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Abstract

Many large businesses involved with the construction of aircraft, buildings, tanks, ships,
and similar objects are faced with complex project scheduling problems. IBM ILOG builds
business-specific applications for solving those scheduling problems using their IBM ILOG
CPLEX Optimization Studio and IBM ILOG Optimization Decision Manager Enterprise
products. The assignment IBM defined, upon which the work in this master thesis is based,
is to develop an optimization model to solve the Complex Project Scheduling Problem
(CPSP) in a generic way using CP Optimizer, the engine underneath CPLEX Optimization
Studio. The definition of the generic CPSP is based on the set of examples they encounter
in their day to day practice.

The development of this optimization model involves clearly defining the requirements,
designing a mathematical model, and implementing this mathematical model for CPSP
using the aforementioned IBM ILOG tools. The resulting implementation is shown to be
generic by using it in various use cases. Some of these use cases originate from researched
literature, others were practical cases encountered by IBM.

It is shown that the performance of the model is within acceptable distance of domain-
specific solutions, proving its usefulness as a basis for domain-specific applications (with
domain-specific GUI and data-sources). On two problems originating in literature we have
shown that our model performs within 1.9% and 0.6% respectively compared to domain
specific models. For a problem concerning aircraft assembly coming from IBM’s practice
we have shown that the generic solution performs as well as the problem-specific solution.
The generic solution is also shown to be suitable for rail maintenance scheduling.
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Chapter 0

Introduction

Many large businesses involved with the construction of aircraft, buildings, tanks, ships
and similar objects are faced with complex project scheduling problems. [Bak74] defines
scheduling as the problem of allocating scarce resources to activities over time. A schedul-
ing problem is thus the challenge of creating a schedule describing when which activity
should be done by what resources. In project scheduling, resources can be employees,
pieces of equipment, consumables, et cetera. An activity is elementary part of a project; it
can require resources and has a certain duration, making time a key factor in scheduling.

In this thesis we specifically discuss Complexr Project Scheduling (CPSED. These projects
are called complex because of their size (hundreds or thousands of tasks) and the con-
straints and the objectives defined on them. This makes it difficult and very time-
consuming for humans to construct a good schedule without violating the constraints
while optimizing the objectives.

The objects to be constructed in such projects (aircraft, buildings, et cetera) are typically
expensive: millions to hundreds of millions of dollars. Because of this, creating a good
project schedule is an important and valuable task. The gain of a good project schedule
compared to an inefficient schedule in practice is proven to be easily measured in the
millions to ten of millions of dollars.

IBM ILOG builds business-specific applications with optimization models for solving those
scheduling problems with Mixed Integer Programming (MIP) and Constraint Program-
ming (CP). CP is a paradigm to solve combinatorial optimization problems [RVBWO0G].
One states the problem in terms of variables, constraints, and an objective function after
which a search procedure is used to find an optimal solution. A crucial difference with
MIP is that in CP all along the search procedure an explicit representation is available of
the set of values a variable can still take. This set of feasible values is called the domain
of a variable. An important component of CP is the process of constraint propagation
which removes infeasible values from domains and deduces new constraints. We refer to
[RVBWO06] for an extensive description of the field of CP. It has been shown that CP is a
very succesful paradigm for solving scheduling problems [BPNO1].

IBM ILOG has implemented the CP paradigm in IBM ILOG CP Optimizer (CPO); imag-
ine it as a black box for solving optimization problems. To develop optimization models,
IBM ILOG uses IBM ILOG CPLEX Optimization Studio (COS), which is an IDE around
CPO. Integration of an optimization model into an application is done with IBM ILOG
Optimization Decision Manager Enterprise (ODME). ODME is a framework for devel-

'Note that page contains a list of abbrevations used throughout this thesis.




oping an application with a GUI and data connections around an optimization model

developed with COS.

The assignment IBM defined, upon which the work in this master thesis is based, is
to develop an optimization model to solve the complex project scheduling problem in a
generic way using CPO. The definition of the generic CPSP is based on the set of examples
IBM ILOG encounters in its day to day practice.

The organization of this thesis is as follows. Chapter [I| discusses the available literature
in the subject area. Chapter [2] formulates the goal of the project in more detail and states
the requirements of the model. It then formally describes Complex Project Scheduling

(CPS).

Chapter [3| discusses the implementation of an optimization model matching the formal
definition in the Optimization Programming Language (OPL), which is a declarative pro-
gramming language for expressing constraints in COS. In Chapter [4 we discuss the de-
velopment of various conversion tools that were developed to integrate the optimization
model in different environments, especially with ODME.

The performance of the generic optimization model relative to domain-specific models
has been measured and analyzed. Also, various tests have been performed to study the
performance of the model in practical cases. The results of these studies can be found in
Chapter

Finally, in Chapter [6] we review the results of the project and identify areas for future
research.




Chapter 1

Literature

Complex Project Scheduling (CPS) is an extension of Resource-Constrained Project Schedul-
ing (RCPS). RCPS has been around since the 1950s ([BK12] gives a good introduction).

An RCPS instance consists of a set of tasks, and a set of finite capacity resources. Each
task puts some demand on the resources. For example: within the context of building a
house, a task ‘install front door in house’ might require one employee and various tools.
A partial ordering on the tasks is also given specifying that some tasks must precede
others (for example, the walls of the house have to be constructed before the door can
be installed). In RCPS, the goal is to minimize the duration of the entire project (called
makespan) without violating the precedence constraints or over-utilizing the resources.

This chapter is organized as follows. Section Section discusses various approaches to
solving the RCPSP. The engine within COS, CP Optimizer (CPO), is based on the SA-
LNS algorithm, which is discussed in Section[I.1} Section[I.2]deals with various extensions
to RCPS which are of interest to CPS. Section shortly mentions the discovery of a new
application domain for CPS. Finally, in Section [I.4] other Constraint Programming toolits
are studied to validate the choice for COS.

1.0 RCPS Approaches

RCPS is studied extensively and a wide range of solution methods are reported in the
literature. In 2006, Kolisch and Hartmann published a paper, [KH06], comparing 37 RCPS
algorithms of different types, which they categorized as follows: X-Pass Methods, classical
meta-heuristics (genetic algorithms, tabu search, simulated annealing, ant systems), non-
standard meta-heuristics (local search-oriented approaches, population-based approaches),
and other methods (forward-backward improvement (FBI), further heuristics).

The 37 algorithms were compared on computational speed on problems of various sizes
(again, the details will not be mentioned here). However, the algorithm within CPO is not
included, because the paper introducing the CPO algorithm, SA-LNS [LGOT7], was released
in 2007 (it would be “local search-oriented”). However, [LGOT] tested its performance on
the datasets used in [KHOG], which will be shortly discussed in Section




1.1 Self Adapting Large Neighbourhood Search

In [LGOT], a robust scheduling algorithm is presented based on Self Adapting Large Neigh-
bourhood Search (SA-LNS). This algorithm is the base for CPO. The paper focuses on
single-mode RCPS, with the property of non-preemptiveness (also see Section . It
mentions that the algorithm can be easily extended to handle multi-mode RCPS, which
has been incorporated in CPO.

Large Neighborhood Search (LNS) is based upon a process of continual relaxation and
re-optimization: a first solution is computed (this is assumed to be easy) and iteratively
improved. Each iteration consists of a relaxation step followed by a re-optimization of the
relaxed solution. This process continues until some condition is satisfied, typically, when a
time limit is reached. What makes SA-LNS “self-adapting” is the integration of machine
learning techniques to converge on the most efficient neighborhood (as opposed to always
selecting the same neighborhood in the same order).

The machine learning part keeps track of two probability distributions, one for select-
ing neighborhoods, one for selecting the completion strategy. After a cycle of LNS, the
selections are rewarded based on their contribution to the optimization of the solution.
Currently, only one completion strategy (SetJustInTime) is used. This completion strat-
egy uses a linear relaxation of the problem and, doing so, has a global vision of the ideal
position of activities in time would there be no resource limitation. Because of the machine
learning techniques, SA-LNS requires no directions as to the direction of the search. It
can therefore be considered to be a black box and we will do so in the remainder of this
thesis.

Laborie and Godard tested the SA-LNS algorithm according to the procedure described
in [KHOG], and concluded: “The average deviation from the path-based lower bound is
32.4%. We estimate the average number of LNS cycles to be slightly less than 50000 which
would position SA-LNS in the top 7 best approaches for RCPSP among the 37 approaches
reviewed.”. For 17 out of 21 benchmarks, SA-LNS is better or less than 4% worse than
the competing algorithm. One interesting comparison is that for the “aircraft assembly”
benchmark, SA-LNS performs 8.7% worse. Aircraft assembly is one of the domains that
should fit in the generic design of the CPS model. In 2011, in an e-mail conversation,
Philippe Laborie, one of the authors of [LGO07], has mentioned that the performance of
CPO is now within 5% of the aforementioned benchmark. With a little tweak (MultiPoint
search instead of Restart), it performs within 2%. As a conclusion, it is assumed that the
SA-LNS algorithm is suitable for solving RCPS-related problems.

1.2 RCPS Extensions

In the literature various extensions to RCPS are discussed are studied. The extensions
that are relevant to CPS are discussed in this section.

Single-mode vs multi-mode RCPS. Multi-mode scheduling problems have a “resource allo-
cation” dimension, which means it there are various modes in which each activity can be
executed. This allows one to model optional activities, alternative resources, alternative
recipes or routes, et cetera. CPS will feature alternative resources and is therefore multi-
mode. Papers on this subject include [DRH99], [JMRT01], [SD9S], [Har01], [LGOT], and
[Lab09].

Multi-skills RCPS. In traditional RCPS, employees are modeled as a pool of employees (a




resource with a capacity). It is not possible to model that an employee has more than one
skill. Extending RCPS to allow that is termed “Multi-skills RCPS” ([PBMNO7], [HK10]).
CPS will feature multi-skills. As a consequence, resources with skills (employees) can
no longer be modeled as a pool: each employee becomes a separate entity with its own
skillset, which is either participating in a task or not.

Preemptive activities. Using preemptive activities, it is allowed to split an activity into a
variable number of parts of variable length which means activities can be interupted and
resumed. The CPS model will feature preemptive activities, i.e. it features preemption.
Papers on this subject include [BVQOS], [ZLT06], [PV10], and [ZLS11].

Objective functions. Typically, in literature, the objective function (the value that will be
optimized) is the ‘makespan’ (finish the project as fast as possible). In practice, money is
usually a big factor. The cost of a project is based on a lot of factors, so CPS supports
a weighted function, involving makespan and various costs like: fixed costs, costs for not
executing a task, tardiness of tasks, costs for employees and costs for equipment.

1.3 Application domains

The graduation project has been initiated by IBM ILOG with the goal to design a generic
solution for the CPSP. Application domains include spacecraft, the military industry
(tanks, artillery, aircraft carriers, et cetera), the naval industry, and construction (build-
ings, bridges, et cetera).

In [ST1I] and [AFCO7], software projects are discussed as application domain for schedul-
ing problems. The construction of software (using the traditional waterfall model) is not
that different from the construction of objects mentioned above. The individual activities
include the design, implementation and testing of individual components and the integra-
tion of these components. However, not all styles of software design will match with CPS:
for example, Agile programming does not.

1.4 Validation of the choice for COS

The problem to be solved in this graduation project has been designed by IBM ILOG. It
states that the model for CPS should be developed using COS and CPO. In Section
we concluded that SA-LNS (and therefore CPO) are suitable for solving RCPS-related
problems.

Of course, there are other Constraint Programming toolkits available (some proprietary,
some open source). Investigating all of them is infeasible in the allotted time. There-
fore, some alternatives were studied superficially. Concerning proprietary software: Rossi
[RVBWO06] (2006) mentions (on page 157): “ILOG is the market leader in commercial
constraint programming software.”[]

From studying several constraint programming libraries/toolkits (Minion, Gecode, Google
CP), we can observe the following:

e There are toolkits designed as C++ or Java libraries. Others introduce their own
constraint programming syntax, similar to OPL. None of them introduce constructs
(allDifferent, et cetera) that are not present in OPL.

!Unfortunately, the page containing the references is missing in the Google Book preview




e Almost all of the studied libraries claim that they are the ‘best’, or the ‘fastest’. For
example:

— Minion claims on their websiteﬂ that it is faster than competing commercial
solvers, including CPO. However, the Minion framework does not seem to con-
tain the concept of interval variables. So either the claim is based on non-
interval-related CP-problems or modeling scheduling problems would be an
issue.

- Gecodeﬁ has won all the MiniZinc Challengesﬁ so far (in 2011, 2010, 2009 and
2008). However, CPO has not participated in these contests. It has been
used as a benchmark to compete against, but there is no information on who
modeled the problems. This is significant, because in the field of Constraint
Programming, the performance of a model still depends significantly on the
skills of the developer.

Another key feature of COS is the integration with ODME, a framework to incorporate
OPL models in an environment with a graphical user interface (including data input and
analysis of output with for example Gantt charts). Other toolkits do not feature such a
framework and for example GUIs would have to be built from scratch.

From this we can conclude that there is no reason to doubt the performance of COS when
compared to other Constraint Programming toolkits.

%http://minion.sourceforge.net/
http://www.gecode.org/
“http://www.gl2.cs.mu.oz.au/minizinc/challenge2011/challenge.html




Chapter 2

The Complex Project Scheduling
Problem

The goal of this theis is to develop an optimization model for the Complex Project Schedul-
ing Problem, which will be defined in this chapter. Section informally describes CPS
and lists the requirements CPS adheres to. A formal definition of CPS is given in Section
We use this mathematical model to prove that the CPSP is NP-hard in Section

2.0 Informal Description

CPS is an extension of RCPS. Therefore we are already familiar with a couple of concepts
that CPS will have to cover: activities, resources and precedence relations. Research of the
literature revealed other relevant concepts: skills, non-renewables (consumables), preemp-
tion, et cetera. Other extensions include availability calendars and transition matrices.

