing the interface processor from the template is suggested as
future work in chapter 8.
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Figure 5.1: Graphical representation of the resource usage analysed in Table 5.1, this figure is derived
from Figure 4.27.

Virtex-6 LX240T
Logic cell Used Available Usage

Slice registers 18.830 301.440 6%
Slice Look-up tables Total 17.745 150.720 11%

Logic 14.142 9%
Memory 2.555 58.400 4%

Slices 7.813 37.680 20%
Blockram 36 33 416 7%

18 2 832 1%
DSP48E1 3 768 1%

Table 5.1: Analysis of the resource usage of the MicroBlaze processor. The processor is used to interface
with the debug system. This interface can also be implemented on an external device.

Table 5.1 depicts the resource usage of the MicroBlaze. This shows that the MicroBlaze covers a
large part of the FPGA resources. The processor uses about 1

5 of the slices of the FPGA. The area
occupied by the MicroBlaze is constant. The focus of this project was not on the MicroBlaze design
and therefore no optimizations have been made to this processor. The processor behaves purely as
an interface to the debug and qualification system.

5.2 Communication structure

The AXI communication structure is a 32bit interface that replaces direct parallel connections. The
introduction of the communication interface introduces overhead. The interconnection structure con-
sisting of a large crossbar, a number of slaves, and a communication arbiter as shown in Figure 5.2.
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The functionality is qualified using test-benches and firmware execution on the FPGA. This qualifi-
cation is not part of the evaluation process. The communication structure evaluation measures the
footprint of the communication system and comparing this with the area of direct connections. The
resources required for the communication structure are shown in Table 5.2. A multiple master con-
figuration is not taken into account since the interconnect implementation at this moment does not
support more than a single master. The AXI protocol supports multiple masters with data prioritiza-
tion.
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Figure 5.2: Graphical representation of the resource usage analysed in Table 5.3, this figures is derived
from Figure 4.27

The AXI slave implementation is generic. This slave is instantiated for each subsystem that is added
to the communication system. The required resources for this slave are equal for each instantiation.
The subsystem itself requires some logic to connect the parallel connections to either a blockram or
custom register interface. This custom register interface is implemented in distributed logic.

The AXI arbiter and master implementation are also generic. The arbiter copies data from slave
to slave. Since the communication schedule is stored in a blockram the resource usage will not
increase with more slaves. The schedule is stored in the 32bit blockram registers. The first line in
the memory contains a 24bit from address and 8bit length to copy. The second line holds a 24bit
destination address and 8bit length. This continues until 0xDEADBEEF is read. The value 0xDEADBEEF

is arbitrarily chosen.

The information in Table 5.2 only shows logic required by the generic components. The interconnec-
tion system is the basis of the template and required for the methodology to apply. The scalability
of the entire interconnection system is shown in Table 5.3. The equations derived from this data are
shown in Equation (5.1).

The minimal area introduced with the FFQF template can be calculated using Equation (5.1). This
is only the area introduced by the communication architecture. These numbers are determined with
the data of Table 5.3 and Table 5.2. Due to optimizations in the synthesis process the equations will
never give an exact result but more an approximation. The slices are approximated with a 2nd order
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AXI Blockram
Logic cell AXI Slave R+W Slave AXI Master Arbiter

Slices 59 45 + 17 = 62 31 43
Slice registers 148 103 + 65 = 168 91 142
LUTs 98 65 + 38 = 103 21 31
LUT RAM 0 0 + 0 = 0 0 0
BRAM 0 1 + 1 = 2 0 1
DSP48E1 0 0 + 0 = 0 0 0

Table 5.2: Area usage of the generic AXI master and slave implementations. This does not include the
register interface which translates parallel registers to an AXI memory map. The AXI blockram R slave is
a consumer and W slave is a producer.

