
 Eindhoven University of Technology

MASTER

Vehicle function correctness
using mCRL2 to verify StateFlow charts and Simulink models

Schoren, R.J.A.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ef769305-09ad-4e44-9e35-26c935d4eecc


Master Project CSE

Public Report

Vehicle Function Correctness

Using mCRL2 to verify StateFlow Charts and Simulink Models

by

Rob Schoren

Supervisor
prof.dr.ir. J.F. Groote

Tutor
dr.ir. R.G.M. Huisman

Eindhoven University of Technology
Department of Computer Science

On behalf of DAF Trucks N.V.

February 16, 2012



Master Project - Vehicle Function Correctness Eindhoven University of Technology

Abstract

In this report, the possibilities of performing formal verification on
models used in the automotive industry are investigated. For this
purpose, we found an approach to make a fitting translation from
Matlab Simulink and StateFlow models to the mCRL2 modelling
language, which provides the formal verification techniques needed
to determine whether a model satisfies a number of requirements.

We performed such a translation on both the relatively small
Cruise Control system model and the larger complete Vehicle
Function Architecture as designed by DAF Trucks N.V. For
both models, the system’s behaviour proved not to be entirely as
expected by the designers, leading to several requirements being
unsatisfied. Further analysis provided insights to understand
the cause of these problems. The solutions to the discovered
problems generally appeared to be obvious and could be imple-
mented practically effortlessly by the DAF Trucks N.V. designers.
Remarkably, one of the proposed requirements seems to be first
known example of a natural property impossible to express in a
modal µ-calculus formula.

The report shows not only the potential of formal verification,
but also the challenges that the automotive industry will have to
overcome to use it. Composing an accurate set of unambiguous
requirements turned out to be more complex than expected and
requires constant reviewing and discussion. Moreover, consider-
ing the approach taken in this project, both the construction of a
mCRL2 model and the verification are a time consuming task and
require experience with the toolset. In order to be able to perform
formal verification itself, DAF needs to gain experience in this field.
For the mCRL2 toolset, there are multiple improvements possible
to be used more effectively in the automotive industry, such as an
automatic translation from Simulink to mCRL2 models.
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1 Introduction

This document describes the findings of a project, in which the behaviour of several Vehicle
Functions was modeled using the modeling language mCRL2 on behalf of DAF Trucks N.V.
The project’s goal is to investigate the applicability of formal verification in the automotive
industry, and to help DAF making a step towards building provably correct software systems.

The vehicle function software developed at DAF Trucks N.V. is modelled in the Mat-
lab Simulink modelling environment. This enables the designers to split the functionality
into multiple components, to maximize separation of concerns. Even though this is a wise
approach to modelling, the many components that communicate with each other may not
always interact as expected. Currently at DAF, the models are manually reviewed and test
scenarios are used to check whether the resulting behaviour is as desired. However, these test
scenarios show only the behaviour of the system in that one very specific scenario, giving no
guarantee that the system reacts the same to slightly different scenarios. More importantly,
the test scenarios usually describe common situations, while problems primarily occur in rare
cases that have been overlooked, i.e., the boundary cases. Therefore, DAF may benefit from
using formal verification on their models to assure that they unquestionably satisfy important
requirements.

In section 2, a short introduction is given to the mCRL2 modelling language and modal
µ-calculus. Section 3 contains the results of the first phase of the project, in which a Cruise
Control system was modelled based on a set of functional requirements. Section 4 describes
the second phase of the project, in which the Cruise Control StateFlow model as designed
by DAF was translated to mCRL2 and analyzed. The third phase of the project comprised
the translation of the “Driving and Braking” Vehicle Function Architecture to mCRL2, the
results of which can be found in section 5. Section 6 concludes the main document with a
discussion and future recommendations. In this public version of the report, the complete
lists of requirements, used Simulink / StateFlow models and constructed mCRL2 models are
omitted from appendices A.1 - C.7, even though they are referenced to throughout this doc-
ument.

/department of computer science 5
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2 Preliminaries

This section gives a short introduction to the mCRL2 modelling language, and to modal
µ-calculus as a language to express behavioural properties.

2.1 mCRL2

The mCRL2 toolset is developed at the department of Mathematics and Computer Science
of the Technische Universiteit Eindhoven, in collaboration with LaQuSo, CWI and the Uni-
versity of Twente. It is available as a free download from the mCRL2 homepage [2]. Other
major toolsets are UPPAAL, FDR, CADP, Spin and νSMV.

mCRL2 is a formal specification language with an associated toolset. The toolset can be
used for modelling, validation and verification of concurrent systems and protocols. The most
important entities in the mCRL2 modelling language are processes, describing the behaviour
of a system. A process can be specified using the following constructs:

Construct Example

Action P = a;
Sequential Composition Q = a . b;
Alternative Composition / Choice R = a + b;
Recursion S = a . S;
Data T (d : Bool) = c(d);
Condition U(d : Bool) = (d) → a <> b;
Summation V = sum d : Bool . c(d) = c(false) + c(true);
Parallel composition W = a||b = a.b + b.a + a|b;

Table 1: mCRL2 process constructs

The example processes in Table 1 describe the following behaviour. Process P performs
a single action a. Process Q first performs action a, then b. Process R performs either action
a or b. Process S continuously performs action a. Process T (d) performs action c(d), for the
same value of boolean variable d. Process U(d) performs action a if d = true, or action b if
d = false. Process V describes the alternative composition of the actions c(d) for all possible
values of boolean variable d. Process W performs actions a and b in any order (sequentially
or simultaneously).

2.2 modal µ-calculus

A modal µ-calculus formula is used to describe a behavioural property. Such a property can
then be verified automatically to a process model described in mCRL2. The syntax of the
modal µ-calculus formulae used in this project is given by the following BNF.
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φ ::= true | false | [ρ]φ | 〈ρ〉φ
ρ ::= α | ρ . ρ | ρ ∗
α ::= α ∨ α | a(d) | !a(d) | true

Table 2: modal µ-calculus syntax

In the syntax description in Table 2, φ represents a property, ρ represents a sequence of
actions and α represents an action. The actual µ-calculus available is much richer, but we
will not need additional constructs for this project.

The property true holds for any model, while false holds for no model. The formula [ρ]φ
describes that φ holds in all states that can be reached by a sequence ρ, while 〈ρ〉φ describes
that φ holds in some state that can be reached by a sequence ρ. To describe a sequence of
actions ρ, operators for concatenation and iteration are available. The presence of at least
one of two actions is described by α ∨ α. The presence or absence of a data parameterized
action a(d) is represented by a(d) or !a(d) respectively. Action true describes the presence of
any action in a sequence. A more elaborate description on the modal µ-calculus can be found
in [4].

2.3 Existing Simulink/StateFlow Verification Techniques

The designers at DAF Trucks N.V. use the Matlab Simulink environment to model their
vehicle functions. This section provides an overview of the verification techniques that are
already available for Simulink/StateFlow models.

In the Matlab Simulink environment, there is a tool named Simulink Design Verifier avail-
able to verify a model against requirements. The Design Verifier generates a number of test
cases based on a given requirement. These test cases are then simulated and it is checked
whether the model behaves as expected. This approach is likely to achieve a much higher
coverage than hand written test cases. However, for some requirements it may not be possible
to be effectively represented by a finite number of test cases. Also, performing an actual sim-
ulation for every generated test scenario could consume a lot of time, especially when using
a large and complex model.