Figure displays the various concepts in CPS and which of them are related. The figure
does not cover all the concepts. For example, it does not demonstrate preemption of
activities, or the hierarchical design of equipment and activities. The details are listed in
the requirements section below and furthermore in the formal definition in Section and

in Chapter

An optimization model describes the constraints the solution has to adhere to. Usually,
there are many solutions for a problem and it is not hard to find one. But, we want to
find a good solution, or even an optimal solution. To express how the solution should
be optimized, an objective function is specified. CPS supports the typical ‘makespan’
objective function, also found in RCPS. As an extension, CPS features a weighted function
(for optimization) of various costs: employee costs (salary), tardiness costs (penalty for
finishing a task late), et cetera. The formal definition can be found in Section [2.1.4]
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Figure 2.1: Overview of CPS concepts.

2.0.0 Requirements

This section formulates the requirements used to define the CPS model. The requirements
are formulated in a traditional software engineering fashion, which makes it easy to verify
whether a requirement has been met or not.

The requirements dealing with “zones” specifically originate from the desire to be able
to fit aircraft construction scheduling into our model. So it is possible, for example, to
model that a maximum of 3 people can work in a cockpit at the same time (the cockpit
would be a zone with capacity 3). Also, because of safety, we need to be able to model
that while tasks are executed on top of a wing, no employees are allowed to be under that
wing (because of safety). This is refered to as “disabling a zone”.

Rail maintenance scheduling is the cause of the requirements dealing with the possibility
to split tasks into parts.

The requirements below are grouped in the categories Resources, Activities, Activities
using Resources, and Objectives.

Read “CPS” below as “The model for CPS”.




Resources

These requirements deal with the various types of resources in CPS: employees, equipment,
zones, and consumables.

RO CPS can model employees.

R0O.a  An employee has a set of skills.

R0O.b  An employee has an availability calendar.

R1 The output of CPS supports an overview of activities per employee.

R2 CPS can model equipment.

R2.a  Equipment can be modeled hierarchically (equipment can contain other

equipment).

R2.b  Equipment has an availability calendar.

R3 CPS can model zones.

R3.a  Zones can be modeled hierarchically (zones can contain other zones).

R3.b A zone has an availability calendar.

R4 CPS can model consumables (materials that can be produced and consumed).

Activities

The requirements below describe the concepts for activities in CPS.

R5 CPS can model activities.

R5.a  Activities can be modeled hierarchically (an activity can consists of one or
more sub-activities). An activity which does not consist of sub-activities is
called a task.

R6 It is possible to specify precedence relations on activities.

R7 Tasks have a duration.

RS Tasks can be split into parts.

R8.a A minimal and maximal duration of parts can be specified.

R8.b A minimal and maximal distance in time can be specified between parts
belonging to the same task.

R9 A set of time windows in which an activity can be executed can be specified.

R10 It is possible to set a due date for an activity.

R11 It is possible to specify alternative tasks for a task.




Activities using Resources

These requirements describe how activities are coupled with the resources.

R12 A task can require employees with skill sets.

Ris3 A task can require equipment.

Ri18.a  Equipment contained by the required equipment is also required.

R1y A task can require capacity in a zone.

R14.a  When capacity is requested in a zones, that capacity is also requested in
the ‘ancestor’ zones (the zones above the requested zone in the hierarchy of
zones).

R15 A task can disable a zone (a task using that zone cannot take place during
the disabling task).

R15.a It can be specified that contained zones are also disabled if a zone is disabled.

R16 A task can be assigned a task type.

R17 It is possible to specify transition matrices of minimal distances in time
between task types.

R17.a  An employee can be assigned a transition matrix.

R17.b  When an employee is assigned two parts of (possible different) tasks in se-
quence, the minimal distance specified in the transition matrix of that em-
ployee is enforced.

R18 An activity can produce and consume consumables.

Objectives

The requirements below describe the objective functions that are available in CPS.

R19

R20

R20.a
R20.b
R20.c
R20.d
R20.e
R20.f

R20.¢
R20.h

CPS supports the concept ‘makespan’ (finish activities as soon as possible).
CPS supports the minimization of the sum of costs (see below).

Employees can be assigned a salary, based on skill.

Equipment can be assigned a usage cost.

Zones can be assigned a usage cost.

Activities can be assigned a fixed cost.

Activities can be assigned a cost incurred when they are not executed.
Activities can be assigned a tardiness cost, which is incurred when the ac-
tivity finishes after the specified due date of that activity.

The transition matrices include a transition cost.

A precedence relation between two projects can have a distance (in time)
cost.

10



Non-functional Requirements

This graduation project is not just about developing an optimization model. There are
several other important aspects:

e Data-format of the input. It has to be generic enough to suit the shapes of the
different problems (more on this in Section [L.3)).

o Format of the output. The output format can range from one ‘simple’ Gantt chart
giving an overview of which activities will be executed when, by what resource. This
output is usually formatted in some form of ‘abstract time-units’ and should be
converted to actual calendars in order to be useful in practice.

o Performance. If it takes CPO weeks to find a proper solution, its usefulness in
practice will be limited. At the moment, we are aiming for a maximum of 12 hours of
calculation time to find satisfactory solutions, so the schedule can be made overnight.

e GUI CPO and matching data-formats are practically useless without a way to
present it to the end-user. Besides COS, IBM has software built as a layer on
top of it: IBM ILOG Optimization Decision Manager Enterprise (ODME). ODME
allows us to generate an application including a GUI, the underlying model, the
CPO algorithm and the output.

11



2.1 Formal definition

Using the requirements which were defined in the previous section, a formal definition of
the CPSP is constructed in this section. They define what the CPS model takes as input,
which constraints apply and what its output is.

Definition An instance of the Complex Project Scheduling Problem (CPSP) consists of
the sets and functions as described in Section[2.1.1] The problem is to find a solution,
as described in Section [2.1.2] respecting the constraints specified in Section [2.1.5
optimizing the objective function specified in Section

2.1.1 Input Data

The input data for the CPS model consists of a set of skills (5), a set of employees (E), a
set of equipment (@), a set of consumables (C), a set of projects (P), and a set of prece-
dences (R). After some initial notes and clarifications, each topic is discussed separately.
Transition matrices link employees and projects and do not form a set themselves; the
concept is discussed last.

Notes up front:

e B are the Booleans true and false.
e The natural numbers N include 0. N* excludes 0.

e The non-negative real numbers (so including 0) are denoted Rxo.

Description of the format for functions:

e function: Ax B — C
Description of the function with arguments A and B and result C' (which are all
sets) possibly constraining the domains of A, B and C.

Functions are used like this: function(a, b)

The model deals with moments in time and durations in a certain time unit (imagine
minutes). A moment in time is a value in N. A duration is also a value in N.

Two moments in time describing the start and end of an activity form a time window.
W (for time windows) is the set of all possible intervals [a, b) with a,b € N and a <= b.
Functions:

o start : W — N gives for a time window [a, b) € W, start([a, b)) = a.

e end : W — N gives for a time window [a, b) € W, start([a, b)) = b.

Frequently, sets of time windows are used. In a set of time windows, no two time windows
overlap (which in enforced by the assertions, see Appendix |Al).

Skills

S is the set of skills. Employees (next section) have skills and tasks (subset of projects,
see below) can request employees with sets of skills). Unlike the other sets, skills do not
have any attributes relevant to a mathematical description. In the implementation, they
obviously carry a identifier and a name.

12



Employees
E is the set of employees. An employee has skills, a cost when set to work (salary), and a
calendar defining its availability.

e skills : E — P(S) gives the set of skills the employee e € F has.

e cost : E x 8§ = R>q gives the cost for putting employee e € E to work with skill
s € S for one unit of time. cost(e, s) is only defined for s € skills(e).

o availability : E — P(W) gives the set of time windows that determine when an
employee e € E is available for work.

Equipment

@ is the set of available equipment. Equipment has function over time describing the
number of available units, and a cost when used in tasks (subset of projects). Note that a
zone with capacity (mentioned in the requirements, Section can modeled as equip-
ment, for example: “Zone A has capacity X” is very different from “There are X hammers”.

e amount : () x N — N describes the number of instances available of equipment ¢ €
at time ¢t € N.

e cost : ) — R>q gives the cost for using an instance of this equipment ¢ € @ for one

unit of time.

Note that this formal definition does not satisfy the requirements that states equipment
can be modeled hierarchically. This concept was kept out of the mathematical model to
avoid recursion.

Consumables

C' is the set of consumables. Consumables can be produced and consumed by activities.
A consumable has an initial level, a lowerbound and an upperbound.

e initialAmount : C — N gives the initial ‘level’ of a consumable ¢ € C.
e Jowerbound : C'— N is the level that consumable ¢ € C' may not drop below.

e upperbound : C — N is the level that consumable ¢ € C may not exceed.

Projects

P is the set of projects, which is designed hierarchically. The hierarchy allows us to
logically group tasks together. This is for example convenient when defining precedence
relations (see below). A project which is a leaf in the hierarchy is called a task; a project
which has ‘child-projects’ is called a module.

e isRoot : P — B returns true if and only if p € P has no parent (it is a root element).

e parent : P — P returns the parent project p’ € P of project p € P. parent(p) is not
defined if isRoot(p).

13



e isAlternativeNode : P — B returns true if the children of p € P form an alternative
construction. It returns false if p should span its children. isAlternativeNode(p) is
not defined if isTask(p) (see Section [2.1.3)).

e forcePresence : P — B is set to true if root project p € P and all of its children
have to be present. It returns false if root project p € P and its children do not
have to be present. forcePresence(p) is defined if and only if isRoot(p).

Functions about restricting a project in time:

e allowedWindows : P — P(W) is the set of time windows in which project p € P is
allowed to be scheduled.

e dueDate : P — N gives for p € P the moment in time after which tardinessCost(p)
is incurred.

Functions dealing with costs:

o fizedCost : P — R is the fixed cost for inclusion of project p € P in the schedule.
o unperformedCost : P — R>q is the cost incurred for not scheduling project p € P.

o tardinessCost : P — R>q is the cost incurred per time unit for project p € P
finishing after dueDate(p).

T is the set of tasks: {p € P | isTask(p)}. © C N is the set of task types (used for
transitions, see below). Tasks are split into one or more parts (preemption). The number
of parts, their length, et cetera, are constrained by the functions below.

To prevent a split into an infinite number of O-duration parts, parts are at least duration
1. So minFirstPartDuration(t) > 0, minLastPartDuration(t) > 0,
minMiddlePartsDurations(t) > 0 if duration(t) > 0. A 0O-duration task has exactly one
0-duration part and

minFirstPartDuration(t) = 0, minLastPartDuration(t) = 0,

and minMiddlePartsDurations(t) = 0.

Functions for tasks and preemption:

e duration : T — N gives the duration of task t € T.
o taskType : T — O gives the type of task ¢t € T, used for transitions between parts.

e mazPartDuration : T — N* is the maximal duration of the parts that form task
teT.

o minFirstPartDuration : T — N is the minimal duration of the first part of task
teT.

o minLastPartDuration : T — N is the minimal duration of the last part of task ¢t € T.

o minMiddlePartsDurations : T — N is the minimal duration of each of the middle
parts (neither first nor last) of task ¢t € T.

o minPartSeparation : T — N gives the minimal distance between each pair of parts
of task ¢ € T. 0 can be considered as a default.

o mazPartSeparation : T — N gives the maximal distance between each pair of parts
of task t € T'. oo can be considered as a default.
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Tasks can require employees and equipment. Both tasks and modules can consume and
produce consumables.

e needsNEmployees WithSkillset : T x P(S) — N gives the number of employees with
skillset ss C S that task ¢t € T needs.

o needsNEquipment : T x @ — N gives the number of pieces of equipment ¢ € @ that
task ¢t € T needs.

o disablesEquipment : T x @ — B is true if and only if the execution of task t € T
prevents the use of equipment ¢ € Q. See Section for a detailed explanation.

o producesXOfConsumable : P x C' x B — Z is the quantity of consumable ¢ € C that
project p € P produces (result is positive) or consumes (result is negative). The
moment of production/consumption is determined by the boolean b € B. b = true
means ‘at the start’. b = false means ‘at the end’.

Precedences

Precedences can be defined on projects, to determine an ordering among them. There are
several types of precedences: ® is the set of precedence types:

{endBeforeEnd, startBeforeStart, startBeforeEnd, endBeforeStart}.

R is the set of precedences. The placement of projects in the schedule can be further
constrained by setting a minimum or maximum delay between them. Also, a cost can be
associated with the distance between the two projects.

e projectl : R — P gives the first project involved in precedence r € R.
e project2 : R — P gives the second project involved in precedence r € R.
o precendenceTlype : R — @ is the type of precedence between the two projects.

o minDelay : R — N sets the minimum delay between the edges of the projects based
on precedence Type(r).

e maxDelay : R — N sets the maximum delay between the edges of the projects based
on precedence Type(r).

o distanceCost : R — Rx¢ is the cost incurred per time unit by the distance (in time)
between the edges of the two projects, based on precedence Type(r).

Transitions

To model transition time and cost between parts of tasks, transitions matrices are in-
troduced. Transition matrices are based on task types © (see taskType(t)) and can be
different for every employee. For example, if you consider task types to be locations, it
allows you to express, for example, that task ¢; is of type ‘Location A’ and task ¢ is of
type ‘Location B’ and it takes an employee 10 minutes (and it costs 10 euros) to travel
between the two location. This time and cost is incurred between every part of the tasks.

o transitionTime : E x © x © — N gives the transition time between task types 61 € ©
and 0, € © for employee e € F.

o transitionCost : £ x © x © — R>( gives the transition cost between task types
0, € © and 65 € O for employee e € F.
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2.1.2 Output Data

A solution to an instance of the CPSP is:
e For every p € P, an assignment to isPresent(p) and window(p).

e Forevery tp € TP (task part, see below), an assignment to window(tp), employees(tp)
and skillsetOf (tp, e) for each e € employees(tp).

The definitions of the functions are given below. The solution has to adhere to the con-
straints specified in Section [2.1.5]

Part of the solution is an assignment of each project p € P to an interval in time (possibly
void) respecting the constraints. As tasks (leaf elements of the project hierarchy) can be
split into parts (preemption), each part has to be assigned an interval in time as well.
The placement of modules (non-task projects) can be deduced from the placement of the
tasks, but is part of the output for clarity. TP is the set of task parts that are ‘created’
to perform the tasks.