Usage for 1 Master and
Logic cell 2 Slaves 4 Slaves 6 Slaves 8 Slaves

Slices 243 284 418 667
Slice registers 482 812 1140 1468
LUTs 374 633 945 1190
LUT RAM 0 0 0 0
BRAM 4 8 12 16
DSP48E1 0 0 0 0

Table 5.3: The area usage of the interconnection system with different configurations. All components
except for the slices scale linear.

polynomial function in MATLAB. The rest of the area has a linear relation.

As = Area_in_slices

As(slaves) = 13 ∗ slaves2 − 59.7 ∗ slaves + 311.5 , O(slaves2)

Ar = Area_in_slice_registers

Ar(slaves) = 164.5 ∗ slaves + 153 , O(slaves)

Al = Area_in_LUTs

Al(slaves) = 136 ∗ slaves + 62 , O(slaves)

Ab = Area_in_blockrams

Ab(slaves) = slaves ∗ 2 , O(slaves)

(5.1)

Besides area overhead introduced by the interconnect there is also communication overhead. This
overhead is the time it takes to transfer a single value between subsystems. When using direct
connections, data is ready for the receiver in the cycle it is computed. This cycle the information
can be used by the receiving side. In this AXI design the data is provided on request of the master.
The arbiter initiates a data request on a certain address via the master. This address is via the
AXI interconnect routed to the correct slave. The slave copies its internal data to the master via the
interconnect. The master supplies the data to the arbiter which copies this to another slave. These
signals are again routed via the AXI interconnect. The latency of the interconnection system is shown
in Section 5.2.1. The throughput is given in Section 5.2.2.
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5.2.1 Latency

The latency of the designs without with direct connections is a single clock cycle for each connection.
The data is set and can be read the next clock cycle by the receiving side. The introduction of the
bus architecture increases the latency for data communicated between subsystems. In the latency
calculation the assumption is taken into account that all data is copied from a source subsystem to a
destination subsystem. The latency depends on the transaction burst length.

The AXI copy transactions initiated by the arbiter consist of reading data at slave a and writing it to
slave b. The AXI read transaction starts with an initialization. During initialization the address and
burst length are supplied. On acceptance of the read the data is provided. During the setup up of a
write command the first 32bit word is supplied in parallel with the initialization. The write starts after
receiving the first 32bit word from slave a.

The latency is the combination of initialization time for a transaction, the time it takes to transfer a
single burst, and the time it takes to receive the status response. There is a minimum and maximum
latency since one cycle delay is accepted by de slave between data ready and valid. The latency
figures are given in Table 5.4.

Latency
Transfer type Initialization+burst_size+finish
Minimal latency
Read 6 + n + 1 cycles
Write 4 + n + 1 cycles
Copy (read + write pipelined) 14 + n + 1 cycles
Maximum latency, slave waits a cycle with accepting
Read 7 + n + 1 cycles
Write 5 + n + 1 cycles
Copy (read + write pipelined) 16 + n + 1 cycles

Table 5.4: The latencies introduced by the AXI interconnection system, where n is the burst_size. This
holds for the communication initiated by the communication arbiter.

5.2.2 Throughput

The throughput of the AXI interconnection system is limited. The throughput is maximized by the
chosen data width and the burst size. This choice is based on design decisions and the AXI spec-
ification [38]. The data width chosen for this template is 32bit, the Xilinx components also support
sizes of 64bit and 128bit. The AXI standard supports burst transfer widths to a maximum of 1024bit.
The maximum burst size allowed by the AXI specification is 16. The maximum amount of data that
can be copied in a single burst is 16 ∗ 32bit = 512bit = 128byte. The required burst length depend
on the number of registers available in each subsystem. The clock frequency of the bus can be
chosen arbitrarily. In order to avoid clock domain crossings the interconnect can be clocked at the
same frequency as the rest of the design. In the throughput calculations a bus frequency of 80MHz
is assumed. This frequency is arbitrarily chosen based on existing designs.
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The throughput is calculated by taking the communication time of the master into account. Since
the communication channel is dedicated for all internal communication the maximum throughput is
equal to the achieved throughput. The bus transactions are never interrupted. The copy action is
pipelined since the write can be initiated when the first item is read. The read and write channels are
completely independent.