Another existing verification tool for Simulink/StateFlow models is the BTC Embedded-
Validator. It translates Simulink/StateFlow models to a mathematical representation using
dSPACE TargetLink. A formal property can then be checked against this property, giving
formal proof that the model does or does not meet a given requirement. This approach is
similar to the one used in this project, but the main difference is that we apply some simpli-
fications to the models (see section 3.2.3) to allow more efficient verification. The TargetLink
translation provides a high level of certainty to the verification results, as no abstractions
are conducted when translating to the mathematical representation. However, keeping every
detail in translation may also result in the verification being very time consuming, so for a
large and complex model, this approach may not be suitable.

/department of computer science 7
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3 Cruise Control Design

This section describes the results of a case study, in which a model of a Cruise Control system
was designed ‘from scratch’, based on a set of requirements. With this case study being the
first part of the project, we intend to gain a better understanding of designing software sys-
tems using model verification in general, and of the desired behaviour of the Cruise Control
system specifically.

3.1 Functional Requirements

This section describes the desired behaviour of the Cruise Control system. First, a global
description is given to clarify the scope and context of CC within its surrounding vehicle
functions.

3.1.1 Global description

The Cruise Control functionality of DAF Trucks N.V. is defined by the following short global
description: “The cruise control function maintains vehicle speed at the required cruise con-
trol set speed selected by the driver, without operating the accelerator pedal. This speed is
maintained on condition that the engine power is sufficient to maintain the required cruise
control set speed.”

The context of the Cruise Control system is defined by a number of fixed input and output
signals (see appendix A.1). Table 3 below contains a selection of these signals that are used
as an example throughout this section.

Inputs Outputs

Ignition Switch Position Activate Governor Request
Diesel Engine State Set Speed
Transmission State
Vehicle Stability Control State
Resume Request
Set Request
Accelerate Request
Decelerate Request
Set Speed Increment Request
Set Speed Decrement Request

Table 3: The inputs and outputs of the Cruise Control used in this section.
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3.1.2 List of requirements

The requirements listed in appendix A.2 describe the desired functionality of the CC Super-
visor in terms of its inputs and outputs. Table 4 below contains a selection of requirements
that are used as an example throughout this section.

3. De functie moet aanstaan als de hierna genoemde inputsignalen de genoemde waarden
hebben: Ignition Switch Position is M (marche), Diesel Engine State is running,
Transmission State is forward gear.

11. Als de waarde van inputsignaal Vehicle Stability Control State gelijk is aan control-
ling, moet de waarde van outputsignaal Activate Governor Request false zijn.

16. De waarde van outputsignaal Set Speed mag nooit hoger zijn dan 85 km/h.

19. Op het true worden van de waarde van een van de volgende inputsignalen: Resume
Request, Set Request, Accelerate Request, Decelerate Request, Set Speed Increment
Request, Set Speed Decrement Request, mag alleen gereageerd worden als alle andere
genoemde signalen false zijn.

Table 4: A selection of Cruise Control requirements

/department of computer science 9
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3.2 Designed Cruise Control Model

In this section, it is explained how the Cruise Control system was modeled in mCRL2. It
contains a global description of the model and the design decisions that were made in order
to be able to effectively describe the behaviour. Also, the assumptions that have been made
are listed, along with a discussion on why these assumptions are valid and necessary. More
information on the mCRL2 modelling language and toolset can be found in [3] and [1]. For
this case study, the July 2011 (SVN revision 9551) Release version of the mCRL2 toolset has
been used.

3.2.1 Description of the mCRL2 model

This global description of the constructed model gives an abstracted view on the shape of the
Cruise Control process. The complete mCRL2 model, containing all used sort declarations
and function mappings, can be found in appendix A.3. The basic structure of the modeled
process is as follows:

1. CC(cc_state:CC_State, ccss:SPD) =

2. sum environment: ENV .

3. read_env(environment) .

4. (

5. % ------------------------------------ CC Off ---------------------------------------

6. (cc_state == Off && enable_conditions) -> on . CC_Idle(ccss) <>

7. (cc_state == Off) -> no_action . CC_Off(ccss) <>

8. % ------------------------------------ CC Idle ---------------------------------------

9. (cc_state == Idle && !enable_conditions) -> off . CC_Off(ccss) <>

10. (cc_state == Idle && activation_conditions) -> activate . CC_Controlling(calculate_new_ccss) <>

11. (cc_state == Idle) -> no_action . CC_Idle(ccss) <>

12. % ------------------------------------ CC Controlling ----------------------------------

13. (cc_state == Controlling && !enable_conditions) -> stop_regulate . off . CC_Off(ccss) <>

14. (cc_state == Controlling && deact_conditions) -> stop_regulate . deactivate . CC_Idle(ccss) <>

15. (cc_state == Controlling) -> no_action . CC_Controlling(calculate_new_ccss);

16. );

17.

18. CC_Off(ccss:SPD) = CC(Off, s0);

19. CC_Idle(ccss:SPD) = CC(Idle, ccss);

20. CC_Controlling(ccss:SPD) = regulate_cc(ccss) . CC(Controlling, ccss)

21.

22. init

23. CC(Off, s0);

In line 23, the initial state of the system is defined. We see that initially cc state = Off
and ccss = s0, so the Cruise Control is Off and its set speed is 0 km/h. During execution, the
system constantly reads the environment status (line 3), i.e., it reads the values of all input
signals. As the environment is not within the system’s control, there is a read env transition
for every possible combination of inputs. In the actual model, this is expressed by a sum
operator for each input, but these are combined in line 2 for reading purposes.

After pulling the environment status, the system determines which transition should be
taken (lines 6-15). The expressions used in the conditions are in terms of the inputs used in
read env , but abstracted to for instance enable conditions and activation conditions in the
description above. When a transition has been taken to a new CC state (or the same state
using a no action), the system ends up in one of the CC state specific processes (lines 18-20).
In CC Off , the current set speed is erased (so the stored ccss is set to s0 ). In CC Controlling ,
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a regulate cc transition is taken to update the Set Speed output.

The Cruise Control system has two outputs, b Activate Governor and Set Speed . Ini-
tially, their respective values are false and s0 . When a regulate cc(ccss) transition is taken,
this means that b Activate Governor is set to true and Set Speed becomes ccss. When a
stop regulate transition is taken, b Activate Governor is set to false again and Set Speed to
s0 .

3.2.2 Design decisions

During construction of the mCRL2 model, some design decisions have been made that allowed
for effective modeling of the desired system:

- A common problem in model verification is the state space explosion problem. If one
does not choose a careful modelling strategy, the resulting process often ends up con-
taining an unmanageable amount of states. For instance, our Cruise Control system
could contain a number of states exponential to the number of input signals modelled,
if a different transition would be used for reading each input signal. In order to avoid
the state space explosion problem, the choice was made to combine the reading of the
values of all inputs into one transition (read env). This way, it is not necessary to store
all these values in the following states. Rather, after reading all inputs, it is directly
determined by the model which next transition should be taken, and many of these
transitions will end up in the same states. Generating a Labelled Transition System
leads to a model that contains a relatively small amount of states (4538), but a large
number of transitions (4, 4 ∗ 107).