Because we need to know which employees are responsible for executing each part of each
task, that information is part of the solution as well: each tp € TP has a set of tuples
{(e, ss)}, with e € F and ss C S, describing which employees are involved (via which skill
set).

Projects P have the following functions defined:
e isPresent : P — B returns whether or not project p € P is present in the solution.

o window : P — W returns the assigned time window of the project.

Task parts TP have the following functions:
o window : TP — W returns the assigned time window of the task part.
o task : TP — T gives task t € T the task part tp belongs to.

o indexOf : TP — N returns the index in [0, mazNrOfParts(task(tp)) — 1] identifying
the part within the scope of the task.

e employees : TP — P(E)
Employees responsible of the task part tp € TP.

e skillsetof : TP x E — P(S)
Skill set that shows the responsibilities of employee e € E in task part tp € TP.
Defined if and only if e € employees(itp).
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2.1.3 Helper Functions

This section lists functions that are neither part of the input nor of the output of the
model. Their result values are deduced from core functions. The helper functions have
been defined because their functionality is reused often or to make the constraints and
objective functions in the next sections easier to understand.

Derived from Input

Skillset Cost cost : E x P(S) — Rx>q gives the cost for putting employee e € E to work
with skill set ss € P(S). It is calculated by taking the maximunyl] of the cost(s) for
the single skills s in the set ss.

Project Children children : P — P(P) gives the child projects of project p € P. This
function is derived from the parent function.

Project is Task isTask : P — B returns true if and only if p € P has no children (it is
a leaf element), that is, children(p) = @.

Max Number of Parts maxNrOfParts : T — N gives the maximal number of parts
that task ¢ € T can consist of. This function is not part of the input, it is deduced us-
ing minFirstPartDuration(t), minLastPartDuration(t) and minMiddle PartsDurations(t).
Returns 1 if duration(t) = 0.

Based on Output

Task Part isPresent : TP — true returns true. A task part is always present. If it is
not necessary, it does not exist. Some functions below work on both projects and
task parts using isPresent on projects. To avoid cloning the functions for task parts,
isPresent is defined for task parts here.

Interval Start startOf : (P U TP) — T for x € P U TP, short for start(window(z)).
Defined if and only if isPresent(z).

Interval End endOf : (PUTP) — T for z € PUTP, short for end(window(z)). Defined
if and only if isPresent(z).

Interval Duration length : (P U TP) — N for z € P U TP, short for endOf(z) —
startOf (z). Defined if and only if isPresent(z).

Intervals overlap overlap : (P U TP) x (P U TP) — B determines whether two z;, 22 €
P U TP overlap in time.
Returns isPresent(x1) A isPresent(x) A
( endOf (x1) < startOf (z2) V endOf(x2) < startOf (z1) )

Intervals coincide coincide : (PU TP) x (PUTP) — B
Determines whether two intervals z;, 22 € P U TP coincide in time (start and end
match).
Returns isPresent(z1) A isPresent(zz) A

startOf (z1) = startOf (x2) A endOf (z1) = endOf (z2).

In the implementation, the configuration parameter ‘costs.skillsetCost.useSumInsteadOfMax’ can be
used to instruct the model to use ‘sum’ instead of ‘max’.
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Task Parts parts: T — P(TP) gives the task part belonging to the task t € T'.

Task type shorthand type : TP — ® returns the task type of the task this part tp € TP
belongs to. Short for taskType(task(tp)).

Task Part sequencing 1 isAfter : TP x TP — B
Determines if ¢po is scheduled after tp;.
Returns startOf (tp2) > endOf (tp1)

Task Part sequencing 2 isSequencedRightAfter : E x TP x TP — B
Determines if tps is right after ¢p; in the sequence of tasks e € E is involved in. No
other task parts are in between.
Returns isAfter(tp1, tpa) N e € employees(tpr) N e € employees(tpa) A
—Jitps € TP | e € employees(tps) : isAfter(tpr, tps) N isAfter(tps, tp2).

Precedence distance distance : R - N
For precedence r € R, py = project1(r), po = project2(r):
If precedence Type(r) = endBeforeEnd, returns endOf (p2) — endOf (p1)
If precedence Type(r) = startBeforeStart, returns startOf (p2) — startOf (py)
If precedence Type(r) = startBeforeEnd, returns endOf (p2) — startOf (p1)
If precedence Type(r) = endBeforeStart, returns startOf (p2) — endOf (p1)
Defined if and only if isPresent(p1) A isPresent(p2).

Linking Input and Output

Employee is available isAvailable : E x TP — B determines if employee e € F is avail-
able for the duration of task part tp € TP (according to her availability calendar).
So, it returns
Jw € availability(e) : start(w) < startOf (tp) A end(w) > endOf (tp)

Project in allowed window inAllowed Window : P — B determines whether project
p € P lies within one of its allowed windows. So, it returns
Jw € allowedWindows(p) : start(w) < startOf (p) A end(w) > endfOf (p)

Other Functions

Boolean to natural number b2n : B — N returns for b € B, 1 if 6 = true, 0 if b =
false.

18



2.1.4 Objective Function
The objective funtion of CPSP, the value to be minimized by the optimization process, is
defined as follows (W, through W7 (all € R>g) are configurable weights):

Wo - makespanCosts

+ W1 - firedCosts +

+ Was - unperformedCosts
+ Wjs - tardinessCosts

+ Wy - employeeCosts

+ Ws - equipmentCosts
+ W - distanceCosts

+ W+ - transitionCosts

makespanCosts is defined as:

MAX p € P |isPresent(p) : endOf (p)

fixedCosts is defined as:

> p € P | isPresent(p) : fizedCost(p)

unperformedCosts is defined as:

> p € P | lisPresent(p) : unperformedCost(p)

tardinessCosts is defined as:
> p € P | isPresent(p) A endOf (p) > dueDate(p)
: tardinessCost(p) - (endOf(p) — dueDate(p))

employeeCosts is defined as:

Y.tp € TP : ) e € employees(tp) : length(tp) - cost(e, skillsetof (tp, e))

equipmentCosts is defined as:
St € T | isPresent(t)
1> q € Q : duration(t) - needsNEquipment(t, q) - cost(q)

distanceCosts is defined as:

> r € R | isPresent(project1(r)) A isPresent(project2(r))
: distanceCost(r) - distance(r)

transitionCosts is defined as:

dYe€E:Y tp,tps € TP | e € employees(tpy) N e € employees(tps)
A isSequencedRightAfter (e, tp1, tpa)
: transitionCost(e, type(tp1 ), type(tp2))
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2.1.5 Constraints

The constraints to which the solutions of the CPSP must adhere are listed in this section.

Employees

C.E.0: Employees are only assigned to a task part when they are available (calendar):

Vip € TP :Ve € employees(tp) : isAvailable(e, tp)

C.E.1: Employees can only participate in one task part at a time:

Y ip1,tpa € TP | tp1 # tpa A overlap(tpy, tpa)
: employees(tp1) N employees(tpz) = @

C.E.2: Tasks are assigned the requested employees:

Vipe TP :Vss e P(S)
needsNEmployees WithSkillset(task(tp), ss)
= |{e € employees(tp) | skillsetof (tp, e) = ss A ss C skills(e)}|

C.E.3: Enforce transition times between task parts (executed by employees):

Vee€ E:Vipy,tps € TP | e € employees(tp1) N e € employees(tps)
A isSequencedRightAfter(e, tpi, tp2)
: startOf (tp2) >
endOf (tp1) + transitionTime(e, type(tp1), type(tp2))

Equipment

C.Q.0: Do not use more equipment than exists (for every point in time):

Vg€ Q,teN:amount(q,t)
> > tp € TP | isPresent(tp) A startOf (tp) < t < endOf (tp)
: needsNEquipment (task(tp), q)

C.Q.1: Equipment is not used at a time it is disabled by a task:

Vqge Q:Vitpr € TP | needsNEquipment(task(tpy),q) >0
:Vitpy € TP | disablesEquipment(task(tp2), q) :loverlap(tpy, tps)

Consumables

C.C.0: There is always more of a consumable than lowerbound and less than upperbound:

Vee C,t eN: lowerbound(c)
< initialAmount +
Y p € P,beB|isPresent(p)
A ((bAstartOf (p) < t)V (1bAendOf (p) < t))
: producesXOfConsumable(p, ¢, b)
< upperbound(c)
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Projects

C.P.0: Projects are scheduled in their allowed time windows:

V' p € P | isPresent(p) : inAllowed Window(p)

C.P.1: Check forcePresence for root projects:

V' p € P | isRoot(p) A forcePresence(p) : isPresent(p)

C.P.2: Alternative constructions: 1 child is present if project is present and its interval
coincides with the project interval:

Vp € P | lisTask(p) A isAlternativeNode(p)

: b2n(isPresent(p)) = |{c € children(p) | isPresent(c)}|
A

isPresent(p) = 3 ¢ € children(p) | isPresent(c) : coincide(p, ¢)

C.P.3: Span constructions: project spans its children:

Vp e P |lisTask(p)A lisAlternativeNode(p)
:V ¢ € children(p) : isPresent(c) = isPresent(p)
A
isPresent(p) =
startOf (p) = MIN ¢ € children(p) : startOf (¢)
A

endOf (p) = MAX p € children(c) : endOf (c)

Preemption

C.P.4: Tasks span their parts:

Vp e P |isTask(p)
s isPresent(p) =

startOf (p) = MIN tp € parts(p) : startOf (tp)
N

endOf (p) = MAX tp € parts(p) : endOf (tp)

C.P.5: Task parts are sequenced:

Y ip1,tpa € TP | task(tp1) = task(tp2) A isPresent(task(tpy))
A indexOf (tp1) = indexOf (tp2) — 1
: endOf (tp1) < startOf (tp2)

C.P.6: The sum of the length of the parts is equal to the duration of the task:
Vp € P |isTask(p) A isPresent(p)
. duration(p) =Y tp € parts(p) : length(tp)
C.P.7: Check the minimal duration of the first part of a task:

Vp € P |isTask(p) A isPresent(p)
:Vip € parts(p) | indexOf (tp) = 0 : length(tp) > minFirstPartDuration(p)
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C.P.8: Check the minimal duration of the middle parts of a task:

Vp € P |isTask(p) A isPresent(p)
:Vip € parts(p) | indexOf (tp) > 0
A3 tp’ € parts(p) : indexOf (tp") > indexOf (tp) : isPresent(tp’)
: length(tp) > minMiddlePartsDurations(p)

C.P.9: Check the minimal duration of the last part of a task:

Vp € P |isTask(p) A isPresent(p)
:Vitp € parts(p)
| 13 tp" € parts(p) : indexOf (tp") > indexOf (tp) : isPresent(tp’)
: length(tp) > minLastPartDuration(p)

C.P.10: Check the maximal duration of the parts of a task:

Vp e P |isTask(p) A isPresent(p)
:Vitp € parts(p) : length(tp) < maxPartDuration(p)

C.P.11: Check minPartSeparation and mazPartSeparation:

Vip1,tps € TP | task(tp1) = task(tp2) A indexOf (tp1) = indexOf (tp2) — 1
. endOf (tp1) + minPartSeparation(task(tp)) < startOf (tp2)

A
endOf (tp1) + mazPartSeparation(taks(tp)) > startOf (tp2)

Precedences

C.R.0: Precedences endBeforeEnd:

Vr € R | precedence Type(r) = endBeforeEnd
A isPresent(project1(r) A isPresent(project2(r)
: endOf (projectl(r)) < endOf (project2(r))
AminDelay(r) < endOf (project2(r))— endOf (project1(r)) < maxDelay(r)

C.R.1: Precedences startBeforeStart:

Vr € R | precedence Type(r) = startBeforeStart
A isPresent(project1(r) A isPresent(project2(r)
. startOf (project1(r)) < startOf (project2(r))
AminDelay(r) < startOf (project2(r))—startOf (project1(r)) < mazDelay(r)

C.R.2: Precedences startBeforeEnd:

Vr € R | precedence Type(r) = startBeforeEnd
A isPresent(project1(r) A isPresent(project2(r)
. startOf (project1(r)) < endOf (project2(r))
AminDelay(r) < endOf (project2(r))—startOf (project1(r)) < mazDelay(r)

C.R.3: Precedences endBeforeStart:

Vr € R | precedence Type(r) = endBeforeStart
N isPresent(project1(r) A isPresent(project2(r)
: endOf (project1(r)) < startOf (project2(r))
AminDelay(r) < startOf (project2(r))—endOf (project1(r)) < mazDelay(r)
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2.2 Computational Complexity

It is well-known that the RCPSP is proven to belong to the class of NP-hard problems.
For example, [RBLO7| states: “It has been shown by Blazewicz et al. [3] that the RCPSP,
as a generalization of the classical job shop scheduling problem, belongs to the class of
NP-hard optimization problems.” ([3] in that paper is [BJ8G])

For our problem at hand, we will prove its NP-hardness by viewing it as a generalization
of RCPS, i.e., that all instances of the RCPSP can be mapped to an instance of the CPSP.
In the previous section we have defined a mathematical model of CPS.

Formally, Resource Constrained Project Scheduling has the following input (taken from
[Cra96]): a set of tasks T', a set of resources R, a capacity function C' : R — N, a duration
function D : T — N, a utilization function U : T x R — N, and a partial order P on T.
The problem is to find a solution that schedules all the tasks within the boundaries of the
resources and minimizes the makespan (the end of the last task).

To clearly distinguish between the sets in RCPS and CPS, in the mapping below the sets
are subscripted like this: Tcps vs Teps.

Tasks, Duration Create one Root Project root € Py, and define
forcePresence(root) = true and isAlternativeNode(root) = false. For every ¢ €
Treps, create one p € P, and define parent(p) = root, and by doing so determine
children(root). Define duration(p) = Dyeps(t). Define
allowed Windows(root) = [0, 00).