The throughput figures are gathered from a behavioural simulation of the design. The calculated
throughput is given in Equation (5.2). The corresponding equations are shown in Table 5.5. The
design has also been tested on the actual hardware to makes sure no timing problems exist.

Burst size Burst length Throughput

Read
1 7 + 1 cycles 8

80MHz ∗ 32bit = 3.2Mbps
2 8 + 1 cycles 9

80MHz ∗ 64bit = 7.2Mbps
4 10 + 1 cycles 11

80MHz ∗ 128bit = 17.6Mbps
8 14 + 1 cycles 15

80MHz ∗ 256bit = 48Mbps
16 22 + 1 cycles 23

80MHz ∗ 512bit = 147.2Mbps
Write
1 5 + 1 cycles 6

80MHz ∗ 32bit = 2.4Mbps
2 6 + 1 cycles 7

80MHz ∗ 64bit = 5.6Mbps
4 8 + 1 cycles 9

80MHz ∗ 128bit = 14.4Mbps
8 12 + 1 cycles 13

80MHz ∗ 256bit = 41.6Mbps
16 20 + 1 cycles 21

80MHz ∗ 512bit = 134.4Mbps
Copy (read + write pipelined)
1 14 + 1 cycles 15

80MHz ∗ 32bit = 6.0Mbps
2 15 + 1 cycles 16

80MHz ∗ 64bit = 12.8Mbps
4 17 + 1 cycles 18

80MHz ∗ 128bit = 28.8Mbps
8 21 + 1 cycles 22

80MHz ∗ 256bit = 70.4Mbps
16 29 + 1 cycles 30

80MHz ∗ 512bit = 192.0Mbps

Table 5.5: Maximum throughput of the AXI interconnection system with a static schedule hard-coded into
VHDL.

n = burst_size

σ = throughput

σ(n) =
tstart + n + tend

fbus

σread_max(n) =
6 + n + 1
80MHz

σwrite_max(n) =
4 + n + 1
80MHz

σcopy_max(n) =
13 + n + 1

80MHz

(5.2)
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5.3 AXI monitor and injection

The AXI monitor block is the debugging core embedded into the design. This debugger has constant
area requirements which do not change with the number of slaves. If multiple masters need to
be investigated multiple monitor components need to be instantiated and connected. Each master
requires its own monitor unit. This research only takes a design with a single master into account.
Figure 5.3 shows the design part which includes the monitor unit.

The area occupied by the acquisition blockram depends on the number of registers which are moni-
tored. The acquisition blockram is used to store traces of data communicated between subsystems.
The more registers need to be traced the more blockram blocks are required. The number of block-
ram blocks scales linear with the number of registers.
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Figure 5.3: Graphical representation of the resource usage analysed in Table 5.6, this figures is derived
from Figure 4.27

4 Acquisition
Logic cell AXI Monitor blockrams

Slices 191 47
Slice registers 376 113
LUTs 288 110
LUT RAM 0 0
BRAM 2 0
DSP48E1 0 0
CAPTURE_V6 1 0

Table 5.6: Area usage of the monitor and debugging blocks.
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5.4 Conclusion

The base of the template is the AXI interconnection system. This system introduces additional area
overhead compared to the original designs with direct connections. The overhead is only limited
compared to the area available in the FPGA as shown in Equation (5.3). The calculation only holds
for the Virtex-6 LX240T FPGA.