- Function mappings are used to separate some of the complexity of the model from the
actual process description. In this way, it was possible to keep the process descriptions
small and comprehensible. Also, this separation would make it easier to adapt the
model to future changes in requirements.

- In the actual Cruise Control system, the outputs are constantly set to a value. This
could be modeled by adding variables in all states that show us which values the outputs
currently have. However, this would cause the state space to increase significantly. The
decision was made to only model changes to the outputs. Thus, when the value of an
output should be changed, there is a transition in the model that sets the new value.
This value then stays on the output until it is changed again. This means that when we
want to use the value of an output signal to describe a requirement in modal µ-calculus,
we have to refer to the last occurred transition that changed the value of that signal.

3.2.3 Assumptions

For some aspects of a Cruise Control system, such as timing and the use of continuous
variables, modeling in mCRL2 can be problematic. Therefore, we made some assumptions to
overcome these problems:

- For this case study, timing issues have not been taken into account. One could imagine
that there would be requirements about the responsiveness of the system. Thus, the
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assumption is made that the software system is arbitrarily fast and always reacts in
time.

- The system, as described by the requirements, uses continuous variables such as the
actual vehicle speed. When modeling in mCRL2, we want to avoid a possible infinite
number of values, so the assumption is made that speed is of a discrete type (SPD), and
can only have a limited number of distinct values. This does not remove any complexity
from the system. In fact, the same model could be used, using a SPD type with an
arbitrary small step size between possible values (with some effort to adapt the function
mappings).

- When a driver request is active, it is important to determine whether it was already
active before, or that the boolean became true at this read env transition. If a request
is active at two consecutive read env transitions, it is assumed that it stayed active for
the Accelerate and Decelerate requests. For the other requests however, it is assumed
that the request has shortly been inactive between the two read env transitions.

3.2.4 Visualization

In order to obtain a graphical view on the model, we constructed a Labelled Transition Sys-
tem from the complete mCRL2 specification (which can be found in appendix A.3). First,
we translated the model to a Linear Process Specification (LPS). There are many operations
available to a specification in this form.

An operation we used here, is renaming all occurrences of certain transitions that match a
specific form. For instance, we renamed the read env(environment) action to rd env (which
has no parameters), ensuring that all read env(environment) transitions get the same name,
regardless the value of environment . Then, we translated the LPS to a Labelled Transition
System (LTS). This was then reduced to a minimal LTS with (bisimulation) equivalent be-
haviour, resulting in the LTS displayed in Figure 1.

The approach in the above description is executed using the following commands available
in the (July 2011 release version of the) mCRL2 toolset:

mcrl22lps
lpsactionrename
lps2lts
ltsconvert -ebisim

Note that the rename file used for lpsactionrename was defined as follows:

no action → tau
regulate cc(ccss) → rgl
stop regulate → stop rgl
read env(environment) → rd env

12 /department of computer science
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Figure 1: An LTS showing the behaviour of the model.

In Figure 1, we see the reduced LTS that was generated from the model. Representing an
LTS in a graphical way often helps to gain a better understanding of the model (see section
3.3.1).

Initially, the system is in the colored grey state. Note that this state contains a loop with
transitions rd env and tau. So as long as the Cruise Control is Off, the system loops through
these two states. Once the value of environment is such that the Cruise Control should be
turned On, the rd env transition to the bottomleft state is taken.

From here, there is only the possibility to take the on transition, leaving the Cruise Con-
trol in the Idle state. This state also contains a loop with transitions rd env and tau, which
is taken when the Cruise Control stays Idle. From here, the value of environment can cause
the Cruise Control to be activated, taking the activate and rgl transitions.

Note that when rgl is performed, the outputs b Activate Governor and Set Speed are
updated. As long as the Cruise Control is Controlling, the system loops through the 3
transitions rd env , tau and rgl on the right end of the figure. When the Cruise Control returns
to the Idle or Off state, this is preceded by a stop rgl transition, resetting b Activate Governor
and Set Speed to their initial values.

/department of computer science 13
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3.3 Model Checking

This section contains the results of the formal verification performed on the requirements in
section 3.1. With this formal verification, it can be proved that a certain path of transitions
can (or cannot) occur in a given mCRL2 model.

In appendix A.5, a translation to English and to the context of the designed mCRL2
model (see section 3.2) is given for the requirements that are listed in appendix A.2. These
requirements are expressed as propositions in modal µ-calculus.

Note that some of the propositions use transition names that are not used in the pro-
cess description of the mCRL2 model (but they are declared as actions). In these cases, the
corresponding transitions in the model are renamed with lpsactionrename using the rename
definitions as included in appendix A.4. In most cases, this comes down to removing all
parameters of transitions (usually read env) that are not used in the requirement.

Table 5 below contains the example requirements expressed in modal µ-calculus.

3. When off, a rd enable(true) must be di-
rectly followed by an on.

[!on* . rd_enable(true) . !on] false &&

[true* . off . !on* . rd_enable(true) .

!on] false

11. - As long as ActivateGovernor = false,
there can be no activate and rgl
directly after rd ebs(true).
- When ActivateGovernor = true, a
rd ebs(true) must be directly followed
by a stop rgl .

- [!rgl* . rd_ebs(true) .

activate . rgl] false

- [true* . rgl . !stop_rgl* . rd_ebs(true) .

!stop_rgl] false

16. There can be no regulate cc(s90 ) or
regulate cc(s100 ).

[true* . (regulate_cc(s90) ||

regulate_cc(s100))] false

19. After a rd env with 2 or more active
requests or a rd env with no active re-
quests, the same state is reached.

‘The same state’ seems to be

impossible to express.

Table 5: Verification of the example Cruise Control requirements

3.3.1 Graphical Verification

In order to gain a better understanding on what a requirement expresses and why it is (or is
not) true for a given model, it can be very useful to generate pictures of Labeled Transition
Systems of the model. For some of the requirements found in Table 5, we visualized the model
such that only the relevant transitions are visible.

In Figure 2, we see an LTS generated from the mCRL2 model, showing only the transitions
that are relevant for requirement 3: rd enable, on and off . The LTS has been reduced using
branching bisimulation equivalence to obtain a manageable system. Note that we can now
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see clearly that the model meets requirement 3 from Table 5: when the system is off (there
has been no on), a rd enable(true) can only be followed by an on transition.

Figure 2: LTS of the model, showing only rd enable, on and off .

Figure 3 shows an LTS containing the transitions that are relevant for requirement 11:
rd ebs, rgl , stop rgl and activate, again reduced using branching bisimulation equivalence.
We can now see clearly that the model meets requirement 11 from Table 5. For instance,
there is only one activate transition in the LTS, making it easy to see that there can be no
rd ebs(true) directly before activate. Also, when the system is controlling (there has been an
rgl and no following stop rgl), a rd ebs(true) can only be followed by a stop rgl transition.

Figure 3: LTS of the model, showing only rd ebs, rgl , stop rgl and activate.