Resources, Capacity For every r € Ry, create one piece of Equipment ¢ € Qcps.
Define amount(q, ) = Cyeps(r) for every z in time. Define availability(q) = [0, 00).

Utilization Map U, directly to needsNEquipment. So for every (t,r) € Treps X Ryeps
set, for the matching (p, ¢) € Peps X Qcps, needsNEquipment(p, q) = Ureps(t, 7).

Partial Order Map the partial order P,.s to the precedences set R.,s. So for every
z,y € Treps where z precedes y in the partial order Py, create a precedence pre; ,
and define projectl(pre, ,) and project2(pre; ) to be the matching projects in Pep,
and set precedenceType(pres y) = endBeforeStart.

Furthermore:

e Note that a resource in RCPS can also be a person. In CPS it not necessary to
model employees however, as there are no skills involved.

e Disregard Skills (Scps), Employees (Ecps), Consumables (Ceps).

e Disregard anything in CPS that has something to do with transition time, costs, or
preemption.

e Some values of irrelevant functions are not mentioned explicitly above. Defining
proper defaults for them is considered trivial.

Now, since RCPS can be modeled in CPS, CPS is at least as complex as RCPS and
therefore NP-hard.
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Chapter 3

OPL Model

In this chapter we will discuss the implementation of the CPS model in OPL. Section [3.0]
describes the input format of the CPS model. Section explains why the input format
was designed that way. Those topics were split intentionally to keep the description of the
input format concise. Section discusses actual files containing the OPL code. Section
[3:3 describes the output of the CPS model.

3.0 Input Data

Figure 3.1 defines the data structure of the input data for the OPL model. It was designed
in ODME, because the OPL model will be integrated in ODME.

Contrary to normal use in ODME, the foreign keys are not marked as expecte(ﬂ, as this
has caused trouble (see Section for an explanation). A visual indication of foreign keys
(FK) has been added manually in a graphical editing program. Filled arrowheads represent
a 0..x to 1 multiplicity. Non-filled arrowheads represent a 0..x to 0..1 multiplicity.

The following sections each discuss a table. Attributes are only discussed if they are non-
trivial. To keep the descriptions concise, we do not discuss why things are designed like
this, Section [3.1] discusses the reasoning behind various design decisions.

In ODME class diagrams with foreign keys, the attributes that are foreign keys have a different icon.
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[ DParameters

8 keyStr
B value

[ DPrecedences
 id

B projectlid[FK]

f precedenceType

B project2id [FK]

g minDelay

B maxDelay

B distanceCostPerHour

[ DProjectProducesConsumable

%8 projectid [ FK ]

%8 consumableid [ Fi ]
o8 atstart

B amount

[ DTaskMeedsEmpWithSkillset

28 taskid [FK]
28 skillsetid [ FK |

B amount

= DSkillsets
2 id

B name
f description

3 DSkillPartOfSkillset

7 skillsetid[FK ]
28 skillid [FK ]

[ DProjects
id
name
description
isAlternativeNode
forcePresence
subProjectOf [ FKC |
duration
tasktypeid [ FK ]
maxPartDuration
minFirstPartDuration
minLastPartDuration
minMiddlePartsDurations
minPartSeparation
maxPartseparation
releaseDate
hardDeadline
softDeadline
fixedCost
B tardinessCostPerHour
E unperformedCost
B calendarid[ FK ]

[ DTaskTypes
A id

E name
g description

= Dskills
#id

B name

f description

[ DConsumables
id

name
description

unit
initialamount
upperbound
lowerbound

[ DTaskNeedsEquipment

8 taskid [FK ]
28 equipmentid[FK |

B amount

[ DTaskDisablesEquipment

48 taskid [FK ]
8 equipmentid [FK |

[ DAvailability
id

calendarid [ FK]|
startDateTime
endDateTime

] DTransitionMatrices
28 id

8 tasktypelid[FK ]

8 tasktypelid[ FK |

B transitionTime

B transitionCost

] DEmployeeHasSkill

28 employeeid [FK |
o8 skillid [ FK ]
B costPerHour

[ DEquipmentHierarchy
78 equipmentlid [ FK ]
7 equipment2id [ FK ]

B alsoUseMof

B disableDirection

[ DEquipment
7 id

B name

A description

B costPerHour

B defaultAmount

[ DEquipmentExtrafvailable
78 equipmentid[FK ]
8 calendarid [FK]

B amount

[ DCalendars
7 id

E name

B description

[ DEmployees
H id
B name
B calendarid [ FK |
B defaultCostPerHour
B transitionmatrixid [FK ]

Figure 3.1: Input data model as designed in ODME
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3.0.0 Parameters

The Parameters table contains key-value pairs of configurable parameters to the model.
Because a column can only have one data type, the chosen data type is float, which also
covers integer and boolean (0 and 1).

It supports the following keys:
optimize.timeLimit (int) Time Limit (in seconds) of optimization
optimize.runMode (int) 0 = nothing, 1 = makespan, 2 = total costs
optimize.maxTime (int) Upper bound of TIME domain (in minutes)
costs.weights.makespan (float) weight for makespan costs in total cost
costs.weights.fixed (float) weight for fixed costs in total cost
costs.weights.unperformed .

costs.weights.tardiness

costs.weights.employee
costs.weights.equipment

costs.weights.distance e

costs.makespanCostPerHour (float) cost associated with 1 hour of makespan

costs.skillset.useSumInsteadOfMax  (boolean) when determining employee cost when
using a skillset, use sum instead of max over all
skills involved.

optimize.maxTime is the upperbound of the domain in which intervals (projects, task
parts) can be scheduled. Choosing a small upperbound (with the knowledge the solution
will still fit) can benefit the performance of the model.

The option ‘makespan’ can also be configured by minimizing total costs and setting the
weights appropriately. However, because makespan is often used in academic problems,
which are usually not concerned with costs, it is offered as a separate option.

3.0.1 Calendars & Availability

Defines calendars, which are ranges of start- and end-times. These ranges are not allowed
to overlap. It is possible to define a calendar without any associated availability ranges,
which would mean “never available”.

3.0.2 Task Types & Transition Matrices

Defines possible task types. Transition matrices are matrices between task types. Employ-
ees are assigned a transition matrix which puts requirements on transition times and cost
between task parts that they execute. See Section for a more detailed explanation.

transitionTime (int) The minimal time (in minutes) between parts of tasks of types
tasktypelid and tasktype2id.

transitionCost (int) The cost incurred for transitioning from type tasktypelid to task-
type2id.
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3.0.3 Projects

The table Projects contains the tree-structure of projects, which can have multiple roots.
Non-leaf projects are called modules (so a root is a module too). Leafs are called tasks,
which are split into one or more parts in the optimizer (pre-emption).

isAlternativeNode (boolean) (Modules only) If set to false, a module spans its chil-
dren. If set to true, a module spans exactly one child and the other children are not
present; the children form an alternative construction.

forcePresence (boolean) (Roots only) If set to false, the optimizer can decide not to
include this part of the tree in the solution. If set to true, it has to be present
(necessary for makespan optimizations). Section explains why this is only
available for roots.

duration (int) (Tasks only) Tasks are split into one or more parts of which the sum
equals this duration in minutes. duration is ignored for modules, because their
duration is determined by the child projects they span.

tasktypeid (int) (Tasks only) The task type of this task, used for transition matrices.

... PartDuration/Separation (int) (Tasks only) Defines constraints on the size of the
parts of a task and how far they can be apart. For a more detailed explanation, see

Section B.1.11

releaseDate (Date) Point in time after which this project has to take place (may not
start before it).

softDeadline (Date) Point in time after which tardinessCostPerHour takes effect. Usu-
ally before hardDeadline.

hardDeadline (Date) Point in time before which this project has to take place (may not
end after it).

fixedCost (float) Fixed cost of this project when it is present. TotalFixedCost is a
sum of all present projects in the tree. Care has to be taken when a project tree
is constructed where parent projects and child projects both have fizedCosts, those
values are summed.

unperformedCost (float) Cost incurred when the project is not executed.

calendarid (int) The project (and its children) can only be scheduled within the time
windows defined in the calendar. Introduced to work with ‘Possessions’ for Rail
Maintenance Scheduling. —1 means “can always be scheduled” (note releaseDate
though). See Section for an explanation why both constructs are present.

3.0.4 Precedences

Defines the precedence network of projects.

precedenceType (string) out of the set {synchronize,
endAtEnd, endAfterEnd, endBeforeEnd,
startAtStart, startAfterStart, startBeforeStart,
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startAtEnd, startAfterEnd, startBeforeEnd,
endAtStart, endAfterStart, endBeforeStart}.
synchronize means both startAtStart and endAtEnd.

minDelay & maxDelay (int) time (in minutes) that is at least or at most between the
two projects. Ignored when precedenceType is synchronize or ... At ....

distanceCostPerHour (float) Cost calculated for the distance between the two projects.
The ‘edges’ of the projects for the calculation are determined by the precedence Type.
For example “A endBeforeStart B” with cost 60: if A ends 2 hours before B starts,
120 cost is incurred.

3.0.5 Skills, Skillsets & SkillPartOfSkillset

Defines the skills that employees can have. Skills are part of skillsets, because tasks can
request that an employee has all the skills in a skillset. For a lot of applications, skills and
skillsets will have a 1:1 mapping. See also Section

3.0.6 Employees & EmployeeHasSkill

Defines the available employees. EmployeeHasSkill links employees with skills.

[13

calendarid (int) Calendar that describes the availability of the employee. —1 means “is
always available”.

defaultCostPerHour (float) Salary of the employee. For skill-dependent salary, it can
be overwritten by costPerHour in EmployeeHasSkill.

transitionMatrix (int) Transition matrix for this employee. Incurs transition time and
cost between task types in the sequence of task parts this employee handles. Specify
—1 to model that an employee does not have a transition matrix (transition times
and costs between any pair of task types is 0).

3.0.7 TaskNeedsEmpWithSkillset

TaskNeedsEmpWithSkillset allows tasks to request employees. The requested employee
needs to have ALL the skills in the requested skillset. The costPerHour for selecting a
suitable employee is based on the individual skills in the set, for each of which a cost-
PerHour is defined (either the default for the employee or an overriden value). There
are two options: the maz or sum over the individual skills, determined by the param-
eter costs.skillset.useSumlInsteadOfMaz. See Section for more details on skills and
skillsets.

3.0.8 Equipment, EquipmentExtraAvailable

The table Equipment contains the pieces of equipment (tools, machinery, et cetera) that
are available. EquipmentExtraAvailable allows you to define there is more equipment
available than the defaultAmount for certain periods.
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costPerHour (float) Cost of the usage of one piece of this equipment.

calendarid (int) Calendar that describes the availability of these extra pieces of equip-
ment.

Note that using this construct, it is possible to define, for example: till Sunday there are
4 hammers, after that there are 5.

3.0.9 TaskNeedsEquipment & EquipmentHierarchy

TaskNeedsEquipment allows tasks to request equipment. Equipment can be defined hier-
archically in the EquipmentHierarchy, in the abstract format “if a task request Equipment
A, it also requests X of Equipment B”. Tasks can not take place if their requested equip-
ment is not available. See Section for an explaination as to why it is defined this
way.

3.0.10 TaskDisablesEquipment

TaskDisablesEquipment allows tasks to disable all available pieces of equipment (as if
there were 0 available). It is easiest to imagine this in a zones concept, for example: task
t prevents execution of any other task that requires zone a. This construct is different
from a task requesting all available pieces of equipment, because two tasks disabling a
certain zone are allowed to be executed in parallel, while requesting all capacity in the
zone would prevent that. See Section for more details.

3.0.11 Consumables & ProjectProducesConsumable

The table Consumables defines ‘materials’ that are consumed or produced by projects.
unit (string) A word that would be used to describe the quantity. For example: 5
“liters” or 300 “screws”.

amount (int) Amount that is produced. To specify consumption, produce a negative
value.

atStart (boolean) Determines whether the increase/decrease happens at the start or at
the end of the project.

Contrary to requesting equipment and employees, which only tasks can do, modules can

produce/consume consumables.

See Section [3.1.6] for more details.
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3.1 Model Design

The previous section describes the input format, but to keep it concise, we did not discuss
why it is designed like it is. This section explains various concepts in more detail.

It is assumed that it is clear why basic scheduling concepts such as Projects, Employees,
Equipment, Precedences and Consumables are present in the model. These topics are
therefore not discussed below.

3.1.0 The Project tree

In the model, projects are modeled in a tree structure, with possibly more than one root.
Leaf nodes are called tasks, non-leaf nodes are called modules. Figure|3.2|gives an abstract
example of a possible tree (with an example precedence).

Root Project A Root Project B

Modyle Al Modyle A2 Module B _Modyle B2  Module B3
: / : :

e

Task ALl Task Al.l__..— -~ éndBeforestart

Figure 3.2: Abstract example of a Project tree

Modules have the boolean attribute isAlternativeNode. If it is true, the child projects of
that module form an alternative construction (exactly one has to be done). This is useful
for, for example, third party work: we could build the engine ourselves or we could buy
one, the latter being more expensive but taking less time. Alternative constructions are
also useful for executing a task with alternative equipment. For example: a task could
take less time with a faster/newer piece of machinery.

Big Generic Project table vs Separate Task table

It can be argued that a separate Task table (besides a Project/Module table) is a good
decision, as tasks are significantly different from modules:

e A lot of attributes only matter for tasks, such as duration and minFirstPartDuration.
e Tasks can be split into parts (preemption), modules cannot.

e Only tasks are allowed to request employees and equipment. Actually their parts
require employees and equipment. Modules do not have parts.

However, tasks and modules share a lot of functionality:

e production/consumption of consumables
e Precedences

e Part of a tree (subProjectOf)
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e releaseDate, softDeadline, hardDeadline, calendarid

With a separate Task table, there would be two ‘copies’ of each piece of functionality,
which is considered to be a lot more troublesome than checking whether a project is a
task or a module.

Optionality: forcePresence on root projects

Generally, within the scope of CPS, tasks or modules are not optional. An example: when
building an airplane, attaching the left wing is not optional. Of course, this does not prove
that is not desired to have the possibility of optional modules.