0.00658% =
As(4)

Available_slices
=

284
37680

0.01770% =
As(8)

Available_slices
=

667
37680

0.00269% =
Ar(4)

Available_slice_registers
=

812
301440

0.00487% =
Ar(8)

Available_slice_registers
=

1468
301440

0.00420% =
Al(4)

Available_LUTs
=

633
150720

0.00790% =
Al(8)

Available_LUTs
=

1190
150720

(5.3)

The monitor blocks can be added during qualification of the design and remain in the design since
they are non-intrusive. When disabling the breakpoints the system has no effect on the design
existing in the FPGA. If the framework is used in an area critical design the area impact of the
MicroBlaze might be too much. The processor is used in this framework as a proof-of-concept to
enable reuse of existing software components.
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Chapter 6

Case-study

The template is applied to an existing design. This case-study is used to check the expected impact
for correctness. The designs of an electrical current controller is used as a base. This design consists
of three subsystems. The communication interface, the current controller, and the module controller.
The communication interface is responsible for periodically communicating with an external host. The
status information of the current controller is provided by the device. The device receives desired set-
point information and other settings from the external host. The current controller measures current
and adjusts the amplifier outputs accordingly. The module controller is responsible for internal status
and error handling. The design setup and requirements are denoted in section 6.1. The template is
applied to this design in section 6.2, the impact is expressed in latency increase, area overhead and
communication throughput differences. The usage of the framework is shown in section 6.3.

6.1 Electrical current controller

The electrical current controller is responsible for controlling a motor via an amplifier. The desired
electrical current set-point is received via the communication interface. This set-point is used as
input for the controller. The controller measures the actual current flowing through the system and
compares this with the desired set-point. The output PWM signal to the amplifier is adjusted accord-
ing to the difference in electrical current. The effect on the actual electrical current is measured and
this process is repeated while the system is running. Figure 6.1 shows the setup of the system and
design.

The requirements which are relevant for the application of the template are denoted in Table 6.1.
The requirements have impact on the communication latency. The relevant communication latency
is between the communication interface and the current controller. The communication interface is
supplied with data updated cyclically every 10kHz. The data consists of real-time data and periodic
data. The system is required to respond quickly to changes initiated by the host system. The other
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Figure 6.1: Overview of the electrical current controller is on which the template is applied, can also be
found in Figure 1.5.

requirements have effect on the speed of the controller.

Requirement Value

The time between receiving real-time data from the host and sending
it to the current controller subsystem.

< 500ns

The frequency of the current control loop 375kHz
Communication packet frequency 10kHz
The system clock frequency 80MHz

Table 6.1: The requirements that can have an effect on the system, when the infrastructure is changed into
the FFQF debugging template.

The current controller and communication interface subsystems are connected directly. These par-
allel connections are investigated and grouped in Table 6.2 and Table 6.3. These values need to be
transferred via the AXI bus, when the template is applied to this design.

Record Size Remark

ControllerFlags 41bit Enable, data valid signals and desired set-point
value

ControllerParameters 80bit Parameters setting for example controller gain
CommunicationStatus 11bit General error and timeout flags
TestParameters 2bit Disable warnings during production tests

Total 134bit Sum all of the above

Table 6.2: Data communicated from the communication interface to the current controller.

Record Size Remark

ControllerStatus 25bit Current state, output current, etc.
EepromData 76bit Serial numbers, version information
MonitorData 48bit Current power, voltage info
Total 149bit Sum all of the above

Table 6.3: Data communicated from the current controller to the host interface.
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The area occupied by this design is shown in Table 6.4. This area is expressed in logic cells. The logic
cells are explained in section 2.1. The logic increase in this base design is the overhead introduced
by the FFQF template.

Module Communication Current
Logic cell Controller Interface Controller Total

Slices 227 741 690 1658
Slice registers 655 1631 1961 4247
LUTs 488 1468 995 2951
LUT RAM 1 3 12 16
BRAM 0 4 1 5
DSP48E1 1 0 15 16

Table 6.4: The area of the current controller design is used by the communication interface and controller
process.

6.2 FFQF electrical current controller

The original design consists of hierarchical processes communicating via parallel registers. The first
step is to determine at what level subsystems, process groups and processes are located. The
current controller and communication interface are both completing an independent high-level func-
tion. The current controller and communication interface are therefore chosen as subsystems. The
processes at a lower hierarchical level are automatically elected process groups.