3.3.2 Verification Results

It seems that requirement 19 is impossible to express in modal µ-calculus. This may be the
first example of a requirement that looks straightforward in natural language, but cannot be
expressed in a modal formula.

For all of the other requirements, the verification resulted in true for the constructed
mCRL2 model. Therefore, we can conclude that a Cruise Control model that provably meets
these given requirements has been designed in mCRL2 successfully.
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4 Translation Cruise Control StateFlow model to mCRL2

This section describes the results of a case study, in which a StateFlow model of a Cruise
Control system has been translated to the modeling language mCRL2. With this case study
being the second part of the project, we intend to perform formal verification on the Cruise
Control system as designed at DAF.

Currently, after modelling the CC behaviour in Matlab / Simulink, several test scenarios
are executed to verify that the system behaves as expected. However, this approach treats
only a small fraction of all possible scenarios, and certainly does not lead to a proof that
requirements are met. With this case study, we do not aim to prove that the system’s be-
haviour is 100% correct, because this would require a complete set of requirements, which is
practically impossible to obtain. However, we can prove whether the system satisfies several
important safety requirememts in all possible scenarios.

4.1 StateFlow Model

The Cruise Control StateFlow model can be found in Figure appendix B.1. From this model,
we can see the main behaviour of the system. A simplified view on the model, showing only
the global behaviour, can be found in Figure 4. In this view on the model, it is not visible that
the entire function can be enabled or disabled, which is a standard functionality in Simulink.
Thus, if the system is disabled, it is not in any of the states visible in Figure 4. When it
becomes enabled, the default transition is taken to end up in the Inactive state. After this,
the system behaves according to the model, until it becomes disabled again.
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Figure 4: A simplified version of the Cruise Control StateFlow model.
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The StateFlow model uses preprocessed input signals to determine the activation and de-
activation conditions. These signals are not available as such for the Cruise Control system,
but they are calculated using the “External Activation / Deactivation Conditions” Simulink
block in appendix B.1. Since both signals are dependent on the same set of input signals, but
not each others negation, this complexity is also taken into account for the translation to an
mCRL2 model (see section 4.3).

4.2 Functional Requirements

The translation of the StateFlow model to mCRL2 results in another mCRL2 Cruise Control
model, which should satisfy the same requirements as the model constructed in section 3.
However, the context of the two models is not identical, so the original list of requirements
cannot be used unaltered. Based on the input and output signals defined in section 3.1, but
adapted to the StateFlow model’s inputs and outputs, Table 6 contains the resulting list of
signals used to express the functional requirements.

Inputs Outputs

b Enabled Activate Governor Request
DNR Switch Position Set Speed
Other Vehicle Function Active
Vehicle Speed
Brake Stalk Active
Resume Request
Off Request
Driver Request

Table 6: The list of inputs and outputs

The requirements listed in appendix B.2 describe the desired functionality of the CC Su-
pervisor in terms of these inputs and outputs, based on the requirements defined in section
3.1. Table 7 below contains a selection of requirements that are used as an example through-
out this section.

3. De functie moet enabled zijn als de hierna genoemde inputsignalen de genoemde
waarden hebben: b Enabled is true, DNR Switch Position is D.

11. Als de waarde van inputsignaal Other Vehicle Function Active gelijk is aan true, moet
de waarde van outputsignaal Activate Governor Request false zijn.

16. De waarde van outputsignaal Set Speed mag nooit hoger zijn dan 85 km/h.

Table 7: A selection of Cruise Control requirements
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4.3 Translation to mCRL2

In this section, it is explained how the Cruise Control system was translated from a StateFlow
model to mCRL2. More information on the mCRL2 modelling language and toolset can be
found in [3] and [1]. For this case study, the July 2011 (SVN revision 9551) Release version
of the mCRL2 toolset has been used.

The global description of the constructed model below gives an abstracted view on the
shape of the Cruise Control process. The complete mCRL2 model, containing all used sort
declarations and function mappings, can be found in appendix B.3. The basic structure of
the modeled process is as follows:

1. CC_Disabled =

2. sum environment: ENV . read_env(environment) . (

3. (enable conditions) -> enable . CC_Init <>

4. no_action . CC_Disabled);

5.

6. CC_Init = CC_Inactive(s0);

7.

8. CC_Inactive(ccss: SPD) =

9. sum environment: ENV . read_env(environment) . (

10. (disable conditions) -> disable . CC_Disabled <>

11. (activation conditions && Resume Request) -> CC_Res1(ccss, brake stalk) <>

12. (activation conditions && Other Request) -> CC_Set1(ccss, brake stalk, current speed) <>

13. no_action . CC_Inactive(ccss));

14.

15. CC_Res1(ccss: SPD, brake stalk: Bool) = (

16. (brake stalk) -> CC_BrkOff(true, 0, ccss) <>

17. CC_Res2(ccss));

18.

19. CC_Set1(ccss: SPD, brake stalk: Bool, current speed:SPD) = (

20. (brake stalk) -> CC_BrkOff(false, 0, ccss) <>

21. CC_Set2(current speed));

22.

23. CC_BrkOff(activated_by_resume: Bool, timer: Nat, ccss: SPD) =

24. sum environment: ENV . read_env(environment) . (

25. (disable conditions) -> disable . CC_Disabled <>

26. (!(brake stalk) && activated_by_resume) -> CC_Res2(ccss) <>

27. (!(brake stalk) && !activated_by_resume) -> CC_Set2(current speed) <>

28. (timer > max waiting time) -> CC_Inactive(ccss) <>

29. no_action . CC_BrkOff(activated_by_resume, (timer + 1), ccss));

30.

31. CC_Res2(ccss: SPD) =

32. activate . regulate_cc(ccss) . CC_Activated(ccss);

33.

34. CC_Set2(current speed: SPD) =

35. activate . regulate_cc(current speed) . CC_Activated(current speed);

36.

37. CC_Activated(ccss: SPD) =

38. sum environment: ENV . read_env(environment) . (

39. (disable conditions) -> disable . CC_Disabled <>

40. (deactivation conditions) -> stop_regulate . deactivate . CC_Inactive(ccss) <>

41. (Driver Request == Decrement) -> regulate_cc(calculate_new_ccss) . CC_Activated(calculate_new_ccss) <>

42. (Driver Request == Increment) -> regulate_cc(calculate_new_ccss) . CC_Activated(calculate_new_ccss) <>

43. (Driver Request == Accelerate) -> CC_Accelerate(ccss) <>

44. (Driver Request == Decelerate) -> CC_Decelerate(ccss) <>

45. no_action . CC_Activated(ccss));

46.

47. CC_Accelerate(ccss: SPD) =

48. sum environment: ENV . read_env(environment) . (

49. (disable conditions) -> disable . CC_Disabled <>

50. (deactivation conditions) -> stop_regulate . deactivate . CC_Inactive(ccss) <>

51. (Request != Accelerate) -> regulate_cc(current_speed) . CC_Activated(current_speed) <>
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52. regulate_cc(calculate_new_ccss) . CC_Accelerate(calculate_new_ccss));

53.