However, the possibility of optional projects harms the performance of the ‘push down
presence’ in the implementation: a project is present if and only if its parent is present.
So from a performance point of view, you would want to decide to not support optionality.

But in RMS optionality is required, for example when 5 sections of 100 meter of rails has
to be replaced and we wonder how many sections can we do in one weekend. To solve this,
noticing that it is allowed to have multiple roots in the project tree (‘push down presence’
does not link them), a new attribute forcePresence was introduced, which is only relevant
to root projects. forcePresence can be set to false on a root, allowing the optimization
to decide to not include the entire tree belonging to this root.

In the end, it is also possible to fake optionality by using an isAlternative Node-construction
between the original project and a 0-duration task.

Note that when a project is absent, it is no longer relevant in the precedence network.
This can potentially harm transitive precedence relations.

3.1.1 Task Parts, duration and separation

Tasks can be split into parts, which is commonly known as “preemption” ([BVQOS],
[ZLT06]). This is required because it is common that employees work in shifts (for ex-
ample, available for 8 hours) and a certain task can take longer than 8 hours. Without
preemption, it would not be possible to ever execute this task. Of course, the combined
duration of the parts should equal the specified duration of a task. It might appear that
the duration of a task is longer than specified, which is caused by gaps in time between
the parts.

For performance reasons, the number of possibilities in which a task can be split into parts
has to be limited. Also, in practice is it undesirable to have many small parts. To imagine
the impact on performance without such restrictions, think of a task of 30 hours, which can
be split into parts, with minutes as time unit. The task could be split in 30 * 60 = 1800
parts of 1 minute, 60 parts of 30 minutes, 30 parts of 1 hour and every other possible
combination. Parts are not even required to have the same duration! As such the number
of possibilities explodes. ..

Figure gives an example task split into 4 parts. The durations of the parts and the
spacing between them (separation) can be bounded. Note that different parts can be
executed by a different set of employees.

A reasonable way to limit the number of parts is by specifying the minimal duration of
parts, by introducing an attribute minPartDuration. A decent choice would for example
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Task

Partl Part2 Part3 Part4

sep: bounded by minPartSeparation and maxPartSeparation
a: bounded by minFirstPartDuration, maxPartDuration
b: bounded by minMiddlePartsDurations, maxPartDuration
c: bounded by minLastPartDuration, maxPartDuration

Figure 3.3: Graphical representation of a task and its parts

be ‘half the length of a shift’, lets say 4 hours. So a task of duration 13 hours would have
a maximum of 3 parts (of duration 4, 4 and 5). If all tasks are defined this way, however,
it could happen for example that employees have nothing to do for 3 hours, as that time
is not long enough to start a part of another task.

To solve this problem, 3 minimal durations were introduced: minFirstPartDuration, min-
MiddlePartsDurations and minLastPartDuration. So the first and last part of the task are
now special cases. This allows you to define that the first part of a task does not have to
be of, for example, shift length (or half shift length).

Besides part durations, the distance in time (separation) between the parts can also be
controlled. It is common, for example, that at the end of a shift of an employee, another
employee has to immediately continue with that task (mazPartSeparation = 0).

To disable preemption for a task, set its minimal part durations equal to its duration.

3.1.2 Projects: releaseDate, softDeadline, hardDeadline and Allowed
Time Windows

releaseDate is a common attribute for projects in scheduling. For example, when you
want to state that a module can only be executed after next Sunday, because that is when
necessary parts arrive.

Deadlines are also a common feature. For example: the contract with a customer states
that the product is delivered before a set date. We distinguish between two different kinds
of deadlines: hard and soft. In case of a hard deadline, the project has to end before
the deadline, no exceptions. In case of a soft deadline, it is allowed to finish the project
after it, but then tardinessCost is incurred. It expresses that it is preferred to finish a
project before a set date, but it is ok to end it after, in which case a cost is incurred. Soft
deadlines are commonly referred to as due dates, but in this model the term softDeadline
was chosen to clarify its relation with hardDeadline.

Combined, these attributes allow you define one time window in which a project has to
be executed. This is sometimes not enough, specifically in rail maintenance scheduling:
maintenance usually takes place in the weekends (more than one time window). Some
tasks, like preparation, can be executed before the weekend. Other tasks, like storing used
equipment, can be executed after the weekend. But the tasks that actually prevent trains
from using the railway have be executed in the specified time windows.
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This is what the calendarid attribute for projects is for. The project has to be executed
within the time windows specified in the calendar. Use —1 to specify that a project is not
bounded by this kind of time windows.

The time window construct would make the attributes releaseDate and hardDeadline ob-
solete. It was decided to keep them for two reasons:

e More than one time window is not common (in our case it was introduced specifically
for RMS). Creating a new calendar for every project which only needs one time
window is an unnecesary hassle and using releaseDate and hardDeadline is easier in
that case.

e The concepts can be combined. Many projects can share a calendar that describes
which weekends are available for work. But each project can have a separate release-
Date and hardDeadline.

3.1.3 Precedences, minDelay, maxDelay and distanceCost

The existence of precedences is an extremely common concept within scheduling. The most
common format is “Project A has to end before project B can start” (A endBeforeStart
B). Figure shows the four basic types of precedences.

A endBeforeStart B A startBeforeEnd B
A |
B | B9

A endBeforeEnd B A startBeforeStart B
| A L\ E A |
L B = e B |

&——® Precedence, constrained by minDelay and maxDelay

Figure 3.4: Types of precedences and how minDelay and maxDelay would affect them.

The input model supports more types, but those are just other ways to formulate the
precedence, like described in the table below:

Precedence Mapping

A endAfterEnd B same as B endBeforeEnd A

A startAfterStart B same as B startBeforeStart A

A startAfterEnd B same as B endBeforeStart A

A endAfterStart B same as B startBeforeEnd A

A endAtEnd B A endBeforeEnd B with mazDelay = 0
A startAtStart B A startBeforeStart B with mazDelay = 0
A startAtEnd B A startBeforeEnd B with maxDelay = 0
A endAtStart B A endBeforeStart B with mazDelay = 0

A synchronize B A startAtStart B and A endAtEnd B

minDelay and mazDelay restrict the distance between the start/end of two projects.
Whether the start or end is involved, is based on the precedence type and it can be
concluded from the black dots in Figure [3.4 For example, with A endBeforeStart B,
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minDelay = 30 and maxDelay = 90, A has to end at least 30 minutes and at most 90
minutes before B starts.

The model also allows you to specify a distanceCostPerHour between two projects. It is
incurred when the distance between the relevant start/end of the two projects is bigger
than 0. For example, with A endBeforeStart B, distanceCostPerHour = 300 and the
decsion that A ends 2 hours before B starts, the incurred distance cost is 600.

3.1.4 Employee have Skills, Tasks request Skillsets

The concept of different skills is quite common in scheduling ([PBMNO7], [HK10]). A task
can only be executed by employees with the required skill. For example, when you want
to specify that only a qualified mechanic can do a certain task.

In our model, skills are designed a bit differently. It is best demonstrated by an example:

Skills: Mechanic, Electrician, Dutch, English.

2 employees: Anna and Bob are mechanics, but only Bob knows English.
Task: Place engine in Car, requires 1 employee with skillset { Mechanic, English}
In this case, only Bob can execute the task, as Anna does not know English.

To model this, give Anna and Bob the relevant skills in the table EmployeeHasSkill.
Define a skillset that contains the skills “Mechanic” and “English” in the tables Skillsets
and SkillPartOfSkillset. Finally, have the task “Place engine in car” request 1 employee
with that skillset in the table TaskNeedsEmpWithSkillset.

This design is equivalent to a design with just skills. For example, the skill “Mechanic
that knows English” would be linked to “Bob”. However, the design with skillsets is
easier to extend when new skills are introduced. For example, if there were 10 languages
defined as skill and a 11th (Spanish) was added, you would just have to assign the skill
to the relevant employees. In a design with just skills, you would have to investigate each
employee carefully: each employee with the skill “Mechanic that knows English” would
need to be assigned “Mechanic that knows Spanish” if they know Spanish.

Also, the Skillsets table only needs to contain sets that are actually used by tasks. For
example, there could be 10 different languages defined as skills besides “Mechanic”, “Elec-
trician”, et cetera. If the skillset “Dutch Electrician” is not used by any task, the set does
not have to be defined. This design is especially advantageous when used properly in a
GUI: a task would require a set of skills (in the example “English” and “Mechanic”) and
the skillset entity representing “English Mechanic” is created ‘under the hood’ and hidden
from the user.

There is also a slight disadvantage: if a task requests a single skill, this also has to be
defined as skillset (with one element). This, however, has no impact on performance on
the optimization, because in preprocessing, employees are matched to the skillsets they
cover with their skills.

In some situations, skill levels are desired. For example: “Mechanic” with levels 1 through
5, with a task requiring a Level 3 Mechanic. In the model, this is not directly supported,
but can be done, by defining skills “Level 1 Mechanic” through “Level 5 Mechanic” ex-
plicitly.
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3.1.5 Equipment and Zones

In CPS, “Equipment” is the name for discrete resources, an essential part of RCPSP
(IBK12], [BLKS83]). “Resource without Skills” would describe the concept well. It is
called Equipment because within CPS, it is mostly used to model equipment. However, it
can also model zones and even employees in a limited form, as described below.

When the problem to be solved with the CPS model does not include the concept of skills,
it can suffice to model ‘nameless’ employees as equipment: a function in time of available
employees and tasks requesting a number of them. A good example of this can be found
in the proof that CPS is NP-hard (Section . However, this kind of use is limited in
reality, because you most likely want to know which employee needs to do what task and
when.

Besides pieces of equipment, the concept of equipment in CPS can also be used to model
zones. For example, a task requiring 2 hammers is not that different from a task requiring
2 units of capacity in zone A. In aircraft construction, this concept is used to model
for example that only 3 people can be in the cockpit at the same time. This similarity
even continues when you consider equipment and zones to be modeled in a ‘containment
hierarchy’. See Figure [3.5] There are some important differences though, which are
discussed below.

Toolbox Zone A

VS
Hammer Screwdriver Zone Al Zone A2

Figure 3.5: Equipment vs Zones.

Tasks requesting Equipment, hierarchically

Assuming the Equipment table contains various pieces of equipment, the table Fquipment-
Hierarchy can be used to model: if a task needs one of equipment A, it also needs X of
‘Equipment B’ (a ‘child’ piece of equipment A). For example, you can model that when an
employee takes a toolbox with her, she also takes the tools in that toolbox (2 hammers and
3 screwdrivers) with her; other employees can not use those tools. Of course it is possible
to instead model this explicitly for every task requesting equipment A, but imagine the
inconvenience you would be confronted with if there are hundreds of those tasks. Note
that in the mathematical model (Section this is the case. It is modeled that way to
keep recursion out of the mathematical model.

When you use the table Equipment to model zones, FquipmentHierarchy is arguably an
even more useful concept. It allows you to, for example, model that if a task takes up one
unit of capacity of zone Al, it also takes up one unit of capacity of zone A (the ‘parent’
zone). For example, a maximum of 3 people are allowed to be in a the cockpit, but 2
on the left and right side individually; occupying space on either side counts towards the
maximum of 3 for the cockpit.
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Tasks disabling Equipment, hierarchically

The concept of ‘tasks disabling equipment’ originates from aircraft construction, where
zones are modeled as equipment. For example, because of safety regulations, it is required
that when a task takes place on top of the right wing (puts one person there), no tasks
can be executed under that wing. With On Right Wing and Under Right Wing being
zones, and the relevant task ¢, this would be modeled as: “Task ¢ needs one of On Right
Wing. Task t disables Under Right Wing”.

Now, lets say Under Right Wing consists of two sub-zones: URI and UR2. So the model
contains: “UR1 ‘also use 1 of’ Under Right Wing” and “UR2 ‘also use 1 of’ Under Right
Wing”. When Under Right Wing gets disabled, UR1 and URZ2 need to be disabled too.
The model takes care of that, assuming disableDirection is set to ‘right to left’ (more on
that later).

The concept of TaskDisablesEquipment works for ‘normal’ equipment too. Imagine a
maintenance task that prevents the use of pieces of equipment by other tasks. Note that
maintenance on pieces of equipment might also be modeled with TaskNeedsEquipment
instead of TaskDisablesEquipment. A very important difference, however, is that “Task
t1 needing all (the specified max) equipment for maintenance” (and same for task )
would mean that task #; and fy can not be executed at the same time. If expressed with
disable-constructs, they can be executed in parallel. Also note that “(the specified max)”
is not necessarily a constant (because of EquipmentExtraAvailable), another reason to use
a disable-construct if you want to claim all pieces of an equipment entity.

Note that the direction of the hierarchy is very important when considering disabling
equipment hierarchically:

normal Equipment “Toolbox ‘also use X of’ Hammer”. When a task disables the tool-
box and also disables the hammers, the ‘disableDirection’ is left to right (same
direction as ‘reading the hierarchy’).

Zones “Zone Al ‘also use 1 of” Zone A”. When a task disables zone A and also disables
zone Al, the ‘disableDirection’ is right to left (opposite direction as ‘reading the
hierarchy’).

Note there are two more disableDirections: ‘none’ and ‘both’. Use ‘none’ when disabling
entity A does not affect entity B nor the other way around. For example, you might
want to model that cars are disabled for maintenance, but the toolboxes that are in those
cars are still usable. Use ‘both’ when you want to model that disabling works both ways:
disabling zone A disables zone Al too and disabling zone Al disables zone A too.

3.1.6 Producing and consumption of Consumables

Consumption of ‘non-renewables’, a common term in scheduling ([DRH99], [JMR01]), is
also possible in the CPS model. The term “non-renewable” originates from the opposite
of “renewable” resources, which are available again after a task is completed (they are
not consumed). “Consumable” is a more practical word than “non-renewable”. A con-
sumable can be fuel, screws, water, et cetera. With ProjectProducesConsumable, you can
model for example that certain tasks consume fuel; other tasks can replenish fuel. It is
named “ProjectProducesConsumable” and not “TaskProducesConsumable” because the
producing interval does not have to be a task, it can be a module too.
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The atStart boolean

CPO does not allow a linear change in consumables over time, so we are limited to produc-
tion/consumption at either the start or end of a task or module. Usually, a consumable
is produced at the end and consumed at the start. But for example, if you want to model
emissions (which are not allowed to reach a toxic level), it makes more sense to produce
at the start of a task/module. This is probably more strict than necessary, but at least
you are sure it is safe.