There are two processes communicating with each other. The system input given by the user is trans-
fered via the host interface to the current controller. The status information of the current controller
is sent to the user via the host interface.

The direct connections in Table 6.2 and Table 6.3 are replaced with an address based register inter-
face. In order to minimize communication latency the parallel connections are combined into single
32bit lines. The less 32bit registers the smaller the communication bursts. The communication in-
terface and current controller both have input and output registers. The registers are either readable
or writeable. The register interface of the FFQF enabled current controller is shown in Table 6.5.

Since there is only a limited number of 32bit registers the AXI slave with custom register interface is
used. This slave requires a custom implementation converting parallel signals to registers.

The data from the communication interface to the current controller is split in order to meet the
< 500ns requirement. The AXI communication arbiter is triggered by the ready signal of the real-time
data. This signal is provided by the communication interface. This trigger initiates a copy action with
a burst length of 1, copying only the real-time data. The worst-case latency is 16+ 1+ 1 = 18cycles.
With a bus frequency of 80MHz the time to communicate this data is 18

80MHz = 225ns. This is
fast enough to meet the requirement of 500ns. The entire communication schedule is completed in
3 ∗ (16 + 1) + 1 + 4 + 6 = 62cycles. This takes a total time of 62

80MHz = 775ns. This schedule fits in
the 10kHz = 200µs communication cycle and the 375kHz = 2.67µs control loop cycle.
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Mnemonic Offset Bit Name Remark

RealtimeData

0x0000 27:0 SetPoint
Data needs to be transferred
through the system in < 500ns

28 EnableDebugSetPoint
29 ResetAxis
30 EnableAxis
31 Reserved

CurrentControlB 0x0004 15:0 CurrentControlB0
31:16 CurrentControlB1

Addition fields 0x0008- - - CurrentControlGain, LinkStatus,
TestParameters0x0014

0x1000 - - SerialNumber, IOut,
StateInformation, etc.0x1018

Table 6.5: The register interface between the current controller and the communication interface. The
0x000 range is used for read registers while the 0x1000 range is used for writeable registers.

Module Communication Current
Logic cell Controller Interface Controller Total Increase

Slices 322 765 + 93 = 858 712 + 125 = 837 2017
2017
1658

≈ 1.22

Slice registers 682 1582 + 327 = 1909 2034 + 285 = 2319 4919
4919
4247

≈ 1.16

LUTs 635 1481 + 124 = 1605 1007 + 281 = 1288 3528
3528
2951

≈ 1.20

LUT RAM 1 3 12 16 equal
BRAM 0 4 1 5 equal
DSP48E1 1 0 15 17 equal

Table 6.6: The area of the current controller design is used by the communication interface and controller
process. The increase in area is compared to the design without FFQF in Table 6.4.

6.3 FFQF usage

The added value of additional observability and controllability is difficult quantize. This section shows
how the techniques can be used. A designer or tester is the biggest factor in the search for a problem.
The tools try to make his work easier.

The use of breakpoints is shown in Figure 6.2. The static communication schedule is executed by the
arbiter. The arbiter receives a break requires, completes it current ongoing copy action and accepts
the break. During the break condition the alternative communication schedule is executed. This is
also the moment where the buffers can be read for off-line analysis. Next the execution is continued
again by releasing the break request. The alternative communication action is completed and normal
execution is continued.

The ring-buffers storing the execution trace to until the break condition are retrieved by reading the
blockrams in the MicroBlaze. There is a kernel module which handles this read feature via the AXI in-
terface. Using the command insmod blockram.ko Addr=0xc8040000 Len=0x1000 R=1 > buffer0.trace.
The buffer located at 0xc8040000 is stored into a text-file. This text-file can be processed by the off-
line test-bench.