54. CC_Decelerate(ccss: SPD) =

55. sum environment: ENV . read_env(environment) . (

56. (disable conditions) -> disable . CC_Disabled <>

57. (deactivation conditions) -> stop_regulate . deactivate . CC_Inactive(ccss) <>

58. (Request != Decelerate) -> regulate_cc(current_speed) . CC_Activated(current_speed) <>

59. regulate_cc(calculate_new_ccss) . CC_Decelerate(calculate_new_ccss));

60.

61. init

62. CC_Disabled;

Note that for each state in the StateFlow model (Figure 4), there is a process in the
mCRL2 model. The ‘Active’ superstate in the StateFlow model is not explicitly translated,
but it is represented by its substates, as the system can be in only one of these exclusive
substates at a given time.

In line 62, we see that initially the Cruise Control is disabled. During execution, the sys-
tem constantly reads the environment status (lines 2, 9, 24, 38, 48, 55). As the environment is
not within the system’s control, there is a read env transition for every possible combination
of inputs. In the actual model, this is expressed by a sum operator for each input, but these
are combined in the above model to an input environment of type ENV for reading purposes.

After pulling the environment status, the system determines which transition should be
taken. The expressions used in the conditions are in terms of the inputs used in read env ,
but abstracted to for instance disable conditions and activation conditions in the description
above. In line 28, we see that the system returns to the Inactive state after some maximum
waiting time. In the used mCRL2 model, the constant max waiting time has been set to the
value 2.

The Cruise Control system has two outputs, Activate Governor Request and Set Speed.
Initially, their respective values are false and s0 . When a regulate cc(ccss) transition is taken,
this means that b Activate Governor is set to true and Set Speed becomes ccss. When a
stop regulate transition is taken, b Activate Governor is set to false and Set Speed to s0 .

From the complete model (which can be found in appendix B.3), we constructed a reduced
bisimulation equivalent Labelled Transition System using the following commands available
in the mCRL2 toolset: mcrl22lps, lpsactionrename, lps2lts, ltsconvert -ebisim, resulting in
the LTS displayed in Figure 5. Note that the rename file used for lpsactionrename was defined
as follows:

no action → tau
regulate cc(ccss) → rgl
stop regulate → stop rgl
read env(environment) → rd env
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Figure 5: An LTS showing the behaviour of the model.

From Figure 5, it is hard to comprehend the entire behaviour of the Cruise Control system.
However, it is possible to recognize several processes from the mCRL2 process description
above. In Table 8, these states and corresponding processes are listed.

State mCRL2 Process

0 CC Disabled
3 CC Inactive
7, 6, 5, 4, 2, 1, 15 CC BrkOff (max waiting time = 2)
16 CC Res2, CC Set2
10 CC Activated
9 CC Accelerate, CC Decelerate

Table 8: The list of LTS states and corresponding mCRL2 processes.
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4.4 Model Checking

This section contains the results of the formal verification performed on the requirements in
section 4.2. With this formal verification, it can be proved that a certain path of transitions
can (or cannot) occur in a given mCRL2 model.

In appendix B.5, a translation to English and to the context of the designed mCRL2
model (see section 4.3) is given for the requirements that are listed in appendix B.2. These
requirements are expressed as propositions in modal µ-calculus.

Note that some of the propositions use transition names that are not used in the pro-
cess description of the mCRL2 model (but they are declared as actions). In these cases, the
corresponding transitions in the model are renamed with lpsactionrename using the rename
definitions as included in appendix B.4. In most cases, this comes down to removing all pa-
rameters of transitions (usually read env) that are not used in the requirement.

Table 9 below contains the example requirements expressed in modal µ-calculus.

3. When disabled, a rd enable(true) must
be followed directly by an enable.

[!enable* . rd_enable(true) . !enable]

false &&

[true* . disable . !enable* .

rd_enable(true) . !enable] false

11. X - As long as ActivateGovernor = false,
there can be no activate and rgl
directly after rd oth(true).
- When ActivateGovernor = true, a
rd oth(true) must be directly followed
by a stop rgl .

- [!rgl* . rd_oth(true) .

activate . rgl] false

- [true* . rgl . !stop_rgl* . rd_oth(true) .

!stop_rgl] false

16. X There can be no regulate cc(s90 ) or
regulate cc(s100 ).

[true* . (regulate_cc(s90) ||

regulate_cc(s100))] false

Table 9: Verification of the example Cruise Control requirements.

4.4.1 Verification Results

Some of the requirements in appendix B.5 are marked with an X, indicating that the verifica-
tion resulted in false for the constructed mCRL2 model, so these requirements are not met by
the model. For the other requirements, the verification resulted in true. We have constructed
a counterexample for the unsatisfied requirements, e.g. a trace of transitions possible in the
model which contradicts the requirement. The unsatisfied requirements and corresponding
counterexamples are listed and discussed in appendix B.6. The unsatisfied requirements from
our example selection are listed below.
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11. Counterexample: 1.rd oth(false), 2.enable, 3.rd oth(false), 4.rd oth(true), 5.activate,
6.rgl

The system checks whether another vehicle function is active in CC Inactive, but if it
is in the CC BrkOff state for some time after that before actual activation, it is
possible that one of the other vehicle functions has already become active.

16. Counterexample: 1.rd env , 2.enable, 3.rd env , 4.activate, 5.regulate cc(s80 ), 6.rd env ,
7.regulate cc(s80 ), 8.rd env , 9.regulate cc(s100 )

The first five transitions describe enabling and activation of the CC. Now assume that
the current vehicle speed is 100 km/h (or “s100”). If the Driver Request is
“Accelerate” (in transition 6), the system goes to the CC Accelerate state. Then, if
the Driver Request is quickly changed back to “No Rq” in transition 8, the Set Speed
is set to the current vehicle speed (which can still be “s100”) and used in transition 9.

4.4.2 Graphical Verification

In the same way we performed a graphical verification on requirement 3 in section 3.3.1, we
generated an LTS from the mCRL2 model in Figure 6. We can now see clearly that this
model also meets requirements 3 (from Table 9): when the system is disabled (there has been
no enable), a rd enable(true) can only be followed by an enable transition.

Figure 6: LTS of the model, showing only rd enable, enable and disable.

4.4.3 Matlab / Simulink Validation

For most of the unsatisfied requirements, the constructed counterexamples give us a clear view
on why the requirement is not met for both the mCRL2 model and the StateFlow model.
However, in case of requirements 21-24, it is not trivial to see whether the behaviour in the
counterexamples is also possible in the original StateFlow model.
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More specifically, the following scenario is possible in the mCRL2 model. Let’s assume
the Driver Request is “Decelerate”, and the Cruise Control is in the CC Decelerate state.
Then, the Driver Request becomes “Increment”, causing the Cruise Control to go to the
CC Activated state. If the Driver Request is then immediately set to “No Rq”, the Cruise
Control will not increment the Set Speed anymore, even though the Driver Request has been
“Increment” (which is the reason that requirement 23 is not satisfied).

In order to determine whether this behaviour is also possible in the StateFlow model, we
set up a simulation in Matlab. Most of the inputs of the Cruise Control system are set to a
fixed value (in general a value that allows the Cruise Control to enable/activate). The only
input that is variable, is the Driver Request.