3.1.7 Transition Matrices

The CPS model supports the concept of transition time and cost (also called setup time
and cost). It expresses that it takes time (and has a cost) to transition from one state
to another. In the case of CPS, it can be used to model for example the location certain
tasks have to be executed in. Define the different locations as task types and assign them
to the tasks. Then define a matrix of ‘travel times’ between those locations. This is of
course especially useful when travel times are significant.

There are more uses for transitions, although less likely to occur within the scope of CPS.
By modeling an oven as an employee, and different temperatures as task types, you can
model that it takes time for the oven to heat up and cool down.

Note that this concept makes it possible to model the Traveling Salesman Problem within
CPS.

In the CPS model, there is no cost incurred for an employee ‘doing nothing’ (not scheduled
to participate in a task part). Even when transitioning (non-zero transition time between
two task parts), the employee is ‘doing nothing’. The defaultCostPerHour (or overrid-
den costPerHour in the EmployeeHasSkill table), is only applied when the employee is
participating in a task part, and is therefore not included in the calculation of transition
cost.
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3.2 OPL files

Before the OPL model is described (per file), the way the files are structured is described.

3.2.0 OPL files structure

The main OPL model includes various smaller files (12 at the moment). Having just one
(or two) file (typical for Constraint Programming) is just not convenient with a project of
this size.

Including them as follows:

include "OO_read_inputdata.mod";
include "Ol_assertions_inputdata.mod";
include "O2_expand_inputdata.mod";

does not work too well, because when working in file 01, COS does not understand that
file 00 is also part of the project and will raise unnecessary errors. The model will run
properly, but during development it is inconvenient.

So, the files are ‘chained’ as follows:

(in the main file) include "11_output_variables_to_console.mod";
(in 11_output_variables_to_console.mod) include "10_write_Gantt_XML.mod";

(in 10_write_Gantt_XML.mod) include "09_constraints.mod";

(in 09_constraints.mod) include "O8_objective_function.mod";

3.2.1 OPL Model files

00_read_inputdata

e Constants (like TIME and precedence types).
e Tuple-types for each table.
e Reads the input data.

01_assertions_inputdata

e Assertions on the input-data.

e Not all assertions are in this file, some assertions depend on operations later
on. Because of the naming of the assertions (Al_ means the assertion is in file
01) you can tell what file to look in if an assertion fails.

02_expand_inputdata

e Contains preprocessing on the input data, like:

e Splits the precedences into four sets which cover all possibilities: endBeforeEnd,
startBeforeStart, startBeforeEnd and endBeforeStart. All other precedence
types are a special case of these.
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e Determines for each employee which skillsets she covers, based on her skills. The
costPerHour of the skillset is the maximum of the costPerHour values for each

skill included in the set. Or sum if the parameter costs.skillset.useSumiInstead OfMaz

is set.
e Determines project relationships, like parent and children.
e Determines equipment relationships, like parent and children.
e Splits tasks (leaf projects) from modules (non-leaf projects).
e Splits production/consumption of consumables

e Converts the input Date-elements to integers (based on minutes since the ear-
liest date in the input data).

e Converts the calendar availability ranges to integers.

03_assertions_circularreferences

e Using execute blocks, determines if there are circular references in either the
project hierarchy or the equipment hierarchy.

e Halts the model (using assertions) if circular references were found.

04_projectpreemption

e Responsible for allowing the preemption of tasks, by setting constraints on how
many parts each task can have.

e Now that the tasks have been split from the modules (in file 02), there are quite
a few assertions listed that only hold for tasks.

e Calculating the maximum number of parts each task can consist of, by us-
ing the minFirstPartDuration, minLastPartDuration and minMiddlePartsDu-
rations data.

e Constructs tuple set linking Tasks x Skillsets.
e Constructs tuple set linking Tasks x Parts x Skillsets x Employees.

05_treeoperations_on_equipment

e This file mostly deals with recursively generating true TaskNeedsEquipment
requirements from the input TaskNeedsEquipment and EquipmentHierarchy.
For example, “Task T needs 2 of equipment A” and “Equipment A ‘also use 2
of” equipment B”, results in “Task T needs 2 of equipment A and 4 of equipment
B”.

e [t builds the required elements for stepFunctions for equipment availability.

e Similar to the recursive generation of TaskNeedsEquipment, it recursively gen-
erates true TaskDisablesEquipment.

06_decision_variables_and_expressions

e stepFunctions for calendars.

e cumulFunctions for equipment and consumables.

e interval variables for projects and parts and employee participation.
e sequence variables for employees.

e Decision expression dealing with makespan.

e Decision expressions dealing with calculation of total costs.
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07_configure_search

e File containing execute block to set optimization parameters.

e At the moment it only sets the time limit of the optimization.

08_objective_function

e Contains the various possible objective functions.
e Currently there are three possibilities: minimize nothing, minimize makespan

and minimize costs (which is flexible because of the configurable weights).

09_constraints

e Contains the actual constraints.
e Contains markers like @mathC1.1, which means the constraint is the implemen-

tation of the mathematical constraint in Section 2.1.51

10_write_Gantt_XML
o Writes an XML-file representing a Gantt-chart of the solution.
e The file can be opened with the Java-program in the output folder.

e It converts integer time representations to proper dates.

11_output_variables_to_console

e Writes the most important output variables (which are not in the Gantt-chart)
to console.

e This is very useful for solving instances in bulk (using batch-files and oplrun)
because the relevant information is lost (can not be seen in the COS IDE).

3.3 Output

As output, the OPL model prints some values to console and generates an XML-file which
represents a Gantt-chart. Both formats are explained here.

3.3.0 Console Output

The text below is an example of the console output printed by the OPL model.

makespan: 50

(MakespanCost )
(TotalProjectFixedCost)
(TotalProjectUnperformedCost)
(TotalProjectTardinessCost)
(TotalProjectEmployeeCost)
(
(
(
(

w - o o
(o]

TotalProjectEquipmentCost)
TotalDistanceCost)
TotalTransitionCost)
Weighted Total)

N e =)
oo

I+ +4+++++
(@]
DH N~ O N oo

Lo ¥ ¥ ¥ X X ¥ ¥ %
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3.3.1 Gantt Chart

The OPL model generates an XML-file. The structure of this XML-file is a common format
which can be opened with Gantt-chart viewers used by IBM ILOG. A simple viewer is

sv.jar, included with the OPL project. Examples of the Gantt-chart visualization can
be found in Figure (Project View) and Figure (Resource View).

— 4| TTue Nov 23,10 [1eiect Mow 24, 10 [Thu rov 25,10 [Frinov 26,10
‘[T o 4 8 [ 1z | 16 | 20 | 0 4 6 [ 1z [ 16 [ 20 | © 4 6 [ 12 [ 18 | 20 | © 4 6 [ 12z [ 18 | 20
JAll Activities
¢ Main Project . 4
¢ Project Aircraft 35 -
¢ v v
L3 336 W W vertilationdAC 335
# Ventilation/AC 337 W vertiistionsac 337
¢ Tsk 1951 M337-T2 : W sk 1951 MasTTZ
Tsk 1951 M337-T2(0) |- 0l Tsk 1951 M337-T2 (0)
¢ Ventilation/AC 338 PP rtiztior/AC 338
% Tsk 2104 M338-T2 WP i 2104 M3BT2
Tsk2104 M336-T2(0) | 7] Tsk 2104 M338-T2 ()
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¢ Tsk 2187 M339.T2 g WP 1=k 2187 MazeT2
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Tsk 2254 M340-T2(0) | | Tsk 2254 M320-T2 (0)
¢ Ventilation/AC 341 : WP -erilstioniaC 341
¢ Tsk 1857 M341-T1 : W 1< 1257 MEa1T1
Tsk 1857 M341-T1(0) |- B Tsk 1857 M341-T1(0)
¢ Ventilation/AC 342 E WP vertitationsac 302
# Tsk 1739 M342.T1 : WP Tk 1738 MazTH
Tsk 1739 M342-T1(0) | A Tsk 1739 M342-T1 (@
[} 343 : v . 4 343
¢ Ventilation/AC 344 WP entitationsac 340
¢ Tsk 2122 M344-T2 : W k2122 MzaaTz
Tsk2122M344-T2(0) | ] Tsk 2122 M34-T2(0)
¢ Ventilation/AC 345 g P erilationsAC 345
¢ Tsk 1816 M345-T2 P - 1516 3152
Tsk 1816 M345-T2(0) | Tsk 1816 M345.T2 (0)
¢ Ventilation/AC 346 E ® 1z
VentilationiAC 346 (0) ® 123
¢ Ventilation/AC 347 WP vertilation/ac 347
¢ Tsk 1904 M347-T1 : W 1=k 1304 MaarT1
Tsk 1904 M347-T1 (0} | [ Tsk 1904 M347.T1 (0)
Figure 3.6: Exzample Gantt Project View.
Name [Tue Mov23, 10 |wied Wow 24, 10 [Thu Now 25, 10 [Friniov 26,10
0 [ 4 8 | 12 | 16 [ 20 | o | 4 [ 8 [ 12 [ 16 | 20 | o | 4 | 8 | 12 [ 16 | 20 | o | 4 [ 8 | 1z | 16 | 20
All Resources
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Mechanic 1 EE0m 5 S E i [ e o] J 6] 1 6] m £
Mechanic 2 e | 1 | 11 M @
Mechanic 3 [ e |
Mechanic 4 ] E E
Mechanic § m £
Mechanic 6 [ ]
Nechanic 7 o =
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Cleaner 1
Cleaner 2
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Figure 3.7: Ezample Gantt Resources View.

The resource view also contains a line for every equipment entity and consumable in the
model. However, the XML format and the viewer were not designed to support entities
being used by more than one task at the same time. The view can therefore tell you when
equipment and consumables are used by a task, but it does not tell you how many of them.
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Chapter 4

Integration

In this chapter we will discuss the integration of the OPL model in various contexts.

4.0 Rail Maintenance Scheduling

Confidential part of thesis.

4.1 ODME

ODME can be used to construct a GUI for an optimization model. A lot of the elements
are generated automatically. This section describes the process of creation of an ODME
Application for CPS.

4.1.0 Data Model

First, the Data Model has to be defined. This can be done from scratch, which would be
typical when working with ODME-integration from the start of an optimization project.
ODME also offers features to reverse engineer a data model from a relational database or
OPL model. As the OPL model for CPS was already under construction, that last feature
was used to reverse engineer its data model for use in ODME.

Using this feature, the foreign key relations are not included in the resulting data model.
They can be added, of course, but in the CPS case, it was decided not to because it
caused some issues. For example, values of calendarid in Employees can be —1, meaning
“Employee is always available”. But —1 is not in Calendars and is therefore not a valid
foreign key. null could be replaced as having this semantic, but in OPL, a null value for
an integer attribute is represented as 0, which could be confused for a valid calendarid.
Because similar semantics for —1 are used throughout the model and foreign key relations
are checked in the assertions in the OPL model anyway, it was decided to not redesign the
model.

After the tables have been imported, some manual work has to be performed to create a
visual representation of the data model. Because of the lack of proper foreign keys, ‘plain
arrows’ were used to indicate the relations between the tables. This resulted in the model

in Figure (on page[26).
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4.1.1 Mapping

Next, views on the data have to be defined and initial data for each table has to be
specified. For each table, a simple table view was generated. The initial data for each
table is empty, except for the Parameters table, which contains the supported parameter
keys and acceptable default.

The relational data model now has to be mapped to OPL input constructs (see Figure.
ODME can then generate an OPL mod file containing the necessary data structures. How-
ever, in the CPS case, the generated mod file is simply ignored and 00_read_inputdata.mod
is used instead, because it uses with ... in ... OPL constructs to restrict the domains
of input variables.

B Awvailability ok External data (ODM Inputs)
H %alencler: Map to Input 1 DAvailability : {TAvailability}
EH Consumables i+ DCalendars: {TCalendar}

EH EmployeeHasSkill Using Sets --> i+ DConsumables : {TConsumabl
g Employees Using Arrays —> i+ DEmployeeHasSkill : {TEmploy
Equipment i S i+ DEmployees : {TEmployee}

E EquipmentEdratvailable i+ DEquipment: {TEquipment}
EH EquipmentHierarchy Map to Output i+ DEquipmentExtrafvailable: [TE
EH Parameters i+ DEquipmentHierarchy : {TEquij
El Precedences Using Sets --> i+ DPararmeters: {TParameter}
B ProjectProducesConsumable Using Arrays -—> i+ DPrecedences: [TPrecedence}
B Projects = _ i+ DProjectProducesConsumable
B SkillPartOfSkillset i+ DProjects: {TProject}

B Skills P — i DSkillPartOfSkillset : {TSkillPart!
B Skillsets 3 DSkills : {TSkill}

A TaskDisablesEquipment it DSkillsets : {TSkillzet}

B TaskMeedsEmpWithSkillset i+ DTaskDisablesEquipment : {TT:
EH TaskMeedsEquipment £t DTaskMeedsErmpWithSkillset : |
B TaskTypes i+ DTaskMeedsEquipment : {TTasl
EA TransitionMatrices i+ DTaskTypes: {TTaskType}

i+ DTransitionMatrices : [TTransit
ot Internal data (ODM Outputs)

Figure 4.1: Mapping of relational data model to OPL elements.