The hardware registers can be inspected if it is not important to continue execution. The Linux ICAP
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Figure 6.2: The template behaviour on a break request. During the break the alternative communication
schedule is executed.

driver is accessed by using the ICAP_interface tool. This requires Xilinx Plan Ahead to determine
the exact location of a signal. The this location is provided to the ICAP_interface 'Block' 'Top'

'Row' 'Major' 'Size' > readback application. Using the .ll Logic Allocation file the exact lo-
cation is value of the signal is determined. It is not possible to continue from this breakpoint since
the state of the other subsystems is unknown. It is possible that they have continued for an addition
number of clock-cycles. If all subsystems and the interconnection structure are attached to the gated
clock it is possible to continue. This choice is left to the engineer using the template.
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Chapter 7

Conclusion

The FPGA Firmware Qualification Framework (FFQF) is presented in this thesis. The framework
is a modular set of design blocks combined into a template. This template allows to instantiate its
library components. The provided methodology requires a base design that can be setup using the
following steps:

• Decouple the design into individual subsystems at an arbitrary level. The level at which sub-
system boundaries are defined affects the communication overhead and observability. Higher
observability introduces more communication overhead.

• Attach a generic AXI slave from the template to each subsystem. These slaves connect via
a custom register interface to the subsystems. This adapter between the slave and register
interface depends on the subsystem’s parallel signal connections. The parallel signals are
combined into a memory mapped register interface.

• The AXI slaves need to be connected to the AXI interconnect available in the template. The
AXI interconnect is connected to the generic AXI master and communication arbiter.

• The communication schedule can be programmed into the communication arbiter provided by
the template. The arbiter processes each line in the configuration memory in sequential order.

• Connect the debug slaves to a separate AXI interconnection system. This system is used to
interface the debugging blocks. The MicroBlaze processor provided in this template library can
be used.

When the design conforms to this base design it is possible to increase the observability and con-
trollability. The communication centric observability is enabled with an AXI bus monitor. This module
is able to trigger acquisition on data or address matches. The data is stored in acquisition buffers
which can be read via another AXI master. The interface provided by the template is a MicroBlaze
processor embedded into the FPGA.

Besides observing the communicated data with the AXI monitor it is also possible to store execution
traces. The execution traces are stored in ring-buffers connected to the input and output registers in
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the register interface. The execution traces can be used to off-line repeat the sequence leading to a
condition. The buffers store each register value on every clock cycle.

The controllability is introduced with breakpoints. There are different types of breakpoints. The com-
munication centric breakpoints and the hard breakpoints. The communication centric breakpoints
stop the clock of a subsystem but leave the interconnect system operational. The interconnection
system can be used to read the values from the stopped slave. These type of breakpoints are post-
poned until active communication is completed. This enables to continue execution afterwards. The
hard breakpoints stop the slave immediately. This enables the highest possible observability at hard-
ware register level. That is viewing the values of all flip-flops, latches and blockram contents in the
FPGA.

The injection of test vectors in a subsystem is done by attaching a buffer slave to the interconnection
structure. This buffer can be filled externally via the AXI interface of the MicroBlaze processor. The
arbiter transfers the test vectors in each communication cycle to the slave. The monitor unit is able
to monitor the output of the subsystem.

The basic interconnection system requires less than 0.1% of the resources of an LX240T FPGA.
This system consists of two AXI slaves, the AXI interconnect, an AXI master and a communication
arbiter. The interconnection system scales linear for all resources except slices with the number of
slaves. The slices scale quadratic with the number of slaves. The case-study shows that the impact
on relatively small subsystems is large. The area required increase with the interconnection system
is approximately 20%.

The tendency in the Xilinx FPGA roadmap shows that FPGA area is getting cheaper [52]. The
available logic inside the FPGA increases and designs get more complex. The area overhead of
debugging frameworks will become less important in the future.