First, we simulate a scenario to show the normal behaviour for an “Increment” Driver
Request. The results of this simulation are displayed in part A of Figure 7. For the first sec-
ond of the simulation, the Driver Request is set to “No Rq”. Then, during the next second,
it is set to “Decelerate”. This causes the Cruise Control to activate and the Set Speed to
become 50 km/h (which is the fixed value for the actual vehicle speed) shortly. As the Driver
Request is “Decelerate” for a while, the Cruise Control Set Speed is then set to 47 km/h
(the actual vehicle speed minus the Decelerate offset). When the Driver Request is set back
to “No Rq”, the Cruise Control reaches the Cruising state and the Set Speed becomes 50
km/h again. Then, at 2, 5 seconds, the Driver Request is set to “Increment” and immediately
back to “No Rq”. From the slight ascent in Figure 7, we can see that the Set Speed is now
increased to 50,5 km/h.

Now, we want to find out whether it is possible that the system ignores the “Increment”
signal, if we do not give it enough time to return to the Cruising state. In part B of Figure 7,
we see that the Driver Request is set from “Decelerate” to “Increment” at 2, 0 seconds, and
then immediately to “No Rq”. Note that the Set Speed is now set to 50 km/h, but never
incremented to 50,5 km/h. This shows us that the behaviour of the mCRL2 model can also
occur in the StateFlow model.
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Figure 7: The results of the Matlab simulations.

Concluding, we have validated that this aspect of the behaviour of the mCRL2 model is
equivalent to that of the StateFlow model: when the inputs of the system are such that a
transition should be taken, the system takes only one transition and then evaluates the values
of the inputs again, unlike taking transitions until the system is in a ‘steady’ state before
evaluating input values again.

More specifically, we have validated that requirements 21-24 are indeed not satisfied by
the StateFlow model.
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4.5 Solution Proposal

It was shown in section 4.4 that the original DAF StateFlow model does not satisfy all
requirements. In this section, we propose some adaptations to the original model, such that
it meets all requirements.

4.5.1 Adaptations

In order to obtain a StateFlow model that meets all the requirements, we made some adap-
tations to the original model. The StateFlow model that is the resulting solution, along with
an explanation of the changes, can be found in appendix B.7.

As an example, Figure 8 shows the proposed solution that makes sure that the model
satisfies requirement 11. There are additional guards on the outgoing transitions from the
ENDBRK OFF COMMAND state to ensure that the upcoming activation can only occur if
the activation conditions remain true.

4.5.2 Translation of solution to mCRL2

In order to show that the StateFlow model that we propose as a solution, is indeed a solution,
we performed the verification on the adapted model. This means that it is also translated to
an mCRL2 model, which can be found in appendix B.8. The model is, naturally, very similar
to that presented in section 4.3.

4.5.3 Verification Results

The mCRL2 model in appendix B.8 has been tested to the same set of requirements (appendix
B.5). The verification indicated that the model satisfies all requirements, which shows us that
the solution proposed is a correct solution.
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Figure 8: A simplified version of proposed solution to the Cruise Control StateFlow model.
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5 Translation Vehicle Function Architecture to mCRL2

This section describes the results of a case study, in which a Matlab / Simulink model of a
Vehicle Function Architecture has been translated to the modeling language mCRL2. With
this case study being the third and final part of the project, we intend to perform formal
verification on the Vehicle Function Architecture (VFA) that manages “Driving and Braking”
as designed at DAF. The VFA is a system that contains several parallel components, one of
which is the Cruise Control system that was also investigated during this project (see section
4).

5.1 Matlab / Simulink Model

The global view on the VFA Simulink model and a more detailed view on a selection of
important components of the system can be found in appendix C.2. A simplified view on the
VFA is provided in Figure 9 below, showing the division of the VFA into components.

Figure 9: A simplified version of the VFA Simulink model.

The VFA model contains 9 Simulink blocks, that are connected to each other as displayed
in Figure 9. Most of these blocks also have VFA inputs and/or outputs, but these are omit-
ted from the above figure, because it is only intended to show the interaction between the
several components. The arrows are labelled with numbers to denote the order in which the
communication actions are executed in the mCRL2 translation presented in section 5.3.

Some of the Simulink blocks have trivial behaviour, such as the Vehicle Mode Control
(VMC), which simply converts its input signal to an output signal that has a slightly different
type. However, the behaviour of other blocks is modeled using multiple layers of hierarchy
and StateFlow diagrams, such as the Accelerator Pedal Control (APC) and Downhill Speed
Control (DSC).
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5.2 Functional Requirements

In order to define a list of requirements for formal verification, we consider the VFA to be one
complete system having a set of inputs and output signals. The requirements will be only
in terms of these inputs and outputs, without considering the internal structure of the VFA
system. These inputs and output signal are listed in appendix C.1. Table 10 below contains
a selection of these signals that are used as an example throughout this section.

Inputs Outputs

VehModeSw Pos AccelPedReqArb SetSpeed
DNRSwitch Pos DSC SetSpeed

CC DrCtrlLogic SetSpeed

Table 10: The inputs and outputs of the VFA used in this section.

The requirements listed in appendix C.3 describe the desired functionality of the VFA in
terms of its inputs and outputs. This set of requirements is by no means a complete list that
fully defines the expected behaviour, but it merely states a number of safety requirements
that are most important to satisfy. Table 11 below contains a selection of these requirements,
using only the input and output signals from Table 10.

1. Als de VehModeSw Pos NIET gelijk is aan VEHMOD DRIVE , dan moet de waarde
van AccelPedReqArb SetSpeed gelijk zijn aan 0 km/h.

9. Outputsignaal DSC SetSpeed moet altijd minimaal DSC CC OFFSET hoger zijn
dan CC DrCtrlLogic SetSpeed .

11. Wanneer inputsignaal DNRSwitch Pos ongelijk is aan SWITCH D , dan moet de
waarde van outputsignaal DSC SetSpeed altijd gelijk zijn aan 255 km/h.

Table 11: A selection of VFA requirements

/department of computer science 29



Master Project - Vehicle Function Correctness Eindhoven University of Technology

5.3 Translation to mCRL2

In this section, it is explained how the Vehicle Function Architecture was translated from a
Matlab / Simulink model to mCRL2. More information on the mCRL2 modelling language
and toolset can be found in [3] and [1]. For this case study, the July 2011 (SVN revision 9551)
Release version of the mCRL2 toolset has been used.

The global description of the constructed model below gives an abstracted view on the
shape of the VFA process. The complete mCRL2 model, containing all used sort declarations
and function mappings, can be found in appendix C.4. The basic structure of the modeled
process is as follows:

1. % Vehicle Mode Control

2. VMC = comm_1 . VMC_Logic . comm_2 . comm_3 . VMC;

3.

4. % Enabling Logic

5. EL = comm_2 . EL_Logic . comm_4 . comm_5 . comm_6 . comm_8 . comm_9 . comm_10 . EL;

6.

7. % DNR Switch Logic

8. DNR = comm_3 . DNR_Logic . comm_4 . comm_9 . comm_10 . DNR;

9.

10. % Accelerator Pedal Control

11. APC = comm_4 . APC_Logic . comm_6 . APC;

12.

13. % Accelerator Pedal Request Arbiter

14. APRA = comm_6 . APRA_Logic . comm_7 . APRA;

15.