4.1.2 ODME Application

It is now possible to generate the ODME Application shown in Figure This GUI can
still be improved a lot. For example, when entering the input data, you would want to
hide the integer keys from the user where possible. However, constructing a user interface
was not one of the goals of this project. Also, it is not that useful to have a generic user
interface. Even though the CPS model can be used for a lot of different problems, the
user interface will probably be case- or company-specific.
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»  Filter is not active. Displaying 2 rows

Mew Default Scenario

id name description unit initialamount  upperbound lowerbound
1 Coca Cola Zero Coca Cola Zero cans 100 100
2Energy Drink  Bullit Energy ... cans 10 100

er
Mew Default Scenario
Analysis

{1 Input Data
[ Parameters
[ Calendars
[ Availability
= Resources
-[7] Employees
[ Skills
--[7] Skilsets
[ Skill Part OF Skillset
--[7] Employes Has Skil
-[1] Equipment
-[7] Equipment Hierarchy
-[1] Equipment Extra Available
=2 Activities
- [1] Task Types
[ Projects

[ Precedences

[ Transition Matrices
E}'-l:j Activities using Resources
-] Task Needs Emp With Skills—
--[] Task Needs Equipment
-[77] Task Disables Equipment +

LI} +

Figure 4.2: Generated ODME Application for CPS.
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Chapter 5

Performance Analysis

In this chapter we will evaluate the performance of the CPS model on various datasets.
For each dataset, we describe the process of acquiring the dataset, transforming it to the
CPS input format, analysis of the output and comparison to benchmarks.

Philippe Laborie has been so kind to supply a library of 12 RCPS-related datasets origi-
nating in literature. The number of instances in each dataset varies greatly: one dataset
has only one instance, another one has over 11 thousand. 8 out of 12 datasets would fit in
the CPS model, indicating the worth of CPS being generic. Some datasets do not fit, for
example because the dataset requires earliness costs or a different objective function. We
analyze two that fit: “MultiSkills RCPS” ([PBMNO07]) and “MultiMode RCPS” ([SD9§]).

5.0 Common Elements

This section discusses some common elements in the processes of testing the various
datasets.

5.0.0 Input data conversion

During the project a custom tool was developed to convert XML-data to an Excel data
format. It was extended to support the conversion to data formats that CPS can take as
input.

By reusing this code, several small tools were developed to parse various input formats so
they could be converted to the CPS input format. Batch-scripts were designed to execute
the conversion on multiple input files in sequence.

5.0.1 CPO from command-line (oplrun)

COS does not support queuing of several optimization jobs. However, it is possible to
call oplrun from the command-line. We pass the path to the CPS model, the input data
and the name of the output Gantt-file as arguments. Batch-scripts were designed to call
oplrun for each test instance. The console output of each instance was saved to a separate
file for each instance.
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5.0.2 Aggregating CPO Output

The text below is an example of console output that is generated by CPO. In COS, it can
be viewed in the Engine Log. A star (*) at the start of the line indicates a new optimal

solution is found.

Log search space
Memory usage
Variables fixed

Initial process time

Minimization problem — 119 variables, 514 constraints
Preprocessing : 68 extractables eliminated
TimeLimit = 18

0,01s (0,00s extraction + 0,0ls propagation)
549.,9 (before), 515,6 (after)
1,6 MB (before), 2,0 MB (after)

8
Using parallel search with 4 workers.

1
1.
1.
* 38
38 1.

29 1.

Best Branches
.000

000
006
581
001
423

Non—fixed W Branch decision
3 1 on ITaskParts({12001,0})
22 3 on IProjects(12001)
4 2 on IProjects (6003)
0,425 3 =
3 4 on IProjects(10001)
0,48s 1 =

Search terminated normally, 2 solutions found.

Best objective

Number of fails
Total memory usage
Time spent in solve

Search speed (br. / s)

*
|
!
!
! Number of branches
!
!
|
!
!

: 29 (optimal — effective tol. is 0,0029)
5.984
2.601
14,8 MB (11,6 MB CP Optimizer + 3,2 MB Concert)
0,49s (0,49s engine + 0,00s extraction)
11.987,1

Some datasets discussed below resulted in hundreds or thousands of such output files.
In order to get an overview of the data, a custom tool was developed (in Java) and we
named it “OPL20verview”. It takes all console output files in a folder and generates a
CSV-file which contains one row for each instance. Before viewing the CSV-file in Excel,
depending on the locale in which the optimization was performed and the locale of the
Excel installation, decimal points might have to replaced by decimal commas. Description
of the columns (together with the value in the example output):

48



variables the number of decision variables 119
constraints the number of constraints 514
firstResult the objective value of the first solution that was found 38
firstBranch the branch at which the first solution was found 581
firstAt time at which the first solution was found 0,42
lastResult  the objective value of the last solution that was found 29
lastBranch  the branch at which the last solution was found 1423
lastAt time at which the last solution was found 0,48
endType the way the optimization was terminated, either “nor- normally

mally” (CPO returns a solution and proves optimality),

“by limit”, “infeasible”, or “no solution within limit”
nSolutions  the number of solutions that was found 2
nBranches the number of branches that were searched 5984
time ‘time spent in solve’ (slightly larger than either the time 0,49

at which the optimal solution was found or the time limit)

5.0.3 Test machine

The machine used to run the tests has the following characteristics:

e AMD Phenom II X4 965 Processor, quad-core, 3.40 GHz

8 GB of DDR3 memory
Windows 7 Professional 64-bit Service Pack 1

IBM ILOG CPLEX Optimization Studio 12.4 64-bits

Java 6, Update 31.

5.1 MultiSkills RCPS

In RCPS, employees are modeled as discrete resources with a capacity function over time.
For example, the resource “Mechanics” with a constant capacity function of 12 would
model that there are 12 mechanics. Tasks can request a number of employees (possibly
from different resources). From the perspective of an employee it has exactly one skill. In
MultiSkills RCPS, employees can have more than one skill.

The data originates from [PBMNO07].

5.1.0 Input Analysis

Figure [5.1] shows an example input file of a MultiSkills RCPS instance.

By taking a closer look at the input format, we can determine which elements of CPS we
need (and we can conclude that the conversion is possible):

o Skills: The number of different skills is specified, but they do not have a name
associated with them. For CPS, generate the required number of Skills, Skillsets
and link the relevant entries using SkillPartOfSkillset.
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25 5 12 2 Number of Tasks
Number of Skills
Number of Employees

00100 60123 45 Number of Machines
10100 2 01

2 0 100 1 3

3 0 100 2 3 4

4 0 100 2 & 7 Employees:
5010080343 o i bilit

60100 201 2nad a'l.milaI::ilit'-_.r.l.Ir

7T 0100 3 6 7 8 Number of Skills (N)
80100 801234678 N * (Skill id)

9 0 100 4 01 3 6

10 0 100 3 0 & 7
11 0 100 53 01 2 3 @&

000 -120
114-1243¢81 Tasks:
229-1243¢81 Task id
duration
e release date
22 4 9 -110 3 deadline (-1 = no deadline)
2% 4 5 -1 28136 Number of Skill Request pairs (N)

N * (Skill id, Request X of that Skill)
24 0 30 -1 0O

0161345795 11 12 13 15 18 15 23 14 20 21
14610 2 8

2 1 24

3

1 24

Precedences:
Task id
HNumber of Successors (N)
M * (Task id of Successor)

22 1 24
23 1 24

24 0
Machines:
06 6 10 11 12 1& 20 Machine id
111 3 45 7 9 14 17 18 19 22 23 Mumber of Tasks on that machine (N)

M * (Task id on this machine)

Figure 5.1: Example input file of MultiSkillsRCPS.
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e Employee: Even though ‘start availability’ and ‘end availability’” are specified (al-
ways 0 and 100 respectively), they are not used in the model. It suffices to create
Employees and their relevant skills in EmployeeHasSkill.

e Tasks: There is no project hierarchy in this dataset. There are no tasks in any of the
instances that have a deadline. In CPS, create tasks in the Projects table, specify
their release date and disable preemption. Use TaskNeedsEmpWithSkill to have the
tasks request employees. One default TaskType is required.

e Precedences: In this dataset, precedences are defined as lists of successors. In CPS,
create a new “endBeforeStart”-precedence for each successor of each task.

e Machines: Model the machines as Equipment with capacity 1. Define the relevant
TaskNeedsEquipment entries.

The follwing CPS tables are empty: Calendars, Availability, TransitionMatrices, Equip-
mentHierarchy, EquipmentExtraAvailable, TaskDisablesEquipment, Consumables and Pro-
jectProducesConsumables.

Also, a time limit for each instance was determined. The time limit should be large enough
to give CPO an opportunity to find a solution and preferably it should be based on the
expected complexity. After some experimentation, NumberOfSkills * NumberOfTasks (in
seconds) was chosen as time limit. The dataset is split into 5 subsets: instances with 25,
35, 40, 45 and 50 tasks. For this series of tests, only the last subset (160 instances) was
used.

5.1.1 Output Analysis

The result of processing the 160 instances is an Excel sheet with 160 rows, which is too
big to be displayed here. A short overview is given below:

CPS Output Summary MultiSkillsRCPS

#instances 160

#no solution within time limit 3 1.9%
#normal termination (optimal) 2 1.3%
#terminated by time limit 155 96.9%

As noted before, the overview contains data on the first solution and on the last solution.
On average, the solution improves 9.7% between the first and last solution found, with
a standard deviation of 6.8% and maximum of 29.9%. This indicates that in general the
first solution found is already a very decent one.

To determine the performance of the model, we would like to make a comparison with
benchmarks (known optimal solutions). However, there are no benchmarks publicly avail-
able for this dataset. Philippe Laborie made a dataset-specific CPO model. Using the
same time limits, we ran that model (from now on referred to as the domain-specific model
(DSM)) on all the instances, resulting in the overview below:

DSM Output Summary MultiSkillsRCPS

#instances 160

#no solution within time limit 0 0.0%
#normal termination (optimal) 7 4.4%
#terminated by time limit 153 95.5%
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The instances that result in a proven optimal solution in CPS also result in (the same)
proven optimal solution in DSM. The other way around, when DSM proves a solution is
optimal but CPS does not, CPS finds that solution very quickly (within 1 second) but
fails to prove optimality (within the time limit).

Out of the 160 instances, CPS performs better in 22 cases (13.8%), worse in 114 casesﬂ
(71.3%) and equal in 24 cases (15%). The table below gives an overview of the performance
of CPS compared to DSM.

Instances CPS performs o max

all instances 1.9% worse 2.5% 10.2% worse
instances CPS does better 1.5% better 1.1% 4.8% better
instances CPS does worse  3.0% worse 2.1% 10.2% worse

A graphical representation of the comparison can be found in Figure The X-axis has
instances ordered by ‘difficulty’ (#tasks * #employees * #skills. The Y-axis is the per-
centage CPS performs worse than the domain-specific model (so negative values represent
it does better). Because of the ordering of the instances on the X-axis and the lack of a
pattern in the graph, it can be concluded that the performance of CPS compared to DSM
is not related to the difficulty of the instance.
27
10 - o
g 3 * = =
& o

4 ®

instances: 20 40 &0 20 100 120 140 1680

Figure 5.2: Comparison of MultiSkillsRCPS results between CPS and DSM.

It was determined that the generic CPS model performs 1.9% worse on average, compared
to a domain-specific model, on the Multi Skills RCPS dataset. This is considered an
acceptable loss of performance.

In the 3 instances where CPS does not find a solution within the time limit, but DSM does, CPS is
considered to perform ‘worse’, but the 3 entries are not included in the calculation of the averages and the
graph.
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5.2 Multi Mode RCPS

In RCPS, tasks can only be executed in one way. MultiMode RCPS introduces the concept
of alternatives: multiple ways to execute a task, making different resource requests and/or
having a different duration. In practice, this allows you to for example model that certain
employees can do a task faster. Another example is having a third party alternative for a

task.

The data used for this test case originates from [SD9§|. How the instances were generated
is described in the second part of the paper, titled “Computation”. This dataset has also
been used in [Har(Ol] as a test set, among others, which strengthens the reliability of the

dataset.

5.2.0 Input Analysis

The listing below is an example of the input format of a MultiMode RCPS instance.

st ok ok ok ok K ok K koK ok oK K KK oK K R oK K kK Sk oK K KK Sk oK R oK K koK K oK K KK ok oK R oK K koK ok ok K kK ok ok R oK K koK ok ok K kK K ok R ok K koK ok
file with basedata : mm2_. bas

initial value random generator: 1424959589

s ok ok ok ok ok ok K koK ok oK K KK oK K SR oK K KK K oK K KK Sk oK R oK K koK K ok K kK ok oK R oK K koK ok ok K kK ok ok R oK K kK ok ok K ok Kk ok R ok K koK ok

projects 1
jobs (incl. supersource/sink ): 12
horizon 86
RESOURCES
— renewable ) R
— nonrenewable 2 N
— doubly constrained : 0 D

ok ok ok ok ok ok ok ok ok ok o ok ok ok ok oK R ok o kK ok ok K ok K ok oK R ok K ok oK ok ok K ok K ok oK ok K ok Kk ok K ok K ok ok ok K kK ok ok ok ok Kk ok R ok Kk KOk
PROJECT INFORMATION:
pronr. #jobs rel.date duedate tardcost MPM-Time
1 10 0 13 3 13
st ok ok ok oK R ok K oKk Sk oK KK KK R oK K KK K oK K KK Sk K R K K koK K oK K KK Sk oK K oK K koK ok ok K KK Sk ok R oK K koK ok ok K Kk K ok R ok K kK ok

PRECEDENCE RELATIONS:

jobnr. #modes #successors successors
1 1 3 2 3 4
2 3 2 5 6
11 3 1 12
12 1 0
ok ok ok ok oK o ok oK ok ok ok oK ok K ok oK R ok K ok ok ok ok K ok K ok oK R ok K ok ok ok ok K ok K ok oK R ok K ok oKk ok K ok K ok ok ok K koK ok ok K ok Kk ok R ok Kk K ok
REQUESTS/DURATIONS:
jobnr. mode duration R 1 R 2 N1 N 2
1 1 0 0 0 0 0
1 3 6 0 9 0
2 9 5 0 0 8
3 10 0 6 0 6
11 1 6 0 2 0 10
2 9 0 1 0 9
3 10 0 1 0 7
12 1 0 0 0 0 0

ok ok ok 3 ok ok K Kk oK K KK oK K K oK K K Kk 3K K K ok K K K ok K Kk sk 3 Kk ok 3 K ok ok K Kk 3k Kk ok 3K Kk ok K Kk ok K K ok ok K Kk ok o Kok K koK
RESOURCEAVAILABILITIES :
R1 R2 N1 N2
9 4 29 40

>k 3k 3k 3k 3k >k 3k 3k sk sk >k 3k 3k sk sk >k 3k sk sk sk >k 3k Sk sk sk >k >k 3k sk sk sk >k 3k sk sk sk >k 3k 3k sk sk >k 3k 3k sk sk >k 3k 3k sk sk 3k 3k 3k ok sk ok 3k 3k ok sk ok 3k 3k ok sk ok ok skoskok ok
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After taking a closer look, we can conclude that we need the following CPS constructs:

o Renewable: Map the renewable resources to Equipment. The availability stated in
the RESOURCEAVAILABILITIES section is the defaultAmount.

e Non-Renewable: Map the non-renewable resources to Consumables. The availabil-
ity stated in the RESOURCEAVAILABILITIES section is the initialAmount (and

upperbound). Set 0 as lowerbound.

e Jobs: For each job in the input data, create an entry in the Projects table in CPS.
These entries will be modules (because they will have child-nodes). Set isAlterna-
tiveNode to true.

e Precedences: For each job, the successors are listed. In CPS, create a new
“endBeforeStart”-precedence for each successor for each task.

e Modes: For each mode of each job, create a task in the Projects table in CPS. Set
subProjectOf to the relevant module that was created to represent the job. Set its
duration and use ProjectProducesConsumable and TaskNeedsEquipment to request
non-renewables and renewables respectively. One default TaskType is required.