The FFQF methodology and framework is usable but still requires a lot of handcraft. The framework
lacks tools that increase usability. The framework misses a easy-to-use graphical user interface to
configure the monitoring unit. The status information of the monitoring unit has to be read back
manually. The parsing of read-back information at hardware register level state must be manually
parsed. A parser for this information is proposed in chapter 8. The resources used by the MicroBlaze
interface processor are also high. This processor currently requires 20% of the LX240T its slices.
This processor can in theory be placed in a separate debugging module, this is also proposed in
chapter 8.
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Chapter 8

Future work

The debug framework which is designed during this research can be used to debug a design that
setup according to the specification. There are still tools missing to increase usability. These tools
can be for instance an intelligent parser that analyses the reports and files generated during syn-
thesis. These reports contain the locations of all logic in the FPGA. It would be nice to provide this
parser with a net-name and the synthesis files that it returns the command sequence to read-back
this net. The same holds for reading the contents of blockram blocks. The two-way effect would
introduce the possibility to read-back an FPGA location, and then give the net or logic block on that
location. This can be helpful when comparing two read-backs with a single clock-cycle in between.
This would shown the signals changed during this clock-cycle. This tool would significantly increase
the usability. The current available work that is studied is able to find nets in a full FPGA read-back.
This sequence is illustrated in Figure 8.1.

Parser

Design files

Design.ll
Design.rbb

Net-name

Read-back.cmd

0x0000 0000

0x0000 0000

...

Linux
Read-back

Driver

Read-back.bin

Binary data

ParserNet-value

Figure 8.1: A two way data parser which can determine logic locations and determine current values based
on read-back data

During the pre-study phase the possibility to reconfigure parts of the is investigated. This path is not
researched any further since it does not introduce a profit in design time due to tooling limitations.
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Future work

This reconfiguration could be used to make the monitor unit more flexible. Currently a number of
signals enter the monitoring unit. The design of this unit get quite large. It implements monitors on
each different interface. When picking a smaller footprint and programming this monitor only with sub
monitors on the required signals the overhead of the system decreases. The system is only able to
monitor and therefore this cannot have a negative effect on the rest of the design. In the future this
gets more easy to use because partial reconfiguration techniques are improved with every iteration.

AXI Monitor

Match Unit

Monitor (AR)

Monitor (R)

Monitor (AW)

Monitor (W)

Monitor (B)

Acquisition
 Blockram

Configuration 
Blockram

AXI Signal
Blockram interface

Write (AW,W,B)

AXI Read (AR,R) AXI 

Configuration and status

AR Match Unit Mach Conditions

R Match Unit Mach Conditions

AW Match Unit Mach Conditions

W Match Unit Mach Conditions

B Match Unit Mach Conditions

Control and Configuration

ConfigurationLink

StatusLink

(a) Full Monitor

AXI Monitor

Match Unit

Monitor (AR)

Monitor (R)

Monitor (AW)
Monitor (W)
Monitor (B)

Acquisition
 Blockram

Configuration 
Blockram

AXI Signal
Blockram interface

Write (AW,W,B)

AXI Read (AR,R) AXI 

Configuration and status

AR Match Unit Mach Conditions

R Match Unit Mach Conditions

Control and Configuration

ConfigurationLink

StatusLink

(b) Reconfigurable Monitor

Figure 8.2: The full monitor has area overhead when only monitoring limited signals, a reconfigurable
monitor with smaller footprint can fix this

In order to make the system easier to introduce in future designs a lower resource consuming inter-
face can be designed. The MicroBlaze system is very resource intensive. The MicroBlaze design
can be implemented on an external FPGA. This external FPGA communicates via for example a
UART interface with the internal blocks for configuration and data extraction. The monitor is required
to remain inside the system under test design due to pin requirements. This system is denoted in
Figure 8.3. The AXI interconnection system requires already 64 pins for only the read and write data
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channels in a 32bit interface. This does not include any AXI control signals, when adding these
signal it reaches approximately 178 pins.

[FPGA_1] System Under Test [FPGA_2] Debugger

Monitor

Debug Slave

AXI Slave AXI Uart adapter

MicroBlaze
Design

AXI Design

Uart
AXI

Figure 8.3: A type of communication abstraction when placing the MicroBlaze on another FPGA. This
reduces the area requirements of the design in system under test. The downside is that this slows down
the communication due to limited bandwidth.
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