16. % Endurance Brake Stalk Control

17. EBSC = comm_5 . EBSC_Logic . comm_6 . comm_9 . EBSC;

18.

19. % Cruise Control Logic

20. CC = comm_5 . comm_9 . CC_Logic . comm_10 . CC;

21.

22. % Steering Wheel Switch Logic Cruise Control

23. SWSLCC = comm_8 . SWSLCC_Logic . comm_9 . comm_10 . SWSLCC;

24.

25. % Downhill Speed Control Logic

26. DSC = comm_10 . DSC_Logic . comm_11 . DSC;

27.

28. % Synchronization

29. SYNC = comm_1 . comm_2 . comm_3 . comm_4 . comm_5 . comm_6 . comm_7 . comm_8 . comm_9 . comm_10 . comm_11 . SYNC;

30.

31. init

32. allow(

33. {cmnc_1, cmnc_2, cmnc_3, cmnc_4, cmnc_5, cmnc_6, cmnc_7, cmnc_8, cmnc_9, cmnc_10, cmnc_11},

34.

35. comm({ comm_1 | comm_1 -> cmnc_1,

36. comm_2 | comm_2 | comm_2 -> cmnc_2,

37. comm_3 | comm_3 | comm_3 -> cmnc_3,

38. comm_4 | comm_4 | comm_4 | comm_4 -> cmnc_4,

39. comm_5 | comm_5 | comm_5 | comm_5 -> cmnc_5,

40. comm_6 | comm_6 | comm_6 | comm_6 | comm_6 -> cmnc_6,

41. comm_7 | comm_7 -> cmnc_7,

42. comm_8 | comm_8 | comm_8 -> cmnc_8,

43. comm_9 | comm_9 | comm_9 | comm_9 | comm_9 | comm_9 -> cmnc_9,

44. comm_10 | comm_10 | comm_10 | comm_10 | comm_10 | comm_10 -> cmnc_10,

45. comm_11 | comm_11 -> cmnc_11},

46.

47. VMC || EL || DNR || APC || APRA || EBSC || CC || SWSLCC || DSC || SYNC

48. ));
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Note that in the mCRL2 model (line 47), there are 10 processes initialized to run in parallel.
These consist of 9 processes that correspond to the 9 Simulink blocks in the original VFA
model, and 1 process that handles the synchronization of the communications. In the above
simplified model, we abstracted from the fact that the actions (comm 1 to comm 11 ) per-
formed by the processes contain a number of data variables. These variables make sure that,
if a component uses an input signal, it uses the same value as the corresponding output signal
of the component that outputs this signal.

The processes are in general of the following form:

1. First, they perform an action to read their input signals;

2. then, some calculations are done to determine the values for their output signals;

3. and finally, they perform one or multiple actions to communicate the output signals to
other components that use these signals as their inputs.

An exception to this general form is the Cruise Control process, which already has to send
some output signals (in action comm 5 ) before it had the chance to read its input signals
(action comm 9 ). This is necessary because there is a loop between the EBSC and CC blocks
(see Figure 9). For the first occurrence of comm 5 , the default values for these output sig-
nals are used. After that, the output signals of comm 5 are dependent on the input signals
received with comm 9 and have the same values as those in comm 10 .

The Synchronization (SYNC) process makes sure that all the communication actions are
performed in the correct order, without having any influence on the data that is commu-
nicated. Without the Synchronization process, it would be possible that some actions are
performed too soon or too late. For instance, if the VMC has read its inputs in a comm 1
action, and sent its outputs in the comm 2 and comm 3 actions, it could already perform the
next comm 1 action without waiting for the other processes to finish. In order to avoid this
kind of confusing behaviour and keep the state space as small as possible, the Synchronization
process is used to enforce the same trace of actions in every cycle. The result of generating
an LTS from the mCRL2 model (after renaming all actions to remove the data values and
performing a branching bisimulation equivalence reduction) is displayed in Figure 10:

Figure 10: An LTS showing the behaviour of the VFA model.
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5.3.1 Alternative Translation Approach

During the case study, we also attempted to take an alternative approach to translating the
Simulink model to mCRL2. In the model described above, every component only commu-
nicates with the components it shares signals with in the Simulink model. The alternative
translation approach however, combines all these transitions into one single communication
action comm all that contains all data variables. In this way, all components simultaneously
read their input signals and write their output signals. Based on the values of the inputs
signals, the next values for the output signals are determined. While the mCRL2 model in
section 5.3 uses 11 transitions to complete a simulation step, the alternative model performs
a simulation step for every component with every comm all transition (see Figure 11).

Figure 11: An LTS showing the behaviour of the alternative VFA model.

Using this translation approach, the construction of the mCRL2 model requires a smaller
effort and results in a small and readable model. We realize that the resulting model contains
a relatively small number states and a large number of transitions. It is hard to foresee
how this influences the performance of the tools in the mCRL2 toolset. Unfortunately, it
turned out to be impossible to perform a state space exploration or verify a property within
reasonable time. This indicates that it is very important to choose an appropriate structure
when modelling a complex system and further research on this topic could help us comprehend
the effects of our choices.
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5.4 Model Checking

This section contains the results of the formal verification performed on the requirements in
section 5.2. With this formal verification, it can be proved that a certain path of transitions
can (or cannot) occur in a given mCRL2 model.

In appendix C.6, a translation to English and to the context of the designed mCRL2
model (see section 5.3) is given for the requirements that are listed in appendix C.3. These
requirements are expressed as propositions in modal µ-calculus.

Note that some of the propositions use transition names that are not used in the pro-
cess description of the mCRL2 model (but they are declared as actions). In these cases, the
corresponding transitions in the model are renamed with lpsactionrename using the rename
definitions as included in appendix C.5. In most cases, this comes down to removing all
parameters of transitions (usually read env) that are not used in the requirement.

Table 12 below contains the example requirements expressed in modal µ-calculus.

1. The first cmnc 7 after cmnc 1 A or
cmnc 1 St must be
cmnc 7 setspeed none.

[true* . (cmnc_1_A || cmnc_1_St) .

(!cmnc_7_setspeed_none)* .

cmnc_7_setspeed_other] false

9. X For each cc spd : SPD and
dsc spd : SPD such that cc spd has a
higher value than dsc spd , a
cmnc 10 setspeed(cc spd) may never
be directly followed by a
cmnc 11 setspeed(dsc spd).

[true* . cmnc_10_setspeed(sLow) .

cmnc_11_setspeed(sNeg)] false &&

[true* . cmnc_10_setspeed(sLow) .

cmnc_11_setspeed(sNone)] false &&

[true* . cmnc_10_setspeed(sMid) .

cmnc_11_setspeed(sNeg)] false &&

[true* . cmnc_10_setspeed(sMid) .

cmnc_11_setspeed(sNone)] false &&

[true* . cmnc_10_setspeed(sMid) .

cmnc_11_setspeed(sLow)] false &&

[true* . cmnc_10_setspeed(sHigh) .

cmnc_11_setspeed(sNeg)] false &&

[true* . cmnc_10_setspeed(sHigh) .

cmnc_11_setspeed(sNone)] false &&

[true* . cmnc_10_setspeed(sHigh) .

cmnc_11_setspeed(sLow)] false &&

[true* . cmnc_10_setspeed(sHigh) .

cmnc_11_setspeed(sMid)] false

11. X The first cmnc 11 after
cmnc 3 dnr other must be
cmnc 11 setspeed high.

[true* . cmnc_3_dnr_other .