As we are focussing on makespan, the rel.date, duedate and tardcost are ignored.
MPM-Time is also not relevant and doubly constrained resources do not occur in any in-
stance. The tests were not executed with minimal tardiness cost as objective function as
there were no benchmarks available to compare the results to.

The following CPS tables are empty: Calendars, Availability, TransitionMatrices, Skills,
Skillsets, SkillPartOfSkillset, Employees, EquipmentHierarchy, EquipmentExtraAvailable,
TaskDisablesEquipment.

The dataset is split into multiple subsets. The basis is having 2 renewables, 2 non-
renewables, 16 jobs and 3 modes per job. c¢15 and ¢21 are examples of this. The j-series
then varies the number of jobs. The m-series varies the number of modes. The n-series
varies the number of nonrenewables. The r-series varies the number renewables. The
result can be found in [5.1]

Originally in the research for [SD98] 640 instances of each subset were generated. However,
not all generated instances were feasible. The infeasible instances were excluded from the
dataset. For j30, the hardest set, it was not always known if an instance was feasible or
not, so all instances are included.

All subsets except j30 are considered to be ‘easy’. Because of the large number of test
instances and a lack of testing time, each non-j30 instance was assigned a time limit
of (#Jobs + 2 seconds. The +2 is caused by the presence of a ‘supersource’ job (0-
duration, takes place before all other jobs) and ‘sink’ job (0-duration, takes place after
all other jobs). The j30 subset is considered to be ‘hard’ and each instance was given a
10 % (#Jobs + 2) = 320 seconds time limit.

5.2.1 Output
Non-330 subsets

As mentioned before, the non-j30 instances are considered to be easy. Therefore, we will
not discuss them in detail. The optimal solutions are known as well, so we can compare
the CPS results with those. A short overview:
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Set #Renewables #NonRenewables #Jobs #Modes/Job #instances

cl5 2 2 16 3 551
21 2 2 16 3 552
i10 2 2 10 3 536
j12 2 2 12 3 547
i14 2 2 14 3 551
i16 2 2 16 3 550
i18 2 2 18 3 552
320 2 2 20 3 554
330 2 2 30 3 640
ml 2 2 16 1 640
m?2 2 2 16 2 481
m4 2 2 16 4 555
m5 2 2 16 5 558
n0 2 0 16 3 470
nl 2 1 16 3 637
n3 2 3 16 3 600
rl 1 2 16 3 553
r3 3 2 16 3 557
r4 4 2 16 3 552
15 5 2 16 3 546

11182

Table 5.1: Overview of the properties of the subdatasets.

CPS Output Summary MultiMode RCPS, non-530

#instances 10542

#no solution within time limit 15 0.1%
#normal termination (optimal) 6988 66.3%
#terminated by time limit 3539 33.6%

Of the 3539 instances terminated by the time limit, in 2748 cases (77.5% of 3539, 26.1%
of 10542) CPS does find the optimal solution, but does not prove optimality (and thus
continues searching).

So in 791 cases (7.5% of 10542), the optimal solution is not found. In those cases, the
solution that is found by CPS is 5.1% worse on average with a maximum of 32.14%. There
are only 5 cases in which the solution that is found is worse than 20%. The solutions to
this instances would most likely improve with a larger time limit. Keep in mind the time
limit was kept low because of the huge number of instances. These 5 instances were not
investigated further, because focus shifted to the j30 subsets.

On average over all instances, CPS performs 0.4% worse than optimal.

330 subset

Out of the 640 530 instances, there are 88 instances that are not listed in the ‘best results
so far’ list for MultiMode RCPS in Philippe Laborie’s library. For all those 88 instances,
CPS can also not find a solution within 320 seconds. It is therefore assumed that these
instances are infeasible and they are excluded from the analysis below. In the non-;30
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instances, the ‘known best’ are optimal solutions. For the j30 instances, the ‘known best’
are not necessarily optimal.

CPS Output Summary MultiMode RCPS, 330

#instances 552

#no solution within time limit 1 0.2%
#normal termination (optimal) 332 60.1%
#terminated by time limit 219 39.7%

Out of the 552 remaining instances, CPS performs better in 2 cases (0.4%), worse in 98
cased| (17.8%) and equal in 452 cases (81.9%). The table below gives an overview of the
performance of CPS compared to the known best solutions. A graphical overview (like for
MultiSkills RCPS) was constructed, but it is not suitable here because it is unreadable
caused by the large number of instances.

Instances CPS performs o max

all instances 0.6% worse 1.6% 11.9% worse
instances CPS does better 2.2% better 0.1% 2.3% better
instances CPS does worse  3.7% worse 1.9% 11.9% worse

It was determined that the generic CPS model performs 0.6% worse on average, compared
to the best known solutions, on the Multi Mode RCPS dataset. This is considered to be
a very acceptable result.

5.3 Rail Maintenance Scheduling

Confidential part of thesis.

5.4 Aircraft Assembly

Confidential part of thesis.

?In the 1 instance where CPS does not find a solution within the time limit, but a solution is known,
CPS is considered to perform ‘worse’, but the entry is not included in the calculation of the averages.
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Chapter 6

Conclusion

This final chapter will conclude the thesis. First, the developed CPS model will be evalu-
ated. After that some notes regarding possible future work will be made.

6.0 Evaluation

As Chapter [2] stated, the goal of this master project is to develop a generic optimization
model for the CPSP, using CPO.

To evaluate the developed CPS model, one of the things to be measured is how generic
it is. Because it is generic, a limited loss in performance is acceptable. Performance is a
relevant keyword in that sentence. Another important keyword is realistic: CPS extends
RCPS so it can be used in practice. Generic, realistic, and performance are the main
topics for the evaluation of the developed CPS model.

Generic As stated in Chapter [5, the CPS model supports 8 out of 12 datasets that were
found in RCPS-related literature, and covers Aircraft Assembly and Rail Mainte-
nance Scheduling. Also, it covers the requirements specified in Section Thus,
the CPS model is considered to be sufficiently generic. Of course, it could be even
more generic, but in its current state it can cover many cases of ‘constructing a big
object’ and more: maintainance projects like rail maintenance scheduling.

Realistic In most academic research concerning scheduling, makespan is the relevant
objective function. In practice, however, finishing a project as fast as possible is
not the only factor; other objectives can be important as well, like minimizing costs.
CPS therefore supports the minimization of costs: a weighted sum of task-specific,
employee-specific, equipment-specific costs, et cetera (for a full overview, see Section
[2.1.4). The configurable weights make this objective function very flexible and thus
powerful.

Performance The performance of the CPS model was analyzed with various use cases
in Chapter [5} Based on the results of the MultiSkills RCPS and MultiMode RCPS
datasets, we can conclude that the performance of CPS is very acceptable for theo-
retical cases not involving preemption.

The dataset of Rail Maintenance Scheduling is based on real-life data. Confidential
part of thesis.
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In the Aircraft Assembly case, we experimented with an objective function based on
costs instead of makespan. Confidential part of thesis.

The CPS model is also well documented. The requirements in Section [2.0.0} the formal
definition in Section the description of the design in Section [3.0} and the explanation
of the design decisions in Section together with the exhaustive commments in the
OPL code document the CPS model clearly. This detailed documentation, together with
the unprecedented file structurd'| makes it well maintainable.

However, when the CPS model will be used as basis for case specific solutions by IBM, it
will most likely have to be adapted to fit the case perfectly and to increase its performance.
A case will have its own GUI, its own connections to other data sources and also its own
specifics that allow for optimizations.

Because CPS has a clean, generic design, has acceptable performance in various application
domains, is well documented, and is well maintainable, it is considered to be well suited
as a stepping stone for future work, for both practical implementation of domain specific
cases IBM will come across, and continued development of the model.

6.1 Future Work

In this section some topics for possible future work are discussed.

6.1.0 Search Phases

Currently, the CPS model only uses the ‘default’ search of CPO. There was some experi-
mentation with ‘Extended’ inference and configuration of search phases (in the confidential
part of the thesis). Search phases can be used to tell CPO what part of the solution to
solve first. For example, it is possible to instruct CPO to first determine which tasks (out
of alternatives) should be present and solve the rest afterwards.

Using a parameter (in the Parameters table) to set the inference level would be trivial.
However, generic support of search phases is a big challenge.

6.1.1 Confidential Part of Thesis

Confidential part of thesis.

6.1.2 Research into optionality

The CPS model supports optionality in a limited sense. A root project has the attribute
forcePresence which can be set to false if excluding that project tree is an option. The
CPS model does not support optionality on individual tasks. The decision to do this is
based on the fact that without optional tasks in the project network, a stronger ‘push-
down-presence’ construct could be created (see Section and the example reasoning;:
when you are building an airplane, attaching the right wing is not optional).

! Acccording to Wim Nuijten, Philippe Laborie, and Stéphane Michel
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Optionality can still be ‘faked’ in CPS, by giving a task a 0-duration alternative task. The
performance difference in CPO between this ‘fake’ optionality and real optionality has not
been tested.

6.1.3 More performance tests on cost as Objective Function

Most of the tests in Chapter | were performed with makespan as objective function.
Only in the Aircraft Assembly case, performance was tested with a cost-based objective
function.

Almost all research in the area of RCPS uses makespan as objective function. There-
fore, most of the generated/constructed instances are designed for this. The weighted
cost objective function of CPS is very flexible and supports many different real-life cases.
However, not many performance tests have been done in this area. This remains a subject
of future research.

6.1.4 Confidential Part of Thesis

Confidential part of thesis.

6.1.5 Disruption Management

Creating an optimal schedule at the start of the project is undeniably useful. However, in
practice, it frequently happens that a schedule is no longer feasible, because of disruptions
(illness for example). In such cases, the schedule would have to be repaired. This is usually
referred to as disruption management.

A very basic form of repairing a schedule, which could be done in the CPS model, is
removing completed tasks from the input and having CPO process it again. This has a lot
of drawbacks. One major drawback is that the newly generated schedule could look very
different from the original schedule, which is not very practical. In order to solve this,
the original schedule would have to be part of the input, with a progress indication for
each task. Constraints could be designed that limit the differences between the original
schedule and the repaired schedule. With a new objective function, such a difference could
be minimized.

As an extension of the CPS model, this is a very interesting area of research.
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List of Abbreviations

CPS(P)
RCPS(P)
RMS
cos
OPL
CPO

ODME

Complex Project Scheduling (Problem)

Resource-Constrained Project Scheduling (Problem)

Rail Maintenance Scheduling

IBM ILOG CPLEX Optimization Studio

Optimization Programming Language, used in COS

IBM ILOG CP Optimizer, the technology in COS that will be
used to solve the problem

IBM ILOG Optimization Decision Manager Enterprise
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Appendix A

Assertions Input Data

The typing of the parameters and return values covers a lot of trivial assertions.

Employees

A.E.0: Availability windows do not overlap:

Vee€ E:Vw,w € availability(e) | wy; # wey
send(ar) < start(az) || start(a;) > end(ag)

Equipment

A.Q.0: Availability windows do not overlap: similar to the one for Employees.

Consumables

A.C.0: Initial amount between lowerbound and upperbound:

Ve e C: lowerbound(c) < initialAmount(c) < upperbound(c)

Projects

A.P.0: Allowed time windows do not overlap:

Vp e P:Vw,w € allowedWindows(p) | wy # wo

cend(ar) < start(az) || start(a;) > end(ag)

A.P.1: “There are no circular constructs in the Project hierarchy”.

A.P.2: For tasks, mazPartDuration is larger than minFirstPartDuration, etc:

V't e T : mazPartDuration(t) > minFirstPartDuration(t)
A mazPartDuration(t) > minLastPartDuration(t)
A maxPartDuration(t) > minMiddlePartsDurations(t)
A duration(t) > minFirstPartDuration(t)
A duration(t) > minLastPartDuration(t)
A duration(t) > minMiddlePartsDurations(t)
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A mazPartSeparation(t) > minPartSeparation(t)

A.P.3: Never produce/consume more of a consumable than available (maximum):

Vp e P,ce C: abs(producesXOfConsumable(p, c)) < upperbound(c)—lowerbound(c)

Precedences

A.R.0: Precedence points to different projects:

Vr € R : projectl(r) # project2(r)

A.R.1: mazxDelay is larger than minDelay:

Vr € R : mazDelay(r) > minDelay(r)

A.R.2: Precedence is not about children in an alternative construction:

V' r € R | hasParent(project1(r))
A hasParent(project2(r))
A parent(project1(r)) = parent(project2(r))
: lisAlternativeNode( parent(project1(r)) )
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