(!cmnc_11_setspeed_high)* .

cmnc_11_setspeed_other] false

Table 12: Verification of the example VFA requirements
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5.4.1 Verification Results

Some of the requirements in appendix C.6 are marked with an X, indicating that the verifi-
cation resulted in false for the constructed mCRL2 model, so these requirements are not met
by the model. For the other requirements, the verification resulted in true. The unsatisfied
requirements are listed and discussed in appendix C.7. A short discussion for the unsatisfied
requirements from our example selection is listed below.

9. This requirement is violated because on activation of the Downhill Speed Control, the
DSC SetSpeed is initialized to the actual vehicle speed, independent of whether the
Cruise Control was also active. During this simulation step, the DSC SetSpeed can be
lower than the CC DrCtrlLogic SetSpeed , which already violates the requirement, even
though the DSC SetSpeed will be adjusted to a value higher than CC DrCtrlLogic SetSpeed
during the next simulation step.

11. This requirement is not satisfied because the DNR Switch Logic can output that the
Allowed DNR Switch Pos is D , while the switch has just been moved to another po-
sition. This can only occur if DNRSwPos changes at the same simulation step that a
certain transition in the StateFlow diagram in the DNR Switch Logic is taken. This
makes it an improbable scenario, but also a dangerous one, as it could cause unexpected
behaviour for many of the components in the system, as the Allowed DNR Switch Pos
signal is used by most of them. This also holds for the Downhill Speed Control, which
is why this requirement is not satisfied. If the DSC was already active when the above
scenario occurs, it will not know that the DNRSwPos has changed and DSC SetSpeed
does not change to sHigh.

5.4.2 Graphical Verification

In Figure 12, we see an LTS generated from the mCRL2 model, showing only the transitions
that are relevant for requirement 1: cmnc 1 and cmnc 7 . The LTS has been reduced using
branching bisimulation equivalence to obtain a manageable system. Note that we can now
see clearly that the model meets requirement 1 from Table 12: every transition labelled
cmnc 1 A or cmnc 1 St enters the state labelled 7. From here, cmnc 7 setspeed none is
the only possible next transition, which makes it easy to see that there can never be a
cmnc 7 setspeed other in between.
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Figure 12: LTS of the model, showing only cmnc 1 , cmnc 7 and tau.
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6 Conclusions

From the first part of the project, in which a model of a Cruise Control system was constructed
in mCRL2, we learned that for designing a system, using only a set of high-level requirements
is not enough. It is practically impossible to make a complete set of requirements that fully
describes the desired behaviour of the system. However, using the requirements combined
with a good understanding of the desired system, a high quality model can be constructed.
Verifying the requirements while designing helps finding problems as soon as design errors
are made. Note that not only the system model can be erroneous, but there may also be re-
quirements that turn out to be too strong or too weak for our needs. When we finally end up
with a system that meets all requirements, we have confidence in both the requirements’ and
the system’s quality. A remarkable fact is that one of the proposed requirements seems to be
first known example of a natural property impossible to express in a modal µ-calculus formula.

In the second part of the project, a StateFlow model of the Cruise Control system was
translated to mCRL2. Even though these two modelling languages are rather dissimilar, a
straightforward translation approach was found to ensure minimal behavioural differences
between the models. Performing formal verification with a set of requirements showed that
the translation was accurate, as every scenario that violated a requirement in the mCRL2
model turned out to be a possible scenario in the original StateFlow model as well.

The third and final part of the project featured the translation of a larger and more com-
plex model to mCRL2. The Vehicle Function Architecture system contains several Matlab
Simulink components that run in parallel and communicate with each other. The most chal-
lenging aspect about this part of the project was finding a translation approach that is not
only as straightforward as possible, but also results in a model that allows performing effi-
cient operations using the mCRL2 toolset. Once a fitting translation was obtained, the formal
verification performed on the mCRL2 model proved to be valuable once again. Several prob-
lems were revealed that would have been very hard to find by reviewing or using test scenarios.

With this project we intended to investigate the potential and necessity of using formal
verification in the automotive industry in general, and for DAF Trucks N.V. in particular.
With software systems becoming an increasingly prominent part of vehicles, they also tend
to grow larger and more complex. In order to obtain the software quality needed to guar-
antee the safety a vehicle obviously requires, designers need new techniques to prove that
their product doubtlessly performs as required. During this project, the exposure of several
problems in real-life models showed the power of formal verification. In a direct sense, this
has led to several adjustments to the Simulink / StateFlow models by the DAF designers.
But more importantly, it shows that formal verification is quickly becoming indispensable
in the automotive industry. However, the approach used during this project, i.e. manually
translating Simulink and StateFlow models to mCRL2, is very time consuming and requires
extensive knowledge of the mCRL2 modelling language and modal µ-calculus, which may be
major drawbacks for DAF.

Therefore, we recommend some topics for future research that can bring the automotive
industry another step closer to using formal verification techniques effectively. First, it would
be interesting to investigate the possibility of automating the translation from Simulink and
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StateFlow models to mCRL2. This would make formal verification a substantially less time
consuming task, but it would still require a good understanding of both mCRL2 and the
modal µ-calculus. The main challenge here will be finding a translation scheme that not only
preserves the original model’s behaviour, but also produces mCRL2 models that allow efficient
verification. Finally, a profound investigation of other available verification tools can show
whether these are more suitable for Simulink and StateFlow models. While these tools may
provide a more intuitive way of constructing requirements, they may lack expressiveness in
comparison to the modal µ-calculus leaving some requirements impossible to verify. Another
important factor would be the efficiency of the verification; it is crucial to understand how
the size and complexity of the used models affects the performance.
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Confidentiality

Note that this is the public version of the document in which the complete lists of require-
ments, used Simulink / StateFlow models and constructed mCRL2 models are omitted from
the following appendices.

A Cruise Control Design Appendix

A.1 Context of the Cruise Control Supervisor

A.2 Functional Requirements for Designed Cruise Control

A.3 Designed Cruise Control mCRL2 Model

A.4 Transition Renamings

A.5 Functional Requirements for Designed Cruise Control expressed in
modal µ-calculus
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B Cruise Control Translation Appendix

B.1 Cruise Control StateFlow model

B.2 Functional Requirements for Translated Cruise Control

B.3 Translation Cruise Control to mCRL2 model

B.4 Transition Renamings

B.5 Functional Requirements for Translated Cruise Control expressed in
modal µ-calculus

B.6 Counterexamples Unsatisfied Requirements Translation Cruise Con-
trol

B.7 Proposed Solution to Cruise Control StateFlow model

B.8 Translation Solution Cruise Control to mCRL2 model
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C Vehicle Function Architecture Translation Appendix

C.1 Context of the VFA system

C.2 Vehicle Function Architecture Simulink Model

C.3 Functional Requirements for VFA

C.4 Translation VFA to mCRL2 model

C.5 Transition Renamings

C.6 Functional Requirements for VFA expressed in modal µ-calculus

C.7 Analysis Unsatisfied Requirements Translation VFA
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